WorldWideScience

Sample records for chirality-controlled nanotube growth

  1. Evidence of Correlation between Catalyst Particles and the Single-Wall Carbon Nanotube Diameter: A First Step towards Chirality Control

    OpenAIRE

    Fiawoo, M.-F. C.; Bonnot, Anne Marie; Amara, H.; Bichara, C.; Thibault-Pénisson, J; Loiseau, A.

    2012-01-01

    Controlling the structure of single-wall carbon nanotubes during their synthesis by chemical vapor deposition remains a challenging issue. Here, using a specific synthesis protocol and ex situ transmission electron microscopy, we perform a statistical analysis of the structure of the tubes and of the catalyst particles from which they grow. We discriminate two nucleation modes, corresponding to different nanotube-particle junctions, that occur independently of the particle size. With the supp...

  2. Growth of nanotubes for electronics

    Directory of Open Access Journals (Sweden)

    John Robertson

    2007-01-01

    Full Text Available The roadmap for semiconductor devices envisages that carbon nanotubes or semiconducting nanowires could become important in about ten years. This article reviews where carbon nanotubes could contribute to microelectronics, in terms of vias, interconnects, and field-effect transistors. It focuses particularly on the requirements microelectronics places on the growth of nanotubes. That is, control over the formation of semiconducting or metallic tubes, controlling the growth location and direction, and achieving high enough nucleation densities.

  3. Carbon nanotube growth density control

    Science.gov (United States)

    Delzeit, Lance D. (Inventor); Schipper, John F. (Inventor)

    2010-01-01

    Method and system for combined coarse scale control and fine scale control of growth density of a carbon nanotube (CNT) array on a substrate, using a selected electrical field adjacent to a substrate surface for coarse scale density control (by one or more orders of magnitude) and a selected CNT growth temperature range for fine scale density control (by multiplicative factors of less than an order of magnitude) of CNT growth density. Two spaced apart regions on a substrate may have different CNT growth densities and/or may use different feed gases for CNT growth.

  4. Templated Growth of Carbon Nanotubes

    Science.gov (United States)

    Siochik Emilie J. (Inventor)

    2007-01-01

    A method of growing carbon nanotubes uses a synthesized mesoporous si lica template with approximately cylindrical pores being formed there in. The surfaces of the pores are coated with a carbon nanotube precu rsor, and the template with the surfaces of the pores so-coated is th en heated until the carbon nanotube precursor in each pore is convert ed to a carbon nanotube.

  5. Nanocrystalline cobalt oxides for carbon nanotube growth

    Science.gov (United States)

    Guo, Kun; Jayatissa, Ahalapitiya H.; Jayasuriya, Ambalangodage C.

    2007-09-01

    Thin Films of nanocrystalline cobalt oxide were formed by sol-gel method. Structure, optical properties and surface properties of these films were investigated by numerous characterization techniques. These films were successfully fabricated on glass substrates below 500°C. . Micropatterns of cobalt oxide thin films were also fabricated on glass and silicon substrates by employing a lift-off method. Crystal size of these nanocrystalline cobalt films could be successfully controllable by varying the amount of cobalt precursors and number of layers. These films were used as the seeding layers for carbon nanotube growth in a CVD process By changing the concentration of monomer precursors in the solgel coating solutions, different size nanoclusters hence different size carbon nanotubes could be synthesized in CVD process. This method can be used for controlled growth of carbon nanotubes for many different applications. In this paper, detail of these experimental results will be presented.

  6. Heteronuclear carbon nanotubes: applications to study carbon nanotube growth

    International Nuclear Information System (INIS)

    Full text: Synthesis of heteronuclear carbon nanotubes and their application for a variety of studies is presented. SWCNTs peapods encapsulating highly 13C enriched fullerenes and double wall carbon nanotubes (DWCNTs) based on the peapods were prepared. Raman studies indicate that the inner tubes are highly 13C enriched with no carbon exchange between the two walls during the synthesis. The material enables the straightforward identification of the inner and outer tube vibrational spectra. An inhomogeneous broadening, assigned to the random distribution of 12C and 13C nuclei is observed and is explained by ab initio vibrational analysis. The growth of inner tubes from organic solvents was proven by the use of 13C labeled organic materials such as toluene. The simultaneous encapsulation of fullerenes with the solvents was found crucial as these prevent the solvents from evaporating during the high temperature synthesis of the inner tubes. Nuclear magnetic resonance on the peapods and DWCNTs with highly 13C enriched fullerenes or inner walls proves the significant contrast of the isotope enriched SWCNTs as compared to other carbon phases. The NMR experiment on the DWCNTs yield direct information on the electronic properties of small diameter SWCNTs. The significantly different chemical shift of the inner tubes is related to a curvature effect. Relaxation data on the inner tubes shows a deviation from a Fermi-liquid behavior. (author)

  7. Carbon nanotubes: controlled growth and application

    Directory of Open Access Journals (Sweden)

    Chang Liu

    2013-01-01

    Full Text Available Notable progress has been made on the synthesis, properties and uses of carbon nanotubes (CNTs in the past two decades. However, the controlled growth of single-wall CNTs (SWCNTs with predefined and uniform structures remains a big challenge, and making full use of CNTs in applications still requires great effort. In this article, our strategies and recent progress on the controlled synthesis of SWCNTs by chemical vapor deposition are reviewed, and the applications of CNTs in lithium-ion batteries, transparent conductive films, and as connectors of metal atomic chains are discussed. Finally, future prospects for CNTs are considered.

  8. Increased Alignment in Carbon Nanotube Growth

    Science.gov (United States)

    Delzeit, Lance D. (Inventor)

    2007-01-01

    Method and system for fabricating an array of two or more carbon nanotube (CNT) structures on a coated substrate surface, the structures having substantially the same orientation with respect to a substrate surface. A single electrode, having an associated voltage source with a selected voltage, is connected to a substrate surface after the substrate is coated and before growth of the CNT structures, for a selected voltage application time interval. The CNT structures are then grown on a coated substrate surface with the desired orientation. Optionally, the electrode can be disconnected before the CNT structures are grown.

  9. Nanotubes in Nanoelectronics: Transport, Growth and Modeling

    Science.gov (United States)

    Anantram, M.; Delzeit, Lance; Cassell, Alan; Han, Jie; Meyyappan, M.; Arnold, Jim (Technical Monitor)

    2001-01-01

    Carbon nanotube (CNT) baud nanotechnology appears to be promising for future Theoretical analysis and results for the ballistic current carrying capacity of nanotube wires am presented. Aspects of metal-nanotube coupling are examined. Results am also presented for chemical vapor deposition of CNT from hydrocarbon feedstock.

  10. Controlling growth of aligned carbon nanotubes from porous silicon templates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Fabricating well-aligned carbon nanotubes, especially, on a silicon substrate is very important for their applications. In this paper, an aligned carbon nanotube array has been prepared by pyrolysis of hydrocarbons catalyzed by nickel nanoparticles embedded in porous silicon (PS) templates. High-magnification transmission electron microscopy images confirm that the nanotubes are well graphitized. The PS substrates with pore sizes between 10 and 100 nm play a control role on the growth of carbon nanotubes and the diameters of the tubes increase with the enlargement of the pores of the substrates. However, such a control role cannot be found in the macro-PS substrates.

  11. Growth of ZnO nanotube arrays and nanotube based piezoelectric nanogenerators

    KAUST Repository

    Xi, Yi

    2009-01-01

    We present a systematic study of the growth of hexagonal ZnO nanotube arrays using a solution chemical method by varying the growth temperature (<100 °C), time and solution concentration. A piezoelectric nanogenerator using the as-grown ZnO nanotube arrays has been demonstrated for the first time. The nanogenerator gives an output voltage up to 35 mV. The detailed profile of the observed electric output is understood based on the calculated piezoelectric potential in the nanotube with consideration of the Schottky contact formed between the metal tip and the nanotube; and the mechanism agrees with that proposed for nanowire based nanogenerator. Our study shows that ZnO nanotubes can also be used for harvesting mechanical energy. © 2009 The Royal Society of Chemistry.

  12. Carbon nanotube forests growth using catalysts from atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Bingan; Zhang, Can; Esconjauregui, Santiago; Xie, Rongsi; Zhong, Guofang; Robertson, John [Department of Engineering, University of Cambridge, Cambridge CB3 0FA (United Kingdom); Bhardwaj, Sunil [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy); Sincrotone Trieste S.C.p.A., s.s. 14, km 163.4, I-34149 Trieste (Italy); Cepek, Cinzia [Istituto Officina dei Materiali-CNR Laboratorio TASC, s.s. 14, km 163.4, I-34012 Trieste (Italy)

    2014-04-14

    We have grown carbon nanotubes using Fe and Ni catalyst films deposited by atomic layer deposition. Both metals lead to catalytically active nanoparticles for growing vertically aligned nanotube forests or carbon fibres, depending on the growth conditions and whether the substrate is alumina or silica. The resulting nanotubes have narrow diameter and wall number distributions that are as narrow as those grown from sputtered catalysts. The state of the catalyst is studied by in-situ and ex-situ X-ray photoemission spectroscopy. We demonstrate multi-directional nanotube growth on a porous alumina foam coated with Fe prepared by atomic layer deposition. This deposition technique can be useful for nanotube applications in microelectronics, filter technology, and energy storage.

  13. Catalytic growth of carbon nanotubes with large inner diameters

    Directory of Open Access Journals (Sweden)

    WEI REN ZHONG

    2005-02-01

    Full Text Available Carbon nanotubes (2.4 g/g catalyst, with large inner diameters were successfully synthesized through pyrolysis of methane on a Ni–Cu–Al catalyst by adding sodium carbonate into the carbon nanotubes growth system. The inner diameter of the carbon nanotubes prepared by this method is about 20–60 nm, while their outer diameter is about 40–80 nm. Transmission electron microscopy and X-ray diffraction were employed to investigate the morphology and microstructures of the carbon nanotubes. The analyses showed that these carbon nanotubes have large inner diameters and good graphitization. The addition of sodium carbonate into the reaction system brings about a slight decrease in the methane conversion and the yield of carbon. The experimental results showed that sodium carbonate is a mildly toxic material which influenced the catalytic activity of the Ni–Cu–Al catalyst and resulted in the formation of carbon nanotubes with large inner diameters. The growth mechanism of the carbon nanotubes with large inner diameters is discussed in this paper.

  14. Selective growth of carbon nanotube on silicon substrates

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOT; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    The carbon nanotube (CNT) growth of iron oxide-deposited trench-patterns and the locally-ordered CNT arrays on silicon substrate were achieved by simple thermal chemical vapor deposition(STCVD) of ethanol vapor. The CNTs were uniformly synthesized with good selectivity on trench-patterned silicon substrates. This fabrication process is compatible with currently used semiconductor-processing technologies,and the carbon-nanotube fabrication process can be widely applied for the development of electronic devices using carbon-nanotube field emitters as cold cathodes and can revolutionize the area of field-emitting electronic devices. The site-selective growth of CNT from an iron oxide nanoparticle catalyst patterned were also achieved by drying-mediated self-assembly technique. The present method offers a simple and cost-effective method to grow carbon nanotubes with self-assembled patterns.

  15. Synthesis and Growth Mechanism of Ni Nanotubes and Nanowires

    Directory of Open Access Journals (Sweden)

    Wang Yiqian

    2009-01-01

    Full Text Available Abstract Highly ordered Ni nanotube and nanowire arrays were fabricated via electrodeposition. The Ni microstructures and the process of the formation were investigated using conventional and high-resolution transmission electron microscope. Herein, we demonstrated the systematic fabrication of Ni nanotube and nanowire arrays and proposed an original growth mechanism. With the different deposition time, nanotubes or nanowires can be obtained. Tubular nanostructures can be obtained at short time, while nanowires take longer time to form. This formation mechanism is applicable to design and synthesize other metal nanostructures and even compound nanostuctures via template-based electrodeposition.

  16. Kinetics of Laser-Assisted Carbon Nanotube Growth

    CERN Document Server

    van de Burgt, Yoeri; Mandamparambil, Rajesh

    2014-01-01

    Laser-assisted chemical vapour deposition (CVD) growth is an attractive mask-less process for growing locally aligned carbon nanotubes (CNTs) in selected places on temperature sensitive substrates. The nature of the localized process results in fast carbon nanotube growth with high experimental throughput. Here, we report on detailed investigation of growth kinetics related to physical and chemical process characteristics. Specifically, the growth kinetics is investigated by monitoring the dynamical changes of reflected laser beam intensity during growth. Benefiting from the fast growth and high experimental throughput, we investigate a wide range of experimental conditions and propose several growth regimes. Rate-limiting steps are determined using rate equations linked to the proposed growth regimes, which are further characterized by Raman spectroscopy and Scanning Electron Microscopy (SEM), therefore directly linking growth regimes to the structural quality of the CNTs. Activation energies for the differe...

  17. Simulation of the dc Plasma in Carbon Nanotube Growth

    Science.gov (United States)

    Hash, David; Bose, Deepak; Govindan, T. R.; Meyyappan, M.; Biegel, Bryan (Technical Monitor)

    2003-01-01

    A model for the dc plasma used in carbon nanotube growth is presented, and one-dimensional simulations of an acetylene/ammonia/argon system are performed. The effect of dc bias is illustrated by examining electron temperature, electron and ion densities, and neutral densities. Introducing a tungsten filament in the dc plasma, as in hot filament chemical vapor deposition with plasma assistance, shows negligible influence on the system characteristics.

  18. Simulation of the dc plasma in carbon nanotube growth

    International Nuclear Information System (INIS)

    A model for the dc plasma used in carbon nanotube growth is presented, and one-dimensional simulations of an acetylene/ammonia/argon system are performed. The effect of dc bias is illustrated by examining electron temperature, electron and ion densities, and neutral densities. Introducing a tungsten filament in the dc plasma, as in hot filament chemical vapor deposition with plasma assistance, shows negligible influence on the system characteristics

  19. Towards carbon nanotube growth into superconducting microwave resonator geometries

    OpenAIRE

    Blien, S.; Götz, K. J. G.; Stiller, P. L.; Mayer, T.; Huber, T.; Vavra, O.; Hüttel, A. K.

    2016-01-01

    The in-place growth of suspended carbon nanotubes facilitates the observation of both unperturbed electronic transport spectra and high-Q vibrational modes. For complex structures integrating, e.g., superconducting rf elements on-chip, selection of a chemically and physically resistant material that survives the chemical vapor deposition (CVD) process provides a challenge. We demonstrate the implementation of molybdenum-rhenium coplanar waveguide resonators that exhibit clear resonant behavio...

  20. Morphology and growth of titania nanotubes. Nanostructuring and applications

    Energy Technology Data Exchange (ETDEWEB)

    Albu, Sergiu P.

    2012-10-26

    Self-ordering phenomena during anodic oxidation of metals and the formation of porous oxides have been of a great interest to science and technology for more than 50 years. Particularly, after Masuda et al. demonstrated ideally ordered porous alumina by fine tuning the experimental parameters during aluminum anodization, these structures were increasingly used as a template for the deposition and growth of large varieties of 1D functional materials. For some time, such self-organized oxide structures seemed to be limited to Al{sub 2}O{sub 3}, but in 1999 Zwilling et al. reported self-organized oxide structures (aligned nanotubes) anodically grown on Ti in a dilute fluoride solution. Dilute fluoride electrolytes were then found suitable to grow ordered tubular or porous oxides on a large range of other metals and alloys. Subsequently, the control over the morphology (diameter, length, smoothness of the walls) was strongly improved by continuously optimizing the anodizing conditions. Most research work has been directed towards TiO{sub 2} nanotubes, as TiO{sub 2} with its semiconductive nature makes the nanotubular structures promising for use in solar cells, photocatalysis and sensors, and also its ion insertion properties and its high degree of biocompatibility have attracted wide interest. The experimental optimization of growth parameters led to various semi-quantitative or qualitative models that provide a mechanistic reasoning for the occurrence of self-organization. Although theoretical modeling of self-ordered structures grown anodically on valve metals was increasingly refined, a main source of difficulty remained, namely the multitude of experimental factors which influence the growth of self-ordered nanostructures. The present work represents an attempt to provide a detailed experimental view over the growth of TiO{sub 2} nanotubes in organic electrolytes. The first part is based on describing the methods and set-ups used for growth and characterization of

  1. Growth of Ag nanocrystals on multiwalled carbon nanotubes and Ag-carbon nanotube interaction

    Institute of Scientific and Technical Information of China (English)

    WANG ZhenXia; LI XinNian; REN CuiLan; YONG ZhenZhong; ZHU JianKang; LUO WenYun; FANG XiaoMing

    2009-01-01

    The experimental investigations on the interaction between Ag-nanocrystal particles (Ag-NCPs) and carbon nanotubes (CNTs) in Ag-nanocrystal particles/carbon nanotubes (Ag-NCPs/CNTs) hybrid structures were reported.The growth of Ag-NCPs on multiwalled carbon nanotubes (MWCNTs) was carried out by thermal evaporation deposition.High-resolution transmission electron microscopy and X-ray diffraction analyses revealed that Ag-NCPs had the crystal lattice feature of face-centered cube (fcc).The growth of Ag-NCPs on MWCNTs induced the cross-section deformation of MWCNT.The ex-perimental results also showed that the synthesized Ag-NCPs/CNTs hybrid structure appeared as quasi-one dimensional nanowires containing the Ag-NCP/CNT hetero-junction.There was local cross-section deformation on MWCNTs at the interface of hetero-junction.These results involve the Important topic about fundamental and practical studies for structure of MNCPs on CNTs and also find clues to further research of Ag nanocrystal growing on MWCNTs and related Ag-CNT interaction.

  2. Growth of Ag nanocrystals on multiwalled carbon nanotubes and Ag-carbon nanotube interaction

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The experimental investigations on the interaction between Ag-nanocrystal particles (Ag-NCPs) and carbon nanotubes (CNTs) in Ag-nanocrystal particles/carbon nanotubes (Ag-NCPs/CNTs) hybrid structures were reported. The growth of Ag-NCPs on multiwalled carbon nanotubes (MWCNTs) was carried out by thermal evaporation deposition. High-resolution transmission electron microscopy and X-ray diffraction analyses revealed that Ag-NCPs had the crystal lattice feature of face-centered cube (fcc). The growth of Ag-NCPs on MWCNTs induced the cross-section deformation of MWCNT. The experimental results also showed that the synthesized Ag-NCPs/CNTs hybrid structure appeared as quasi-one dimensional nanowires containing the Ag-NCP/CNT hetero-junction. There was local cross-section deformation on MWCNTs at the interface of hetero-junction. These results involve the important topic about fundamental and practical studies for structure of MNCPs on CNTs and also find clues to further research of Ag nanocrystal growing on MWCNTs and related Ag-CNT interaction.

  3. Zinc oxide catalyzed growth of single-walled carbon nanotubes

    International Nuclear Information System (INIS)

    We demonstrate that zinc oxide can catalyze the growth of single-walled carbon nanotubes (SWNTs) with high efficiency by a chemical vapor deposition process. The zinc oxide nanocatalysts, prepared using a diblock copolymer templating method and characterized by atomic force microscopy (AFM), were uniformly spaced over a large deposition area with an average diameter of 1.7 nm and narrow size distribution. Dense and uniform SWNTs films with high quality were obtained by using a zinc oxide catalyst, as characterized by scanning electron microscopy (SEM), Raman spectroscopy, AFM, and high-resolution transmission electron microscopy (HRTEM).

  4. Catalytic CVD Synthesis of Carbon Nanotubes: Towards High Yield and Low Temperature Growth

    Directory of Open Access Journals (Sweden)

    Marijana Mionić

    2010-11-01

    Full Text Available The catalytic chemical vapor deposition (CCVD is currently the most flexible and economically attractive method for the growth of carbon nanotubes. Although its principle is simple, the precisely controlled growth of carbon nanotubes remains very complex because many different parameters influence the growth process. In this article, we review our recent results obtained on the synthesis of carbon nanotubes via CCVD. We discuss the role of the catalyst and the catalyst support. Our recent results obtained from the water assisted growth and the equimolar C2H2-CO2 reaction are also discussed. Both procedures lead to significantly enhanced carbon nanotube growth. In particular, the latter allows growing carbon nanotubes on diverse substrate materials at low temperatures.

  5. Electric field effect in the growth of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Plaza, E., E-mail: ericvpp@gmail.com; Briceño-Fuenmayor, H. [Instituto Venezolano de Investigaciones Científicas (IVIC), Laboratorio de Física de Fluidos y Plasma (Venezuela, Bolivarian Republic of); Arévalo, J. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of); Atencio, R. [Instituto Venezolano de Investigaciones Científicas (IVIC), Centro de Investigación y Tecnología de Materiales (Venezuela, Bolivarian Republic of); Corredor, L. [Instituto Zuliano de Investigaciones Tecnológicas (INZIT), Unidad de Caracterización y Estructura de Materiales (Venezuela, Bolivarian Republic of)

    2015-06-15

    The growth of carbon nanotubes (CNTs) under a controlled electric field in a chemical vapor deposition system is investigated. We evaluate the influence of this external field on the morphological and structural characteristics of CNTs. Scanning electron microscopy results display a large presence of carbonaceous material in the positive plate, which appear to be a consequence of the attraction of electric forces over the electronically unbalanced cracked carbon molecules in the heating zone. We also observe a growth behavior for CNTs, in which catalyst particles are localized either at the bottom or the upper part of the nanotube, depending on the intensity and direction of the electric field. A Raman analysis from all obtained carbon materials shows the presence of two peaks, corresponding to the D ∼ 1340 cm{sup −1} and G ∼ 1590 cm{sup −1} bands attributed to multiwall CNTs. The average diameter of the CNTs is in the range between 90 and 40 nm. These results provide experimental evidence for the dependence of the catalyst and subtract interaction on the growing mechanism, in which weak chemical or electronic interactions could stimulate a top-growing as the strongest base-growing process.

  6. Bulk nucleation and growth of inorganic nanowires and nanotubes

    Science.gov (United States)

    Sharma, Shashank

    The nanometer scale materials such as nanowires and nanotubes will be of particular interest as building blocks for designing novel sensors, catalysts, electronic, optical, and optoelectronic devices. However, in order to realize these applications, bulk amounts of nanowires and nanotubes need to be synthesized with precise control over the nanostructure characteristics. In addition, the structure-property relationships for one-dimensional structures are expected to be different than their bulk when their diameters are less than a characteristic Bohr exciton radius. This fundamental curiosity also necessitates bulk synthesis of nanostructures. The current bulk nanowire synthesis methods utilize either nanometer scale porous molds or nanometer scale transition metal clusters to template one-dimensional growth. All these techniques have inherent limitations in terms of control over the nanowire diameter distribution, composition, the growth direction, and the ability to generate abrupt interfaces within individual nanowires. In this dissertation, a new concept for bulk nucleation and growth of one-dimensional nanostructures is proposed and demonstrated for a variety of inorganic material systems. In this technique, multiple nanowires nucleate and grow from pools of low-melting metal melts when exposed to an activated gas phase containing the necessary precursors. This concept, hereby termed Low Melting Metals and Activated Gas phase (LMAG) mediated method, is specifically demonstrated for the synthesis of, (a) silicon nanowires grown using molten gallium and silane precursors; (b) silicon compound nanowires using solution of molten gallium and appropriate gas phase precursors, and (c) metal-oxide nanostructures grown using direct reaction of the respective metal melts and oxygen precursors. Nanowires resulted from the same molten gallium pool at high densities (>1011/cm2) and with narrow diameter distribution. The silicon nanowires synthesized using the LMAG

  7. Carbon nanotube growth from catalytic nano-clusters formed by hot-ion-implantation into the SiO{sub 2}/Si interface

    Energy Technology Data Exchange (ETDEWEB)

    Hoshino, Yasushi, E-mail: yhoshino@kanagawa-u.ac.jp [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan); Arima, Hiroki; Yokoyama, Ai; Saito, Yasunao; Nakata, Jyoji [Department of Information Sciences, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293 (Japan)

    2012-07-01

    We have studied growth of chirality-controlled carbon nanotubes (CNTs) from hot-implantation-formed catalytic nano-clusters in a thermally grown SiO{sub 2}/Si substrate. This procedure has the advantage of high controllability of the diameter and the number of clusters by optimizing the conditions of the ion implantation. In the present study, Co{sup +} ions with ion dose of 8 Multiplication-Sign 10{sup 16} cm{sup -2} are implanted in the vicinity of the SiO{sub 2}/Si interface at 300 Degree-Sign C temperature. The implanted Co atoms located in the SiO{sub 2} layer has an amorphous-like structure with a cluster diameter of several nm. In contrast, implanted Co atoms in the Si substrate are found to take a cobalt silicide structure, confirmed by the high-resolution image of transmission electron microscope. CNTs are grown by microwave-plasma-enhanced chemical vapor deposition. We have confirmed a large amount of vertically-aligned multi-walled CNTs from the Co nano-clusters formed by the hot-ion-implantation near the SiO{sub 2}/Si interface.

  8. Effects of oxygen on multiwall carbon nanotubes growth by PECVD

    Institute of Scientific and Technical Information of China (English)

    Chun-mei ZHANG; Ya-bo FU; Qiang CHEN; Yue-fei ZHANG

    2008-01-01

    Multiwall carbon nanotubes (MWCNTs) were grown by dielectric barrier discharge (DBD)-type plasma enhanced chemical vapor deposition (PECVD) method in downstream. The temperature was 973 K and the com-positions of gases were methane, hydrogen and oxygen in the total pressure of 0.05 MPa. The effect of O2 concen-tration in the mixture on the configuration of carbon nanotubes (CNTs) was investigated in detail. Results from scanning electron microscope (SEM) and transmis-sion electron microscope (TEM) showed that CNTs grown in CH4/H2 (38.6%/61.4%, volume) mixture have many defects and contained disordered graphitic materials. With the addition of appropriate amount of O2 (~0.67%), high-purity CNTs could be obtained. However, no CNT, even no carbon matrix existed under the condition of an excessive oxygen concentration (> 1.0%, volume) in the mixture. In order to understand the role of O2 during CNTs growth, optical emission spectroscopy (OES) was in-situ employed and the results predicted that the improve-ment of CNTs quality in O2 addition was attributed to the effect of OH oxidation from the reaction of atomic oxygen with hydrogen in the plasma.

  9. Direct growth of carbon nanotubes on hydroxyapatite using MPECVD

    International Nuclear Information System (INIS)

    Graphical abstract: Carbon nanotubes have been grown directly on hydroxyapatite by using microwave plasma-enhanced chemical vapor deposition (MPECVD). Highlights: ► CNTs have been successfully grown directly on hydroxyapatite using MPECVD. ► Diameter distribution of the CNTs lies in the range from 30 to 70 nm. ► The HA surface is partially transformed to β-TCP during the deposition. ► Grown CNTs have good quality and IG/ID ratio lies between 1.243 and 1.774. - Abstract: For the first time carbon nanotubes (CNTs) have been successfully grown directly on hydroxyapatite (HA) by using microwave plasma enhanced chemical vapor deposition (MPECVD). Such integration has potential to capitalize on the merits of both HA and CNTs. This type of coating could be useful to improve the interface between bone and the implant. Scanning electron microscope SEM investigations show that; the surface of the CNTs is relatively clean and free of amorphous carbon. The CNTs diameters lie in the range 30–70 nm. In addition HA encapsulation by carbon was observed at a growth temperature 750 °C. Raman spectroscopy indicates that the CNTs are of high quality and the IG/ID ratio lies between 1.243 and 1.774. The changes in the X-ray diffraction (XRD) patterns give an indication that during the plasma deposition the HA-substrate surface is subjected to a temperature sufficient for partial conversion to the β-tricalcium phosphate via dehydroxylation.

  10. Local growth of vertical aligned carbon nanotubes by laserinduced surface modification of coated silicon substrates

    Energy Technology Data Exchange (ETDEWEB)

    Zimmer, K; Boehme, R; Ruthe, D; Rudolph, Th; Rauschenbach, B [Leibniz-Institut fuer Oberflaechenmodifizierung e. V. Permoserstrasse 15, D-04318 Leipzig (Germany)

    2007-04-15

    The stimulation of carbon nanotubes (CNT) growth in a thermal CVD process using an acetylene/nitrogen gas mixture by KrF-excimer laser exposure of iron nitrate coated silicon is described. At moderate laser fluences of {approx}1 J/cm{sup 2} the growth of nanotube bundles up to 100 {mu}m consisting of vertical aligned multi-walled carbon nanotubes (VA-MWCNT) is observed. AFM measurements show the formation of nanoparticles in the laser-exposed areas. At this catalytic sites the nanotubes grow and sustain one another and forming the well-defined bundles. Via the laser exposure the control of the catalytic sites formation and consequently the nanotube growth and properties can be achieved.

  11. Single-Wall Carbon Nanotube Growth from Graphite Layers-a Tight Binding Molecular Dynamics Simulation

    Institute of Scientific and Technical Information of China (English)

    Yuntuan FANG; Min ZHU; Yongshun WANG

    2003-01-01

    The growth of single-wall carbon nanotube from graphite layers is studied by tight binding molecular dynamics simulation. Given temperature of 2500 K or 3500 K and an interval of 0.25 nm for the two layers of graphite, a single-wall carbon nanotube with a zigzag shell will be produced. On the other conditions the carbon nanotube cannot grow or grows with too many defects. All carbon nanotube ends have pentagons which play an important role during the tube ends closing.

  12. A Novel Catalyst Deposition Technique for the Growth of Carbon Nanotubes

    Science.gov (United States)

    Delzeit, Lance; Cassell, A.; Stevens, R.; Nguyen, C.; Meyyappan, M.; DeVincenzi, Donald L. (Technical Monitor)

    2001-01-01

    This viewgraph presentation provides information on the development of a technique at NASA's Ames Research Center by which carbon nanotubes (NT) can be grown. The project had several goals which included: 1) scaleability, 2) ability to control single wall nanotube (SWNT) and multiwall nanotube (MWNT) formation, 3) ability to control the density of nanotubes as they grow, 4) ability to apply standard masking techniques for NT patterning. Information regarding the growth technique includes its use of a catalyst deposition process. SWNTs of varying thicknesses can be grown by changing the catalyst composition. Demonstrations are given of various methods of masking including the use of transmission electron microscopic (TEM) grids.

  13. Growth of carbon nanotubes on carbon fibers without strength degradation

    Energy Technology Data Exchange (ETDEWEB)

    De Greef, Niels [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Magrez, Arnaud; Forro, Laszlo [Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland); Couteau, Edina; Locquet, Jean-Pierre [Laboratory of Solid-State Physics and Magnetism, KU Leuven, Celestijnenlaan 200D, B-3001 Heverlee (Belgium); Seo, Jin Won [Department of Metallurgy and Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, B-3001 Heverlee (Belgium); Institute of Condensed Matter Physics, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne (Switzerland)

    2012-12-15

    Carbon nanotubes (CNTs) are grown on PAN-based carbon fibers by means of catalytic chemical vapor deposition technique. By using catalytic thermal decomposition of hydrocarbon, CNTs can be grown in the temperature range of 650-750 C. However, carbon fibers suffer significant damages resulting in decrease of initial tensile strength. By applying the oxidative dehydrogenation reaction of C{sub 2}H{sub 2} with CO{sub 2}, we found an alternative way to grow CNTs on carbon fibers at low temperatures, such as 500 C. Scanning electron microscope results combined with single fiber tests indicate that this low temperature growth enables homogeneous grafting of CNTs onto carbon fibers without degradation of tensile strength. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  14. Catalyst size effects on the growth of single-walled nanotubes in neutral and plasma systems

    Science.gov (United States)

    Tam, Eugene; Ostrikov, Kostya Ken

    2009-09-01

    The results of large-scale (~109 atoms) numerical simulations of the growth of different-diameter vertically-aligned single-walled carbon nanotubes in plasma systems with different sheath widths and in neutral gases with the same operating parameters are reported. It is shown that the nanotube lengths and growth rates can be effectively controlled by varying the process conditions. The SWCNT growth rates in the plasma can be up to two orders of magnitude higher than in the equivalent neutral gas systems. Under specific process conditions, thin SWCNTs can grow much faster than their thicker counterparts despite the higher energies required for catalyst activation and nanotube nucleation. This selective growth of thin SWCNTs opens new avenues for the solution of the currently intractable problem of simultaneous control of the nanotube chirality and length during the growth stage.

  15. Catalyst size effects on the growth of single-walled nanotubes in neutral and plasma systems

    Energy Technology Data Exchange (ETDEWEB)

    Tam, Eugene; Ostrikov, Kostya, E-mail: et@physics.usyd.edu.a, E-mail: Kostya.Ostrikov@csiro.a [Plasma Nanoscience, School of Physics, University of Sydney, Sydney NSW 2006 (Australia); CSIRO Materials Science and Engineering, PO Box 218, Lindfield NSW 2070 (Australia)

    2009-09-16

    The results of large-scale ({approx}10{sup 9} atoms) numerical simulations of the growth of different-diameter vertically-aligned single-walled carbon nanotubes in plasma systems with different sheath widths and in neutral gases with the same operating parameters are reported. It is shown that the nanotube lengths and growth rates can be effectively controlled by varying the process conditions. The SWCNT growth rates in the plasma can be up to two orders of magnitude higher than in the equivalent neutral gas systems. Under specific process conditions, thin SWCNTs can grow much faster than their thicker counterparts despite the higher energies required for catalyst activation and nanotube nucleation. This selective growth of thin SWCNTs opens new avenues for the solution of the currently intractable problem of simultaneous control of the nanotube chirality and length during the growth stage.

  16. Direct observation of morphological evolution of a catalyst during carbon nanotube forest growth: new insights into growth and growth termination

    Science.gov (United States)

    Jeong, Seojeong; Lee, Jaegeun; Kim, Hwan-Chul; Hwang, Jun Yeon; Ku, Bon-Cheol; Zakharov, Dmitri N.; Maruyama, Benji; Stach, Eric A.; Kim, Seung Min

    2016-01-01

    In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests.In this study, we develop a new methodology for transmission electron microscopy (TEM) analysis that enables us to directly investigate the interface between carbon nanotube (CNT) arrays and the catalyst and support layers for CNT forest growth without any damage induced by a post-growth TEM sample preparation. Using this methodology, we perform in situ and ex situ TEM investigations on the evolution of the morphology of the catalyst particles and observe the catalyst particles to climb up through CNT arrays during CNT forest growth. We speculate that the lifted catalysts significantly affect the growth and growth termination of CNT forests along with Ostwald ripening and sub-surface diffusion. Thus, we propose a modified growth termination model which better explains various phenomena related to the growth and growth termination of CNT forests. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05547d

  17. Synthesis, alignment, growth mechanism and functional properties of carbon nanotubes and their hybrid materials with inorganic and biomaterials

    OpenAIRE

    Joshi, Ravi

    2010-01-01

    The present work comprises a novel method for selective growth of carbon nanotubes, study of their growth mechanism as well as synthesis and application of their various hybrid materials. An experimental setup is established to grow carbon nanotubes using water assisted chemical vapor deposition method. Various growth parameters were scrutinized carefully and a growth mechanism is put forth for the same method. A new methodology to prepare different hybrid materials of aligned carbon nanotube...

  18. Gravity Effects in Carbon Nanotube Growth by Thermal Chemical Vapor Deposition

    Science.gov (United States)

    Zhu, S.; Su, C. H.; Cochrane, J. C.; Lehoczky, S. L.; Cui, Y.; Burger, A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Carbon nanotubes are synthesized using thermal chemical vapor deposition. The sizes of these carbon nanotubes (CNT) are quite uniform and the length of the tube is up to several tens of micrometers. With the substrate surface normal either along or against the gravity vector, different growth orientations of CNT are observed by scanning electron microscopy although the Raman spectra are similar for samples synthesized at different locations. These results suggest the gravitation effects in the growth of long and small diameter CNT.

  19. Growth of anatase titanium dioxide nanotubes via anodization

    Directory of Open Access Journals (Sweden)

    Ed Adrian Dilla

    2012-06-01

    Full Text Available In this work, titanium dioxide nanotubes were grown via anodization of sputtered titanium thin films using different anodization parameters in order to formulate a method of producing long anatase titanium dioxide nanotubes intended for solar cell applications. The morphological features of the nanotubes grown via anodization were explored using a Philips XL30 Field Emission Scanning Electron Microscope. Furthermore, the grown nanotubes were also subjected to X-ray diffraction and Raman spectroscopy in order to investigate the effect of the predominant crystal orientation of the parent titanium thin film on the crystal phase of the nanotubes. After optimizing the anodization parameters, nanotubes with anatase TiO2 crystal phase and tube length more than 2 microns was produced from parent titanium thin films with predominant Ti(010 crystal orientation and using ammonium fluoride in ethylene glycol as an electrolyte with a working voltage equal to 60V during 1-hour anodization runs.

  20. Decorating multiwalled carbon nanotubes with zinc oxide nano-crystallines through hydrothermal growth process

    Institute of Scientific and Technical Information of China (English)

    LI ChenSha; QIAO YingJie; LI YuMing

    2012-01-01

    Multiwalled-carbon nanotubes coated with nano-crystalline zinc oxide (ZnO) was prepared by in situ growth of nano zinc oxide on the surfaces of carbon nanotubes through hydrothermal method.X-ray diffraction,transmission electron microscopy and scanning electron microscopy analysis techniques were used to characterize the samples.It was observed that a layer of nano-crystalline ZnO with the wurtzite hexagonal crystal structure was uniformly coated on the nanotube surfaces with good adhesion,which resulted in the formation of a novel ZnO-nanotube nano composite.In this work,the carbon nanotubes decorated by metal oxide nanoparticles were synthesized by a simple chemical-solution route which is suitable for the large-scale production with low cost.

  1. Utilizing real time transmission electron microscopy to understand the mechanisms of nanotube nucleation, growth and growth termination

    Science.gov (United States)

    Stach, Eric A.

    2011-03-01

    In order for carbon nanotubes to find widespread application, we must have a deeper understanding of the mechanisms by which they nucleate, growth and cease growth, in an effort to fully control the resulting structures. Here we will describe how we can exploit the unique capabilities of in-situ environmental cell transmission electron microscopy to observe multiple aspects of these processes. With this approach we can directly visualize how the catalysts that mediate nanotube growth respond to various changes in the growth environment, and correlate these changes with the resulting nanotube structures. In the first part of the presentation, we will investigate how dynamic changes in the catalyst morphology are correlated with the termination of growth in vertically aligned SWNT arrays. In particular, we have investigate how the processes of catalyst coarsening, Ostwald ripening and diffusion into the catalyst support can lead to growth termination, and we will describe how changes in the growth feedstock - in particular the incorporation of controlled amounts of water vapor - can alter the catalyst evolution. In the second portion of the presentation, we will describe how altering other aspects of the growth feedstock - in this case the carrier gas, in combination with the water vapor content - can not only affect catalyst morphological evolution, but can also significantly bias the chiral distribution of the resulting nanotubes. We will correlate the changes in growth ambient with a faceting / defacting transition, as well as a resulting change in the rate of Ostwald ripening.

  2. Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes

    Science.gov (United States)

    Cassell, Alan M.; Verma, Sunita; Delzeit, Lance; Meyyappan, M.; Han, Jie

    2000-01-01

    Libraries of liquid-phase catalyst precursor solutions were printed onto iridium-coated silicon substrates and evaluated for their effectiveness in catalyzing the growth of multi-walled carbon nanotubes (MWNTs) by chemical vapor deposition (CVD). The catalyst precursor solutions were composed of inorganic salts and a removable tri-block copolymer (EO)20(PO)70(EO)20 (EO = ethylene oxide, PO = propylene oxide) structure-directing agent (SDA), dissolved in ethanol/methanol mixtures. Sample libraries were quickly assayed using scanning electron microscopy after CVD growth to identify active catalysts and CVD conditions. Composition libraries and focus libraries were then constructed around the active spots identified in the discovery libraries to understand how catalyst precursor composition affects the yield, density, and quality of the nanotubes. Successful implementation of combinatorial optimization methods in the development of highly active, carbon nanotube catalysts is demonstrated, as well as the identification of catalyst formulations that lead to varying densities and shapes of aligned nanotube towers.

  3. Growth of straight carbon nanotubes by simple thermal chemical vapor deposition

    Institute of Scientific and Technical Information of China (English)

    ZOU Xiao-ping; H. ABE; T. SHIMIZU; A. ANDO; H. TOKUMOTO; ZHU Shen-ming; ZHOU Hao-shen

    2006-01-01

    Straight carbon nanotubes (CNTs) were achieved by simple thermal chemical vapor deposition(STCVD) catalyzed by Mo-Fe alloy catalyst on silica supporting substrate at 700 ℃. High-resolution transmission electron microscopy images show that the straight CNTs are well graphitized with no attached amorphous carbon. Mo-Fe alloy catalyst particles play a very crucial role in the growth of straight CNTs. The straight carbon nanotubes contain much less defects than the curved nanotubes and might have potential applications for nanoelectrical devices in the future. The simple synthesis of straight CNTs may have benefit for large-scale productions.

  4. Multiwalled carbon nanotubes enter broccoli cells enhancing growth and water uptake of plants exposed to salinity

    OpenAIRE

    Martínez-Ballesta, Mª Carmen; Zapata, Lavinia; Chalbi, Najla; Carvajal, Micaela

    2016-01-01

    Background Carbon nanotubes have been shown to improve the germination and growth of some plant species, extending the applicability of the emerging nano-biotechnology field to crop science. Results In this work, exploitation of commercial multiwalled carbon nanotubes (MWCNTs) in control and 100 mM NaCl-treated broccoli was performed. Transmission electron microscopy demonstrated that MWCNTs can enter the cells in adult plants with higher accumulation under salt stress. Positive effect of MWC...

  5. Controlled growth of vertically aligned carbon nanotubes on metal substrates

    Science.gov (United States)

    Gao, Zhaoli

    Carbon nanotube (CNT) is a fascinating material with extraordinary electrical thermal and mechanical properties. Growing vertically aligned CNT (VACNT) arrays on metal substrates is an important step in bringing CNT into practical applications such as thermal interface materials (TIMs) and microelectrodes. However, the growth process is challenging due to the difficulties in preventing catalyst diffusion and controlling catalyst dewetting on metal substrates with physical surface heterogeneity. In this work, the catalyst diffusion mechanism and catalyst dewetting theory were studied for the controlled growth of VACNTs on metal substrates. The diffusion time of the catalyst, the diffusion coefficients for the catalyst in the substrate materials and the number density of catalyst nanoparticles after dewetting are identified as the key parameters, based on which three strategies are developed. Firstly, a fast-heating catalyst pretreatment strategy was used, aiming at preserving the amount of catalyst prior to CNT growth by reducing the catalyst diffusion time. The catalyst lifetime is extended from half an hour to one hour on a patterned Al thin film and a VACNT height of 106 mum, about twenty fold of that reported in the literature, was attained. Secondly, a diffusion barrier layer strategy is employed for a reduction of catalyst diffusion into the substrate materials. Enhancement of VACNT growth on Cu substrates was achieved by adopting a conformal Al2O 3 diffusion barrier layer fabricated by a specially designed atomic layer deposition (ALD) system. Lastly, a novel catalyst glancing angle deposition (GLAD) strategy is performed to manipulate the morphology of a relatively thick catalyst on metal substrates with physical surface heterogeneity, aiming to obtain uniform and dense catalyst nanoparticles after dewetting in the pretreatment process for enhanced VACNT growth. We are able to control the VACNT growth conditions on metal substrates in terms of their

  6. Carbon nanotube growth on nanozirconia under strong cathodic polarization in steam and carbon dioxide

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Zhang, Wei;

    2014-01-01

    nanozirconia acting as a catalyst for the growth of carbon nanotubes (CNTs) during electrochemical conversion of carbon dioxide and water in a nickel-yttria- stabilized zirconia cermet under strong cathodic polarization. An electrocatalytic mechanism is proposed for the growth of the CNTs. ${{{\\rm {\\rm V......Growth of carbon nanotubes (CNTs) catalyzed by zirconia nanoparticles was observed in the Ni-yttria doped zirconia (YSZ) composite cathode of a solid oxide electrolysis cell (SOEC) at approximately 875 °C during co-electrolysis of CO2 and H2O to produce CO and H 2. CNT was observed to grow under...

  7. Influence of Ni Catalyst Layer and TiN Diffusion Barrier on Carbon Nanotube Growth Rate

    Directory of Open Access Journals (Sweden)

    Mérel Philippe

    2010-01-01

    Full Text Available Abstract Dense, vertically aligned multiwall carbon nanotubes were synthesized on TiN electrode layers for infrared sensing applications. Microwave plasma-enhanced chemical vapor deposition and Ni catalyst were used for the nanotubes synthesis. The resultant nanotubes were characterized by SEM, AFM, and TEM. Since the length of the nanotubes influences sensor characteristics, we study in details the effects of changing Ni and TiN thickness on the physical properties of the nanotubes. In this paper, we report the observation of a threshold Ni thickness of about 4 nm, when the average CNT growth rate switches from an increasing to a decreasing function of increasing Ni thickness, for a process temperature of 700°C. This behavior is likely related to a transition in the growth mode from a predominantly “base growth” to that of a “tip growth.” For Ni layer greater than 9 nm the growth rate, as well as the CNT diameter, variations become insignificant. We have also observed that a TiN barrier layer appears to favor the growth of thinner CNTs compared to a SiO2 layer.

  8. Unraveling the growth of vertically aligned multi-walled carbon nanotubes by chemical vapor deposition

    International Nuclear Information System (INIS)

    The interaction between the main operational variables during the growth of vertically aligned multiwalled carbon nanotubes (VA-MWCNTs) by catalytic chemical vapor deposition is studied. In this contribution, we report the influence of the carbon source (i.e. acetylene, ethylene and propylene), the reaction/activation temperature, the rate of heating, the reaction time, the metal loading, and the metallic nanoparticle size and distribution on the growth and alignment of carbon nanotubes. Fe/Al thin films deposited onto silicon samples by electron-beam evaporation are used as catalyst. A phenomenological growth mechanism is proposed to explain the interaction between these multiple factors. Three different outcomes of the synthesis process are found: i) formation of forests of non-aligned, randomly oriented multi-walled carbon nanotubes, ii) growth of vertically aligned tubes with a thin and homogeneous carbonaceous layer on the top, and iii) formation of vertically aligned carbon nanotubes. This carbonaceous layer (ii) has not been reported before. The main requirements to promote vertically aligned carbon nanotube growth are determined. (paper)

  9. Synthesis of multiwalled carbon nanotubes from bamboo charcoal and the roles of minerals on their growth

    International Nuclear Information System (INIS)

    Multiwalled carbon nanotubes (MWCNTs) were synthesized from bamboo charcoals by chemical vapor deposition in the presence of ethanol vapor. Fresh bamboo culms were first heat treated at 1000–1500 °C to form charcoals. The elemental composition and structure of mineral phases in the bamboo charcoal treated at different temperatures were analyzed. The results showed that Mg2SiO4 and particularly calcium silicate were responsible for the nucleation and growth of MWCNTs at 1200–1400 °C. Transmission electron microscope and energy dispersive X-ray spectrometer observations indicated that the tips of nanotubes synthesized at 1200–1400 °C consist mainly of calcium silicate. Such silicate tips acted as effective catalysts for nanotubes. The growth of MWCNTs followed the vapor–liquid–solid model including an initial decomposition of ethanol vapor into carbon, dissolution of carbon inside molten silicate and final nucleation of nanotubes. -- Graphical abstract: Calcium silicate spheres formed on the surface of the bamboo charcoal after thermal treatments. Multiwalled carbon nanotubes were synthesized by ethanol chemical vapor deposition. The growth of CNTs follows the vapor–liquid–solid mechanism. Uploading of CNTs could increase the specific surface area and the N2 adsorption capacity. Highlights: ► The evolution of minerals in bamboo charcoal under heat treatment is found. ► The roles of minerals in bamboo charcoal in the growth of CNTs are proposed. ► The upload of CNTs increases the specific surface area and the adsorption capacity.

  10. Fullerene and nanotube growth: new insights using first principles and molecular dynamics.

    Science.gov (United States)

    Cruz-Silva, Rodolfo; Araki, Takumi; Hayashi, Takuya; Terrones, Humberto; Terrones, Mauricio; Endo, Morinobu

    2016-09-13

    Shortly after the discovery of fullerenes, many researchers pointed out that carbon nanotubes could be considered as elongated fullerenes. However, the detailed formation mechanism for both structures has been a topic of debate for several years, and consequently it has been difficult to draw a clear connection between the two systems. While the synthesis conditions appear to be different for both fullerenes and nanotubes, here, we demonstrate that it is highly likely that, at an initial growth stage, single-walled carbon nanotubes begin to grow from a hemisphere-like fullerene cap. More importantly, by analysing the minimum-energy path, it is shown that the insertion of C2 fragments drives the transformation of this fullerene cap into an elongated structure that leads to the formation of very short carbon nanotubes.This article is part of the themed issue 'Fullerenes: past, present and future, celebrating the 30th anniversary of Buckminster Fullerene'. PMID:27501974

  11. Acetylene-Accelerated Alcohol Catalytic CVD Growth of Vertically Aligned Single-Walled Carbon Nanotubes

    OpenAIRE

    R. Xiang; Einarsson, E.; Okawa, J.; Miyauchi, Y.; Maruyama, S.

    2008-01-01

    Addition of only 1% of acetylene into ethanol was found to enhance the growth rate of singlewalled carbon nanotubes (SWNTs) by up to ten times. Since acetylene is a byproduct of the thermal decomposition of ethanol, this suggests an alternative fast reaction pathway to the formation of SWNTs from ethanol via byproducts of decomposition. This accelerated growth, however, only occurred in the presence of ethanol, whereas pure acetylene at the same partial pressure resulted in negligible growth ...

  12. Support effect on carbon nanotube growth by methane chemical vapor deposition on cobalt catalysts

    International Nuclear Information System (INIS)

    The influence of the support on carbon nanotube production by methane chemical vapor deposition (CVD) on cobalt catalysts was investigated. N2 physisorption, X-ray diffractometry (XRD), temperature programmed reduction (TPR) and H2 and CO chemisorption techniques were used to characterize the structure of cobalt catalysts supported on different metal oxides (Al2O3, SiO2, Nb2O5 and TiO2). Raman spectroscopy, temperature programmed oxidation (TPO) and scanning electron microscopy (SEM) were used for the characterization and quantification of produced carbon species. On carbon nanotube growth, the catalyst produced three main carbon species: amorphous carbon, single walled carbon nanotubes (SWNT) and multi walled carbon nanotubes (MWNT). The characterization techniques showed that the catalyst selectivity to each kind of nanotube depended on the cobalt particle size distribution, which was influenced by the textural properties of the support. Co/TiO2 showed the highest selectivity towards single wall nanotube formation. This high selectivity results from the narrow size distribution of cobalt particles on TiO2. (author)

  13. Study of Composite Interface Fracture and Crack Growth Monitoring Using Carbon Nanotubes

    Science.gov (United States)

    Bily, Mollie A.; Kwon, Young W.; Pollak, Randall D.

    2010-08-01

    Interface fracture of woven fabric composite layers was studied using Mode II fracture testing. Both carbon fiber and E-glass fiber composites were used with a vinyl ester resin. First, the single-step cured (i.e., co-cured) composite interface strength was compared to that of the two-step cured interface as used in the scarf joint technique. The results showed that the two-step cured interface was as strong as the co-cured interface. Carbon nanotubes were then applied to the composite interface using two-step curing, and then followed by Mode II fracture testing. The results indicated a significant improvement of the interface fracture toughness due to the dispersed carbon nanotube layer for both carbon fiber and E-glass fiber composites. The carbon nanotube layer was then evaluated as a means to monitor crack growth along the interface. Because carbon nanotubes have very high electrical conductivity, the electrical resistance was measured through the interface as a crack grew, thus disrupting the carbon nanotube network and increasing the resistance. The results showed a linear relationship between crack length and interface resistance for the carbon fiber composites, and allowed initial detection of failure in the E-glass fiber composites. This study demonstrated that the application of carbon nanotubes along a critical composite interface not only improves fracture properties but can also be used to detect and monitor interfacial damage.

  14. Growth of Carbon Nanotubes on Clay: Unique Nanostructured Filler for High-Performance Polymer Nanocomposites

    NARCIS (Netherlands)

    Zhang, Wei-De; Phang, In Yee; Liu, Tianxi

    2006-01-01

    High-performance composites are produced using nanostructured clay-carbon nanotube (CNT) hybrids as a reinforcing filler. The intercalation of iron particles between the clay platelets serves as the catalyst for the growth of CNTs, while the platelets are exfoliated by the CNTs, forming the unique 3

  15. Hydrogen-free spray pyrolysis chemical vapor deposition method for the carbon nanotube growth: Parametric studies

    International Nuclear Information System (INIS)

    Spray pyrolysis chemical vapor deposition (CVD) in the absence of hydrogen at low carrier gas flow rates has been used for the growth of carbon nanotubes (CNTs). A parametric study of the carbon nanotube growth has been conducted by optimizing various parameters such as temperature, injection speed, precursor volume, and catalyst concentration. Experimental observations and characterizations reveal that the growth rate, size and quality of the carbon nanotubes are significantly dependent on the reaction parameters. Scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy techniques were employed to characterize the morphology, structure and crystallinity of the carbon nanotubes. The synthesis process can be applied to both semiconducting silicon wafer and conducting substrates such as carbon microfibers and stainless steel plates. This approach promises great potential in building various nanodevices with different electron conducting requirements. In addition, the absence of hydrogen as a carrier gas and the relatively low synthesis temperature (typically 750 deg. C) qualify the spray pyrolysis CVD method as a safe and easy way to scale up the CNT growth, which is applicable in industrial production.

  16. The growth of multi-walled carbon nanotubes on natural clay minerals (kaolinite, nontronite and sepiolite)

    International Nuclear Information System (INIS)

    The suitability of clay minerals - kaolinite, nontronite and sepiolite - is studied for synthesis of nanocomposites based on carbon nanotubes. Particles of iron were used as catalysts. Prior to synthesis, kaolinite and sepiolite were doped by the catalytically active metal, whereas in the case of nontronite the presence was used of this metal in the matrix of this mineral. Synthesis of CNTs was performed by hot filament chemical vapor deposition method. The produced nanocomposites were examined by transmission and scanning electron microscopies and energy dispersive X-ray spectroscopy. The experiment verified the potential of the three microcrystalline phyllosilicates for the growth of carbon nanotubes. Under the same technology conditions, the type of catalyst carrier affects the morphology and structure of the nanotube product markedly.

  17. Crystallographic growth and alignment of carbon nanotubes on few-layer graphene

    Science.gov (United States)

    Arash, Aram; Hunley, Patrick D.; Nasseri, Mohsen; Boland, Mathias J.; Sundararajan, Abhishek; Hudak, Bethany M.; Guiton, Beth S.; Strachan, Douglas R.

    2015-03-01

    Hybrid carbon nanotube and graphene structures are emerging as an exciting material system built from a common sp2 carbon backbone. Such hybrid systems have promise for use in improving the performance of energy storage and high-speed electronic applications. Towards the attainment of such hybrid materials, the catalytic growth and crystallographic alignment of these integrated structures are investigated along with the atomic-scale features of their interfaces. The catalytic activity of nanoparticles to form carbon nanotubes on the surface of few-layer graphene is tuned through precise feedstock application. Through careful materials synthesis, the interfaces of these hybrid carbon nanotube - graphene systems are investigated through ultra-high resolution electron microscopy.

  18. Carbon nanotube-based sensor and method for detection of crack growth in a structure

    Science.gov (United States)

    Smits, Jan M. (Inventor); Kite, Marlen T. (Inventor); Moore, Thomas C. (Inventor); Wincheski, Russell A. (Inventor); Ingram, JoAnne L. (Inventor); Watkins, Anthony N. (Inventor); Williams, Phillip A. (Inventor)

    2007-01-01

    A sensor has a plurality of carbon nanotube (CNT)-based conductors operatively positioned on a substrate. The conductors are arranged side-by-side, such as in a substantially parallel relationship to one another. At least one pair of spaced-apart electrodes is coupled to opposing ends of the conductors. A portion of each of the conductors spanning between each pair of electrodes comprises a plurality of carbon nanotubes arranged end-to-end and substantially aligned along an axis. Because a direct correlation exists between the resistance of a carbon nanotube and its strain, changes experienced by the portion of the structure to which the sensor is coupled induce a corresponding change in the electrical properties of the conductors, thereby enabling detection of crack growth in the structure.

  19. Effect of Growth Temperature on Bamboo-shaped Carbon–Nitrogen (C–N Nanotubes Synthesized Using Ferrocene Acetonitrile Precursor

    Directory of Open Access Journals (Sweden)

    Dobal PramodSingh

    2008-01-01

    Full Text Available Abstract This investigation deals with the effect of growth temperature on the microstructure, nitrogen content, and crystallinity of C–N nanotubes. The X-ray photoelectron spectroscopic (XPS study reveals that the atomic percentage of nitrogen content in nanotubes decreases with an increase in growth temperature. Transmission electron microscopic investigations indicate that the bamboo compartment distance increases with an increase in growth temperature. The diameter of the nanotubes also increases with increasing growth temperature. Raman modes sharpen while the normalized intensity of the defect mode decreases almost linearly with increasing growth temperature. These changes are attributed to the reduction of defect concentration due to an increase in crystal planar domain sizes in graphite sheets with increasing temperature. Both XPS and Raman spectral observations indicate that the C–N nanotubes grown at lower temperatures possess higher degree of disorder and higher N incorporation.

  20. The effect of growth parameters on the height and density of carbon nanotube forests

    Science.gov (United States)

    Call, Robert W.

    Carbon nanotube forests (CNTFs) are grown using an injection chemical vapor deposition method. Images of CNTFs are taken using a scanning electron microscope and are used to measure their height and density. Growth parameters are systematically varied to determine their effect on the height and density of CNTFs. Investigations of CNTF density as a function of distance from the growth substrate reveal that diffusion can be a limiting factor on CNTF growth. Our findings indicate that height and density are related and that each growth parameter has multi-dimensional effects.

  1. Molecular simulation of the carbon nanotube growth mode during catalytic synthesis

    OpenAIRE

    Banerjee, Soumik; Naha, Sayangdev; Puri, Ishwar K.

    2008-01-01

    Catalyzed growth of carbon nanostructures occurs mainly through two modes, i.e., base growth when the metal nanoparticle remains at the bottom of the nanotube, or when it is lifted by the growing carbon nanostructure due to tip growth. A correct prediction of the dominant growth mode depends on the energy gain due to the addition of C atoms from the carbon-metal catalyst solution to the graphene sheets forming the carbon nanostructures. We determine this energy gain through atomistic scale mo...

  2. Growth dynamics of inner tubes inside cobaltocene-filled single-walled carbon nanotubes

    Science.gov (United States)

    Kharlamova, M. V.; Kramberger, Christian; Saito, Takeshi; Shiozawa, Hidetsugu; Pichler, Thomas

    2016-08-01

    We have synthesized cobaltocene-filled 1.7-nm-mean diameter single-walled carbon nanotubes (SWCNTs) and transformed them into double-walled carbon nanotubes by annealing at temperatures between 500 and 1000 °C for 2 h in vacuum. We analyze the temperature-dependent inner tube growth inside the filled SWCNTs by Raman spectroscopy. The changes in intensity of the Raman peaks of inner tubes with the diameters ranging from 0.832 to 1.321 nm with increasing annealing temperature are traced. It is revealed that the growth temperatures of larger diameter inner tubes are higher than the ones of smaller diameter tubes. A decrease in the diameter of the inner tubes by ~0.4 nm leads to a decrease in the growth temperature by ~200 °C.

  3. Nitrogen-mediated Carbon Nanotube Growth: Diameter reduction, metallicity, bundle dispersability, and bamboo formation

    International Nuclear Information System (INIS)

    Carbon nanotube growth in the presence of nitrogen has been the subject of much experimental scrutiny, sparking intense debate about the role of nitrogen in the formation of diverse structural features, including shortened length, reduced diameters, and bamboo-like multilayered nanotubules. In this letter, the origin of these features is elucidated using a combination of experimental and theoretical techniques, showing that N acts as a surfactant during growth. N doping enhances the formation of smaller diameter tubes and it can also promote tube closure which includes a relatively large amount of N atoms into the tube lattice, leading to bamboo-like structures. Our findings demonstrate that the mechanism is independent of the tube chirality and suggest a simple procedure for controlling the growth of bamboo-like nanotube morphologies.

  4. The mechanism for low temperature growth of vertically aligned boron nitride nanotubes

    Science.gov (United States)

    Wang, Jiesheng; Xie, Ming; Khin Yap, Yoke

    2006-03-01

    Boron nitride nanotubes (BNNTs) are well recognized as the candidate that will complement the uses of carbon nanotubes (CNTs) in nanotechnology. However, high growth temperatures (>1100 ^oC), low production yield, and impurities have prevented effective synthesis and applications of boron nitride nanotubes (BNNTs) in the past ten years. For the first time, we have succeeded on the growth of pure BNNTs on substrates [1, 2]. This has been realized based on our experiences of growing CNTs and boron nitride (BN) phases (cubic phase BN, hexagonal phase BN). According to our hypothetical model, energetic growth species play an important role on controlling the phases of BN solids. We have experimentally verified that BNNTs can be grown by energetic growth species by a plasma-enhanced pulsed laser deposition (PEPLD) technique. These BNNTs can be grown vertically aligned into arrays of regular patterns at 600 ^oC, and can be used for applications without purification. The growth mechanism of thee BNNTs will be discussed. [1]. Yap et al., Bull APS Vol 50, 1346-1347 (March 2005). [2]. Wang et al., nano Letters (2005) ASAP, DOI: 10.1021/nl051859n.

  5. Catalyst-assisted vertical growth of carbon nanotubes on Inconel coated commercial copper foil substrates versus sputtered copper films

    International Nuclear Information System (INIS)

    We have compared the growth of multi-walled carbon nanotubes using thermal chemical vapor deposition (CVD) on two types of substrates, copper foils and sputtered copper films. In both cases an initial 12 nm thin film of Inconel is first deposited on the Cu before growing the nanotubes. The Inconel thin film can act as both a catalyst for nanotube growth as well as a support for the additional Fe catalyst that is supplied in the form of ferrocene during CVD growth. The surfaces of the underlying copper substrates are very different and play a role in the resulting carbon nanotube density. A quantitative analysis of the density and alignment of the resulting carbon nanotubes using scanning electron microscopy shows that the smooth surface of the sputtered copper substrate leads to improvement in vertical growth and density of nanotubes as opposed to the much rougher electropolished Cu foil. We show that this is related to the differences in catalyst islands distributions and graphitic crystallinity seen on the surfaces of the two types of substrates after heating the samples in the CVD chamber. This demonstrates that the surface of the starting substrate plays an important role in the subsequent catalyst surface distribution and therefore the resulting nanotube density.

  6. Growth of forest of single-walled carbon nanotubes at inhomogeneous fluxes from plasma

    International Nuclear Information System (INIS)

    The growth of forest of single-walled carbon nanotubes (SWCNTs) in plasma-enhanced chemical vapor deposition (PECVD) is studied using a deposition model. The inhomogeneity in deposition of neutrals from plasma on the SWCNTs, which is typical for growth of the nano structures in PECVD, is accounted for. It is investigated how the growth rate and the residence time of carbon atoms on SWCNT surfaces depend on the SWCNT length and the decay length characterizing deposition of neutral fluxes on the SWCNTs. The obtained results can be used for optimizing the synthesis of related nano assembles in low-temperature plasma-assisted nano fabrication

  7. Reliable Growth of Vertically Aligned Carbon Nanotube Arrays by Chemical Vapor Deposition and In-situ Measurement of Fundamental Growth Kinetics in Oxygen-free Conditions

    OpenAIRE

    IN, JUNG BIN

    2011-01-01

    Vertically-aligned carbon nanotube (VACNT) arrays are both an important technological system, and a fascinating system for studying basic principles of nanomaterial synthesis. However, despite continuing efforts for the past decade, important questions about this process remain largely unexplained. Recently, nanotube research investigations have been conducted, aiming at revealing the underlying growth mechanisms, rather than merely studying the feasibility on new growth methods. Nonetheless,...

