WorldWideScience

Sample records for chiral-odd transversity gpds

  1. Leading Twist GPDs and Transverse Spin Densities in a Proton

    Science.gov (United States)

    Mondal, Chandan; Maji, Tanmay; Chakrabarti, Dipankar; Zhao, Xingbo

    2018-05-01

    We present a study of both chirally even and odd generalized parton distributions in the leading twist for the quarks in a proton using the light-front wavefunctions of a quark-diquark model predicted by the holographic QCD. For transversely polarized proton, both chiral even and chiral odd GPDs contribute to the spin densities which are related to the GPDs in transverse impact parameter space. Here, we also present a study of the spin densities for transversely polarized quark and proton.

  2. On chiral-odd Generalized Parton Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); UPMC Univ. Paris 6, Paris (France); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland)

    2010-07-01

    The chiral-odd transversity generalized parton distributions of the nucleon can be accessed experimentally through the exclusive photoproduction process {gamma} + N {yields} {pi} + {rho} + N', in the kinematics where the meson pair has a large invariant mass and the final nucleon has a small transverse momentum, provided the vector meson is produced in a transversally polarized state. Estimated counting rates show that the experiment is feasible with real or quasi real photon beams expected at JLab at 12 GeV and in the COMPASS experiment. (Phys Letters B688,154,2010) In addition, a consistent classification of the chiral-odd pion GPDs beyond the leading twist 2 is presented. Based on QCD equations of motion and on the invariance under rotation on the light-cone of any scattering amplitude involving such GPDs, we reduce the basis of these chiral-odd GPDs to a minimal set. (author)

  3. Pseudoscalar Meson Electroproduction and Transversity

    International Nuclear Information System (INIS)

    Goldstein, G.; Liuti, S.

    2011-01-01

    Exclusive meson leptoproduction from nucleons in the deeply virtual exchanged boson limit can be described by generalized parton distributions (GPDs). Including spin dependence in the description requires 8 independent quark-parton and gluon-parton functions. The chiral even subset of 4 quark-nucleon GPDs are related to nucleon form factors and to parton distribution functions. The chiral odd set of 4 quark-nucleon GPDs are related to transversity, the tensor charge, and other quantities related to transversity. Different meson or photon production processes access different combinations of GPDs. This is analyzed in terms of t-channel exchange quantum numbers, J PC and it is shown that pseudoscalar production can isolate chiral odd GPDs. There is a sensitive dependence in various cross sections and asymmetries on the tensor charge of the nucleon and other transversity parameters. In a second section, analyticity and completeness are shown to limit the partonic interpret ation of the GPDs in the ERBL region.

  4. Revealing transversity GPDs through the photoproduction of a photon and a ρ meson

    Directory of Open Access Journals (Sweden)

    Boussarie R.

    2016-01-01

    Full Text Available Photoproduction of a pair of particles with large invariant mass is a natural extension of collinear QCD factorization theorems which have been much studied for deeply virtual Compton scattering and deeply virtual meson production. We discuss the production of a photon and a meson, where the wide angle Compton scattering on a meson subprocess factorizes from generalized parton distribution. We calculate at dominant twist and leading order in αs, the production cross-section of a transversely polarized ρ meson which is sensitive to chiral-odd GPDs, and show that it may be measurable in near future JLab experiments.

  5. New ways to access the transverse spin content of the nucleon

    International Nuclear Information System (INIS)

    Beiyad, M El; Pire, B; Szymanowski, L; Wallon, S

    2011-01-01

    We first describe a new way to access the chiral odd transversity parton distribution in the proton through the photoproduction of lepton pairs. The basic ingredient is the interference of the usual Bethe-Heitler or Drell-Yan amplitudes with the amplitude of a process, where the photon couples to quarks through its chiral-odd distribution amplitude, which is normalized to the magnetic susceptibility of the QCD vacuum. We also show how the chiral-odd transversity generalized parton distributions (GPDs) of the nucleon can be accessed experimentally through the exclusive electro - or photoproduction process of a meson pair with a large invariant mass and when the final nucleon has a small transverse momentum. We calculate perturbatively the scattering amplitude at leading order, both in the high energy domain which may be accessed in electron-ion colliders and in the medium energy range. Estimated rates are encouraging.

  6. Exclusive η electroproduction at W >2 GeV with CLAS and transversity generalized parton distributions

    Science.gov (United States)

    Bedlinskiy, I.; Kubarovsky, V.; Stoler, P.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Avakian, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Batourine, V.; Biselli, A. S.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Ciullo, G.; Clark, L.; Colaneri, L.; Cole, P. L.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Garçon, M.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gleason, C.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Hughes, S. M.; Hyde, C. E.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joo, K.; Joosten, S.; Keller, D.; Khachatryan, G.; Khachatryan, M.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; MacGregor, I. J. D.; Markov, N.; McKinnon, B.; Meziani, Z. E.; Mirazita, M.; Mokeev, V.; Montgomery, R. A.; Movsisyan, A.; Munoz Camacho, C.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Niccolai, S.; Niculescu, G.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Paremuzyan, R.; Park, K.; Pasyuk, E.; Peng, P.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Schumacher, R. A.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Strauch, S.; Taiuti, M.; Tian, Ye; Torayev, B.; Turisini, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Wood, M. H.; Yurov, M.; Zachariou, N.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2017-03-01

    The cross section of the exclusive η electroproduction reaction e p →e'p'η was measured at Jefferson Laboratory with a 5.75 GeV electron beam and the CLAS detector. Differential cross sections d4σ /d t d Q2d xBd ϕη and structure functions σU=σT+ɛ σL,σT T , and σL T, as functions of t , were obtained over a wide range of Q2 and xB. The η structure functions are compared with those previously measured for π0 at the same kinematics. At low t , both π0 and η are described reasonably well by generalized parton distributions (GPDs) in which chiral-odd transversity GPDs are dominant. The π0 and η data, when taken together, can facilitate the flavor decomposition of the transversity GPDs.

  7. GPDs at an electron ion collider

    International Nuclear Information System (INIS)

    Fazio, Salvatore

    2013-01-01

    The feasibility for a precise determination of Generalized Parton Distribution (GPDs) functions at an Electron Ion Collider (EIC) has been explored. The high luminosity of the machine, together with the large resolution and rapidity acceptance of the new dedicated detector, will open opportunity for high precision measurements of GPDs. We report on the study of GPDs from deeply virtual Compton scattering (DVCS). We also point out that such measurements at a proposed EIC provide insight to both, the transverse distribution of sea quarks and gluons as well as the proton spin decomposition.

  8. GPDs at an electron ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Fazio, Salvatore [Brookhaven National Laboratory, 11973 Upton NY (United States)

    2013-04-15

    The feasibility for a precise determination of Generalized Parton Distribution (GPDs) functions at an Electron Ion Collider (EIC) has been explored. The high luminosity of the machine, together with the large resolution and rapidity acceptance of the new dedicated detector, will open opportunity for high precision measurements of GPDs. We report on the study of GPDs from deeply virtual Compton scattering (DVCS). We also point out that such measurements at a proposed EIC provide insight to both, the transverse distribution of sea quarks and gluons as well as the proton spin decomposition.

  9. Hard exclusive meson production to constrain GPDs

    Energy Technology Data Exchange (ETDEWEB)

    Wolbeek, Johannes ter; Fischer, Horst; Gorzellik, Matthias; Gross, Arne; Joerg, Philipp; Koenigsmann, Kay; Malm, Pasquale; Regali, Christopher; Schmidt, Katharina; Sirtl, Stefan; Szameitat, Tobias [Physikalisches Institut, Albert-Ludwigs-Universitaet Freiburg, Freiburg im Breisgau (Germany); Collaboration: COMPASS Collaboration

    2014-07-01

    The concept of Generalized Parton Distributions (GPDs) combines the two-dimensional spatial information, given by form factors, with the longitudinal momentum information from the PDFs. Thus, GPDs provide a three-dimensional 'tomography' of the nucleon. Furthermore, according to Ji's sum rule, the GPDs H and E enable access to the total angular momenta of quarks, antiquarks and gluons. While H can be approached using electroproduction cross section, hard exclusive meson production off a transversely polarized target can help to constrain the GPD E. At the COMPASS experiment at CERN, two periods of data taking were performed in 2007 and 2010, using a longitudinally polarized 160 GeV/c muon beam and a transversely polarized NH{sub 3} target. This talk introduces the data analysis of the process μ + p → μ' + p' + V, and recent results are presented.