  8. Growth of Y-junction bamboo-shaped CNx nanotubes on GaAs substrate using single feedstock

    International Nuclear Information System (INIS)

    Nitrogen-doped Y-junction bamboo-shaped carbon nanotubes were synthesized by chemical vapor deposition of monoethanolamine/ferrocene mixture on GaAs substrate at 950 deg. C. The use of monoethanolamine as the C/N feedstock simplifies the experimental arrangement by producing ammonia during the growth process. The structure, morphology and graphitization of as-grown nitrogen-doped carbon nanotubes (CNx) were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy analysis. TEM analysis indicates that nanotubes have a bamboo-like structure. The nitrogen concentration on as-grown CNx nanotube was found to be 7.8 at.% by X-ray photoelectron spectroscopy (XPS) analysis. XPS analysis also indicated that there are two different types of nitrogen atoms (pyridinic and graphitic) in these materials. The possible growth mechanism of formation of Y-junction CNx nanotubes was briefly discussed. Field emission measurement suggested that as-grown CNx nanotubes are excellent emitters with turn-on and threshold fields of 1.6 and 2.63 V/μm, respectively. The result indicated that monoethanolamine proves to be an advantageous precursor to synthesize Y-junction nitrogen-doped carbon nanotubes and such nanotubes might be an effective material to fabricate various field emission devices.

  9. Role of the catalyst in the growth of single-wall carbon nanotubes.

    Science.gov (United States)

    Balbuena, Perla B; Zhao, Jin; Huang, Shiping; Wang, Yixuan; Sakulchaicharoen, Nataphan; Resasco, Daniel E

    2006-05-01

    Classical molecular dynamics simulations are carried out to analyze the physical state of the catalyst, and the growth of single-wall carbon nanotubes under typical temperature and pressure conditions of their experimental synthesis, emphasizing the role of the catalyst/substrate interactions. It is found that a strong cluster/substrate interaction increases the cluster melting point, modifying the initial stages of carbon dissolution and precipitation on the cluster surface. Experiments performed on model Co-Mo catalysts clearly illustrate the existence of an initial period where the catalyst is formed and no nanotube growth is observed. To quantify the nature of the Co-Mo2C interaction, quantum density functional theory is applied to characterize structural and energetic features of small Co clusters deposited on a (001) Mo2C surface, revealing a strong attachment of Co-clusters to the Mo2C surface, which may increase the melting point of the cluster and prevent cluster sintering. PMID:16792351

  10. CVD-grown horizontally aligned single-walled carbon nanotubes: synthesis routes and growth mechanisms.

    Science.gov (United States)

    Ibrahim, Imad; Bachmatiuk, Alicja; Warner, Jamie H; Büchner, Bernd; Cuniberti, Gianaurelio; Rümmeli, Mark H

    2012-07-01

    Single-walled carbon nanotubes (SWCNTs) have attractive electrical and physical properties, which make them very promising for use in various applications. For some applications however, in particular those involving electronics, SWCNTs need to be synthesized with a high degree of control with respect to yield, length, alignment, diameter, and chirality. With this in mind, a great deal of effort is being directed to the precision control of vertically and horizontally aligned nanotubes. In this review the focus is on the latter, horizontally aligned tubes grown by chemical vapor deposition (CVD). The reader is provided with an in-depth review of the established vapor deposition orientation techniques. Detailed discussions on the characterization routes, growth parameters, and growth mechanisms are also provided. PMID:22619167

  11. Growth of small diameter multi-walled carbon nanotubes by arc discharge process

    Science.gov (United States)

    T. Chaudhary, K.; J., Ali; P. Yupapin, P.

    2014-03-01

    Multi-walled carbon nanotubes (MWCNTs) are grown by arc discharge method in a controlled methane environment. The arc discharge is produced between two graphite electrodes at the ambient pressures of 100 torr, 300 torr, and 500 torr. Arc plasma parameters such as temperature and density are estimated to investigate the influences of the ambient pressure and the contributions of the ambient pressure to the growth and the structure of the nanotubes. The plasma temperature and density are observed to increase with the increase in the methane ambient pressure. The samples of MWCNT synthesized at different ambient pressures are analyzed using transmission electron microscopy, scanning electron microscopy, Raman spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. An increase in the growth of MWCNT and a decrease in the inner tube diameter are observed with the increase in the methane ambient pressure.

  12. Nanocomposite Scaffold for Chondrocyte Growth and Cartilage Tissue Engineering: Effects of Carbon Nanotube Surface Functionalization

    OpenAIRE

    Chahine, Nadeen O.; Collette, Nicole M.; Thomas, Cynthia B.; Genetos, Damian C.; Loots, Gabriela G

    2014-01-01

    The goal of this study was to assess the long-term biocompatibility of single-wall carbon nanotubes (SWNTs) for tissue engineering of articular cartilage. We hypothesized that SWNT nanocomposite scaffolds in cartilage tissue engineering can provide an improved molecular-sized substrate for stimulation of chondrocyte growth, as well as structural reinforcement of the scaffold's mechanical properties. The effect of SWNT surface functionalization (-COOH or -PEG) on chondrocyte viability and bioc...

  13. Drawing Circuits with Carbon Nanotubes: Scratch-Induced Graphoepitaxial Growth of Carbon Nanotubes on Amorphous Silicon Oxide Substrates

    Science.gov (United States)

    Choi, Won Jin; Chung, Yoon Jang; Kim, Yun Ho; Han, Jeongho; Lee, Young-Kook; Kong, Ki-jeong; Chang, Hyunju; Lee, Young Kuk; Kim, Byoung Gak; Lee, Jeong-O

    2014-01-01

    Controlling the orientations of nanomaterials on arbitrary substrates is crucial for the development of practical applications based on such materials. The aligned epitaxial growth of single-walled carbon nanotubes (SWNTs) on specific crystallographic planes in single crystalline sapphire or quartz has been demonstrated; however, these substrates are unsuitable for large scale electronic device applications and tend to be quite expensive. Here, we report a scalable method based on graphoepitaxy for the aligned growth of SWNTs on conventional SiO2/Si substrates. The “scratches” generated by polishing were found to feature altered atomic organizations that are similar to the atomic alignments found in vicinal crystalline substrates. The linear and circular scratch lines could promote the oriented growth of SWNTs through the chemical interactions between the C atoms in SWNT and the Si adatoms in the scratches. The method presented has the potential to be used to prepare complex geometrical patterns of SWNTs by ‘drawing' circuits using SWNTs without the need for state-of-the-art equipment or complicated lithographic processes. PMID:24924480

  14. Efficient Transfer Doping of Carbon Nanotube Forests by MoO3.

    Science.gov (United States)

    Esconjauregui, Santiago; D'Arsié, Lorenzo; Guo, Yuzheng; Yang, Junwei; Sugime, Hisashi; Caneva, Sabina; Cepek, Cinzia; Robertson, John

    2015-10-27

    We dope nanotube forests using evaporated MoO3 and observe the forest resistivity to decrease by 2 orders of magnitude, reaching values as low as ∼5 × 10(-5) Ωcm, thus approaching that of copper. Using in situ photoemission spectroscopy, we determine the minimum necessary MoO3 thickness to dope a forest and study the underlying doping mechanism. Homogenous coating and tube compaction emerge as key factors for decreasing the forest resistivity. When all nanotubes are fully coated with MoO3 and packed, conduction channels are created both inside the nanotubes and on the outside oxide layer. This is supported by density functional theory calculations, which show a shift of the Fermi energy of the nanotubes and the conversion of the oxide into a layer of metallic character. MoO3 doping removes the need for chirality control during nanotube growth and represents a step forward toward the use of forests in next-generation electronics and in power cables or conductive polymers. PMID:26375167

  15. Low-temperature growth of single-wall carbon nanotubes

    International Nuclear Information System (INIS)

    The low-temperature synthesis (450-560 deg. C) of single-walled carbon nanotubes (SWCNTs) on a triple-layered catalyst, Al/Fe/Mo, was performed using aromatic hydrocarbon radicals which were produced from the pyrolysis of C2H2. Two approaches were used; in the first, these hydrocarbon radicals were produced using a high-temperature heater (830 deg. C), but the substrate where the SWCNTs were grown was placed on a thermal insulator above it such that the substrate was at a much lower temperature. In the second approach, a heated nozzle system operating at 830 deg. C was used to introduce the hydrocarbon radicals onto the substrate which was located a few centimetres below it. Both these approaches rely on the thermal dissociation and recombination of C2H2 for the formation of complex high-order radicals, i.e. C6H9, C5H9, C6H13, whose presence was confirmed by in situ mass spectroscopy. The density of SWCNTs deposited could be correlated directly with the concentration of these precursors

  16. Carbon Nanotubes Filled with Different Ferromagnetic Alloys Affect the Growth and Development of Rice Seedlings by Changing the C:N Ratio and Plant Hormones Concentrations

    OpenAIRE

    Hao, Yi; Yu, Feifan; Lv, Ruitao; Ma, Chuanxin; Zhang, Zetian; Rui, Yukui; Liu, Liming; Cao, Weidong; Xing, Baoshan

    2016-01-01

    The aim of this study was to investigate the phytotoxicity of thin-walled carbon nanotubes (CNTs) to rice (Oryza sativa L.) seedlings. Three different CNTs, including hollow multi-walled carbon nanotubes (MWCNTs), Fe-filled carbon nanotubes (Fe-CNTs), and Fe-Co-filled carbon nanotubes (FeCo-CNTs), were evaluated. The CNTs significantly inhibited rice growth by decreasing the concentrations of endogenous plant hormones. The carbon to nitrogen ratio (C:N ratio) significantly increased in rice r...

  17. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.

    Science.gov (United States)

    Guzmán de Villoria, R; Figueredo, S L; Hart, A J; Steiner, S A; Slocum, A H; Wardle, B L

    2009-10-01

    Vertically aligned carbon nanotube (CNT) arrays are grown on a moving substrate, demonstrating continuous growth of nanoscale materials with long-range order. A cold-wall chamber with an oscillating moving platform is used to locally heat a silicon growth substrate coated with an Fe/Al2O3 catalyst film for CNT growth via chemical vapor deposition. The reactant gases are introduced over the substrate through a directed nozzle to attain high-yield CNT growth. Aligned multi-wall carbon nanotube arrays (or 'forests') with heights of approximately 1 mm are achieved at substrate speeds up to 2.4 mm s(-1). Arrays grown on moving substrates at different velocities are studied in order to identify potential physical limitations of repeatable and fast growth on a continuous basis. No significant differences are noted between static and moving growth as characterized by scanning electron microscopy and Raman spectroscopy, although overall growth height is marginally reduced at the highest substrate velocity. CNT arrays produced on moving substrates are also found to be comparable to those produced through well-characterized batch processes consistent with a base-growth mechanism. Growth parameters required for the moving furnace are found to differ only slightly from those used in a comparable batch process; thermal uniformity appears to be the critical parameter for achieving large-area uniform array growth. If the continuous-growth technology is combined with a reaction zone isolation scheme common in other types of processing (e.g., in the manufacture of carbon fibers), large-scale dense and aligned CNT arrays may be efficiently grown and harvested for numerous applications including providing interlayers for advanced composite reinforcement and improved electrical and thermal transport. PMID:19752503

  18. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate

    International Nuclear Information System (INIS)

    Vertically aligned carbon nanotube (CNT) arrays are grown on a moving substrate, demonstrating continuous growth of nanoscale materials with long-range order. A cold-wall chamber with an oscillating moving platform is used to locally heat a silicon growth substrate coated with an Fe/Al2O3 catalyst film for CNT growth via chemical vapor deposition. The reactant gases are introduced over the substrate through a directed nozzle to attain high-yield CNT growth. Aligned multi-wall carbon nanotube arrays (or 'forests') with heights of ∼1 mm are achieved at substrate speeds up to 2.4 mm s-1. Arrays grown on moving substrates at different velocities are studied in order to identify potential physical limitations of repeatable and fast growth on a continuous basis. No significant differences are noted between static and moving growth as characterized by scanning electron microscopy and Raman spectroscopy, although overall growth height is marginally reduced at the highest substrate velocity. CNT arrays produced on moving substrates are also found to be comparable to those produced through well-characterized batch processes consistent with a base-growth mechanism. Growth parameters required for the moving furnace are found to differ only slightly from those used in a comparable batch process; thermal uniformity appears to be the critical parameter for achieving large-area uniform array growth. If the continuous-growth technology is combined with a reaction zone isolation scheme common in other types of processing (e.g., in the manufacture of carbon fibers), large-scale dense and aligned CNT arrays may be efficiently grown and harvested for numerous applications including providing interlayers for advanced composite reinforcement and improved electrical and thermal transport.

  19. Growth and surface properties of boehmite nanofibers and nanotubes at low temperatures using a hydrothermal synthesis route.

    Science.gov (United States)

    Zhao, Yanyan; Frost, Ray L; Martens, Wayde N; Zhu, Huai Yong

    2007-09-11

    The growth of boehmite nanostructures at low temperature using a soft chemistry route with and without (PEO) surfactant is presented. Remarkably long boehmite 1D nanotubes/nanofibers were formed within a significantly short time by changing the reaction mechanism of aluminum hydroxide. By using the PEO surfactant as a templating agent, boehmite nanotubes up to 170 nm in length with internal and external diameters of 2-5 and 3-7 nm, respectively, were formed at 100 degrees C. A slightly higher temperature (120 degrees C) resulted in the formation of lath-like nanofibers with an average length of 250 nm. Using the cationic surfactant CTAB, nanotubes rather than nanofibers were formed at 120 degrees C. Without surfactant, nanotubes counted for around 20% of the entire sample. A regular interval supply of fresh boehmite precipitate resulted in a larger crystallite size distribution of nanotubes. The morphology of nanotubes was more uniform in samples without the regular addition of aluminum hydroxide. Moreover, for the same hydrothermal time, the final nanotubes for nanomaterials without a regular interval supply of fresh aluminum hydroxide precipitate were longer than those with a regular aluminum hydroxide precipitate supply, which is in contrast to previously published results. Higher Al/PEO concentrations resulted in the formation of shorter nanotubes. A detailed characterization and mechanism are presented. PMID:17705405

  20. Growth, modification and integration of carbon nanotubes into molecular electronics

    Science.gov (United States)

    Moscatello, Jason P.

    Molecules are the smallest possible elements for electronic devices, with active elements for such devices typically a few Angstroms in footprint area. Owing to the possibility of producing ultra-high density devices, tremendous effort has been invested in producing electronic junctions by using various types of molecules. The major issues for molecular electronics include (1) developing an effective scheme to connect molecules with the present micro- and nano-technology, (2) increasing the lifetime and stabilities of the devices, and (3) increasing their performance in comparison to the state-of-the-art devices. In this work, we attempt to use carbon nanotubes (CNTs) as the interconnecting nanoelectrodes between molecules and microelectrodes. The ultimate goal is to use two individual CNTs to sandwich molecules in a cross-bar configuration while having these CNTs connected with microelectrodes such that the junction displays the electronic character of the molecule chosen. We have successfully developed an effective scheme to connect molecules with CNTs, which is scalable to arrays of molecular electronic devices. To realize this far reaching goal, the following technical topics have been investigated. (1) Synthesis of multi-walled carbon nanotubes (MWCNTs) by thermal chemical vapor deposition (T-CVD) and plasma-enhanced chemical vapor deposition (PECVD) techniques (Chapter 3). We have evaluated the potential use of tubular and bamboo-like MWCNTs grown by T-CVD and PE-CVD in terms of their structural properties. (2) Horizontal dispersion of MWCNTs with and without surfactants, and the integration of MWCNTs to microelectrodes using deposition by dielectrophoresis (DEP) (Chapter 4). We have systematically studied the use of surfactant molecules to disperse and horizontally align MWCNTs on substrates. In addition, DEP is shown to produce impurityfree placement of MWCNTs, forming connections between microelectrodes. We demonstrate the deposition density is tunable by

  1. In-Situ Growth of Carbon Nanotubes in a Microreactor Environment

    Science.gov (United States)

    Kona, Silpa; Harnett, Cindy

    2010-03-01

    This work presents an approach to the in-situ growth of Carbon Nanotubes (CNTs) inside a micro scale environment using thermal chemical vapor deposition technique (Thermal CVD). Microreactors provide an ideal environment for exploration of extreme nanomaterial growth conditions, because they provide homogenous reactant temperature and concentrations, and the ability to work safely and economically at high temperatures and pressures over a broad range of flows. The study of Carbon Nanotube synthesis inside sub-mm channels and microfabricated reactors is of interest both fundamentally and for applications such as chromatographic channels. Carbon nanotubes (CNTs) are also excellent materials to be used as gas sensing elements as they exhibit changes in their electronic properties on being exposed to gases and are of interest in developing gas sensors operating at room temperature. Such micro scale CNT based sensing devices offer several practical advantages over the current sensors designs available, along with opening up avenues for a more efficient and better way of sensing gases.

  2. Influence of tungsten on the carbon nanotubes growth by CVD process

    International Nuclear Information System (INIS)

    The effect of tungsten (W) on the growth of multi-walled carbon nanotubes (MWNTs) using the chemical vapour deposition (CVD) process over a metal Fe-W catalyst incorporated into a silica matrix is reported. A W molar content in Fe/SiO2 up to 10% was studied. The incorporation of only 2% of W substantially modifies the crystalline phases and the crystalline degree of the catalyst during the MWNTs synthesis. This fact seems to have a strong influence on the type and yield of the carbonaceous species obtained by the CVD of acetylene, at 600 deg. C and 180 Torr, over each catalyst. Tungsten interacts with iron within the matrix, diminishing the catalytic activity of the metal nanoparticles, and both, carbon nanotubes and carbon nanofibers, are obtained when tungsten is present. The results obtained support the hypothesis of a base growth model for carbon nanotubes indicating a strong interaction between silica matrix and Fe/W nanoparticles, independently of the content of W.

  3. Influence of tungsten on the carbon nanotubes growth by CVD process

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, Mariano [Instituto de Fisicoquimica de Materiales, Ambiente y Energia, CONICET-UBA, Pabellon II, Ciudad Universitaria (1428) Bs As (Argentina); LP and MC, Dep. De Fisica, FCEyN-UBA, Pabellon 1, Ciudad Universitaria (1428) Bs As (Argentina)], E-mail: mescobar@qi.fcen.uba.ar; Rubiolo, Gerardo H. [LP and MC, Dep. De Fisica, FCEyN-UBA, Pabellon 1, Ciudad Universitaria (1428) Bs As (Argentina); Unidad de Actividad Materiales, CNEA, Av. Gral. Paz 1499, San Martin (1650), Bs As (Argentina); Moreno, M. Sergio [Centro Atomico Bariloche, (8400) S.C. de Bariloche, Rio Negro (Argentina); Goyanes, Silvia [LP and MC, Dep. De Fisica, FCEyN-UBA, Pabellon 1, Ciudad Universitaria (1428) Bs As (Argentina); Candal, Roberto [Instituto de Fisicoquimica de Materiales, Ambiente y Energia, CONICET-UBA, Pabellon II, Ciudad Universitaria (1428) Bs As (Argentina)

    2009-06-24

    The effect of tungsten (W) on the growth of multi-walled carbon nanotubes (MWNTs) using the chemical vapour deposition (CVD) process over a metal Fe-W catalyst incorporated into a silica matrix is reported. A W molar content in Fe/SiO{sub 2} up to 10% was studied. The incorporation of only 2% of W substantially modifies the crystalline phases and the crystalline degree of the catalyst during the MWNTs synthesis. This fact seems to have a strong influence on the type and yield of the carbonaceous species obtained by the CVD of acetylene, at 600 deg. C and 180 Torr, over each catalyst. Tungsten interacts with iron within the matrix, diminishing the catalytic activity of the metal nanoparticles, and both, carbon nanotubes and carbon nanofibers, are obtained when tungsten is present. The results obtained support the hypothesis of a base growth model for carbon nanotubes indicating a strong interaction between silica matrix and Fe/W nanoparticles, independently of the content of W.

  4. Carbon nanotube synthesis: from large-scale production to atom-by-atom growth

    International Nuclear Information System (INIS)

    The extraordinary electronic, thermal and mechanical properties of carbon nanotubes (CNTs) closely relate to their structure. They can be seen as rolled-up graphene sheets with their electronic properties depending on how this rolling up is achieved. However, this is not the way they actually grow. Various methods are used to produce carbon nanotubes. They all have in common three ingredients: (i) a carbon source, (ii) catalyst nanoparticles and (iii) an energy input. In the case where the carbon source is provided in solid form, one speaks about ‘high temperature methods’ because they involve the sublimation of graphite which does not occur below 3200 °C. The first CNTs were synthesized by these techniques. For liquid or gaseous phases, the generic term of ‘medium or low temperature methods’ is used. CNTs are now commonly produced by these latter techniques at temperatures ranging between 350 and 1000 °C, using metal nanoparticles that catalyze the decomposition of the gaseous carbon precursor and make the growth of nanotubes possible. The aim of this review article is to give a general overview of all these methods and an understanding of the CNT growth process. (topical review)

  5. The growth of N-doped carbon nanotube arrays on sintered Al2O3 substrates

    International Nuclear Information System (INIS)

    Vertically oriented bamboo-like nitrogen-containing carbon nanotube (CNT) arrays were grown on an alumina (Al2O3) substrate by the injection chemical vapor deposition (CVD) process using ethanol as a carbon source and ethylenediamine as a nitrogen source. The substrate is a sintered Al2O3 plate with a rough surface consisting of polycrystalline Al2O3 micro-grains. The concentration of ferrocene in ethanol played a major role in the growth of CNT arrays. Aligned multi-walled CNT arrays were obtained under optimized catalyst concentrations (0.015 g/ml) and growth temperature (900 deg. C) with the height of the arrays attaining 160 μm after the growth for 1 h. The growth of CNT occurred predominately between 30 and 40 min and ceased growth beyond 60 min. X-ray photoelectronic spectrum detects the incorporation of nitrogen atoms in the CNTs with an atomic ratio of 1.2%. The present study indicates that it is possible to grow high quality carbon nanotube arrays over a cheap alumina substrate of a rough surface

  6. Co-sputtered MoRe thin films for carbon nanotube growth-compatible superconducting coplanar resonators.

    Science.gov (United States)

    Götz, K J G; Blien, S; Stiller, P L; Vavra, O; Mayer, T; Huber, T; Meier, T N G; Kronseder, M; Strunk, Ch; Hüttel, A K

    2016-04-01

    Molybdenum rhenium alloy thin films can exhibit superconductivity up to critical temperatures of [Formula: see text]. At the same time, the films are highly stable in the high-temperature methane/hydrogen atmosphere typically required to grow single wall carbon nanotubes. We characterize molybdenum rhenium alloy films deposited via simultaneous sputtering from two sources, with respect to their composition as function of sputter parameters and their electronic dc as well as GHz properties at low temperature. Specific emphasis is placed on the effect of the carbon nanotube growth conditions on the film. Superconducting coplanar waveguide resonators are defined lithographically; we demonstrate that the resonators remain functional when undergoing nanotube growth conditions, and characterize their properties as function of temperature. This paves the way for ultra-clean nanotube devices grown in situ onto superconducting coplanar waveguide circuit elements. PMID:26901846

  7. Co-sputtered MoRe thin films for carbon nanotube growth-compatible superconducting coplanar resonators

    Science.gov (United States)

    Götz, K. J. G.; Blien, S.; Stiller, P. L.; Vavra, O.; Mayer, T.; Huber, T.; Meier, T. N. G.; Kronseder, M.; Strunk, Ch; Hüttel, A. K.

    2016-04-01

    Molybdenum rhenium alloy thin films can exhibit superconductivity up to critical temperatures of {T}{{c}}=15 {{K}}. At the same time, the films are highly stable in the high-temperature methane/hydrogen atmosphere typically required to grow single wall carbon nanotubes. We characterize molybdenum rhenium alloy films deposited via simultaneous sputtering from two sources, with respect to their composition as function of sputter parameters and their electronic dc as well as GHz properties at low temperature. Specific emphasis is placed on the effect of the carbon nanotube growth conditions on the film. Superconducting coplanar waveguide resonators are defined lithographically; we demonstrate that the resonators remain functional when undergoing nanotube growth conditions, and characterize their properties as function of temperature. This paves the way for ultra-clean nanotube devices grown in situ onto superconducting coplanar waveguide circuit elements.

  8. Beneficial role of carbon nanotubes on mustard plant growth: an agricultural prospect

    International Nuclear Information System (INIS)

    Nowadays an increasing application of nanotechnology in different fields has arisen an extensive debate about the effect of the engineered nanoparticles on environment. Phytotoxicity of nanoparticles has come into limelight in the last few years. However, very few studies have been done so far on the beneficial aspects of nanoparticles on plants. In this article, we report the beneficial effect of multi-walled carbon nanotubes (MWCNTs) having diameter of ∼30 nm on Brassica juncea (mustard) seeds. Measurements of germination rate, T50 (time taken for 50% germination), shoot and root growth have shown encouraging results using low concentration of oxidized MWCNT (OMWCNT) treated seeds as compared to non-oxidized as well as high concentration OMWCNT treated seeds. For toxicity study we measured the germination index and relative root elongation, while conductivity test and infra-red spectra were also performed to study the overall effect of oxidized and non-oxidized nanotubes on mustard seeds and seedlings.

  9. Controlled Growth of Semiconducting and Metallic Single-Wall Carbon Nanotubes.

    Science.gov (United States)

    Liu, Chang; Cheng, Hui-Ming

    2016-06-01

    Single-wall carbon nanotubes (SWCNTs) can be either semiconducting or metallic depending on their chiral angles and diameters. The use of SWCNTs in electronics has long been hindered by the fact that the as-prepared SWCNTs are usually a mixture of semiconducting and metallic ones. Therefore, controlled synthesis of SWCNTs with a uniform electrical type or even predefined chirality has been a focus of carbon nanotube research in recent years. In this Perspective, we summarize recent progress on the controlled growth of semiconducting and metallic SWCNTs by in situ selective etching and by novel catalyst design. The advantages and mechanisms of these approaches are analyzed, and the challenges are discussed. Finally, we predict possible breakthroughs and future trends in the controlled synthesis and applications of SWCNTs. PMID:27149629

  10. Iron-Doped Carbon Aerogels: Novel Porous Substrates for Direct Growth of Carbon Nanotubes

    Science.gov (United States)

    Steiner, S. A.; Baumann, T. F.; Kong, J.; Satcher, J. H.; Dresselhaus, M. S.

    2007-02-20

    We present the synthesis and characterization of Fe-doped carbon aerogels (CAs) and demonstrate the ability to grow carbon nanotubes directly on monoliths of these materials to afford novel carbon aerogel-carbon nanotube composites. Preparation of the Fe-doped CAs begins with the sol-gel polymerization of the potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde, affording K{sup +}-doped gels that can then be converted to Fe{sup 2+}- or Fe{sup 3+}-doped gels through an ion exchange process, dried with supercritical CO{sub 2} and subsequently carbonized under an inert atmosphere. Analysis of the Fe-doped CAs by TEM, XRD and XPS revealed that the doped iron species are reduced during carbonization to form metallic iron and iron carbide nanoparticles. The sizes and chemical composition of the reduced Fe species were related to pyrolysis temperature as well as the type of iron salt used in the ion exchange process. Raman spectroscopy and XRD analysis further reveal that, despite the presence of the Fe species, the CA framework is not significantly graphitized during pyrolysis. The Fe-doped CAs were subsequently placed in a thermal CVD reactor and exposed to a mixture of CH{sub 4} (1000 sccm), H{sub 2} (500 sccm), and C{sub 2}H{sub 4} (20 sccm) at temperatures ranging from 600 to 800 C for 10 minutes, resulting in direct growth of carbon nanotubes on the aerogel monoliths. Carbon nanotubes grown by this method appear to be multiwalled ({approx}25 nm in diameter and up to 4 mm long) and grow through a tip-growth mechanism that pushes catalytic iron particles out of the aerogel framework. The highest yield of CNTs were grown on Fe-doped CAs pyrolyzed at 800 C treated at CVD temperatures of 700 C.

  11. Growth of uniform thin-walled carbon nanotubes with spin-coated Fe catalyst and the correlation between the pre-growth catalyst size and the nanotube diameter

    International Nuclear Information System (INIS)

    Single-walled carbon nanotubes (CNTs) and double-walled CNTs with a selectivity of 93 % were obtained by means of the novel homemade iron catalysts which were spin coated on silicon wafer. The average diameters of the iron particles prepared from the colloidal solutions containing 30, 40, 50, 60, and 70 mmol/L of iron nitrate were 8.2, 5.1, 20.8, 32.2, and 34.7 nm, respectively, and growing thin-walled CNTs with the average diameters of 4.1, 2.2, 9.2, 11.1, and 18.1 nm, respectively. The diameters of the CNTs were correlated with the geometric sizes of the pre-growth catalyst particles. Thin-walled CNTs were found to have a catalyst mean diameter-to-CNT average diameter ratio of 2.31. Iron carbide was formed after the growth of CNTs, and it is believed that during the growth of CNTs, carbon source decomposed and deposited on the surface of catalyst, followed by the diffusion of surface carbon into the iron catalyst particles, resulting in carbon supersaturation state before the growth of CNTs.

  12. Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules.

    Science.gov (United States)

    Liu, Bilu; Liu, Jia; Li, Hai-Bei; Bhola, Radha; Jackson, Edward A; Scott, Lawrence T; Page, Alister; Irle, Stephan; Morokuma, Keiji; Zhou, Chongwu

    2015-01-14

    The inability to synthesize single-wall carbon nanotubes (SWCNTs) possessing uniform electronic properties and chirality represents the major impediment to their widespread applications. Recently, there is growing interest to explore and synthesize well-defined carbon nanostructures, including fullerenes, short nanotubes, and sidewalls of nanotubes, aiming for controlled synthesis of SWCNTs. One noticeable advantage of such processes is that no metal catalysts are used, and the produced nanotubes will be free of metal contamination. Many of these methods, however, suffer shortcomings of either low yield or poor controllability of nanotube uniformity. Here, we report a brand new approach to achieve high-efficiency metal-free growth of nearly pure SWCNT semiconductors, as supported by extensive spectroscopic characterization, electrical transport measurements, and density functional theory calculations. Our strategy combines bottom-up organic chemistry synthesis with vapor phase epitaxy elongation. We identify a strong correlation between the electronic properties of SWCNTs and their diameters in nanotube growth. This study not only provides material platforms for electronic applications of semiconducting SWCNTs but also contributes to fundamental understanding of the growth mechanism and controlled synthesis of SWCNTs. PMID:25521257

  13. Visualizing the growth dynamics of individual single-wall carbon nanotubes

    DEFF Research Database (Denmark)

    Wagner, Jakob Birkedal; Zhang, Lili; He, Maoshuai;

    In order to meet the increasing demand of faster and more flexible electronics and optical devices and at the same time decrease the use of the critical metals, carbon based devices are in fast development. Single walled carbon nanotube (SWCNT) based electronics is a way of addressing the...... environment friendly approach of faster and better electronics. In order to exploit the potential of SWCNTs in the electronic industry fully, selective growth of either conducting or semiconducting tubes is of high importance. Understanding the mechanism for growth of SWCNTs is of great importance for...... around the studied sample at elevated temperature gives a unique way of monitoring gas-solid interactions such as CNT growth. Here we show the direct experimental evidence on the growth dynamics of SW-CNTs from Co/MgO catalysts using CO as carbon source inside the environmental TEM. The evolution of the...

  14. Growth of Aligned Carbon Nanotubes on Large Scale by Methane Decomposition with Deactivation Inhibitor

    Institute of Scientific and Technical Information of China (English)

    Hao Yu; Zhili Li; Cheng Zhang; Feng Peng; Hongjuan Wang

    2007-01-01

    The effects of additives containing iron or nickel during chemical vapor deposition (CVD) on the growth of carbon nanotubes (CNTs) by methane decomposition on Mo/MgO catalyst were investigated. Ferrocene and nickel nitrate were introduced as deactivation inhibitors by in-situ evaporation during CVD. The precisely controlled in-situ introduction of these inhibitors increased the surface renewal of catalyst, and therefore prevented the catalyst from deactivation. Using this method, aligned multi-walled CNTs with parallel mesopores can be produced on a large scale.

  15. Growth and Transfer of Seamless 3D Graphene-Nanotube Hybrids.

    Science.gov (United States)

    Kim, Nam Dong; Li, Yilun; Wang, Gunuk; Fan, Xiujun; Jiang, Jinlong; Li, Lei; Ji, Yongsung; Ruan, Gedeng; Hauge, Robert H; Tour, James M

    2016-02-10

    Seamlessly connected graphene and carbon nanotube hybrids (GCNTs) have great potential as carbon platform structures in electronics due to their high conductivity and high surface area. Here, we introduce a facile method for making patterned GCNTs and their intact transfer onto other substrates. The mechanism for selective growth of vertically aligned CNTs (VA-CNTs) on the patterned graphene is discussed. The complete transfer of the GCNT pattern onto other substrates is possible because of the mechanical strength of the GCNT hybrids. Electrical conductivity measurements of the transferred GCNT structures show Ohmic contact through the VA-CNTs to graphene--evidence of its integrity after the transfer process. PMID:26789079

  16. Understanding the growth mechanism of carbon nanotubes via the ``cluster volume to surface area" model

    Science.gov (United States)

    Mandati, Sreekanth; Kunstmann, Jens; Boerrnert, Felix; Schoenfelder, Ronny; Ruemmeli, Mark; Kar, Kamal K.; Cuniberti, Gianaurelio

    2010-03-01

    The influence of mixed catalysts for the high yield production of carbon nanotubes (CNTs) has been studied systematically. Based on extensive experimental data a ``Catalyst Volume to Surface Area'' (CVSA) model was developed to understand the influence of the process parameters on the yield and CNT diameter distribution [1]. In our study, we present a refined version of the CVSA model developed by combining experiments and simulations. We discuss our current understanding of the growth mechanism and how the model might be used to increase CNT yields by using mixed catalysts.[4pt] [1] S. Tetali et al., ACS Nano (2009), DOI: 10.1021/nn9012548.

  17. Effect of different carrier gases and their flow rates on the growth of carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, Aarti; Sharma, Suresh C. [Department of Applied Physics, Delhi Technological University (DTU), Shahbad Daulatpur, Bawana Road, Delhi 110 042 (India)

    2015-04-15

    The present paper examines the effect of different carrier gases and their flow rates on the growth of carbon nanotubes (CNTs). A theoretical model is developed incorporating the charging rate of the carbon nanotube, kinetics of all the plasma species, and the growth rate of the CNTs because of diffusion and accretion of ions on the catalyst nanoparticle. The three different carrier gases, i.e., argon (Ar), ammonia, and nitrogen, are considered in the present investigation, and flow rates of all the three carrier gases are varied individually (keeping the flow rates of hydrocarbon and hydrogen gas constant) to investigate the variations in the number densities of hydrocarbon and hydrogen ions in the plasma and their consequent effects on the height and radius of CNT. Based on the results obtained, it is concluded that Ar favors the formation of CNTs with larger height and radius whereas ammonia contributes to better height of CNT but decreases the radius of CNT, and nitrogen impedes both the height and radius of CNT. The present work can serve to the better understanding of process parameters during growth of CNTs by a plasma enhanced chemical vapor deposition process.

  18. Growth Mechanism of Single-Walled Carbon Nanotubes on Iron–Copper Catalyst and Chirality Studies by Electron Diffraction

    DEFF Research Database (Denmark)

    He, Maoshuai; Liu, Bilu; Chernov, Alexander I.;

    2012-01-01

    Chiralities of single-walled carbon nanotubes grown on an atomic layer deposition prepared bimetallic FeCu/MgO catalyst were evaluated quantitatively using nanobeam electron diffraction. The results reveal that the growth yields nearly 90% semiconducting tubes, 45% of which are of the (6,5) type....... The growth mechanisms as well as the roles of different components in the catalyst were studied in situ using environmental transmission electron microscopy and infrared spectroscopy. On the basis of the understanding of carbon nanotube growth mechanisms, an MgO-supported FeCu catalyst was prepared by...... impregnation, showing similar catalytic performance as the atomic layer deposition-prepared catalyst, yielding single-walled carbon nanotubes with a similar narrow chirality distribution....

  19. Substrate engineering for Ni-assisted growth of carbon nano-tubes

    International Nuclear Information System (INIS)

    The growth of carbon multi-walled nano-tubes (MWCNTs) using metal catalyst (e.g. Ni, Co, and Fe) has been extensively investigated during the last decade. In general, the physical properties of CNTs depend on the type, quality and diameter of the tubes. One of the parameters which affects the diameter of a MWCNT is the size of the catalyst metal islands. Considering Ni as the metal catalyst, the formed silicide layer agglomerates (island formation) after a thermal treatment. One way to decrease the size of Ni islands is to apply SiGe as the base for the growth. In this study, different methods based on substrate engineering are proposed to change/control the MWCNT diameters. These include (i) well-controlled oxide openings containing Ni to miniaturize the metal island size, and (ii) growth on strained or partially relaxed SiGe layers for smaller Ni silicide islands.

  20. Controlling the growth of vertically aligned single walled carbon nanotubes from ethanol for electrochemical supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M.A.; Mohamed, M.A.; Shikoh, E.; Fujiwara, A.; Shimoda, T. [Japan Advanced Inst. of Science and Technology, Ishikawa (Japan)

    2010-07-01

    Single-walled carbon nanotubes (SWCNTs) have been proven suitable for use as electrodes in electrochemical capacitors (EC). In this study, alcohol catalytic chemical vapor deposition (ACCVD) was used to grow vertically-aligned SWCNTs (VASWCNTs). An aluminium oxide (Al{sub 2}O{sub 3})-supported cobalt (Co) catalyst and high purity ethanol carbon feedstock was used for the growth process. The Al layer and Co thin films were deposited using an electron beam evaporator. CNT growth was optimized using Si/SiO{sub 2} substrates. An atomic force microscope, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses were used to characterize the synthesis of the catalyst nanoparticles and their subsequent growth. Raman spectrum of the samples demonstrated peaks of radial breathing mode (RBM) from 100 to 250 per cm. Results demonstrated that the CNTs were successfully grown on the conducting metal substrate using the ACCVD process. 4 refs.

  1. Computational studies of small carbon and iron-carbon systems relevant to carbon nanotube growth.

    Science.gov (United States)

    Duan, Haiming; Rosén, Arne; Harutyunyan, Avetik; Curtarolo, Stefano; Bolton, Kim

    2008-11-01

    Density functional theory (DFT) calculations show that dimers and longer carbon strings are more stable than individual atoms on Fe(111) surfaces. It is therefore necessary to consider the formation of these species on the metal surfaces and their effect on the mechanism of single-walled nanotube (SWNT) growth. The good agreement between the trends (energies and structures) obtained using DFT and those based on the Brenner and AIREBO models indicate that these analytic models provide adequate descriptions of the supported carbon systems needed for valid molecular dynamics simulations of SWNT growth. In contrast, the AIREBO model provides a better description of the relative energies for isolated carbon species, and this model is preferred over the Brenner potential when simulating SWNT growth in the absence of metal particles. However, the PM3 semiempirical model appears to provide an even better description for these systems and, given sufficient computer resources, direct dynamics methods based on this model may be preferred. PMID:19198360

  2. Key roles of carbon solubility in single-walled carbon nanotube nucleation and growth

    Science.gov (United States)

    He, Maoshuai; Amara, Hakim; Jiang, Hua; Hassinen, Jukka; Bichara, Christophe; Ras, Robin H. A.; Lehtonen, Juha; Kauppinen, Esko I.; Loiseau, Annick

    2015-11-01

    Elucidating the roles played by carbon solubility in catalyst nanoparticles is required to better understand the growth mechanisms of single-walled carbon nanotubes (SWNTs). Here, we highlight that controlling the level of dissolved carbon is of key importance to enable nucleation and growth. We first performed tight binding based atomistic computer simulations to study carbon incorporation in metal nanoparticles with low solubilities. For such metals, carbon incorporation strongly depends on their structures (face centered cubic or icosahedral), leading to different amounts of carbon close to the nanoparticle surface. Following this idea, we then show experimentally that Au nanoparticles effectively catalyze SWNT growth when in a face centered cubic structure, and fail to do so when icosahedral. Both approaches emphasize that the presence of subsurface carbon in the nanoparticles is necessary to enable the cap lift-off, making the nucleation of SWNTs possible.Elucidating the roles played by carbon solubility in catalyst nanoparticles is required to better understand the growth mechanisms of single-walled carbon nanotubes (SWNTs). Here, we highlight that controlling the level of dissolved carbon is of key importance to enable nucleation and growth. We first performed tight binding based atomistic computer simulations to study carbon incorporation in metal nanoparticles with low solubilities. For such metals, carbon incorporation strongly depends on their structures (face centered cubic or icosahedral), leading to different amounts of carbon close to the nanoparticle surface. Following this idea, we then show experimentally that Au nanoparticles effectively catalyze SWNT growth when in a face centered cubic structure, and fail to do so when icosahedral. Both approaches emphasize that the presence of subsurface carbon in the nanoparticles is necessary to enable the cap lift-off, making the nucleation of SWNTs possible. Electronic supplementary information (ESI

  3. Effects of ferrite catalyst concentration and water vapor on growth of vertically aligned carbon nanotube

    Science.gov (United States)

    Thanh Cao, Thi; Chuc Nguyen, Van; Thanh Tam Ngo, Thi; Le, Trong Lu; Loc Nguyen, Thai; Tran, Dai Lam; Obraztsova, Elena D.; Phan, Ngoc Minh

    2014-12-01

    In this study Fe3O4 nanoparticles were used as catalysts for the growth of vertically aligned carbon nanotubes (VA-CNTs) by chemical vapor deposition (CVD). The effect of catalyst concentration and water vapor during the CVD process on the properties of the VA-CNTs was investigated. Monodisperse Fe3O4 nanoparticles (4.5-9.0 nm diameter) prepared by thermal decomposition of iron acetylacetonate compounds were spin-coated on clean silicon substrates which served as a platform for VA-CNTs growth. The results indicated that the length, density and growth rate of CNTs were strongly affected by the catalyst concentration. CNTs grown at 0.026 g ml-1 Fe3O4 catalyst had greater length, density and growth rates than those obtained at 0.01 and 0.033 g ml-1 Fe3O4 catalyst. Addition of water during the CVD process had drastically improved CNTs growth. The length and growth rate of obtained CNTs were 40 μm and 1.33 μm min-1, respectively. The results provided insights into the role of Fe3O4 catalyst and water vapor during VA-CNTs growth process by CVD method and the obtained information might serve as a starting point for further optimization of VA-CNTs synthesis.

  4. Nanoscale zirconia as a nonmetallic catalyst for graphitization of carbon and growth of single- and multiwall carbon nanotubes.

    Science.gov (United States)

    Steiner, Stephen A; Baumann, Theodore F; Bayer, Bernhard C; Blume, Raoul; Worsley, Marcus A; MoberlyChan, Warren J; Shaw, Elisabeth L; Schlögl, Robert; Hart, A John; Hofmann, Stephan; Wardle, Brian L

    2009-09-01

    We report that nanoparticulate zirconia (ZrO(2)) catalyzes both growth of single-wall and multiwall carbon nanotubes (CNTs) by thermal chemical vapor deposition (CVD) and graphitization of solid amorphous carbon. We observe that silica-, silicon nitride-, and alumina-supported zirconia on silicon nucleates single- and multiwall carbon nanotubes upon exposure to hydrocarbons at moderate temperatures (750 degrees C). High-pressure, time-resolved X-ray photoelectron spectroscopy (XPS) of these substrates during carbon nanotube nucleation and growth shows that the zirconia catalyst neither reduces to a metal nor forms a carbide. Point-localized energy-dispersive X-ray spectroscopy (EDAX) using scanning transmission electron microscopy (STEM) confirms catalyst nanoparticles attached to CNTs are zirconia. We also observe that carbon aerogels prepared through pyrolysis of a Zr(IV)-containing resorcinol-formaldehyde polymer aerogel precursor at 800 degrees C contain fullerenic cage structures absent in undoped carbon aerogels. Zirconia nanoparticles embedded in these carbon aerogels are further observed to act as nucleation sites for multiwall carbon nanotube growth upon exposure to hydrocarbons at CVD growth temperatures. Our study unambiguously demonstrates that a nonmetallic catalyst can catalyze CNT growth by thermal CVD while remaining in an oxidized state and provides new insight into the interactions between nanoparticulate metal oxides and carbon at elevated temperatures. PMID:19663436

  5. Dysprosium-Catalyzed Growth of Single-Walled Carbon Nanotube Arrays on Substrates

    Directory of Open Access Journals (Sweden)

    Qian Yong

    2009-01-01

    Full Text Available Abstract In this letter, we report that dysprosium is an effective catalyst for single-walled carbon nanotubes (SWNTs growth via a chemical vapor deposition (CVD process for the first time. Horizontally superlong well-oriented SWNT arrays on SiO2/Si wafer can be fabricated by EtOH-CVD under suitable conditions. The structure and properties are characterized by scanning electron microscopy, transition electron microscopy, Raman spectroscopy and atomic force microscopy. The results show that the SWNTs from dysprosium have better structural uniformity and better conductivity with fewer defects. This rare earth metal provides not only an alternative catalyst for SWNTs growth, but also a possible method to generate high percentage of superlong semiconducting SWNT arrays for various applications of nanoelectronic device.

  6. Carbon nanotube growth on nanozirconia under strong cathodic polarization in steam and carbon dioxide

    DEFF Research Database (Denmark)

    Tao, Youkun; Ebbesen, Sune Dalgaard; Zhang, Wei; Mogensen, Mogens Bjerg

    2014-01-01

    observed. Apart from the CNTs, graphitic layers covering zirconia nanoparticles are also widely observed. This work describes nano-zirconia acting as a catalyst for the growth of CNT during electrochemical conversion of CO2 and H2O in a Ni-YSZ cermet under strong cathodic polarization. An electrocatalytic......Growth of carbon nanotubes (CNTs) catalyzed by zirconia nanoparticles was observed in the Ni-yttria doped zirconia (YSZ) composite cathode of a solid oxide electrolysis cell (SOEC) at approximately 875 °C during co-electrolysis of CO2 and H2O to produce CO and H 2. CNT was observed to grow under...... large cathodic polarizations specifically at the first 1 to 2 μm Ni-YSZ active cathode layer next to the YSZ electrolyte. High resolution transmission electron microscopy (HRTEM) shows that the CNTs are multi-walled with diameters of approximately 20 nm and the catalyst particles have diameters in the...

  7. Growth of Pd-Filled Carbon Nanotubes on the Tip of Scanning Probe Microscopy

    Directory of Open Access Journals (Sweden)

    Tomokazu Sakamoto

    2009-01-01

    Full Text Available We have synthesized Pd-filled carbon nanotubes (CNTs oriented perpendicular to Si substrates using a microwave plasma-enhanced chemical vapor deposition (MPECVD for the application of scanning probe microscopy (SPM tip. Prior to the CVD growth, Al thin film (10 nm was coated on the substrate as a buffer layer followed by depositing a 5∼40 nm-thick Pd film as a catalyst. The diameter and areal density of CNTs grown depend largely on the initial Pd thickness. Scanning electron microscopy (SEM and transmission electron microscopy (TEM images clearly show that Pd is successfully encapsulated into the CNTs, probably leading to higher conductivity. Using optimum growth conditions, Pd-filled CNTs are successfully grown on the apex of the conventional SPM cantilever.

  8. Isolated crater formation by gas cluster ion impact and their use as templates for carbon nanotube growth

    Science.gov (United States)

    Toyoda, Noriaki; Kimura, Asahi; Yamada, Isao

    2016-03-01

    Crater-like defects formations with gas cluster ion beams (GCIB) were used as templates for carbon nanotube (CNT) growth. Upon a gas cluster ion impact, dense energy is deposited on a target surface while energy/atom of gas cluster ion is low, which creates crater-like defects. Si and SiO2 were irradiated with Ar-GCIB, subsequently CNTs were grown with an alcohol catalytic CVD using Co and ethanol as catalyst and precursor, respectively. From SEM, AFM and Raman spectroscopy, it was shown that growth of CNT with small diameter was observed on SiO2 with Ar-GCIB irradiation. On Si targets, formation of craters with bottom oxide prevented Co diffusion during CNT growth, as a result, CNT growth was observed only on Si irradiated with high-energy Ar-GCIB. These results showed that isolated defects created by GCIB can be used as templates for nanotube growth.

  9. Critical Oxide Thickness for Efficient Single-walled Carbon Nanotube Growth on Silicon Using Thin SiO2 Diffusion Barriers

    OpenAIRE

    Simmons, J. M.; Nichols, B. M.; Marcus, Matthew S.; Castellini, O. M.; Hamers, R. J.; Eriksson, M. A.

    2007-01-01

    The ability to integrate carbon nanotubes, especially single-walled carbon nanotubes, seamlessly onto silicon would expand the range of applications considerably. Though direct integration using chemical vapor deposition is the simplest method, the growth of single-walled carbon nanotubes on bare silicon and on ultra-thin oxides is greatly inhibited due to the formation of a non-catalytic silicide. Using x-ray photoelectron spectroscopy, we show that silicide formation occurs on ultra-thin ox...

  10. Enhanced cold wall CVD reactor growth of horizontally aligned single-walled carbon nanotubes

    Science.gov (United States)

    Mu, Wei; Kwak, Eun-Hye; Chen, Bingan; Huang, Shirong; Edwards, Michael; Fu, Yifeng; Jeppson, Kjell; Teo, Kenneth; Jeong, Goo-Hwan; Liu, Johan

    2016-05-01

    HASynthesis of horizontally-aligned single-walled carbon nanotubes (HA-SWCNTs) by chemical vapor deposition (CVD) directly on quartz seems very promising for the fabrication of future nanoelectronic devices. In comparison to hot-wall CVD, synthesis of HA-SWCNTs in a cold-wall CVD chamber not only means shorter heating, cooling and growth periods, but also prevents contamination of the chamber. However, since most synthesis of HA-SWCNTs is performed in hot-wall reactors, adapting this well-established process to a cold-wall chamber becomes extremely crucial. Here, in order to transfer the CVD growth technology from a hot-wall to a cold-wall chamber, a systematic investigation has been conducted to determine the influence of process parameters on the HA-SWCNT's growth. For two reasons, the cold-wall CVD chamber was upgraded with a top heater to complement the bottom substrate heater; the first reason to maintain a more uniform temperature profile during HA-SWCNTs growth, and the second reason to preheat the precursor gas flow before projecting it onto the catalyst. Our results show that the addition of a top heater had a significant effect on the synthesis. Characterization of the CNTs shows that the average density of HA-SWCNTs is around 1 - 2 tubes/ μm with high growth quality as shown by Raman analysis. [Figure not available: see fulltext.

  11. Effect of Substrate Morphology on Growth and Field Emission Properties of Carbon Nanotube Films

    Directory of Open Access Journals (Sweden)

    Kumar Vikram

    2008-01-01

    Full Text Available AbstractCarbon nanotube (CNT films were grown by microwave plasma-enhanced chemical vapor deposition process on four types of Si substrates: (i mirror polished, (ii catalyst patterned, (iii mechanically polished having pits of varying size and shape, and (iv electrochemically etched. Iron thin film was used as catalytic material and acetylene and ammonia as the precursors. Morphological and structural characteristics of the films were investigated by scanning and transmission electron microscopes, respectively. CNT films of different morphology such as vertically aligned, randomly oriented flowers, or honey-comb like, depending on the morphology of the Si substrates, were obtained. CNTs had sharp tip and bamboo-like internal structure irrespective of growth morphology of the films. Comparative field emission measurements showed that patterned CNT films and that with randomly oriented morphology had superior emission characteristics with threshold field as low as ~2.0 V/μm. The defective (bamboo-structure structures of CNTs have been suggested for the enhanced emission performance of randomly oriented nanotube samples.

  12. Enhanced Growth and Redox Characteristics of Some Conducting Polymers on Carbon Nanotube Modified Electrodes

    Institute of Scientific and Technical Information of China (English)

    R.Saraswathi

    2007-01-01

    1 Results Recent studies on the electrochemistry of a number of active compounds at carbon nanotube electrodes have proved beyond doubt their excellent electrocatalytic properties.Particularly,the advancements accomplished towards the functionalization of carbon nanotubes resulting in their enhanced solubilization in aqueous solutions have helped in the preparation of stable carbon nanotube electrodes.Glassy carbon has been invariably the preferred substrate for casting carbon nanotube electrodes.Such c...

  13. Solid source growth of Si oxide nanowires promoted by carbon nanotubes

    International Nuclear Information System (INIS)

    Highlights: • An array of well aligned and uniform CNTs is successfully fabricated by PECVD. • SiONW growth utilizes Si substrate as the source, ruling out the usage of silane. • With CNT array on the substrate, SiONW growth is improved significantly. • CNTs help dispersion of the catalysts and diffusion of the Si atoms. - Abstract: We report a method to promote solid source growth of Si oxide nanowires (SiONWs) by using an array of vertically aligned carbon nanotubes (CNTs). It starts with the fabrication of CNT array by plasma enhanced chemical vapor deposition (PECVD) on Si wafers, followed by growth of SiONWs. Herein, CNTs serve as a scaffold, which helps the dispersion of catalysts for SiONWs and also provides space for hydrogen which boosts the diffusion of Si atoms and hence formation of SiONWs. As the result, a three dimensional (3D) hybrid network of densely packed SiONWs and CNTs can be produced rapidly

  14. Heterostructures of germanium nanowires and germanium-silicon oxide nanotubes and growth mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J Q; Chim, W K [Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, 117576 (Singapore); Chiam, S Y; Wong, L M; Wang, S J, E-mail: elecwk@nus.edu.s [Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 3 Research Link, 117602 (Singapore)

    2009-10-21

    We report on a method to fabricate one-dimensional heterostructures of germanium nanowires (GeNWs) and germanium-silicon oxide nanotubes (GeSiO{sub x}NTs). The synthesis of the wire-tube heterostructures is carried out using a simple furnace set-up with germanium tetraiodide and germanium powders as growth precursors, gold-dotted silicon wafers as substrates and by controlling the temperature ramp rate/sequence of the growth precursors. Two types of wire-tube heterostructures resulting from distinct growth mechanisms are obtained. The type-1 heterostructure consists of a GeNW, grown via a gold-catalyzed vapour-liquid-solid process, at the lower end and a GeSiO{sub x}NT at the upper end. In contrast, the type-2 heterostructure is made up of a solid wire at the upper end and a hollow tube at the lower end. The solid wire portion of the type-2 heterostructure is formed through an oxide-assisted growth process.

  15. Heterostructures of germanium nanowires and germanium-silicon oxide nanotubes and growth mechanisms

    International Nuclear Information System (INIS)

    We report on a method to fabricate one-dimensional heterostructures of germanium nanowires (GeNWs) and germanium-silicon oxide nanotubes (GeSiOxNTs). The synthesis of the wire-tube heterostructures is carried out using a simple furnace set-up with germanium tetraiodide and germanium powders as growth precursors, gold-dotted silicon wafers as substrates and by controlling the temperature ramp rate/sequence of the growth precursors. Two types of wire-tube heterostructures resulting from distinct growth mechanisms are obtained. The type-1 heterostructure consists of a GeNW, grown via a gold-catalyzed vapour-liquid-solid process, at the lower end and a GeSiOxNT at the upper end. In contrast, the type-2 heterostructure is made up of a solid wire at the upper end and a hollow tube at the lower end. The solid wire portion of the type-2 heterostructure is formed through an oxide-assisted growth process.

  16. Growth mechanism and optical properties of ZnO nanotube by the hydrothermal method on Si substrates

    International Nuclear Information System (INIS)

    Well-faceted hexagonal ZnO nanotubes have been synthesized on Si substrates by a simple hydrothermal method and the subsequent aged process at relative low temperature without any catalysts or templates. The samples have been characterized by X-ray powder diffraction (XRD) and scanning electron microscopy (SEM) measurement. XRD pattern confirmed that the as-prepared ZnO was the single-phase wurtzite structure. SEM results showed that the samples were tubular textures, with the average lengths of 3-5 μm, inner diameters of 300-350 nm. The surface-related optical properties have been investigated by photoluminescence (PL) spectrum and Raman spectrum. The PL implied that fairly high surface state density existed in ZnO nanotubes. And the green emission in Raman measurement might be related to surface states. A possible growth mechanism on the formation of crystalline ZnO nanotubes has been presented.

  17. Carbon nanotube growth on a pointed bulk electrode using femtosecond laser nonlinear lithography

    Science.gov (United States)

    Nishiyama, Hiroaki; Iba, Tomohiro; Hirata, Yoshinori

    2013-11-01

    Carbon nanotube (CNT) bundles were synthesized on pointed bulk electrodes using femtosecond laser nonlinear lithography. A resist mask of 1.5 μm diameter was formed on a pointed bulk cathode by translating a laser focus three-dimensionally inside the spherical photoresist. Metal masks obtained by pattern transfers of the resists effectively suppressed CNT growth during plasma-enhanced chemical vapor deposition, resulting in synthesis of CNT bundles only at the electrode tip. Irradiation of field emission currents from the pointed cathode enables local melting and subsequent removal of anode materials. The damaged region size and the threshold voltage for this removal process were reduced by spatial limitations of emission sites using the metal mask.

  18. The rapid growth of 3 µm long titania nanotubes by anodization of titanium in a neutral electrochemical bath

    Science.gov (United States)

    Lockman, Zainovia; Ismail, Syahriza; Sreekantan, Srimala; Schmidt-Mende, L.; MacManus-Driscoll, J. L.

    2010-02-01

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na2SO4 plus 5 wt% NH4F with pH 7. At this pH, after 30 min of anodization, 3 µm length nanotubular titania arrays with top diameters of ~50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titania nanotubes in neutral pH systems was therefore successful due to the excess NH4F in the electrolyte which increases the chemical dissolution process at the metal/oxide interface. Since the pH of the electrolyte at the top part of the nanotubes is kept very high, the dissolution of the nanotubes at the surface is minimal. However, the amount is adequate to remove the initial barrier layer, forming a rather well-defined nanoporous structure. All anodized foils were weakly crystalline and the transformation to anatase phase was achieved by heat treatment at temperatures from 200 to 500 °C for 1 h in air. Annealing at temperatures above 500 °C induce rutile phase formation and annealing at higher temperatures accelerates the diffusion of Ti4+ leading to excessive growth and the nanotubular structure diminishes.

  19. The rapid growth of 3 μm long titania nanotubes by anodization of titanium in a neutral electrochemical bath

    International Nuclear Information System (INIS)

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na2SO4 plus 5 wt% NH4F with pH 7. At this pH, after 30 min of anodization, 3 μm length nanotubular titania arrays with top diameters of ∼50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titania nanotubes in neutral pH systems was therefore successful due to the excess NH4F in the electrolyte which increases the chemical dissolution process at the metal/oxide interface. Since the pH of the electrolyte at the top part of the nanotubes is kept very high, the dissolution of the nanotubes at the surface is minimal. However, the amount is adequate to remove the initial barrier layer, forming a rather well-defined nanoporous structure. All anodized foils were weakly crystalline and the transformation to anatase phase was achieved by heat treatment at temperatures from 200 to 500 deg. C for 1 h in air. Annealing at temperatures above 500 deg. C induce rutile phase formation and annealing at higher temperatures accelerates the diffusion of Ti4+ leading to excessive growth and the nanotubular structure diminishes.

  20. The rapid growth of 3 {mu}m long titania nanotubes by anodization of titanium in a neutral electrochemical bath

    Energy Technology Data Exchange (ETDEWEB)

    Lockman, Zainovia; Ismail, Syahriza; Sreekantan, Srimala [School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Schmidt-Mende, L [Munich Department of Physics and Centre for NanoScience (CeNS), Ludwig-Maximilians University, Amalienstrasse, 54, 80799 Munich (Germany); MacManus-Driscoll, J L, E-mail: zainovia@eng.usm.my [Department of Materials and Metallurgy, University of Cambridge, Cambridge CB2 3QZ (United Kingdom)

    2010-02-05

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na{sub 2}SO{sub 4} plus 5 wt% NH{sub 4}F with pH 7. At this pH, after 30 min of anodization, 3 {mu}m length nanotubular titania arrays with top diameters of {approx}50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titania nanotubes in neutral pH systems was therefore successful due to the excess NH{sub 4}F in the electrolyte which increases the chemical dissolution process at the metal/oxide interface. Since the pH of the electrolyte at the top part of the nanotubes is kept very high, the dissolution of the nanotubes at the surface is minimal. However, the amount is adequate to remove the initial barrier layer, forming a rather well-defined nanoporous structure. All anodized foils were weakly crystalline and the transformation to anatase phase was achieved by heat treatment at temperatures from 200 to 500 deg. C for 1 h in air. Annealing at temperatures above 500 deg. C induce rutile phase formation and annealing at higher temperatures accelerates the diffusion of Ti{sup 4+} leading to excessive growth and the nanotubular structure diminishes.

  1. The rapid growth of 3 microm long titania nanotubes by anodization of titanium in a neutral electrochemical bath.

    Science.gov (United States)

    Lockman, Zainovia; Ismail, Syahriza; Sreekantan, Srimala; Schmidt-Mende, L; Macmanus-Driscoll, J L

    2010-02-01

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na(2)SO(4) plus 5 wt% NH(4)F with pH 7. At this pH, after 30 min of anodization, 3 microm length nanotubular titania arrays with top diameters of approximately 50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titania nanotubes in neutral pH systems was therefore successful due to the excess NH(4)F in the electrolyte which increases the chemical dissolution process at the metal/oxide interface. Since the pH of the electrolyte at the top part of the nanotubes is kept very high, the dissolution of the nanotubes at the surface is minimal. However, the amount is adequate to remove the initial barrier layer, forming a rather well-defined nanoporous structure. All anodized foils were weakly crystalline and the transformation to anatase phase was achieved by heat treatment at temperatures from 200 to 500 degrees C for 1 h in air. Annealing at temperatures above 500 degrees C induce rutile phase formation and annealing at higher temperatures accelerates the diffusion of Ti(4+) leading to excessive growth and the nanotubular structure diminishes. PMID:20023309

  2. Carboxyl-modified single-walled carbon nanotubes negatively affect bacterial growth and denitrification activity

    Science.gov (United States)

    Zheng, Xiong; Su, Yinglong; Chen, Yinguang; Wan, Rui; Li, Mu; Wei, Yuanyuan; Huang, Haining

    2014-07-01

    Single-walled carbon nanotubes (SWNTs) have been used in a wide range of fields, and the surface modification via carboxyl functionalization can further improve their physicochemical properties. However, whether carboxyl-modified SWNT poses potential risks to microbial denitrification after its release into the environment remains unknown. Here we present the possible effects of carboxyl-modified SWNT on the growth and denitrification activity of Paracoccus denitrificans (a model denitrifying bacterium). It was found that carboxyl-modified SWNT were present both outside and inside the bacteria, and thus induced bacterial growth inhibition at the concentrations of 10 and 50 mg/L. After 24 h of exposure, the final nitrate concentration in the presence of 50 mg/L carboxyl-modified SWNT was 21-fold higher than that in its absence, indicating that nitrate reduction was substantially suppressed by carboxyl-modified SWNT. The transcriptional profiling revealed that carboxyl-modified SWNT led to the transcriptional activation of the genes encoding ribonucleotide reductase in response to DNA damage and also decreased the gene expressions involved in glucose metabolism and energy production, which was an important reason for bacterial growth inhibition. Moreover, carboxyl-modified SWNT caused the significant down-regulation and lower activity of nitrate reductase, which was consistent with the decreased efficiency of nitrate reduction.

  3. Initial stage of growth of single-walled carbon nanotubes: modeling and simulations

    International Nuclear Information System (INIS)

    Because there are different pathways to grow carbon nanotubes (CNTs), a common mechanism for the synthesis of CNTs does not likely exist. However, after carbon atoms are liberated from carbon-containing precursors by catalysts or from pure carbon systems, a common feature, the nucleation of CNTs by electron mediation, does appear. We studied this feature using the initial stage of growth of single wall CNTs (SWCNTs) by transition metal nano-particle catalysts as the working example. To circumvent the bottleneck due to the size and simulation time, we used a model in which the metal droplet is represented by a jellium, and the effect of collisions between the carbon atoms and atoms of the catalyst is captured by charge transfers between the jellium and the carbon. The simulations were performed using a transferable semi-empirical Hamiltonian to model the interactions between carbon atoms in jellium. We annealed different initial configurations of carbon clusters in jellium as well as in a vacuum. We found that in jellium, elongated open tubular structures, precursors to the growth of SWCNTs, are formed. Our model was also shown to be capable of mimicking the continued growth when more atoms were placed near the open end of the tubular structure. (paper)

  4. Effects of carbon nanotubes incorporation on the grain growth and properties of WC/Co nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Faming; Sun Jianfei; Shen Jun [School of Materials Science and Engineering, Harbin Inst. of Tech. (China)

    2005-07-01

    Carbon nanotubes (CNTs) combining unique mechanical and physical properties could offer a kind of nanosized reinforcements for composite materials. Incorporating of CNTs to develop advance engineering composites has become an interesting concept, but the cermets based CNTs composites have been less focused. WC-Co-CNTs nanocomposites were consolidated by spark plasma sintering (SPS) to investigate the effects of CNTs incorporation on the grain growth and mechanical properties of WC-Co nanocomposites. Experimental results show that CNTs could preserve their tubular structures in high temperature SPS process, some CNTs are surviving in the WC-Co fracture surfaces featured bridging and pulling out manner. The interaction between the CNTs and the matrix has a retardation effect of grain growth of WC, but CNTs additions could be resulted in an increase of carbon content in the binder phase that causes enhanced tendency of grain growth, either of which plays the dominated role depending on the CNTs content. The WC-10Co-0.5wt% CNTs nanocomposites possess superior hardness to toughness combinations, which hardness is about 15% and fracture toughness is about 40% higher than that of the pure nano-WC-10Co cermets consolidated under the same process. (orig.)

  5. Multi-Directional Growth of Aligned Carbon Nanotubes Over Catalyst Film Prepared by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Zhou Kai

    2010-01-01

    Full Text Available Abstract The structure of vertically aligned carbon nanotubes (CNTs severely depends on the properties of pre-prepared catalyst films. Aiming for the preparation of precisely controlled catalyst film, atomic layer deposition (ALD was employed to deposit uniform Fe2O3 film for the growth of CNT arrays on planar substrate surfaces as well as the curved ones. Iron acetylacetonate and ozone were introduced into the reactor alternately as precursors to realize the formation of catalyst films. By varying the deposition cycles, uniform and smooth Fe2O3 catalyst films with different thicknesses were obtained on Si/SiO2 substrate, which supported the growth of highly oriented few-walled CNT arrays. Utilizing the advantage of ALD process in coating non-planar surfaces, uniform catalyst films can also be successfully deposited onto quartz fibers. Aligned few-walled CNTs can be grafted on the quartz fibers, and they self-organized into a leaf-shaped structure due to the curved surface morphology. The growth of aligned CNTs on non-planar surfaces holds promise in constructing hierarchical CNT architectures in future.

  6. Growth process and mechanism of a multi-walled carbon nanotube nest deposited on a silicon nanoporous pillar array

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen, E-mail: gingerwfj@yahoo.com.cn [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, No. 36 Beihuan Road, Zhengzhou 450011 (China); Jian Lv; Yang Xiaohui [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, No. 36 Beihuan Road, Zhengzhou 450011 (China); Li Xinjian [Department of Physics and Laboratory of Material Physics, Zhengzhou University, Zhengzhou 450052 (China)

    2010-03-01

    A large scale nest array of multi-walled carbon nanotubes (NACNTs) was grown on silicon nanoporous pillar array (Si-NPA) by thermal chemical vapor deposition. Through observing its macro/micromorphology and structure, ascertaining the catalyst component and its locations at different growth time by hiring field emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM, and selected area electron diffraction, the growth process was deduced. Its thermal properties were also investigated by using a thermogravimetric analyzer. Our experiments demonstrated that the CNTs growth by means of root-growth mechanism at the initial growth stage, then a continuous growth process with its tip open is suggested, finally, a schematic growth model of NACNT/Si-NPA was presented.

  7. Contribution of radicals and ions in catalyzed growth of single-walled carbon nanotubes from low-temperature plasmas

    International Nuclear Information System (INIS)

    The growth kinetics of single-walled carbon nanotubes (SWCNTs) in a low-temperature, low-pressure reactive plasma is investigated using a multiscale numerical simulation, including the plasma sheath and surface diffusion modules. The plasma-related effects on the characteristics of SWCNT growth are studied. It is found that in the presence of reactive radicals in addition to energetic ions inside the plasma sheath area, the effective carbon flux, and the growth rate of SWCNT increase. It is shown that the concentration of atomic hydrogen and hydrocarbon radicals in the plasma plays an important role in the SWCNT growth. The effect of the effective carbon flux on the SWCNT growth rate is quantified. The dependence of the growth parameters on the substrate temperature is also investigated. The effects of the plasma sheath parameters on the growth parameters are different in low- and high-substrate temperature regimes. The optimum substrate temperature and applied DC bias are estimated to maximize the growth rate of the single-walled carbon nanotubes

  8. Contribution of radicals and ions in catalyzed growth of single-walled carbon nanotubes from low-temperature plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Marvi, Z. [Physics Department, Faculty of Science, Sahand University of Technology, 51335-1996 Tabriz (Iran, Islamic Republic of); Plasma Sources and Applications Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 Singapore (Singapore); Xu, S. [Plasma Sources and Applications Center, NIE, and Institute of Advanced Studies, Nanyang Technological University, 637616 Singapore (Singapore); Foroutan, G. [Physics Department, Faculty of Science, Sahand University of Technology, 51335-1996 Tabriz (Iran, Islamic Republic of); Ostrikov, K. [Institute for Future Environments and School of Chemistry, Physics, and Mechanical Engineering, Queensland University of Technology, Brisbane, QLD 4000 (Australia); Plasma Nanoscience Center Australia (PNCA), Manufacturing Flagship, CSIRO, P.O. Box 218, Lindfield, NSW 2070 (Australia); Plasma Nanoscience, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Institute for Superconducting and Electronic Materials (ISEM), University of Wollongong, NSW 2522 (Australia); School of Physics and Advanced Materials, University of Technology Sydney, Sydney, NSW 2006 (Australia)

    2015-01-15

    The growth kinetics of single-walled carbon nanotubes (SWCNTs) in a low-temperature, low-pressure reactive plasma is investigated using a multiscale numerical simulation, including the plasma sheath and surface diffusion modules. The plasma-related effects on the characteristics of SWCNT growth are studied. It is found that in the presence of reactive radicals in addition to energetic ions inside the plasma sheath area, the effective carbon flux, and the growth rate of SWCNT increase. It is shown that the concentration of atomic hydrogen and hydrocarbon radicals in the plasma plays an important role in the SWCNT growth. The effect of the effective carbon flux on the SWCNT growth rate is quantified. The dependence of the growth parameters on the substrate temperature is also investigated. The effects of the plasma sheath parameters on the growth parameters are different in low- and high-substrate temperature regimes. The optimum substrate temperature and applied DC bias are estimated to maximize the growth rate of the single-walled carbon nanotubes.

  9. CONTROLLED GROWTH OF CARBON NANOTUBES ON CONDUCTIVE METAL SUBSTRATES FOR ENERGY STORAGE APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Brown, P.; Engtrakul, C.

    2009-01-01

    The impressive mechanical and electronic properties of carbon nanotubes (CNTs) make them ideally suited for use in a variety of nanostructured devices, especially in the realm of energy production and storage. In particular, vertically-aligned CNT “forests” have been the focus of increasing investigation for use in supercapacitor electrodes and as hydrogen adsorption substrates. Vertically-aligned CNT growth was attempted on metal substrates by waterassisted chemical vapor deposition (CVD). CNT growth was catalyzed by iron-molybdenum (FeMo) nanoparticle catalysts synthesized by a colloidal method, which were then spin-coated onto Inconel® foils. The substrates were loaded into a custom-built CVD apparatus, where CNT growth was initiated by heating the substrates to 750 °C under the fl ow of He, H2, C2H4 and a controlled amount of water vapor. The resultant CNTs were characterized by a variety of methods including Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and the growth parameters were varied in an attempt to optimize the purity and growth yield of the CNTs. The surface area and hydrogen adsorption characteristics of the CNTs were quantifi ed by the Brunauer- Emmett-Teller (BET) and Sieverts methods, and their capacitance was measured via cyclic voltammetry. While vertically-aligned CNT growth could not be verifi ed, TEM and SEM analysis indicated that CNT growth was still obtained, resulting in multiwalled CNTs of a wide range in diameter along with some amorphous carbon impurities. These microscopy fi ndings were reinforced by Raman spectroscopy, which resulted in a G/D ratio ranging from 1.5 to 3 across different samples, suggestive of multiwalled CNTs. Changes in gas fl ow rates and water concentration during CNT growth were not found to have a discernable effect on the purity of the CNTs. The specifi c capacitance of a CNT/FeMo/Inconel® electrode was found to be 3.2 F/g, and the BET surface area of

  10. Chitin and carbon nanotube composites as biocompatible scaffolds for neuron growth

    Science.gov (United States)

    Singh, Nandita; Chen, Jinhu; Koziol, Krzysztof K.; Hallam, Keith R.; Janas, Dawid; Patil, Avinash J.; Strachan, Ally; G. Hanley, Jonathan; Rahatekar, Sameer S.

    2016-04-01

    The design of biocompatible implants for neuron repair/regeneration ideally requires high cell adhesion as well as good electrical conductivity. Here, we have shown that plasma-treated chitin carbon nanotube composite scaffolds show very good neuron adhesion as well as support of synaptic function of neurons. The addition of carbon nanotubes to a chitin biopolymer improved the electrical conductivity and the assisted oxygen plasma treatment introduced more oxygen species onto the chitin nanotube scaffold surface. Neuron viability experiments showed excellent neuron attachment onto plasma-treated chitin nanotube composite scaffolds. The support of synaptic function was evident on chitin/nanotube composites, as confirmed by PSD-95 staining. The biocompatible and electrically-conducting chitin nanotube composite scaffold prepared in this study can be used for in vitro tissue engineering of neurons and, potentially, as an implantable electrode for stimulation and repair of neurons.

  11. Growth, dispersion, and electronic devices of nitrogen-doped single-wall carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Oikonomou, Antonios [School of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Susi, Toma; Kauppinen, Esko I. [Nanomaterials Group, Department of Applied Physics, Aalto University School of Science, PO Box 15100, 00076 Aalto (Finland); Vijayaraghavan, Aravind [School of Computer Science, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom); Centre for Mesoscience and Nanotechnology, The University of Manchester, Oxford Road, Manchester M13 9PL (United Kingdom)

    2012-12-15

    This paper describes the complete processes from growth to electronic devices of nitrogen-doped single-wall carbon nanotubes (N-SWCNTs). The N-SWCNTs were synthesized using a floating catalyst chemical vapor deposition method. The dry-deposited N-SWCNT films were dispersed in N-methylpyrolidone followed by sonication and centrifugation steps to yield a stable dispersion of N-SWCNTs in solution. The length and diameter distribution as well as concentration of N-SWCNTs in solution were measured by atomic force microscopy and optical absorption spectroscopy, respectively. The N-SWCNTs were then assembled into electronic devices using bottom-up dielectrophoresis and characterized as field-effect transistors. Finally, the potential for application of N-SWCNTs in sensors is discussed. The three stages of N-doped SWCNT processing: (a) growth and collection on filter, (b) dispersion in NMP, and (c) dielectrophoretic assembly into transistor device. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  12. Growth dynamics of carbon-metal particles and nanotubes synthesized by CO2 laser vaporization

    Science.gov (United States)

    Kokai, F.; Takahashi, K.; Yudasaka, M.; Iijima, S.

    To study the growth of carbon-Co/Ni particles and single-wall carbon nanotubes (SWNTs) by 20 ms CO2 laser-pulse irradiation of a graphite-Co/Ni (1.2 at.%) target in an Ar gas atmosphere (600 Torr), we used emission imaging spectroscopy and shadowgraphy with a temporal resolution of 1.67 ms. Wavelength-selected emission images showed that C2 emission was strong in the region close to the target (within 2 cm), while for the same region the blackbody radiation from the large clusters or particles increased with increasing distance from the target. Shadowgraph images showed that the viscous flow of carbon and metal species formed a mushroom or a turbulent cloud spreading slowly into the Ar atmosphere, indicating that particles and SWNTs continued to grow as the ejected material cooled. In addition, emission imaging spectroscopy at 1200 °C showed that C2 and hot clusters and particles with higher emission intensities were distributed over much wider areas. We discuss the growth dynamics of the particles and SWNTs through the interaction of the ambient Ar with the carbon and metal species released from the target by the laser pulse.

  13. Laser printing of nanoparticle toner enables digital control of micropatterned carbon nanotube growth.

    Science.gov (United States)

    Polsen, Erik S; Stevens, Adam G; Hart, A John

    2013-05-01

    Commercialization of materials utilizing patterned carbon nanotube (CNT) forests, such as hierarchical composite structures, dry adhesives, and contact probe arrays, will require catalyst patterning techniques that do not rely on cleanroom photolithography. We demonstrate the large scale patterning of CNT growth catalyst via adaptation of a laser-based electrostatic printing process that uses magnetic ink character recognition (MICR) toner. The MICR toner contains iron oxide nanoparticles that serve as the catalyst for CNT growth, which are printed onto a flexible polymer (polyimide) and then transferred to a rigid substrate (silicon or alumina) under heat and mechanical pressure. Then, the substrate is processed for CNT growth under an atmospheric pressure chemical vapor deposition (CVD) recipe. This process enables digital control of patterned CNT growth via the laser intensity, which controls the CNT density; and via the grayscale level, which controls the pixelation of the image into arrays of micropillars. Moreover, virtually any pattern can be designed using standard software (e.g., MS Word, AutoCAD, etc.) and printed on demand. Using a standard office printer, we realize isolated CNT microstructures as small as 140 μm and isolated catalyst ″pixels″ as small as 70 μm (one grayscale dot) and determine that individual toner microparticles result in features of approximately 5-10 μm . We demonstrate that grayscale CNT patterns can function as dry adhesives and that large-area catalyst patterns can be printed directly onto metal foils or transferred to ceramic plates. Laser printing therefore shows promise to enable high-speed micropatterning of nanoparticle-containing thin films under ambient conditions, possibly for a wide variety of nanostructures by engineering of toners containing nanoparticles of desired composition, size, and shape. PMID:23438258

  14. Current understanding of the growth of carbon nanotubes in catalytic chemical vapour deposition

    OpenAIRE

    Jourdain, Vincent; Bichara, Christophe

    2013-01-01

    Due to its higher degree of control and its scalability, catalytic chemical vapour deposition is now the prevailing synthesis method of carbon nanotubes. Catalytic chemical vapour deposition implies the catalytic conversion of a gaseous precursor into a solid material at the surface of reactive particles or of a continuous catalyst film acting as a template for the growing material. Significant progress has been made in the field of nanotube synthesis by this method although nanotube samples ...

  15. Role of the Initial Formation of the Iron Nano-Particles in the Multi-Walled Carbon Nanotubes Growth Process

    Institute of Scientific and Technical Information of China (English)

    Leszek Stobinski; Hong-Ming Lin

    2004-01-01

    Careful preparation of the iron nano-particle catalyst for carbon nanotubes (CNTs) fabrication has crucial importance for initial growth of multi-wall carbon-nanotubes (MWCNTs). Thin iron layer was thermally deposited in a high vacuum onto the surface of the SiO2/Si wafer at about 300 K. The sample was heated up to 700℃ in a hydrogen atmosphere, and then the sample was heated once again at750℃ in ethylene atmosphere. After hydrogen treatment continuous Fe layer was changed into many well separated Fe nano-peaks. AFM, SEM and HR-TEM studies of deposited MWCNTs allow us to propose a growth mechanism for long, straight MWCNTs.

  16. Growth of Tall Vertical Carbon Nanotube Forests using Al-Fe Catalysts and Transfer to Flexible Substrates

    OpenAIRE

    Smith, Robinson; Brown, Frank; Chester, Ashley R.

    2016-01-01

    Carbon nanotubes (CNTs) have found plenty of applications in electronics, sensing, actuation, mechanical structures, etc. There is a growing demand to produce large scale arrays of CNTs that can satisfy the requirements of cost effective, quick and relatively simpler methods of growth. The other conflicting requirement is to produce very high quality of CNTs in very high densities and volumes. There has been considerable research that has gone into resolving the above mentioned issues. Here w...

  17. Supercapacitor electrodes by direct growth of multi-walled carbon nanotubes on Al: a study of performance versus layer growth evolution

    International Nuclear Information System (INIS)

    Supercapacitor electrodes were fabricated by direct growth of multi-walled carbon nanotubes (CNTs) on Al current collectors via a chemical vapor deposition process in the presence of a spin-coated Co-Mo catalyst. A detailed study of the dependence of the CNT layer structure and thickness on growth time set the basis for the assessment of supercapacitors assembled with the CNTs/Al electrodes. As the main features of the layer growth evolution, an increase in the population of finer CNTs and a shift from a random entanglement to a rough vertical alignment of nanotubes were noted with proceeding growth. The growth time influence on the performance of supercapacitors was in fact apparent. Particularly, the specific capacitance of CNTs/Al electrodes in 0.5 M K2SO4 aqueous electrolyte increased from 35 to 80 F g−1 as the CNT layer thickness varied from 20 to 60 μm, with a concurrent loss in rate capability (knee frequency from 1 kHz to 60 Hz). The latter was excellent in general, arguably due to both a fast ion transport through the interconnected CNT network and a negligible contribution of the active layer/current collector contact to the equivalent series resistance (0.15–0.22 mΩ g), a distinct advantage of the direct growth fabrication method. Overall, a relatively simple process of direct growth of CNTs on Al foils is shown to be an effective method to fabricate supercapacitor electrodes, notably in the absence of special measures and processing steps finalized to a tight control of nanotubes growth and organization

  18. Dynamic nanocrystal response and high temperature growth of carbon nanotube-ferroelectric hybrid nanostructure

    Science.gov (United States)

    Kumar, Ashok; Scott, J. F.; Katiyar, R. S.

    2013-12-01

    A long standing problem related to the capping of carbon nanotubes (CNT) by inorganic materials at high temperature has been solved. In situ dynamic response of Pb(Zr0.52Ti0.48)O3 (PZT) nanocrystals attached to the wings of the outer surface of PZT/CNT hybrid-nanostructure has been demonstrated under a constant-energy high-resolution transmission electron microscopy (HRTEM) e-beam. PZT nanocrystals revealed that the crystal orientations, positions, faces, and hopping states change with time. HRTEM study has been performed to investigate the microstructure of hybrid nanostructures and nanosize polycrystal trapped across the wings. Raman spectroscopy was utilized to investigate the local structures, defects, crystal qualities and temperature dependent growth and degradation of hybrid nanostructures. Raman spectra indicate that MWCNT and PZT/MWCNT/n-Si possess good quality of CNT before and after PZT deposition until 650 °C. The monoclinic Cc/Cm phase of PZT which is optimum in piezoelectric properties was prominent in the hybrid structure and should be useful for device applications. An unusual hexagonal faceting oscillation of the nano-crystal perimeter on a 10-30 s period is also observed.A long standing problem related to the capping of carbon nanotubes (CNT) by inorganic materials at high temperature has been solved. In situ dynamic response of Pb(Zr0.52Ti0.48)O3 (PZT) nanocrystals attached to the wings of the outer surface of PZT/CNT hybrid-nanostructure has been demonstrated under a constant-energy high-resolution transmission electron microscopy (HRTEM) e-beam. PZT nanocrystals revealed that the crystal orientations, positions, faces, and hopping states change with time. HRTEM study has been performed to investigate the microstructure of hybrid nanostructures and nanosize polycrystal trapped across the wings. Raman spectroscopy was utilized to investigate the local structures, defects, crystal qualities and temperature dependent growth and degradation of

  19. Low-temperature catalyst activator: mechanism of dense carbon nanotube forest growth studied using synchrotron radiation

    Directory of Open Access Journals (Sweden)

    Akito Takashima

    2014-07-01

    Full Text Available The mechanism of the one-order-of-magnitude increase in the density of vertically aligned carbon nanotubes (CNTs achieved by a recently developed thermal chemical vapor deposition process was studied using synchrotron radiation spectroscopic techniques. In the developed process, a Ti film is used as the underlayer for an Fe catalyst film. A characteristic point of this process is that C2H2 feeding for the catalyst starts at a low temperature of 450°C, whereas conventional feeding temperatures are ∼800°C. Photoemission spectroscopy using soft and hard X-rays revealed that the Ti underlayer reduced the initially oxidized Fe layer at 450°C. A photoemission intensity analysis also suggested that the oxidized Ti layer at 450°C behaved as a support for nanoparticle formation of the reduced Fe, which is required for dense CNT growth. In fact, a CNT growth experiment, where the catalyst chemical state was monitored in situ by X-ray absorption spectroscopy, showed that the reduced Fe yielded a CNT forest at 450°C. Contrarily, an Fe layer without the Ti underlayer did not yield such a CNT forest at 450°C. Photoemission electron microscopy showed that catalyst annealing at the conventional feeding temperature of 800°C caused excess catalyst agglomeration, which should lead to sparse CNTs. In conclusion, in the developed growth process, the low-temperature catalyst activation by the Ti underlayer before the excess Fe agglomeration realised the CNT densification.

  20. Carbon nanotubes: synthesis and functionalization

    OpenAIRE

    Andrews, Robert

    2007-01-01

    This thesis focuses on two of the major challenges of carbon nanotube (CNT) research: understanding the growth mechanism of nanotubes by chemical vapour deposition (CVD) and the positioning of nanotubes on surfaces. The mechanism of growth of single–walled nanotubes (SWNTs) has been studied in two ways. Firstly, a novel iron nanoparticle catalyst for the production of single–walled nanotubes was developed. CVD conditions were established that produced high quality tubes. These optimised C...

  1. Growth control of carbon nanotubes using by anodic aluminum oxide nano templates.

    Science.gov (United States)

    Park, Yong Seob; Choi, Won Seek; Yi, Junsin; Lee, Jaehyeong

    2014-05-01

    Anodic Aluminum Oxide (AAO) template prepared in acid electrolyte possess regular and highly anisotropic porous structure with pore diameter range from five to several hundred nanometers, and with a density of pores ranging from 10(9) to 10(11) cm(-2). AAO can be used as microfilters and templates for the growth of CNTs and metal or semiconductor nanowires. Varying anodizing conditions such as temperature, electrolyte, applied voltage, anodizing and widening time, one can control the diameter, the length, and the density of pores. In this work, we deposited Al thin film by radio frequency magnetron sputtering method to fabricate AAO nano template and synthesized multi-well carbon nanotubes on a glass substrate by microwave plasma-enhanced chemical vapor deposition (MPECVD). AAO nano-porous templates with various pore sizes and depths were introduced to control the dimension and density of CNT arrays. The AAO nano template was synthesize on glass by two-step anodization technique. The average diameter and interpore distance of AAO nano template are about 65 nm and 82 nm. The pore density and AAO nano template thickness are about 2.1 x 10(10) pores/cm2 and 1 microm, respectively. Aligned CNTs on the AAO nano template were synthesized by MPECVD at 650 degrees C with the Ni catalyst layer. The length and diameter of CNTs were grown 2 microm and 50 nm, respectively. PMID:24734654

  2. Catalytic growth of vertically aligned neutron sensitive 10Boron nitride nanotubes

    International Nuclear Information System (INIS)

    10Boron nitride nanotubes (10BNNTs) are a potential neutron sensing element in a solid-state neutron detector. The aligned 10BNNT can be used for its potential application without any further purification. Argon-supported thermal CVD is used to achieve vertically aligned 10BNNT with the help of nucleation sites produced in a thin layer of magnesium–iron alloy deposited at the top of Si substrate. FESEM shows vertically aligned 10BNNTs with ball-like catalytic tips at top. EDX reveals magnesium (Mg) contents in the tips that refer to catalytic growth of 10BNNT. HR-TEM shows tubular morphology of the synthesized 10BNNT with lattice fringes on its outer part having an interlayer spacing of ∼0.34 nm. XPS shows B 1 s and N 1 s peaks at 190.5 and 398 eV that correspond to hexagonal 10Boron nitride (10h-BN) nature of the synthesized 10BNNT, whereas the Mg kll auger peaks at ∼301 and ∼311 eV represents Mg contents in the sample. Raman spectrum has a peak at 1390 (cm−1) that corresponds to E2g mode of vibration in 10h-BN

  3. Effect of Iron and Cobalt Catalysts on The Growth of Carbon Nanotubes from Palm Oil Precursor

    International Nuclear Information System (INIS)

    Catalysts which are typically a transition metal is mandatory and plays an important role in the production of CNT. In this work, the effect of iron (Fe) and cobalt (Co) nitrate catalyst on the growth of carbon nanotubes (CNT) were systematically studied. Green bio-hydrocarbon precursor namely palm oil was used as a precursor. The synthesis was done using thermal chemical vapour deposition method at temperature of 750°C for 15 min synthesis time. The Fe and Co solution were spin-coated separately on silicon substrate at speed of 3000 rev.min-1. The CNT characteristics were analyzed using field emission scanning electron microscopy and micro-Raman spectroscopy. The experimental results revealed that CNT properties were strongly affected by the catalyst type. CNT catalyzed by Co yields large diameter, crooked tube and lower quality, whereas CNT produced by Fe catalyst results in the smallest diameter and reasonably good graphitization. As a conclusion, Fe was considered as the optimum catalyst for better CNT structure and crystallinity. This was due to efficient, uniform and stable Fe catalytic activity as compared to Co catalyst in producing CNT.

  4. Catalytic growth of vertically aligned neutron sensitive {sup 10}Boron nitride nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Pervaiz, E-mail: pervaizahmad@siswa.um.edu.my, E-mail: Pervaiz-pas@yahoo.com; Khandaker, Mayeen Uddin, E-mail: mu-khandaker@yahoo.com, E-mail: mu-khandaker@um.edu.my; Amin, Yusoff Mohd [University of Malaya, Department of Physics, Faculty of Science (Malaysia); Khan, Ghulamullah [University of Malaya, Department of Mechanical Engineering (Malaysia); Ramay, Shahid M. [King Saud University, Department of Physics and Astronomy, College of Science (Saudi Arabia); Mahmood, Asif [King Saud University, Department of Chemical Engineering, College of Engineering (Saudi Arabia); Amin, Muhammad [University of the Punjab, Department of Physics (Pakistan); Muhammad, Nawshad [Interdisciplinary Research Centre in Biomedical Materials (IRCBM) COMSATS Institute of Information Technology (Pakistan)

    2016-01-15

    {sup 10}Boron nitride nanotubes ({sup 10}BNNTs) are a potential neutron sensing element in a solid-state neutron detector. The aligned {sup 10}BNNT can be used for its potential application without any further purification. Argon-supported thermal CVD is used to achieve vertically aligned {sup 10}BNNT with the help of nucleation sites produced in a thin layer of magnesium–iron alloy deposited at the top of Si substrate. FESEM shows vertically aligned {sup 10}BNNTs with ball-like catalytic tips at top. EDX reveals magnesium (Mg) contents in the tips that refer to catalytic growth of {sup 10}BNNT. HR-TEM shows tubular morphology of the synthesized {sup 10}BNNT with lattice fringes on its outer part having an interlayer spacing of ∼0.34 nm. XPS shows B 1 s and N 1 s peaks at 190.5 and 398 eV that correspond to hexagonal {sup 10}Boron nitride ({sup 10}h-BN) nature of the synthesized {sup 10}BNNT, whereas the Mg kll auger peaks at ∼301 and ∼311 eV represents Mg contents in the sample. Raman spectrum has a peak at 1390 (cm{sup −1}) that corresponds to E{sub 2g} mode of vibration in {sup 10}h-BN.

  5. INTERACTION-MEDIATED GROWTH OF CARBON NANOTUBES ON ACICULAR SILICA-COATED α-Fe CATALYST BY CHEMICAL VAPOR DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    Qixiang Wang; Guoqing Ning; Fei Wei; Guohua Luo

    2003-01-01

    Multi-walled carbon nanotubes (MWNTs) with 20 nm outer diameter were prepared by chemical vapor deposition of ethylene using ultrafine surface-modified acicular α-Fe catalyst particles. The growth mechanism of MWNTs on the larger catalyst particles are attributed to the interaction between the Fe nanoparticles with the surface-modified silica layer. This interaction-mediated growth mechanism is illustrated by studying the electronic, atomic and crystal properties of surface-modified catalysts and MWNTs products by characterization with X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), thermal gravimetric analysis (TGA) and Raman spectra.

  6. In Situ TEM Observations on the Sulfur-Assisted Catalytic Growth of Single-Wall Carbon Nanotubes.

    Science.gov (United States)

    Zhang, Lili; Hou, Peng-Xiang; Li, Shisheng; Shi, Chao; Cong, Hong-Tao; Liu, Chang; Cheng, Hui-Ming

    2014-04-17

    The effect of sulfur on the catalytic nucleation and growth of single-wall carbon nanotubes (SWCNTs) from an iron catalyst was investigated in situ by transmission electron microscopy (TEM). The catalyst precursor of ferrocene and growth promoter of sulfur were selectively loaded inside of the hollow core of multiwall CNTs with open ends, which served as a nanoreactor powered by applying a voltage inside of the chamber of a TEM. It was found that a SWCNT nucleated and grew perpendicularly from a region of the catalyst nanoparticle surface, instead of the normal tangential growth that occurs with no sulfur addition. Our in situ TEM observation combined with CVD growth studies suggests that sulfur functions to promote the nucleation and growth of SWCNTs by forming inhomogeneous local active sites and modifying the interface bonding between catalysts and precipitated graphitic layers, so that carbon caps can be lifted off from the catalyst particle. PMID:26269989

  7. Chiral-Selective Growth of Single-Walled Carbon Nanotubes on Lattice-Mismatched Epitaxial Cobalt Nanoparticles

    DEFF Research Database (Denmark)

    He, Maoshuai; Jiang, Hua; Liu, Bilu; Fedotov, Pavel V.; Chernov, Alexander I.; Obraztsova, Elena D.; Cavalca, Filippo; Wagner, Jakob Birkedal; Hansen, Thomas Willum; Anoshkin, Ilya V.; Obraztsova, Ekaterina A; Belkin, Alexey V.; Sairanen, Emma; Nasibulin, Albert G.; Lehtonen, Juha; Kauppinen, Esko I.

    2013-01-01

    Controlling chirality in growth of single-walled carbon nanotubes (SWNTs) is important for exploiting their practical applications. For long it has been conceptually conceived that the structural control of SWNTs is potentially achievable by fabricating nanoparticle catalysts with proper structures...... on crystalline substrates via epitaxial growth techniques. Here, we have accomplished epitaxial formation of monometallic Co nanoparticles with well-defined crystal structure, and its use as a catalyst in the selective growth of SWNTs. Dynamics of Co nanoparticles formation and SWNT growth inside an...... atomic-resolution environmental transmission electron microscope at a low CO pressure was recorded. We achieved highly preferential growth of semiconducting SWNTs (~90%) with an exceptionally large population of (6, 5) tubes (53%) in an ambient CO atmosphere. Particularly, we also demonstrated high...

  8. Effects of a carbon nanotube-collagen coating on a titanium surface on osteoblast growth

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jung Eun, E-mail: pje312@naver.com; Park, Il-Song, E-mail: ilsong@jbnu.ac.kr; Neupane, Madhav Prasad; Bae, Tae-Sung; Lee, Min-Ho, E-mail: lmh@jbnu.ac.kr

    2014-02-15

    This study was performed to evaluate the effect of collagen-multi-walled carbon nanotubes (MWCNTs) composite coating deposited on titanium on osteoblast growth. Titanium samples coated with only collagen and MWCNTs were used as controls. Pure titanium was coated with collagen-MWCNTs composite coating with 5, 10 and 20 μg cm{sup −2} MWCNTs by dip coating method. Scanning probe microscopy, field emission scanning electron microscopy, transmission electron microscopy and Fourier transform infrared spectroscopy were used to ascertain the root mean squared roughness, structural and morphological features and, the interaction between the collagen and the MWCNTs, respectively. The biocompatibility of the collagen-MWCNTs composite coated Ti was assessed by MTT and ALP activity assays after culturing the cells for 2 and 5 days. The study reveals that root mean squared surface roughness of collagen-MWCNTs composite coated titanium is relatively higher than those of collagen and MWCNTs coated Ti. There is a strong interaction between the MWCNTs and the collagen, which is supported by the inferences made in FE-SEM and TEM studies and further confirmed by FT-IR spectra. Among all the specimens tested, cell proliferation is relatively higher on collagen-MWCNTs composite coated Ti specimen incorporated with 20 μg cm{sup −2} of MWCNTs (p < 0.05) after 5 days of cell culture. Cell proliferation studies confirm the existence of a strong dependence of the extent of cell proliferation on the amount of MWCNTs incorporated in the composite; the higher the amount of MWCNTs, the greater the extent of cell proliferation. The higher surface roughness of collagen-MWCNTs composite coated Ti specimens is considered responsible for the relatively higher extent of cell proliferation. The MWCNTs incorporated in the composite could have also contributed to the cell viability and growth.

  9. Vacuum Electron-Beam Evaporation of Fe Nanocrystals on Si3N4 Buffer Layer for carbon Nanotube Growth

    Institute of Scientific and Technical Information of China (English)

    万青; 王太宏; 林成鲁

    2003-01-01

    Vacuum electron-beam evaporated iron nanocrystal is used for the growth of carbon nanotubes. Atomic force microscopy and Raman scattering studies reveal the formation of beta-iron silicide islands on bare silicon substrate after annealing at 700°C in N2 ambient. In order to eliminate the influence of iron-silicon interaction, Si3N4 buffer layer with the thickness of 80 nm is used. This technical route prevents effectively the formation of iron silicide and improves the quality of the iron nanocrystals. Using these iron nanocrystals with high density (about 7 × 1010/cm2) as catalyst, high-density multiwall carbon nanotubes are synthesized on Si3N4/Si substrate.

  10. Current Progress in the Chemical Vapor Deposition of Type-Selected Horizontally Aligned Single-Walled Carbon Nanotubes.

    Science.gov (United States)

    Ibrahim, Imad; Gemming, Thomas; Weber, Walter M; Mikolajick, Thomas; Liu, Zhongfan; Rümmeli, Mark H

    2016-08-23

    Exciting electrical properties of single-walled carbon nanotubes show promise as a future class of electronic materials, yet the manufacturing challenges remain significant. The key challenges are to determine fabrication approaches for complex and flexible arrangements of nanotube devices that are reliable, rapid, and reproducible. Realizing regular array structures is an important step toward this goal. Considerable efforts have and are being made in this vein, although the progress to date is somewhat modest. However, there are reasons to be optimistic. Positive steps of being able to control not only the spatial location and diameter of the tubes but also their electronic type (chiral control) are being made. Two primary approaches are being exploited to address the challenges. Tube deposition techniques, on the one hand, and direct growth of the desired tube at the target location are being explored. While this review covers both approaches, the emphasis is on recent developments in the direct fabrication of type-selected horizontally aligned single-walled carbon nanotubes by chemical vapor deposition. PMID:27427780

  11. Growth and functionalization of carbon nanotubes on quartz filter for environmental applications

    OpenAIRE

    Amade, Roger; Hussain, Shahzad; Ocaña, Ismael R.; Bertrán Serra, Enric

    2014-01-01

    Background: Air pollution has become an important issue worldwide due to its adverse health effects. Among the different air contaminants, volatile organic compounds (VOCs) are liquids or solids with a high vapor pressure at room temperature that are extremely dangerous for human health. Removal of these compounds can be achieved using nanomaterials with tailored properties such as carbon nanotubes. Methods: Vertically-aligned multiwall carbon nanotubes (CNTs) were successfully grown on quart...

  12. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting

    Science.gov (United States)

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-01

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media.

  13. Novel growth method of carbon nanotubes using catalyst-support layer developed by alumina grit blasting.

    Science.gov (United States)

    Watanabe, Hiromichi; Ishii, Juntaro; Ota, Keishin

    2016-08-19

    We propose an efficient method of growing carbon nanotube (CNT) arrays on a variety of metals, alloys, and carbon materials using chemical vapor deposition (CVD) assisted by a simple surface treatment of the materials. The main feature of this method is the application of grit blasting with fine alumina particles to the development of a catalyst-support layer required for the growth of CNTs on various conductive materials, including ultra-hard metals such as tungsten. Auger electron spectroscopy shows that grit blasting can form a non-continuous layer where alumina nanoparticles are embedded as residues in the blasting media left on the treated surfaces. This work reveals that such a non-continuous alumina layer can behave as the catalyst-support layer, which is generally prepared by sputter or a vacuum evaporation coating process that considerably restricts the practical applications of CNTs. We have attempted to grow CNTs on grit-blasted substrates of eighteen conventionally used conductive materials using CVD together with a floating iron catalyst. The proposed method was successful in growing multi-walled CNT arrays on the grit-blasted surfaces of all the examined materials, demonstrating its versatility. Furthermore, we found that the group IV metal oxide films thermally grown on the as-received substrates can support the catalytic activity of iron nanoparticles in the CVD process just as well as the alumina film developed by grit blasting. Spectral emissivity of the CNT arrays in the visible and infrared wavelength ranges has been determined to assess the applicability of the CNT arrays as a black coating media. PMID:27389659

  14. Investigation of growth mechanism of nano-scaled cadmium sulfide within titanium dioxide nanotubes via solution deposition method

    International Nuclear Information System (INIS)

    The growth mechanism of cadmium sulfide nanomaterials, including nanodots, nanotubes, and nanorods, within titanium dioxide nanotubes via solution deposition method was investigated. The materials obtained were characterized by field emission scanning electron microscopy, UV-visible spectroscopic and photoelectrochemical techniques. The results revealed that: (1) the concentration of ions introduced into the tubes influenced the morphology of the cadmium sulfide obtained: at low concentration, defects on the tube walls induce heterogeneous nucleation hence cadmium sulfide was observed attaching to the walls; at high concentration, particle aggregation occur due to negligible repulsion between the nuclei resulting in sedimentation of cadmium sulfide particles; (2) cadmium sulfide prefers to grow on seeds formed initially, so that nanodots or nanotubes and nanorods were formed at low and at high concentrations respectively; (3) the order of ions introduction also influences the morphology of cadmium sulfide formed within the tubes, (4) the photoresponse of the obtained nanomaterials was extended efficiently; and (5) the photoelectrochemical properties were strongly influenced by both the amount and the morphology of the deposited CdS sensitizer.

  15. Nanocomposite scaffold for chondrocyte growth and cartilage tissue engineering: effects of carbon nanotube surface functionalization.

    Science.gov (United States)

    Chahine, Nadeen O; Collette, Nicole M; Thomas, Cynthia B; Genetos, Damian C; Loots, Gabriela G

    2014-09-01

    The goal of this study was to assess the long-term biocompatibility of single-wall carbon nanotubes (SWNTs) for tissue engineering of articular cartilage. We hypothesized that SWNT nanocomposite scaffolds in cartilage tissue engineering can provide an improved molecular-sized substrate for stimulation of chondrocyte growth, as well as structural reinforcement of the scaffold's mechanical properties. The effect of SWNT surface functionalization (-COOH or -PEG) on chondrocyte viability and biochemical matrix deposition was examined in two-dimensional cultures, in three-dimensional (3D) pellet cultures, and in a 3D nanocomposite scaffold consisting of hydrogels+SWNTs. Outcome measures included cell viability, histological and SEM evaluation, GAG biochemical content, compressive and tensile biomechanical properties, and gene expression quantification, including extracellular matrix (ECM) markers aggrecan (Agc), collagen-1 (Col1a1), collagen-2 (Col2a1), collagen-10 (Col10a1), surface adhesion proteins fibronectin (Fn), CD44 antigen (CD44), and tumor marker (Tp53). Our findings indicate that chondrocytes tolerate functionalized SWNTs well, with minimal toxicity of cells in 3D culture systems (pellet and nanocomposite constructs). Both SWNT-PEG and SWNT-COOH groups increased the GAG content in nanocomposites relative to control. The compressive biomechanical properties of cell-laden SWNT-COOH nanocomposites were significantly elevated relative to control. Increases in the tensile modulus and ultimate stress were observed, indicative of a tensile reinforcement of the nanocomposite scaffolds. Surface coating of SWNTs with -COOH also resulted in increased Col2a1 and Fn gene expression throughout the culture in nanocomposite constructs, indicative of increased chondrocyte metabolic activity. In contrast, surface coating of SWNTs with a neutral -PEG moiety had no significant effect on Col2a1 or Fn gene expression, suggesting that the charged nature of the -COOH surface

  16. Controlled growth, characterization and thermodynamic behavior of bismuth–tin nanostructures sheathed in carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Namjo, E-mail: njjeong@kier.re.kr [Energy Materials Convergence Research Department, Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of); Jeju Global Research Center, Korea Institute of Energy Research, 200, Haemajihaean-ro, Gujwa-eup, Jeju Special Self-Governing Province 695-971 (Korea, Republic of); Hwang, Kyo Sik; Yang, SeungCheol [Jeju Global Research Center, Korea Institute of Energy Research, 200, Haemajihaean-ro, Gujwa-eup, Jeju Special Self-Governing Province 695-971 (Korea, Republic of); Lee, Soon-pung [Energy Materials Convergence Research Department, Korea Institute of Energy Research, 71-2, Jang-dong, Yuseong-gu, Daejeon 305-343 (Korea, Republic of)

    2014-03-01

    We report the controlled synthesis of bismuth–tin (Bi–Sn) nanostructures sheathed in graphitic shells that resemble carbon nanotubes (CNTs). Our approach is based on a simple catalytic chemical vapor deposition over a mixture of Bi{sub 2}O{sub 3} and SnO{sub 2} supplied as starting materials. Shape control of the nanostructures strongly relies on the weight ratio of Bi{sub 2}O{sub 3} and SnO{sub 2}. Sheathed nanoparticles and nanorods are formed at SnO{sub 2} to Bi{sub 2}O{sub 3} weight ratios of less than 4:1. They are composed of two separate crystals: rhombohedral Bi and tetragonal Sn{sub 19}Bi crystals. On the other hand, the sheathed nanowires are formed at SnO{sub 2} to Bi{sub 2}O{sub 3} weight ratios above 4:1. The nanowires have only tetragonal Sn{sub 19}Bi structure with a diameter of approximately 100 nm. Elementary analyses support the core/shell heterostructure of the resulting products. A favorable temperature for the Sn-rich Sn{sub 19}Bi nanowires is in the range of 700–800 °C, more specifically around 750 °C. Thermodynamic analysis reveals that the CNTs play a significant role in the protection of the Bi–Sn nanostructures during phase transition by temperature change. This simple and reproducible method may be extended to the fabrication of similar binary or ternary nanostructures. - Highlights: • Controlled growth of Bi–Sn nanostructures sheathed in CNTs relies on MSnO{sub 2}/MBi{sub 2}O{sub 3}. • Growth mechanism is based on catalytic reaction of C{sub 2}H{sub 2} over an oxide mixture. • Nanoparticles and nanorods consist of rhombohedral Bi and tetragonal Sn{sub 19}Bi. • A favorable temperature for the Sn{sub 19}Bi nanowires is in the range of 700–800 °C. • CNT acts as a protective barrier during phase change of the Bi–Sn nanostructures.

  17. Post-CMOS wafer level growth of carbon nanotubes for low-cost microsensors-a proof of concept

    International Nuclear Information System (INIS)

    Here we demonstrate a novel technique to grow carbon nanotubes (CNTs) on addressable localized areas, at wafer level, on a fully processed CMOS substrate. The CNTs were grown using tungsten micro-heaters (local growth technique) at elevated temperature on wafer scale by connecting adjacent micro-heaters through metal tracks in the scribe lane. The electrical and optical characterization show that the CNTs are identical and reproducible. We believe this wafer level integration of CNTs with CMOS circuitry enables the low-cost mass production of CNT sensors, such as chemical sensors.

  18. CVD growth of carbon nanotubes on thin-film Ni20Ti35N45 alloy catalyst

    Science.gov (United States)

    Gromov, D. G.; Pavlov, A. A.; Skorik, S. N.; Trifonov, A. Yu.; Shulyat'ev, A. S.

    2015-12-01

    The possibility of forming carbon nanotube (CNT) arrays on a Ni-Ti-N catalytic alloy with low nickel content by chemical vapor deposition (CVD) is demonstrated. Adding nitrogen to the Ni-Ti alloy composition favors the formation of TiN compound and segregation of Ni on the surface, where it produces a catalytic effect on the CNT growth. It is found that, using CVD from acetylene gas phase at a substrate temperature of 650°C, a CNT array of 9-µm height can be grown for 2 min.

  19. Influence of oxygen on the growth of carbon nanotubes by the SiC surface decomposition method

    International Nuclear Information System (INIS)

    The influence of oxygen on the development of carbon nanotubes (CNTs) during the annealing process of the surface decomposition method on SiC(000-1) surfaces was investigated. In the case of annealing a SiC substrate under ultra-high vacuum conditions, carbon nanofibers (CNFs) form between the CNT layer and the substrate. However, CNTs form without CNFs by annealing the substrate in an oxygen atmosphere. The mean length of CNTs is longer than those formed without an oxygen atmosphere. From cross-sectional transmission electron microscopy images, it was found that oxygen plays an important role in CNT growth by the surface composition method.

  20. Growth of carbon nanotube field emitters on single strand carbon fiber: a linear electron source

    International Nuclear Information System (INIS)

    The multi-stage effect has been revisited through growing carbon nanotube field emitters on single strand carbon fiber with a thickness of 11 μm. A prepared linear electron source exhibits a turn-on field as low as 0.4 V μm-1 and an extremely high field enhancement factor of 19 300, when compared with those results from reference nanotube emitters grown on flat silicone wafer; 3.0 V μm-1 and 2500, respectively. In addition, we introduce a novel method to grow nanotubes uniformly around the circumference of carbon fibers by using direct resistive heating on the continuously feeding carbon threads. These results open up not only a new path for synthesizing nanocomposites, but also offer an excellent linear electron source for special applications such as backlight units for liquid crystal displays and multi-array x-ray sources.

  1. Direct growth of carbon nanotubes on metal surfaces without an external catalyst and nanocomposite production

    Science.gov (United States)

    Baddour, Carole Emilie

    The research work presented in this thesis deals with carbon nanotubes (CNTs), an allotrope of carbon with a cylindrical structure consisting of a rolled up graphene sheet. CNTs are generally produced by the decomposition of a carbon source in the presence of a metal catalyst at elevated temperatures. CNTs have outstanding properties and have attracted immense attention in both industry and academia. However, the development of commercial applications of CNTs is slow due to limitations in the large scale production of CNTs and their high cost. Another limitation is the interface resistance generated by external catalyst nanoparticles used in traditional CNT growth methods. In order to eliminate the interface resistance and simultaneously provide CNT growth over large surfaces and varying geometries, a method called direct CNT growth is established to enable the extraction of the CNT structure directly from the metal surface. The novel process for the production of CNTs developed in the present thesis is applied to planar surfaces and spherical particles made of stainless steel (SS) 304. The method is based on the establishment of nanometer scale structures at the surface which act as catalyst nanoparticles while at the same time being integral parts of the material. It uses first a mild chemical etching of the surface, followed by a specific heat treatment performed using either standard chemical vapour deposition (standard-CVD) or fluidized bed CVD (FBCVD) techniques. Acetylene (C2H2) is used as the carbon source and SS 304 acts as both the catalyst and the substrate in the growth process. This direct CNT growth with this substrate dual function eliminates the need of external catalyst nanoparticles deposited onto the surface. The active sites necessary for CNT growth are tailored on the SS itself by means of the two-step treatment process. MWNTs of 20-70 nm in diameter are produced. The CNTs are characterized by Raman Spectroscopy, Thermogravimetric analysis (TGA

  2. In-situ localized carbon nanotube growth inside partially sealed enclosures

    Directory of Open Access Journals (Sweden)

    Y. van de Burgt

    2013-09-01

    Full Text Available Carbon nanotube assemblies can be used for specific applications such as sensors and filters. We present a method and proof-of-concept to directly grow vertically-aligned carbon nanotube structures within sealed enclosures by means of a feedback-controlled laser-assisted chemical vapor deposition technique. The process is compatible with a variety of micro-fabrication processes and bypasses the need for post-process packaging. Our experiments raise interesting observations related to the gas diffusion dynamics in micro-scale and sub-micron enclosures.

  3. The role of catalytic nanoparticle pretreatment on the growth of vertically aligned carbon nanotubes by hot-filament chemical vapor deposition

    International Nuclear Information System (INIS)

    The effect of atomic hydrogen assisted pre-treatment on the growth of vertically aligned carbon nanotubes using hot-filament chemical vapor deposition was investigated. Iron nanoparticle catalysts were formed on an aluminum oxide support layer by spraying of iron chloride salt solutions as catalyst precursor. It is found that pre-treatment time and process temperature tune the density as well as the shape and the structure of the grown carbon nanotubes. An optimum pre-treatment time can be found for the growth of long and well aligned carbon nanotubes, densely packed to each other. To provide insight on this behavior, the iron catalytic nanoparticles formed after the atomic hydrogen assisted pre-treatment were analyzed by atomic force microscopy. The relations between the size and the density of the as-formed catalyst and the as-grown carbon nanotube's structure and density are discussed. - Highlights: • Effect of the atomic hydrogen assisted pre-treatment on the growth of VACNT using hot-filament CVD. • Pre-treatment time and process temperature tune the density, the shape and the structure of the CNTs. • Correlations between size and density of the as-formed catalyst and the CNT’s structure and density. • Carbon nanotubes synthesized at low temperature down to 500 °C using spayed iron chloride salts. • Density of the CNT carpet adjusted by catalytic nanoparticle engineering

  4. Gas dynamic and time resolved imaging studies of single-wall carbon nanotubes growth in the laser ablation process

    Science.gov (United States)

    Sen, Rahul; Suzuki, S.; Kataura, H.; Achiba, Y.

    2001-10-01

    Single-wall carbon nanotubes (SWNTs) were synthesized by laser ablation of Ni-Co-graphite composite targets at 1200 °C under flowing argon. The effects of the temperature gradient near the target and the gas flow rate on the diameter distribution of SWNTs were studied in order to understand their growth dynamics. The diameter distribution of the SWNTs, analyzed by Raman spectroscopy, was dependent on the gas flow rate when there was a temperature gradient around the target. Time resolved scattering images from the ablated species at different flow rates indicated that velocities of backward moving species increased with increasing flow rate. These findings are used to estimate the time required for nucleation and the growth of SWNTs.

  5. Growth Mechanism of a Hybrid Structure Consisting of a Graphite Layer on Top of Vertical Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Nicolo' Chiodarelli

    2012-01-01

    Full Text Available Graphene and carbon nanotubes (CNTs are both carbon-based materials with remarkable optical and electronic properties which, among others, may find applications as transparent electrodes or as interconnects in microchips, respectively. This work reports on the formation of a hybrid structure composed of a graphitic carbon layer on top of vertical CNT in a single deposition process. The mechanism of deposition is explained according to the thickness of catalyst used and the atypical growth conditions. Key factors dictating the hybrid growth are the film thickness and the time dynamic through which the catalyst film dewets and transforms into nanoparticles. The results support the similarities between chemical vapor deposition processes for graphene, graphite, and CNT.

  6. Synthesis of carbon nanotubes and nanotube forests on copper catalyst

    International Nuclear Information System (INIS)

    The growth of carbon nanotubes on bulk copper is studied. We show for the first time, that super growth chemical vapor deposition method can be successfully applied for preparation of nanotubes on copper catalyst, and the presence of hydrogen is necessary. Next, different methods of copper surface activation are studied, to improve catalyst efficiency. Among them, applied for the first time for copper catalyst in nanotubes synthesis, sulfuric acid activation is the most promising. Among tested samples the surface modified for 10 min is the most active, causing the growth of vertically aligned carbon nanotube forests. Obtained results have potential importance in application of nanotubes and copper in electronic chips and nanodevices. (paper)

  7. Growth of metal-catalyst-free nitrogen-doped metallic single-wall carbon nanotubes.

    Science.gov (United States)

    Li, Jin-Cheng; Hou, Peng-Xiang; Zhang, Lili; Liu, Chang; Cheng, Hui-Ming

    2014-10-21

    Nitrogen-doped (N-doped) single-wall carbon nanotubes (SWCNTs) were synthesized by chemical vapor deposition using SiOx nanoparticles as a catalyst and ethylenediamine as the source of both carbon and nitrogen. The N-doped SWCNTs have a mean diameter of 1.1 nm and a narrow diameter range, with 92% of them having diameters from 0.7 to 1.4 nm. Multi-wavelength laser Raman spectra and temperature-dependent electrical resistance indicate that the SWCNT sample is enriched with metallic nanotubes. These N-doped SWCNTs showed excellent electrocatalytic activity for the oxygen reduction reaction and highly selective and sensitive sensing ability for dopamine detection. PMID:25189467

  8. Localized CVD growth of oriented and individual carbon nanotubes from nanoscaled dots prepared by lithographic sequences

    OpenAIRE

    Vigolo, Bridgite; Cojocaru, Costel Sorin; Faerber, Jaques; Arabski, J.; Gangloff, Laurent; Legagneux, Pierre; Lezec, Henry; Le Normand, Francois

    2008-01-01

    International audience Using a combination of top-down lithographic techniques, isolated, individual and oriented multi-wall carbon nanotubes (MWNTs) were grown on nickel or iron nanoscaled dots. In the first step of the process, micron-sized catalytic metallic dots (either iron or nickel) were prepared using UV lithography. MWNTs were then synthesized from these catalysts using a direct current plasma-assistance and hot-filament-enhanced chemical vapor deposition (CVD) reactor. Samples we...

  9. Growth of Aligned Carbon Nanotubes through Microwave Plasma Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    王升高; 汪建华; 马志斌; 王传新; 满卫东

    2005-01-01

    Aligned carbon nanotubes (CNTs) were synthesized on glass by microwave plasma chemical vapor deposition (MWPCVD) with a mixture of methane and hydrogen gases at the low temperature of 550 ℃. The experimental results show that both the self-bias potential and the density of the catalyst particles are responsible for the alignment of CNTs. When the catalyst particle density is high enough, strong interactions among the CNTs can inhibit CNTs from growing randomly and result in parallel alignment.

  10. From single to multiple TiO{sub 2} nanotubes layers: Analysis of the parameters which influence the growth

    Energy Technology Data Exchange (ETDEWEB)

    Scaramuzzo, Francesca A., E-mail: francesca.scaramuzzo@uniroma1.it; Pasquali, Mauro; Mura, Francesco; Dell’Era, Alessandro [Department of Basic and Applied Sciences for Engineering, Sapienza University of Rome, Via A. Scarpa, 14/16, 00161 Rome (Italy)

    2015-06-23

    Highly-ordered vertically oriented TiO{sub 2} nanotube arrays (TiO{sub 2} NTs) are widely exploited in many different fields such as catalysis, electronics and biomedicine. TiO{sub 2} NTs can be synthetized by a number of methods; however, the synthesis via anodization in a fluoride-based electrolyte, proposed for the first time in 2001, has been proved to be the procedure which offers the best control over the nanotube dimensions. In literature, four generations of TiO{sub 2} NTs obtained with different types of anodization baths have been reported, each bath giving rise to TiO{sub 2} NTs with specific morphological features. In this work, we performed the growth of third generation TiO{sub 2} NTs by varying different parameters (i.e. voltage, temperature, anodization time, bath composition) and systematically analyzed their influence on NTs morphology. A deep knowledge of the effect of each parameter allowed their suitable combination in order to obtain double and triple NTs layers with different length and aspect ratio. The proposed method can be applied to synthetize multiple layers with predictable and well-defined features.

  11. From single to multiple TiO2 nanotubes layers: Analysis of the parameters which influence the growth

    International Nuclear Information System (INIS)

    Highly-ordered vertically oriented TiO2 nanotube arrays (TiO2 NTs) are widely exploited in many different fields such as catalysis, electronics and biomedicine. TiO2 NTs can be synthetized by a number of methods; however, the synthesis via anodization in a fluoride-based electrolyte, proposed for the first time in 2001, has been proved to be the procedure which offers the best control over the nanotube dimensions. In literature, four generations of TiO2 NTs obtained with different types of anodization baths have been reported, each bath giving rise to TiO2 NTs with specific morphological features. In this work, we performed the growth of third generation TiO2 NTs by varying different parameters (i.e. voltage, temperature, anodization time, bath composition) and systematically analyzed their influence on NTs morphology. A deep knowledge of the effect of each parameter allowed their suitable combination in order to obtain double and triple NTs layers with different length and aspect ratio. The proposed method can be applied to synthetize multiple layers with predictable and well-defined features

  12. Influence of growth time on field emission properties from carbon nanotubes deposited on arrayed nanoporous silicon pillars

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Weifen, E-mail: gingerwfj@yahoo.com.cn [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China); Hao Haoshan [Department of Mathematical and Physical Sciences, Henan Institute of Engineering, Zhengzhou 451191 (China); Wang Yusheng; Xu Lei; Zhang Tianjie [Department of Mathematics and Information Science, North China Institute of Water Conservancy and Hydroelectric Power, Zhengzhou 450011 (China)

    2011-05-15

    We investigated the influence of growth time on field emission properties of multi-walled carbon nanotubes deposited on silicon nanoporous pillar array (MWCNTs/Si-NPA), which were fabricated by thermal chemical vapour deposition at 800 deg. C for 5, 15 and 25 min respectively, to better understand the origins of good field emission properties. The results showed that the MWCNTs/Si-NPA grown for 15 min had the highest field emission efficiency of the three types of samples. Morphologies of the products were examined by field-emission scanning electron microscope, and the excellent field emission performance was attributed not only to the formation of a nest array of multi-walled carbon nanotubes, which would largely reduce the electrostatic shielding among the emitters and resulted in a great enhancement factor, but also to the medium MWCNTs density films, there was an ideal compromise between the emitter density and the intertube distance, which also could effectively avoid electrostatic shielding effects, along with a high emitter density.

  13. A Comparative Study of Three Different Chemical Vapor Deposition Techniques of Carbon Nanotube Growth on Diamond Films

    Directory of Open Access Journals (Sweden)

    Betty T. Quinton

    2013-01-01

    Full Text Available This paper compares between the methods of growing carbon nanotubes (CNTs on diamond substrates and evaluates the quality of the CNTs and the interfacial strength. One potential application for these materials is a heat sink/spreader for high-power electronic devices. The CNTs and diamond substrates have a significantly higher specific thermal conductivity than traditional heat sink/spreader materials making them good replacement candidates. Only limited research has been performed on these CNT/diamond structures and their suitability of different growth methods. This study investigates three potential chemical vapor deposition (CVD techniques for growing CNTs on diamond: thermal CVD (T-CVD, microwave plasma-enhanced CVD (MPE-CVD, and floating catalyst thermal CVD (FCT-CVD. Scanning electron microscopy (SEM and high-resolution transmission electron microscopy (TEM were used to analyze the morphology and topology of the CNTs. Raman spectroscopy was used to assess the quality of the CNTs by determining the ID/IG peak intensity ratios. Additionally, the CNT/diamond samples were sonicated for qualitative comparisons of the durability of the CNT forests. T-CVD provided the largest diameter tubes, with catalysts residing mainly at the CNT/diamond interface. The MPE-CVD process yielded non uniform defective CNTs, and FCT-CVD resulted in the smallest diameter CNTs with catalyst particles imbedded throughout the length of the nanotubes.

  14. Stepwise growth of surface-grafted DNA nanotubes visualized at the single-molecule level

    Science.gov (United States)

    Hariri, Amani A.; Hamblin, Graham D.; Gidi, Yasser; Sleiman, Hanadi F.; Cosa, Gonzalo

    2015-04-01

    DNA nanotubes offer a high aspect ratio and rigidity, attractive attributes for the controlled assembly of hierarchically complex linear arrays. It is highly desirable to control the positioning of rungs along the backbone of the nanotubes, minimize the polydispersity in their manufacture and reduce the building costs. We report here a solid-phase synthesis methodology in which, through a cyclic scheme starting from a ‘foundation rung’ specifically bound to the surface, distinct rungs can be incorporated in a predetermined manner. Each rung is orthogonally addressable. Using fluorescently tagged rungs, single-molecule fluorescence studies demonstrated the robustness and structural fidelity of the constructs and confirmed the incorporation of the rungs in quantitative yield (>95%) at each step of the cycle. Prototype structures that consisted of up to 20 repeat units, about 450 nm in contour length, were constructed. Combined, the solid-phase synthesis strategy described and its visualization through single-molecule spectroscopy show good promise for the production of custom-made DNA nanotubes.

  15. A phenomenological model for selective growth of semiconducting single-walled carbon nanotubes based on catalyst deactivation.

    Science.gov (United States)

    Sakurai, Shunsuke; Yamada, Maho; Sakurai, Hiroko; Sekiguchi, Atsuko; Futaba, Don N; Hata, Kenji

    2016-01-14

    A method for the selective semiconducting single-walled carbon nanotube (SWCNT) growth over a continuous range from 67% to 98%, within the diameter range of 0.8-1.2 nm, by the use of a "catalyst conditioning process" prior to growth is reported. Continuous control revealed an inverse relationship between the selectivity and the yield as evidenced by a 1000-times difference in yield between the highest selectivity and non-selectivity. Further, these results show that the selectivity is highly sensitive to the presence of a precise concentration of oxidative and reductive gases (i.e. water and hydrogen), and the highest selectivity occurred along the border between the conditions suitable for high yield and no-growth. Through these results, a phenomenological model has been constructed to explain the inverse relationship between yield and selectivity based on catalyst deactivation. We believe our model to be general, as the fundamental mechanisms limiting selective semiconducting SWCNT growth are common to the previous reports of limited yield. PMID:26660858

  16. Gas temperature measurements in a microwave plasma by optical emission spectroscopy under single-wall carbon nanotube growth conditions

    International Nuclear Information System (INIS)

    Plasma gas temperatures were measured via in situ optical emission spectroscopy in a microwave CH4-H2 plasma under carbon nanotube (CNT) growth conditions. Gas temperature is an important parameter in controlling and optimizing CNT growth. The temperature has a significant impact on chemical kinetic rates, species concentrations and CNT growth rates on the substrate. H2 rotational temperatures were determined from the Q-branch spectrum of the d3Πu(0)→a3Σg+(0) transition. N2 rotational and vibrational temperatures were measured by fitting rovibrational bands from the N2 emission spectrum of the C 3Πu → B 3Πg transition. The N2 rotational temperature, which is assumed to be approximately equal to the translational gas temperature, increases with an increase in input microwave plasma power and substrate temperature. The measured H2 rotational temperatures were not in agreement with the measured N2 rotational temperatures under the CNT growth conditions in this study. The measured N2 rotational temperatures compared with the H2 rotational temperatures suggest the partial equilibration of upper excited state due to higher, 10 Torr, operating pressure. Methane addition in the hydrogen plasma increases the gas temperature slightly for methane concentrations higher than 10% in the feed gas

  17. Dynamic study of carbon nanotube growth and catalyst morphology evolution during acetylene decomposition on Co/SBA-15 in an environmental TEM

    DEFF Research Database (Denmark)

    s Aires, F. J. Cadete Santo; Epicier, T.; Wagner, Jakob Birkedal;

    2012-01-01

    In situ studies of micro- and nano-objects in their characteristic environment have been performed ever since the early days of electron microscopy [1]. Over several decades the in situ observation of the synthesis of filamentous carbon (nanotubes/nanofilaments) during hydrocarbon decomposition has...... been one of the most popular topics [2] for investigation in the environmental transmission electron microscope (ETEM). In this work we study the growth of carbon nanotubes (CNTs) by the decomposition of acetylene on Co nanoparticles inserted into mesoporous silicas (SBA-15) using both conventional...... were reduced in situ in a flow of hydrogen (1 mbar, ~500°C). Electron energy-loss spectra taken before and during reduction showed that the Co oxide nanoparticles were reduced to metallic Co. In situ high resolution TEM images are consistent with cubic Co. A first attempt to study carbon nanotube...

  18. Parametric investigation of the kinetics of growth of carbon-nanotube arrays on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons

    International Nuclear Information System (INIS)

    On the basis of the kinetic model of synthesis of carbon nanotubes on iron nanoparticles in the process of chemical vapor deposition of hydrocarbons, the parametric dependences of characteristics of arrays of vertically oriented nanotubes on the temperature of their synthesis, the concentration of acetylene in a reactor, and the diameter of the catalyst nanoparticles were investigated. It is shown that the maximum on the temperature dependence of the rate of growth of carbon nanotubes, detected in experiments at a temperature of ~700°C is due to the competing processes of increasing the catalytic activity of iron nanoparticles and decreasing the acetylene concentration because of the significant gas-phase decomposition of acetylene in the reactor before it enters the substrate with the catalyst. Our calculations have shown that the indicated maximum arises near the transition point separating the low-temperature region where multiwall nanotubes are predominantly synthesized from the higher-temperature region of generation of single-wall nanotubes in the process of chemical vapor deposition of hydrocarbons. (authors)

  19. Low temperature growth of carbon nanotubes on printing electrodes by MPCVD

    Energy Technology Data Exchange (ETDEWEB)

    Chen, K.-C. [Department of Materials Science and Engineering, National Chiao Tung University, Taiwan (China) and Electronics Research and Service Organization (ERSO), Industrial Technology Research Institute (ITRI), Hsinchu, Taiwan (China)]. E-mail: northnose@itri.org.tw; Chen, C.-F. [Department of Materials Science and Engineering, National Chiao Tung University, Taiwan (China); Chiang, J.-S. [Union Chemica Laboratories (UCL), Industrial Technology Research Institute (ITRI), Hsinchu, Taiwan, 310 (China); Hwang, C.-L. [Union Chemica Laboratories (UCL), Industrial Technology Research Institute (ITRI), Hsinchu, Taiwan, 310 (China); Chang, Y.-Y. [Electronics Research and Service Organization (ERSO), Industrial Technology Research Institute (ITRI), Hsinchu, Taiwan (China); Lee, C.-C. [Electronics Research and Service Organization (ERSO), Industrial Technology Research Institute (ITRI), Hsinchu, Taiwan (China)

    2006-03-01

    In this work, combination of screen-printing process and microwave plasma enhanced chemical vapor deposition system (MPCVD) was applied to fabricate patterned carbon nanotubes (CNTs) on the cathode electrodes on glass substrates. Solution based Ni catalyst was well-mixed with Ag powders and organic binder materials to form screen printed paste. CNTs were then grown under the atmosphere of CH{sub 4}/H{sub 2} gas mixture below 550 deg. C. In the field emission measurement, the turn-on field was 3.2 V/{mu}m and uniform electron emission image was also observed.