  10. Chiral dynamics and partonic structure at large transverse distances

    Energy Technology Data Exchange (ETDEWEB)

    Strikman, M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Theory Center

    2009-12-30

    In this paper, we study large-distance contributions to the nucleon’s parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x≲Mπ/MN and transverse distances b~1/Mπ. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse “core” radius estimated from the nucleon’s axial form factor, Rcore=0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the “pion cloud” model of the nucleon’s sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry d¯-u¯ at x~0.1; (b) the strange sea quarks s and s¯ are significantly more localized than the light antiquark sea; (c) the nucleon’s singlet quark size for x<0.1 is larger than its gluonic size, (b2)q+q¯>(b2)g, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/ψ production measured at HERA and FNAL. We show that our approach reproduces the general Nc-scaling of parton densities in QCD, thanks to the degeneracy of N and Δ intermediate states in the large-Nc limit. Finally, we also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.

  11. Introduction to GPDs and TMDs

    International Nuclear Information System (INIS)

    Diehl, Markus

    2015-12-01

    Generalised parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs) describe complementary aspects of the three-dimensional structure of hadrons. We discuss their relation to each other and recall important theory results concerning their properties and their connection with physical observables.

  12. Exclusive $\\omega$ meson muoproduction on transversely polarised protons

    CERN Document Server

    Adolph, C.; Aghasyan, M.; Akhunzyanov, R.; Alexeev, M.G.; Alexeev, G.D.; Amoroso, A.; Andrieux, V.; Anfimov, N.V.; Anosov, V.; Augustyniak, W.; Austregesilo, A.; Azevedo, C.D.R.; Badelek, B.; Balestra, F.; Barth, J.; Beck, R.; Bedfer, Y.; Bernhard, J.; Bicker, K.; Bielert, E.R.; Birsa, R.; Bisplinghoff, J.; Bodlak, M.; Boer, M.; Bordalo, P.; Bradamante, F.; Braun, C.; Bressan, A.; Buechele, M.; Chang, W. -C.; Chatterjee, C.; Chiosso, M.; Choi, I.; Chung, S. -U.; Cicuttin, A.; Crespo, M.L.; Curiel, Q.; Dalla Torre, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O. Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Duennweber, W.; Dziewiecki, M.; Efremov, A.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Finger, M.; Fischer, H.; Franco, C.; von Hohenesche, N. du Fresne; Friedrich, J.M.; Frolov, V.; Fuchey, E.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Giordano, F.; Gnesi, I.; Gorzellik, M.; Grabmueller, S.; Grasso, A.; Grosse Perdekamp, M.; Grube, B.; Grussenmeyer, T.; Guskov, A.; Haas, F.; Hahne, D.; von Harrach, D.; Hashimoto, R.; Heinsius, F.H.; Heitz, R.; Herrmann, F.; Hinterberger, F.; Horikawa, N.; dHose, N.; Hsieh, C. -Y.; Huber, S.; Ishimoto, S.; Ivanov, A.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Joosten, R.; Joerg, P.; Kabuss, E.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu. A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Koenigsmann, K.; Konorov, I.; Konstantinov, V.F.; Kotzinian, A.M.; Kouznetsov, O.M.; Kraemer, M.; Kremser, P.; Krinner, F.; Kroumchtein, Z.V.; Kulinich, Y.; Kunne, F.; Kurek, K.; Kurjata, R.P.; Lednev, A.A.; Lehmann, A.; Levillain, M.; Levorato, S.; Lian, Y. -S.; Lichtenstadt, J.; Longo, R.; Maggiora, A.; Magnon, A.; Makins, N.; Makke, N.; Mallot, G.K.; Marchand, C.; Marianski, B.; Martin, A.; Marzec, J.; Matousek, J.; Matsuda, H.; Matsuda, T.; Meshcheryakov, G.V.; Meyer, M.; Meyer, W.; Michigami, T.; Mikhailov, Yu. V.; Mikhasenko, M.; Mitrofanov, E.; Mitrofanov, N.; Miyachi, Y.; Montuenga, P.; Nagaytsev, A.; Nerling, F.; Neyret, D.; Nikolaenko, V.I.; Novy, J.; Nowak, W.D.; Nukazuka, G.; Nunes, A.S.; Olshevsky, A.G.; Orlov, I.; Ostrick, M.; Panzieri, D.; Parsamyan, B.; Paul, S.; Peng, J. -C.; Pereira, F.; Pesek, M.; Peshekhonov, D.V.; Pierre, N.; Platchkov, S.; Pochodzalla, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Ramos, S.; Regali, C.; Reicherz, G.; Riedl, C.; Roskot, M.; Ryabchikov, D.I.; Rybnikov, A.; Rychter, A.; Salac, R.; Samoylenko, V.D.; Sandacz, A.; Santos, C.; Sarkar, S.; Savin, I.A.; Sawada, T.; Sbrizzai, G.; Schiavon, P.; Schmidt, K.; Schmieden, H.; Schoenning, K.; Schopferer, S.; Seder, E.; Selyunin, A.; Shevchenko, O. Yu.; Silva, L.; Sinha, L.; Sirtl, S.; Slunecka, M.; Smolik, J.; Sozzi, F.; Srnka, A.; Steffen, D.; Stolarski, M.; Sulc, M.; Suzuki, H.; Szabelski, A.; Szameitat, T.; Sznajder, P.; Takekawa, S.; Tasevsky, M.; Tessaro, S.; Tessarotto, F.; Thibaud, F.; Tosello, F.; Tskhay, V.; Uhl, S.; Veloso, J.; Virius, M.; Vondra, J.; Wallner, S.; Weisrock, T.; Wilfert, M.; ter Wolbeek, J.; Zaremba, K.; Zavada, P.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zink, A.

    2017-01-01

    Exclusive production of $\\omega$ mesons was studied at the COMPASS experiment by scattering $160~\\mathrm{GeV}/\\mathit{c}$ muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured in the range of photon virtuality $1~(\\mathrm{GeV}/\\mathit{c})^2 < Q^2 < 10~(\\mathrm{GeV}/\\mathit{c})^2$, Bjorken scaling variable $0.003 < x_{\\mathit{Bj}} < 0.3$ and transverse momentum squared of the $\\omega$ meson $0.05~(\\mathrm{GeV}/\\mathit{c})^2 < p_{T}^{2} < 0.5~(\\mathrm{GeV}/\\mathit{c})^2$. The measured asymmetries are sensitive to the nucleon helicity-flip Generalised Parton Distributions (GPD) $E$ that are related to the orbital angular momentum of quarks, the chiral-odd GPDs $H_{T}$ that are related to the transversity Parton Distribution Functions, and the sign of the $\\pi\\omega$ transition form factor. The results are compared to recent calculations of a GPD-based model.

  13. Exclusive ω meson muoproduction on transversely polarised protons

    Directory of Open Access Journals (Sweden)

    C. Adolph

    2017-02-01

    Full Text Available Exclusive production of ω mesons was studied at the COMPASS experiment by scattering 160 GeV/c muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured in the range of photon virtuality 1 (GeV/c2transverse momentum squared of the ω meson 0.05 (GeV/c2chiral-odd GPDs HT that are related to the transversity Parton Distribution Functions, and the sign of the πω transition form factor. The results are compared to recent calculations of a GPD-based model.