  20. Growth of carbon nanotubes and microfibers over stainless steel mesh by cracking of methane

    OpenAIRE

    Gao, L.Z.; Kiwi-Minsker, L.; Renken, A.

    2008-01-01

    The ${La}_{2}{NiO}_{4}$ film was synthesized on the 304 stainless steel (SS) mesh. The hydrogen reduction of La2NiO4 generated homogeneous nanocatalyst particles (probably ${Ni}/{La}_2{O}_{3}$) over which methane was cracked, producing carbon notubes/microfibers and hydrogen. The carbon nanotubes/microfibers were strongly bonded to the SS mesh. It was observed that the methane conversion always reached its maximum at the cracking temperature of 750 °C regardless of its concentration varying f...

  1. Growth of apatite on chitosan-multiwall carbon nanotube composite membranes

    Energy Technology Data Exchange (ETDEWEB)

    Yang Jun; Yao Zhiwen [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No 14, 3rd Section South People' s Road, Chengdu 610041 (China); Tang Changyu [Department of Polymer Science and Materials, Sichuan University (China); Darvell, B.W. [Dental Materials Science, Faculty of Dentistry, University of Hong Kong (Hong Kong); Zhang Hualin; Pan Lingzhan; Liu Jingsong [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No 14, 3rd Section South People' s Road, Chengdu 610041 (China); Chen Zhiqing, E-mail: yangj0710@gmail.com [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No 14, 3rd Section South People' s Road, Chengdu 610041 (China)

    2009-07-30

    Bioactive membranes for guided tissue regeneration would be of value for periodontal therapy. Chitosan-multiwall carbon nanotube (CS-MWNT) composites were treated to deposit nanoscopic apatite for MWNT proportions of 0-4 mass%. Fourier-transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray analysis, and X-ray diffraction were used for characterization. Apatite was formed on the CS-MWNT composites at low MWNT concentrations, but the dispersion of the MWNT affects the crystallite size and the Ca/P molar ratio of the composite. The smallest crystallite size was 9 nm at 1 mass% MWNT.

  2. Local Synthesis of Carbon Nanotubes in Silicon Microsystems: The Effect of Temperature Distribution on Growth Structure

    Directory of Open Access Journals (Sweden)

    Knut E. Aasmundtveit

    2013-07-01

    Full Text Available Local synthesis and direct integration of carbon nanotubes (CNTs into microsystems is a promising method for producing CNT-based devices in a single step, low-cost, and wafer-level, CMOS/MEMS-compatible process. In this report, the structure of the locally grown CNTs are studied by transmission imaging in scanning electron microscopy—S(TEM. The characterization is performed directly on the microsystem, without any post-synthesis processing required. The results show an effect of temperature on the structure of CNTs: high temperature favors thin and regular structures, whereas low temperature favors “bamboo-like” structures.

  3. Growth, spectroscopy and utilisation of novel low dimensional nanostructures: carbon nanotubes and quantum dots

    OpenAIRE

    Bourdakos, Konstantinos Nikolaos

    2008-01-01

    The work presented in this thesis deals with two important low dimensional nanostructures: carbon nanotubes (CNTs) and quantum dots (QDs). In the part of the work related to CNTs a novel method for growing CNTs without the need of metal catalyst is presented. The as produced CNTs were grown by means of chemical vapour deposition on Si-Ge islands and on Ge dots grown with the Stransky — Krastanow method on top of silicon substrates. Through rigorous characterisation products of the method w...

  4. Study on Diameter Controlled Growth of Carbon Nanotubes by LaAl1-xFexO3 Catalysts

    Institute of Scientific and Technical Information of China (English)

    PENG Feng; WANG Hong-juan

    2005-01-01

    A series of LaAl1-xFexO3 catalysts prepared with lanthanum nitrate, aluminium nitrate and iron nitrate was investigated in catalytical syntheses of carbon nanotubes with high yields and purity. The properties of carbon nanotubes prepared by the method of CVD(chemical vapor deposition) with n-hexane as the carbon resource were studied and it was shown that the diameter of carbon nanotubes can be controlled by the molar ratio of iron to aluminum in the catalysts and that the diameter of carbon nanotubes changes a little with the decrease of the iron content in the catalysts. From the TEM pictures of carbon nanotubes, it can be found that the LaAl1-xFexO3 catalysts have a significant influence on the wall thickness of the carbon nanotubes, whereas they have little influence on the inner diameter of the carbon nanotubes.

  5. CoPt/CeO2 catalysts for the growth of narrow diameter semiconducting single-walled carbon nanotubes.

    Science.gov (United States)

    Tang, Lei; Li, Taotao; Li, Chaowei; Ling, Lin; Zhang, Kai; Yao, Yagang

    2015-12-14

    For the application of single-walled carbon nanotubes (SWNTs) in nanoelectronic devices, effective techniques for the growth of semiconducting SWNTs (s-SWNTs) with a specific diameter are still a great challenge. Herein, we report a facile strategy for the selective growth of narrow diameter distributed s-SWNTs using CoPt/CeO2 catalysts. The addition of Pt into a Co catalyst dramatically reduces the diameter distributions and even the chirality distributions of the as-grown SWNTs. Oxygen vacancies that are provided by mesoporous CeO2 are responsible for creating an oxidative environment to in situ etch metallic SWNTs (m-SWNTs). Atomic force microscope (AFM) and Raman spectroscopy characterizations indicate a narrow diameter distribution of 1.32 ± 0.03 nm and the selective growth of s-SWNTs to 93%, respectively. In addition, electronic transport measurements also confirm that the Ion/Ioff ratio is mainly in the order of ∼10(3). This work provides an effective strategy for the facile fabrication of narrow diameter distributed s-SWNTs, which will be beneficial to fundamental research and the broad application of SWNTs for future nanoelectronics. PMID:26553394

  6. Characterization of the structure, thermal stability and wettability of the TiO2 nanotubes growth on the Ti-7.5Mo alloy surface

    Science.gov (United States)

    Chaves, J. M.; Escada, A. L. A.; Rodrigues, A. D.; Alves Claro, A. P. R.

    2016-05-01

    In this study, the Ti-7.5Mo experimental alloy for biomedical applications was processed showing orthorhombic (α″) martensite phase and low elastic modulus (54 GPa). The surface treatment permitted the growth of ordered TiO2 nanotubes via anodization process. The heat treatment during in situ Raman measurement revealed that the TiO2 nanotubes were transformed of the amorphous state for crystalline (anatase phase) around 400 °C. Annealing of the nanotubes was evaluated by XRD, SEM and Raman spectroscopy. Results showed a high stability of the nanostructure, since only for temperatures above of 500 °C, at which the phase rutile appears, the nanostructure tends to vanish. It was observed in Raman analysis an increasing of the average size of the crystallite of the anatase phase with annealing temperature ranging from 6.5 nm up to 13 nm, besides of the precipitation of the layer rutile in the interface nanotubes-substrate. It is believed that the contact between anatase crystallites or layer rutile of the interface lead to growth of the rutile phase, causing coalescence and subsequent collapse of the tubular nanostructure. The wettability, as well as, surface energy was dependent of the crystalline structure and morphology, becoming more hydrophilic in the anatase phase when as compared with amorphous and rutile phase. The typical features of the surface together excellent bulk properties (low elastic modulus) of the Ti-7.5Mo alloy can provide a guideline for future biomedical applications.

  7. Growth and characterization of BCN nanotubes with high boron and nitrogen content

    Indian Academy of Sciences (India)

    Guo Zhang; Zhiye Liu; Lianping Zhang; Liqiang Jing; Keying Shi

    2013-09-01

    Multiwalled carbon nanotubes doped with boron and nitrogen (BCNTs) have been synthesized by chemical vapour deposition at temperatures ranging from 800°C to 950°C. Their morphological and structural features have been studied by transmission electron microscope, which reveal that BCNTs have bamboo-like structure. The results of X-ray photoelectron spectroscopy demonstrated that the atomic ratio of B, C and N of BCNTs is about 1:4:1, when temperature is 850°C. Electrooxidation performance of the BCNTs for NO at the modified electrodes was investigated. The results of cyclic voltammograms and the electrochemical impedance spectroscopy of BCNT-modified electrodes indicated that the activity of NO electrooxidation on 850°C-modified electrodes is much stronger than others and the charge transfer resistance of NO electroxidation BCNT-modified electrode is the least. By this means, BCNT-modified electrodes showed excellent electrode materials for NO detection and other potential applications.

  8. Controlled growth of carbon nanotube-graphene hybrid materials for flexible and transparent conductors and electron field emitters

    Science.gov (United States)

    Nguyen, Duc Dung; Tai, Nyan-Hwa; Chen, Szu-Ying; Chueh, Yu-Lun

    2012-01-01

    We report a versatile synthetic process based on rapid heating and cooling chemical vapor deposition for the growth of carbon nanotube (CNT)-graphene hybrid materials where the thickness of graphene and density of CNTs are properly controlled. Graphene films are demonstrated as an efficient barrier layer for preventing poisoning of iron nanoparticles, which catalyze the growth of CNTs on copper substrates. Based on this method, the opto-electronic and field emission properties of graphene integrated with CNTs can be remarkably tailored. A graphene film exhibits a sheet resistance of 2.15 kΩ sq-1 with a transmittance of 85.6% (at 550 nm), while a CNT-graphene hybrid film shows an improved sheet resistance of 420 Ω sq-1 with an optical transmittance of 72.9%. Moreover, CNT-graphene films are demonstrated as effective electron field emitters with low turn-on and threshold electric fields of 2.9 and 3.3 V μm-1, respectively. The development of CNT-graphene films with a wide range of tunable properties presented in this study shows promising applications in flexible opto-electronic, energy, and sensor devices.

  9. Effect of hydrogen plasma irradiation of catalyst films on growth of carbon nanotubes filled with iron nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Hideki, E-mail: sato@elec.mie-u.ac.jp; Kubonaka, Nobuo; Nagata, Atsushi; Fujiwara, Yuji [Graduate School of Engineering, Mie University, 1577 Kurima-machiya-cho, Tsu 514-8507 (Japan)

    2014-03-15

    Carbon nanotubes filled with iron (Fe-filled CNTs) show shape anisotropy on account of the high aspect ratio of magnetic nanowires, and are promising candidates for various applications, such as magnetic recording media, probes for scanning force microscopy, and medical treatment for cancer. The ability to appropriately control the magnetic properties of CNTs for those applications is desirable. In this study, the authors investigated magnetic properties of Fe-filled CNTs synthesized by thermal chemical vapor deposition for the purpose of tuning their coercivity. Here, the authors implemented hydrogen plasma irradiation of catalyst film that was previously deposited on a substrate as a catalyst layer. This treatment activates the catalyst film and thus enhances the growth of the Fe-filled CNTs. It was confirmed that the H{sub 2} plasma irradiation enhances the growth of the CNTs in terms of increasing their length and diameter compared to CNTs without irradiation. On the other hand, the coercivity of Fe-filled CNTs dropped to approximately half of those without H{sub 2} plasma irradiation. This is probably due to a decrease in the aspect ratio of the Fe nanowires, which results from the increase in their diameter. Furthermore, the crystal structure of the Fe nanowires may affect the coercivity.

  10. Effects of metal elements in catalytic growth of carbon nanotubes/graphene: A first principles DFT study

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • Role of metals in the catalytic growth of CNTs or graphene was studied using DFT. • The results explain why Ni-based catalyst is suitable for growing CNTs. • Cu based alloys, e.g. Cu8Ni, are found appropriate catalyst for graphene synthesis. - Abstract: Role of metals in the catalytic Chemical Vapor Deposition (CVD) growth of carbon nanotubes (CNTs) or graphene was investigated using DFT. Crucial processes involved in the growth of CNTs/graphene: methane dissociation to produce C, C diffusion and nucleation kinetics were studied on the (1 1 1) surface of different transition metals, i.e., Fe, Co, Ni, and Cu. Based on the DFT calculation results, the present study explains why Ni-based catalyst is a suitable CVD substrate for growing CNTs: it has a moderate reactivity towards methane dissociation; low energy barrier for C atom surface diffusion, which makes C to diffuse easily to the metal/CNTs edges and contribute to CNTs growth; relatively high nucleation barriers, making it more resistant for deactivation caused by the cover of carbon clusters. Meanwhile, this study also shows that Cu may be an appropriate catalyst for graphene synthesis due to the particularly low diffusion and nucleation barriers of C atoms on Cu, which suggest that C atoms tend to be more uniformly distributed and nucleate easily on the Cu surface. Key limitation of Cu is the low reactivity of this metal towards methane dissociation. Since Fe and Ni are very reactive towards C-H bond breaking, Cu based alloys, e.g. Cu8Ni, were proposed as a suitable catalyst for graphene production

  11. On the dynamical ferromagnetic, quantum Hall, and relativistic effects on the carbon nanotubes nucleation and growth mechanism

    International Nuclear Information System (INIS)

    The mechanism of carbon nanotube (CNT) nucleation and growth has been under investigation for 15 years, since the discovery of this most explored material of the 20th century. Prior models have attempted the extension of classical transport mechanisms used to explain the older, bigger, micron-sized filamentous carbon formations. In July 2000, a more thorough, detailed, nonclassical, and relativistic mechanism was formulated considering the detailed dynamics of the electronics of relativistic spin and rehybridization dynamics between the carbon and the catalyst via novel mesoscopic phenomena driven by intrinsic dynamical ferromagnetic fields by spin currents and spin waves of the catalyst for activating catalytically stimulated, synchronized, orchestrated, simultaneous, and coherent hydrocarbon decomposition, adsorption, absorption, transport, electronic subshell rehybridization by spin mechanics, and multi-atomic bond rearrangements for the nucleation and growth of the CNT. In this dynamical magnetic mechanism, quantum Hall effects and relativistic Dirac spin effects of intense many body spin-orbital interactions for novel orbital hybrid dynamics (the Little Effect) were proposed due to the mesoscopic size of the system. The formulation of this dynamical ferromagnetic mechanism naturally led to the first realization and explanation of a physical basis for ferromagnetic nanocarbon. This discovered ferromagnetism of the carbon and the forming CNT intermediates facilitates the coupling of the CNT to the ferrocatalyst for the spin currents and spin waves of the catalyst to organize and synchronize the 12 steps for the nucleation and growth processes of the CNT. Here, this dynamical ferromagnetic mechanism of CNT formation via spin currents and spin waves is proven by imposing both an external static magnetic field via the bore of a strong DC magnet and an external dynamic magnetic field via intense radio frequency electromagnetic radiation for influencing the proposed

  12. Effects of metal elements in catalytic growth of carbon nanotubes/graphene: A first principles DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Li, Jingde; Croiset, Eric; Ricardez-Sandoval, Luis, E-mail: laricard@uwaterloo.ca

    2014-10-30

    Graphical abstract: - Highlights: • Role of metals in the catalytic growth of CNTs or graphene was studied using DFT. • The results explain why Ni-based catalyst is suitable for growing CNTs. • Cu based alloys, e.g. Cu{sub 8}Ni, are found appropriate catalyst for graphene synthesis. - Abstract: Role of metals in the catalytic Chemical Vapor Deposition (CVD) growth of carbon nanotubes (CNTs) or graphene was investigated using DFT. Crucial processes involved in the growth of CNTs/graphene: methane dissociation to produce C, C diffusion and nucleation kinetics were studied on the (1 1 1) surface of different transition metals, i.e., Fe, Co, Ni, and Cu. Based on the DFT calculation results, the present study explains why Ni-based catalyst is a suitable CVD substrate for growing CNTs: it has a moderate reactivity towards methane dissociation; low energy barrier for C atom surface diffusion, which makes C to diffuse easily to the metal/CNTs edges and contribute to CNTs growth; relatively high nucleation barriers, making it more resistant for deactivation caused by the cover of carbon clusters. Meanwhile, this study also shows that Cu may be an appropriate catalyst for graphene synthesis due to the particularly low diffusion and nucleation barriers of C atoms on Cu, which suggest that C atoms tend to be more uniformly distributed and nucleate easily on the Cu surface. Key limitation of Cu is the low reactivity of this metal towards methane dissociation. Since Fe and Ni are very reactive towards C-H bond breaking, Cu based alloys, e.g. Cu{sub 8}Ni, were proposed as a suitable catalyst for graphene production.

  13. Self-organized anodic TiO.sub.2./sub. nanotube layers: influence of the Ti substrate on nanotube growth and dimensions

    Czech Academy of Sciences Publication Activity Database

    Sopha, H.; Jäger, Aleš; Knotek, P.; Tesař, Karel; Jarošová, Markéta; Macák, J. M.

    2016-01-01

    Roč. 190, Feb (2016), 744-752. ISSN 0013-4686 R&D Projects: GA ČR GBP108/12/G043 Institutional support: RVO:68378271 Keywords : titanium * anodization * titanium dioxide * nanotubes * ordering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.504, year: 2014

  14. From Carbon Nanotube Crystals to Carbon Nanotube Flowers

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zhengjun; ZHAO Ye; ZHOU Ya

    2005-01-01

    We have investigated the very initial deposition stages of chemical vapor deposition (CVD) with ferrocene (Fe(C5H5)2) and xylene (C8H10) for growing carbon nanotubes, and made clear that the mechanism for the self-organization behaviors of nanotubes at different growth stages by this approach. For instance, the organization of nanotubes into flower-like structures at prolonged deposition is developed from the crystal-like structures formed at early growth stages, both of which are closely related to and determined by the very initial deposition stages of this CVD approach. Based on this approach, ways have been established to build up different architectures of carbon nanotubes, by controlling the initial deposition stages of the CVD process, with which we have realized the selective growth of self-organized carbon nanotube structures. This study provides a new idea for growing carbon nanotube architectures by CVD.

  15. Hydroxyapatite growth on multiwall carbon nanotubes grown on titanium fibers from a titanium sheet

    KAUST Repository

    Chetibi, Loubna

    2013-09-27

    Nano-hydroxyapatite (HA) was grown on functionalized multiwalled carbon nanotubes (MWCNTs) deposited on TiO2 nanofibers (NFs) that were hydrothermally grown on Ti metal sheets. The HA was electrochemically grown on the MWCNTs/TiO2 porous layer. It was found that the HA grows on the MWCNTs/TiO2 NFs in the form of dense coating with nanorice grain-shaped. The incorporation of MWCNTs between HA and TiO2 NFs has led to higher adhesion strength as measured by micro-scratching test indicating the benefit of MWCNTs on the improving the bonding strength of HA layer. The obtained coatings exhibit excellent corrosion resistance in simulated body fluid. It is expected that this simple route for preparing the new HA/MWCNTs/TiO2/Ti-layered structure might be used not only in the biomedical field, but also in catalysis and biological sensing among others. © 2013 Springer Science+Business Media New York.

  16. Directional neurite growth using carbon nanotube patterned substrates as a biomimetic cue

    International Nuclear Information System (INIS)

    Researchers have made extensive efforts to mimic or reverse-engineer in vivo neural circuits using micropatterning technology. Various surface chemical cues or topographical structures have been proposed to design neuronal networks in vitro. In this paper, we propose a carbon nanotube (CNT)-based network engineering method which naturally mimics the structure of extracellular matrix (ECM). On CNT patterned substrates, poly-L-lysine (PLL) was coated, and E18 rat hippocampal neurons were cultured. In the early developmental stage, soma adhesion and neurite extension occurred in disregard of the surface CNT patterns. However, later the majority of neurites selectively grew along CNT patterns and extended further than other neurites that originally did not follow the patterns. Long-term cultured neuronal networks had a strong resemblance to the in vivo neural circuit structures. The selective guidance is possibly attributed to higher PLL adsorption on CNT patterns and the nanomesh structure of the CNT patterns. The results showed that CNT patterned substrates can be used as novel neuronal patterning substrates for in vitro neural engineering.

  17. Mechanically activated catalyst mixing for high-yield boron nitride nanotube growth.

    Science.gov (United States)

    Li, Ling; Li, Lu Hua; Chen, Ying; Dai, Xiujuan J; Xing, Tan; Petravic, Mladen; Liu, Xiaowei

    2012-01-01

    Boron nitride nanotubes (BNNTs) have many fascinating properties and a wide range of applications. An improved ball milling method has been developed for high-yield BNNT synthesis, in which metal nitrate, such as Fe(NO3)3, and amorphous boron powder are milled together to prepare a more effective precursor. The heating of the precursor in nitrogen-containing gas produces a high density of BNNTs with controlled structures. The chemical bonding and structure of the synthesized BNNTs are precisely probed by near-edge X-ray absorption fine structure spectroscopy. The higher efficiency of the precursor containing milling-activated catalyst is revealed by thermogravimetric analyses. Detailed X-ray diffraction and X-ray photoelectron spectroscopy investigations disclose that during ball milling the Fe(NO3)3 decomposes to Fe which greatly accelerates the nitriding reaction and therefore increases the yield of BNNTs. This improved synthesis method brings the large-scale production and application of BNNTs one step closer. PMID:22827911

  18. Gas-Phase Growth of Heterostructures of Carbon Nanotubes and Bimetallic Nanowires

    Directory of Open Access Journals (Sweden)

    Whi Dong Kim

    2011-01-01

    Full Text Available A simple, inexpensive, and viable method for growing multiple heterostructured carbon nanotubes (CNTs over the entire surface of Ni-Al bimetallic nanowires (NWs in the gas phase was developed. Polymer-templated bimetallic nitrate NWs were produced by electrospinning in the first step, and subsequent calcination resulted in the formation of bimetallic oxide NWs by thermal decomposition. In the second step, free-floating bimetallic NWs were produced by spray pyrolysis in an environment containing hydrogen gas as a reducing gas. These NWs were continuously introduced into a thermal CVD reactor in order to grow CNTs in the gas phase. Scanning electron microscopy (SEM, transmission electron microscopy (TEM, and Raman spectrometry analyses revealed that the catalytic Ni sites exposed in the non-catalytic Al matrix over the entire surface of the bimetallic NWs were seeded to radially grow highly graphitized CNTs, which resembled “foxtail” structures. The grown CNTs were found to have a relatively uniform diameter of approximately 10±2 nm and 10 to 15 walls with a hollow core. The average length of the gas-phase-grown CNTs can be controlled between 100 and 1000 nm by adjusting the residence time of the free-floating bimetallic NWs in the thermal CVD reactor.

  19. Super-hydrophobic transparent surface by femtosecond laser micro-patterned catalyst thin film for carbon nanotube cluster growth

    Science.gov (United States)

    Tang, M.; Hong, M. H.; Choo, Y. S.; Tang, Z.; Chua, Daniel H. C.

    2010-11-01

    In this work, super-hydrophobic surfaces were fabricated by femtosecond laser micro-machining and chemical vapor deposition to constitute hybrid scale micro/nano-structures formed by carbon nanotube (CNT) clusters. Nickel thin-film microstructures, functioning as CNT growth catalyst, precisely control the distribution of the CNT clusters. To obtain minimal heat-affected zones, femtosecond laser was used to trim the nickel thin-film coating. Plasma treatment was subsequently carried out to enhance the lotus-leaf effect. The wetting property of the CNT surface is improved from hydrophilicity to super-hydrophobicity at an advancing contact angle of 161 degrees. The dynamic water drop impacting test further confirms its enhanced water-repellent property. Meanwhile, this super-hydrophobic surface exhibits excellent transparency with quartz as the substrate. This hybrid fabrication technique can achieve super-hydrophobic surfaces over a large area, which has potential applications as self-cleaning windows for vehicles, solar cells and high-rise buildings.

  20. Role of negatively charged ions in plasma on the growth and field emission properties of spherical carbon nanotube tip

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, Aarti; Walia, Ritu; Sharma, Suresh C. [Department of Physics, Maharaja Agrasen Institute of Technology, Sector-22, Rohini, Delhi-110086 (India)

    2012-01-15

    The role of negatively charged ions in plasma on growth (without catalyst) and field emission properties of spherical carbon nanotube (CNT) tip has been theoretically investigated. A theoretical model of charge neutrality, including the kinetics of electrons, negatively and positively charged ions, neutral atoms, and the energy balance of various species has been developed. Numerical calculations of the spherical CNT tip radius for different relative density of negatively charged ions {epsilon}{sub r}(=n{sub SF{sub 6{sup -}}}/n{sub C{sup +}}, where n{sub SF{sub 6{sup -}}} and n{sub C}{sup +} are the equilibrium densities of sulphur hexafluoride and carbon ions, respectively) have been carried out for the typical glow discharge plasma parameters. It is found that the spherical CNT tip radius decreases with {epsilon}{sub r} and hence the field emission of electrons from the spherical CNT tip increases. Some of our theoretical results are in accordance with the existing experimental observations.

  1. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    International Nuclear Information System (INIS)

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end

  2. Effect of substrate material on the growth and field emission characteristics of large-area carbon nanotube forests

    Energy Technology Data Exchange (ETDEWEB)

    Ummethala, Raghunandan; Täschner, Christine; Leonhardt, Albrecht; Büchner, Bernd [IFW Dresden, P.O. Box 270116, D-01171 Dresden (Germany); Wenger, Daniela; Tedde, Sandro F. [Siemens Healthcare GmbH, Technology Centre, Guenther-Scharowsky-Strasse 1, 91058 Erlangen (Germany); Eckert, Jürgen [Erich Schmid Institute of Materials Science, Austrian Academy of Sciences, Jahnstrasse 12, A-8700 Leoben (Austria); Department Materials Physics, Montanuniversität Leoben, Jahnstraße 12, A-8700 Leoben (Austria)

    2016-01-28

    Carbon nanotubes (CNTs) are a promising replacement for tungsten filaments as electron emitters in conventional x-ray sources, owing to their higher aspect ratio, superior mechanical stability, chemical inertness, and high electrical and thermal conductivities. Conditions for realizing the best emission behavior from CNTs have been formulated over the last few years. In this paper, we report the relatively less-investigated factor, namely, the influence of the nature of substrate material on the growth as well as field emission characteristics of large-area multiwalled CNTs for their practical application in medical x-ray sources. We compare the morphology of CNTs on a variety of substrates such as stainless steel, copper, molybdenum, graphite, few-layer graphene, and carbon nanowalls grown by thermal chemical vapor deposition following a simple drop-coating of catalyst. We find that CNTs grown on stainless steel and graphite show the best combination of emission characteristics under pulsed operation mode. These studies are helpful in selecting the optimum substrate material for field emission applications. Ex situ studies on field emission degradation of CNTs are presented towards the end.

  3. Molybdenum nitride nanotubes

    International Nuclear Information System (INIS)

    Molybdenum nitride nanotubes were prepared by depositing nitride film on anodized aluminum oxide (AAO) template by atomic layer deposition and then etching away the template with sodium hydroxide solution. The effect of deposition parameters on film growth and the properties of the nanotubes was investigated. The maximum depth of intrusion of the molybdenum nitride film into the AAO pores was found to be 20 μm, achieved with 7-second precursor pulses. Precursor diffusion into the AAO pores dominated over the intrusion. Three different architectures of molybdenum nitride nanotubes were isolated. Separated nanotubes were found when the template was etched in an ultrasonic bath, while bundling dominated when template etching was conducted without ultrasound. When the nitride-coated AAO template was mounted onto a steel plate before etching the nanotubes remained on the surface with the tips strongly intertwined

  4. Magnetic nanotubes

    Science.gov (United States)

    Matsui, Hiroshi; Matsunaga, Tadashi

    2010-11-16

    A magnetic nanotube includes bacterial magnetic nanocrystals contacted onto a nanotube which absorbs the nanocrystals. The nanocrystals are contacted on at least one surface of the nanotube. A method of fabricating a magnetic nanotube includes synthesizing the bacterial magnetic nanocrystals, which have an outer layer of proteins. A nanotube provided is capable of absorbing the nanocrystals and contacting the nanotube with the nanocrystals. The nanotube is preferably a peptide bolaamphiphile. A nanotube solution and a nanocrystal solution including a buffer and a concentration of nanocrystals are mixed. The concentration of nanocrystals is optimized, resulting in a nanocrystal to nanotube ratio for which bacterial magnetic nanocrystals are immobilized on at least one surface of the nanotubes. The ratio controls whether the nanocrystals bind only to the interior or to the exterior surfaces of the nanotubes. Uses include cell manipulation and separation, biological assay, enzyme recovery, and biosensors.

  5. Theoretical modeling of temperature dependent catalyst-assisted growth of conical carbon nanotube tip by plasma enhanced chemical vapor deposition process

    Energy Technology Data Exchange (ETDEWEB)

    Tewari, Aarti; Sharma, Suresh C. [Department of Applied Physics, Delhi Technological University (DTU), Shahbad Daulatpur, Bawana Road, Delhi 110 042 (India)

    2015-02-15

    A theoretical model has been developed to examine the effect of substrate temperature on the growth of the conical carbon nanotube (CNT) tip assisted by the catalyst in a reactive plasma. The growth rate of the CNT with conical tip because of diffusion and accretion of ions on catalyst nanoparticle including the charging rate of the CNT, kinetics of plasma species, and the evolution of the substrate temperature in reactive plasma has been taken into account. The effect of substrate temperature for different ion densities and temperatures on the growth of the conical CNT tip has been investigated for typical glow discharge plasma parameters. The results of the present model can serve as a major tool in better understanding of plasma heating effects on the growth of CNTs.

  6. Mapping the transition from catalyst-pool to bamboo-like growth-mechanism in vertically-aligned free-standing films of carbon nanotubes filled with Fe3C: The key role of water

    Science.gov (United States)

    Boi, Filippo S.; Wang, Shanling; He, Yi

    2016-08-01

    The control of carbon nanotube growth has challenged researchers for more than a decade due to the complex parameters-control necessary in the commonly used CVD approaches. Here we show that a direct transition from the catalyst-pool growth mechanism characterized by graphene-caps in the direction of growth to a bamboo-shaped mechanism characterized by the repetition of periodic elongated graphitic compartments is present when controlled quantities of water are added to ferrocene/dichlorobenzene. Our results suggest that water-addition allows enhancing the level of stress accumulated under the graphitic nanotubes-cap.

  7. Single-walled carbon nanotubes: a nano-specific enhancer of cellular growth in LB culture

    International Nuclear Information System (INIS)

    We conducted a study to characterize the antimicrobial properties of SWNTs to B.subtilis in a saline solution or in a LB culture. Dimensions and the antibacterial ability of SWNTs in a saline solution were different from those in a LB culture. Transmission and scanning electron microscopes were used to characterize the SWNTs structure with and without LB culture. The antibacterial ability of SWNTs was affected by the environment of bacterial growth. The antibacterial mechanism of SWNTs was studied,too. (authors)

  8. Carbon : nickel nanocomposite templates - predefined stable catalysts for diameter-controlled growth of single-walled carbon nanotubes

    Science.gov (United States)

    Melkhanova, Svetlana; Haluska, Miro; Hübner, René; Kunze, Tim; Keller, Adrian; Abrasonis, Gintautas; Gemming, Sibylle; Krause, Matthias

    2016-08-01

    Carbon : nickel (C : Ni) nanocomposite templates (NCTs) were used as catalyst precursors for diameter-controlled growth of single-walled carbon nanotubes (SWCNTs) by chemical vapor deposition (CVD). Two NCT types of 2 nm thickness were prepared by ion beam co-sputtering without (type I) or with assisting Ar+ ion irradiation (type II). NCT type I comprised Ni-rich nanoparticles (NPs) with defined diameter in an amorphous carbon matrix, while NCT type II was a homogenous C : Ni film. Based on the Raman spectra of more than 600 individual SWCNTs, the diameter distribution obtained from both types of NCT was determined. SWCNTs with a selective, monomodal diameter distribution are obtained from NCT type I. About 50% of the SWCNTs have a diameter of (1.36 +/- 0.10) nm. In contrast to NCT type I, SWCNTs with a non-selective, relatively homogeneous diameter distribution from 0.80 to 1.40 nm covering 88% of all SWCNTs are obtained from NCT type II. From both catalyst templates predominantly separated as-grown SWCNTs are obtained. They are free of solvents or surfactants, exhibit a low degree of bundling and contain negligible amounts of MWCNTs. The study demonstrates the advantage of predefined catalysts for diameter-controlled SWCNT synthesis in comparison to in situ formed catalysts.Carbon : nickel (C : Ni) nanocomposite templates (NCTs) were used as catalyst precursors for diameter-controlled growth of single-walled carbon nanotubes (SWCNTs) by chemical vapor deposition (CVD). Two NCT types of 2 nm thickness were prepared by ion beam co-sputtering without (type I) or with assisting Ar+ ion irradiation (type II). NCT type I comprised Ni-rich nanoparticles (NPs) with defined diameter in an amorphous carbon matrix, while NCT type II was a homogenous C : Ni film. Based on the Raman spectra of more than 600 individual SWCNTs, the diameter distribution obtained from both types of NCT was determined. SWCNTs with a selective, monomodal diameter distribution are obtained from NCT

  9. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    International Nuclear Information System (INIS)

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices

  10. Mild in situ growth of platinum nanoparticles on multiwalled carbon nanotube-poly (vinyl alcohol) hydrogel electrode for glucose electrochemical oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Shumin; Zheng, Yudong, E-mail: zhengyudong@mater.ustb.edu.cn; Qiao, Kun [University of Science and Technology Beijing, School of Material Science and Engineering (China); Su, Lei [University of Science and Technology Beijing, School of Chemistry and Biological Engineering (China); Sanghera, Amendeep; Song, Wenhui [University College London, UCL Centre for Nanotechnology & Regenerative Medicine, Division of Surgery and Interventional Science (United Kingdom); Yue, Lina; Sun, Yi [University of Science and Technology Beijing, School of Material Science and Engineering (China)

    2015-12-15

    This investigation describes an effective strategy to fabricate an electrochemically active hybrid hydrogel made from platinum nanoparticles that are highly dense, uniformly dispersed, and tightly embedded throughout the conducting hydrogel network for the electrochemical oxidation of glucose. A suspension of multiwalled carbon nanotubes and polyvinyl alcohol aqueous was coated on glassy carbon electrode by electrophoretic deposition and then physically crosslinked to form a three-dimensional porous conductive hydrogel network by a process of freezing and thawing. The network offered 3D interconnected mass-transport channels (around 200 nm) and confined nanotemplates for in situ growth of uniform platinum nanoparticles via the moderate reduction agent, ascorbic acid. The resulting hybrid hydrogel electrode membrane demonstrates an effective method for loading platinum nanoparticles on multiwalled carbon nanotubes by the electrostatic adsorption between multiwalled carbon nanotubes and platinum ions within porous hydrogel network. The average diameter of platinum nanoparticles is 37 ± 14 nm, which is less than the particle size by only using the moderate reduction agent. The hybrid hydrogel electrode membrane-coated glassy carbon electrode showed excellent electrocatalytic activity and good long-term stability toward glucose electrochemical oxidation. The glucose oxidation current exhibited a linear relationship with the concentration of glucose in the presence of chloride ions, promising for potential applications of implantable biofuel cells, biosensors, and electronic devices.

  11. Dispersion fraction enhances cellular growth of carbon nanotube and aluminum oxide reinforced ultrahigh molecular weight polyethylene biocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Anup Kumar; Balani, Kantesh, E-mail: kbalani@iitk.ac.in

    2015-01-01

    Ultrahigh molecular weight polyethylene (UHMWPE) is widely used as bone-replacement material for articulating surfaces due to its excellent wear resistance and low coefficient of friction. But, the wear debris, generated during abrasion between mating surfaces, leads to aseptic loosening of implants. Thus, various reinforcing agents are generally utilized, which may alter the surface and biological properties of UHMWPE. In the current work, the cellular response of compression molded UHMWPE upon reinforcement of bioactive multiwalled carbon nanotubes (MWCNTs) and bioinert aluminum oxide (Al{sub 2}O{sub 3}) is investigated. The phase retention and stability were observed using X-ray diffraction, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The reinforcement of MWCNTs and Al{sub 2}O{sub 3} has shown to alter the wettability (from contact angle of ∼ 88° ± 2° to ∼ 118° ± 4°) and surface energy (from ∼ 23.20 to ∼ 17.75 mN/m) of composites with respect to UHMWPE, without eliciting any adverse effect on cytocompatibility for the L929 mouse fibroblast cell line. Interestingly, the cellular growth of the L929 mouse fibroblast cell line is observed to be dominated by the dispersion fraction of surface free energy (SFE). After 48 h of incubation period, a decrease in metabolic activity of MWCNT–Al{sub 2}O{sub 3} reinforced composites is attributed to apatite formation that reduces the dispersion fraction of surface energy. The mineralized apatite during incubation was confirmed and quantified by energy dispersive spectroscopy and X-ray diffraction respectively. Thus, the dispersion fraction of surface free energy can be engineered to play an important role in achieving enhanced metabolic activity of the MWCNT–Al{sub 2}O{sub 3} reinforced UHMWPE biopolymer composites. - Highlights: • The cellular response of UHMWPE upon MWCNT and Al{sub 2}O{sub 3} reinforcement is highlighted. • Wettability decreases with Al{sub 2}O{sub 3} and

  12. Dispersion fraction enhances cellular growth of carbon nanotube and aluminum oxide reinforced ultrahigh molecular weight polyethylene biocomposites

    International Nuclear Information System (INIS)

    Ultrahigh molecular weight polyethylene (UHMWPE) is widely used as bone-replacement material for articulating surfaces due to its excellent wear resistance and low coefficient of friction. But, the wear debris, generated during abrasion between mating surfaces, leads to aseptic loosening of implants. Thus, various reinforcing agents are generally utilized, which may alter the surface and biological properties of UHMWPE. In the current work, the cellular response of compression molded UHMWPE upon reinforcement of bioactive multiwalled carbon nanotubes (MWCNTs) and bioinert aluminum oxide (Al2O3) is investigated. The phase retention and stability were observed using X-ray diffraction, Raman spectroscopy and Fourier transform infrared (FTIR) spectroscopy. The reinforcement of MWCNTs and Al2O3 has shown to alter the wettability (from contact angle of ∼ 88° ± 2° to ∼ 118° ± 4°) and surface energy (from ∼ 23.20 to ∼ 17.75 mN/m) of composites with respect to UHMWPE, without eliciting any adverse effect on cytocompatibility for the L929 mouse fibroblast cell line. Interestingly, the cellular growth of the L929 mouse fibroblast cell line is observed to be dominated by the dispersion fraction of surface free energy (SFE). After 48 h of incubation period, a decrease in metabolic activity of MWCNT–Al2O3 reinforced composites is attributed to apatite formation that reduces the dispersion fraction of surface energy. The mineralized apatite during incubation was confirmed and quantified by energy dispersive spectroscopy and X-ray diffraction respectively. Thus, the dispersion fraction of surface free energy can be engineered to play an important role in achieving enhanced metabolic activity of the MWCNT–Al2O3 reinforced UHMWPE biopolymer composites. - Highlights: • The cellular response of UHMWPE upon MWCNT and Al2O3 reinforcement is highlighted. • Wettability decreases with Al2O3 and MWCNT reinforcement without any adverse effect on cytocompatibility.

  13. Formation and Structure of Boron Nitride Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Jiang ZHANG; Zongquan LI; Jin XU

    2005-01-01

    Boron nitride (BN) nanotubes were simply synthesized by heating well-mixed boric acid, urea and iron nitrate powders at 1000℃. A small amount of BN nanowires was also obtained in the resultants. The morphological and structural characters of the BN nanostructures were studied using transmission electron microscopy. Other novel BN nanostructures, such as Y-junction nanotubes and bamboo-like nanotubes, were simultaneously observed. The growth mechanism of the BN nanotubes was discussed briefly.

  14. Growth and characterization of nitrogen-doped single-walled carbon nanotubes by water-plasma chemical vapour deposition

    International Nuclear Information System (INIS)

    Nitrogen-doped single-walled carbon nanotubes (N-SWNTs) are directly grown on SiO2/Si substrates at 450 deg. C with methane and ammonia gases by water-plasma chemical vapour deposition. The strongest radial breathing mode peak in Raman spectra of the grown N-SWNTs, probed with a 633 nm laser excitation, was assigned to (7, 5) semiconducting nanotubes with a diameter of 0.83 nm. As the doped nitrogen content increases, the D-band to G-band ratio in Raman spectra, indicating the imperfection of nanotubes, gradually increases and saturates at around 4%. X-ray photoelectron spectroscopy shows that nitrogen atoms are doped with a pyridine-like configuration in the N-SWNTs

  15. In situ growth of carbon nanotube wrapped Si composites as anodes for high performance lithium ion batteries.

    Science.gov (United States)

    Zhou, Jianbin; Lan, Yang; Zhang, Kailong; Xia, Guoliang; Du, Jin; Zhu, Yongchun; Qian, Yitai

    2016-03-01

    The composites of carbon nanotube wrapped Si particles (CNTWS) were synthesized in situ by using the catalytic chemical vapor deposition (CCVD) method. In this process, carbon nanotubes were produced in situ to wrap Si by the catalysis action of nascent Cu* under an acetylene atmosphere at a relatively low temperature of 400 °C, in which nascent Cu* was created by the reaction between Si particles and CuCl synchronously. The weight ratio of Si/C in CNTWS is 0.76/0.24. As anode materials for lithium ion batteries, the CNTWS composites exhibit a reversible discharge capacity of 1031.1 mA h g(-1) at 1.8 A g(-1) after 500 cycles, and 868.2 mA h g(-1) at 10.0 A g(-1). The high electrochemical performance of CNTWS composites is associated with the in situ formed carbon nanotubes. PMID:26875542

  16. The rapid growth of 3 µm long titania nanotubes by anodization of titanium in a neutral electrochemical bath

    OpenAIRE

    Lockman, Zainovia; Ismail, Syahriza; Sreekantan, Srimala; Schmidt-Mende, Lukas; MacManus-Driscoll, Judith L

    2010-01-01

    The length of titania nanotubes formed by anodization of 0.1 mm thick titanium foil was found to be a strong function of the pH of the electrolyte. The longest nanotubes were formed by using an electrolyte consisting of 1 M Na(2)SO(4) plus 5 wt% NH(4)F with pH 7. At this pH, after 30 min of anodization, 3 microm length nanotubular titania arrays with top diameters of approximately 50 nm and bottom diameters of 100 nm were produced. No acid was added to this electrolyte. The formation of titan...

  17. Industrial compatible re-growth of vertically aligned multiwall carbon nanotubes by ultrafast pure oxygen purification process

    DEFF Research Database (Denmark)

    Bu, Ian Y.Y.; Hou, Kai; Engstrøm, Daniel Southcott

    2011-01-01

    Reproducible high-yield purification process of multiwalled carbon nanotubes (CNTs) was developed by thermal annealing in ultrapure oxygen. The optimized condition involves thermal annealing via a PID controlled heater in high purity oxygen at temperature of 450°C for 180s, which burns out...

  18. Growth of graphite film over the tops of vertical carbon nanotubes using Ni/Ti/Si substrate

    Institute of Scientific and Technical Information of China (English)

    Chia-chih Chuang; Wei-long Liu; Wen-jauh Chen; Jin-hua Huang

    2009-01-01

    A substrate with Ni/Ti/Si structure was used to grow vertical carbon nanotubes (CNTs) with a graphite film over CNT tops by thermal chemical vapor deposition with CH4 gas as carbon source.The carbon nanotubes and the substrate were character-ized by a field emission scanning electron microscope for the morphologies,a transmission electron microscope for the microstruc-tures,a Raman spectrograph for the crystallinity,and an Auger electron spectrometer for the depth distribution of elements.The re-sult shows that when the thickness ratio of Ni layer to Ti layer in substrate is about i,a graphite film with relatively good quality canbe formed on the CNT tops.

  19. Growth of β-Co(OH)2 Nanoflowers on Carbon Nanotube Papers and Its Electrochemical Capacitance Performance

    OpenAIRE

    MEN Chun-Yan, SHI Qin, LI Juan, LI Qing-Wen

    2013-01-01

    Uniform hierarchical flower-like β-Co(OH)2 anchored on conducting carbon nanotube (CNT) papers were successfully synthesized by hydrothermal method, which could be served as flexible electrode material for high-performance electrochemical capacitors. The structure, morphology and properties of the products were studied by X-ray diffraction (XRD) and scanning electron microscope (SEM). The results indicated that the as-prepared material was pure brucite phase. Three dimensional (3D) loose nano...

  20. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhimin; Wang, Qiang, E-mail: wangqiang@njtech.edu.cn; Shan, Xiaoye; Zhu, Hongjun, E-mail: zhuhj@njtech.edu.cn [Department of Applied Chemistry, College of Science, Nanjing Tech University, Nanjing 211816 (China); Li, Wei-qi [Department of Physics, Harbin Institute of Technology, Harbin 150001 (China); Chen, Guang-hui [Department of Chemistry, Shantou University, Shantou, Guangdong 515063 (China)

    2015-02-21

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs.

  1. DFT study of Fe-Ni core-shell nanoparticles: Stability, catalytic activity, and interaction with carbon atom for single-walled carbon nanotube growth

    International Nuclear Information System (INIS)

    Metal catalysts play an important role in the nucleation and growth of single-walled carbon nanotubes (SWCNTs). It is essential for probing the nucleation and growth mechanism of SWCNTs to fundamentally understand the properties of the metal catalysts and their interaction with carbon species. In this study, we systematically studied the stability of 13- and 55-atom Fe and Fe-Ni core-shell particles as well as these particles interaction with the carbon atoms using the density functional theory calculations. Icosahedral 13- and 55-atom Fe-Ni core-shell bimetallic particles have higher stability than the corresponding monometallic Fe and Ni particles. Opposite charge transfer (or distribution) in these particles leads to the Fe surface-shell displays a positive charge, while the Ni surface-shell exhibits a negative charge. The opposite charge transfer would induce different chemical activities. Compared with the monometallic Fe and Ni particles, the core-shell bimetallic particles have weaker interaction with C atoms. More importantly, C atoms only prefer staying on the surface of the bimetallic particles. In contrast, C atoms prefer locating into the subsurface of the monometallic particles, which is more likely to form stable metal carbides. The difference of the mono- and bimetallic particles on this issue may result in different nucleation and growth mechanism of SWCNTs. Our findings provide useful insights for the design of bimetallic catalysts and a better understanding nucleation and growth mechanism of SWCNTs

  2. Facile Synthesis of Ternary Boron Carbonitride Nanotubes

    Directory of Open Access Journals (Sweden)

    Luo Lijie

    2009-01-01

    Full Text Available Abstract In this study, a novel and facile approach for the synthesis of ternary boron carbonitride (B–C–N nanotubes was reported. Growth occurred by heating simple starting materials of boron powder, zinc oxide powder, and ethanol absolute at 1150 °C under a mixture gas flow of nitrogen and hydrogen. As substrate, commercial stainless steel foil with a typical thickness of 0.05 mm played an additional role of catalyst during the growth of nanotubes. The nanotubes were characterized by SEM, TEM, EDX, and EELS. The results indicate that the synthesized B–C–N nanotubes exhibit a bamboo-like morphology and B, C, and N elements are homogeneously distributed in the nanotubes. A catalyzed vapor–liquid–solid (VLS mechanism was proposed for the growth of the nanotubes.

  3. Growth, Structural and Optical Characterization of ZnO Nanotubes on Disposable-Flexible Paper Substrates by Low-Temperature Chemical Method

    Directory of Open Access Journals (Sweden)

    M. Y. Soomro

    2012-01-01

    Full Text Available We report the synthesis of vertically aligned ZnO nanotubes (NTs on paper substrates by low-temperature hydrothermal method. The growth of ZnO NTs on the paper substrate is discussed; further, the structural and optical properties are investigated by scanning electron microscope (SEM, transmission electron microscopy (TEM, X-ray diffraction (XRD, energy-dispersive X-ray spectroscopy (EDS, and cathodoluminescence (CL, and it was found that the ZnO NTs on paper substrate fulfill the structural and optical properties of ZnO NTs grown on other conventional substrates. This will be more beneficial in future usage of ZnO NTs in different fields and applications. Particularly, this approach opens the ways in research and development for high volume manufacturing of low-cost, flexible optoelectronics devices on disposable paper substrates and can be used in the future miniaturization trends.

  4. Rapid growth of nanotubes and nanorods of würtzite ZnO through microwave-irradiation of a metalorganic complex of zinc and a surfactant in solution

    Indian Academy of Sciences (India)

    Sanjaya Brahma; Kalya Jagannatha Rao; Srinivasarao Shivashankar

    2010-04-01

    Large quantities of single-crystalline ZnO nanorods and nanotubes have been prepared by the microwave irradiation of a metalorganic complex of zinc, in the presence of a surfactant. The method is simple, fast, and inexpensive (as it uses a domestic microwave oven), and yields pure nanostructures of the hexagonal würtzite phase of ZnO in min, and requires no conventional templating. The ZnO nanotubes formed have a hollow core with inner diameter varying from 140–160 nm and a wall of thickness, 40–50 nm. The length of nanorods and nanotubes varies in the narrow range of 500–600 nm. These nanostructures have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). The ZnO nanorods and nanotubes are found by SAED to be single-crystalline. The growth process of ZnO nanorods and nanotubes has been investigated by varying the surfactant concentration and microwave irradiation time. Based on the various results obtained, a tentative and plausible mechanism for the formation of ZnO nanostructures is proposed.

  5. Gaseous product mixture from Fischer-Tropsch synthesis as an efficient carbon feedstock for low temperature CVD growth of carbon nanotube carpets.

    Science.gov (United States)

    Almkhelfe, Haider; Carpena-Núñez, Jennifer; Back, Tyson C; Amama, Placidus B

    2016-07-21

    Low-temperature chemical vapor deposition (CVD) growth of carbon nanotube (CNT) carpets from Fe and Fe-Cu catalysts using a gaseous product mixture from Fischer-Tropsch synthesis (FTS-GP) as a superior carbon feedstock is demonstrated. This growth approach addresses a persistent issue of obtaining thick CNT carpets on temperature-sensitive substrates at low temperatures using a non-plasma CVD approach without catalyst pretreatment and/or preheating of the carbon feedstock. The efficiency of the process is evidenced by the highly dense, vertically aligned CNT structures from both Fe and Fe-Cu catalysts even at temperatures as low as 400 °C - a record low growth temperature for CNT carpets obtained via conventional thermal CVD. The grown CNTs exhibit a straight morphology with hollow interior and parallel graphitic planes along the tube walls. The apparent activation energies for CNT carpet growth on Fe and Fe-Cu catalysts are 0.71 and 0.54 eV, respectively. The synergistic effect of Fe and Cu show a strong dependence on the growth temperature, with Cu being more influential at temperatures higher than 450 °C. The low activation energies and long catalyst lifetimes observed are rationalized based on the unique composition of FTS-GP and Gibbs free energies for the decomposition reactions of the hydrocarbon components. The use of FTS-GP facilitates low-temperature growth of CNT carpets on traditional (alumina film) and nontraditional substrates (aluminum foil) and has the potential of enhancing CNT quality, catalyst lifetime, and scalability. PMID:27353432

  6. Low-temperature growth of single-walled carbon nanotube using Al2O3/Pd/Al2O3 multilayer catalyst by alcohol gas source method at high vacuum

    Science.gov (United States)

    Kiribayashi, Hoshimitsu; Ogawa, Seigo; Kozawa, Akinari; Saida, Takahiro; Naritsuka, Shigeya; Maruyama, Takahiro

    2016-06-01

    We carried out single-walled carbon nanotube (SWCNT) growth at 500 and 600 °C using Al2O3/Pd/Al2O3 multilayer catalysts on SiO2/Si substrates by the alcohol gas source method. When the ethanol pressures were 1 × 10‑4 and 1 × 10‑3 Pa, radial-breathing-mode (RBM) peaks and sharp G band peaks appeared in Raman spectra, indicating the growth of SWCNTs even at 500 °C. When the growth temperature and ethanol pressure were 500 °C and 1 × 10‑4 Pa, respectively, the growth rate decreased gradually with the growth time, but the SWCNT growth continued for more than 4 h and the diameter distribution changed as the growth proceeded. X-ray photoelectron spectroscopy measurements showed that oxidized Pd catalyst particles were reduced to metallic states after the SWCNT growth started.

  7. Unexpected Li2O2 Film Growth on Carbon Nanotube Electrodes with CeO2 Nanoparticles in Li-O2 Batteries.

    Science.gov (United States)

    Yang, Chunzhen; Wong, Raymond A; Hong, Misun; Yamanaka, Keisuke; Ohta, Toshiaki; Byon, Hye Ryung

    2016-05-11

    In lithium-oxygen (Li-O2) batteries, it is believed that lithium peroxide (Li2O2) electrochemically forms thin films with thicknesses less than 10 nm resulting in capacity restrictions due to limitations in charge transport. Here we show unexpected Li2O2 film growth with thicknesses of ∼60 nm on a three-dimensional carbon nanotube (CNT) electrode incorporated with cerium dioxide (ceria) nanoparticles (CeO2 NPs). The CeO2 NPs favor Li2O2 surface nucleation owing to their strong binding toward reactive oxygen species (e.g., O2 and LiO2). The subsequent film growth results in thicknesses of ∼40 nm (at cutoff potential of 2.2 V vs Li/Li(+)), which further increases up to ∼60 nm with the addition of trace amounts of H2O that enhances the solution free energy. This suggests the involvement of solvated superoxide species (LiO2(sol)) that precipitates on the existing Li2O2 films to form thicker films via disproportionation. By comparing toroidal Li2O2 formed solely from LiO2(sol), the thick Li2O2 films formed from surface-mediated nucleation/thin-film growth following by LiO2(sol) deposition provides the benefits of higher reversibility and rapid surface decomposition during recharge. PMID:27105122

  8. Optimization of growth temperature of multi-walled carbon nanotubes synthesized by spray pyrolysis method and application for arsenic removal

    Directory of Open Access Journals (Sweden)

    S. Mageswari

    2014-12-01

    Full Text Available Multi-walled carbon nanotubes have been synthesized at different temperatures ranging from 550 °C to 750 °C on silica supported Fe-Co catalyst by spray pyrolysis method using Citrus limonum oil under nitrogen atmosphere. The as-grown MWNTs were characterized by scanning electron microscope (SEM, high resolution transmission electron microscope (HRTEM, X-ray diffraction analysis (XRD and Raman spectral studies. The HRTEM and Raman spectroscopic studies confirmed the evolution of MWNTs with the outer diameter between 25 and 38 nm. The possibility of use of as-grown MWNTs as an adsorbent for removal of As (V ions from drinking water was studied. Adsorption isotherm data were interpreted by the Langmuir and Freundlich equations. Kinetic data were studied using Elovich, pseudo-first order and pseudo-second order equations in order to elucidate the reaction mechanism.

  9. Growth of aligned single-walled carbon nanotubes under ac electric fields through floating catalyst chemical vapour deposition

    Institute of Scientific and Technical Information of China (English)

    Dou Xin-Yuan; Luo Shu-Dong; Zhang Zeng-Xing; Liu Dong-Fang; Wang Jian-Xiong; Gao Yan; Zhou Wei-Ya; Wang Gang; Zhou Zhen-Ping; Tan Ping-Heng; Zhou Jian-Jun; Song Li; Sun Lian-Feng; Jiang Peng; Liu Li-Feng; Zhao Xiao-Wei

    2005-01-01

    Through floating catalyst chemical vapour deposition(CVD) method, well-aligned isolated single-walled carbon nanotubes (SWCNTs) and their bundles were deposited on the metal electrodes patterned on the SiO2/Si surface under ac electric fields at relatively low temperature(280℃). It was indicated that SWCNTs were effectively aligned under ac electric fields after they had just grown in the furnace. The time for a SWCNT to be aligned in the electric field and the effect of gas flow were estimated. Polarized Raman scattering was performed to characterize the aligned structure of SWCNTs. This method would be very useful for the controlled fabrication and preparation of SWCNTs in practical applications.

  10. Growth of single-crystal α-MnO2 nanorods on multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Single-crystal α-MnO2 nanorods were grown on multi-walled carbon nanotubes (MWNTs) in H2SO4 aqueous solution. The morphology and microstructure of the composites were examined by transmission electron microscopy, high-resolution transmission electron microscopy (HRTEM), X-ray diffractometry and energy dispersive spectroscopy (EDS). The results show that α-MnO2 single-crystal nanorods with a mean diameter of 15 nm were densely grown on the surface of MWNTs. Those MWNTs/MnO2 composites were used as an electrode material for supercapacitors, and it was found that the supercapacitor performance using MWNTs/MnO2 composites was improved largely compared to that using pure MWNTs and α-MnO2 nanorod mechanically mixed with MWNTs

  11. Growth of Carbon Nanotubes over Ni Nano-particles Prepared in Situ by Reduction of La2NiO4 Oxides

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A novel catalyst precursor, La2NiO4, was investigated to synthesize carbon nanotubes, obtained from catalytic disproportionation of CO. The morphology of carbon nanotubes has been examined by TEM (transmission electron micrograph) and SEM (scaning electron micrograph). It was observed that the Ni nano-particle size formed at different reducing temperatures was a key factor to the yield and diameter of carbon nanotubes.

  12. Heteroporphyrin nanotubes and composites

    Science.gov (United States)

    Shelnutt, John A.; Medforth, Craig J.; Wang, Zhongchun

    2007-05-29

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  13. Heteroporphyrin nanotubes and composites

    Science.gov (United States)

    Shelnutt, John A.; Medforth, Craig J.; Wang, Zhongchun

    2006-11-07

    Heteroporphyrin nanotubes, metal nanostructures, and metal/porphyrin-nanotube composite nanostructures formed using the nanotubes as photocatalysts and structural templates, and the methods for forming the nanotubes and composites.

  14. Batch fabrication of nanotubes suspended between microelectrodes

    DEFF Research Database (Denmark)

    Mateiu, Ramona Valentina; Stöckli, T.; Knapp, H. F.;

    2007-01-01

    done with a simple lift-off process with standard photolithographic resist. An applied electric field is sustained between the microelectrodes during CVD to guide the nanotube growth. Comparison with simulations shows that the location and the orientation of the grown carbon nanotubes (CNT) correspond...

  15. Evolution of gold thin films to nanoparticles using plasma ion bombardment and their use as a catalyst for carbon nanotube growth

    International Nuclear Information System (INIS)

    We investigate the evolution of Au thin films to nanoparticles caused by plasma ion bombardment and report their validity as a catalyst on the growth of carbon nanotubes (CNTs). The Au thin films having 1–50 Å thickness ranges were precisely prepared by electron beam deposition. The plasma ion bombardments with the plasma power from 5 to 15 W were performed at 500 °C for 10 min under 1.33 × 102 Pa of Ar to investigate the effects of plasma power on the surface structures. It is interesting that the mean size of Au nanoparticles increased as plasma power gets high in the thinner film cases, which might be the results of sputtering and surface diffusion-related aggregation. On the contrary, the mean particle size of the thicker films decreased at lower plasma power regime due to the sputtering, then, increased again at the highest plasma power, which might be caused by the diffusion-induced aggregation of the films. Finally, to investigate the catalytic ability of the thin film-induced Au nanoparticles, we grew CNTs by a thermal chemical vapor deposition with a methane source. It was found that the Au nanoparticles obtained from the plasma-treated 5 Å thick films act as an efficient catalyst for the growth of single-walled CNTs. - Highlights: • We report the evolution of Au thin films to nanoparticles by plasma treatment. • The mean size of Au nanoparticles increased with increasing plasma power. • The nanoparticle size increases by sputtering and diffusion-induced aggregation. • The plasma-treated 5 Å thick films act as an efficient catalyst for SWNTs growth

  16. Quantum Chemical Simulations Reveal Acetylene-Based Growth Mechanisms in the Chemical Vapor Deposition Synthesis of Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Eres, Gyula [ORNL; Wang, Ying [Nagoya University, Japan; Gao, Xingfa [Institute of High Energy Physics, Chinese Academy of Sciences, China; Qian, Hu-Jun [Jilin University, Changchun; Ohta, Yasuhito [Fukui Institute of Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan; Wu, Xiaona [Nagoya University, Japan; Morokuma, Keiji [Fukui Institute of Fundamental Chemistry, Kyoto University, Kyoto 606-8103, Japan; Irle, Stephan [WPI-Institute of Transformative Bio-Molecules and Department of Chemistry, Nagoya University, Japan

    2014-01-01

    Nonequilibrium quantum chemical molecular dynamics (QM/MD) simulation of early stages in the nucleation process of carbon nanotubes from acetylene feedstock on an Fe38 cluster was performed based on the density-functional tight-binding (DFTB) potential. Representative chemical reactions were studied by complimentary static DFTB and density functional theory (DFT) calculations. Oligomerization and cross-linking reactions between carbon chains were found as the main reaction pathways similar to that suggested in previous experimental work. The calculations highlight the inhibiting effect of hydrogen for the condensation of carbon ring networks, and a propensity for hydrogen disproportionation, thus enriching the hydrogen content in already hydrogen-rich species and abstracting hydrogen content in already hydrogen-deficient clusters. The ethynyl radical C2H was found as a reactive, yet continually regenerated species, facilitating hydrogen transfer reactions across the hydrocarbon clusters. The nonequilibrium QM/MD simulations show the prevalence of a pentagon-first nucleation mechanism where hydrogen may take the role of one arm of an sp2 carbon Y-junction. The results challenge the importance of the metal carbide formation for SWCNT cap nucleation in the VLS model and suggest possible alternative routes following hydrogen-abstraction acetylene addition (HACA)-like mechanisms commonly discussed in combustion synthesis.

  17. Controlled Growth of Well-Defined Conjugated Polymers from the Surfaces of Multiwalled Carbon Nanotubes: Photoresponse Enhancement via Charge Separation.

    Science.gov (United States)

    Hou, Wenpeng; Zhao, Ning-Jiu; Meng, Dongli; Tang, Jing; Zeng, Yi; Wu, Yu; Weng, Yangziwan; Cheng, Chungui; Xu, Xiulai; Li, Yi; Zhang, Jian-Ping; Huang, Yong; Bielawski, Christopher W; Geng, Jianxin

    2016-05-24

    The installation of heterojunctions on the surfaces of carbon nanotubes (CNTs) is an effective method for promoting the charge separation processes needed for CNT-based electronics and optoelectronics applications. Conjugated polymers are proven state-of-the-art candidates for modifying the surfaces of CNTs. However, all previous attempts to incorporate conjugated polymers to CNTs resulted in unordered interfaces. Herein we show that well-defined chains of regioregular poly(3-hexylthiophene) (P3HT) were successfully grown from the surfaces of multiwalled CNTs (MWNTs) using surface-initiated Kumada catalyst-transfer polycondensation. The polymerization was found to proceed in a controlled manner as chains of tunable lengths were prepared through variation of the initial monomer-to-initiator ratio. Moreover, it was determined that large-diameter MWNTs afforded highly ordered P3HT aggregates, which exhibited a markedly bathochromically shifted optical absorption due to a high grafting density induced planarization of the polymer chains. Using ultrafast spectroscopy, the heterojunctions formed between the MWNTs and P3HT were shown to effectively overcome the binding energy of excitons, leading to photoinduced electron transfer from P3HT to MWNTs. Finally, when used as prototype devices, the individual MWNT-g-P3HT core-shell structures exhibited excellent photoresponses under a low illumination density. PMID:27087146

  18. Liquid surface model for carbon nanotube energetics

    DEFF Research Database (Denmark)

    Solov'yov, Ilia; Mathew, Maneesh; Solov'yov, Andrey V.;

    2008-01-01

    In the present paper we developed a model for calculating the energy of single-wall carbon nanotubes of arbitrary chirality. This model, which we call as the liquid surface model, predicts the energy of a nanotube with relative error less than 1% once its chirality and the total number of atoms are...... an important insight in the energetics and stability of nanotubes of different chirality and might be important for the understanding of nanotube growth process. For the computations we use empirical Brenner and Tersoff potentials and discuss their applicability to the study of carbon nanotubes. From...... the calculated energies we determine the elastic properties of the single-wall carbon nanotubes (Young modulus, curvature constant) and perform a comparison with available experimental measurements and earlier theoretical predictions....

  19. Effects of synthetic conditions on the structure and morphology of open-ended vanadium oxide nanotubes and study of their growth mechanism

    Institute of Scientific and Technical Information of China (English)

    WEI Jia; ZHU Ying; ZHANG JingChang

    2007-01-01

    Vanadium oxide nanotubes (Vox-NTs) have been synthesized by using n-butylamine as structure- directing template and V2O5 as precursor under hydrothermal conditions. XRD, FTIR, SEM, TEM, BET and TG-DTA characterizations have been performed to both optimize the synthetic conditions and understand the growth mechanism of Vox-NTs. The results showed that open-ended Vox-NTs were obtained under the optimized conditions (hydrothermal temperature: 150-160°C, hydrothermal time: 5-7 d, the molar ratio of V2O5 to n-butylamine is 1:1) with diameters ranging from about 30 to 100 nm and several micrometers in length. The BET surface area and the desorption cumulative pore volume of pores of the as-synthesized sample were about 27.4609 m2/g and 0.191087 cm3/g, respectively. The result presents that the synthesis of Vox-NTs is controlled by the "rolling" mechanism and temperature is primary driving force for rolling.

  20. In-situ growth of LiFePO4 nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets for high-performance lithium ion batteries

    International Nuclear Information System (INIS)

    Graphical abstract: In-situ soft-templated LFP nanocrystals on interconnected carbon nanotubes/mesoporous carbon nanosheets (designated as LFP@CNTs/CNSs), exhibited superior electrochemical performance due to the synergetic effect between CNTs and CNSs, which form interconnected conductive network for fast transport of both electrons and lithium ions. - Highlights: • LFP nanocrystals were in-situ synthesized on interconnected CNTs/CNSs framework with an in-situ soft-templated method. • LFP@CNTs/CNSs exhibited superior rate capability and cycling stability, due to interconnected conductive network for fast transport of both electrons and lithium ions. • The synergetic effect between CNTs and CNSs on the electrochemical performance of LFP electrode was demonstrated by a systematically electrochemical study compared with LFP/CNSs and LFP/CNTs. - Abstract: Lithium ion phosphate (LiFePO4) nanocrystals are successfully in-situ grown on interconnected carbon nanotubes/mesoporous carbon nanosheets (designated as LFP@CNTs/CNSs) with a soft-templated method, which involves the multi-constituent co-assembly of a triblock copolymer, CNTs, resol and precursors of LFP followed by thermal treatment. X-ray diffraction, scanning electron microscopy, high resolution transmission electron microscopy and N2 adsorption-desorption techniques are used to characterize the structure and morphology of the as-synthesized materials. When used as the cathode of lithium ion batteries, the LFP@CNTs/CNSs composite exhibits superior rate capability and cycling stability, compared with the samples modified only with CNSs (designated as LFP/CNSs) or with CNTs (designated as LFP/CNTs). This is mainly attributed to the synergetic effect between CNTs and CNSs caused by their unique structure, which forms interconnected conductive network for fast transport of both electrons and lithium ions, and thus remarkably improves the electrode kinetics. Firstly, nano-sized LFP are in-situ grown on the CNTs

  1. Interfacing carbon nanotubes (CNT) with plants: enhancement of growth, water and ionic nutrient uptake in maize ( Zea mays) and implications for nanoagriculture

    Science.gov (United States)

    Tiwari, D. K.; Dasgupta-Schubert, N.; Villaseñor Cendejas, L. M.; Villegas, J.; Carreto Montoya, L.; Borjas García, S. E.

    2014-06-01

    The application of nano-biotechnology to crop-science/agriculture (`nanoagriculture') is a recent development. While carbon nanotubes (CNTs) have been shown to dramatically improve germination of some comestible plants, deficiencies in consistency of behavior and reproducibility arise, partially from the variability of the CNTs used. In this work, factory-synthesized multi-walled-CNTs (MWCNTs) of quality-controlled specifications were seen to enhance the germinative growth of maize seedlings at low concentrations but depress it at higher concentrations. Growth enhancement principally arose through improved water delivery by the MWCNT. Polarized EDXRF spectrometry showed that MWCNTs affect mineral nutrient supply to the seedling through the action of the mutually opposing forces of inflow with water and retention in the medium by the ion-CNT transient-dipole interaction. The effect varied with ion type and MWCNT concentration. The differences of the Fe tissue concentrations when relatively high equimolar Fe2+ or Fe3+ was introduced, implied that the ion-CNT interaction might induce redox changes to the ion. The tissue Ca2+ concentration manifested as the antipode of the Fe2+ concentration indicating a possible cationic exchange in the cell wall matrix. SEM images showed that MWCNTs perforated the black-layer seed-coat that could explain the enhanced water delivery. The absence of perforations with the introduction of FeCl2/FeCl3 reinforces the idea of the modification of MWCNT functionality by the ion-CNT interaction. Overall, in normal media, low dose MWCNTs were seen to be beneficial, improving water absorption, plant biomass and the concentrations of the essential Ca, Fe nutrients, opening a potential for possible future commercial agricultural applications.

  2. Catalytic activity of Fe, Co and Fe-Co-MCM-41 for the growth of carbon nanotubes by chemical vapour deposition method

    International Nuclear Information System (INIS)

    Iron, cobalt and a mixture of iron and cobalt incorporated mesoporous MCM-41 molecular sieves were synthesised by hydrothermal method and used to investigate the rules governing their nanotube producing activity. The catalysts were characterised by XRD and N2 sorption studies. The effect of the catalysts has been investigated for the production of carbon nanotubes at an optimised temperature 750 deg. C with flow rate of N2 and C2H2 is 140 and 60 ml/min, respectively for a reaction time 10 min. Fe-Co-MCM-41 catalyst was selective for carbon nanotubes with low amount of amorphous carbon with increase in single-walled carbon nanotubes (SWNTs) yield at 750 deg. C. Formation of nanotubes was studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and Raman spectroscopy. Transmission electron microscope and Raman spectrum was used to follow the quality and nature of carbon nanotubes formed and the graphitic layers and disordered band, which shows the clear evidence for the formation of SWNTs, respectively. The result propose that the diameter of the nanotubes in the range of 0.78-1.35 nm. Using our optimised conditions for this system, Fe-Co-MCM-41 showed the best results for selective SWNTs with high yield when compared with Fe-MCM-41 and Co-MCM-41

  3. Synthesis of Aligned Carbon Nanotubes by Thermal Chemical Vapor Deposition

    Institute of Scientific and Technical Information of China (English)

    LI Gang; ZHOU Ming; MA Weiwei; CAI Lan

    2009-01-01

    Single crystal silicon was found to be very beneficial to the growth of aligned carbon nanotubes by chemical vapor deposition with C2H2 as carbon source. A thin film of Ni served as catalyst was deposited on the Si substrate by the K575X Peltier Cooled High Resolution Sputter Coater before growth. The growth properties of carbon nanotubes were studied as a function of the Ni catalyst layer thickness. The diameter, growth rate and areal density of the carbon nanotubes were controlled by the initial thickness of the catalyst layer. Steric hindrance between nanotubes forces them to grow in well-aligned manner at an initial stage of growth. Transmission electron microscope analysis revealed that nanotubes grew by a tip growth mechanism.

  4. Single- to Triple-Wall WS2 Nanotubes Obtained by High-Power Plasma Ablation of WS2 Multiwall Nanotubes

    Directory of Open Access Journals (Sweden)

    Volker Brüser

    2014-04-01

    Full Text Available The synthesis of inorganic nanotubes (INT from layered compounds of a small size (<10 nm in diameter and number of layers (<4 is not a trivial task. Calculations based on density functional tight-binding theory (DFTB predict that under highly exergonic conditions, the reaction could be driven into a “window” of (meta- stability, where 1–3-layer nanotubes will be formed. Indeed, in this study, single- to triple-wall WS2 nanotubes with a diameter of 3–7 nm and a length of 20–100 nm were produced by high-power plasma irradiation of multiwall WS2 nanotubes. As target materials, plane crystals (2H, quasi spherical nanoparticles (IF and multiwall, 20–30 layers, WS2 nanotubes were assessed. Surprisingly, only INT-WS2 treated by plasma resulted in very small, and of a few layers, “daughter” nanotubules. The daughter nanotubes occur mostly attached to the outer surface of the predecessor, i.e., the multiwall “mother” nanotubes. They appear having either a common growth axis with the multiwall nanotube or tilted by approximately 30° or 60° with respect to its axis. This suggests that the daughter nanotubes are generated by exfoliation along specific crystallographic directions. A growth mechanism for the daughter nanotubes is proposed. High resolution transmission and scanning electron microscopy (HRTEM/HRSEM analyses revealed the distinctive nanoscale structures and helped elucidating their growth mechanism.

  5. Growth of few-wall carbon nanotubes with narrow diameter distribution over Fe-Mo-MgO catalyst by methane/acetylene catalytic decomposition.

    Science.gov (United States)

    Labunov, Vladimir A; Basaev, Alexander S; Shulitski, Boris G; Shaman, Yuriy P; Komissarov, Ivan; Prudnikava, Alena L; Tay, Beng Kang; Shakerzadeh, Maziar

    2012-01-01

    Few-wall carbon nanotubes were synthesized by methane/acetylene decomposition over bimetallic Fe-Mo catalyst with MgO (1:8:40) support at the temperature of 900°C. No calcinations and reduction pretreatments were applied to the catalytic powder. The transmission electron microscopy investigation showed that the synthesized carbon nanotubes [CNTs] have high purity and narrow diameter distribution. Raman spectrum showed that the ratio of G to D band line intensities of IG/ID is approximately 10, and the peaks in the low frequency range were attributed to the radial breathing mode corresponding to the nanotubes of small diameters. Thermogravimetric analysis data indicated no amorphous carbon phases. Experiments conducted at higher gas pressures showed the increase of CNT yield up to 83%. Mössbauer spectroscopy, magnetization measurements, X-ray diffraction, high-resolution transmission electron microscopy, and electron diffraction were employed to evaluate the nature of catalyst particles. PMID:22300375

  6. Effect of fluoride and water content on the growth of TiO2 nanotubes synthesized via ethylene glycol with voltage changes during anodizing process

    Science.gov (United States)

    Quiroz, Heiddy P.; Quintero, Francisco; Arias, Pedro J.; Dussan, A.; Zea, Hugo R.

    2015-07-01

    In this work, titanium foils were anodized in ethylene glycol solutions containing different amounts of water and fluoride to determine their effects on the top morphology and crystalline structure of the formed titania nanostructures. Anodizing was performed for 2 h by using titanium foils as both anode and cathode applying a squared-pulse voltage profile composed of one step at 80 V for 3 min followed by another at 20 V for 5 min; constant voltage conditions were also used to study the nanostructure formation on the surface. We found the formation of nanostructured titania on the surface of the anodized foil when small amounts of water and fluoride are present in the anodizing solution. The top of these nanostructures is irregular when no water is added, but is expected to change with different amounts of water and fluoride in the ranges of 1 - 9% and 0.05 - 0.5%, respectively. Synthesis parameters also change nanotube morphology. The morphology and structure properties of the samples were studied by scanning electron microscopy (SEM) and X-ray powder diffraction (XRD). Formation of TiO2 nanotubes by anodization method are strongly correlated to conditions like fluoride concentration and applied voltages. Tube length varying between 2 and 7 μm, exhibiting different diameters and wall thicknesses were obtained. When an alternate voltage was applied, the wall of the nanotubes presented evenly spaced rings while nanotubes with smooth wall form were observed when constant voltage was applied. Reflection peaks corresponding to Brookite, Anatase, and Rutile of TiO2 phases were observed from XRD measurements. A correlation between the effects of synthesis parameters on nanotube formation and morphological properties is presented. TiO2 nanotubes prepared by electrochemical anodization have excellent performance in various applications such as photocatalysts, solar cells, gas sensors, and biomedical applications.

  7. Mechanical properties of hybrid polymer nanotube systems

    Science.gov (United States)

    Coleman, Jonathan N.; Cadek, Martin; Dalton, Alan B.; Munoz, Edgar; Razal, Joselito; Baughman, Ray H.; Blau, Werner J.

    2003-04-01

    In this work, mechanical properties of hybrid materials fabricated from nanotubes and commercially available polymers were investigated. It was found that, by adding various concentrations of arc discharge multiwall nanotubes, both Young"s modulus and hardness increased by factors of 1.8 and 1.6 at 1wt% in PVA and 2.8 and 2.0 at 8wt% in PVK, in reasonable agreement with the Halpin-Tsai theory. Furthermore, the presence of the nanotubes was found to nucleate crystallization of the PVA. This crystal growth is thought to enhance matrix-nanotube stress transfer. In addition, microscopy studies suggest extremely strong interfacial bonding in the PVA-based composite. This is manifested by the fracture of the polymer rather that the polymer-nanotube interface. The dependence of the polymer nanotube interfacial interaction on host polymer was studied by intercalating various polymers (PVA, PVP and PS) into single wall nanotube buckypaper. Even for short soak times, significant polymer intercalation into existing free volume was observed. Depending on the polymer and the level of intercalation tensile tests on intercalated sheets showed that the Young"s modulus, strength and toughness increased by factors of 3, 9 and 28, respectively. This indicates that the intercalated polymer enhances load transmission between nanotubes due the significant stress transfer. The level of stress transfer was observed to scale with polymer hydrophobicity as expected.

  8. Novel nanotubes and encapsulated nanowires

    International Nuclear Information System (INIS)

    Carbon nanotubes, with or without encapsulated material, generated by arcdischarge and electrolytic techniques have been studied. Microcrystals of refractory carbides (i.e. NbC, TaC, MoC), contained in nanotubes and polyhedral particles, produced by arcing electrodes of graphite/metal mixtures, were analysed by high resolution transmission electron microscopy (HRTEM) and X-ray powder diffraction. Encapsulation of MoC was found to give rise to an unusual stable form, namely face-centered-cubic MoC. SQUID measurements indicate that the encapsulated carbides exhibit superconducting transitions at about 10-12 K, thus they differ from carbon nanotubes/nanoparticles which do not superconduct. Four-probe and microwave (contactless) conductivity measurements indicate that most of the analysed samples behave as semiconductors. However, metallic transport was observed in specimens containing single conglomerated carbon nanotube bundles and boron-doped carbon nanotubes. Novel metallic βSn nanowires were produced by electrolysis of graphite electrodes immersed in molten LiCl/SnCl2 mixtures. Prolonged electron irradiation of these nanowiresleads to axial growth and to dynamic transformations. These observations suggest ways in which materials may be modified by microencapsulation and irradiation. (orig.)

  9. Novel nanotubes and encapsulated nanowires

    Science.gov (United States)

    Terrones, M.; Hsu, W. K.; Schilder, A.; Terrones, H.; Grobert, N.; Hare, J. P.; Zhu, Y. Q.; Schwoerer, M.; Prassides, K.; Kroto, H. W.; Walton, D. R. M.

    Carbon nanotubes, with or without encapsulated material, generated by arc discharge and electrolytic techniques have been studied. Microcrystals of refractory carbides (i.e. NbC, TaC, MoC), contained in nanotubes and polyhedral particles, produced by arcing electrodes of graphite/metal mixtures, were analysed by high hesolution transmission electron microscopy (HRTEM) and X-ray powder diffraction. Encapsulation of MoC was found to give rise to an unusual stable form, namely face-centered-cubic MoC. SQUID measurements indicate that the encapsulated carbides exhibit superconducting transitions at about 10-12 K, thus they differ from carbon nanotubes/nanoparticles which do not superconduct. Four-probe and microwave (contactless) conductivity measurements indicate that most of the analysed samples behave as semiconductors. However, metallic transport was observed in specimens containing single conglomerated carbon nanotube bundles and boron-doped carbon nanotubes. Novel metallic βSn nanowires were produced by electrolysis of graphite electrodes immersed in molten LiCl/SnCl2 mixtures. Prolonged electron irradiation of these nanowires leads to axial growth and to dynamic transformations. These observations suggest ways in which materials may be modified by microencapsulation and irradiation.

  10. Nanotube Arrays in Porous Anodic Alumina Membranes

    Institute of Scientific and Technical Information of China (English)

    Liang LI; Naoto KOSHIZAKI; Guanghai LI

    2008-01-01

    This review summarizes the various techniques developed for fabricating nanotube arrays in porous anodic alumina membranes (AAMs). After a brief introduction to the fabrication process of AAMs, taking carbons, metals, semiconductors, organics, biomoleculars, and heterojunctions as typical examples, attention will be focused on the recently established methods to fabricate nanotubes in AAM, including electrochemical deposition, surface sol-gel, modified chemical vapor deposition, atomic layer deposition, and layer-by-layer growth. Every method is demonstrated by one or two reported results. Finally, this review is concluded with some perspectives on the research directions and focuses on the AAM-based nanotubes fields.

  11. Synthesis of Carbon Nanotubes Using Sol Gel Route

    Science.gov (United States)

    Abdel-Fattah, Tarek

    2002-12-01

    Since 1990, carbon nanotubes were discovered and they have been the object of intense scientific study ever since. A carbon nanotube is a honeycomb lattice rolled into a cylinder. The diameter of a carbon nanotube is of nanometer size and the length is in the range of micrometer. Many of the extraordinary properties attributed to nanotubes, such as tensile strength and thermal stability, have inspired predictions of microscopic robots, dent-resistant car bodies and earthquake-resistant buildings. The first products to use nanotubes were electrical. Some General Motors cars already include plastic parts to which nanotubes were added; such plastic can be electrified during painting so that the paint will stick more readily. Two nanotube-based lighting and display products are well on their way to market. In the long term, perhaps the most valuable applications will take further advantage of nanotubes' unique electronic properties. Carbon nanotubes can in principle play the same role as silicon does in electronic circuits, but at a molecular scale where silicon and other standard semiconductors cease to work. There are several routes to synthesize carbon nanotubes; laser vaporization, carbon arc and vapor growth. We have applied a different route using sol gel chemistry to obtain carbon nanotubes. This work is patent-pending.

  12. Preparation of very long and open aligned carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    潘正伟; 常保和; 孙连峰; 钱露茜; 刘祖琴; 唐东升; 王刚; 解思深

    2000-01-01

    Very long and open aligned carbon nanotubes that reach about 2 mm long, an order of magnitude longer than previously reached, have been prepared by chemical vapor deposition over silica dioxide substrates on the surface, where iron/silica nano-composite particles are evenly positioned. The nanotubes are naturally opened at the bottom ends. The growth mechanism of the very long and open-ended nanotubes is also discussed.

  13. Modeling and simulations of carbon nanotubes and their junctions on surfaces

    International Nuclear Information System (INIS)

    Recent experiments demonstrated lattice-oriented growth, controlled manipulation of carbon nanotubes and their nanoelectronic devices on surfaces. Using molecular dynamics simulation method and by performing electronic structure and electron transport calculations, we investigate nanotubes and their intermolecular junctions on surfaces. It is demonstrated that local atomic structure in nanotube-surface and nanotube-nanotube contacts plays important roles in friction and electronic transport at the nanoscale. Each nanotube has unique equilibrium orientations with respect to surface structure. Electronic transport is strongly enhanced when the atomic structures of the objects in contact are commensurate

  14. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors

    OpenAIRE

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.

    2015-01-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleat...

  15. Growth and characterization of aligned ultralong and diameter-controlled silicon nanotubes by hot wire chemical vapor deposition using electrospun poly(vinyl pyrrolidone) nanofiber template

    Science.gov (United States)

    Zhou, Ming; Li, Ruishan; Zhou, Jinyuan; Guo, Xiaosong; Liu, Bin; Zhang, Zhenxing; Xie, Erqing

    2009-12-01

    Using aligned suspended polyvinyl pyrrolidone nanofibers array as template, aligned ultralong (about 4 mm) silicon nanotubes have been prepared by a hot wire chemical vapor deposition process. Scanning electron microscopy and transmission electron microscopy demonstrate that the inner diameter (35-200 nm) and wall thickness (20-400 nm) of Si tubes are controlled, respectively, by baking the electrospun nanofibers and by coating time. The tube wall is composed of nanoparticle or nanopillar, and the inner surface of the wall is smoother than the outer surface of the wall. The microphotoluminescence spectra of the thinner Si nanotubes show three light emission bands in the red, green, and blue regions. And the luminescence mechanism is explained according to the quantum-confinement-luminescence center process and radiative recombination from the defect centers.

  16. Catalyst deposition for the preparation of carbon nanotubes

    DEFF Research Database (Denmark)

    2013-01-01

    covered nano patterned surface is configured to ensure that no more than a single island of catalyst is formed on each plateau, so that a sub sequent growth of carbon nanotubes from the deposited islands result in that no more than a single carbon nanotube is grown from each plateau....

  17. Synthesis of Carbon Nanotubes by MWPCVD at Low Temperature

    Institute of Scientific and Technical Information of China (English)

    王升高; 汪建华; 王传新; 马志彬; 满卫东

    2002-01-01

    Growth of carbon nanotubes (CNTs) at low temperature is very important to the applications of nanotubes. In this paper, under the catalytic effect of cobalt nanoparticles supported by SiO2, CNTs were synthesized by microwave plasma chemical vapor deposition (MWPCVD)below 500℃. It demonstrates that MWPCVD can be a very efficient process for the synthesis of CNTs at low temperature.

  18. Simulation of the Kinetics of Growth of Iron Nanoparticles in the Process of Chemical Vapor Deposition of Hydrocarbons with Injection of Ferrocene for the Synthesis of Carbon-Nanotube Arrays

    Science.gov (United States)

    Futko, S. I.; Shulitskii, B. G.; Labunov, V. A.; Ermolaeva, E. M.

    2015-11-01

    A kinetic model of growth of iron nanoparticles in the process of synthesis of carbon-nanotube arrays in an injection-type reactor of chemical vapor deposition, in which iron nanoparticles are formed as a result of the coalescence of iron atoms representing products of the thermal decomposition of a mixture of ferrocene with xylene, has been developed. It is shown that the formation of iron nanoparticles in the indicated reactor is very nonequilibrium in character. The parametric dependences of the monodisperse distributions of iron nanoparticles by their diameter, number density, and volume fraction on the flow rate of nitrogen, the temperature of the high-temperature region in the reactor, and the concentration of ferrocene in xylene have been obtained. The calculations performed have shown that the diameter of the iron nanoparticles formed increases monotonically with increase in the temperature of the chemical vapor deposition of hydrocarbons and the concentration of ferrocene in xylene and, quite the reverse, decreases monotonically with increase in the rate of the nitrogen flow. The calculated and experimental diameters of the iron nanoparticles formed at mass fractions of ferrocene in xylene of 0.5-10% were compared. The model proposed can be used for calculating the synthesis of carbon nanotubes in a chemical-vapor-deposition reactor of the injection type.

  19. Rapid Growth of Zinc Oxide Nanotube-Nanowire Hybrid Architectures and Their Use in Breast Cancer-Related Volatile Organics Detection.

    Science.gov (United States)

    Katwal, Giwan; Paulose, Maggie; Rusakova, Irene A; Martinez, James E; Varghese, Oomman K

    2016-05-11

    A simple direct method for the rapid fabrication of zinc oxide nanotube-nanowire hybrid structure in an environmentally friendly way is described here. Zinc foils were anodized in an aqueous solution of washing soda and baking soda at room temperature in order to obtain the hybrid architecture. At the beginning of the process nanowires were formed on the substrate. The wider nanowires transformed into nanotubes in about a minute and grew in length with time. The morphological integrity was maintained upon heat treatment at temperatures up to the melting point of the substrate (∼400 °C) except that the nanotube wall became porous. The chemiresistor devices fabricated using the heat-treated structure exhibited high response to low-concentration volatile organic compounds that are considered markers for breast cancer. The response was not significantly affected by high humidity or presence of hydrogen, methane, or carbon dioxide. The devices are expected to find use as breath sensors for noninvasive early detection of breast cancer. PMID:27045345

  20. Carbon nanotube based stationary phases for microchip chromatography

    DEFF Research Database (Denmark)

    Mogensen, Klaus Bo; Kutter, Jörg Peter

    2012-01-01

    already been demonstrated in more classical formats, for improved separation performance in gas and liquid chromatography, and for unique applications in solid phase extraction. Carbon nanotubes are now also entering the field of microfluidics, where there is a large potential to be able to provide......The objective of this article is to provide an overview and critical evaluation of the use of carbon nanotubes and related carbon-based nanomaterials for microchip chromatography. The unique properties of carbon nanotubes, such as a very high surface area and intriguing adsorptive behaviour, have...... integrated, tailor-made nanotube columns by means of catalytic growth of the nanotubes inside the fluidic channels. An evaluation of the different implementations of carbon nanotubes and related carbon-based nanomaterials for microfluidic chromatography devices is given in terms of separation performance and...

  1. Automated circuit fabrication and direct characterization of carbon nanotube vibrations.

    Science.gov (United States)

    Zeevi, G; Shlafman, M; Tabachnik, T; Rogachevsky, Z; Rechnitz, S; Goldshtein, I; Shlafman, S; Gordon, N; Alchanati, G; Itzhak, M; Moshe, Y; Hajaj, E M; Nir, H; Milyutin, Y; Izraeli, T Y; Razin, A; Shtempluck, O; Kotchtakov, V; Yaish, Y E

    2016-01-01

    Since their discovery, carbon nanotubes have fascinated many researchers due to their unprecedented properties. However, a major drawback in utilizing carbon nanotubes for practical applications is the difficulty in positioning or growing them at specific locations. Here we present a simple, rapid, non-invasive and scalable technique that enables optical imaging of carbon nanotubes. The carbon nanotube scaffold serves as a seed for nucleation and growth of small size, optically visible nanocrystals. After imaging the molecules can be removed completely, leaving the surface intact, and thus the carbon nanotube electrical and mechanical properties are preserved. The successful and robust optical imaging allowed us to develop a dedicated image processing algorithm through which we are able to demonstrate a fully automated circuit design resulting in field effect transistors and inverters. Moreover, we demonstrate that this imaging method allows not only to locate carbon nanotubes but also, as in the case of suspended ones, to study their dynamic mechanical motion. PMID:27396506

  2. Photoluminescence from single walled carbon nanotubes: a comparison between suspended and micelle-encapsulated nanotubes

    OpenAIRE

    Lefebvre, J.; Fraser, J. M.; Homma, Y; Finnie, P.

    2003-01-01

    Single walled carbon nanotubes (SWNTs) are luminescent. Up to now, two preparation methods, both of which isolate individual SWNTs, have enabled the detection of nanotube bandgap photoluminescence (PL): encapsulation of individual SWNTs into surfactant micelles, and direct growth of individual SWNTs suspended in air between pillars. This paper compares the PL obtained from suspended SWNTs to published PL data obtained from encapsulated SWNTs. We find that emission peaks are blue-shifted by 28...

  3. Plumbing carbon nanotubes

    Science.gov (United States)

    Jin, Chuanhong; Suenaga, Kazu; Iijima, Sumio

    2008-01-01

    Since their discovery, the possibility of connecting carbon nanotubes together like water pipes has been an intriguing prospect for these hollow nanostructures. The serial joining of carbon nanotubes in a controlled manner offers a promising approach for the bottom-up engineering of nanotube structures-from simply increasing their aspect ratio to making integrated carbon nanotube devices. To date, however, there have been few reports of the joining of two different carbon nanotubes. Here we demonstrate that a Joule heating process, and associated electro-migration effects, can be used to connect two carbon nanotubes that have the same (or similar) diameters. More generally, with the assistance of a tungsten metal particle, this technique can be used to seamlessly join any two carbon nanotubes-regardless of their diameters-to form new nanotube structures.

  4. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  5. Novel Bismuth Nanotubes

    Institute of Scientific and Technical Information of China (English)

    苏长荣; 李家明

    2002-01-01

    Theoretical investigations show that bismuth nanotubes are semiconductors for all diameters. For smalldiameter bismuth nanotubes, the band structures and bandgaps vary strongly with the strong hybridization effect. When the diameters are larger than 18 A, the bandgaps ofBi (n, n) and (n, 0) nanotubes approach 0.63 e V, corresponding to the bandgap of bismuth sheet at the Γ point. Thus, bismuth nanotubes are expected to be a potential semiconductor nanomaterial in future nanoelectronics.

  6. Aligned carbon nanotubes physics, concepts, fabrication and devices

    CERN Document Server

    Ren, Zhifeng; Wang, Yang

    2012-01-01

    This book surveys the physics and fabrication of carbon nanotubes and their applications in optics, electronics, chemistry and biotechnology. The text illustrates major fabrication methods in detail, particularly the most widely used PECVD growth techniques.

  7. Polymerization initated at sidewalls of carbon nanotubes

    Science.gov (United States)

    Tour, James M. (Inventor); Hudson, Jared L. (Inventor); Krishnamoorti, Ramanan (Inventor); Yurekli, Koray (Inventor); Mitchell, Cynthia A. (Inventor)

    2011-01-01

    The present invention is directed to aryl halide (such as aryl bromide) functionalized carbon nanotubes that can be utilized in anionic polymerization processes to form polymer-carbon nanotube materials with improved dispersion ability in polymer matrices. In this process the aryl halide is reacted with an alkyllithium species or is reacted with a metal to replace the aryl-bromine bond with an aryl-lithium or aryl-metal bond, respectively. It has further been discovered that other functionalized carbon nanotubes, after deprotonation with a deprotonation agent, can similarly be utilized in anionic polymerization processes to form polymer-carbon nanotube materials. Additionally or alternatively, a ring opening polymerization process can be performed. The resultant materials can be used by themselves due to their enhanced strength and reinforcement ability when compared to their unbound polymer analogs. Additionally, these materials can also be blended with pre-formed polymers to establish compatibility and enhanced dispersion of nanotubes in otherwise hard to disperse matrices resulting in significantly improved material properties. The resultant polymer-carbon nanotube materials can also be used in drug delivery processes due to their improved dispersion ability and biodegradability, and can also be used for scaffolding to promote cellular growth of tissue.

  8. Titania nanotube arrays as interfaces for neural prostheses

    International Nuclear Information System (INIS)

    Neural prostheses have become ever more acceptable treatments for many different types of neurological damage and disease. Here we investigate the use of two different morphologies of titania nanotube arrays as interfaces to advance the longevity and effectiveness of these prostheses. The nanotube arrays were characterized for their nanotopography, crystallinity, conductivity, wettability, surface mechanical properties and adsorption of key proteins: fibrinogen, albumin and laminin. The loosely packed nanotube arrays fabricated using a diethylene glycol based electrolyte, contained a higher presence of the anatase crystal phase and were subsequently more conductive. These arrays yielded surfaces with higher wettability and lower modulus than the densely packed nanotube arrays fabricated using water based electrolyte. Further the adhesion, proliferation and differentiation of the C17.2 neural stem cell line was investigated on the nanotube arrays. The proliferation ratio of the cells as well as the level of neuronal differentiation was seen to increase on the loosely packed arrays. The results indicate that loosely packed nanotube arrays similar to the ones produced here with a DEG based electrolyte, may provide a favorable template for growth and maintenance of C17.2 neural stem cell line. - Highlights: • Titania nanotube arrays can be fabricated with to have loosely or densely packed morphologies. • Titania nanotube arrays support higher C17.2 neural stem cell adhesion and proliferation. • Titania nanotube arrays support higher C17.2 neural stem cell differentiation towards neuronal lineage

  9. Experimental studies and micromagnetic simulations of electrodeposited Co nanotube arrays

    International Nuclear Information System (INIS)

    Magnetic hollow nanotubes of cobalt forming close-packed arrays are synthesized by controlling the growth during electrodeposition in AAO template. Superconducting quantum interference device (SQUID) magnetometry is used to experimentally measure the static magnetization of the array of nanotubes. Excellent qualitative agreements of SQUID and micromagnetic simulations for static measurements are observed. This motivates us to evaluate dynamic response measurements via micromagnetic simulations. The coercivity simulated along the longitudinal axis of the nanotube is found increase with the length of isolated as well as for array of nanotubes. The effect of interactions is also clearly observed both in static as well as in dynamic evaluations. The interactions cause reduction in coercivity along with the switching which depends upon the length of the nanotubes. The calculation for FMR modes also indicates that propagation of the spin waves are greatly influenced by the hollow centre of nanotube as compare to nanowire and support to maintain the stable vortex configuration. For array of nanotubes, multiple peaks are found over larger number of frequencies which is anticipated due the interactions between nanotubes. Simulation for bias field and angular dependence of spin wave modes also yields a significant influenced by the presence of neighbouring nanotubes

  10. Experimental studies and micromagnetic simulations of electrodeposited Co nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, Sachin, E-mail: sachin.pathak2008@gmail.com [Materials Science and Engineering, Yonsei University, Seoul 120-749, Republic of Korea and Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Singh, Sukhvinder [Institute of Experimental Physics, Saarland University, P.O. Box 151150, D-66041 Saarbruecken (Germany); Gaur, Rajmani [Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016 (India); Sharma, Manish [Atrenta India Pvt. Ltd, Sector 2 Noida, Uttar Pradesh 201301 (India)

    2014-08-07

    Magnetic hollow nanotubes of cobalt forming close-packed arrays are synthesized by controlling the growth during electrodeposition in AAO template. Superconducting quantum interference device (SQUID) magnetometry is used to experimentally measure the static magnetization of the array of nanotubes. Excellent qualitative agreements of SQUID and micromagnetic simulations for static measurements are observed. This motivates us to evaluate dynamic response measurements via micromagnetic simulations. The coercivity simulated along the longitudinal axis of the nanotube is found increase with the length of isolated as well as for array of nanotubes. The effect of interactions is also clearly observed both in static as well as in dynamic evaluations. The interactions cause reduction in coercivity along with the switching which depends upon the length of the nanotubes. The calculation for FMR modes also indicates that propagation of the spin waves are greatly influenced by the hollow centre of nanotube as compare to nanowire and support to maintain the stable vortex configuration. For array of nanotubes, multiple peaks are found over larger number of frequencies which is anticipated due the interactions between nanotubes. Simulation for bias field and angular dependence of spin wave modes also yields a significant influenced by the presence of neighbouring nanotubes.

  11. Titania nanotube arrays as interfaces for neural prostheses

    Energy Technology Data Exchange (ETDEWEB)

    Sorkin, Jonathan A. [Department of Mechanical Engineering, Colorado State University, Fort Collins CO 80523 (United States); Hughes, Stephen [Department of Chemical and Biological Engineering, Colorado State University, Fort Collins CO 80523 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins CO 80523 (United States); Soares, Paulo [Department of Mechanical Engineering, Polytechnic School, Pontifícia Universidade Católica do Paraná, Curitiba, PR 80215-901 (Brazil); Popat, Ketul C., E-mail: ketul.popat@colostate.edu [Department of Mechanical Engineering, Colorado State University, Fort Collins CO 80523 (United States); School of Biomedical Engineering, Colorado State University, Fort Collins CO 80523 (United States)

    2015-04-01

    Neural prostheses have become ever more acceptable treatments for many different types of neurological damage and disease. Here we investigate the use of two different morphologies of titania nanotube arrays as interfaces to advance the longevity and effectiveness of these prostheses. The nanotube arrays were characterized for their nanotopography, crystallinity, conductivity, wettability, surface mechanical properties and adsorption of key proteins: fibrinogen, albumin and laminin. The loosely packed nanotube arrays fabricated using a diethylene glycol based electrolyte, contained a higher presence of the anatase crystal phase and were subsequently more conductive. These arrays yielded surfaces with higher wettability and lower modulus than the densely packed nanotube arrays fabricated using water based electrolyte. Further the adhesion, proliferation and differentiation of the C17.2 neural stem cell line was investigated on the nanotube arrays. The proliferation ratio of the cells as well as the level of neuronal differentiation was seen to increase on the loosely packed arrays. The results indicate that loosely packed nanotube arrays similar to the ones produced here with a DEG based electrolyte, may provide a favorable template for growth and maintenance of C17.2 neural stem cell line. - Highlights: • Titania nanotube arrays can be fabricated with to have loosely or densely packed morphologies. • Titania nanotube arrays support higher C17.2 neural stem cell adhesion and proliferation. • Titania nanotube arrays support higher C17.2 neural stem cell differentiation towards neuronal lineage.

  12. A new mechanism for carbon nanotube evolution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    @@ Key discoveries on the growth mechanism of carbon nanotubes(CNTs) have recently been achieved by CAS researcher ZHU Zhenping and his research group at the State Key Laboratory of Coal Conversion,the Institute of Coal Chemistry of CAS, funded by the National Natural Science Foundation of China and the CAS Bairen Program.

  13. Processing, microstructure, and mechanical behavior of titanium dioxide nanotubes

    Science.gov (United States)

    Crawford, Grant Alan

    Titanium dioxide nanotubes are of considerable interest for use in hydrogen generation, solar cells, chemical sensors, and bioactive coatings. In this study, nanotube coatings were fabricated on a Ti substrate via anodic oxidation. A novel hierarchical coating consisting of nanotubes (˜50 nm diameter) on the nano-scale and large pores/pits (˜1-20 mum) on the micro-scale was developed. This coating has potential for use as a bioactive coating on Ti bone implants. The mechanisms for nanotube formation and microscopic pitting were discussed. Microstructure characterization was conducted using scanning electron microscopy, focused ion beam, transmission electron microscopy, and image analysis. The effect of processing variables (i.e. time, temperature, pH) on nanotube characteristics (i.e. diameter, wall thickness, length) and hierarchical structure (i.e. pit/pore size and density) was studied. Anodization time was found to affect nanotube length and microscopic pit size and density. Lowering the electrolyte pH decreased the nanotube length and microscopic pit density. Increasing electrolyte temperature decreased nanotube length and increased pit/pore density. Anodization time, pH, and temperature, showed little effect on nanotube diameter or wall thickness. Microscopic pitting in the nanotube coating was found to occur above grain boundaries in the Ti substrate and above Ti grains with (0001) orientation. It was discovered that neighboring nanotubes are connected by ridges on the tube walls and an incoherent interface is formed between crystalline Ti and amorphous titanium dioxide. The influence of Ti substrate orientation on the growth kinetics and nanotube morphology was examined. Ti grains with surface orientations near (0001) experience retarded nanotube growth compared to (xxx0) orientations. This orientation dependence is likely related to differences in atomic density. Conventional nanoindentation and interfacial force microscopy (IFM), was employed to probe

  14. Characterization of Carbon Nanotubes Grown by Chemical Vapor Deposition

    Science.gov (United States)

    Cochrane, J. C.; Zhu, Shen; Su, Ching-Hua; Lehoczky, S. L.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Since the superior properties of multi-wall carbon nanotubes (MWCNT) could improve numerous devices such as electronics and sensors, many efforts have been made in investigating the growth mechanism of MWCNT to synthesize high quality MWCNT. Chemical vapor deposition (CVD) is widely used for MWCNT synthesis, and scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) are useful methods for analyzing the structure, morphology and composition of MWCNT. Temperature and pressure are two important growth parameters for fabricating carbon nanotubes. In MWCNT growth by CVD, the plasma assisted method is normally used for low temperature growth. However a high temperature environment is required for thermal CVD. A systematic study of temperature and pressure-dependence is very helpful to understanding MWCNT growth. Transition metal particles are commonly used as catalysis in carbon nanotube growth. It is also interesting to know how temperature and pressure affect the interface of carbon species and catalyst particles

  15. A carbon nanotube-based sensing element

    Institute of Scientific and Technical Information of China (English)

    YANG Xing; ZHOU Zhao-ying; WU Ying; ZHANG Jin; ZHANG Ying-ying

    2007-01-01

    A carbon nanotube-based(CNT) sensing element is presented, which consists of substrate, insulating layer, electrodes,carbon nanotube and measuring circuit. The sensing components are a single or array of CNTs, which are located on the two electrodes. The CNT-based sensing element is fabricated by CVD (chemical vapor deposition)-direct-growth on microelectrodes. The sensing model and measurement method of electromechanical property are also presented. Finally, the voltage-current characteristics are measured, which show that the CNT-based sensing element has good electrical properties.

  16. Electrical device fabrication from nanotube formations

    Science.gov (United States)

    Nicholas, Nolan Walker; Kittrell, W. Carter; Kim, Myung Jong; Schmidt, Howard K.

    2013-03-12

    A method for forming nanotube electrical devices, arrays of nanotube electrical devices, and device structures and arrays of device structures formed by the methods. Various methods of the present invention allow creation of semiconducting and/or conducting devices from readily grown SWNT carpets rather than requiring the preparation of a patterned growth channel and takes advantage of the self-controlling nature of these carpet heights to ensure a known and controlled channel length for reliable electronic properties as compared to the prior methods.

  17. Atomistic Modeling of Thermal Conductivity of Epoxy Nanotube Composites

    Science.gov (United States)

    Fasanella, Nicholas A.; Sundararaghavan, Veera

    2016-05-01

    The Green-Kubo method was used to investigate the thermal conductivity as a function of temperature for epoxy/single wall carbon nanotube (SWNT) nanocomposites. An epoxy network of DGEBA-DDS was built using the `dendrimer' growth approach, and conductivity was computed by taking into account long-range Coulombic forces via a k-space approach. Thermal conductivity was calculated in the direction perpendicular to, and along the SWNT axis for functionalized and pristine SWNT/epoxy nanocomposites. Inefficient phonon transport at the ends of nanotubes is an important factor in the thermal conductivity of the nanocomposites, and for this reason discontinuous nanotubes were modeled in addition to long nanotubes. The thermal conductivity of the long, pristine SWNT/epoxy system is equivalent to that of an isolated SWNT along its axis, but there was a 27% reduction perpendicular to the nanotube axis. The functionalized, long SWNT/epoxy system had a very large increase in thermal conductivity along the nanotube axis (~700%), as well as the directions perpendicular to the nanotube (64%). The discontinuous nanotubes displayed an increased thermal conductivity along the SWNT axis compared to neat epoxy (103-115% for the pristine SWNT/epoxy, and 91-103% for functionalized SWNT/epoxy system). The functionalized system also showed a 42% improvement perpendicular to the nanotube, while the pristine SWNT/epoxy system had no improvement over epoxy. The thermal conductivity tensor is averaged over all possible orientations to see the effects of randomly orientated nanotubes, and allow for experimental comparison. Excellent agreement is seen for the discontinuous, pristine SWNT/epoxy nanocomposite. These simulations demonstrate there exists a threshold of the SWNT length where the best improvement for a composite system with randomly oriented nanotubes would transition from pristine SWNTs to functionalized SWNTs.

  18. Draw out Carbon Nanotube from Liquid Carbon

    OpenAIRE

    ZHANG, SHUANG; Hoshi, Takeo; Fujiwara, Takeo

    2006-01-01

    Carbon nanotube (CNT) is expected for much more important and broader applications in the future, because of its amazing electrical and mechanical properties. However, today, the prospect is detained by the fact that the growth of CNTs cannot be well controlled. In particular, controlling the chirality of CNTs seems formidable to any existing growth method. In addition, a systematic method for a designed interconnected network has not been established yet, which is focused particularly in nan...

  19. GaN nanotubes grown by halide vapor phase epitaxy

    International Nuclear Information System (INIS)

    Full text: Wide-band gap GaN nanostructures such as quantum dots, nanorods, nanowires, nano columns and nanotubes have a strong potential within areas of biochemical sensing, nanofluidics, and optoelectronics. GaN nanotubes play a role of the building blocks for several applications such as solution-based transistors and highly sensitive nanotube molecular sensors. We have studied non-catalytic and Au-assisted growth of GaN nanotubes using halide vapor phase epitaxy (HVPE) technique. The growth was performed in the temperature range 480 degrees Celsius to 520 degrees Celsius using pure N2 as a carrier gas at atmospheric pressure. The nanotubes size, shape, density and the selectivity of growth have been studied depending on V/III ratio, growth temperature and substrate material. By increasing the GaCl partial pressure, the structure changed from dot-like to nanotubes. The nanotubes were about 1 μm long with a diameter of typically 200 nm. In addition, it was observed that the nanostructures were spontaneously nucleated at droplets of Ga or, when using Au-coated Al2O3, on droplets of Au/Ga alloy. By varying the growth temperature, the inner diameter of the nanotubes could be controlled. A growth model is suggested, where the nanotubes are nucleated at droplets of Ga or an Au/Ga alloy. Our experimental results suggest that the approach with pre-patterned Au-coated Al2O3 substrates has the potential for fabrication of well-organized nanotubes with a high density. Nanostructures were characterized using electron microscopy methods and by low temperature time-resolved photoluminescence (TRPL). Studies were performed on samples with different wall thickness in the range of 35-75 nm. Two recombination processes with different dynamics contribute to the emission spectra of the GaN nanotubes. The photoluminescence peak shifts rapidly to the higher energy from 3.47 eV to 3.75 eV within a very short time of 30 ps. The origin of the emission having a short lifetime is related

  20. Applications of Carbon Nanotubes

    Science.gov (United States)

    Ajayan, Pulickel M.; Zhou, Otto Z.

    Carbon nanotubes have attracted the fancy of many scientists worldwide. The small dimensions, strength and the remarkable physical properties of these structures make them a very unique material with a whole range of promising applications. In this review we describe some of the important materials science applications of carbon nanotubes. Specifically we discuss the electronic and electrochemical applications of nanotubes, nanotubes as mechanical reinforcements in high performance composites, nanotube-based field emitters, and their use as nanoprobes in metrology and biological and chemical investigations, and as templates for the creation of other nanostructures. Electronic properties and device applications of nanotubes are treated elsewhere in the book. The challenges that ensue in realizing some of these applications are also discussed from the point of view of manufacturing, processing, and cost considerations.

  1. Nanotubes and nanowires

    Indian Academy of Sciences (India)

    C N R Rao; A Govindaraj

    2001-10-01

    Synthesis and characterization of nanotubes and nanowires constitute an important part of nanoscience since these materials are essential bui lding units for several devices. We have prepared aligned carbon nanotube bundles and Y-junction nanotubes by the pyrolysis of appropriate organic precursors. The aligned bundles are useful for field emission display while the Y-junction nanotubes are likely to be useful as nanochips since they exhibit diode properties at the junction. By making use of carbon nanotubes, nanowires of metals, metal oxides and GaN have be en obt a ined. Both the oxide and GaN nanowires are single crystalline. Gold nanowires exhibit plasmon bands varying markedly with the aspect ratio. GaN nanowires show excellent photoluminescence characteristics. It has been possible to synthesise nanotubes and nanowires of metal chalcogenides by employing different strategies.

  2. Atomic scale simulation of carbon nanotube nucleation from hydrocarbon precursors

    Science.gov (United States)

    Khalilov, Umedjon; Bogaerts, Annemie; Neyts, Erik C.

    2015-12-01

    Atomic scale simulations of the nucleation and growth of carbon nanotubes is essential for understanding their growth mechanism. In spite of over twenty years of simulation efforts in this area, limited progress has so far been made on addressing the role of the hydrocarbon growth precursor. Here we report on atomic scale simulations of cap nucleation of single-walled carbon nanotubes from hydrocarbon precursors. The presented mechanism emphasizes the important role of hydrogen in the nucleation process, and is discussed in relation to previously presented mechanisms. In particular, the role of hydrogen in the appearance of unstable carbon structures during in situ experimental observations as well as the initial stage of multi-walled carbon nanotube growth is discussed. The results are in good agreement with available experimental and quantum-mechanical results, and provide a basic understanding of the incubation and nucleation stages of hydrocarbon-based CNT growth at the atomic level.

  3. Carbon nanotubes decorating methods

    OpenAIRE

    A.D. Dobrzańska-Danikiewicz; D. Łukowiec; D. Cichock; W. Wolany

    2013-01-01

    Purpose: The work is to present and characterise various methods of depositing carbon nanotubes with nanoparticles of precious metals, and also to present the results of own works concerning carbon nanotubes coated with platinum nanoparticles.Design/methodology/approach: Electron transmission and scanning microscopy has been used for imaging the structure and morphology of the nanocomposites obtained and the distribution of nanoparticles on the surface of carbon nanotubes.Findings: The studie...

  4. Functionalization of Carbon Nanotubes

    OpenAIRE

    Abraham, Jürgen

    2005-01-01

    Carbon nanotubes have an enormous potential due to their outstanding electronic, optical, and mechanical properties. However, any technological application is still hindered due to problems regarding the processibility of the pristine carbon nanotubes. In the past few years, it has been shown that the chemical modification of the carbon nanotubes is an inevitable step prior to their application. The first part of this work (chapter 3.1) was focused on the purification of pristine laser ablati...

  5. Catalytic synthesis of bamboo-like multiwall BN nanotubes via SHS-annealing process

    International Nuclear Information System (INIS)

    Bamboo-like multiwall boron nitride (BN) nanotubes were synthesized via annealing porous precursor prepared by self-propagation high temperature synthesis (SHS) method. The as-synthesized BN nanotubes were characterized by the field emission scanning electron microscopy (FE-SEM), transmission electron microscope (TEM), high-resolution TEM (HRTEM), X-ray diffraction (XRD), Raman and Fourier transform infrared (FTIR) spectroscopy. These nanotubes have uniform diameters of about 60 nm and an average length of about 10 μm. Four growth models, including tip, base, based tip and base-tip growth models, are proposed based on the catalytic vapor-liquid-solid (VLS) growth mechanism for explaining the formation of the as-synthesized bamboo-like BN nanotubes. Chemical reactions and annealing mechanism are also discussed. -- Graphical Abstract: A novel and effective annealing porous precursor route to bulk synthesis of bamboo-like multiwall BN nanotubes. Four growth models of VLS growth mechanism for these nanotubes are proposed. Display Omitted Research highlights: → Bulk bamboo-like BN nanotubes were synthesized by SHS-annealing method. → Boron-containing, porous precursor played a crucial role in bulk synthesis process. → Four possible growth models were proposed to explain the formation of the bamboo-like BN nanotubes.

  6. Synthesis of carbon nanotubes with and without catalyst particles

    Directory of Open Access Journals (Sweden)

    Cuniberti Gianaurelio

    2011-01-01

    Full Text Available Abstract The initial development of carbon nanotube synthesis revolved heavily around the use of 3d valence transition metals such as Fe, Ni, and Co. More recently, noble metals (e.g. Au and poor metals (e.g. In, Pb have been shown to also yield carbon nanotubes. In addition, various ceramics and semiconductors can serve as catalytic particles suitable for tube formation and in some cases hybrid metal/metal oxide systems are possible. All-carbon systems for carbon nanotube growth without any catalytic particles have also been demonstrated. These different growth systems are briefly examined in this article and serve to highlight the breadth of avenues available for carbon nanotube synthesis.

  7. In situ Diagnostics During Carbon Nanotube Production by Laser Ablation

    Science.gov (United States)

    Arepalli, Sivaram

    1999-01-01

    The preliminary results of spectral analysis of the reaction zone during the carbon nanotube production by laser ablation method indicate synergetic dependence on dual laser setup. The emission spectra recorded from different regions of the laser ablated plume at different delay times from the laser pulses are used to map the temperatures of C2 and C3. These are compared with Laser Induced Fluorescence (LIF) spectra also obtained during production to model the growth mechanism of carbon nanotubes. Experiments conducted to correlate the spectral features with nanotube yields as a function of different production parameters will be discussed.

  8. A one-step single source route to carbon nanotubes

    Indian Academy of Sciences (India)

    Tao Cheng; Zhiyong Fang; Guifu Zou; Qixiu Hu; Biao Hu; Xiaozhi Yang; Youjin Zhang

    2006-12-01

    Carbon nanotubes (CNTs) have been synthesized via directly pyrolyzing ferrocene in the autoclave. The nanotubes with several micrometers in length have outer and inner diameters in the range of 40–100 nm and 20–40 nm, respectively. An yield of ∼70% of CNTs can be obtained without any accessorial solvents and catalysts. Experimental results showed that a temperature higher than 600°C in conjunction with proper pressure was favourable for achievement of the nanotubes. The growth mechanism of CNTs was also discussed.

  9. Effects of charge distribution on water filling process in carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    MENG LingYi; LI QiKai; SHUAI ZhiGang

    2009-01-01

    Using umbrella sampling technique with molecular dynamics simulation, we investigated the nanoflu-idic transport of water in carbon nanotube (CNT). The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process, while the negative charge modification to the carbon nanotube will, on the other hand, quicken the water column growth process. The free energy curves were obtained through the statistical process of water column growth under different charge distributions, and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.

  10. Effects of charge distribution on water filling process in carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Using umbrella sampling technique with molecular dynamics simulation,we investigated the nanoflu-idic transport of water in carbon nanotube(CNT).The simulations showed that a positive charge modi-fication to the carbon nanotube can slow down the water column growth process,while the negative charge modification to the carbon nanotube will,on the other hand,quicken the water column growth process.The free energy curves were obtained through the statistical process of water column growth under different charge distributions,and the results indicated that these free energy curves can be employed to explain the dynamical process of water column growth in the nanosized channels.

  11. Controlled carbon nanotube synthesis for quantification of polymer-nanotube composite micromechanics

    Science.gov (United States)

    Bult, Justin Bernard

    Conventional experimental approaches to the understanding of nanotube-polymer micro-mechanics have struggled to produce reproducible data due to the inherent difficulty in physically manipulating the nanotube in-situ. To avoid the problems scale represents in nanotube-polymer composites a novel approach of using Polarized Raman spectroscopy was developed. The Raman spectroscopic technique has the advantage of using non-invasive analysis to compute the composite micro mechanical properties of interfacial shear stress and critical length. Composites with nanotubes of defined length were needed in order to use the Raman technique. To satisfy this requirement a new thermal Chemical Vapor Deposition (CVD) tool capable of reproducibly growing aligned length uniformity with large mass yield was designed and built. The course of developing these furnace capabilities led to the investigation of nanotube growth mechanics. It is shown herein that a stable passivation barrier is required for nanotube growth. Using X-Ray Photoelectron Spectroscopy (XPS) depth profiling of metal substrate growth conclusively shows the presence of a stable catalyst layer on the outer surface of stable oxides of greater than 100 nm. By analyzing the diffusion profile represented in the XPS data it is shown that a critical thickness for the passivation oxide can be calculated as a function of time and temperature. For the growth parameters used in this study the critical thickness was found to be between 10 nm and 30 nm depending on the diffusivity value used for iron in chromia. This value agrees well with experimental observation. Uniformly grown carbon nanotubes with lengths of 4, 14, 17, 22, 43, 74, and 116 mum were incorporated into a polycarbonate matrix polymer via solvent-antisolvent processing. The nanotube composites of varied length were tested in tensile strain while Raman spectra were taken concurrently to deduce the load transfer to the nanotube due to composite strain. It is found

  12. Febrication of Carbon-Nanotube-Forest Based Bolometer

    OpenAIRE

    Wood, Brian; Dyer, J. S.; Thurgood, V. A.; Shen, T. -C.

    2014-01-01

    Due to the nearly-vertical alignment and the band structure of graphite, carbon nanotube forests could have near-unity emissivity which make them ideal candidates as the absorbers for radiometric devices. However, forest height, carbon nanotube density, and the presence of surface defects will affect the total reflectance and transmittance. With optimized growth conditions, a total reflectance of 0.003 and a transmittance of 0.001 has been achieved in the 2 µm - 16 µm spectral region. Fabrica...

  13. Exciton resonances quench the photoluminescence of zigzag carbon nanotubes

    OpenAIRE

    Reich, Stephanie; Thomsen, Christian; Robertson, John

    2005-01-01

    We show that the photoluminescence intensity of single-walled carbon nanotubes is much stronger in tubes with large chiral angles - armchair tubes - because exciton resonances make the luminescence of zigzag tubes intrinsically weak. This exciton-exciton resonance depends on the electronic structure of the tubes and is found more often in nanotubes of the +1 family. Armchair tubes do not necessarily grow preferentially with present growth techniques; they just have stronger luminescence. Our ...

  14. TiO2 Nanotubes: Recent Advances in Synthesis and Gas Sensing Properties

    Directory of Open Access Journals (Sweden)

    Giorgio Sberveglieri

    2013-10-01

    Full Text Available Synthesis—particularly by electrochemical anodization-, growth mechanism and chemical sensing properties of pure, doped and mixed titania tubular arrays are reviewed. The first part deals on how anodization parameters affect the size, shape and morphology of titania nanotubes. In the second part fabrication of sensing devices based on titania nanotubes is presented, together with their most notable gas sensing performances. Doping largely improves conductivity and enhances gas sensing performances of TiO2 nanotubes

  15. Spray-gun deposition of catalyst for large area and versatile synthesis of carbon nanotubes

    OpenAIRE

    Gohier, Aurelien; Kim, Ki Hwan; Norman, Evgeny; Gorintin, Louis; Bondavalli, Paolo; Cojocaru, Costel Sorin

    2012-01-01

    Spray gun deposition technique was investigated for large area deposition of nano-catalysts. In particular, we studied iron chloride salts solutions as catalyst precursor for the synthesis of carbon nanotubes (CNTs). Iron chloride salts are shown to decompose upon thermal annealing into Fe(III) oxide based species that make it suitable for further growth of various carbon nanotube structures. Depending on the spraying process, versatile synthesis of 2-D single-walled carbon nanotube network a...

  16. Carbon nanotube macroelectronics

    Science.gov (United States)

    Zhang, Jialu

    In this dissertation, I discuss the application of carbon nanotubes in macroelectronis. Due to the extraordinary electrical properties such as high intrinsic carrier mobility and current-carrying capacity, single wall carbon nanotubes are very desirable for thin-film transistor (TFT) applications such as flat panel display, transparent electronics, as well as flexible and stretchable electronics. Compared with other popular channel material for TFTs, namely amorphous silicon, polycrystalline silicon and organic materials, nanotube thin-films have the advantages of low-temperature processing compatibility, transparency, and flexibility, as well as high device performance. In order to demonstrate scalable, practical carbon nanotube macroelectroncis, I have developed a platform to fabricate high-density, uniform separated nanotube based thin-film transistors. In addition, many other essential analysis as well as technology components, such as nanotube film density control, purity and diameter dependent semiconducting nanotube electrical performance study, air-stable n-type transistor fabrication, and CMOS integration platform have also been demonstrated. On the basis of the above achievement, I have further demonstrated various kinds of applications including AMOLED display electronics, PMOS and CMOS logic circuits, flexible and transparent electronics. The dissertation is structured as follows. First, chapter 1 gives a brief introduction to the electronic properties of carbon nanotubes, which serves as the background knowledge for the following chapters. In chapter 2, I will present our approach of fabricating wafer-scale uniform semiconducting carbon nanotube thin-film transistors and demonstrate their application in display electronics and logic circuits. Following that, more detailed information about carbon nanotube thin-film transistor based active matrix organic light-emitting diode (AMOLED) displays is discussed in chapter 3. And in chapter 4, a technology to

  17. Synthesis of Carbon Nanotube (CNT Composite Membranes

    Directory of Open Access Journals (Sweden)

    Dusan Losic

    2010-12-01

    Full Text Available Carbon nanotubes are attractive approach for designing of new membranes for advanced molecular separation because of their unique transport properties and ability to mimic biological protein channels. In this work the synthetic approach for fabrication of carbon nanotubes (CNTs composite membranes is presented. The method is based on growth of multi walled carbon nanotubes (MWCNT using chemical vapour deposition (CVD on the template of nanoporous alumina (PA membranes. The influence of experimental conditions including carbon precursor, temperature, deposition time, and PA template on CNT growth process and quality of fabricated membranes was investigated. The synthesis of CNT/PA composites with controllable nanotube dimensions such as diameters (30–150 nm, and thickness (5–100 µm, was demonstrated. The chemical composition and morphological characteristics of fabricated CNT/PA composite membranes were investigated by various characterisation techniques including scanning electron microscopy (SEM, energy-dispersive x-ray spectroscopy (EDXS, high resolution transmission electron microscopy (HRTEM and x-ray diffraction (XRD. Transport properties of prepared membranes were explored by diffusion of dye (Rose Bengal used as model of hydrophilic transport molecule.

  18. Organic modification of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The organic modification of carbon nanotubes is a novel research field being developed recently. In this article, the history and newest progress of organic modification of carbon nanotubes are reviewed from two aspects:organic covalent modification and organic noncovalent modification of carbon nanotubes. The preparation and properties of organic modified carbon nanotubes are discussed in detail. In addition, the prospective development of organic modification of carbon nanotubes is suggested.

  19. CARBON NANOTUBES: PROPERTIES AND APPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, John, E.

    2009-07-24

    Carbon nanotubes were discovered in 1991 as a minority byproduct of fullerene synthesis. Remarkable progress has been made in the ensuing years, including the discovery of two basic types of nanotubes (single-wall and multi-wall), great strides in synthesis and purification, elucidation of many fundamental physical properties, and important steps towards practical applications. Both the underlying science and technological potential of SWNT can profitably be studied at the scale of individual tubes and on macroscopic assemblies such as fibers. Experiments on single tubes directly reveal many of the predicted quantum confinement and mechanical properties. Semiconductor nanowires have many features in common with nanotubes, and many of the same fundamental and practical issues are in play – quantum confinement and its effect on properties; possible device structures and circuit architectures; thermal management; optimal synthesis, defect morphology and control, etc. In 2000 we began a small effort in this direction, conducted entirely by undergraduates with minimal consumables support from this grant. With DOE-BES approval, this grew into a project in parallel with the carbon nanotube work, in which we studied of inorganic semiconductor nanowire growth, characterization and novel strategies for electronic and electromechanical device fabrication. From the beginnings of research on carbon nanotubes, one of the major applications envisioned was hydrogen storage for fuel-cell powered cars and trucks. Subsequent theoretical models gave mixed results, the most pessimistic indicating that the fundamental H2-SWNT interaction was similar to flat graphite (physisorption) with only modest binding energies implying cryogenic operation at best. New material families with encouraging measured properties have emerged, and materials modeling has gained enormously in predictive power, sophistication, and the ability to treat a realistically representative number of atoms. One of

  20. Synthesis of carbon nanotubes by catalytic pyrolysis method with Feitknecht compound as precursor of NiZnAl catalyst

    Institute of Scientific and Technical Information of China (English)

    Yan Xiaoqi; Liu Quanrun; Zhang Songlin; Zhang Kun; Chen Jiuling; Li Yongdan

    2004-01-01

    Carbon nanotubes are synthesized by catalytic pyrolysis method with a kind of new type catalyst--nickel-zinc-alumina catalyst prepared from Feitknecht compound. Tubular carbon nanotubes, bamboo-shaped carbon naotubes, herringbone carbon nanotubues and branched carbon nanotubes are all found formed at moderate temperature. It is important for the formation of quasi-liquid state of the metal nanoparticles at the tip of carbon naotubes during the growth of carbon nanotubes to lead to different kinds of carbon nanotubes. It is likely that the addition of zinc make the activity of nickel catalyst after calcinations and reduction changed strangely.

  1. Electrochemical detection of type 2 diabetes mellitus-related SNP via DNA-mediated growth of silver nanoparticles on single walled carbon nanotubes.

    Science.gov (United States)

    Tao, Jia; Zhao, Peng; Zheng, Jing; Wu, Cuichen; Shi, Muling; Li, Jishan; Li, Yinhui; Yang, Ronghua

    2015-11-01

    Herein, we proposed a new electrochemical sensing strategy for T2DM-related SNP detection via DNA-mediated growth of AgNPs on a SWCNT-modified electrode. Coupled with RNase HII enzyme assisted amplification, this approach could realize T2DM-related SNP assay and be applied in crude extracts of carcinoma pancreatic β-cell lines. PMID:26365891

  2. Preparation of carbon nanotubes by MPECVD

    International Nuclear Information System (INIS)

    Microwave plasma-enhanced chemical vapor deposition (MPECVD) method has been regarded as one of the most promising candidates for the synthesis of CNTs due to the vertical alignment, the large area growth, the lower growth temperature, uniform heat distribution and the good control of the different growth parameters. In this work we present our results about the preparation of carbon nanotube with different morphologies by using microwave plasma enhanced chemical vapor deposition MPECVD. Well aligned, curly and coiled carbon nanotubes have been prepared. We have investigated the effect of the different growth condition parameters such as type of the catalyst, pressure and the hydrogen to methane flow rate ratio on the morphology of the carbon nanotubes. The results were showed that there is a great dependence of the morphology of carbon nanotubes on these parameters. There is a linear relation between the growth rate and the methane to hydrogen ratio. We found that the growth rate has a great dependence on the amount of methane. For example the growth rate varied from the value 1,34 μm/min when the methane flow rate was 10 sccm to more than 14 μm/min when the methane flow rate was raised to 50 sccm. This growth rate is greater than that reported in the literature. The effect of the gas pressure on the CNTs was also studied. The Raman spectra (excitation wavelength 473 nm) of all samples show D-band peak at around 1300 cm-1 and G-band peak at around 1580 cm-1, which indicate that our CNTs are multi wall CNTs (MWCNTs). The D-band and the G-band correspond to sp2 and sp3 carbon stretching modes relatively, and their intensity ratio is a measure of the amount of disorder in the CNTs. The D-band is known to be attributed to the carbonaceous particles, defects in the curved graphitic sheet and tube ends. It has been suggested that lower Ig/Id ratios and narrower first and second order D and G bands are suggestive of well-aligned NNTs. The photoluminescence PL

  3. Nucleation and Growth of bundles of Single-Wall Carbon Nanotubes (C-SWNTs): the Benard-Marangoni Instability (BMI) model

    OpenAIRE

    Larouche, F.; Duquette, J.; Cortelezzi, L.; Nigam, N.; Stansfield, B.