  14. Results and perspective on TMDs and GPDs at COMPASS

    International Nuclear Information System (INIS)

    Hose, Nicole d'

    2014-01-01

    COMPASS is a fixed target experiment at the CERN SPS dedicated to the study of the nucleon structure in the framework of the most complete descriptions based on transverse momentum dependent parton distribution functions (TMDs) and generalised parton distributions (GPDs). TMDs have been accessed so far with semi-inclusive deep inelastic reactions using a 160 GeV muon beam off transversely polarized targets and they will be further investigated with Drell-Yan reactions using a 190 GeV pion beam off a transversely polarized proton target. GPDs will be studied with deeply virtual Compton scattering and hard exclusive meson production using muon beams. A selection of the results as well as the projections for the future program are discussed. (authors)

  15. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  16. Photoproduction of a πρT pair with a large invariant mass and transversity generalized parton distribution

    International Nuclear Information System (INIS)

    El Beiyad, M.; Pire, B.; Segond, M.; Szymanowski, L.; Wallon, S.

    2010-01-01

    The chiral-odd transversity generalized parton distributions (GPDs) of the nucleon can be accessed experimentally through the exclusive photoproduction process γ+N→π+ρ+N ' , in the kinematics where the meson pair has a large invariant mass and the final nucleon has a small transverse momentum, provided the vector meson is produced in a transversally polarized state. We calculate perturbatively the scattering amplitude at leading order in α s . We build a simple model for the dominant transversity GPD H T (x,ξ,t) based on the concept of double distribution. We estimate the unpolarized differential cross section for this process in the kinematics of the Jlab and Compass experiments. Counting rates show that the experiment looks feasible with the real photon beam characteristics expected at JLab-12 GeV, and with the quasi real photon beam in the Compass experiment.

  17. Single and Double Spin Asymmetries for Deeply Virtual Exclusive π0 Production on Longitudinally Polarized Proton Target with CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Andrew [Kyungpook National Univ., Daegu (Korea, Republic of)

    2013-12-01

    Deeply virtual exclusive processes probe the internal structure of nucleons through measurements of structure functions and their ratios, which are sensitive to the chiral-even generalized parton distributions (GPDs) and the chiral-odd transversity GPDs. The GPDs encode correlations of parton distributions in longitudinal momentum space and transverse impact parameter space and are accessible through the measurements of the xB and t dependence of meson production. The wide kinematic coverage of CLAS detector allowed measurements of exclusive π0 electroproduction in full azimuthal range. The target and double spin asymmetries for the deeply virtual exclusive π0 electroproduction were measured for the first time in the DIS region. The experiment was carried out at Hall B, Jefferson Lab using the longitudinally polarized electron beam with energy of up to 6 GeV and a dynamically polarized NH3 target with spins of free protons aligned along the beam axis. All four final-state particles from exclusive channel, electron, proton and two photons from π0 decay, were identified. The asymmetries were fitted according to their angular modulations in the hadronic center-of-mass system, and their moments were extracted. The data comparison with two handbag-based calculations involving the contribution from both chiral-even and chiral-odd GPDs was performed in wide kinematic range. The applicability of a formalism based on generalized parton distributions within the framework of modified perturbative approach is discussed.

  18. Target and double spin asymmetries of deeply virtual π 0 production with a longitudinally polarized proton target and CLAS

    Energy Technology Data Exchange (ETDEWEB)

    Kim, A.; Avakian, H.; Burkert, V.; Joo, K.; Kim, W.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Badui, R. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D' Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garc con, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; McCracken, M. E.; McKinnon, B.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.

    2017-05-01

    The target and double spin asymmetries of the exclusive pseudoscalar channel e→p→→epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, -t and Φ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and E¯T. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  19. Photoproduction of a pirho{sub T} pair with a large invariant mass and transversity generalized parton distribution

    Energy Technology Data Exchange (ETDEWEB)

    El Beiyad, M. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); LPT, Universite d' Orsay, CNRS, 91404 Orsay (France); Pire, B. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Segond, M. [Institut fuer Theoretische Physik, Universitaet Leipzig, D-04009 Leipzig (Germany); Szymanowski, L. [Centre de Physique Theorique, Ecole Polytechnique, CNRS, 91128 Palaiseau (France); Soltan Institute for Nuclear Studies, Warsaw (Poland); Wallon, S., E-mail: Samuel.Wallon@th.u-psud.f [LPT, Universite d' Orsay, CNRS, 91404 Orsay (France); UPMC, Univ. Paris 06, Faculte de physique, 4 place Jussieu, 75252 Paris Cedex 05 (France)

    2010-05-03

    The chiral-odd transversity generalized parton distributions (GPDs) of the nucleon can be accessed experimentally through the exclusive photoproduction process gamma+N->pi+rho+N{sup '}, in the kinematics where the meson pair has a large invariant mass and the final nucleon has a small transverse momentum, provided the vector meson is produced in a transversally polarized state. We calculate perturbatively the scattering amplitude at leading order in alpha{sub s}. We build a simple model for the dominant transversity GPD H{sub T}(x,xi,t) based on the concept of double distribution. We estimate the unpolarized differential cross section for this process in the kinematics of the Jlab and Compass experiments. Counting rates show that the experiment looks feasible with the real photon beam characteristics expected at JLab-12 GeV, and with the quasi real photon beam in the Compass experiment.

  20. Target and double spin asymmetries of deeply virtual π0 production with a longitudinally polarized proton target and CLAS

    Directory of Open Access Journals (Sweden)

    A. Kim

    2017-05-01

    Full Text Available The target and double spin asymmetries of the exclusive pseudoscalar channel e→p→→epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS. The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, −t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and E¯T. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  1. Target and double spin asymmetries of deeply virtual π0 production with a longitudinally polarized proton target and CLAS

    Science.gov (United States)

    Kim, A.; Avakian, H.; Burkert, V.; Joo, K.; Kim, W.; Adhikari, K. P.; Akbar, Z.; Anefalos Pereira, S.; Badui, R. A.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A. S.; Boiarinov, S.; Bosted, P.; Briscoe, W. J.; Brooks, W. K.; Bültmann, S.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Djalali, C.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fedotov, G.; Fersch, R.; Filippi, A.; Fleming, J. A.; Fradi, A.; Garc con, M.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hanretty, C.; Hattawy, M.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Jenkins, D.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Klein, A.; Klein, F. J.; Kubarovsky, V.; Kuhn, S. E.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P.; McCracken, M. E.; McKinnon, B.; Mokeev, V.; Movsisyan, A.; Munevar, E.; Nadel-Turonski, P.; Net, L. A.; Niccolai, S.; Osipenko, M.; Ostrovidov, A. I.; Paolone, M.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Salgado, C.; Schumacher, R. A.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Stoler, P.; Strakovsky, I. I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Torayev, B.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Watts, D. P.; Wei, X.; Weinstein, L. B.; Zachariou, N.; Zana, L.; Zhang, J.

    2017-05-01

    The target and double spin asymmetries of the exclusive pseudoscalar channel e → p → → epπ0 were measured for the first time in the deep-inelastic regime using a longitudinally polarized 5.9 GeV electron beam and a longitudinally polarized proton target at Jefferson Lab with the CEBAF Large Acceptance Spectrometer (CLAS). The data were collected over a large kinematic phase space and divided into 110 four-dimensional bins of Q2, xB, -t and ϕ. Large values of asymmetry moments clearly indicate a substantial contribution to the polarized structure functions from transverse virtual photon amplitudes. The interpretation of experimental data in terms of generalized parton distributions (GPDs) provides the first insight on the chiral-odd GPDs H˜T and ET, and complement previous measurements of unpolarized structure functions sensitive to the GPDs HT and EbarT. These data provide a crucial input for parametrizations of essentially unknown chiral-odd GPDs and will strongly influence existing theoretical calculations based on the handbag formalism.

  2. Chiral doublet bands in odd-A nuclei 103,105Rh

    International Nuclear Information System (INIS)

    Qi Bin; Wang Shouyu; Zhang Shuangquan; Meng Jie

    2010-01-01

    Spontaneous chiral symmetry breaking is a phenomenon of general interest in chemistry, biology and particle physics. Since the pioneering work of nuclear chirality in 1997 [1] , much effort has been devoted to further explore this interesting phenomenon. Following the observation of chiral doublet bands in N = 75 isotones [2] more candidates have been reported over more than 20 nuclei experimentally in A∼100, 130 and 190 mass regions including odd-odd, odd-A and even-even nuclei. However, the identification and the intrinsic mechanism of candidate chiral doublet bands are still under debate. Although various versions of particle rotor model (PRM) and titled axis cranking model (TAC) had been applied to study chiral bands, the essential starting point for understanding their properties is based on the ideal picture, i.e. one particle and one hole coupled with a γ = 30 rigid triaxial rotor. On the other hand, from the investigation of semiclassical TAC based on the mean field, it is shown that the chiral doublet bands in the real nuclei are not always consistent with the static chirality, but mixed with the character of dynamic chirality. Thus it is necessary to construct a fully quantal model for the description of chiral doublet bands in the real nuclei, which is aimed to understand the properties of chiral doublet bands in real nuclei, and to present clearly the picture and character of chiral motion [3] . Recently, we have developed the multi-particle multi-hole coupled with the triaxial rotor model, which is able to describe the nuclear rotation related to many valence nucleons. Adopting this model, chirality in odd-A nuclei 103,105 Rh with πg 9/2 -1 ⊗νh 11/2 2 configuration and in odd-A nucleus 135 Nd with πh 11/2 2 ⊗νh 11/2 1 configuration [4] are studied in a fully quantal approach. For the chiral doublet bands, the observed energies and the B(M1) and B(E2) values are reproduced very well. Root mean square values of the angular momentum components

  3. Rosenbluth Separation of the π^{0} Electroproduction Cross Section.

    Science.gov (United States)

    Defurne, M; Mazouz, M; Ahmed, Z; Albataineh, H; Allada, K; Aniol, K A; Bellini, V; Benali, M; Boeglin, W; Bertin, P; Brossard, M; Camsonne, A; Canan, M; Chandavar, S; Chen, C; Chen, J-P; de Jager, C W; de Leo, R; Desnault, C; Deur, A; El Fassi, L; Ent, R; Flay, D; Friend, M; Fuchey, E; Frullani, S; Garibaldi, F; Gaskell, D; Giusa, A; Glamazdin, O; Golge, S; Gomez, J; Hansen, O; Higinbotham, D; Holmstrom, T; Horn, T; Huang, J; Huang, M; Huber, G M; Hyde, C E; Iqbal, S; Itard, F; Kang, Ho; Kang, Hy; Kelleher, A; Keppel, C; Koirala, S; Korover, I; LeRose, J J; Lindgren, R; Long, E; Magne, M; Mammei, J; Margaziotis, D J; Markowitz, P; Martí Jiménez-Argüello, A; Meddi, F; Meekins, D; Michaels, R; Mihovilovic, M; Muangma, N; Muñoz Camacho, C; Nadel-Turonski, P; Nuruzzaman, N; Paremuzyan, R; Puckett, A; Punjabi, V; Qiang, Y; Rakhman, A; Rashad, M N H; Riordan, S; Roche, J; Russo, G; Sabatié, F; Saenboonruang, K; Saha, A; Sawatzky, B; Selvy, L; Shahinyan, A; Sirca, S; Solvignon, P; Sperduto, M L; Subedi, R; Sulkosky, V; Sutera, C; Tobias, W A; Urciuoli, G M; Wang, D; Wojtsekhowski, B; Yao, H; Ye, Z; Zana, L; Zhan, X; Zhang, J; Zhao, B; Zhao, Z; Zheng, X; Zhu, P

    2016-12-23

    We present deeply virtual π^{0} electroproduction cross-section measurements at x_{B}=0.36 and three different Q^{2} values ranging from 1.5 to 2  GeV^{2}, obtained from Jefferson Lab Hall A experiment E07-007. The Rosenbluth technique is used to separate the longitudinal and transverse responses. Results demonstrate that the cross section is dominated by its transverse component and, thus, is far from the asymptotic limit predicted by perturbative quantum chromodynamics. Nonetheless, an indication of a nonzero longitudinal contribution is provided by the measured interference term σ_{LT}. Results are compared with several models based on the leading-twist approach of generalized parton distributions (GPDs). In particular, a fair agreement is obtained with models in which the scattering amplitude includes convolution terms of chiral-odd (transversity) GPDs of the nucleon with the twist-3 pion distribution amplitude. This experiment, together with previous extensive unseparated measurements, provides strong support to the exciting idea that transversity GPDs can be accessed via neutral pion electroproduction in the high-Q^{2} regime.

  4. Rosenbluth Separation of the π0 Electroproduction Cross Section

    Science.gov (United States)

    Defurne, M.; Mazouz, M.; Ahmed, Z.; Albataineh, H.; Allada, K.; Aniol, K. A.; Bellini, V.; Benali, M.; Boeglin, W.; Bertin, P.; Brossard, M.; Camsonne, A.; Canan, M.; Chandavar, S.; Chen, C.; Chen, J.-P.; de Jager, C. W.; de Leo, R.; Desnault, C.; Deur, A.; El Fassi, L.; Ent, R.; Flay, D.; Friend, M.; Fuchey, E.; Frullani, S.; Garibaldi, F.; Gaskell, D.; Giusa, A.; Glamazdin, O.; Golge, S.; Gomez, J.; Hansen, O.; Higinbotham, D.; Holmstrom, T.; Horn, T.; Huang, J.; Huang, M.; Huber, G. M.; Hyde, C. E.; Iqbal, S.; Itard, F.; Kang, Ho.; Kang, Hy.; Kelleher, A.; Keppel, C.; Koirala, S.; Korover, I.; LeRose, J. J.; Lindgren, R.; Long, E.; Magne, M.; Mammei, J.; Margaziotis, D. J.; Markowitz, P.; Martí Jiménez-Argüello, A.; Meddi, F.; Meekins, D.; Michaels, R.; Mihovilovic, M.; Muangma, N.; Muñoz Camacho, C.; Nadel-Turonski, P.; Nuruzzaman, N.; Paremuzyan, R.; Puckett, A.; Punjabi, V.; Qiang, Y.; Rakhman, A.; Rashad, M. N. H.; Riordan, S.; Roche, J.; Russo, G.; Sabatié, F.; Saenboonruang, K.; Saha, A.; Sawatzky, B.; Selvy, L.; Shahinyan, A.; Sirca, S.; Solvignon, P.; Sperduto, M. L.; Subedi, R.; Sulkosky, V.; Sutera, C.; Tobias, W. A.; Urciuoli, G. M.; Wang, D.; Wojtsekhowski, B.; Yao, H.; Ye, Z.; Zana, L.; Zhan, X.; Zhang, J.; Zhao, B.; Zhao, Z.; Zheng, X.; Zhu, P.; Jefferson Lab Hall A Collaboration

    2016-12-01

    We present deeply virtual π0 electroproduction cross-section measurements at xB=0.36 and three different Q2 values ranging from 1.5 to 2 GeV 2 , obtained from Jefferson Lab Hall A experiment E07-007. The Rosenbluth technique is used to separate the longitudinal and transverse responses. Results demonstrate that the cross section is dominated by its transverse component and, thus, is far from the asymptotic limit predicted by perturbative quantum chromodynamics. Nonetheless, an indication of a nonzero longitudinal contribution is provided by the measured interference term σL T. Results are compared with several models based on the leading-twist approach of generalized parton distributions (GPDs). In particular, a fair agreement is obtained with models in which the scattering amplitude includes convolution terms of chiral-odd (transversity) GPDs of the nucleon with the twist-3 pion distribution amplitude. This experiment, together with previous extensive unseparated measurements, provides strong support to the exciting idea that transversity GPDs can be accessed via neutral pion electroproduction in the high-Q2 regime.