    2004-01-01

    A complete explanation of the synthesis of metal-catalyst nanoparticles, and the subsequent nucleation and growth of bundles of C-SWNTs is introduced using a novel model. It is shown that the synthesis process leads to the formation of a liquid layer supersaturated in carbon surrounding each metallic-catalyst nanoparticle. The onset of a solutal B\\'enard-Marangoni instability and the subsequent formation of patterns of hexagonal convection cells in the liquid layer is predicted and quantified...

  4. Carbon nanotube solar cells.

    Directory of Open Access Journals (Sweden)

    Colin Klinger

    Full Text Available We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabricate using a spray-paint technique. We observe that cells with a lower concentration of carbon nanotubes on the active semiconducting electrode perform better than cells with a higher concentration of nanotubes. This effect is contrary to the expectation that a larger number of nanotubes would lead to more photoconversion and therefore more power generation. We attribute this to the presence of metallic nanotubes that provide a short for photo-excited electrons, bypassing the load. We demonstrate optimization strategies that improve cell efficiency by orders of magnitude. Once it is possible to make semiconducting-only carbon nanotube films, that may provide the greatest efficiency improvement.

  5. Preparation of highly-ordered carbon nanotube arrays in the anodized alumina template

    International Nuclear Information System (INIS)

    A highly-ordered, hexagonally arranged alumina nanopore template was prepared by self-organized two-step anodization process of aluminium in oxalic acid solution. Highly parallel pores were obtained within domains of a few micrometers. Highly-ordered, parallel carbon nanotube arrays were successfully grown in the alumina template nanopores by chemical vapor deposition catalyzed by alumina itself. The nanotube arrays are suitable for channeling of particle beams. The structures of aluminium, alumina template and carbon nanotubes were characterized by scanning electron microscopy (SEM) and electron back scattered diffraction (EBSD). The growth mechanism and formation condition of both alumina template and carbon nanotube were discussed. (authors)

  6. Wurtzite-type faceted single-crystalline GaN nanotubes

    Science.gov (United States)

    Liu, Baodan; Bando, Yoshio; Tang, Chengchun; Shen, Guozhen; Golberg, Dmitri; Xu, Fangfang

    2006-02-01

    We report on the direct fabrication of single-crystalline wurtzite-type hexagonal GaN nanotubes via a newly designed, controllable, and reproducible chemical thermal-evaporation process. The nanotubes are single crystalline, have one end closed, an average outer diameter of ˜300nm, an inner diameter of ˜100nm, and a wall thickness of ˜100nm. The structure and morphology of the tubes are characterized using a scanning electron microscope and a transmission electron microscope. The cathodoluminescence of individual nanotubes is also investigated. The growth mechanism, formation kinetics, and crystallography of GaN nanotubes are finally discussed.

  7. The Control of Electron Transport Related Defects in In Situ Fabricated Single Wall Carbon Nanotube Devices

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhixian [ORNL; Jin, Rongying [ORNL; Eres, Gyula [ORNL; Subedi, Alaska P [ORNL; Mandrus, David [ORNL

    2006-01-01

    Metallic single wall carbon nanotube devices were characterized using low temperature transport measurements to study how the growth conditions affect defect formation in carbon nanotubes. Suspended carbon nanotube devices were grown in situ by a molecular beam growth method on a pair of catalyst islands located on opposing Au electrodes fabricated by electron beam lithography. The authors present experimental evidence that defect formation in carbon nanotubes, in addition to the well known growth temperature dependence, is also affected by the nature and the composition of the carbon growth gases.

  8. Novel Silicon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Novel silicon nanotubes with inner-diameter of 60-80 nm was prepared using hydrogen-added dechlorination of SiCl4 followed by chemical vapor deposition (CVD) on a NixMgyO catalyst. The TEM observation showed that the suitable reaction temperature is 973 K for the formation of silicon nanotubes. Most of silicon nanotubes have one open end and some have two closed ends. The shape ofnanoscale silicon, however, is a micro-crystal type at 873 K, a rod or needle type at 993 K and an onion-type at 1023 K, respectively.

  9. Nanotube resonator devices

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, Kenneth J; Zettl, Alexander K; Weldon, Jeffrey A

    2014-05-06

    A fully-functional radio receiver fabricated from a single nanotube is being disclosed. Simultaneously, a single nanotube can perform the functions of all major components of a radio: antenna, tunable band-pass filter, amplifier, and demodulator. A DC voltage source, as supplied by a battery, can power the radio. Using carrier waves in the commercially relevant 40-400 MHz range and both frequency and amplitude modulation techniques, successful music and voice reception has been demonstrated. Also disclosed are a radio transmitter and a mass sensor using a nanotube resonator device.

  10. Nanotube composite carbon fibers

    Science.gov (United States)

    Andrews, R.; Jacques, D.; Rao, A. M.; Rantell, T.; Derbyshire, F.; Chen, Y.; Chen, J.; Haddon, R. C.

    1999-08-01

    Single walled carbon nanotubes (SWNTs) were dispersed in isotropic petroleum pitch matrices to form nanotube composite carbon fibers with enhanced mechanical and electrical properties. We find that the tensile strength, modulus, and electrical conductivity of a pitch composite fiber with 5 wt % loading of purified SWNTs are enhanced by ˜90%, ˜150%, and 340% respectively, as compared to the corresponding values in unmodified isotropic pitch fibers. These results serve to highlight the potential that exits for developing a spectrum of material properties through the selection of the matrix, nanotube dispersion, alignment, and interfacial bonding.

  11. Structure of single-wall carbon nanotubes: a graphene helix.

    Science.gov (United States)

    Lee, Jae-Kap; Lee, Sohyung; Kim, Jin-Gyu; Min, Bong-Ki; Kim, Yong-Il; Lee, Kyung-Il; An, Kay Hyeok; John, Phillip

    2014-08-27

    Evidence is presented in this paper that certain single-wall carbon nanotubes are not seamless tubes, but rather adopt a graphene helix resulting from the spiral growth of a nano-graphene ribbon. The residual traces of the helices are confirmed by high-resolution transmission electron microscopy and atomic force microscopy. The analysis also shows that the tubular graphene material may exhibit a unique armchair structure and the chirality is not a necessary condition for the growth of carbon nanotubes. The description of the structure of the helical carbon nanomaterials is generalized using the plane indices of hexagonal space groups instead of using chiral vectors. It is also proposed that the growth model, via a graphene helix, results in a ubiquitous structure of single-wall carbon nanotubes. PMID:24838196

  12. Direct integration of carbon nanotubes in Si microstructures

    International Nuclear Information System (INIS)

    In this paper we present a low-cost, room-temperature process for integrating carbon nanotubes on Si microsystems. The process uses localized resistive heating by controlling current through suspended microbridges, to provide local temperatures high enough for CVD growth of carbon nanotubes. Locally grown carbon nanotubes make electrical connections through guidance by electric fields, thus eventually making circuits. The process is scalable to a wafer level batch process. Furthermore, it is controlled electrically, thus enabling automated control. Direct integration of carbon nanotubes in microstructures has great promise for nano-functional devices, such as ultrasensitive chemical sensors. Initial measurements demonstrate the Si–carbon nanotube–Si circuit's potential as a NH3 sensor. (paper)

  13. Fermentation based carbon nanotube multifunctional bionic composites

    OpenAIRE

    Luca Valentini; Silvia Bittolo Bon; Stefano Signetti; Manoj Tripathi; Erica Iacob; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extr...

  14. Fermentation based carbon nanotube bionic functional composites

    OpenAIRE

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique mechanical and physical properties that are not produced by abiotic processes. Based on grape must and bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at r...

  15. FLUIDIZATION OF CARBON NANOTUBES

    Institute of Scientific and Technical Information of China (English)

    Fei Wei; Cang Huang; Yao Wang

    2005-01-01

    Carbon nanotubes (CNTs) can be fluidized in the form of fluidlike agglomerates made of many three-dimensional sub-agglomerates, having a multi-stage agglomerate (MSA) structure and containing large amounts of twisting CNTs of micrometer magnitude.

  16. Carbon nanotubes: Fibrillar pharmacology

    Science.gov (United States)

    Kostarelos, Kostas

    2010-10-01

    The mechanisms by which chemically functionalized carbon nanotubes flow in blood and are excreted through the kidneys illustrate the unconventional behaviour of these fibrillar nanostructures, and the opportunities they offer as components for the design of advanced delivery vehicles.

  17. Chalcogenide Cobalt telluride nanotubes

    Science.gov (United States)

    Dahal, Bishnu; Dulal, Rajendra; Pegg, Ian L.; Philip, John

    Cobalt telluride nanotubes are grown using wet chemical and hydrothermal syntheses. Wet chemical synthesized nanotubes display nearly 1: 1 Co to Te ratio. On the other hand, CoTe nanotubes synthesized using hydrothermal method show excess Co content leading to the compound Co58Te42. Both CoTe and Co58Te42 display magnetic properties, but with totally different characteristics. The Curie temperature of CoTe is higher than 400 K. However, the Tc of Co58Te42 is below 50 K. Transport properties of cobalt telluride (CoTe) nanotube devices show that they exhibit p-type semiconducting behavior. The magnetoresistance measured at 10 K show a magnetoresistance of 54%. . National Science Foundation under ECCS-0845501 and NSF-MRI, DMR-0922997.

  18. Nanotubes for Battery Applications

    OpenAIRE

    Nordlinder, Sara

    2005-01-01

    Nanomaterials have attracted great interest in recent years, and are now also being considered for battery applications. Reducing the particle size of some electrode materials can increase battery performance considerably, especially with regard to capacity, power and rate capability. This thesis presents a study focused on the performance of such a material, vanadium oxide nanotubes, as cathode material for rechargeable lithium batteries. These nanotubes were synthesized by a sol-gel process...

  19. Titanium dioxide nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Roman, Ioan, E-mail: roman@metav-cd.ro [S.C. METAV-Research and Development S.R.L., Bucharest, 31C. A. Rosetti, 020011 (Romania); Trusca, Roxana Doina; Soare, Maria-Laura [S.C. METAV-Research and Development S.R.L., Bucharest, 31C. A. Rosetti, 020011 (Romania); Fratila, Corneliu [Research and Development National Institute for Nonferrous and Rare Metals, Pantelimon, 102 Biruintei, 077145 (Romania); Krasicka-Cydzik, Elzbieta [University of Zielona Gora, Department of Biomedical Engineering Division, 9 Licealna, 65-417 (Poland); Stan, Miruna-Silvia; Dinischiotu, Anca [University of Bucharest, Department of Biochemistry and Molecular Biology, 36-46 Mihail Kogalniceanu, 050107 (Romania)

    2014-04-01

    Titania nanotubes (TNTs) were prepared by anodization on different substrates (titanium, Ti6Al4V and Ti6Al7Nb alloys) in ethylene glycol and glycerol. The influence of the applied potential and processing time on the nanotube diameter and length is analyzed. The as-formed nanotube layers are amorphous but they become crystalline when subjected to subsequent thermal treatment in air at 550 °C; TNT layers grown on titanium and Ti6Al4V alloy substrates consist of anatase and rutile, while those grown on Ti6Al7Nb alloy consist only of anatase. The nanotube layers grown on Ti6Al7Nb alloy are less homogeneous, with supplementary islands of smaller diameter nanotubes, spread across the surface. Better adhesion and proliferation of osteoblasts was found for the nanotubes grown on all three substrates by comparison to an unprocessed titanium plate. The sensitivity towards bovine alkaline phosphatase was investigated mainly by electrochemical impedance spectroscopy in relation to the crystallinity, the diameter and the nature of the anodization electrolyte of the TNT/Ti samples. The measuring capacity of the annealed nanotubes of 50 nm diameter grown in glycerol was demonstrated and the corresponding calibration curve was built for the concentration range of 0.005–0.1 mg/mL. - Highlights: • Titania nanotubes (TNTs) on Ti, Ti6Al4V and Ti6Al7Nb substrates were prepared. • Quantitative dependences of anodization conditions on TNT features were established. • Morphology and electrochemical tests revealed inhomogeneity of TNT/Ti6Al7Nb films. • Particular characteristics of TNT films induce electrochemical sensitivity to ALP. • Annealed TNT/Ti impedimetric sensitivity towards ALP was demonstrated and quantified.

  20. Magic Gold Nanotubes

    OpenAIRE

    SENGER, R. Tuğrul; DAĞ, Sefa; ÇIRACI, Salim

    2005-01-01

    In recent ultra-high-vacuum transmission-electron-microscopy experiments evidence is found for the formation of suspended gold single-wall nanotubes (SWNTs) composed of five helical strands. Similar to carbon nanotubes, the (n,m) notation defines the structure of the gold SWNTs. Experimentally, only the (5,3) tube has been observed to form among several other possible alternatives. Using first-principles calculations we demonstrate that gold atoms can form both freestanding and tip-...

  1. Conducting carbonized polyaniline nanotubes

    Science.gov (United States)

    Mentus, Slavko; Ćirić-Marjanović, Gordana; Trchová, Miroslava; Stejskal, Jaroslav

    2009-06-01

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 °C min-1 up to a maximum temperature of 800 °C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 µm, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 µm, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm-1, increased to 0.7 S cm-1 upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  2. Conducting carbonized polyaniline nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Mentus, Slavko; Ciric-Marjanovic, Gordana [Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11158 Belgrade (Serbia); Trchova, Miroslava; Stejskal, Jaroslav [Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovsky Square 2, 162 06 Prague 6 (Czech Republic)], E-mail: gordana@ffh.bg.ac.rs

    2009-06-17

    Conducting nitrogen-containing carbon nanotubes were synthesized by the carbonization of self-assembled polyaniline nanotubes protonated with sulfuric acid. Carbonization was carried out in a nitrogen atmosphere at a heating rate of 10 deg. C min{sup -1} up to a maximum temperature of 800 deg. C. The carbonized polyaniline nanotubes which have a typical outer diameter of 100-260 nm, with an inner diameter of 20-170 nm and a length extending from 0.5 to 0.8 {mu}m, accompanied with very thin nanotubes with outer diameters of 8-14 nm, inner diameters 3.0-4.5 nm and length extending from 0.3 to 1.0 {mu}m, were observed by scanning and transmission electron microscopies. Elemental analysis showed 9 wt% of nitrogen in the carbonized product. Conductivity of the nanotubular PANI precursor, amounting to 0.04 S cm{sup -1}, increased to 0.7 S cm{sup -1} upon carbonization. Molecular structure of carbonized polyaniline nanotubes has been analyzed by FTIR and Raman spectroscopies, and their paramagnetic characteristics were compared with the starting PANI nanotubes by EPR spectroscopy.

  3. Transparent conducting oxide nanotubes

    Science.gov (United States)

    Alivov, Yahya; Singh, Vivek; Ding, Yuchen; Nagpal, Prashant

    2014-09-01

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current-voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10-4 Ωcm at T = 300 K (compared to 6.5 × 10-1 Ωcm for nominally undoped nanotubes) to 2.2 × 10-4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm-1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples.

  4. Transparent conducting oxide nanotubes

    International Nuclear Information System (INIS)

    Thin film or porous membranes made of hollow, transparent, conducting oxide (TCO) nanotubes, with high chemical stability, functionalized surfaces and large surface areas, can provide an excellent platform for a wide variety of nanostructured photovoltaic, photodetector, photoelectrochemical and photocatalytic devices. While large-bandgap oxide semiconductors offer transparency for incident light (below their nominal bandgap), their low carrier concentration and poor conductivity makes them unsuitable for charge conduction. Moreover, materials with high conductivity have nominally low bandgaps and hence poor light transmittance. Here, we demonstrate thin films and membranes made from TiO2 nanotubes heavily-doped with shallow Niobium (Nb) donors (up to 10%, without phase segregation), using a modified electrochemical anodization process, to fabricate transparent conducting hollow nanotubes. Temperature dependent current–voltage characteristics revealed that TiO2 TCO nanotubes, doped with 10% Nb, show metal-like behavior with resistivity decreasing from 6.5 × 10−4 Ωcm at T = 300 K (compared to 6.5 × 10−1 Ωcm for nominally undoped nanotubes) to 2.2 × 10−4 Ωcm at T = 20 K. Optical properties, studied by reflectance measurements, showed light transmittance up to 90%, within wavelength range 400 nm–1000 nm. Nb doping also improves the field emission properties of TCO nanotubes demonstrating an order of magnitude increase in field-emitter current, compared to undoped samples. (paper)

  5. Carbon nanotube junctions and devices

    OpenAIRE

    Postma, H. W. Ch.

    2001-01-01

    In this thesis Postma presents transport experiments performed on individual single-wall carbon nanotubes. Carbon nanotubes are molecules entirely made of carbon atoms. The electronic properties are determined by the exact symmetry of the nanotube lattice, resulting in either metallic or semiconducting behaviour. Due to their small diameter, electronic motion is directed in the length direction of the nanotube, making them ideal systems to study e.g. one-dimensional transport phenomena. First...

  6. Transport Through Carbon Nanotube Wires

    Science.gov (United States)

    Anantram, M. P.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    This viewgraph presentation deals with the use of carbon nanotubes as a transport system. Contact, defects, tubular bend, phonons, and mechanical deformations all contribute to reflection within the nanotube wire. Bragg reflection, however, is native to an ideal energy transport system. Transmission resistance depends primarily on the level of energy present. Finally, the details regarding coupling between carbon nanotubes and simple metals are presented.

  7. Carbon Nanotubes Filled with Ferromagnetic Materials

    Directory of Open Access Journals (Sweden)

    Albrecht Leonhardt

    2010-08-01

    Full Text Available Carbon nanotubes (CNT filled with ferromagnetic metals like iron, cobalt or nickel are new and very interesting nanostructured materials with a number of unique properties. In this paper we give an overview about different chemical vapor deposition (CVD methods for their synthesis and discuss the influence of selected growth parameters. In addition we evaluate possible growth mechanisms involved in their formation. Moreover we show their identified structural and magnetic properties. On the basis of these properties we present different application possibilities. Some selected examples reveal the high potential of these materials in the field of medicine and nanotechnology.

  8. Carbon nanotubes decorating methods

    Directory of Open Access Journals (Sweden)

    A.D. Dobrzańska-Danikiewicz

    2013-06-01

    Full Text Available Purpose: The work is to present and characterise various methods of depositing carbon nanotubes with nanoparticles of precious metals, and also to present the results of own works concerning carbon nanotubes coated with platinum nanoparticles.Design/methodology/approach: Electron transmission and scanning microscopy has been used for imaging the structure and morphology of the nanocomposites obtained and the distribution of nanoparticles on the surface of carbon nanotubes.Findings: The studies carried out with the HRTEM and SEM techniques have confirmed differences in morphology, homogeneity and density of depositing platinum nanoparticles on the surface of carbon nanotubes and its structure.Research limitations/implications: The studies conducted pertained to the process of decorating carbon nanotubes with platinum nanoparticles. Further works are planned aimed at extending the application scope of the newly developed methodology to include the methods of nanotubes decorating with the nanoparticles of other precious metals (mainly palladium and rhodium.Practical implications: CNTs-NPs (Carbon NanoTube-NanoParticles composites can be used as the active elements of sensors featuring high sensitivity, fast action, high selectivity and accuracy, in particular in medicine as cholesterol and glucoses sensors; in the automotive industry for the precision monitoring of working parameters in individual engine components; in environmental conservation to examine CO2, NOx, and CH4 concentrations and for checking leak-tightness and detecting hazardous substances in household and industrial gas installations.Originality/value: The comprehensive characterisation of the methods employed for fabricating nanocomposites consisting of carbon nanotubes deposited with Pt, Pd, Rh, Au, Ag nanoparticles with special consideration to the colloidal process.

  9. Effect of oxygen adsorption on the electrochemical oxidative corrosion of single-walled carbon nanotubes

    OpenAIRE

    Tominaga, Masato; Yatsugi, Yuto; Togami, Makoto; トミナガ, マサト; ヤツギ, ユウト; トガミ, マコト; 冨永, 昌人; 矢次, 祐人; 戸上, 純

    2014-01-01

    The effect of adsorbed molecular oxygen on the oxidative corrosion of single-walled carbon nanotubes in aqueous solution was investigated by Raman spectroscopy. Adsorbed molecular oxygen affected nucleation and growth in the electrochemical oxidative corrosion of single-walled carbon nanotubes in aqueous electrolyte. Nucleation and growth began at defect sites in the presence of adsorbed oxygen, but occurred randomly in the absence of adsorbed oxygen. This insight furthers our understanding o...

  10. Diffusion through Carbon Nanotube Semipermeable membranes

    Energy Technology Data Exchange (ETDEWEB)

    Bakajin, O

    2006-02-13

    The goal of this project is to measure transport through CNTs and study effects of confinement at molecular scale. This work is motivated by several simulation papers in high profile journals that predict significantly higher transport rates of gases and liquids through carbon nanotubes as compared with similarly-sized nanomaterials (e.g. zeolites). The predictions are based on the effects of confinement, atomically smooth pore walls and high pore density. Our work will provide the first measurements that would compare to and hopefully validate the simulations. Gas flux is predicted to be >1000X greater for SWNTs versus zeolitesi. A high flux of 6-30 H2O/NT/ns {approx} 8-40 L/min for a 1cm{sup 2} membrane is also predicted. Neutron diffraction measurements indicate existence of a 1D water chain within a cylindrical ice sheet inside carbon nanotubes, which is consistent with the predictions of the simulation. The enabling experimental platform that we are developing is a semipermeable membrane made out of vertically aligned carbon nanotubes with gaps between nanotubes filled so that the transport occurs through the nanotubes. The major challenges of this project included: (1) Growth of CNTs in the suitable vertically aligned configuration, especially the single wall carbon nanotubes; (2) Development of a process for void-free filling gaps between CNTs; and (3) Design of the experiments that will probe the small amounts of analyte that go through. Knowledge of the behavior of water upon nanometer-scale confinement is key to understanding many biological processes. For example, the protein folding process is believed to involve water confined in a hydrophobic environment. In transmembrane proteins such as aquaporins, water transport occurs under similar conditions. And in fields as far removed as oil recovery and catalysis, an understanding of the nanoscale molecular transport occurring within the nanomaterials used (e.g. zeolites) is the key to process optimization

  11. Tunable functionality and toxicity studies of titanium dioxide nanotube layers

    Energy Technology Data Exchange (ETDEWEB)

    Feschet-Chassot, E.; Raspal, V.; Sibaud, Y. [Clermont Universite, Universite d' Auvergne, C-BIOSENSS, BP 10448, F-63000 Clermont Ferrand (France); Awitor, O.K., E-mail: koawitor@iut.u-clermont1.f [Clermont Universite, Universite d' Auvergne, C-BIOSENSS, BP 10448, F-63000 Clermont Ferrand (France); Bonnemoy, F. [Clermont Universite, Universite Blaise Pascal, UMR CNRS 6023, LMGE, BP 10448, F-63000 Clermont Ferrand (France); Bonnet, J.L.; Bohatier, J. [Clermont Universite, Universite Blaise Pascal, UMR CNRS 6023, LMGE, BP 10448, F-63000 Clermont Ferrand (France); Clermont Universite, Universite d' Auvergne, Laboratoire de Biologie cellulaire, BP 10448, F-63000 Clermont Ferrand (France)

    2011-02-01

    In this study, we have developed a simple process to fabricate scalable titanium dioxide nanotube layers which show a tunable functionality. The titanium dioxide nanotube layers were prepared by electrochemical anodization of Ti foil in 0.4 wt.% hydrofluoric acid solution. The nanotube layers structure and morphology were characterized using X-ray diffraction and scanning electron microscopy. The surface topography and wettability were studied according to the anodization time. The sample synthesized displayed a higher contact angle while the current density reached a local minimum. Beyond this point, the contact angles decreased with anodization time. Photo-degradation of acid orange 7 in aqueous solution was used as a probe to assess the photocatalytic activity of titanium dioxide nanotube layers under UV irradiation. We obtained better photocatalytic activity for the sample fabricated at higher current density. Finally we used the Ciliated Protozoan T. pyriformis, an alternative cell model used for in vitro toxicity studies, to predict the toxicity of titanium dioxide nanotube layers in a biological system. We did not observe any characteristic effect in the presence of the titanium dioxide nanotube layers on two physiological parameters related to this organism, non-specific esterases activity and population growth rate.

  12. Plasma Enhanced Chemical Vapour Deposition of Horizontally Aligned Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Matthew T. Cole

    2013-05-01

    Full Text Available A plasma-enhanced chemical vapour deposition reactor has been developed to synthesis horizontally aligned carbon nanotubes. The width of the aligning sheath was modelled based on a collisionless, quasi-neutral, Child’s law ion sheath where these estimates were empirically validated by direct Langmuir probe measurements, thereby confirming the proposed reactors ability to extend the existing sheath fields by up to 7 mm. A 7 mbar growth atmosphere combined with a 25 W plasma permitted the concurrent growth and alignment of carbon nanotubes with electric fields of the order of 0.04 V μm−1 with linear packing densities of up to ~5 × 104 cm−1. These results open up the potential for multi-directional in situ alignment of carbon nanotubes providing one viable route to the fabrication of many novel optoelectronic devices.

  13. Soldering of Nanotubes onto Microelectrodes

    DEFF Research Database (Denmark)

    Madsen, Dorte Nørgaard; Mølhave, Kristian; Mateiu, Ramona Valentina;

    2003-01-01

    Suspended bridges of individual multiwalled carbon nanotubes were fabricated inside a scanning electron microscope by soldering the nanotube onto microelectrodes with highly conducting gold-carbon material. By the decomposition of organometallic vapor with the electron beam, metal-containing solder...... bonds were formed at the intersection of the nanotube and the electrodes. Current-voltage curves indicated metallic conduction of the nanotubes, with resistances in the range of 9-29 kOmega. Bridges made entirely of the soldering material exhibited resistances on the order of 100 Omega, and the solder...... bonds were consistently found to be mechanically stronger than the carbon nanotubes....

  14. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Ian, E-mail: ian.holt@rjah.nhs.uk [Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, Shropshire SY10 7AG (United Kingdom); Institute for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Gestmann, Ingo, E-mail: Ingo.Gestmann@fei.com [FEI Europe B.V., Achtseweg Noord 5, 5651 Eindhoven (Netherlands); Wright, Andrew C., E-mail: a.wright@glyndwr.ac.uk [Advanced Materials Research Laboratory, Glyndwr University, Plas Coch, Mold Rd, Wrexham LL11 2AW (United Kingdom)

    2013-10-15

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth.

  15. Alignment of muscle precursor cells on the vertical edges of thick carbon nanotube films

    International Nuclear Information System (INIS)

    The development of scaffolds and templates is an essential aspect of tissue engineering. We show that thick (> 0.5 mm) vertically aligned carbon nanotube films, made by chemical vapour deposition, can be used as biocompatible substrates for the directional alignment of mouse muscle cells where the cells grow on the exposed sides of the films. Ultra high resolution scanning electron microscopy reveals that the films themselves consist mostly of small diameter (10 nm) multi-wall carbon nanotubes of wavy morphology with some single wall carbon nanotubes. Our findings show that for this alignment to occur the nanotubes must be in pristine condition. Mechanical wiping of the films to create directional alignment is detrimental to directional bioactivity. Larger areas for study have been formed from a composite of multiply stacked narrow strips of nanotubes wipe-transferred onto elastomer supports. These composite substrates appear to show a useful degree of alignment of the cells. Highlights: • Highly oriented muscle precursor cells grown on edges of carbon nanotube pads • Mechanical treatment of nanotube pads highly deleterious to cell growth on edges • Larger areas created from wipe-transfer of narrow strips of nanotubes onto elastomer supports • Very high resolution SEM reveals clues to aligned cell growth

  16. Laser patterning of vertically grown carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Won Seok [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2012-12-15

    The selective patterning of a carbon nanotube (CNT) forest on a Si substrate has been performed using a femtosecond laser. The high shock wave generated by the femtosecond laser effectively removed the CNTs without damage to the Si substrate. This process has many advantages because it is performed without chemicals and can be easily applied to large area patterning. The CNTs grown by plasma enhanced chemical vapor deposition (PECVD) have a catalyst cap at the end of the nanotube owing to the tip growth mode mechanism. For the application of an electron emission and biosensor probe, the catalyst cap is usually removed chemically, which damages the surface of the CNT wall. Precise control of the femtosecond laser power and focal position could solve this problem. Furthermore, selective CNT cutting using a femtosecond laser is also possible without any phase change in the CNTs, which is usually observed in the focused ion beam irradiation of CNTs.

  17. Variability and Reliability of Single-Walled Carbon Nanotube Field Effect Transistors

    Directory of Open Access Journals (Sweden)

    Ahmad Ehteshamul Islam

    2013-09-01

    Full Text Available Excellent electrical performance and extreme sensitivity to chemical species in semiconducting Single-Walled Carbon NanoTubes (s-SWCNTs motivated the study of using them to replace silicon as a next generation field effect transistor (FET for electronic, optoelectronic, and biological applications. In addition, use of SWCNTs in the recently studied flexible electronics appears more promising because of SWCNTs’ inherent flexibility and superior electrical performance over silicon-based materials. All these applications require SWCNT-FETs to have a wafer-scale uniform and reliable performance over time to a level that is at least comparable with the currently used silicon-based nanoscale FETs. Due to similarity in device configuration and its operation, SWCNT-FET inherits most of the variability and reliability concerns of silicon-based FETs, namely the ones originating from line edge roughness, metal work-function variation, oxide defects, etc. Additional challenges arise from the lack of chirality control in as-grown and post-processed SWCNTs and also from the presence of unstable hydroxyl (–OH groups near the interface of SWCNT and dielectric. In this review article, we discuss these variability and reliability origins in SWCNT-FETs. Proposed solutions for mitigating each of these sources are presented and a future perspective is provided in general, which are required for commercial use of SWCNT-FETs in future nanoelectronic applications.

  18. Increased fibroblast functionality on CNN2-loaded titania nanotubes

    Directory of Open Access Journals (Sweden)

    Wei HB

    2012-02-01

    Full Text Available Hongbo Wei*, Shuyi Wu*, Zhihong Feng, Wei Zhou, Yan Dong, Guofeng Wu, Shizhu Bai, Yimin Zhao Department of Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi'an, People's Republic of China *These authors contributed equally to this workAbstract: Infection and epithelial downgrowth are major problems associated with maxillofacial percutaneous implants. These complications are mainly due to the improper closure of the implant–skin interface. Therefore, designing a percutaneous implant that better promotes the formation of a stable soft tissue biologic seal around percutaneous sites is highly desirable. Additionally, the fibroblast has been proven to play an important role in the formation of biologic seals. In this study, titania nanotubes were filled with 11.2 kDa C-terminal CCN2 (connective tissue growth factor fragment, which could exert full CCN2 activity to increase the biological functionality of fibroblasts. This drug delivery system was fabricated on a titanium implant surface. CCN2 was loaded into anodized titania nanotubes using a simplified lyophilization method and the loading efficiency was approximately 80%. Then, the release kinetics of CCN2 from these nanotubes was investigated. Furthermore, the influence of CCN2-loaded titania nanotubes on fibroblast functionality was examined. The results revealed increased fibroblast adhesion at 0.25, 0.5, 1, 2, 4, and 24 hours, increased fibroblast viability over the course of 5 days, as well as enhanced actin cytoskeleton organization on CCN2-loaded titania nanotubes surfaces compared to uncoated, unmodified counterparts. Therefore, the results from this in vitro study demonstrate that CCN2-loaded titania nanotubes have the ability to increase fibroblast functionality and should be further studied as a method of promoting the formation of a stable soft tissue biologic seal around percutaneous sites.Keywords: anodization, titania nanotubes, adhesion, connective

  19. Carbon Nanotubes for Supercapacitor

    Directory of Open Access Journals (Sweden)

    Li Jianyi

    2010-01-01

    Full Text Available Abstract As an electrical energy storage device, supercapacitor finds attractive applications in consumer electronic products and alternative power source due to its higher energy density, fast discharge/charge time, low level of heating, safety, long-term operation stability, and no disposable parts. This work reviews the recent development of supercapacitor based on carbon nanotubes (CNTs and their composites. The purpose is to give a comprehensive understanding of the advantages and disadvantages of carbon nanotubes-related supercapacitor materials and to find ways for the improvement in the performance of supercapacitor. We first discussed the effects of physical and chemical properties of pure carbon nanotubes, including size, purity, defect, shape, functionalization, and annealing, on the supercapacitance. The composites, including CNTs/oxide and CNTs/polymer, were further discussed to enhance the supercapacitance and keep the stability of the supercapacitor by optimally engineering the composition, particle size, and coverage.

  20. Carbon Nanotube Microarrays Grown on Nanoflake Substrates

    Science.gov (United States)

    Schmidt, Howard K.; Hauge, Robert H.; Pint, Cary; Pheasant, Sean

    2013-01-01

    This innovation consists of a new composition of matter where single-walled carbon nanotubes (SWNTs) are grown in aligned arrays from nanostructured flakes that are coated in Fe catalyst. This method of growth of aligned SWNTs, which can yield well over 400 percent SWNT mass per unit substrate mass, exceeds current yields for entangled SWNT growth. In addition, processing can be performed with minimal wet etching treatments, leaving aligned SWNTs with superior properties over those that exist in entangled mats. The alignment of the nanotubes is similar to that achieved in vertically aligned nanotubes, which are called "carpets. " Because these flakes are grown in a state where they are airborne in a reactor, these flakes, after growing SWNTs, are termed "flying carpets. " These flakes are created in a roll-to-roll evaporator system, where three subsequent evaporations are performed on a 100-ft (approx. =30-m) roll of Mylar. The first layer is composed of a water-soluble "release layer, " which can be a material such as NaCl. After depositing NaCl, the second layer involves 40 nm of supporting layer material . either Al2O3 or MgO. The thickness of the layer can be tuned to synthesize flakes that are larger or smaller than those obtained with a 40-nm deposition. Finally, the third layer consists of a thin Fe catalyst layer with a thickness of 0.5 nm. The thickness of this layer ultimately determines the diameter of SWNT growth, and a layer that is too thick will result in the growth of multiwalled carbon nanotubes instead of single-wall nanotubes. However, between a thickness of 0.5 nm to 1 nm, single-walled carbon nanotubes are known to be the primary constituent. After this three-layer deposition process, the Mylar is rolled through a bath of water, which allows catalyst-coated flakes to detach from the Mylar. The flakes are then collected and dried. The method described here for making such flakes is analogous to that which is used to make birefringent ink that is

  1. Horizontal carbon nanotube alignment.

    Science.gov (United States)

    Cole, Matthew T; Cientanni, Vito; Milne, William I

    2016-09-21

    The production of horizontally aligned carbon nanotubes offers a rapid means of realizing a myriad of self-assembled near-atom-scale technologies - from novel photonic crystals to nanoscale transistors. The ability to reproducibly align anisotropic nanostructures has huge technological value. Here we review the present state-of-the-art in horizontal carbon nanotube alignment. For both in and ex situ approaches, we quantitatively assess the reported linear packing densities alongside the degree of alignment possible for each of these core methodologies. PMID:27546174

  2. Carbon Nanotube Solar Cells

    OpenAIRE

    Klinger, Colin; Patel, Yogeshwari; Postma, Henk W. Ch.

    2012-01-01

    We present proof-of-concept all-carbon solar cells. They are made of a photoactive side of predominantly semiconducting nanotubes for photoconversion and a counter electrode made of a natural mixture of carbon nanotubes or graphite, connected by a liquid electrolyte through a redox reaction. The cells do not require rare source materials such as In or Pt, nor high-grade semiconductor processing equipment, do not rely on dye for photoconversion and therefore do not bleach, and are easy to fabr...

  3. Homochiral metal phosphonate nanotubes.

    Science.gov (United States)

    Liu, Xun-Gao; Bao, Song-Song; Huang, Jian; Otsubo, Kazuya; Feng, Jian-Shen; Ren, Min; Hu, Feng-Chun; Sun, Zhihu; Zheng, Li-Min; Wei, Shiqiang; Kitagawa, Hiroshi

    2015-10-21

    A new type of homochiral metal-organic nanotubular structures based on metal phosphonates are reported, namely, (R)- or (S)-[M(pemp)(H2O)2][M = Co(II) (1), Ni(II) (2)] [pemp(2-) = (R)- or (S)-(1-phenylethylamino)methylphosphonate]. In these compounds, the tube-walls are purely inorganic, composed of metal ions and O-P-O bridges. The cavity of the nanotube is hydrophilic with one coordination water pointing towards the center, while the outer periphery of the nanotube is hydrophobic, decorated by the phenylethyl groups of pemp(2-). The thermal stabilities, adsorption and proton conductivity properties are investigated. PMID:26324662

  4. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device.

    Science.gov (United States)

    Agarwal, Sanjay; Yamini Sarada, B; Kar, Kamal K

    2010-02-10

    Tungsten substrates were coated with an Ni or Ni-Co catalyst by the electroless dip coating technique. Various carbon nanotubes were synthesized by the catalytic chemical vapor deposition (CVD) method under different growth conditions. It was observed that Ni-and Ni-Co-coated tungsten substrates give very good growth of carbon nanotubes (CNT) in terms of yield, uniformity and alignment at a growth temperature of 600 degrees C. We fabricated a field-emission-based luminescent light bulb where a tungsten wire coated with carbon nanotubes served as a cathode. Results show lower threshold voltage, better emission stability and higher luminescence for CNT cathodes in comparison with uncoated tungsten cathodes. We found that aligned-coiled carbon nanotubes are superior to straight CNTs in terms of field emission characteristics and luminescence properties. PMID:20057034

  5. Chiral control of electron transmission through molecules.

    Science.gov (United States)

    Skourtis, Spiros S; Beratan, David N; Naaman, Ron; Nitzan, Abraham; Waldeck, David H

    2008-12-01

    Electron transmission through chiral molecules induced by circularly polarized light can be very different for mirror-image structures, a peculiar fact given that the electronic energy spectra of the systems are identical. We propose that this asymmetry--as large as 10% for resonant transport--arises from different dynamical responses of the mirrored structures to coherent excitation. This behavior is described in the context of a general novel phenomenon of current transfer (transfer of charge with its momentum information) and accounts for the observed asymmetry and its dependence on structure. PMID:19113598

  6. TiO2 nanotube formation by Ti film anodization and their transport properties for dye-sensitized solar cells

    NARCIS (Netherlands)

    Iraj, M.; Kolahdouz, M.; Asl-Soleimani, E.; Esmaeili, E.; Kolahdouz Esfahani, Z.

    2016-01-01

    In this paper, we present the synthesis of TiO2 nanotube (NT) arrays formed by anodization of Ti film deposited on a fluorine-doped tin oxide-coated glass substrate by direct current magnetron sputtering. NH4F/ethylene glycol electrolyte was used to demonstrate the growth of stable nanotubes at room

  7. 阳极氧化ZrO2纳米管阵列的制备及其生长机制%Preparation and growth mechanism of anodic ZrO2 nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    曹华珍; 尹意淳; 郑国渠

    2014-01-01

    在含NH4F的聚乙二醇(PEG-200)电解液中通过阳极氧化制备高度有序的二氧化锆纳米管阵列(ZrO2-NTs)。考察氧化电压、氧化时间以及电解液水含量对 ZrO2-NTs 形貌的影响,并讨论其生长机制,采用等效电路Rs(QfRf)(QdRc)对ZrO2-NTs的电化学阻抗谱进行拟合。结果表明,在该体系中ZrO2-NTs的形成包括氧化、水解形核以及膜溶解过程,氧化电压、氧化时间以及电解液水含量是影响ZrO2-NTs生长的重要因素,在含1.0%NH4F(质量分数)和5% H2O(体积分数)的 PEG-200电解液中,20 V 电压下氧化3 h 可制备得到管径为100~120 nm 的ZrO2-NTs。电化学阻抗谱分析结果表明,ZrO2膜层的界面电荷转移电阻较大。%Highly ordered ZrO2 nanotube arrays (ZrO2-NTs) were prepared by anodic oxidation in PEG-200 electrolyte containing NH4F. The effects of oxidation voltage, oxidation time and water content of the electrolyte on the morphology and structure of ZrO2-NTs were investigated intensively. Furthermore, the growth mechanism of ZrO2-NTs in PEG-200 electrolyte was discussed. Equivalent circuit model Rs(QfRf)(QdRc) was used to analyze the electrochemical impedance of ZrO2-NTs. The results show that the formation of ZrO2-NTs in this system experiences oxidation, hydrolysis-nucleation and oxide film dissolution processes. The oxidation voltage, oxidation time and water content in the electrolyte are important factors on the growth of ZrO2-NTs. Highly ordered ZrO2-NTs with tube diameters arranging from 100 to 120 nm can be obtained in PEG-200 containing 1.0%NH4F (mass fraction) and 5%H2O (volume fraction) at potential of 20 V for 3 h. The impedance analysis results indicate that the interface charge transfer resistance of the ZrO2 film is large.

  8. 阳极氧化ZrO2纳米管阵列的制备及其生长机制%Preparation and growth mechanism of anodic ZrO2 nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    曹华珍; 尹意淳; 郑国渠

    2014-01-01

    Highly ordered ZrO2 nanotube arrays (ZrO2-NTs) were prepared by anodic oxidation in PEG-200 electrolyte containing NH4F. The effects of oxidation voltage, oxidation time and water content of the electrolyte on the morphology and structure of ZrO2-NTs were investigated intensively. Furthermore, the growth mechanism of ZrO2-NTs in PEG-200 electrolyte was discussed. Equivalent circuit model Rs(QfRf)(QdRc) was used to analyze the electrochemical impedance of ZrO2-NTs. The results show that the formation of ZrO2-NTs in this system experiences oxidation, hydrolysis-nucleation and oxide film dissolution processes. The oxidation voltage, oxidation time and water content in the electrolyte are important factors on the growth of ZrO2-NTs. Highly ordered ZrO2-NTs with tube diameters arranging from 100 to 120 nm can be obtained in PEG-200 containing 1.0%NH4F (mass fraction) and 5%H2O (volume fraction) at potential of 20 V for 3 h. The impedance analysis results indicate that the interface charge transfer resistance of the ZrO2 film is large.%在含NH4F的聚乙二醇(PEG-200)电解液中通过阳极氧化制备高度有序的二氧化锆纳米管阵列(ZrO2-NTs)。考察氧化电压、氧化时间以及电解液水含量对 ZrO2-NTs 形貌的影响,并讨论其生长机制,采用等效电路Rs(QfRf)(QdRc)对ZrO2-NTs的电化学阻抗谱进行拟合。结果表明,在该体系中ZrO2-NTs的形成包括氧化、水解形核以及膜溶解过程,氧化电压、氧化时间以及电解液水含量是影响ZrO2-NTs生长的重要因素,在含1.0%NH4F(质量分数)和5% H2O(体积分数)的 PEG-200电解液中,20 V 电压下氧化3 h 可制备得到管径为100~120 nm 的ZrO2-NTs。电化学阻抗谱分析结果表明,ZrO2膜层的界面电荷转移电阻较大。

  9. Modeling of the HiPco process for carbon nanotube production. II. Reactor-scale analysis

    Science.gov (United States)

    Gokcen, Tahir; Dateo, Christopher E.; Meyyappan, M.

    2002-01-01

    The high-pressure carbon monoxide (HiPco) process, developed at Rice University, has been reported to produce single-walled carbon nanotubes from gas-phase reactions of iron carbonyl in carbon monoxide at high pressures (10-100 atm). Computational modeling is used here to develop an understanding of the HiPco process. A detailed kinetic model of the HiPco process that includes of the precursor, decomposition metal cluster formation and growth, and carbon nanotube growth was developed in the previous article (Part I). Decomposition of precursor molecules is necessary to initiate metal cluster formation. The metal clusters serve as catalysts for carbon nanotube growth. The diameter of metal clusters and number of atoms in these clusters are some of the essential information for predicting carbon nanotube formation and growth, which is then modeled by the Boudouard reaction with metal catalysts. Based on the detailed model simulations, a reduced kinetic model was also developed in Part I for use in reactor-scale flowfield calculations. Here this reduced kinetic model is integrated with a two-dimensional axisymmetric reactor flow model to predict reactor performance. Carbon nanotube growth is examined with respect to several process variables (peripheral jet temperature, reactor pressure, and Fe(CO)5 concentration) with the use of the axisymmetric model, and the computed results are compared with existing experimental data. The model yields most of the qualitative trends observed in the experiments and helps to understanding the fundamental processes in HiPco carbon nanotube production.

  10. Production of Carbon Nanotubes over Pre-reduced LaCoO3 by Using Fluidized-bed Catalytic Reactor

    Institute of Scientific and Technical Information of China (English)

    刘宝春; 唐水花; 梁奇; 高利珍; 张伯兰; 瞿美臻; 于作龙

    2001-01-01

    A technique has been developed to grow carbon nanotubes by flowing acetylene over pre-reduced LaCoO3 catalyst in a fluidized- bed catalytic reactor. Carbon nanotubes were characterized by means of SEM and TEM. The pre-reduced LaCoO3catalyst was found to be effective in producing carbon nanotubes with even diameter. The effects of reduction temperature of LaCoO3 on the growth of carbon nanotubes were investigated. This process can easily be scaled up.

  11. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhixian [ORNL; Eres, Gyula [ORNL; Jin, Rongying [ORNL; Subedi, Alaska P [ORNL; Mandrus, David [ORNL; Kim, Eugene [ORNL

    2009-01-01

    Electrical transport measurements were used to study device behavior that results from the interplay of defects and inadvertent contact variance that develops in as-grown semiconducting single wall carbon nanotube devices with nominally identical Au contacts. The transport measurements reveal that as-grown nanotubes contain defects that limit the performance of field-effect transistors with ohmic contacts. In Schottky-barrier field-effect transistors the device performance is dominated by the Schottky barrier and the nanotube defects have little effect. We also observed strong rectifying behavior attributed to extreme contact asymmetry due to the different nanoscale roughness of the gold contacts formed during nanotube growth.

  12. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Zhixian [Department of Physics and Astronomy, Wayne State University, Detroit, MI 48201 (United States); Eres, Gyula; Jin Rongying; Subedi, Alaska; Mandrus, David [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Kim, Eugene H [Department of Physics, University of Windsor, Windsor, ON, N9B 3P4 (Canada)], E-mail: zxzhou@wayne.edu

    2009-02-25

    Electrical transport measurements were used to study device behavior that results from the interplay of defects and inadvertent contact variance that develops in as-grown semiconducting single wall carbon nanotube devices with nominally identical Au contacts. The transport measurements reveal that as-grown nanotubes contain defects that limit the performance of field-effect transistors with ohmic contacts. In Schottky-barrier field-effect transistors the device performance is dominated by the Schottky barrier and the nanotube defects have little effect. We also observed strong rectifying behavior attributed to extreme contact asymmetry due to the different nanoscale roughness of the gold contacts formed during nanotube growth.

  13. The performance of in situ grown Schottky-barrier single wall carbon nanotube field-effect transistors

    International Nuclear Information System (INIS)

    Electrical transport measurements were used to study device behavior that results from the interplay of defects and inadvertent contact variance that develops in as-grown semiconducting single wall carbon nanotube devices with nominally identical Au contacts. The transport measurements reveal that as-grown nanotubes contain defects that limit the performance of field-effect transistors with ohmic contacts. In Schottky-barrier field-effect transistors the device performance is dominated by the Schottky barrier and the nanotube defects have little effect. We also observed strong rectifying behavior attributed to extreme contact asymmetry due to the different nanoscale roughness of the gold contacts formed during nanotube growth.

  14. Electroless synthesis of lepidocrocite (γ-FeOOH) nanotubes in ion track etched polycarbonate templates

    International Nuclear Information System (INIS)

    In this study, we describe the electroless synthesis of lepidocrocite (γ-FeOOH) nanotubes produced in ion track etched polycarbonate foils. The foils act as templates after they had been irradiated with heavy ions to produce latent tracks that were etched with a desired diameter. Templates are used to fabricate shape formed 1D nanostructures in general. The synthesis of lepidocrocite nanotubes was carried out in a simple two-step method: firstly, particles were formed by precipitation in aqueous solution; secondly, nanotubes were produced by the deposition of the particles inside the nanochannels of the polycarbonate template. Solvent effects were considered to achieve homogeneous growth resulting in well-defined nanotubes of constant wall thickness along the tube axis. Lepidocrocite nanotubes were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), Raman, and Mössbauer spectroscopy.

  15. Fabrication of TiO{sub 2} nanotubes by atomic layer deposition and their photocatalytic and photoelectrochemical applications

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chih-Chieh; Kei, Chi-Chung; Perng, Tsong-Pyng, E-mail: tpperng@mx.nthu.edu.tw [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China)

    2011-09-07

    The formation of TiO{sub 2} nanotubes was conducted by atomic layer deposition (ALD) with tris-(8-hydroxyquinoline) gallium (GaQ{sub 3}) nanowires as a template at different substrate temperatures, 50, 100, and 200 deg. C. TiO{sub 2} nanotubes were formed only at 50 and 100 deg. C. Although a higher growth rate at 50 deg. C was observed, nanotubes with better uniformity, conformality, and less residual chloride were obtained at 100 deg. C because of a different formation mechanism. A photocatalysis test of TiO{sub 2} nanotubes prepared by different cycle numbers at 100 {sup 0}C was conducted. It showed that TiO{sub 2} nanotubes prepared by 400 cycles of ALD and treated at 700 deg. C for 1 h to form anatase phase had the best photocatalytic performance. Compared with P-25, the nanotubes showed higher photocatalytic degradation of rhodamine B and water splitting efficiency.

  16. Spin stripes in nanotubes

    OpenAIRE

    Kleiner, Alex

    2002-01-01

    It is shown here that electrons on the surface of a nanotube in a perpendicular magnetic field undergo spin-chirality separation along the circumference. Stripes of spin-polarization propagate along the tube, with a spatial pattern that can be modulated by the electron filling.

  17. Multiwalled Carbon Nanotubes Decorated with Cobalt Oxide Nanoparticles

    Directory of Open Access Journals (Sweden)

    D. G. Larrude

    2012-01-01

    Full Text Available Multiwalled carbon nanotubes (MWCNTs synthesized by spray pyrolysis were decorated with cobalt oxide nanoparticles using a simple synthesis route. This wet chemistry method yielded nanoparticles randomly anchored to the surface of the nanotubes by decomposition of cobalt nitrate hexahydrate diluted in acetone. Electron microscopy analysis indicated that dispersed particles were formed on the MWCNTs walls. The average size increased with the increasing concentration of cobalt nitrate in acetone in the precursor mixture. TEM images indicated that nanoparticles were strongly attached to the tube walls. The Raman spectroscopy results suggested that the MWCNT structure was slightly damaged after the nanoparticle growth.

  18. Well-ordered ZnO nanotube arrays and networks grown by atomic layer deposition

    International Nuclear Information System (INIS)

    Highlights: • ZnO nanotube networks and well-ordered ZnO nanotube arrays are fabricated by ALD. • The wall thickness of the ZnO nanotubes can be well-controlled at the angstrom level. • The fishing net-like networks of ZnO nanotubes with an ultra thin wall thickness are fabricated. • The ZnO nanotube arrays have an aspect ratio as high as 1000:1. - Abstract: Semiconductor ZnO, possessing a large exciton binding energy and wide band gap, has received a great deal of attention because it shows great potential for applications in optoelectronics. Precisely controlling the growth of three-dimensional ZnO nanotube structures with a uniform morphology constitutes an important step forward toward integrating ZnO nanostructures into microelectronic devices. Atomic layer deposition (ALD) technique, featured with self-limiting surface reactions, is an ideal approach to the fabrication of ZnO nanostructures, because it allows for accurate control of the thickness at atomic level and conformal coverage in complex 3D structures. In this work, well-ordered ZnO nanotube arrays and networks are prepared by ALD. The morphology, crystallinity and wall thickness of these nanotube structures are examined for different growth conditions. The microstructure of the ZnO nanotubes is investigated by transmission electron microscopy and X-ray diffraction. The high aspect ratio of ZnO nanotubes provides a large specific area which could enhance the kinetics of chemical reactions taking place between the ZnO and its surroundings, making the potential devices more efficient and compact

  19. Carbon Nanotubes - Polymer Composites with Enhanced Conductivity using Functionalized Nanotubes

    Science.gov (United States)

    Ramasubramaniam, Rajagopal; Chen, Jian; Gupta, Rishi

    2003-03-01

    Individual carbon nanotubes show superior electrical, mechanical and thermal properties [1]. Composite materials using carbon nanotubes as fillers are predicted to show similar superior properties. However, realization of such composites has been plagued by poor dispersion of carbon nanotubes in solvents and in polymer matrices. We have developed a method to homogenously disperse carbon nanotubes in polymer matrices using functionalized nanotubes [2]. Thin films of functionalized single walled nanotubes (SWNT) - polystyrene composites and functionalized SWNT - polycarbonate composites were prepared using solution evaporation and spin coating. Both of the composites show several orders of magnitude increase in conductivity for less than 1 wt thresholds of the composites are less than 0.2 wt nanotubes. We attribute the enhanced conduction to the superior dispersion of the functionalized nanotubes in the polymer matrix and to the reduced nanotube waviness resulting from the rigid backbone of the conjugated polymer. References: [1]. R. H. Baughman, A. A. Zakhidov and W. A. de Heer, Science v297, p787 (2002); [2]. J. Chen, H. Liu, W. A. Weimer, M. D. Halls, D. H. Waldeck and G. C. Walker, J. Am. Chem. Soc. v124, p9034 (2002).

  20. Nonlinear optical transmission in VOx nanotubes and VOx nanotube composites

    Science.gov (United States)

    Xu, J.-F.; Czerw, R.; Webster, S.; Carroll, D. L.; Ballato, J.; Nesper, R.

    2002-08-01

    Optical-limiting behavior of vanadium oxide nanotubes is characterized for the visible and infrared spectral ranges using 8 ns pulses from a Nd:YAG laser with an f/40 optical system. Vanadium oxide nanotube dispersions were investigated in both water suspensions and embedded in solid polymethyl methacrylate films. In each case, these nanotubes exhibit strong optical-limiting at 532 nm (in comparison to carbon nanotubes); however, no nonlinear behavior is observed for 1064 nm. This suggests that a two photon or excited state absorption mechanism is responsible for the observed nonlinearity.

  1. Fabrication of micro-patterned titanium dioxide nanotubes thin film and its biocompatibility

    Directory of Open Access Journals (Sweden)

    Li-jie Xiang

    2014-12-01

    Full Text Available In this study, in order to obtain a novel biomaterials surface which possesses the functions of an anticoagulant, inhibiting smooth muscle proliferation and pro-endothelialisation simultaneously, a micro-patterned titanium dioxide (TiO(2-nanotubes (P-TiO(2-nanotubes thin film was prepared on titanium (Ti surface by photolithography combining with anodising method. The authors found that the P-TiO(2-nanotubes could reduce platelet attachment and conformational change of fibrinogen (FGN as well as promoting endothelial cells (ECs growth compared with the TiO(2-nanotubes. Notably, P-TiO(2-nanotubes could significantly reduce smooth muscle cells (SMCs proliferation compared with TiO(2-nanotubes and TiO(2, and the ECs and SMCs cultured on the P-TiO(2-nanotubes thin film were elongated, which was suggested to be beneficial for maintaining the cell function. Therefore it is suggested that the P-TiO(2-nanotubes thin film can contribute more to biocompatible functions of regulating and coordinating the behaviour of platelets, ECs and SMCs.

  2. Carbon nanotube materials from hydrogen storage

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, A.C.; Bekkedahl, T.A.; Cahill, A.F. [National Renewable Energy Laboratory, Golden, CO (United States)

    1995-09-01

    The lack of convenient and cost-effective hydrogen storage is a major impediment to wide scale use of hydrogen in the United States energy economy. Improvements in the energy densities of hydrogen storage systems, reductions in cost, and increased compatibility with available and forecasted systems are required before viable hydrogen energy use pathways can be established. Carbon-based hydrogen adsorption materials hold particular promise for meeting and exceeding the U.S. Department of Energy hydrogen storage energy density targets for transportation if concurrent increases in hydrogen storage capacity and carbon density can be achieved. These two goals are normally in conflict for conventional porous materials, but may be reconciled by the design and synthesis of new adsorbent materials with tailored pore size distributions and minimal macroporosity. Carbon nanotubes offer the possibility to explore new designs for adsorbents because they can be fabricated with small size distributions, and naturally tend to self-assemble by van der Waals forces. This year we report heats of adsorption for hydrogen on nanotube materials that are 2 and 3 times greater than for hydrogen on activated carbon. The hydrogen which is most strongly bound to these materials remains on the carbon surface to temperatures greater than 285 K. These results suggest that nanocapillary forces are active in stabilizing hydrogen on the surfaces of carbon nanotubes, and that optimization of the adsorbent will lead to effective storage at higher temperatures. In this paper we will also report on our activities which are targeted at understanding and optimizing the nucleation and growth of single wall nanotubes. These experiments were made possible by the development of a unique feedback control circuit which stabilized the plasma-arc during a synthesis run.

  3. Charged diphenylalanine nanotubes and controlled hierarchical self-assembly.

    Science.gov (United States)

    Wang, Minjie; Du, Lingjie; Wu, Xinglong; Xiong, Shijie; Chu, Paul K

    2011-06-28

    Hexagonal hierarchical microtubular structures are produced by diphenylalanine self-assembly and the ratio of the relative humidity in the growth chamber to the diphenylalanine concentration (defined as the RH-FF ratio) determines the microtubular morphology. The hexagonal arrangement of the diphenylalanine molecules first induces the hexagonal nanotubes with opposite charges on the two ends, and the dipolar electric field on the nanotubes serves as the driving force. Side-by-side hexagonal aggregation and end-to-end arrangement ensue finally producing a hexagonal hierarchical microtubular structure. Staining experiments and the external electric field-induced parallel arrangement provide evidence of the existence of opposite charges and dipolar electric field. In this self-assembly, the different RH-FF ratios induce different contents of crystalline phases. This leads to different initial nanotube numbers finally yielding different microtubular morphologies. Our calculation based on the dipole model supports the dipole-field mechanism that leads to the different microtubular morphologies. PMID:21591732

  4. Self-assembled arrays of peptide nanotubes by vapour deposition.

    Science.gov (United States)

    Adler-Abramovich, Lihi; Aronov, Daniel; Beker, Peter; Yevnin, Maya; Stempler, Shiri; Buzhansky, Ludmila; Rosenman, Gil; Gazit, Ehud

    2009-12-01

    The use of bionanostructures in real-world applications will require precise control over biomolecular self-assembly and the ability to scale up production of these materials. A significant challenge is to control the formation of large, homogeneous arrays of bionanostructures on macroscopic surfaces. Previously, bionanostructure formation has been based on the spontaneous growth of heterogenic populations in bulk solution. Here, we demonstrate the self-assembly of large arrays of aromatic peptide nanotubes using vapour deposition methods. This approach allows the length and density of the nanotubes to be fine-tuned by carefully controlling the supply of the building blocks from the gas phase. Furthermore, we show that the nanotube arrays can be used to develop high-surface-area electrodes for energy storage applications, highly hydrophobic self-cleaning surfaces and microfluidic chips. PMID:19893524

  5. Connecting carbon nanotubes using Sn.

    Science.gov (United States)

    Mittal, Jagjiwan; Lin, Kwang Lung

    2013-08-01

    Process of Sn coating on mutiwalled carbon nanotubes (MWCNT) and formation of interconnections among nanotubes are studied using high resolution transmission electron microscopy (HRTEM) and energy dispersive X-ray spectroscopy (EDX). Surface oxidation of nanotubes during heating with HNO3 prior to the SnCl2 treatment and the bonding between functional groups and Sn are found to be responsible for the coating and its stability. Open nanotubes are filled as well as coated during tin chloride treatment. Coating and filling are converted into the coatings on the inner as well as outer walls of the nanotubes during reduction with H2/N2. EDX studies show the formation of intermetallic compounds e.g., Cu6Sn5 and Cu3Sn at the joints between nanotubes. Formation of intermetallic compounds is supposed to be responsible for providing the required strength for bending and twisting of nanotubes joining of nanotubes. Paper presents a detailed mechanism of coating and filling processes, and interconnections among nanotubes. PMID:23882800

  6. Carbon nanotube IR detectors (SV)

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, F. L.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Corporation (LMC) collaborated to (1) evaluate the potential of carbon nanotubes as channels in infrared (IR) photodetectors; (2) assemble and characterize carbon nanotube electronic devices and measure the photocurrent generated when exposed to infrared light;(3) compare the performance of the carbon nanotube devices with that of traditional devices; and (4) develop and numerically implement models of electronic transport and opto-electronic behavior of carbon nanotube infrared detectors. This work established a new paradigm for photodetectors.

  7. Fabricating Copper Nanotubes by Electrodeposition

    Science.gov (United States)

    Yang, E. H.; Ramsey, Christopher; Bae, Youngsam; Choi, Daniel

    2009-01-01

    Copper tubes having diameters between about 100 and about 200 nm have been fabricated by electrodeposition of copper into the pores of alumina nanopore membranes. Copper nanotubes are under consideration as alternatives to copper nanorods and nanowires for applications involving thermal and/or electrical contacts, wherein the greater specific areas of nanotubes could afford lower effective thermal and/or electrical resistivities. Heretofore, copper nanorods and nanowires have been fabricated by a combination of electrodeposition and a conventional expensive lithographic process. The present electrodeposition-based process for fabricating copper nanotubes costs less and enables production of copper nanotubes at greater rate.

  8. Luminescence of carbon nanotube bulbs

    Institute of Scientific and Technical Information of China (English)

    LI ChuanGang; WU DeHai; WANG KunLin; WEI JinQuan; WEI BingQing; ZHU HongWei; WANG ZhiCheng; LUO JianBin; LIU WenJin; ZHENG MingXin

    2007-01-01

    Carbon nanotube (CNT) bulbs made of decimeter-scale double-walled carbon nanotube (DWCNT) strands and films were fabricated and their luminescence properties, including the lighting efficiency, voltage-current relation and thermal stability were investigated. The results show that the DWCNT bulb has a comparable spectrum of visible light with tungsten bulb and its average efficiency is 40% higher than that of a tungsten filament at the same temperature (1400-2300 K). The nanotube filaments show both resistance and thermal stability over a large temperature region. No obvious damage was found for a nanotube bulb illuminating at 2300 K for more than 24 hours in vacuum.

  9. Interface feature characterization and Schottky interfacial layer confirmation of TiO2 nanotube array film

    Science.gov (United States)

    Li, Hongchao; Tang, Ningxin; Yang, Hongzhi; Leng, Xian; Zou, Jianpeng

    2015-11-01

    We report here characterization of the interfacial microstructure and properties of titanium dioxide (TiO2) nanotube array films fabricated by anodization. Field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), nanoindentation, atomic force microscopy (AFM), selected area electron diffraction (SAED), and high-resolution transmission electron microscopy (HRTEM) were used to characterize the interface of the film. With increasing annealing temperature from 200 °C to 800 °C, the interfacial fusion between the film and the Ti substrate increased. The phase transformation of the TiO2 nanotube film from amorphous to anatase to rutile took place gradually; as the phase transformation progressed, the force needed to break the film increased. The growth of TiO2 nanotube arrays occurs in four stages: barrier layer formation, penetrating micropore formation, regular nanotube formation, and nanofiber formation. The TiO2 nanotubes grow from the Schottky interface layer rather than from the Ti substrate. The Schottky interface layer's thickness of 35-45 nm was identified as half the diameter of the corresponding nanotube, which shows good agreement to the Schottky interface layer growth model. The TiO2 nanotube film was amorphous and the Ti substrate was highly crystallized with many dislocation walls.