  5. Ratchet Transport of Chiral Particles Caused by the Transversal Asymmetry: Current Reversals and Particle Separation

    Science.gov (United States)

    Liu, Jian-li; Lu, Shi-cai; Ai, Bao-quan

    2018-06-01

    Due to the chirality of active particles, the transversal asymmetry can induce the the longitudinal directed transport. The transport of chiral active particles in a periodic channel is investigated in the presence of two types of the transversal asymmetry, the transverse force and the transverse rigid half-circle obstacles. For all cases, the counterclockwise and clockwise particles move to the opposite directions. For the case of the only transverse force, the chiral active particles can reverse their directions when increasing the transverse force. When the transverse rigid half-circle obstacles are introduced, the transport behavior of particles becomes more complex and multiple current reversals occur. The direction of the transport is determined by the competition between two types of the transversal asymmetry. For a given chirality, by suitably tailoring parameters, particles with different self-propulsion speed can move in different directions and can be separated.

  6. Review of COMPASS results on transverse-spin effects in SIDIS

    CERN Document Server

    Makke, Nour

    2014-01-01

    The transversity parton distribution remains a poorly known cornerstone in the nucleon spin structure. While the Collins effect in spin asymmetries in Semi-Inclusive DIS (SIDIS) is one crucial tool to address the transversity function, the most promising alternative is the azimuthal asymmetry in SIDIS when a hadron pair is detected in the final state. In this case, the chiral-odd transversity function is coupled to another chiral-odd function, i.e. the hadron-pair interference fragmentation function (IFF). The measurement of azimuthal asymmetries in hadron-pair production on a transversely polarised nucleon target has been performed at COMPASS using a 160 GeV/c muon beam of CERN's M2 beam line. Results from the 2007 and 2010 recent measurements will be presented and compared to model predictions.

  7. Exclusive processes at JLab at 6 GeV

    Directory of Open Access Journals (Sweden)

    Kim Andrey

    2015-01-01

    Full Text Available Deeply virtual exclusive reactions provide a unique opportunity to probe the complex internal structure of the nucleon. They allow to access information about the correlations between parton transverse spatial and longitudinal momentum distributions from experimental observables. Dedicated experiments to study Deeply Virtual Compton Scattering (DVCS and Deeply Virtual Meson Production (DVMP have been carried out at Jefferson Lab using continuous electron beam with energies up to 6 GeV. Unpolarized cross sections, beam, target and double spin asymmetries have been measured for DVCS as well as for π0 exclusive electroproduction. The data from Hall B provide a wide kinematic coverage with Q2=1-4.5 GeV2, xB=0.1-0.5, and −t up to 2 GeV2. Hall A data have limited kinematic range partially overlapping with Hall B kinematics but provide a high accuracy measurements. Scaling tests of the DVCS cross sections provide solid evidence of twist-2 dominance, which makes chiral-even GPDs accessible even at modest Q2. We will discuss the interpretation of these data in terms of Generalized Parton Distributions (GPDs model. Successful description of the recent CLAS π0 exclusive production data within the framework of the GPD-based model provides a unique opportunity to access the chiral-odd GPDs.

  8. Longitudinal and transverse pyroelectric effects in a chiral ferroelectric liquid crystal

    Energy Technology Data Exchange (ETDEWEB)

    Yablonskii, S. V., E-mail: yablonskii2005@yandex.ru; Bondarchuk, V. V. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Soto-Bustamante, E. A.; Romero-Hasler, P. N. [Universidad de Chile (Chile); Ozaki, M. [Osaka University, Department of Electronic Engineering, Faculty of Engineering (Japan); Yoshino, K. [Shimane Institute for Industrial Technology (Japan)

    2015-04-15

    In this study, we compare the results of experimental investigations of longitudinal and transverse pyroelectric effects in a chiral ferroelectric crystal. In a transverse geometry, we studied freely suspended liquid-crystal films. In both geometries, samples exhibited bistability, demonstrating stable pyroelectric signals of different polarities at zero voltage. It is shown that a bistable cell based on a freely suspended film requires 40 times less energy expenditures as compared to the conventional sandwich-type cell.

  9. Transverse charge and magnetization densities in the nucleon's chiral periphery

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [JLAB Newport News, VA (United States); Weiss, Christian [JLAB Newport News, VA (United States)

    2014-01-01

    In the light-front description of nucleon structure the electromagnetic form factors are expressed in terms of frame-independent transverse densities of charge and magnetization. Recent work has studied the transverse densities at peripheral distances b = O(M{pi}{sup -1}), where they are governed by universal chiral dynamics and can be computed in a model-independent manner. Of particular interest is the comparison of the peripheral charge and magnetization densities. We summarize (a) their interpretation as spin-independent and -dependent current matrix elements; (b) the leading-order chiral effective field theory results; (c) their mechanical interpretation in the light-front formulation; (d) the large-N_c limit of QCD and the role of {Delta} intermediate states; (e) the connection with generalized parton distributions and peripheral high-energy scattering processes.

  10. Deuteron transverse densities in holographic QCD

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China); Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Chakrabarti, Dipankar [Indian Institute of Technology Kanpur, Department of Physics, Kanpur (India); Zhao, Xingbo [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-05-15

    We investigate the transverse charge density in the longitudinally as well as transversely polarized deuteron using the recent empirical description of the deuteron electromagnetic form factors in the framework of holographic QCD. The predictions of the holographic QCD are compared with the results of a standard phenomenological parameterization. In addition, we evaluate GPDs and the gravitational form factors for the deuteron. The longitudinal momentum densities are also investigated in the transverse plane. (orig.)

  11. CP-even and CP-odd transverse polarization of the electron in muon decay

    International Nuclear Information System (INIS)

    Kuznetsov, A.

    1981-01-01

    A model of the weak interaction which contains intermediate vector bosons of the most general form and which admits CP violation in muon decay is used to calculate the CP-even and CP-odd transverse polarization of the μ-decay electrons with inclusion of radiative corrections. It is shown that these corrections are important only at the beginning of the spectrum, and their contribution reduces the observed effects of the transverse polarization. The transverse polarization grows appreciably at electron energies close to the maximum energy and at small emission angles. It is expedient to search for the CP-even and CP-odd transverse polarization of the electrons at energies E/sub e/ = 0.975E/sup max//sub e/ and emission angles theta = 25--35 0