  10. Center for Applications of Single-Walled Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Resasco, Daniel E

    2008-02-21

    This report describes the activities conducted under a Congressional Direction project whose goal was to develop applications for Single-walled carbon nanotubes, under the Carbon Nanotube Technology Center (CANTEC), a multi-investigator program that capitalizes on OU’s advantageous position of having available high quality carbon nanotubes. During the first phase of CANTEC, 11 faculty members and their students from the College of Engineering developed applications for carbon nanotubes by applying their expertise in a number of areas: Catalysis, Reaction Engineering, Nanotube synthesis, Surfactants, Colloid Chemistry, Polymer Chemistry, Spectroscopy, Tissue Engineering, Biosensors, Biochemical Engineering, Cell Biology, Thermal Transport, Composite Materials, Protein synthesis and purification, Molecular Modeling, Computational Simulations. In particular, during this phase, the different research groups involved in CANTEC made advances in the tailoring of Single-Walled Carbon Nanotubes (SWNT) of controlled diameter and chirality by Modifying Reaction Conditions and the Nature of the catalyst; developed kinetic models that quantitatively describe the SWNT growth, created vertically oriented forests of SWNT by varying the density of metal nanoparticles catalyst particles, and developed novel nanostructured SWNT towers that exhibit superhydrophobic behavior. They also developed molecular simulations of the growth of Metal Nanoparticles on the surface of SWNT, which may have applications in the field of fuell cells. In the area of biomedical applications, CANTEC researchers fabricated SWNT Biosensors by a novel electrostatic layer-by-layer (LBL) deposition method, which may have an impact in the control of diabetes. They also functionalized SWNT with proteins that retained the protein’s biological activity and also retained the near-infrared light absorbance, which finds applications in the treatment of cancer.

  11. Molecular dynamics study of the stability of a carbon nanotube atop a catalytic nanoparticle

    OpenAIRE

    Verkhovtsev, Alexey V.; Schramm, Stefan; Solov'yov, Andrey V.

    2014-01-01

    The stability of a single-walled carbon nanotube placed on top of a catalytic nickel nanoparticle is investigated by means of molecular dynamics simulations. As a case study, we consider the $(12,0)$ nanotube consisting of 720 carbon atoms and the icosahedral Ni$_{309}$ cluster. An explicit set of constant-temperature simulations is performed in order to cover a broad temperature range from 400 to 1200 K, at which a successful growth of carbon nanotubes has been achieved experimentally by mea...

  12. Electrochemical synthesis and crystal structure of ordered arrays of Со – nanotubes

    Directory of Open Access Journals (Sweden)

    Artem Kozlovskiy

    2015-09-01

    Full Text Available In this paper, using the method of electrochemical template synthesis, ordered arrays of metallic nanostructures on the basis of cobalt with various dimensions (180-380 nm were obtained. The diameter of Co-nanotubes was controlled by original polymer matrix, which provided to prepare arrays consisting of individually standing cobalt nanotubes. The crystal structure of the synthesized samples was studied by X-ray diffraction to determine cell parameters and crystallite size. Decrease of the conductive properties of Co - nanotubes can be explained by inhomogeneity of the crystallites formed during synthesis, because the growth rate of nanostructures directly affects the size of the crystallites.

  13. Preparation and hydrogen 8as sensitive characteristics of highly ordered titania nanotube arrays

    Institute of Scientific and Technical Information of China (English)

    JI HuiMing; LU HuiXiang; MA DongFang; YU JianJun; MA ShiCai

    2008-01-01

    In this paper, we report the growth and characteristics of titania nanotube arrays prepared by anodic oxidation and then annealed in an oxygen atmosphere at 500℃. The titania nanotube arrays presented high sensitivity to hydrogen gas. The crystalline phase of the samples was checked by X-ray diffraction (XRD). The differences in the nanotubes morphology attributed to the etched samples due to anodiza-tion potential, reaction time and the electrolyte concentration were analyzed by scanning electron mi-croscopy (SEM). The gas sensitive parameters of the samples were obtained from resistance, the re-sponse time and the recovery time at different temperatures.

  14. Frontiers of graphene and carbon nanotubes devices and applications

    CERN Document Server

    2015-01-01

    This book focuses on carbon nanotubes and graphene as representatives of nano-carbon materials, and describes the growth of new technology and applications of new devices. As new devices and as new materials, nano-carbon materials are expected to be world pioneers that could not have been realized with conventional semiconductor materials, and as those that extend the limits of conventional semiconductor performance. This book introduces the latest achievements of nano-carbon devices, processes, and technology growth. It is anticipated that these studies will also be pioneers in the development of future research of nano-carbon devices and materials. This book consists of 18 chapters. Chapters 1 to 8 describe new device applications and new growth methods of graphene, and Chapters 9 to 18, those of carbon nanotubes. It is expected that by increasing the advantages and overcoming the weak points of nanocarbon materials, a new world that cannot be achieved with conventional materials will be greatly expanded. W...

  15. Production and characterisation of hydroxyapatite/multi-walled carbon nanotube composites

    OpenAIRE

    White, Ashley Ann

    2010-01-01

    Hydroxyapatite (HA) is a biologically active ceramic that is used in surgery to replace bone. While HA promotes bone growth along its surface, its mechanical properties are not sufficient for major load-bearing medical devices. Carbon nanotubes (CNTs), as one of the strongest and stiffest materials available, have the potential to strengthen and toughen HA, thus expanding the range of clinical uses for the material. Furthermore, studies have suggested that the nanotubes themselves possess som...

  16. Carbon nanotube-polymer composite actuators

    Science.gov (United States)

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  17. Carbon nanotube network varactor

    International Nuclear Information System (INIS)

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling. (paper)

  18. Carbon nanotube network varactor

    Science.gov (United States)

    Generalov, A. A.; Anoshkin, I. V.; Erdmanis, M.; Lioubtchenko, D. V.; Ovchinnikov, V.; Nasibulin, A. G.; Räisänen, A. V.

    2015-01-01

    Microelectromechanical system (MEMS) varactors based on a freestanding layer of single-walled carbon nanotube (SWCNT) films were designed, fabricated and tested. The freestanding SWCNT film was employed as a movable upper patch in the parallel plate capacitor of the MEMS. The measurements of the SWCNT varactors show very high tunability, nearly 100%, of the capacitance with a low actuation voltage of 10 V. The functionality of the varactor is improved by implementing a flexible nanocellulose aerogel filling.

  19. Teslaphoresis of Carbon Nanotubes.

    Science.gov (United States)

    Bornhoeft, Lindsey R; Castillo, Aida C; Smalley, Preston R; Kittrell, Carter; James, Dustin K; Brinson, Bruce E; Rybolt, Thomas R; Johnson, Bruce R; Cherukuri, Tonya K; Cherukuri, Paul

    2016-04-26

    This paper introduces Teslaphoresis, the directed motion and self-assembly of matter by a Tesla coil, and studies this electrokinetic phenomenon using single-walled carbon nanotubes (CNTs). Conventional directed self-assembly of matter using electric fields has been restricted to small scale structures, but with Teslaphoresis, we exceed this limitation by using the Tesla coil's antenna to create a gradient high-voltage force field that projects into free space. CNTs placed within the Teslaphoretic (TEP) field polarize and self-assemble into wires that span from the nanoscale to the macroscale, the longest thus far being 15 cm. We show that the TEP field not only directs the self-assembly of long nanotube wires at remote distances (>30 cm) but can also wirelessly power nanotube-based LED circuits. Furthermore, individualized CNTs self-organize to form long parallel arrays with high fidelity alignment to the TEP field. Thus, Teslaphoresis is effective for directed self-assembly from the bottom-up to the macroscale. PMID:27074626

  20. Three dimensional ZnO nanotube arrays and their optical tuning through formation of type-II heterostructures

    OpenAIRE

    Wang, L.; Huang, X.(Tsinghua University, Beijing, 100084, China); Xia, J.; Zhu, D.; Li, X; Meng, X

    2016-01-01

    In this paper, we report on the first successful attempt of chemical vapor deposition (CVD) synthesis of well-aligned single-crystalline ZnO nanotube arrays on Mo wire mesh. According to detailed morphology and composition analyses, a rational growth model is proposed to illustrate the growth process of the hollow ZnO nanotubes. Metastable Zn-rich ZnOx nanorods formed in the early stage are believed to play a vital role towards the formation of nanotube configuration. In addition, we also suc...

  1. Building Highly Flexible Polyelectrolyte Nanotubes

    Institute of Scientific and Technical Information of China (English)

    2004-01-01

    @@ Flexibility of polyelectrolyte nanotubes is necessary if they are to be exploited in applications such as developing photoelectric devices with strong mechanical properties. In a recent attempt, high flexibility has been observed from such nanotubes prepared by a research team headed by Prof. Li Junbai of the CAS Institute of Chemistry (ICCAS).

  2. Thermal-heating CVD synthesis of BN nanotubes from trimethyl borate and nitrogen gas

    Energy Technology Data Exchange (ETDEWEB)

    Lin, F.-H. [Institute of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University Hospital, National Taiwan University, Taipei 106, Taiwan (China); Hsu, C.-K. [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China)], E-mail: double@ha.mc.ntu.edu.tw; Tang, T.-P. [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China); Kang, P.-L. [Department of Surgery, Kaoshiung Veterans General Hospital, Taiwan (China); Yang, F.-F. [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China)

    2008-01-15

    Boron nitride (BN) is one of III-V compounds widely applied on the electrical industry. It has been fabricated by numerous techniques, but so far there is no reliable method to produce pure and high-yielding BN nanotubes at relatively lower temperature. Therefore, the exploration on its synthesis is still a challenging subject. In the study, the BN nanotube would be synthesized by thermal-heating chemical vapor deposition (TH-CVD) with trimethyl borate evaporated at 60 deg. C and nitrogen gas flew into reaction chamber as the source of B and N, respectively. 434 stainless steel wires will be coiled as an entangled wire scaffold with pore size of 1 mm and then placed in the middle part of reaction chamber. The metallic ions contained in the stainless steel will serve as the catalysts for of BN nanotube in situ growth. From the results of SEM, HRTEM, FTIR and XRD analysis, hexagonal-BN (h-BN) and orthorhombic-BN (o-BN) nanotubes were successfully synthesized at relatively low temperature between 1000 and 1200 deg. C. All the nanotubes prepared in the system were identified as h-BN and o-BN. At reaction temperature of 1200 deg. C, several types of BN morphology appeared. The BN nanotubes could be obtained at the temperature between 1000 and 1100 deg. C. However, BN nanotubes for the latter temperature grow into larger size tube. The optimum reaction temperature for BN nanotube synthesis is 1000 deg. C. The reproduction property of synthesized BN nanotube by this method is very promising. The method should have a great potential to prepare BN nanotube in the future.

  3. Vascular cell responses to ECM produced by smooth muscle cells on TiO2 nanotubes

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • TiO2 nanotubes with the tube diameter of 30 nm via anodic oxidation was prepared. • SMCs on TiO2 nanotubes presented enhanced extracellular matrix secreting. • ECM prepared via decellularization retained the components: Fn, Ln and collagen. • ECM-covered TiO2 nanotubes significantly improved the proliferation of ECs. - Abstract: There is an increasing interest in developing new methods to promote biocompatibility of biomedical materials. The TiO2 nanotubes with the tube diameter of 30 nm were prepared by anodization. The response behavior of the human umbilical vein endothelial cell (HUVEC) and human umbilical artery smooth muscle cell (HUASMC) to these different nanotube sizes was investigated. Compared to the flat Ti, the growth and viability of HUVEC are prohibited, but there was no significant difference of HUASMC on 30 nm TiO2 nanotubes. In this study, extracellular matrix (ECM) as a complex cellular environment which provides structural support to cells and regulates the cells functions was further used to modify the biological properties of TiO2 nanotubes. The ECM secreted from HUASMC was successfully deposited onto the 30 nm TiO2 nanotubes. Moreover, immunofluorescence staining of common ECM components, such as fibronectin, laminin and type IV collagen, also indicated the successful ECM-covering on nanotube surfaces. Interestingly, the surface of ECM-covered TiO2 nanotubes significantly improved the proliferation of HUVECs in vitro. This suggested that the ECM secreted from HUASMCs on the TiO2 nanotubular surface could further improve the HUVECs adhesion and proliferation

  4. Large quantity production of carbon and boron nitride nanotubes by mechano-thermal process

    International Nuclear Information System (INIS)

    Full text: Nanotube materials including carbon and boron nitride have excellent properties compared with bulk materials. The seamless graphene cylinders with a high length to diameter ratio make them as superstrong fibers. A high amount of hydrogen can be stored into nanotubes as future clean fuel source. Theses applications require large quantity of nanotubes materials. However, nanotube production in large quantity, fully controlled quality and low costs remains challenges for most popular synthesis methods such as arc discharge, laser heating and catalytic chemical decomposition. Discovery of new synthesis methods is still crucial for future industrial application. The new low-temperature mechano-thermal process discovered by the current author provides an opportunity to develop a commercial method for bulk production. This mechano-thermal process consists of a mechanical ball milling and a thermal annealing processes. Using this method, both carbon and boron nitride nanotubes were produced. I will present the mechano-thermal method as the new bulk production technique in the conference. The lecture will summarise main results obtained. In the case of carbon nanotubes, different nanosized structures including multi-walled nanotubes, nanocells, and nanoparticles have been produced in a graphite sample using a mechano-thermal process, consisting of I mechanical milling at room temperature for up to 150 hours and subsequent thermal annealing at 1400 deg C. Metal particles have played an important catalytic effect on the formation of different tubular structures. While defect structure of the milled graphite appears to be responsible for the formation of small tubes. It is found that the mechanical treatment of graphite powder produces a disordered and microporous structure, which provides nucleation sites for nanotubes as well as free carbon atoms. Multiwalled carbon nanotubes appear to grow via growth of the (002) layers during thermal annealing. In the case of BN

  5. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes

    Science.gov (United States)

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-05-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite.

  6. Synergistic strengthening effect of nanocrystalline copper reinforced with carbon nanotubes.

    Science.gov (United States)

    Wang, Hu; Zhang, Zhao-Hui; Hu, Zheng-Yang; Wang, Fu-Chi; Li, Sheng-Lin; Korznikov, Elena; Zhao, Xiu-Chen; Liu, Ying; Liu, Zhen-Feng; Kang, Zhe

    2016-01-01

    In this study, a novel multi-walled carbon nanotubes reinforced nanocrystalline copper matrix composite with super high strength and moderate plasticity was synthesized. We successfully overcome the agglomeration problem of the carbon nanotubes and the grain growth problem of the nanocrystalline copper matrix by combined use of the electroless deposition and spark plasma sintering methods. The yield strength of the composite reach up to 692 MPa, which is increased by 2 and 5 times comparing with those of the nanocrystalline and coarse copper, respectively. Simultaneously, the plasticity of the composite was also significantly increased in contrast with that of the nanocrystalline copper. The increase of the density of the carbon nanotubes after coating, the isolation effect caused by the copper coating, and the improvement of the compatibility between the reinforcements and matrix as well as the effective control of the grain growth of the copper matrix all contribute to improving the mechanical properties of the composite. In addition, a new strengthening mechanism, i.e., the series-connection effect of the nanocrystalline copper grains introduced by carbon nanotubes, is proposed to further explain the mechanical behavior of the nanocomposite. PMID:27185503

  7. Preparation of isolated carbon nanotubes

    International Nuclear Information System (INIS)

    Full text: Carbon nanotubes are of great interest for a large range of applications from physical chemistry, solid state physics to molecular quantum optics. We propose the preparation of molecular beams of isolated carbon nanotubes for future matter wave experiments, as well as for applications in the material sciences and spectroscopy. Carbon nanotubes may be particularly interesting for quantum experiments because of their low ionization threshold, high mechanical stability and high polarizability. This is expected to facilitate the cooling, coherent manipulation and efficient detection of such molecular beams. For this purpose we are investigating different methods of solvation, isolation and shortening of carbon nanotubes from commercial bundles. Length and diameter distributions are recorded by SPM whereas the unbundling of the tubes is determined by absorption spectroscopy. Established methods from physical chemistry, such as laser desorption are currently being modified and studied as potential tools for generating beams of nanotubes in the mass range of around 50.000-100.000 amu. (author)

  8. Boron carbide nanolumps on carbon nanotubes

    Science.gov (United States)

    Lao, J. Y.; Li, W. Z.; Wen, J. G.; Ren, Z. F.

    2002-01-01

    Boron carbide nanolumps are formed on the surface of multiwall carbon nanotubes by a solid-state reaction between boron and carbon nanotubes. The reaction is localized so that the integrity of the structure of carbon nanotubes is maintained. Inner layers of multiwall carbon nanotubes are also bonded to boron carbide nanolumps. These multiwall carbon nanotubes with boron carbide nanolumps are expected to be the ideal reinforcing fillers for high-performance composites because of the favorable morphology.

  9. Breaking of Nanotube Symmetry by Substrate Polarization

    OpenAIRE

    Petrov, Alexey G.; Rotkin, Slava V.

    2003-01-01

    Substrate and nanotube polarization are shown to change qualitatively a nanotube bandstructure. The effect is studied in a linear approximation in an external potential which causes the changes. A work function difference between the nanotube and gold surface is estimated to be large enough to break the band symmetry and lift a degeneracy of a lowest but one subband of a metallic nanotube. This subband splitting for [10,10] nanotube is about 50 meV in absence of other external potential.

  10. Nanoengineering of carbon nanotubes for nanotools

    International Nuclear Information System (INIS)

    We have developed a well controlled method for manipulating carbon nanotubes. The first crucial process involved is to prepare a nanotube array, named a nanotube cartridge. We have discovered ac electrophoresis of nanotubes by which nanotubes are aligned at the knife-edge. The nanotubes used were multiwalled and prepared by an arc discharge with a relatively high gas temperature. The second important process is to transfer a nanotube from the nanotube cartridge onto a substrate in a scanning electron microscope (SEM). Using this method, we have developed nanotube tips and nanotube tweezers that operate in a scanning probe microscope (SPM). The nanotube probes have been applied for the observation of biological samples and industrial samples to clarify their advantages. The nanotube tweezers have demonstrated their motion in an SEM and have operated to carry nanomaterials in a SPM. We have also developed the electron ablation of a nanotube to adjust its length and the sharpening of a multiwall nanotube to have its inner layer with or without an end cap at the tip. For the sharpening process, the free end of a nanotube protruding from the cartridge was attached to a metal-coated Si tip and a voltage was applied to the nanotube. When a high voltage was used in the saturation current regime, the current decreased stepwise in the temporal variation, indicating the sequential destruction of individual nanotube layers. The nanotube was finally cut at the middle of the nanotube bridge, and its tip was sharpened to have an inner layer with an opened end. Moving up the cartridge before cutting enables us to extract the inner layer with an end cap. It is evidenced that the maximum current in each layer during the stepwise decrease depends on its circumference, and the force for extracting the inner layer with ∼5-nm diameter is ∼4-nN

  11. Carbon nanotubes: artificial nanomaterials to engineer single neurons and neuronal networks.

    Science.gov (United States)

    Fabbro, Alessandra; Bosi, Susanna; Ballerini, Laura; Prato, Maurizio

    2012-08-15

    In the past decade, nanotechnology applications to the nervous system have often involved the study and the use of novel nanomaterials to improve the diagnosis and therapy of neurological diseases. In the field of nanomedicine, carbon nanotubes are evaluated as promising materials for diverse therapeutic and diagnostic applications. Besides, carbon nanotubes are increasingly employed in basic neuroscience approaches, and they have been used in the design of neuronal interfaces or in that of scaffolds promoting neuronal growth in vitro. Ultimately, carbon nanotubes are thought to hold the potential for the development of innovative neurological implants. In this framework, it is particularly relevant to document the impact of interfacing such materials with nerve cells. Carbon nanotubes were shown, when modified with biologically active compounds or functionalized in order to alter their charge, to affect neurite outgrowth and branching. Notably, purified carbon nanotubes used as scaffolds can promote the formation of nanotube-neuron hybrid networks, able per se to affect neuron integrative abilities, network connectivity, and synaptic plasticity. We focus this review on our work over several years directed to investigate the ability of carbon nanotube platforms in providing a new tool for nongenetic manipulations of neuronal performance and network signaling. PMID:22896805

  12. Structure and properties of nitrogen incorporated in TiO2 nanotubes array

    International Nuclear Information System (INIS)

    Nitrogen incorporated TiO2 nanotubes array is fabricated on Ti6Al4V sheets by combination of oxidation and ion implantation. Phase species of substrate strongly affect the nanotubes growth. The regular nanotubes array forms selectively in the region of the dominant α-phase, but a disordered nanoporous grows on β-phase from Ti6Al4V. The nanotubes array has a hardness of 0.4 GPa and modulus of 40 GPa. By implantation, nitrogen is not only successfully incorporated into the TiO2 nanotubes array, but it is also present as a chemically bonded state. Nitrogen implantation also leads to formation of Ti3+ and Ti2+ transformed from Ti4+ in the titanium oxides. Nitrogen doping extends the TiO2 photo-response into the visible light region of 400–800 nm. Post implantation annealing up to 650 °C induces a mixture of anatase with a small fraction of rutile in the nanotubes array. A higher photo-degradation rate is further identified covering nitrogen incorporated TiO2 nanotubes array under visible light. (papers)

  13. Molecular dynamics study of the stability of a carbon nanotube atop a catalytic nanoparticle

    Science.gov (United States)

    Verkhovtsev, Alexey V.; Schramm, Stefan; Solov'yov, Andrey V.

    2014-09-01

    The stability of a single-walled carbon nanotube placed on top of a catalytic nickel nanoparticle is investigated by means of molecular dynamics simulations. As a case study, we consider the (12,0) nanotube consisting of 720 carbon atoms and the icosahedral Ni309 cluster. An explicit set of constant-temperature simulations is performed in order to cover a broad temperature range from 400 to 1200 K, at which a successful growth of carbon nanotubes has been achieved experimentally by means of chemical vapor deposition. The stability of the system depending on parameters of the involved interatomic interactions is analyzed. It is demonstrated that different scenarios of the nanotube dynamics atop the nanoparticle are possible depending on the parameters of the Ni-C potential. When the interaction is weak the nanotube is stable and resembles its highly symmetric structure, while an increase of the interaction energy leads to the abrupt collapse of the nanotube in the initial stage of simulation. In order to validate the parameters of the Ni-C interaction utilized in the simulations, DFT calculations of the potential energy surface for carbon-nickel compounds are performed. The calculated dissociation energy of the Ni-C bond is in good agreement with the values, which correspond to the case of a stable and not deformed nanotube simulated within the MD approach.

  14. Carbon Nanotube Based Molecular Electronics

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash; Menon, Madhu

    1998-01-01

    Carbon nanotubes and the nanotube heterojunctions have recently emerged as excellent candidates for nanoscale molecular electronic device components. Experimental measurements on the conductivity, rectifying behavior and conductivity-chirality correlation have also been made. While quasi-one dimensional simple heterojunctions between nanotubes with different electronic behavior can be generated by introduction of a pair of heptagon-pentagon defects in an otherwise all hexagon graphene sheet. Other complex 3- and 4-point junctions may require other mechanisms. Structural stability as well as local electronic density of states of various nanotube junctions are investigated using a generalized tight-binding molecular dynamics (GDBMD) scheme that incorporates non-orthogonality of the orbitals. The junctions investigated include straight and small angle heterojunctions of various chiralities and diameters; as well as more complex 'T' and 'Y' junctions which do not always obey the usual pentagon-heptagon pair rule. The study of local density of states (LDOS) reveal many interesting features, most prominent among them being the defect-induced states in the gap. The proposed three and four pointjunctions are one of the smallest possible tunnel junctions made entirely of carbon atoms. Furthermore the electronic behavior of the nanotube based device components can be taylored by doping with group III-V elements such as B and N, and BN nanotubes as a wide band gap semiconductor has also been realized in experiments. Structural properties of heteroatomic nanotubes comprising C, B and N will be discussed.

  15. Torsional Electromechanics of Carbon Nanotubes

    Science.gov (United States)

    Joselevich, Ernesto; Cohen-Karni, Tzahi; Segev, Lior; Srur-Lavi, Onit; Cohen, Sidney R.

    2007-03-01

    Carbon nanotubes are known to be distinctly metallic or semiconducting depending on their diameter and chirality. Here we show that continuously varying the chirality by mechanical torsion can induce conductance oscillations, which can be attributed to metal-semiconductor periodic transitions. The phenomenon is observed in multi-walled carbon nanotubes, where both the torque and the current are shown to be carried predominantly by the outermost wall. The oscillation period with torsion is consistent with the theoretical shifting of the corners of the first Brillouin zone of graphene across different subbands allowed in the nanotube. Beyond a critical torsion, the conductance irreversibly drops due to torsional failure, allowing us to determine the torsional strength of carbon nanotubes. Our experiments indicate that carbon nanotubes could be used as self-sensing torsional springs for nanoelectromechanical systems (NEMS). [1] E. Joselevich, Twisting nanotubes: From torsion to chirality, ChemPhysChem 2006, 7, 1405. [2] T. Cohen-Karni, L. Segev, O. Srur-Lavi, S. R. Cohen, E. Joselevich, Torsional electromechanical quantum oscillations in carbon nanotubes, Nature Nanotechnology, 2006, 1, 36.

  16. Controlled synthesis of high quality carbon nanotubes and their applications in transparent conductive films

    Science.gov (United States)

    Dervishi, Enkeleda

    Carbon nanotubes (CNTs) have exceptional electrical, mechanical and electronic properties which make them attractive for numerous applications. Catalytic chemical vapor deposition (cCVD) is one of the most promising methods for large-scale production of high-quality CNTs at a relatively low cost. Synthesis conditions such as catalyst composition, reaction temperature, hydrocarbon type and flow rate, have an enormous influence on the morphological properties of nanotubes. This research presents a thorough study of the parametric conditions affecting the growth properties of single-wall and multi-wall carbon nanotubes. High quality single-wall carbon nanotubes (SWCNTs) were synthesized on different catalytic systems, using the inductive radio frequency cCVD method. The catalyst compositions, as well as, the reaction temperatures were varied and methane or acetylene was separately utilized as the hydrocarbon source. Noticeable differences when it comes to the size controllability of the catalyst active nano-particles and the nanotube morphology were observed at these different reaction conditions. High efficiency multi-wall carbon nanotubes (MWCNTs) were synthesized from the pyrolytic decomposition of acetylene over Fe-Co/CaCO3. The catalyst stoichiometry was found to strongly influence the carbon deposition rate and the nanotube crystallinity characteristics. A comprehensive comparison was made between two different type of heating methods (resistive heating with external oven and inductive heating) with regards to gas utilization, the formation of amorphous carbon, nanotube morphology and growth efficiency. The structural and morphological properties of CNTs and of catalytic systems were analyzed by microscopy, X-ray diffraction, surface area analyzer, thermogravimetric analysis, Raman, and UV-Vis-NIR spectroscopy. MWCNTs synthesized by radio frequency cCVD have smaller outside diameters, larger inner diameters, fewer numbers of graphitic walls, less amorphous

  17. Nanotube electronics and optoelectronics

    Directory of Open Access Journals (Sweden)

    Phaedon Avouris

    2006-10-01

    Full Text Available Among the many materials that have been proposed to supplement and, in the long run, possibly succeed Si as a basis for nanoelectronics, carbon nanotubes (CNTs have attracted the most attention. CNTs are quasi-one-dimensional materials with unique properties ideally suited for electronics. We briefly discuss the electrical and optical properties of CNTs and how they can be employed in electronics and optoelectronics. We focus on single CNT transistors, their fabrication, assembly, doping, electrical characteristics, and integration. We also address the possible use of CNTs in optoelectronic devices such as electroluminescent light emitters and photodetectors.

  18. From fullerenes to nanotubes - the transformation of C60 peapods into double-wall carbon nanotubes

    International Nuclear Information System (INIS)

    Full text: Double-wall carbon nanotubes (DWCNTs) are new and interesting structures in the family of carbon nanophases, especially when they are grown by annealing of so-called peapods, i. e. single-wall carbon nanotubes filled with fullerene molecules. The inner tubes of such peapod based DWCNTs are grown in a highly unperturbed environment which has been termed a 'nano clean-room'. One inner tube type may grow in several different outer tube types and the interaction between the two shells depends crucially on the inter-shell spacing. So far, the transformation process from peapods to DWCNTs was studied by neglecting the various inner/outer tube pairs. Here, we report detailed studies on the growth of the inner tubes from the encaged fullerenes on a specific inner/outer pair level. The DWCNTs were obtained by annealing peapods at 1250 oC in a dynamic vacuum for various time intervals. After the transformation the DWCNTs were characterized with Raman spectroscopy and x-ray diffraction. Results suggest that the growth process is mainly determined by the type of the inner tube. The interaction with the outer tube plays a minor role. Different growth models will be discussed in the light of this result. (author)

  19. Electronic properties of nanotube junctions

    Science.gov (United States)

    Lambin, Ph.; Meunier, V.

    1998-08-01

    The possibility of realizing junctions between two different nanotubes has recently attracted a great interest, even though much remains to be done for putting this idea in concrete form. Pentagon-heptagon pair defects in the otherwise perfect graphitic network make such connections possible, with virtually infinite varieties. In this paper, the literature devoted to nanotube junctions is briefly reviewed. A special emphasize is put on the electronic properties of C nanotube junctions, together with an indication on how their current-voltage characteristics may look like.

  20. Multiscale Modeling with Carbon Nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Maiti, A

    2006-02-21

    Technologically important nanomaterials come in all shapes and sizes. They can range from small molecules to complex composites and mixtures. Depending upon the spatial dimensions of the system and properties under investigation computer modeling of such materials can range from equilibrium and nonequilibrium Quantum Mechanics, to force-field-based Molecular Mechanics and kinetic Monte Carlo, to Mesoscale simulation of evolving morphology, to Finite-Element computation of physical properties. This brief review illustrates some of the above modeling techniques through a number of recent applications with carbon nanotubes: nano electromechanical sensors (NEMS), chemical sensors, metal-nanotube contacts, and polymer-nanotube composites.

  1. NASA Innovation Builds Better Nanotubes

    Science.gov (United States)

    2008-01-01

    Nanotailor Inc., based in Austin, Texas, licensed Goddard Space Flight Center's unique single-walled carbon nanotube (SWCNT) fabrication process with plans to make high-quality, low-cost SWCNTs available commercially. Carbon nanotubes are being used in a wide variety of applications, and NASA's improved production method will increase their applicability in medicine, microelectronics, advanced materials, and molecular containment. Nanotailor built and tested a prototype based on Goddard's process, and is using this technique to lower the cost and improve the integrity of nanotubes, offering a better product for use in biomaterials, advanced materials, space exploration, highway and building construction, and many other applications.

  2. 机械法合成BN纳米管%Mechanosynthesis of Boron Nitride Nanotubes

    Institute of Scientific and Technical Information of China (English)

    籍凤秋; 曹传宝; 徐红; 杨子光

    2006-01-01

    Boron nitride nanotubes (BN-NTs) with pure hexagonal BN phase have been synthesized by heating ball-milled boron powders in flowing ammonia gas at a temperature of 1200℃. The as-synthesized products were characterized by X-ray powder diffraction, transmission electron microscopy, high-resolution transmission electron microscopy, and electron energy loss spectroscopy (EELS). The diameters of nanotubes are in the rage of 40120nm and the lengths are more than 10μm. EELS result identifies that the ratio of boron and nitrogen is almost 1:1. The growth temperature is a crucial growth parameter in controlling the structure and crystalline of BN-NTs. The nanotubes grown at 1100℃ possesses of a bamboo-like structure, while as the temperature increased to 1200℃, most of the nanotubes exhibited a cylindrical structure. In addition, changing the heating time can control the size of the nanotubes. The gas atmosphere has influence on the yield of BN-NTs during heating process. When heating atmosphere was replaced by nitrogen, the yield of nanotubes was remarkably decreased.

  3. Preparation of Carbon Nanotubes from Methane on Ni/Cu/A1 Catalyst

    Institute of Scientific and Technical Information of China (English)

    Renzhong Wei; Fengyi Li; Yan Ju

    2005-01-01

    A series of Ni/Cu/Al catalyst samples were prepared by the co-precipitation method. Carbon nanotubes with large inner diameters are successfully synthesized from methane on Ni/Cu/Al catalyst by adding sodium carbonate. The effects of the copper content and amounts of sodium carbonate on the morphology and microstructures of carbon nanotubes were investigated by CO adsorption and TEM technique. The experimental results showed that copper can influence both the catalytic activity and catalyst life. Best result was obtained when the copper content was 15%. Addition of sodium carbonate favors the formation of carbon nanotubes with large inner diameters. The growth mechanism of carbon nanotubes with large inner diameter is discussed.

  4. A novel silica-coated multiwall carbon nanotube with CdTe quantum dots nanocomposite

    Science.gov (United States)

    Fei, Qiang; Xiao, Dehai; Zhang, Zhiquan; Huan, Yanfu; Feng, Guodong

    2009-10-01

    A novel silica-coated multiwall carbon nanotube (MWNTs) with CdTe quantum dots nanocomposite was synthesized in this paper. Here, we show the in situ growth of crystalline CdTe quantum dots on the surfaces of oxidized MWNTs. The approach proposed herein differs from previous attempts to synthesize nanotube assemblies in that we mix the oxidized MWNTs into CdCl 2 solution of CdTe nanocrystals synthesized in aqueous solution. Reinforced the QD-MWNTs heterostructures with silica coating, this method is not invasive and does not introduce defects to the structure of carbon nanotubes (CNTs), and it ensures high stability in a range of organic solvents. Furthermore, a narrow SiO 2 layer on the MWNT-CdTe heterostructures can eliminate the biological toxicity of quantum dots and carbon nanotubes. This is not only a breakthrough in the synthesis of one-dimensional nanostructures, but also taking new elements into bio-nanotechnology.

  5. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    International Nuclear Information System (INIS)

    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation

  6. Improved cell activity on biodegradable photopolymer scaffolds using titanate nanotube coatings

    Energy Technology Data Exchange (ETDEWEB)

    Beke, S., E-mail: szabolcs.beke@iit.it [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Barenghi, R. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Farkas, B.; Romano, I. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Kőrösi, L. [Department of Biotechnology, Nanophage Therapy Center, Enviroinvest Corporation, Kertváros u. 2, H-7632 Pécs (Hungary); Scaglione, S. [IEIIT, National Research Council (CNR), Via De Marini 6, 16149 Genova (Italy); Brandi, F. [Nanophysics, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova (Italy); Istituto Nazionale di Ottica, CNR, Via G. Moruzzi 1, 56124-Pisa (Italy)

    2014-11-01

    The development of bioactive materials is in the premise of tissue engineering. For several years, surface functionalization of scaffolds has been one of the most promising approaches to stimulate cellular activity and finally improve implant success. Herein, we describe the development of a bioactive composite scaffold composed of a biodegradable photopolymer scaffold and titanate nanotubes (TNTs). The biodegradable photopolymer scaffolds were fabricated by applying mask-projection excimer laser photocuring at 308 nm. TNTs were synthesized and then spin-coated on the porous scaffolds. Upon culturing fibroblast cells on scaffolds, we found that nanotubes coating affects cell viability and proliferation demonstrating that TNT coatings enhance cell growth on the scaffolds by further improving their surface topography. - Highlights: • Biodegradable scaffolds were produced by mask-assisted UV laser photocuring. • Titanate nanotube deposition was carried out without binding compounds or additives. • Titanate nanotube coatings enhanced cell viability and proliferation.

  7. Recent advances in the research of inorganic nanotubes and fullerene-like nanoparticles

    Science.gov (United States)

    Tenne, Reshef

    2014-06-01

    This minireview outlines the main scientific directions in the research of inorganic nanotubes (INT) and fullerene-like (IF) nanoparticles from layered compounds, in recent years. In particular, this review describes to some detail the progress in the synthesis of new nanotubes, including those from misfit compounds; core-shell and the successful efforts to scale-up the synthesis of WS2 multiwall nanotubes. The high-temperature catalytic growth of nanotubes, via solar ablation is discussed as well. Furthermore, the doping of the IF-MoS2 nanoparticles and its influence on the physiochemical properties of the nanoparticles, including their interesting tribological properties are briefly discussed. Finally, the numerous applications of these nanoparticles as superior solid lubricants and for reinforcing variety of polymers are discussed in brief.

  8. Room temperature synthesis of indium tin oxide nanotubes with high precision wall thickness by electroless deposition

    Directory of Open Access Journals (Sweden)

    Mario Boehme

    2011-02-01

    Full Text Available Conductive nanotubes consisting of indium tin oxide (ITO were fabricated by electroless deposition using ion track etched polycarbonate templates. To produce nanotubes (NTs with thin walls and small surface roughness, the tubes were generated by a multi-step procedure under aqueous conditions. The approach reported below yields open end nanotubes with well defined outer diameter and wall thickness. In the past, zinc oxide films were mostly preferred and were synthesized using electroless deposition based on aqueous solutions. All these methods previously developed, are not adaptable in the case of ITO nanotubes, even with modifications. In the present work, therefore, we investigated the necessary conditions for the growth of ITO-NTs to achieve a wall thickness of around 10 nm. In addition, the effects of pH and reductive concentrations for the formation of ITO-NTs are also discussed.

  9. Catalysts for Efficient Production of Carbon Nanotubes

    Science.gov (United States)

    Sun, Ted X.; Dong, Yi

    2009-01-01

    Several metal alloys have shown promise as improved catalysts for catalytic thermal decomposition of hydrocarbon gases to produce carbon nanotubes (CNTs). Heretofore almost every experiment on the production of carbon nanotubes by this method has involved the use of iron, nickel, or cobalt as the catalyst. However, the catalytic-conversion efficiencies of these metals have been observed to be limited. The identification of better catalysts is part of a continuing program to develop means of mass production of high-quality carbon nanotubes at costs lower than those achieved thus far (as much as $100/g for purified multi-wall CNTs or $1,000/g for single-wall CNTs in year 2002). The main effort thus far in this program has been the design and implementation of a process tailored specifically for high-throughput screening of alloys for catalyzing the growth of CNTs. The process includes an integral combination of (1) formulation of libraries of catalysts, (2) synthesis of CNTs from decomposition of ethylene on powders of the alloys in a pyrolytic chemical-vapor-decomposition reactor, and (3) scanning- electron-microscope screening of the CNTs thus synthesized to evaluate the catalytic efficiencies of the alloys. Information gained in this process is put into a database and analyzed to identify promising alloy compositions, which are to be subjected to further evaluation in a subsequent round of testing. Some of these alloys have been found to catalyze the formation of carbon nano tubes from ethylene at temperatures as low as 350 to 400 C. In contrast, the temperatures typically required for prior catalysts range from 550 to 750 C.

  10. Carbon nanotube core graphitic shell hybrid fibers.

    Science.gov (United States)

    Hahm, Myung Gwan; Lee, Jae-Hwang; Hart, Amelia H C; Song, Sung Moo; Nam, Jaewook; Jung, Hyun Young; Hashim, Daniel Paul; Li, Bo; Narayanan, Tharangattu N; Park, Chi-Dong; Zhao, Yao; Vajtai, Robert; Kim, Yoong Ahm; Hayashi, Takuya; Ku, Bon-Cheol; Endo, Morinobu; Barrera, Enrique; Jung, Yung Joon; Thomas, Edwin L; Ajayan, Pulickel M

    2013-12-23

    A carbon nanotube yarn core graphitic shell hybrid fiber was fabricated via facile heat treatment of epoxy-based negative photoresist (SU-8) on carbon nanotube yarn. The effective encapsulation of carbon nanotube yarn in carbon fiber and a glassy carbon outer shell determines their physical properties. The higher electrical conductivity (than carbon fiber) of the carbon nanotube yarn overcomes the drawbacks of carbon fiber/glassy carbon, and the better properties (than carbon nanotubes) of the carbon fiber/glassy carbon make up for the lower thermal and mechanical properties of the carbon nanotube yarn via synergistic hybridization without any chemical doping and additional processes. PMID:24224730

  11. Water Boiling inside Carbon Nanotubes: Towards Efficient Drug Release

    OpenAIRE

    Chaban, Vitaly V.; Prezhdo, Oleg V.

    2012-01-01

    We show using molecular dynamics simulation that spatial confinement of water inside carbon nanotubes (CNT) substantially increases its boiling temperature and that a small temperature growth above the boiling point dramatically raises the inside pressure. Capillary theory successfully predicts the boiling point elevation down to 2 nm, below which large deviations between the theory and atomistic simulation take place. Water behaves qualitatively different inside narrow CNTs, exhibiting trans...

  12. Self-Assembly of Graphene on Carbon Nanotube Surfaces

    OpenAIRE

    Li, Kaiyuan; Eres, Gyula; Howe, Jane; Chuang, Yen-Jun; Li, Xufan; Gu, Zhanjun; Zhang, Litong; Xie, Sishen; Pan, Zhengwei

    2013-01-01

    The rolling up of a graphene sheet into a tube is a standard visualization tool for illustrating carbon nanotube (CNT) formation. However, the actual processes of rolling up graphene sheets into CNTs in laboratory syntheses have never been demonstrated. Here we report conformal growth of graphene by carbon self-assembly on single-wall and multi-wall CNTs using chemical vapor deposition (CVD) of methane without the presence of metal catalysts. The new graphene layers roll up into seamless coax...

  13. Origin of structural defects in multiwall carbon nanotube

    OpenAIRE

    Hembram, K.P.S.S.; Rao, G. Mohan

    2012-01-01

    We investigate the walls of the defective multiwall carbon nanotube (MWCNT), and give possible mechanism for the formation of defective structure. A generalized model has been proposed for the MWCNT. which consists of (a) catalyst part, (b) embryo part and (c) full grown part. We claim that the weak embryo portion of the MWCNT, is structurally undeveloped. The stress due to pressure imbalance between inside and outside of the MWCNT during growth along with axial load at the embryo portion cau...

  14. Studies of Carbon Nanotubes

    Science.gov (United States)

    Caneba, Gerard T.

    2005-01-01

    The fellowship experience for this summer for 2004 pertains to carbon nanotube coatings for various space-related applications. They involve the following projects: (a) EMI protection films from HiPco-polymers, and (b) Thermal protection nanosilica materials. EMI protection films are targeted to be eventually applied onto casings of laptop computers. These coatings are composites of electrically-conductive SWNTs and compatible polymers. The substrate polymer will be polycarbonate, since computer housings are typically made of carbon composites of this type of polymer. A new experimental copolymer was used last year to generate electrically-conductive and thermal films with HiPco at 50/50 wt/wt composition. This will be one of the possible formulations. Reference films will be base polycarbonate and neat HiPco onto polycarbonate films. Other coating materials that will be tried will be based on HiPco composites with commercial enamels (polyurethane, acrylic, polyester), which could be compatible with the polycarbonate substrate. Nanosilica fibers are planned for possible use as thermal protection tiles on the shuttle orbiter. Right now, microscale silica is used. Going to the nanoscale will increase the surface-volume-per-unit-area of radiative heat dissipation. Nanoscale carbon fibers/nanotubes can be used as templates for the generation of nanosilica. A sol-gel operation is employed for this purpose.

  15. Chemical and structural analysis of solvothermal synthesized tungsten oxide nanotube without template and its hydrogen sensitive property

    International Nuclear Information System (INIS)

    Graphical abstract: Imaged models of formation of nanotube during crystal growth: (a) precursor react with each other; (b) the crystal plane bended as crystallization; (c) the nanotube formed finally. Highlights: • The WO3 naonotube was prepared by solvothermal method without any addition. • The steric effect and the nucleation and growth mechanism resulted in the nanotube. • The nanotube film surface showed high oxygen vacancies. • The nanotube film showed diffusion dominated sensitivity. -- Abstract: Tungsten oxide nanotubes were synthesized by solvothermal process without template. The steric effect and the concentration of WCl6 are the dominant factors for the formation mechanism of the nanotube. The steric effect was experimentally and systematically studied with solvents including ethanol, isopropanol, n-propanol and butylalcohol, which have different molecular configuration and length, while the effect of concentration was investigated by characterizing the nanostructured productions. The samples have been investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). The surface chemistry of the nanotube is characterized by X-ray photoelectron spectroscopy (XPS). The results indicated that the solvents species and WCl6 concentration obviously diversified the morphologies of the products; the nanotubes synthesized with isopropanol composed of W18O49 phase; the crystal defects (O atom vacancy) formed during rapid crystallization could be modified by heat treatment. The DC electrical response of the nanotube thin film to hydrogen was measured the temperature range from 200 °C to 300 °C, which indicated a decline in electrical resistance with good sensitivity, and showed the mechanism that the reaction limited process works at low temperature, whereas the diffusion limited process works at higher temperature

  16. Toxicity and Radioprotective Effects of DF-1 and Carbon Nanotubes in Human Lung and Liver Cell Lines

    Science.gov (United States)

    Burgoyne, Madeline; Holtorf, Heidi; Huff, Janice; Moore, Valerie; Jeevarajan, Antony

    2007-01-01

    The DF-1 compound, a sixty carbon fullerene derivative, has been shown to have antioxidant effects and is thought to possibly help mediate the effects of radiation on cells. While this is potentially useful, it is important to first understand the effect that the DF-1 has on the cells and the growth rate of the cells to determine if the material itself has any innate toxicity. A growth curve was established for both HF-19 cells, human fibroblasts, and HepG2 cells, liver tissue cells in the presence of two different concentrations of DF-1 and for untreated controls. The cells were plated in triplicate in 60mm dishes and were lifted and counted with a hemocytometer daily for one week. The growth curve data for the HF-19 cells show that while the low concentration of DF-1 had no apparent effect on the growth rate, the high concentration of DF-1 appeared to severely inhibit the growth of the HF-19 cells. The growth curve data for the HepG2 cells shows that the DF-1 compound had no significant effect on the rate at which the cells grew. A second growth curve study was performed plain carbon nanotubes, but with only 24 hour exposure to a high and low concentration of material. The carbon nanotubes are another carbon compound similar to DF-1, but in the shape of a tube, rather than a ball. We hypothesize that nanotubes may also mediate the effect of radiation on cells. This time, nanotubes did not showed any significant effect on the growth rate HF-19 or HepG2 cells. A third growth curve study is underway to further determine the effect of DF-1, nanotubes, and a derivatized nanotube (BHT-nanotubes). This derivatized nanotube has been modified with a compound that is known to be very effective at neutralizing free radicals. We expect that the high concentration of DF-1 and possibly the nanotubes and BHT-nanotubes may inhibit the growth of the HF-19 cells while the low concentration will resemble the growth of the control. We also hypothesize that there will be no

  17. Sustained Release of Antibacterial Agents from Doped Halloysite Nanotubes

    Directory of Open Access Journals (Sweden)

    Shraddha Patel

    2015-12-01

    Full Text Available The use of nanomaterials for improving drug delivery methods has been shown to be advantageous technically and viable economically. This study employed the use of halloysite nanotubes (HNTs as nanocontainers, as well as enhancers of structural integrity in electrospun poly-e-caprolactone (PCL scaffolds. HNTs were loaded with amoxicillin, Brilliant Green, chlorhexidine, doxycycline, gentamicin sulfate, iodine, and potassium calvulanate and release profiles assessed. Selected doped halloysite nanotubes (containing either Brilliant Green, amoxicillin and potassium calvulanate were then mixed with poly-e-caprolactone (PLC using the electrospinning method and woven into random and oriented-fibered nanocomposite mats. The rate of drug release from HNTs, HNTs/PCL nanocomposites, and their effect on inhibiting bacterial growth was investigated. Release profiles from nanocomposite mats showed a pattern of sustained release for all bacterial agents. Nanocomposites were able to inhibit bacterial growth for up to one-month with only a slight decrease in bacterial growth inhibition. We propose that halloysite doped nanotubes have the potential for use in a variety of medical applications including sutures and surgical dressings, without compromising material properties.

  18. Ostwald's ripening of single-layer carbon nanotubes.

    Science.gov (United States)

    Vengrenovich, R D; Ivanskii, B V; Panko, I I; Kryvetskii, V I

    2016-04-20

    Analysis of experimentally obtained size distribution functions in the form of percentage of carbon nanotubes (CNTs) versus their diameters shows increasing intermediate tube diameters with increasing concentration of the source of carbon atoms. In this paper, the mechanism of growth is associated with Ostwald's ripening CNTs, which are considered massive cylindrical nanoclusters of various diameter and height embedded in a solution (volume or surface) of carbon atoms. Interaction of nanoclusters is realized through the Gibbs-Thomson effect, resulting in increasing their average diameters. Validity of the proposed mechanism of increasing average diameters of nanotubes is proved by comparison of the experimentally obtained histograms with theoretically computed dependences. We use the generalized Lifshitz-Slyozov-Wagner and the Chakraverty-Wagner distributions, both computed via assumption that growth of nanoclusters (nanotubes) is controlled simultaneously by (volume or surface) diffusion and by speed of chemical connections' formation or by chemical reaction (Wagner's mechanism of growth). Under specified technological parameters and conditions of synthesis, the obtained theoretically distributions fit well with the experimental histograms for single-layer CNTs. PMID:27140129

  19. Noble-Metal Chalcogenide Nanotubes

    Directory of Open Access Journals (Sweden)

    Nourdine Zibouche

    2014-10-01

    Full Text Available We explore the stability and the electronic properties of hypothetical noble-metal chalcogenide nanotubes PtS2, PtSe2, PdS2 and PdSe2 by means of density functional theory calculations. Our findings show that the strain energy decreases inverse quadratically with the tube diameter, as is typical for other nanotubes. Moreover, the strain energy is independent of the tube chirality and converges towards the same value for large diameters. The band-structure calculations show that all noble-metal chalcogenide nanotubes are indirect band gap semiconductors. The corresponding band gaps increase with the nanotube diameter rapidly approaching the respective pristine 2D monolayer limit.

  20. Quantum transport in carbon nanotubes

    DEFF Research Database (Denmark)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.;

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries, enabled by sophisticated fabrication, have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin...... of Pauli blockade. This can be exploited to read out spin and valley qubits, and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one...... and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and from valley freedom. We focus on the interplay between the...

  1. Enhanced Carbon Nanotube Ultracapacitors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed innovation utilizes carbon nanotubes (CNTs) coated with pseudo-capacitive MnO2 material as nano-composite electrode and ionic electrolyte for the...

  2. Structural and biological properties of carbon nanotube composite films

    Energy Technology Data Exchange (ETDEWEB)

    Narayan, Roger J. [School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0245 (United States)]. E-mail: roger.narayan@mse.gatech.edu; Berry, C.J. [Environmental Biotechnology Section, Savannah River National Laboratory, Aiken, SC 29808 (United States); Brigmon, R.L. [Environmental Biotechnology Section, Savannah River National Laboratory, Aiken, SC 29808 (United States)

    2005-11-20

    Carbon nanotube composite films have been developed that exhibit unusual structural and biological properties. These novel materials have been created by pulsed laser ablation of graphite and bombardment of nitrogen ions at temperatures between 600 and 700 deg. C. High-resolution transmission electron microscopy and radial distribution function analysis demonstrate that this material consists of sp{sup 2}-bonded concentric ribbons that are wrapped approximately 15 deg. normal to the silicon substrate. The interlayer order in this material extends to approximately 15-30 A. X-ray photoelectron spectroscopy and Raman spectroscopy data suggest that this material is predominantly trigonally coordinated. The carbon nanotube composite structure results from the use of energetic ions, which allow for non-equilibrium growth of graphitic planes. In vitro testing has revealed significant antimicrobial activity of carbon nanotube composite films against Staphylococcus aureus and Staphylococcus warneri colonization. Carbon nanotube composite films may be useful for inhibiting microorganism attachment and biofilm formation in hemodialysis catheters and other medical devices.

  3. Field emission properties of the graphenated carbon nanotube electrode

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, H., E-mail: hudson.zanin@bristol.ac.uk [School of Chemistry, University of Bristol, Bristol BS8 1TS (United Kingdom); Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Ceragioli, H.J.; Peterlevitz, A.C.; Baranauskas, Vitor [Faculdade de Engenharia Elétrica e Computação, Departamento de Semicondutores, Instrumentos e Fotônica, Universidade Estadual de Campinas, UNICAMP, Av. Albert Einstein N. 400, CEP 13 083-852 Campinas, São Paulo (Brazil); Marciano, F.R.; Lobo, A.O. [Laboratory of Biomedical Nanotechnology/Institute of Research and Development at UNIVAP, Av. Shishima Hifumi, 2911, CEP 12244-000 Sao Jose dos Campos, SP (Brazil)

    2015-01-01

    Graphical abstract: - Highlights: • Facile method to prepare graphenated carbon nanotubes (g-CNTs). • The electric field emission behaviour of g-CNTs was studied. • g-CNTs show better emission current stability than non-graphenated CNTs. - Abstract: Reduced graphene oxide-coated carbon nanotubes (RGO-CNT) electrodes have been prepared by hot filament chemical vapour deposition system in one-step growth process. We studied RGO-CNT electrodes behaviour as cold cathode in field emission test. Our results show that RGO-CNT retain the low threshold voltage typical of CNTs, but with greatly improved emission current stability. The field emission enhancement value is significantly higher than that expected being caused by geometric effect (height divided by the radius of nanotube). This suggested that the field emission of this hybrid structure is not only from a single tip, but eventually it is from several tips with contribution of graphene nanosheets at CNT's walls. This phenomenon explains why the graphenated carbon nanotubes do not burn out as quickly as CNT does until emission ceases completely. These preliminaries results make nanocarbon materials good candidates for applications as electron sources for several devices.

  4. Effect of the composition of Ti alloy on the photocatalytic activities of Ti-based oxide nanotube arrays prepared by anodic oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Dingding, E-mail: 13396064706@163.com [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Wang, Yixin, E-mail: 821314137@qq.com [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Zhao, Yuwei, E-mail: 412494599@qq.com [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Yang, Yijia, E-mail: newyang214@126.com [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China); Zhang, Lieyu, E-mail: zhanglieyu@163.com [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012 (China); Mao, Xuhui, E-mail: clab@whu.edu.cn [School of Resource and Environmental Science, Wuhan University, Wuhan 430072 (China)

    2014-11-15

    Highlights: • Effect of Ti alloy composition on the properties of TiO{sub 2} nanotube arrays is studied. • Al and V decrease the growth rate of nanotube arrays and deteriorate the performance. • Nanotube arrays derived from Ti–0.2Pd alloy exhibit enhanced photocatalytic activity. • Nanotube arrays derived from Ti–0.2Pd alloy have preferable stability. • Anodization of Ti alloys provides a way to prepare high-performance doped titania. - Abstract: Three types of Ti-based oxide nanotube arrays are prepared by anodic oxidation of pure Ti and Ti alloys (Ti–0.2Pd and Ti–6Al–4V) in the glycol–2 wt% H{sub 2}O–0.3 wt% NH{sub 4}F solution. The nanotube arrays are characterized by a series of techniques, including SEM, TEM, EIS, XRD, EDS, ICP, XPS and UV–vis DRS, to elucidate the effect of alloying elements on the properties of titania nanotube arrays. The results suggest that aluminium and vanadium elements greatly slow down the growth rate and therefore decrease the yield of nanotube arrays. Al and V deteriorate the photoreactivity of the resultant nanotube arrays. The palladium inside the Ti–0.2Pd alloy-derived nanotube arrays cannot be detected by EDS or XPS, but is quantitatively determined by ICP analysis. Incorporation of Pd significantly improves the photocatalytic activity of the resultant titania nanotube arrays powder. The presence of Pd element not only enhances the light absorption, but also facilitates the separation of photogenerated charge carriers. The uniform doping of Pd into the microstructure endows nanotube arrays with resistance to sulphur poison and preferable stability for organic degradation. This study suggests that anodization of Ti alloys, rather than pure Ti metal, allows to produce micron-sized high-performance photocatalysts for environmental and energy applications.

  5. Effect of the composition of Ti alloy on the photocatalytic activities of Ti-based oxide nanotube arrays prepared by anodic oxidation

    International Nuclear Information System (INIS)

    Highlights: • Effect of Ti alloy composition on the properties of TiO2 nanotube arrays is studied. • Al and V decrease the growth rate of nanotube arrays and deteriorate the performance. • Nanotube arrays derived from Ti–0.2Pd alloy exhibit enhanced photocatalytic activity. • Nanotube arrays derived from Ti–0.2Pd alloy have preferable stability. • Anodization of Ti alloys provides a way to prepare high-performance doped titania. - Abstract: Three types of Ti-based oxide nanotube arrays are prepared by anodic oxidation of pure Ti and Ti alloys (Ti–0.2Pd and Ti–6Al–4V) in the glycol–2 wt% H2O–0.3 wt% NH4F solution. The nanotube arrays are characterized by a series of techniques, including SEM, TEM, EIS, XRD, EDS, ICP, XPS and UV–vis DRS, to elucidate the effect of alloying elements on the properties of titania nanotube arrays. The results suggest that aluminium and vanadium elements greatly slow down the growth rate and therefore decrease the yield of nanotube arrays. Al and V deteriorate the photoreactivity of the resultant nanotube arrays. The palladium inside the Ti–0.2Pd alloy-derived nanotube arrays cannot be detected by EDS or XPS, but is quantitatively determined by ICP analysis. Incorporation of Pd significantly improves the photocatalytic activity of the resultant titania nanotube arrays powder. The presence of Pd element not only enhances the light absorption, but also facilitates the separation of photogenerated charge carriers. The uniform doping of Pd into the microstructure endows nanotube arrays with resistance to sulphur poison and preferable stability for organic degradation. This study suggests that anodization of Ti alloys, rather than pure Ti metal, allows to produce micron-sized high-performance photocatalysts for environmental and energy applications

  6. Corrosion behaviors of TiO{sub 2} nanotube layers on titanium in Hank's solution

    Energy Technology Data Exchange (ETDEWEB)

    Yu Weiqiang; Qiu Jing; Xu Ling; Zhang Fuqiang, E-mail: fredzc@online.sh.c [Department of Prosthodontics, Ninth People' s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, 200011 (China)

    2009-12-15

    It is well known that the growth of osteoblast cultured on titanium with nanotube layers can be significantly increased compared to unanodized surfaces. In the current study, the corrosion behavior of titanium with nanotube layers was studied in naturally aerated Hank's solution using open circuit potentials (OCP), electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization tests. The electrochemical results indicated that TiO{sub 2} nanotube layers on titanium showed a better corrosion resistance in simulated biofluid than that of smooth-Ti. The OCP, corrosion rate (I{sub corr}), passive current density (I{sub pass}) and the oxygen evolution potential (E{sub o}) were significantly influenced by titanium oxide nanotube layers acquired by anodization. The anatase nanotube layer showed higher OCP and smaller current density than the amorphous nanotube layer. EIS analysis showed that the annealing had a significant effect on the corrosion resistance of the outer tube layer (R{sub t}), but little effect on the corrosion resistance of the inter-barrier layer (R{sub b}) for nanotube layers. The results suggested that titanium with TiO{sub 2} nanotube layers has an adequate electrochemical behavior for use as a dental implant material.

  7. Molybdenum Disulfide Sheathed Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xu Chun SONG; Zhu De XU; Yi Fan ZHENG; Gui HAN; Bo LIU; Wei Xiang CHEN

    2004-01-01

    Single and double layered MoS2-coated multiwalled carbon nanotubes (MWCNs) were successfully prepared by pyrolyzing (NH4)2MoS4-coated multiwalled carbon nanotubes in an H2 atmosphere at 900℃. MoS2-coated MWCNs would be expected to have different tribological and mechanical properties compared to MoS2, so it may have potential applications in many fields.

  8. Selective functionalization of carbon nanotubes

    Science.gov (United States)

    Strano, Michael S. (Inventor); Usrey, Monica (Inventor); Barone, Paul (Inventor); Dyke, Christopher A. (Inventor); Tour, James M. (Inventor); Kittrell, W. Carter (Inventor); Hauge, Robert H. (Inventor); Smalley, Richard E. (Inventor)

    2009-01-01

    The present invention is directed toward methods of selectively functionalizing carbon nanotubes of a specific type or range of types, based on their electronic properties, using diazonium chemistry. The present invention is also directed toward methods of separating carbon nanotubes into populations of specific types or range(s) of types via selective functionalization and electrophoresis, and also to the novel compositions generated by such separations.

  9. Carbon nanotubes for coherent spintronics

    DEFF Research Database (Denmark)

    Kuemmeth, Ferdinand; Churchill, H O H; Herring, P K;

    2010-01-01

    Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual......, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications....

  10. Gold(I)-Alkanethiolate Nanotubes

    KAUST Repository

    Zhang, Yu Xin

    2009-12-28

    (Figure Presented) A solution approach to assembling Au(I) - alkanethiolates into nanotube structures at room temperature is presented, in which Au(I) cations and alkanethiolate ligands are coordinated into thin platelet forms that then evolve into an open tubular configuration (see figure). The organic-inorganic hybrid nature of the nanotubes, their ability to be modified, and their high stability make them of interest for practical applications. © 2009 WILEY-VCH Verlag GmbH & Co. KGaA.

  11. Kondo physics in carbon nanotubes

    OpenAIRE

    Nygard, Jesper; Cobden, David Henry; Lindelof, Poul Erik

    2000-01-01

    The connection of electrical leads to wire-like molecules is a logical step in the development of molecular electronics, but also allows studies of fundamental physics. For example, metallic carbon nanotubes are quantum wires that have been found to act as one-dimensional quantum dots, Luttinger-liquids, proximity-induced superconductors and ballistic and diffusive one-dimensional metals. Here we report that electrically-contacted single-wall nanotubes can serve as powerful probes of Kondo ph...

  12. Carbon nanotubes for coherent spintronics

    Directory of Open Access Journals (Sweden)

    F. Kuemmeth

    2010-03-01

    Full Text Available Carbon nanotubes bridge the molecular and crystalline quantum worlds, and their extraordinary electronic, mechanical and optical properties have attracted enormous attention from a broad scientific community. We review the basic principles of fabricating spin-electronic devices based on individual, electrically-gated carbon nanotubes, and present experimental efforts to understand their electronic and nuclear spin degrees of freedom, which in the future may enable quantum applications.

  13. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    OpenAIRE

    Ram Pavani; Kodithyala Vinay

    2011-01-01

    Carbon nanotubes (CNTs) are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Funct...

  14. Hemocompatibility of titania nanotube arrays.

    Science.gov (United States)

    Smith, Barbara S; Yoriya, Sorachon; Grissom, Laura; Grimes, Craig A; Popat, Ketul C

    2010-11-01

    Hemocompatibility is a key consideration for the long-term success of blood contacting biomaterials; hence, there is a critical need to understand the physiological response elicited from blood/nano-biomaterial interactions. In this study, we have investigated the adsorption of key blood serum proteins, in vitro adhesion and activation of platelets, and clotting kinetics of whole blood on titania nanotube arrays. Previous studies have demonstrated improved mesenchymal stem cell functionality, osteoblast phenotypic behavior, localized drug delivery, and the production of endothelial cell ECM on titania nanotube arrays. Furthermore, these titania nanotube arrays have elicited minimal levels of monocyte activation and cytokine secretion, thus exhibiting a very low degree of immunogenicity. Titania nanotube arrays were fabricated using anodization technique and the surface morphology was examined through scanning electron microscopy (SEM). The crystalline phases were identified using glancing angled X-ray diffraction (GAXRD). Nanoindentation and scratch tests were used to characterize the mechanical properties of titania nanotube arrays. The adsorption of key blood proteins (albumin, fibrinogen, and immunoglobulin-g) was evaluated using a micro-BCA assay and X-ray photoelectron spectroscopy (XPS). The adhesion and activation of platelets was investigated using live-cell staining, MTT assay, and SEM. Whole blood clotting kinetics was evaluated by measuring the free hemoglobin concentration, and SEM was used to visualize the clot formation. Our results indicate increased blood serum protein adsorption, platelet adhesion and activation, and whole blood clotting kinetics on titania nanotube arrays. PMID:20629021

  15. Size-controllable fabrication of Cu nanoparticles on carbon nanotubes by simple heating

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chun; Wu, Shujing; Zheng, He; Cao, Fan; Sheng, Huaping; Zhao, Dongshan; Wang, Jianbo

    2015-01-15

    Highlights: • Cu nanoparticles were synthesized on the surface of carbon nanotubes by heating. • The particle size could be tuned by controlling the temperature and duration. • The possible nucleation and growth mechanisms of nanoparticles were discussed. - Abstract: In this paper, employing simple heating inside the transmission electron microscope, we demonstrated the decoration of carbon nanotubes (CNTs) by Cu nanoparticles (NPs). More significantly, the particle sizes could be effectively controlled by simply controlling the temperature and duration. It is believed that the nucleation and growth of NPs results from the deposition of generated Cu vapor as well as the surface diffusion of Cu on the CNTs at elevated temperature.