  12. Measurement of Exclusive $π^0$ Electroproduction Structure Functions and their Relationship to Transverse Generalized Parton Distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bedlinskiy, Ivan; Niccolai, Silvia; Stoler, Paul; Adhikari, Krishna; Aghasyan, Mher; Amaryan, Moskov; Anghinolfi, Marco; Avagyan, Harutyun; Baghdasaryan, Hovhannes; Ball, Jacques; Baltzell, Nathan; Battaglieri, Marco; Bennett, Robert; Biselli, Angela; Bookwalter, Craig; Boyarinov, Sergey; Briscoe, William; Brooks, Williams; Burkert, Volker; Carman, Daniel; Celentano, Andrea; Chandavar, Shloka; Charles, Gabriel; Contalbrigo, Marco; Crede, Volker; D& #x27; Angelo, Annalisa; Daniel, Aji; Dashyan, Natalya; De Vita, Raffaella; De Sanctis, Enzo; Deur, Alexandre; Djalali, Chaden; Doughty, David; Dupre, Raphael; Egiyan, Hovanes; El Alaoui, Ahmed; Elfassi, Lamiaa; Elouadrhiri, Latifa; Eugenio, Paul; Fedotov, Gleb; Fegan, Stuart; Fleming, Jamie; Forest, Tony; Garcon, Michel; Gevorgyan, Nerses; Giovanetti, Kevin; Girod, Francoi-Xavier; Gohn, Wesley; Gothe, Ralf; Graham, Lewis; Griffioen, Keith; Guegan, Baptiste; Guidal, Michel; Guo, Lei; Hafidi, Kawtar; Hakobyan, Hayk; Hanretty, Charles; Heddle, David; Hicks, Kenneth; Holtrop, Maurik; Ilieva, Yordanka; Ireland, David; Ishkhanov, Boris; Isupov, Evgeny; Jo, Hyon-Suk; Joo, Kyungseon; Keller, Dustin; Khanddaker, Mahbubul; Khertarpal, Puneet; Kim, Andrey; Kim, Wooyoung; Klein, Franz; Koirala, Suman; Kubarovsky, A; Kuhn, Sebastian; Kuleshov, Sergey; Kvaltine, Nicholas; Livingston, Kenneth; Lu, Haiyun; MacGregor, Ian; Mao, Yuqing; Markov, Nikolai; Martinez, D; Mayer, Michael; McKinnon, Bryan; Meyer, Curtis; Mineeva, Taisiya; Mirazita, Marco; Mokeev, Viktor; Moutarde, Herve; Munevar Espitia, Edwin; Munoz Camacho, Carlos; Nadel-Turonski, Pawel; Niculescu, Gabriel; Niculescu, Maria-Ioana; Osipenko, Mikhail; Ostrovidov, Alexander; Pappalardo, Luciano; Permuzyan, Rafayel; Park, Kijun; Park, Sungkyun; Pasyuk, Eugene; Pereira, Sergio; Phelps, Evan; Pisano, Silvia; Pogorelko, Oleg; Pozdnyakov, Sergey; Price, John; Procureur, Sebastien; Prok, Yelena; Protopopescu, Dan; Puckett, Andrew; Raue, Brian; Ricco, Giovanni; Rimal, Dipak; Ripani, Marco; Rosner, Guenther; Rossi, Patrizia; Sabatie, Franck; Saini, Mukesh; Salgado, Carlos; Saylor, Nicholas; Schott, Diane; Schumacher, Reinhard; Seder, Erin; Seraydaryan, Heghine; Sharabian, Youri; Smith, Gregory; Sober, Daniel; Sokhan, Daria; Stepanyan, Samuel; Strauch, Steffen; Taiuti, Mauro; Tang, Wei; Taylor, Charles; Tian, Ye; Tkachenko, Svyatoslav; Ungaro, Maurizio; Vineyard, Michael; Vlasov, Alexander; Voskanyan, Hakob; Voutier, Eric; Walford, Natalie; Watts, Daniel; Weinstein, Lawrence; Weygan, Dennis; Wood, Michael; Zachariou, Nicholas; Zhang, Jixie; Zhao, Zhiwen

    2012-09-01

    Exclusive $\\pi^0$ electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in $Q^2$, $x_B$, $t$, and $\\phi_\\pi$, in the $Q^2$ range from 1.0 to 4.6 GeV$^2$,\\ $-t$ up to 2 GeV$^2$, and $x_B$ from 0.1 to 0.58. Structure functions $\\sigma_T +\\epsilon \\sigma_L, \\sigma_{TT}$ and $\\sigma_{LT}$ were extracted as functions of $t$ for each of 17 combinations of $Q^2$ and $x_B$. The data were compared directly with two handbag-based calculations including both longitudinal and transversity GPDs. Inclusion of only longitudinal GPDs very strongly underestimates $\\sigma_T +\\epsilon \\sigma_L$ and fails to account for $\\sigma_{TT}$ and $\\sigma_{LT}$, while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity flip and helicity non-flip processes. The results confirm that exclusive $\\pi^0$ electroproduction offers direct experimental access to the transversity GPDs.

  13. Measurement of exclusive π(0) electroproduction structure functions and their relationship to transverse generalized parton distributions.

    Science.gov (United States)

    Bedlinskiy, I; Kubarovsky, V; Niccolai, S; Stoler, P; Adhikari, K P; Aghasyan, M; Amaryan, M J; Anghinolfi, M; Avakian, H; Baghdasaryan, H; Ball, J; Baltzell, N A; Battaglieri, M; Bennett, R P; Biselli, A S; Bookwalter, C; Boiarinov, S; Briscoe, W J; Brooks, W K; Burkert, V D; Carman, D S; Celentano, A; Chandavar, S; Charles, G; Contalbrigo, M; Crede, V; D'Angelo, A; Daniel, A; Dashyan, N; De Vita, R; De Sanctis, E; Deur, A; Djalali, C; Doughty, D; Dupre, R; Egiyan, H; El Alaoui, A; El Fassi, L; Elouadrhiri, L; Eugenio, P; Fedotov, G; Fegan, S; Fleming, J A; Forest, T A; Fradi, A; Garçon, M; Gevorgyan, N; Giovanetti, K L; Girod, F X; Gohn, W; Gothe, R W; Graham, L; Griffioen, K A; Guegan, B; Guidal, M; Guo, L; Hafidi, K; Hakobyan, H; Hanretty, C; Heddle, D; Hicks, K; Holtrop, M; Ilieva, Y; Ireland, D G; Ishkhanov, B S; Isupov, E L; Jo, H S; Joo, K; Keller, D; Khandaker, M; Khetarpal, P; Kim, A; Kim, W; Klein, F J; Koirala, S; Kubarovsky, A; Kuhn, S E; Kuleshov, S V; Kvaltine, N D; Livingston, K; Lu, H Y; MacGregor, I J D; Mao, Y; Markov, N; Martinez, D; Mayer, M; McKinnon, B; Meyer, C A; Mineeva, T; Mirazita, M; Mokeev, V; Moutarde, H; Munevar, E; Munoz Camacho, C; Nadel-Turonski, P; Niculescu, G; Niculescu, I; Osipenko, M; Ostrovidov, A I; Pappalardo, L L; Paremuzyan, R; Park, K; Park, S; Pasyuk, E; Anefalos Pereira, S; Phelps, E; Pisano, S; Pogorelko, O; Pozdniakov, S; Price, J W; Procureur, S; Prok, Y; Protopopescu, D; Puckett, A J R; Raue, B A; Ricco, G; Rimal, D; Ripani, M; Rosner, G; Rossi, P; Sabatié, F; Saini, M S; Salgado, C; Saylor, N; Schott, D; Schumacher, R A; Seder, E; Seraydaryan, H; Sharabian, Y G; Smith, G D; Sober, D I; Sokhan, D; Stepanyan, S S; Stepanyan, S; Strauch, S; Taiuti, M; Tang, W; Taylor, C E; Tian, Ye; Tkachenko, S; Ungaro, M; Vineyard, M F; Vlassov, A; Voskanyan, H; Voutier, E; Walford, N K; Watts, D P; Weinstein, L B; Weygand, D P; Wood, M H; Zachariou, N; Zhang, J; Zhao, Z W; Zonta, I

    2012-09-14

    Exclusive π(0) electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q(2), x(B), t, and ϕ(π), in the Q(2) range from 1.0 to 4.6  GeV(2), -t up to 2  GeV(2), and x(B) from 0.1 to 0.58. Structure functions σ(T)+ϵσ(L), σ(TT), and σ(LT) were extracted as functions of t for each of 17 combinations of Q(2) and x(B). The data were compared directly with two handbag-based calculations including both longitudinal and transversity generalized parton distributions (GPDs). Inclusion of only longitudinal GPDs very strongly underestimates σ(T)+ϵσ(L) and fails to account for σ(TT) and σ(LT), while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity-flip and helicity nonflip processes. The results confirm that exclusive π(0) electroproduction offers direct experimental access to the transversity GPDs.

  14. Measurement of Exclusive π0 Electroproduction Structure Functions and their Relationship to Transverse Generalized Parton Distributions

    Science.gov (United States)

    Bedlinskiy, I.; Kubarovsky, V.; Niccolai, S.; Stoler, P.; Adhikari, K. P.; Aghasyan, M.; Amaryan, M. J.; Anghinolfi, M.; Avakian, H.; Baghdasaryan, H.; Ball, J.; Baltzell, N. A.; Battaglieri, M.; Bennett, R. P.; Biselli, A. S.; Bookwalter, C.; Boiarinov, S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Contalbrigo, M.; Crede, V.; D'Angelo, A.; Daniel, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Doughty, D.; Dupre, R.; Egiyan, H.; El Alaoui, A.; El Fassi, L.; Elouadrhiri, L.; Eugenio, P.; Fedotov, G.; Fegan, S.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Garçon, M.; Gevorgyan, N.; Giovanetti, K. L.; Girod, F. X.; Gohn, W.; Gothe, R. W.; Graham, L.; Griffioen, K. A.; Guegan, B.; Guidal, M.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Heddle, D.; Hicks, K.; Holtrop, M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jo, H. S.; Joo, K.; Keller, D.; Khandaker, M.; Khetarpal, P.; Kim, A.; Kim, W.; Klein, F. J.; Koirala, S.; Kubarovsky, A.; Kuhn, S. E.; Kuleshov, S. V.; Kvaltine, N. D.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mao, Y.; Markov, N.; Martinez, D.; Mayer, M.; McKinnon, B.; Meyer, C. A.; Mineeva, T.; Mirazita, M.; Mokeev, V.; Moutarde, H.; Munevar, E.; Munoz Camacho, C.; Nadel-Turonski, P.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Pappalardo, L. L.; Paremuzyan, R.; Park, K.; Park, S.; Pasyuk, E.; Anefalos Pereira, S.; Phelps, E.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Raue, B. A.; Ricco, G.; Rimal, D.; Ripani, M.; Rosner, G.; Rossi, P.; Sabatié, F.; Saini, M. S.; Salgado, C.; Saylor, N.; Schott, D.; Schumacher, R. A.; Seder, E.; Seraydaryan, H.; Sharabian, Y. G.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Stepanyan, S. S.; Stepanyan, S.; Strauch, S.; Taiuti, M.; Tang, W.; Taylor, C. E.; Tian, Ye; Tkachenko, S.; Ungaro, M.; Vineyard, M. F.; Vlassov, A.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weinstein, L. B.; Weygand, D. P.; Wood, M. H.; Zachariou, N.; Zhang, J.; Zhao, Z. W.; Zonta, I.

    2012-09-01

    Exclusive π0 electroproduction at a beam energy of 5.75 GeV has been measured with the Jefferson Lab CLAS spectrometer. Differential cross sections were measured at more than 1800 kinematic values in Q2, xB, t, and ϕπ, in the Q2 range from 1.0 to 4.6GeV2, -t up to 2GeV2, and xB from 0.1 to 0.58. Structure functions σT+ɛσL, σTT, and σLT were extracted as functions of t for each of 17 combinations of Q2 and xB. The data were compared directly with two handbag-based calculations including both longitudinal and transversity generalized parton distributions (GPDs). Inclusion of only longitudinal GPDs very strongly underestimates σT+ɛσL and fails to account for σTT and σLT, while inclusion of transversity GPDs brings the calculations into substantially better agreement with the data. There is very strong sensitivity to the relative contributions of nucleon helicity-flip and helicity nonflip processes. The results confirm that exclusive π0 electroproduction offers direct experimental access to the transversity GPDs.

  15. Nucleon parton distributions in chiral perturbation theory

    International Nuclear Information System (INIS)

    Moiseeva, Alena

    2013-01-01

    Properties of the chiral expansion of nucleon light-cone operators have been studied. In the framework of the chiral perturbation theory we have demonstrated that convergency of the chiral expansion of nucleon parton distributions strongly depends on the value of the variable x. Three regions in x with essentially different analytical properties of the resulting chiral expansion for parton distributions were found. For each of the regions we have elaborated special power counting rules corresponding to the partial resummation of the chiral series. The nonlocal effective operators for the vector and the axial nucleon parton distributions have been constructed at the zeroth and the first chiral order. Using the derived nonlocal operators and the derived power counting rules we have obtained the second order expressions for the nucleon GPDs H(x,ξ,Δ 2 ), H(x,ξ,Δ 2 ),E(x,ξ,Δ 2 ) valid in the region x>or similar a 2 χ .

  16. CP-even and CP-odd transverse polarization of the electron in the muon decay

    International Nuclear Information System (INIS)

    Kuznetsov, A.V.

    1981-01-01

    In the most general weak interaction model with intermediate vector bosons, allowing CP breaking in the muon decay, CP- even and CP-odd transverse polarization of the μ-decay electrons is calculated taking into account the radiative corrections. It is shown that such corrections are essential only at the beginning of the spectrum reducing the observed transverse polarization effects. When the electron energy is close to its maximum and the emission angles are small, the transverse polarization considerably grows. Search for CP-even and CP-odd transverse polarization of the electrons should be carried out at energies Esub(e) approximately equal to O.975 Esub(e)sup(max) and emission angles THETA approximately equal to 25+35 deg [ru

  17. Evidence for a transverse single-spin asymmetry in leptoproduction of π+π- pairs

    International Nuclear Information System (INIS)

    Airapetian, A.

    2008-03-01

    A single-spin asymmetry was measured in the azimuthal distribution of π + π - . pairs produced in semi-inclusive deep-inelastic scattering on a transversely polarized hydrogen target. For the first time, evidence is found for a correlation between the transverse target polarization and the azimuthal orientation of the plane containing the two pions. The corresponding single-spin asymmetry is expected to be related to the product of the little-known quark transversity distribution function and an unknown naive-T-odd chiral-odd dihadron fragmentation function. (orig.)

  18. T-odd correlations in radiative K+l3 decays and chiral perturbation theory

    International Nuclear Information System (INIS)

    Mueller, E.H.; Kubis, B.; Meissner, U.G.

    2006-01-01

    The charged kaon decay channel K + l3γ allows for studies of direct CP violation, possibly due to non-standard mechanisms, with the help of T-odd correlation variables. In order to be able to extract a CP-violating signal from experiment, it is necessary to understand all possible standard model phases that also produce T-odd asymmetries. We complement earlier studies by considering strong interaction phases in hadronic structure functions that appear at higher orders in chiral perturbation theory, and we compare our findings to other potential sources of asymmetries. (orig.)

  19. COMPASS results on the transverse spin asymmetry in hadron-pair production in SIDIS

    CERN Document Server

    Braun, Christopher

    2015-01-01

    The parton distribution function h q 1 ( x ) of a transversely polarized quark q inside a transversely po- larized nucleon, is chiral-odd and therefore not accessible in inclusive deep-inelastic scattering. It can however be observed in semi-inclusive deep-inelastic scattering (SIDIS) in combination with another chiral-odd func- tion, for instance the dihadron interference fragmentation function (DiFF) H / q 1 . The 160 GeV = c polarized muon beam of CERN’s M2 beamline allows COMPASS to investigate transverse spin e ects using polarized solid- state targets. In this contribution an overview of COMPASS results for the azimuthal asymmetry in identified dihadron production is given. Pions and kaons were identified by a RICH detector. Recently, the full set of this asymmetry from the COMPASS data on the deuteron and the proton target became available. All data, includ- ing early data sets, were analyzed using the same methods and requirements. The results are compared to model predictions and HERMES data. Also ...

  20. New large-Nc relations among the nucleon and nucleon-to-Delta GPDs

    International Nuclear Information System (INIS)

    Marc Vanderhaeghen; Vladimir Pascalutsa

    2006-01-01

    We establish relations which express the generalized parton distributions (GPDs) describing the N → Δ transition in terms of the nucleon GPDs. These relations are based on the known large-N c relation between the N → Δ electric quadrupole moment and the neutron charge radius, and a newly derived large-N c relation between the electric quadrupole (E2) and Coulomb quadrupole (C2) transitions. Namely, in the large-N c limit we find C2=E2. The resulting relations among the nucleon and N → Δ GPDs provide predictions for the N → Δ electromagnetic form factors which are found to be in very good agreement with experiment for moderate momentum transfers

  1. Magnetic moment, vorticity-spin coupling and parity-odd conductivity of chiral fermions in 4-dimensional Wigner functions

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Jian-hua [Shandong Provincial Key Laboratory of Optical Astronomy and Solar-Terrestrial Environment, Institute of Space Sciences, Shandong University, Weihai, Shandong 264209 (China); Wang, Qun, E-mail: qunwang@ustc.edu.cn [Interdisciplinary Center for Theoretical Study and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Physics Department, Brookhaven National Laboratory, Upton, NY 11973-5000 (United States)

    2015-10-07

    We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.