  16. Size-controllable fabrication of Cu nanoparticles on carbon nanotubes by simple heating

    International Nuclear Information System (INIS)

    Highlights: • Cu nanoparticles were synthesized on the surface of carbon nanotubes by heating. • The particle size could be tuned by controlling the temperature and duration. • The possible nucleation and growth mechanisms of nanoparticles were discussed. - Abstract: In this paper, employing simple heating inside the transmission electron microscope, we demonstrated the decoration of carbon nanotubes (CNTs) by Cu nanoparticles (NPs). More significantly, the particle sizes could be effectively controlled by simply controlling the temperature and duration. It is believed that the nucleation and growth of NPs results from the deposition of generated Cu vapor as well as the surface diffusion of Cu on the CNTs at elevated temperature

  17. Carbon nanotube based NEMS actuators and sensors

    Science.gov (United States)

    Forney, Michael; Poler, Jordan

    2011-03-01

    Single-walled carbon nanotubes (SWNTs) have been widely studied due to superior mechanical and electrical properties. We have grown vertically aligned SWNTs (VA-SWNTs) onto microcantilever (MC) arrays, which provides an architecture for novel actuators and sensors. Raman spectroscopy confirms that the CVD-grown nanotubes are SWNTs and SEM confirms aligned growth. As an actuator, this hybrid MC/VA-SWNT system can be electrostatically modulated. SWNTs are excellent electron acceptors, so we can charge up the VA-SWNT array by applying a voltage. The electrostatic repulsion among the charged SWNTs provides a surface stress that induces MC deflection. Simulation results show that a few electrons per SWNT are needed for measureable deflections, and experimental actuators are being characterized by SEM, Raman, and an AFM optical lever system. The applied voltage is sinusoidally modulated, and deflection is measured with a lock-in amplifier. These actuators could be used for nano-manipulation, release of drugs from a capsule, or nano-valves. As a sensor, this MC/VA-SWNT system offers an improved sensitivity for chemical and bio-sensing compared to surface functionalized MC-based sensors. Those sensors only have a 2D sensing surface, but a MC/VA-SWNT system has significantly more sensing surface because the VA-SWNTs extend microns off the MC surface.

  18. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-06-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal.

  19. Fermentation based carbon nanotube multifunctional bionic composites

    Science.gov (United States)

    Valentini, Luca; Bon, Silvia Bittolo; Signetti, Stefano; Tripathi, Manoj; Iacob, Erica; Pugno, Nicola M.

    2016-01-01

    The exploitation of the processes used by microorganisms to digest nutrients for their growth can be a viable method for the formation of a wide range of so called biogenic materials that have unique properties that are not produced by abiotic processes. Here we produced living hybrid materials by giving to unicellular organisms the nutrient to grow. Based on bread fermentation, a bionic composite made of carbon nanotubes (CNTs) and a single-cell fungi, the Saccharomyces cerevisiae yeast extract, was prepared by fermentation of such microorganisms at room temperature. Scanning electron microscopy analysis suggests that the CNTs were internalized by the cell after fermentation bridging the cells. Tensile tests on dried composite films have been rationalized in terms of a CNT cell bridging mechanism where the strongly enhanced strength of the composite is governed by the adhesion energy between the bridging carbon nanotubes and the matrix. The addition of CNTs also significantly improved the electrical conductivity along with a higher photoconductive activity. The proposed process could lead to the development of more complex and interactive structures programmed to self-assemble into specific patterns, such as those on strain or light sensors that could sense damage or convert light stimulus in an electrical signal. PMID:27279425

  20. Probing Photosensitization by Functionalized Carbon Nanotubes

    Science.gov (United States)

    Carbon nanotubes (CNTs) photosensitize the production of reactive oxygen species that can damage organisms by biomembrane oxidation or mediate CNTs' environmental transformations. The photosensitized nature of derivatized carbon nanotubes from various synthetic methods, and thus ...

  1. Glucose oxidase immobilization onto carbon nanotube networking

    CERN Document Server

    Karachevtsev, V A; Zarudnev, E S; Karachevtsev, M V; Leontiev, V S; Linnik, A S; Lytvyn, O S; Plokhotnichenko, A M; Stepanian, S G

    2012-01-01

    When elaborating the biosensor based on single-walled carbon nanotubes (SWNTs), it is necessary to solve such an important problem as the immobilization of a target biomolecule on the nanotube surface. In this work, the enzyme (glucose oxidase (GOX)) was immobilized on the surface of a nanotube network, which was created by the deposition of nanotubes from their solution in 1,2-dichlorobenzene by the spray method. 1-Pyrenebutanoic acid succinimide ester (PSE) was used to form the molecular interface, the bifunctional molecule of which provides the covalent binding with the enzyme shell, and its other part (pyrene) is adsorbed onto the nanotube surface. First, the usage of such a molecular interface leaves out the direct adsorption of the enzyme (in this case, its activity decreases) onto the nanotube surface, and, second, it ensures the enzyme localization near the nanotube. The comparison of the resonance Raman (RR) spectrum of pristine nanotubes with their spectrum in the PSE environment evidences the creat...

  2. Oligomer functionalized nanotubes and composites formed therewith

    Science.gov (United States)

    Zettl, Alexander K; Sainsbury, Toby; Frechet, Jean M.J.

    2014-03-18

    Disclosed herein is a sequential functionalization methodology for the covalent modification of nanotubes with between one and four repeat units of a polymer. Covalent attachment of oligomer units to the surface of nanotubes results in oligomer units forming an organic sheath around the nanotubes, polymer-functionalized-nanotubes (P-NTs). P-NTs possess chemical functionality identical to that of the functionalizing polymer, and thus provide nanoscale scaffolds which may be readily dispersed within a monomer solution and participate in the polymerization reaction to form a polymer-nanotube/polymer composite. Formation of polymer in the presence of P-NTs leads to a uniform dispersion of nanotubes within the polymer matrix, in contrast to aggregated masses of nanotubes in the case of pristine-NTs. The covalent attachment of oligomeric units to the surface of nanotubes represents the formation of a functional nanoscale building block which can be readily dispersed and integrated within the polymer to form a novel composite material.

  3. Boron Nitride Nanotubes for Spintronics

    Directory of Open Access Journals (Sweden)

    Kamal B. Dhungana

    2014-09-01

    Full Text Available With the end of Moore’s law in sight, researchers are in search of an alternative approach to manipulate information. Spintronics or spin-based electronics, which uses the spin state of electrons to store, process and communicate information, offers exciting opportunities to sustain the current growth in the information industry. For example, the discovery of the giant magneto resistance (GMR effect, which provides the foundation behind modern high density data storage devices, is an important success story of spintronics; GMR-based sensors have wide applications, ranging from automotive industry to biology. In recent years, with the tremendous progress in nanotechnology, spintronics has crossed the boundary of conventional, all metallic, solid state multi-layered structures to reach a new frontier, where nanostructures provide a pathway for the spin-carriers. Different materials such as organic and inorganic nanostructures are explored for possible applications in spintronics. In this short review, we focus on the boron nitride nanotube (BNNT, which has recently been explored for possible applications in spintronics. Unlike many organic materials, BNNTs offer higher thermal stability and higher resistance to oxidation. It has been reported that the metal-free fluorinated BNNT exhibits long range ferromagnetic spin ordering, which is stable at a temperature much higher than room temperature. Due to their large band gap, BNNTs are also explored as a tunnel magneto resistance device. In addition, the F-BNNT has recently been predicted as an ideal spin-filter. The purpose of this review is to highlight these recent progresses so that a concerted effort by both experimentalists and theorists can be carried out in the future to realize the true potential of BNNT-based spintronics.

  4. Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs.

    Science.gov (United States)

    Fabbro, Alessandra; Villari, Ambra; Laishram, Jummi; Scaini, Denis; Toma, Francesca M; Turco, Antonio; Prato, Maurizio; Ballerini, Laura

    2012-03-27

    New developments in nanotechnology are increasingly designed to modulate relevant interactions between nanomaterials and neurons, with the aim of exploiting the physical properties of synthetic materials to tune desired and specific biological processes. Carbon nanotubes have been applied in several areas of nerve tissue engineering to study cell behavior or to instruct the growth and organization of neural networks. Recent reports show that nanotubes can sustain and promote electrical activity in networks of cultured neurons. However, such results are usually limited to carbon nanotube/neuron hybrids formed on a monolayer of dissociated brain cells. In the present work, we used organotypic spinal slices to model multilayer tissue complexity, and we interfaced such spinal segments to carbon nanotube scaffolds for weeks. By immunofluorescence, scanning and transmission electronic microscopy, and atomic force microscopy, we investigated nerve fiber growth when neuronal processes exit the spinal explant and develop in direct contact to the substrate. By single-cell electrophysiology, we investigated the synaptic activity of visually identified ventral interneurons, within the ventral area of the explant, thus synaptically connected, but located remotely, to the substrate/network interface. Here we show that spinal cord explants interfaced for weeks to purified carbon nanotube scaffolds expand more neuronal fibers, characterized by different mechanical properties and displaying higher growth cones activity. On the other hand, exploring spontaneous and evoked synaptic activity unmasks an increase in synaptic efficacy in neurons located at as far as 5 cell layers from the cell-substrate interactions. PMID:22339712

  5. Synthesis of Nanoscale Heterostructures Comprised of Metal Nanowires, Carbon Nanotubes, and Metal Nanoparticles: Investigation of Their Structure and Electrochemical Properties

    Directory of Open Access Journals (Sweden)

    Nitin Chopra

    2015-01-01

    Full Text Available One-dimensional nanoscale heterostructures comprised of multisegment gold-nickel nanowires, carbon nanotube, and nickel nanoparticles were fabricated in a unique approach combining top-down and bottom-up assembly methods. Porous alumina template was utilized for sequential electrodeposition of gold and nickel nanowire segments. This was followed by chemical vapor deposition growth of carbon nanotubes on multisegment gold-nickel nanowires, where nickel segment also acted as a carbon nanotube growth catalyst. The aligned arrays of these gold-nickel-carbon nanotube heterostructures were released from porous alumina template and then subjected to wet-chemical process to be decorated with nickel/nickel oxide core/shell nanoparticles. X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy were utilized for morphology, interface, defect, and structure characterization. The electrochemical performance of these heterostructures was studied using cyclic voltammetry method and the specific capacitance of various heterostructures was estimated and compared.

  6. Attachment of Gold Nanoparticles to Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Xi Cheng MA; Ning LUN; Shu Lin WEN

    2005-01-01

    Carbon nanotubes were initially chemically modified with an H2SO4-HNO3 treatment,and subsequently activated with Pd-Sn catalytic nuclei via a one-step activation approach. These activated nanotubes were used as precursors for obtaining gold nanoparticles-attached nanotubes via simple electroless plating. This approach provides an efficient method for attachment of metal nanostructures to carbon nanotubes. Such novel hybrid nanostructures are attractive for many applications.

  7. Vibrational properties of carbon nanotubes and graphite

    OpenAIRE

    Maultzsch, Janina

    2004-01-01

    In dieser Arbeit werden die Phononen von Kohlenstoff-Nanotubes und Graphit untersucht. Kohlenstoff-Nanotubes sind quasi-eindimensionale Kristalle und bestehen aus einer oder mehreren Graphit-Ebenen, die zu einem Zylinder aufgerollt sind. Deshalb können in erster Näherung viele Eigenschaften der Nanotubes von Graphit hergeleitet werden, indem das Nanotube als ein schmales Rechteck aus Graphit mit periodischen Randbedingungen betrachtet wird. Die hier verwendeten experimentellen Methoden sind R...

  8. Study of Carbon Nanotube-Substrate Interaction

    OpenAIRE

    Soares, Jaqueline S.; Ado Jorio

    2012-01-01

    Environmental effects are very important in nanoscience and nanotechnology. This work reviews the importance of the substrate in single-wall carbon nanotube properties. Contact with a substrate can modify the nanotube properties, and such interactions have been broadly studied as either a negative aspect or a solution for developing carbon nanotube-based nanotechnologies. This paper discusses both theoretical and experimental studies where the interaction between the carbon nanotubes and the ...

  9. Epoxide composite materials with carbon nanotubes

    International Nuclear Information System (INIS)

    Methods of formation and physical properties of epoxide composite materials reinforced with carbon nanotubes are considered. An analogy is made between the relaxation properties of carbon nanotubes and macromolecules. The concentration dependences of the electrical conductivity of the epoxy polymers filled with single-walled and multi-walled carbon nanotubes are discussed. Modern views on the mechanism of reinforcement of polymers with nanotubes are outlined. The bibliography includes 143 references.

  10. Advanced materials based on carbon nanotube arrays, yarns and papers

    Science.gov (United States)

    Bradford, Phlip David

    Carbon nanotubes have hundreds of potential applications but require innovative processing techniques to manipulate the microscopic carbon dust into useful devices and products. This thesis describes efforts to process carbon nanotubes (CNTs) using novel methods with the goals of: (1) improving the properties of energy absorbing and composite carbon nanotube materials and (2) increasing understanding of fundamental structure-property relationships within these materials. Millimeter long CNTs, in the form of arrays, yarns and papers, were used to produce energy absorbing foams and high volume fraction CNT composites. Vertically aligned CNT arrays were grown on silicon substrates using chemical vapor deposition (CVD) of ethylene gas over iron nano-particles. The low density, millimeter thick arrays were tested under compression as energy absorbing foams. With additional CVD processing steps, it was possible to tune the compressive properties of the arrays. After the longest treatment, the compressive strength of the arrays was increased by a factor of 35 with a density increase of only six fold, while also imparting recovery from compression to the array. Microscopy revealed that the post-synthesis CVD treatment increased the number of CNT walls through an epitaxial type radial growth on the surface of the as-grown tubes. The increase in tube radius and mutual support between nanotubes explained the increases in compressive strength while an increase in nanotube roughness was proposed as the morphological change responsible for recovery in the array. Carbon nanotube yarns were used as the raw material for macroscopic textile preforms with a multi-level hierarchical carbon nanotube (CNT) structure: nanotubes, bundles, spun single yarns, plied yarns and 3-D braids. In prior tensile tests, composites produced from the 3-D braids exhibited unusual mechanical behavior effects. The proposed physical hypotheses explained those effects by molecular level interactions and

  11. Functionalization of Carbon Nanotubes

    Science.gov (United States)

    Khare, Bishun N. (Inventor); Meyyappan, Meyya (Inventor)

    2009-01-01

    Method and system for functionalizing a collection of carbon nanotubes (CNTs). A selected precursor gas (e.g., H2 or F2 or CnHm) is irradiated to provide a cold plasma of selected target species particles, such as atomic H or F, in a first chamber. The target species particles are d irected toward an array of CNTs located in a second chamber while suppressing transport of ultraviolet radiation to the second chamber. A CNT array is functionalized with the target species particles, at or below room temperature, to a point of saturation, in an exposure time interval no longer than about 30 sec. *Discrimination against non-target species is provided by (i) use of a target species having a lifetime that is much greater than a lifetime of a non-target species and/or (2) use of an applied magnetic field to discriminate between charged particle trajectories for target species and for non-target species.

  12. Carbon nanotube optical mirrors

    Science.gov (United States)

    Chen, Peter C.; Rabin, Douglas

    2015-01-01

    We report the fabrication of imaging quality optical mirrors with smooth surfaces using carbon nanotubes (CNT) embedded in an epoxy matrix. CNT/epoxy is a multifunctional composite material that has sensing capabilities and can be made to incorporate self-actuation. Moreover, as the precursor is a low density liquid, large and lightweight mirrors can be fabricated by processes such as replication, spincasting, and three-dimensional printing. Therefore, the technology holds promise for the development of a new generation of lightweight, compact "smart" telescope mirrors with figure sensing and active or adaptive figure control. We report on measurements made of optical and mechanical characteristics, active optics experiments, and numerical modeling. We discuss possible paths for future development.

  13. Carbon Nanotube Electron Gun

    Science.gov (United States)

    Nguyen, Cattien V. (Inventor); Ribaya, Bryan P. (Inventor)

    2013-01-01

    An electron gun, an electron source for an electron gun, an extractor for an electron gun, and a respective method for producing the electron gun, the electron source and the extractor are disclosed. Embodiments provide an electron source utilizing a carbon nanotube (CNT) bonded to a substrate for increased stability, reliability, and durability. An extractor with an aperture in a conductive material is used to extract electrons from the electron source, where the aperture may substantially align with the CNT of the electron source when the extractor and electron source are mated to form the electron gun. The electron source and extractor may have alignment features for aligning the electron source and the extractor, thereby bringing the aperture and CNT into substantial alignment when assembled. The alignment features may provide and maintain this alignment during operation to improve the field emission characteristics and overall system stability of the electron gun.

  14. Carbon nanotube biconvex microcavities

    Energy Technology Data Exchange (ETDEWEB)

    Butt, Haider, E-mail: h.butt@bham.ac.uk; Ahmed, Rajib [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 50 Blossom Street, Boston, Massachusetts 02114 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2015-03-23

    Developing highly efficient microcavities with predictive narrow-band resonance frequencies using the least amount of material will allow the applications in nonlinear photonic devices. We have developed a microcavity array that comprised multi-walled carbon nanotubes (MWCNT) organized in a biconvex pattern. The finite element model allowed designing microcavity arrays with predictive transmission properties and assessing the effects of the microarray geometry. The microcavity array demonstrated negative index and produced high Q factors. 2–3 μm tall MWCNTs were patterned as biconvex microcavities, which were separated by 10 μm in an array. The microcavity was iridescent and had optical control over the diffracted elliptical patterns with a far-field pattern, whose properties were predicted by the model. It is anticipated that the MWCNT biconvex microcavities will have implications for the development of highly efficient lenses, metamaterial antennas, and photonic circuits.

  15. Growth and structure of carbide nanorods

    International Nuclear Information System (INIS)

    Recent research on the growth and structure of carbide nanorods is reviewed. Carbide nanorods have been prepared by reacting carbon nanotubes with volatile transition metal and main group oxides and halides. Using this approach it has been possible to obtain solid carbide nanorods of TiC, SiC, NbC, Fe3C, and BCx having diameters between 2 and 30 nm and lengths up to 20 microm. Structural studies of single crystal TiC nanorods obtained through reactions of TiO with carbon nanotubes show that the nanorods grow along both [110] and [111] directions, and that the rods can exhibit either smooth or saw-tooth morphologies. Crystalline SiC nanorods have been produced from reactions of carbon nanotubes with SiO and Si-iodine reactants. The preferred growth direction of these nanorods is [111], although at low reaction temperatures rods with [100] growth axes are also observed. The growth mechanisms leading to these novel nanomaterials have also been addressed. Temperature dependent growth studies of TiC nanorods produced using a Ti-iodine reactant have provided definitive proof for a template or topotactic growth mechanism, and furthermore, have yielded new TiC nanotube materials. Investigations of the growth of SiC nanorods show that in some cases a catalytic mechanism may also be operable. Future research directions and applications of these new carbide nanorod materials are discussed

  16. Hybrid Composite of Polyaniline Containing Carbon Nanotube

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Carbon nanotube-polyaniline hybrid material was synthesized by emulsion polymerization in-situ. The morphology of hybrid material was studied by TEM and X-ray diffraction. The conductivity of nanocomposite increases with the increasing of carbon nanotube content because of the new conductivity passageways formed by carbon nanotubes.

  17. Synthesis and Application of Carbon Nanotubes

    Institute of Scientific and Technical Information of China (English)

    Qun Zeng; Zhenhua Li; Yuhong Zhou

    2006-01-01

    Owing to the unique structure, the superior physical and chemical properties, the super strong mechanical performances, and so on, carbon nanotubes have attracted the attention of researchers all over the world. In this article, the basic properties and the main production processes of carbon nanotubes are introduced in brief, and the progress of applied research for carbon nanotubes is reviewed.

  18. Computational Evidence for the Smallest Boron Nanotube

    Institute of Scientific and Technical Information of China (English)

    Xian Jie LIN; Dong Ju ZHANG; Cheng Bu LIU

    2006-01-01

    The structure of boron nanotubes (BNTs) was found not to be limited to hexagonal pyramidal structures. Based on density functional theory calculations we provided evidence for the smallest boron nanotube, a geometrical analog of the corresponding carbon nanotube. As shown by our calculations, the smallest BNT possesses highly structural, dynamical, and thermal stability, which should be interest for attempts at its synthesis.

  19. Dispersions of Carbon nanotubes in Polymer Matrices

    Science.gov (United States)

    Wise, Kristopher Eric (Inventor); Park, Cheol (Inventor); Siochi, Emilie J. (Inventor); Harrison, Joycelyn S. (Inventor); Lillehei, Peter T. (Inventor); Lowther, Sharon E. (Inventor)

    2010-01-01

    Dispersions of carbon nanotubes exhibiting long term stability are based on a polymer matrix having moieties therein which are capable of a donor-acceptor complexation with carbon nanotubes. The carbon nanotubes are introduced into the polymer matrix and separated therein by standard means. Nanocomposites produced from these dispersions are useful in the fabrication of structures, e.g., lightweight aerospace structures.

  20. Targeted Killing of Cancer Cells In vivo and In vitro with EGF-directed Carbon Nanotube-based Drug Delivery

    OpenAIRE

    Bhirde, Ashwin A; Patel, Vyomesh; Gavard, Julie; Zhang, Guofeng; Sousa, Alioscka A.; Masedunskas, Andrius; Leapman, Richard D.; Weigert, Roberto; Gutkind, J. Silvio; Rusling, James F.

    2009-01-01

    Carbon nanotube-based drug delivery holds great promise for cancer therapy. Herein we report the first targeted, in vivo killing of cancer cells using a drug-single wall carbon nanotube (SWNT) bioconjugate, and demonstrate efficacy superior to non-targeted bioconjugates. First line anti-cancer agent cisplatin and epidermal growth factor (EGF) were attached to SWNTs to specifically target squamous cancer, and the non-targeted control was SWNT-cisplatin without EGF. Initialin vitro imaging stud...

  1. In situ chemical vapor deposition growth of carbon nanotubes on hollow CoFe2O4 as an efficient and low cost counter electrode for dye-sensitized solar cells

    Science.gov (United States)

    Yuan, Hong; Jiao, Qingze; Zhang, Shenli; Zhao, Yun; Wu, Qin; Li, Hansheng

    2016-09-01

    The composites of hollow CoFe2O4 and carbon nanotubes (h-CoFe2O4@CNTs) are successfully prepared by using a simple hydrothermal process coupling with the in-situ chemical vapor deposition (CVD) as electrocatalytic materials for counter electrode of dye-sensitized solar cells. The CNTs are uniformly grown on the surface of hollow CoFe2O4 particles verified by X-ray powder diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM) and energy dispersive X-ray spectroscopy (EDX) measurements. The electrochemical performances of hollow CoFe2O4@CNTs composites are evaluated by the EIS, Tafel polarization and CV measurements, and exhibiting high electrocatalytic performance for the reduction of triiodide. The presence of conductive polypyrrole nanoparticles could further improve the conductivity and catalytic performance of the resultant composites. Controlling the thickness of composites film, the optimum photovoltaic conversion efficiency of 6.55% is obtained, which is comparable to that of the cells fabricated with Pt counter electrode (6.61%). In addition, the composites exhibit a good long-term electrochemical stability in I3-/I- electrolyte.

  2. Anomalous magnetic properties of VOx multiwall nanotubes

    Science.gov (United States)

    Demishev, S. V.; Chernobrovkin, A. L.; Glushkov, V. V.; Goodilin, E. A.; Grigorieva, A. V.; Ishchenko, T. V.; Kuznetsov, A. V.; Sluchanko, N. E.; Tretyakov, Yu D.; Semeno, A. V.

    2010-01-01

    Basing on the high frequency (60 GHz) electron spin resonance (ESR) and magnetic susceptibility study of the VOx multiwall nanotubes (VOx-NTs) in the range 4.2-300 K we report the ESR evidence of the presence of the antiferromagnetic V4+ dimers in VOx-NTs and the observation of an anomalous low temperature (T<50 K) growth of the magnetic susceptibility for V4+ quasi-free spins, which obey power law χ(T)~1/Tα with the exponent αapprox0.6. The estimates of the concentrations for various spin species (clusters) indicate that the non-interacting dimers should be an essential element in the VOx-NTs structure. The possibility of the disorder driven quantum critical regime in VOx-NTs is discussed.

  3. Enrichment and Fundamental Optical Processes of Armchair Carbon Nanotubes

    Science.gov (United States)

    Haroz, Erik H.

    The armchair variety of single-wall carbon nanotubes (SWCNTs) is the only nanotube species that behaves as a metal with no electronic band gap and massless carriers, making them ideally suited to probe fundamental questions of many-body physics of one-dimensional conductors as well as to serve in applications such as highcurrent power transmission cables. However, current methods of nanotube synthesis produce bulk material comprising of a mixture of nanotube lengths, diameters, wrapping angles, and electronic types due to the inability to control the growth process at the nanometer level. As a result, measurements of as-grown SWCNTs produce a superposition of electrical and optical responses from multiple SWCNT species. This thesis demonstrates production of aqueous suspensions composed almost entirely of armchair SWCNTs using a post-synthesis separation method employing density gradient ultracentrifugation (DGU) to separate different SWCNT types based on their mass density and surfactant-specific interactions. Resonant Raman spectroscopy determines the relative abundances of each nanotube species, before and after DGU, by measuring the integrated intensity of the radial breathing mode, the diameter-dependent radial vibration of the SWCNT perpendicular to its main axis, and quantifies the degree of enrichment of bulk nanotube samples to exclusively armchair tubes. Raman spectroscopy of armchair-enriched samples of the G-band mode, which is composed of longitudinal (G-) and circumferential (G+) vibrations oscillating parallel and perpendicular to the tube axis, shows that the G- peak, long-held to be an indicator for the presence of metallic SWCNTs, appears only when electronic resonance with narrow-gap semiconducting SWCNTs occurs and shows only the G+ component in spectra containing only armchair species. Finally, by combining optical absorption measurements with nanotube composition as determined earlier via Raman scattering, peak fitting of absorption spectra

  4. Molecular dynamics study of the stability of a carbon nanotube atop a catalytic nanoparticle

    CERN Document Server

    Verkhovtsev, Alexey V; Solov'yov, Andrey V

    2014-01-01

    The stability of a single-walled carbon nanotube placed on top of a catalytic nickel nanoparticle is investigated by means of molecular dynamics simulations. As a case study, we consider the $(12,0)$ nanotube consisting of 720 carbon atoms and the icosahedral Ni$_{309}$ cluster. An explicit set of constant-temperature simulations is performed in order to cover a broad temperature range from 400 to 1200 K, at which a successful growth of carbon nanotubes has been achieved experimentally by means of chemical vapor deposition. The stability of the system depending on parameters of the involved interatomic interactions is analyzed. It is demonstrated that different scenarios of the nanotube dynamics atop the nanoparticle are possible depending on the parameters of the Ni-C potential. When the interaction is weak the nanotube is stable and resembles its highly symmetric structure, while an increase of the interaction energy leads to the abrupt collapse of the nanotube in the initial stage of simulation. In order t...

  5. Dielectric response of carbon and boron nitride nanotubes from first-principles calculations

    Science.gov (United States)

    Kozinsky, Boris; Marzari, Nicola

    2007-03-01

    We present a complete characterization of the dielectric response of isolated single- and multi-wall carbon (CNT) and boron-nitride nanotubes (BNNT) using first-principles calculations and density-functional theory. The longitudinal polarizability of a nanotube is sensitive to the band gap and its radius, and in multi-wall nanotubes and bundles it is trivially given by the sum of the polarizabilities of the constituent tubes. The transverse polarizability of both types of nanotubes is insensitive to band gap and chirality and depends only on the radius. However, the transverse response and screening properties of BNNTs are qualitatively different from those of metallic and semiconducting CNTs. The fundamental differences in electronic properties of the two materials are inherited from the corresponding two-dimensional sheets - graphene and boron-nitride. The screening of the external field in CNTs is stronger than in BNNTs and has a different radius dependence. The transverse response in BNNTs is found to be that of an insulator, while in CNTs it is intermediate between metallic and semiconducting. Our results have practical implications for selective growth of different types of nanotubes using aligning electric fields and for Raman characterization of nanotubes.

  6. Mass production of multi-wall carbon nanotubes by metal dusting process with high yield

    International Nuclear Information System (INIS)

    Research highlights: → Synthesis of carbon nanotubes over Fe-Ni nanoparticles supported alloy 304L. → Production of carbon nanotubes with high yield (700-1000%) and low cost catalyst. → Optimum growth condition is CO/H2 = 1/1, 100 cm3/min, at 620 oC under long term repetitive thermal cycling. → Possibility of the mass production by metal dusting process with low cost. -- Abstract: Carbon nanotube materials were synthesized over Fe-Ni nanoparticles generated during disintegration of the surface of alloy 304L under metal dusting environment. The metal dusting condition was simulated and optimized through exposing stainless steel samples during long term repetitive thermal cycling in CO/H2 = 1/1, total gas flow rate 100 cm3/min, at 620 oC for 300 h. After reaction, surface morphology of the samples and also carbonaceous deposition which had grown on sample surfaces were examined by stereoscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Results revealed that multi-wall carbon nanotubes could be formed over nanocatalyst generated on the alloy surface by exploiting metal dusting process. By optimization of reaction parameters the yields of carbon nanotube materials obtained were 700-1000%. Also it has been shown herein that the amount of carbon nanotube materials remarkably increases when the reaction time is extended up to 300 h, indicating a possibility of the mass production by this easy method.

  7. Nickel sulfide nanotubes formed by a directional infiltration self-assembly route in AAO templates

    International Nuclear Information System (INIS)

    Nickel sulfide nanotube was successfully synthesized by a directional infiltration self-assembly route in AAO templates. The self-assembly process mainly involves infiltration, decomposition and crystal growth in nanochannels, in which dimethyl sulfoxide (DMSO) first acts as both sulfur source and unique infiltrator. For increasing S atom content in nickel sulfides thiourea was also used as additional sulfur source. Scanning electron microscope images (SEM) revealed that the nanotubes have uniform length distributions, several tens micrometers lengths and ultrathin tube-walls of 20 nm thickness. The nanotubes were confirmed by X-ray diffraction (XRD) and Raman spectroscopy, showing hexagonal Ni3S2, α-NiS and cubic NiS2, respectively. The magnetic hysteresis scan of NiS2 NTs showed weak ferromagnetism at room temperature. Its growth mechanism was discussed and proposed as well

  8. Preparation and Characterization of Carbon Nanotubes-Coated Cordierite for Catalyst Supports

    Institute of Scientific and Technical Information of China (English)

    Jianmei Wang; Rong Wang; Xiujin Yu; Jianxin Lin; Feng Xie; Kemei Wei

    2006-01-01

    The carbon nanotubes-coated cordierite (CNTs-cordierite) was fabricated by pyrolysis of ethine on cordierite with iron catalyst, which was penetrated into the cordierite substrate by vacuum impregnation. The cordierite substrate, carbon naontubes, and CNTs-cordierite were characterized by SEM, TEM/HREM, BET, and TGA. The results show that the carbon nanotubes were distributed uniformly on the surface of cordierite. A significant increase in BET surface area and pore volume was observed, and a suitable pore-size distribution was obtained. On the CNTs-cordierite, carbon nanotubes penetrated into the cordierite substrate, which led to a remarkable stability of the CNTs against ultrasound maltreatment. Growth time is an important factor for thermostability and texture of the sample. The mass increased but the purity decreased with the growth time, which caused the exothermic peak shift to low temperature, and the corresponding full width half maximum (FWHM) of the peak in DTG increased.

  9. Vascular cell responses to ECM produced by smooth muscle cells on TiO{sub 2} nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Fangyu [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu (China); Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Zhu, Ying [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu (China); Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Wuhan Dragonbio Orthopedic Products CO., LTD, 18, Qinglnghe Road, Hongshan District, Wuhan 430065 (China); Li, Xin [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu (China); Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Luo, Rifang, E-mail: lrifang@126.com [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu (China); Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Tu, Qiufen [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu (China); Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Laboratory of Biosensing and Micro Mechatronics, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Jin, E-mail: jinxxwang@263.net [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu (China); Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China); Huang, Nan [School of Life Science and Engineering, Southwest Jiaotong University, Chengdu (China); Key Lab of Advanced Technology of Materials of Education Ministry, Southwest Jiaotong University, Chengdu 610031 (China)

    2015-09-15

    Graphical abstract: - Highlights: • TiO{sub 2} nanotubes with the tube diameter of 30 nm via anodic oxidation was prepared. • SMCs on TiO{sub 2} nanotubes presented enhanced extracellular matrix secreting. • ECM prepared via decellularization retained the components: Fn, Ln and collagen. • ECM-covered TiO{sub 2} nanotubes significantly improved the proliferation of ECs. - Abstract: There is an increasing interest in developing new methods to promote biocompatibility of biomedical materials. The TiO{sub 2} nanotubes with the tube diameter of 30 nm were prepared by anodization. The response behavior of the human umbilical vein endothelial cell (HUVEC) and human umbilical artery smooth muscle cell (HUASMC) to these different nanotube sizes was investigated. Compared to the flat Ti, the growth and viability of HUVEC are prohibited, but there was no significant difference of HUASMC on 30 nm TiO{sub 2} nanotubes. In this study, extracellular matrix (ECM) as a complex cellular environment which provides structural support to cells and regulates the cells functions was further used to modify the biological properties of TiO{sub 2} nanotubes. The ECM secreted from HUASMC was successfully deposited onto the 30 nm TiO{sub 2} nanotubes. Moreover, immunofluorescence staining of common ECM components, such as fibronectin, laminin and type IV collagen, also indicated the successful ECM-covering on nanotube surfaces. Interestingly, the surface of ECM-covered TiO{sub 2} nanotubes significantly improved the proliferation of HUVECs in vitro. This suggested that the ECM secreted from HUASMCs on the TiO{sub 2} nanotubular surface could further improve the HUVECs adhesion and proliferation.

  10. Gears Based on Carbon Nanotubes

    Science.gov (United States)

    Jaffe, Richard; Han, Jie; Globus, Al; Deardorff, Glenn

    2005-01-01

    Gears based on carbon nanotubes (see figure) have been proposed as components of an emerging generation of molecular- scale machines and sensors. In comparison with previously proposed nanogears based on diamondoid and fullerene molecules, the nanotube-based gears would have simpler structures and are more likely to be realizable by practical fabrication processes. The impetus for the practical development of carbon-nanotube- based gears arises, in part, from rapid recent progress in the fabrication of carbon nanotubes with prescribed diameters, lengths, chiralities, and numbers of concentric shells. The shafts of the proposed gears would be made from multiwalled carbon nanotubes. The gear teeth would be rigid molecules (typically, benzyne molecules), bonded to the nanotube shafts at atomically precise positions. For fabrication, it may be possible to position the molecular teeth by use of scanning tunneling microscopy (STM) or other related techniques. The capability to position individual organic molecules at room temperature by use of an STM tip has already been demonstrated. Routes to the chemical synthesis of carbon-nanotube-based gears are also under investigation. Chemical and physical aspects of the synthesis of molecular scale gears based on carbon nanotubes and related molecules, and dynamical properties of nanotube- based gears, have been investigated by computational simulations using established methods of quantum chemistry and molecular dynamics. Several particularly interesting and useful conclusions have been drawn from the dynamical simulations performed thus far: The forces acting on the gears would be more sensitive to local molecular motions than to gross mechanical motions of the overall gears. Although no breakage of teeth or of chemical bonds is expected at temperatures up to at least 3,000 K, the gears would not work well at temperatures above a critical range from about 600 to about 1,000 K. Gear temperature could probably be controlled by

  11. Roping and wrapping carbon nanotubes

    Science.gov (United States)

    Ausman, Kevin D.; O'Connell, Michael J.; Boul, Peter; Ericson, Lars M.; Casavant, Michael J.; Walters, Deron A.; Huffman, Chad; Saini, Rajesh; Wang, Yuhuang; Haroz, Erik; Billups, Edward W.; Smalley, Richard E.

    2001-11-01

    Single-walled carbon nanotubes can be dispersed into solvents by ultrasonication to the point that primarily individual tubes, cut to a few hundred nanometers in length, are present. However, when such dispersions are filtered to a thick mat, or paper, only tangles of uniform, seemingly endless ropes are observed. The factors contributing to this "roping" phenomenon, akin to aggregation or crystallization, will be discussed. We have developed methods for generating "super-ropes" more than twenty times the diameter of those formed by filtration, involving the extraction of nanotube material from an oleum dispersion. Nanotubes have been solubilized in water, largely individually, by non-covalently wrapping them with linear polymers. The general thermodynamic drive for this wrapping involves the polymer disrupting both the hydrophobic interface with water and the smooth tube-tube interaction in aggregates. The nanotubes can be recovered from their polymeric wrapping by changing their solvent system. This solubilization process opens the door to solution chemistry on pristine nanotubes, as well as their introduction into biologically relevant systems.

  12. Nanomechanical Energy Storage in Twisted Nanotube Ropes

    Science.gov (United States)

    Teich, David; Fthenakis, Zacharias G.; Seifert, Gotthard; Tománek, David

    2012-12-01

    We determine the deformation energetics and energy density of twisted carbon nanotubes and nanotube ropes that effectively constitute a torsional spring. Using ab initio and parametrized density functional calculations, we identify structural changes in these systems and determine their elastic limits. The deformation energy of twisted nanotube ropes contains contributions associated not only with twisting but also with stretching, bending, and compression of individual nanotubes. We quantify these energy contributions and show that their relative role changes with the number of nanotubes in the rope.

  13. Electrostatics of straight and bent nanotubes

    OpenAIRE

    Mishchenko, E. G.; Raikh, M. E.

    2005-01-01

    Response of a single-walled carbon nanotube to external electric field, F, is calculated analytically within the classical electrostatics. Field-induced charge density distribution is approximately linear along the axis of metallic nanotube and depends rather weakly, as ln(h/r), on the nanotube length, h, (here r is the nanotube radius). In a semiconducting nanotube with a gap, E_g, charge separation occurs as F exceeds the threshold value F_{th}=E_g/eh. For F>F_{th}, positively and negativel...

  14. Multiwalled carbon nanotube CVD synthesis, modification, and composite applications

    Science.gov (United States)

    Qian, Dali

    Well-aligned carbon multiwall nanotube (MWNT) arrays have been continuously synthesized by a floating catalytic chemical vapor deposition (CVD) method involving the pyrolysis of xylene-ferrocene mixtures. The CVD parameters have been studied to selectively synthesize nanotubes with required dimensions. A mixed tip-root growth model has been proposed for the floating catalytic CVD synthesis. Coarsening of the catalyst particle at the root end promoted MWNT wall coarsening (addition of new concentric graphene shells), while the smaller catalyst particle at the tip contributed to MWNT elongation. A two-step process in which ferrocene was fed for only five minutes to nucleate the DTs was developed to understand if a continuous supply of catalyst was necessary for continued growth. The results show that the ferrocene was only necessary for initial nucleation. To simplify the CVD process further, another two-step synthesis method was developed in which the ferrocene was pre-decomposed so that the nanotube nucleation could be isolated from the growth, enabling quantification of growth mechanisms and kinetics. Mass spectra and hydrocarbon analyses of the CVD reactor tail gas were performed to understand the pyrolysis chemistry. Well-aligned N-doped and Ru-doped MWNT arrays have been produced by pyrolysis of pyridine ferrocene mixtures and xylene-ferrocene-ruthenocene mixtures, respectively. Various material characterization techniques were used to measure the dopant distributions and correlate the catalyst phase with the novel nanotube structures. High-temperature annealing has been shown to be a viable means to remove both the catalyst particles and certain microstructural defects within the CVD-derived DTs. The phase transformation of catalyst during annealing has also been studied. Homogeneous distribution of MWNTs in polystyrene matrices was achieved by an ultrasonic assisted solution-evaporation method. Addition of only 1 wt % DTs to polystyrene increased the polymer

  15. In situ growth and performance of spherical Fe2F5·H2O nanoparticles in multi-walled carbon nanotube network matrix as cathode material for sodium ion batteries

    Science.gov (United States)

    Jiang, Miaoling; Wang, Xianyou; Hu, Hai; Wei, Shuangying; Fu, Yanqing; Shen, Yongqiang

    2016-06-01

    The multi-wall carbon nanotubes wired spherical Fe2F5·H2O particles (MWCNTs-wired Fe2F5·H2O) are synthesized via an ionic liquid (IL) based precipitation route as the cathode material for sodium ion batteries (SIBs), in which the IL 1-butyl-2,3-dimethylimidazolium tetrafluoroborate (BMMimBF4) is used as environmentally friendly fluorine source, appropriate solvent and binder. The structure, morphology and electrochemical performance of the as-prepared samples have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), charge/discharge tests, cyclic voltammetric measurements (CV). The results show that the MWCNTs-wired spherical Fe2F5·H2O particles present the cubic crystal structure with the cell volume of 1.12821 nm3. Moreover, the SEM and TEM images show that the spherical Fe2F5·H2O particles and disentangled MWCNTs are intertwined together to form a chestnut-like micrometer-sized aggregates. Furthermore, the MWCNTs-wired spherical Fe2F5·H2O particles show a high initial discharge capacity of 251.2 mAh g-1 at 20 mA g-1 in the voltage of 1.0-4.0 V, and the corresponding reversible discharge capacity is 197.4 mAh g-1. Comparing with bare Fe2F5·H2O, the discharge capacity of the MWCNTs-wired spherical Fe2F5·H2O particles still can maintain about 115.0 mAh g-1 after 50 cycles when the current density increased to 100 mA g-1, and the corresponding capacity retention reaches 90.2%.

  16. Adsorption on the carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    DING Yi; YANG Xiao-bao; NI Jun

    2006-01-01

    Adsorption on single walled carbon nanotubes (SWCNTs) is a subject of growing experimental and theoretical interest.The possible adsorbed patterns of atoms and molecules on the single-walled carbon nanotubes vary with the diameters and chirality of the tubes due to the confinement.The curvature of the carbon nanotube surface enlarges the distance of the adsorbate atoms and thus enhances the stability of high coverage structures of adsorbate.There exist two novel high-coverage stable structures of potassium adsorbed on SWCNTs,which are not stable on graphite.The electronic properties of SWCNTs can be modified by adsorbate atoms and metal-semiconductor and semiconductor-semi-conductor transitions can be achieved by the doping of alkali atoms.

  17. Novel Nanotube Manufacturing Streamlines Production

    Science.gov (United States)

    2007-01-01

    Nanotubes have novel qualities that make them uniquely qualified for a plethora of uses, including applications in electronics, optics, and other scientific and industrial fields. The NASA process for creating these nanostructures involves using helium arc welding to vaporize an amorphous carbon rod and then form nanotubes by depositing the vapor onto a water-cooled carbon cathode, which then yields bundles, or ropes, of single-walled nanotubes at a rate of 2 grams per hour using a single setup. This eliminates costs associated with the use of metal catalysts, including the cost of product purification, resulting in a relatively inexpensive, high-quality, very pure end product. While managing to be less expensive, safer, and simpler, the process also increases the quality of the nanotubes. Goddard's Innovative Partnerships Program (IPP) Office promoted the technology, and in 2005, Boise-based Idaho Space Materials Inc. (ISM) was formed and applied for a nonexclusive license for the single-walled carbon nanotube (SWCNT) manufacturing technology. ISM commercialized its products, and the inexpensive, robust nanotubes are now in the hands of the scientists who will create the next generation of composite polymers, metals, and ceramics that will impact the way we live. In fact, researchers are examining ways for these newfound materials to be used in the manufacture of transistors and fuel cells, large screen televisions, ultra-sensitive sensors, high-resolution atomic force microscopy probes, supercapacitors, transparent conducting films, drug carriers, catalysts, and advanced composite materials, to name just a few of the myriad technologies to benefit.

  18. Quantum transport in carbon nanotubes

    Science.gov (United States)

    Laird, Edward A.; Kuemmeth, Ferdinand; Steele, Gary A.; Grove-Rasmussen, Kasper; Nygârd, Jesper; Flensberg, Karsten; Kouwenhoven, Leo P.

    2015-07-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This review describes the modern understanding of transport through nanotube devices. Unlike in conventional semiconductors, electrons in nanotubes have two angular momentum quantum numbers, arising from spin and valley freedom. The interplay between the two is the focus of this review. The energy levels associated with each degree of freedom, and the spin-orbit coupling between them, are explained, together with their consequences for transport measurements through nanotube quantum dots. In double quantum dots, the combination of quantum numbers modifies the selection rules of Pauli blockade. This can be exploited to read out spin and valley qubits and to measure the decay of these states through coupling to nuclear spins and phonons. A second unique property of carbon nanotubes is that the combination of valley freedom and electron-electron interactions in one dimension strongly modifies their transport behavior. Interaction between electrons inside and outside a quantum dot is manifested in SU(4) Kondo behavior and level renormalization. Interaction within a dot leads to Wigner molecules and more complex correlated states. This review takes an experimental perspective informed by recent advances in theory. As well as the well-understood overall picture, open questions for the field are also clearly stated. These advances position nanotubes as a leading system for the study of spin and valley physics in one dimension where electronic disorder and hyperfine interaction can both be reduced to a low level.

  19. Gold nanotube: structure and melting

    OpenAIRE

    Bilalbegovic, G.

    2002-01-01

    In the process of molecular dynamics simulation studies of gold nanowires an interesting structure is discovered. This is a finite double-wall nanowire with a large empty core similar to single-wall and double-wall carbon nanotubes. The structure of the 16-10 gold nanotube is studied at the room temperature. An investigation of the high-temperature stability has also been carried out. An unusual inward evaporation of atoms from cylindrical liquid walls is found at T>= 1200 K.

  20. Atomistic Simulations of Nanotube Fracture

    CERN Document Server

    Belytschko, T; Schatz, G; Ruoff, R S

    2002-01-01

    The fracture of carbon nanotubes is studied by atomistic simulations. The fracture behavior is found to be almost independent of the separation energy and to depend primarily on the inflection point in the interatomic potential. The rangle of fracture strians compares well with experimental results, but predicted range of fracture stresses is marketly higher than observed. Various plausible small-scale defects do not suffice to bring the failure stresses into agreement with available experimental results. As in the experiments, the fracture of carbon nanotubes is predicted to be brittle. The results show moderate dependence of fracture strength on chirality.

  1. CMOS Integrated Carbon Nanotube Sensor

    International Nuclear Information System (INIS)

    Recently carbon nanotubes (CNTs) have been gaining their importance as sensors for gases, temperature and chemicals. Advances in fabrication processes simplify the formation of CNT sensor on silicon substrate. We have integrated single wall carbon nanotubes (SWCNTs) with complementary metal oxide semiconductor process (CMOS) to produce a chip sensor system. The sensor prototype was designed and fabricated using a 0.30 um CMOS process. The main advantage is that the device has a voltage amplifier so the electrical measure can be taken and amplified inside the sensor. When the conductance of the SWCNTs varies in response to media changes, this is observed as a variation in the output tension accordingly.

  2. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    ZHU Ying; LI WenXin

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained,lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However,experimental information obtained thus far on CNTs' cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTa in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs' cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  3. Cytotoxicity of carbon nanotubes

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    With large-scale production and application at large scale, carbon nanotubes (CNTs) may cause ad-verse response to the environment and human health. Thus, study on bio-effects and safety of CNTs has attracted great attention from scientists and governments worldwide. This report briefly summa-rizes the main results from the in vitro toxicity study of CNTs. The emphasis is placed on the descrip-tion of a variety of factors affecting CNTs cytotoxicity, including species of CNTs, impurities contained, lengths of CNTs, aspect ratios, chemical modification, and assaying methods of cytotoxicity. However, experimental information obtained thus far on CNTs’ cytotoxicity is lacking in comparability, and some-times there is controversy about it. In order to assess more accurately the potential risks of CNTs to human health, we suggest that care should be taken for issues such as chemical modification and quantitative characterization of CNTs in cytotoxicity assessment. More importantly, studies on physical and chemical mechanisms of CNTs’ cytotoxicity should be strengthened; assaying methods and evaluating criteria characterized by nanotoxicology should be gradually established.

  4. Environmental Detection of Single-Walled Carbon Nanotubes Utilizing Near-Infrared Fluorescence

    Science.gov (United States)

    There are a growing number of applications for carbon nanotubes (CNT) in modern technologies and, subsequently, growth in production of CNT has expanded rapidly. Single-walled CNT (SWCNT) consist of a graphene sheet rolled up into a tube. With growing manufacture and use, the ...

  5. Self-Assembly of Graphene on Carbon Nanotube Surfaces

    Science.gov (United States)

    Li, Kaiyuan; Eres, Gyula; Howe, Jane; Chuang, Yen-Jun; Li, Xufan; Gu, Zhanjun; Zhang, Litong; Xie, Sishen; Pan, Zhengwei

    2013-08-01

    The rolling up of a graphene sheet into a tube is a standard visualization tool for illustrating carbon nanotube (CNT) formation. However, the actual processes of rolling up graphene sheets into CNTs in laboratory syntheses have never been demonstrated. Here we report conformal growth of graphene by carbon self-assembly on single-wall and multi-wall CNTs using chemical vapor deposition (CVD) of methane without the presence of metal catalysts. The new graphene layers roll up into seamless coaxial cylinders encapsulating the existing CNTs, but their adhesion to the primary CNTs is weak due to the existence of lattice misorientation. Our study shows that graphene nucleation and growth by self-assembly of carbon on the inactive carbon basal plane of CNTs occurs by a new mechanism that is markedly different from epitaxial growth on metal surfaces, opening up the possibility of graphene growth on many other non-metal substrates by simple methane CVD.

  6. Strain-engineered manufacturing of freeform carbon nanotube microstructures

    Science.gov (United States)

    de Volder, M.; Park, S.; Tawfick, S.; Hart, A. J.

    2014-07-01

    The skins of many plants and animals have intricate microscale surface features that give rise to properties such as directed water repellency and adhesion, camouflage, and resistance to fouling. However, engineered mimicry of these designs has been restrained by the limited capabilities of top-down fabrication processes. Here we demonstrate a new technique for scalable manufacturing of freeform microstructures via strain-engineered growth of aligned carbon nanotubes (CNTs). Offset patterning of the CNT growth catalyst is used to locally modulate the CNT growth rate. This causes the CNTs to collectively bend during growth, with exceptional uniformity over large areas. The final shape of the curved CNT microstructures can be designed via finite element modeling, and compound catalyst shapes produce microstructures with multidirectional curvature and unusual self-organized patterns. Conformal coating of the CNTs enables tuning of the mechanical properties independently from the microstructure geometry, representing a versatile principle for design and manufacturing of complex microstructured surfaces.

  7. Carbon nanotubes on carbon fibers: Synthesis, structures and properties

    Science.gov (United States)

    Zhang, Qiuhong

    The interface between carbon fibers (CFs) and the resin matrix in traditional high performance composites is characterized by a large discontinuity in mechanical, electrical, and thermal properties which can cause inefficient energy transfer. Due to the exceptional properties of carbon nanotubes (CNTs), their growth at the surface of carbon fibers is a promising approach to controlling interfacial interactions and achieving the enhanced bulk properties. However, the reactive conditions used to grow carbon nanotubes also have the potential to introduce defects that can degrade the mechanical properties of the carbon fiber (CF) substrate. In this study, using thermal chemical vapor deposition (CVD) method, high density multi-wall carbon nanotubes have been successfully synthesized directly on PAN-based CF surface without significantly compromising tensile properties. The influence of CVD growth conditions on the single CF tensile properties and carbon nanotube (CNT) morphology was investigated. The experimental results revealed that under high temperature growth conditions, the tensile strength of CF was greatly decreased at the beginning of CNT growth process with the largest decrease observed for sized CFs. However, the tensile strength of unsized CFs with CNT was approximately the same as the initial CF at lower growth temperature. The interfacial shear strength of CNT coated CF (CNT/CF) in epoxy was studied by means of the single-fiber fragmentation test. Results of the test indicate an improvement in interfacial shear strength with the addition of a CNT coating. This improvement can most likely be attributed to an increase in the interphase yield strength as well as an improvement in interfacial adhesion due to the presence of the nanotubes. CNT/CF also offers promise as stress and strain sensors in CF reinforced composite materials. This study investigates fundamental mechanical and electrical properties of CNT/CF using nanoindentation method by designed

  8. Modified carbon nanotubes and methods of forming carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Heintz, Amy M.; Risser, Steven; Elhard, Joel D.; Moore, Bryon P.; Liu, Tao; Vijayendran, Bhima R.

    2016-06-14

    In this invention, processes which can be used to achieve stable doped carbon nanotubes are disclosed. Preferred CNT structures and morphologies for achieving maximum doping effects are also described. Dopant formulations and methods for achieving doping of a broad distribution of tube types are also described.

  9. Carbon Nanotube Coating on Titanium Substrate Modified with TiO2 Nanotubes

    Institute of Scientific and Technical Information of China (English)

    BAI Yu; PARK Ilsong; BAE Taesung; KLM Kyounga; WATARI Fumio; UO Motohiro; LEE Minho

    2011-01-01

    A combination of carbon nanotubes (CNTs) and titanium (Ti) modified with TiO2 nanotubes (TiO2 NTs) was fulfilled with the aim of improving bioactivity of Ti implant.First,well-ordered TiO2 NTs were prepared by the electrochemical anodization of Ti in an ethylene glycol electrolyte containing 1 wt% NH4F and 10 wt% H2O at 20 V for 50 min,followed by annealing.Then,the carboxylated CNTs were coated onto the TiO2NTs using electrophoretic deposition (EPD) technique.The growth of hydroxyapatite (HA) on the samples was investigated by soaking them in simulated body fiuid (SBF).The result showed the CNTs-coated Ti with the modification of TiO2 NTs (CNTs-TiO2 NTs) was more efficient to induce HA formation than the CNTs-coated smooth Ti (CNTs-Ti).The vitro cell response was evaluated using osteoblast cells (MC3T3-El).The good cell proliferation and strong cell adhesion could be obtained on the CNTs-TiO2 NTs.These results indicated that CNT coating on the Ti modified with TiO2 NTs could be potentially useful for the periodontal ligament combination on dental implants.

  10. Fantastic improvement in quality and quantity of carbon nanotubes synthesized on Al2O3-SiO2 supports by N2 pretreatment.

    Science.gov (United States)

    Ghanbari, H; Aghababazadeh, R; Mirhabibi, A; Brydson, R M

    2011-10-01

    The raw materials, condition and the method of preparing the catalysts play an important role in the growth of high quality Carbon Nanotubes by Catalytic Chemical Vapor Deposition method. In this work, the efficiency of Carbon Nanotubes growth was increased by a simple controlled preheating of the catalyst in N2 atmosphere. Supports were prepared by mixing alumina powder with tetraethyl orthosilicate (TEOS) by a chemical method at low temperature. Afterwards, the supports were impregnated with iron. The dried and ground catalyst was heated in N2 atmosphere at 500 degrees C for 1 hour followed by cooling down to room temperature. Methane was passed over the prepared catalyst bed at 900 degrees C. Supports, supported catalysts and Carbon Nanotubes samples have been characterized by Transmission Electron Microscopy, Scanning Electron Microscopy, Gas Adsorption/Desorption Analysis, X-Ray Diffraction and Raman Spectroscopy. Scanning Electron Microscopy images of the nanotubes showed a drastic increase in the growth rate, length and straightness of the Nanotubes in comparison to the growth without preheating and even preheating in air atmosphere. Raman Spectroscopy of the samples and Transmission Electron Microscopy pictures showed bundles, mostly equi-diameter Single Wall Nanotubes. In fact, the growth rate, length, and purity of the Nanotubes, also the homogeneity of the tubes improved. The conclusion can be made with the help of proposed theory of nucleation and growth of Nanotubes based on comparative results of the characterizations with and without preheat-treatment. It seems that the preheat-treatment in N2 affected the catalyst structure and its interaction with support as well as distribution of the catalyst particles on the support. These changes in return affect the quality and quantity of final production. PMID:22400268

  11. Emerging Carbon Nanotube Electronic Circuits, Modeling, and Performance

    OpenAIRE

    Ashok Srivastava; Yao Xu; Sharma, Ashwani K.

    2010-01-01

    Current transport and dynamic models of carbon nanotube field-effect transistors are presented. A model of single-walled carbon nanotube as interconnect is also presented and extended in modeling of single-walled carbon nanotube bundles. These models are applied in studying the performances of circuits such as the complementary carbon nanotube inverter pair and carbon nanotube as interconnect. Cadence/Spectre simulations show that carbon nanotube field-effect transistor circuits can operate a...

  12. Carbon nanotube atomic force microscopy probes

    Science.gov (United States)

    Yamanaka, Shigenobu; Okawa, Takashi; Akita, Seiji; Nakayama, Yoshikazu

    2005-05-01

    We have developed a carbon nanotube atomic force microscope probe. Because the carbon nanotube are well known to have high aspect ratios, small tip radii and high stiffness, carbon nanotube probes have a long lifetime and can be applied for the observation deep trenches. Carbon nanotubes were synthesized by a well-controlled DC arc discharge method, because this method can make nanotubes to have straight shape and high crystalline. The nanotubes were aligned on the knife-edge using an alternating current electrophoresis technique. A commercially available Si probe was used for the base of the nanotube probe. The nanotube probe was fabricated by the SEM manipulation method. The nanotube was then attached tightly to the Si probe by deposition of amorphous carbon. We demonstrate the measurement of a fine pith grating that has vertical walls. However, a carbon nanotube has a problem that is called "Sticking". The sticking is a chatter image on vertical like region in a sample. We solved this problem by applying 2 methods, 1. a large cantilever vibration amplitude in tapping mode, 2. an attractive mode measurement. We demonstrate the non-sticking images by these methods.

  13. OPPORTUNITIES OF BIOMEDICAL USE OF CARBON NANOTUBES

    Directory of Open Access Journals (Sweden)

    I. V. Mitrofanova

    2015-12-01

    Full Text Available Nanomaterials  –  materials,  whouse  structure  elements  has  proportions  doesn’t  exceed  100  nm.  In superdispersed state matter acquire new properties. In the last decade, carbon nanotubes become the most popular nanomaterials, that cause attention of representatives of various scientific field. The сarbon nanotubes offer new opportunities for biological and medical applications: imaging at the molecular, cellular and tissue levels, biosensors and electrodes based on carbon nanotubes, target delivery of various substances, radiation and photothermal therapy. The most promising of carbon nanotubes in the context of biomedical applications is their ability to penetrate the various tissues of the body and carry large doses of agents, providing diagnostic and therapeutic effects. Functionalized nanotubes are biodegradable. Other current direction of using carbon nanotubes in medicine and biology is to visualize objects on the molecular, cellular and tissue level. Associated with carbon nanotubes contrasting substances improve the visualization of cells and tissues, which can detected new patterns of development of the pathological process. Due to the vagueness of the question of biocompatibility and cytotoxicity of carbon nanotubes possibility of their practical application is hampered. Before the introduction of carbon nanotubes into practical health care is necessary to provide all the possible consequences of using nanotubes. High rates of properties and development of new nanostructures based on carbon nanotubes in the near future will lead to new advances related to the application and development of new parameters that will determine their properties and effects. In these review attention is paid to the structure, physico-chemical properties of nanotubes, their functionalization, pharmacokinetics and pharmacodynamics and all aspects of using of carbon nanotubes.

  14. A Spray Pyrolysis Method to Grow Carbon Nanotubes on Carbon Fibres, Steel and Ceramic Bricks.

    Science.gov (United States)

    Vilatela, Juan J; Rabanal, M E; Cervantes-Sodi, Felipe; García-Ruiz, Máximo; Jiménez-Rodríguez, José A; Reiband, Gerd; Terrones, Mauricio

    2015-04-01

    We demonstrate a spray pyrolysis method to grow carbon nanotubes (CNTs) with high degree of crystallinity, aspect ratio and degree of alignment on a variety of different substrates, such as conventional steel, carbon fibres (CF) and ceramics. The process consists in the chemical vapour deposition of both a thin SiO2 layer and CNTs that subsequently grow on this thin layer. After CNT growth, increases in specific surface by factors of 1000 and 30 for the steel and CF samples, respectively, are observed. CNTs growth on ceramic surfaces results in a surface resistance of 37.5 Ohm/sq. When using conventional steel as a rector tube, we observed CNTs growth rates of 0.6 g/min. Details of nanotube morphology and the growth mechanism are discussed. Since the method discussed here is highly versatile, it opens up a wide variety of applications in which specific substrates could be used in combination with CNTs. PMID:26353505

  15. Large-scale fabrication of boron nitride nanotubes with high purity via solid-state reaction method

    Science.gov (United States)

    2014-01-01

    An effective solid-state reaction method is reported for synthesizing boron nitride nanotubes (BNNTs) in large scale and with high purity by annealing amorphous boron powder and ferric chloride (FeCl3) catalyst in ammonia atmosphere at elevated temperatures. FeCl3 that has rarely been utilized before is introduced not only as a catalyst but also as an efficient transforming agent which converts boron powder into boron chloride (BCl3) vapor in situ. The nanotubes are bamboo in shape and have an average diameter of about 90 nm. The effect of synthetic temperatures on nanotube morphology and yield is investigated. The photoluminescence (PL) measurement shows emission bands of the nanotubes at 354, 423, 467, and 666 nm. A combined growth mechanism of vapor–liquid-solid (VLS) and solid–liquid-solid (SLS) model is proposed for the formation of the BNNTs. PMID:25313303

  16. Structure study of single crystal BaTiO3 nanotube arrays produced by the hydrothermal method

    International Nuclear Information System (INIS)

    High aspect ratio BaTiO3 nanotube arrays with single crystal structure were fabricated by the hydrothermal method at low temperature (150 deg. C). Numerous structure study methods, including x-ray diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), electron paramagnetic resonance (EPR), and x-ray photoelectron spectroscopy (XPS), were used to investigate the structure of single crystal BaTiO3 nanotube arrays. TEM observation shows that BaTiO3 nanotubes have identical crystallographic orientation through their growth directions. EPR and XPS studies show that the obtained BaTiO3 nanotubes contain perceptible oxygen vacancies. Those oxygen vacancies are responsible for the observed green emission band at 545 nm (2.27 eV) detected by photoluminescence study.

  17. Quantum transport in carbon nanotubes

    NARCIS (Netherlands)

    Laird, E.A.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P.

    2015-01-01

    Carbon nanotubes are a versatile material in which many aspects of condensed matter physics come together. Recent discoveries have uncovered new phenomena that completely change our understanding of transport in these devices, especially the role of the spin and valley degrees of freedom. This revie

  18. High frequency carbon nanotube devices

    Science.gov (United States)

    Goffman, M. F.; Chimot, N.; Mile, E.; Monteverde, M. C.; Bourgoin, J.-P.; Derycke, V.

    2008-08-01

    We investigate high frequency electrical and mechanical performances of carbon nanotube based devices. Using configurations with multiple single-wall nanotubes in parallel, we show that HF nanotube transistors with intrinsic cut-off frequencies as high as 30 GHz can be obtained on rigid substrates. Adapting our process to plastic substrates, we also obtained highly flexible HF transistors showing constant transconductances up to at least 6 GHz, as-measured cut-off frequencies as high as 1 GHz (5-8 GHz after de-embedding) and stable DC performances upon bending. We probed electromechanical properties of individual suspended carbon multiwall nanotubes by using a modified AFM. DC deflection measurements on different devices are in agreement with a continuum model prediction and consistent with a Young's modulus of 0.4 TPa. Preliminary HF measurements on a doubly clamped device showed a resonant frequency of 200MHz consistent with a Young's modulus of 0.43 TPa. This implies that built-in mechanical stress in the case of MWNTs is negligeable.

  19. Carbon nanotube-chalcogenide composite

    Czech Academy of Sciences Publication Activity Database

    Stehlík, Š.; Orava, J.; Kohoutek, T.; Wágner, T.; Frumar, M.; Zima, Vítězslav; Hara, T.; Matsui, Y.; Ueda, K.; Pumera, M.

    2010-01-01

    Roč. 183, č. 1 (2010), s. 144-149. ISSN 0022-4596 R&D Projects: GA ČR GA203/08/0208 Institutional research plan: CEZ:AV0Z40500505 Keywords : carbon nanotubes * chalcogenide glasses * composites Subject RIV: CA - Inorganic Chemistry Impact factor: 2.261, year: 2010

  20. CARBON NANOTUBES AND PHARMACEUTICAL APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ram Pavani

    2011-07-01

    Full Text Available Carbon nanotubes (CNTs are often described as a graphene sheet rolled up into the shape of a cylinder. These have fascinated scientists with their extraordinary properties. These compounds have become increasingly popular in various fields simply because of their small size and amazing optical, electric and magnetic properties when used alone or with additions of metals. Carbon nanotubes have potential therapeutic applications in the field of drug delivery, diagnostics, and biosensing. Functionalized carbon nanotubes can also act as vaccine delivery systems.Carbon nanotubes (CNTs are considered to be one of the innovative resources in nanotechnology with possible use in wide range of biomedical applications viz. cancer treatment, bioengineering, cardiac autonomic regulation, platelet activation and tissue regeneration. The effect of CNTs on cells and tissues are extremely important for their use in various complex biological systems. With the increasing interest shown by the nanotechnology research community in this field, it is expected that plenty of applications of CNTs will be explored in future.