  2. Magnetic moment, vorticity-spin coupling and parity-odd conductivity of chiral fermions in 4-dimensional Wigner functions

    Directory of Open Access Journals (Sweden)

    Jian-hua Gao

    2015-10-01

    Full Text Available We demonstrate the emergence of the magnetic moment and spin-vorticity coupling of chiral fermions in 4-dimensional Wigner functions. In linear response theory with space–time varying electromagnetic fields, the parity-odd part of the electric conductivity can also be derived which reproduces results of the one-loop and the hard-thermal or hard-dense loop. All these properties show that the 4-dimensional Wigner functions capture comprehensive aspects of physics for chiral fermions in electromagnetic fields.

  3. T-odd correlations in radiative K{sup +} {sub l3} decays and chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, E.H.; Kubis, B. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Forschungszentrum Juelich, Institut fuer Kernphysik (Theorie), Juelich (Germany)

    2006-11-15

    The charged kaon decay channel K{sup +} {sub l3{gamma}} allows for studies of direct CP violation, possibly due to non-standard mechanisms, with the help of T-odd correlation variables. In order to be able to extract a CP-violating signal from experiment, it is necessary to understand all possible standard model phases that also produce T-odd asymmetries. We complement earlier studies by considering strong interaction phases in hadronic structure functions that appear at higher orders in chiral perturbation theory, and we compare our findings to other potential sources of asymmetries. (orig.)

  4. The nucleon's transversity and the photon's distribution amplitude probed in lepton pair photoproduction

    Energy Technology Data Exchange (ETDEWEB)

    Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France)

    2010-07-01

    We describe a new way to access the chiral odd transversity parton distribution in the proton through the photoproduction of lepton pairs. The basic ingredient is the interference of the usual Bethe Heitler or Drell-Yan amplitudes with the amplitude of a process, where the photon couples to quarks through its chiral-odd distribution amplitude, which is normalized to the magnetic susceptibility of the QCD vacuum. A phenomenology of single and double spin observables emerges from the unusual features of this amplitude (Phys.Rev.Lett.103:072002,2009). (authors)

  5. Static and dynamical anomalies caused by chiral soliton lattice in molecular-based chiral magnets

    International Nuclear Information System (INIS)

    Kishine, Jun-ichiro; Inoue, Katsuya; Kikuchi, Koichi

    2007-01-01

    Interplay of crystallographic chirality and magnetic chirality has been of great interest in both chemist's and physicist's viewpoints. Crystals belonging to chiral space groups are eligible to stabilize macroscopic chiral magnetic order. This class of magnetic order is described by the chiral XY model, where the transverse magnetic field perpendicular to the chiral axis causes the chiral soliton lattice (CSL) formation. As a clear evidence of the chiral magnetic order, the temperature dependence of the transverse magnetization exhibits sharp cusp just below the mean field ferrimagnetic transition temperature, indicating the formation of the CSL. In addition to the static anomaly, we expect the CSL formation also causes dynamical anomalies such as induction of the spin supercurrent

  6. Sensitive criterion for chirality; Chiral doublet bands in 104Rh59

    International Nuclear Information System (INIS)

    Koike, T.; Starosta, K.; Vaman, C.; Ahn, T.; Fossan, D.B.; Clark, R.M.; Cromaz, M.; Lee, I.Y.; Macchiavelli, A.O.

    2003-01-01

    A particle plus triaxial rotor model was applied to odd-odd nuclei in the A ∼ 130 region in order to study the unique parity πh11/2xνh11/2 rotational bands. With maximum triaxiality assumed and the intermediate axis chosen as the quantization axis for the model calculations, the two lowest energy eigenstates of a given spin have chiral properties. The independence of the quantity S(I) on spin can be used as a new criterion for chirality. In addition, a diminishing staggering amplitude of S(I) with increasing spin implies triaxiality in neighboring odd-A nuclei. Chiral quartet bases were constructed specifically to examine electromagnetic properties for chiral structures. A set of selection rules unique to chirality was derived. Doublet bands built on the πg9/2xνh11/2 configuration have been discovered in odd-odd 104Rh using the 96Zr(11B, 3n) reaction. Based on the discussed criteria for chirality, it is concluded that the doublet bands observed in 104Rh exhibit characteristic chiral properties suggesting a new region of chirality around A ∼110. In addition, magnetic moment measurements have been performed to test the πh11/2xνh11/2 configuration in 128Cs and the πg9/2xνh11/2 configuration in 104Rh

  7. Deeply Virtual Pseudoscalar Meson Production at Jefferson Lab and Transversity GPDs

    Energy Technology Data Exchange (ETDEWEB)

    Kubarovsky, Valery P. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    Transverse-momentum dependent parton distribution functions (TMDs) provide a description of nucleon structure in terms of the parton transverse momentum and its transverse spin. At leading twist there are eight TMDs, each offering a unique feature of quarks in a polarized or an unpolarized nucleon. The Sivers distribution is one of the most interesting TMD due to its non-universality. It has been extracted using the data from semi-inclusive deep-inelastic scattering (SIDIS), but there is no data yet from spin-dependent Drell-Yan (DY) process. Such measurement will provide a crucial test of TMD formalism which predicts an equal magnitude and opposite sign for the Sivers function extracted from SIDIS and DY process. We will discuss key future measurements of TMDs using both SIDIS and DY process with a focus on Hall A SoLID SIDIS program at Jefferson Lab.

  8. Transversity GPD in photo- and electroproduction of two vectormesons

    Energy Technology Data Exchange (ETDEWEB)

    Enberg, Rikard; Pire, Bernard; Szymanowski, Lech

    2006-01-17

    The chiral-odd generalized parton distribution (GPD), or transversity GPD, of the nucleon can be accessed experimentally through the photo- or electroproduction of two vector mesons on a polarized nucleon target, {gamma}{sup (*)}N {yields} {rho}{sub 1}{rho}{sub 2}N', where {rho}{sub 1} is produced at large transverse momentum, {rho}{sub 2} is transversely polarized, and the mesons are separated by a large rapidity gap. We predict the cross section for this process for both transverse and longitudinal {rho}{sub 2} production. To this end we propose a model for the transversity GPDH{sub T}(x,{zeta},t), and give an estimate of the relative sizes of the transverse and longitudinal {rho}{sub 2}cross sections. We show that a dedicated experiment at high energy should be able to measure the transversity content of the proton.

  9. Exclusive neutrino production of a charmed vector meson and transversity gluon generalized parton distributions

    Science.gov (United States)

    Pire, B.; Szymanowski, L.

    2017-12-01

    We calculate at the leading order in αs the QCD amplitude for exclusive neutrino production of a D* or Ds* charmed vector meson on a nucleon. We work in the framework of the collinear QCD approach where generalized parton distributions (GPDs) factorize from perturbatively calculable coefficient functions. We include O (mc) terms in the coefficient functions and the O (mD) term in the definition of heavy meson distribution amplitudes. The show that the analysis of the angular distribution of the decay D(s) *→D(s )π allows us to access the transversity gluon GPDs.

  10. Structure and symmetries of odd-odd triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Colaba, Mumbai (India); Bhat, G.H. [University of Kashmir, Department of Physics, Srinagar (India); Govt. Degree College Kulgam, Department of Physics, Kulgam (India); Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India); Cluster University of Srinagar, Srinagar, Jammu and Kashmir (India)

    2017-05-15

    Rotational spectra of odd-odd Rh and Ag isotopes are investigated with the primary motivation to search for the spontaneous chiral symmetry breaking phenomenon in these nuclei. The experimental results obtained on the degenerate dipole bands of some of these isotopes using a large array of gamma detectors are discussed and studied using the triaxial projected shell (TPSM) approach. It is shown that, first of all, to reproduce the odd-even staggering of the known yrast bands of these nuclei, large triaxial deformation is needed. This large triaxial deformation also gives rise to doublet band structures in many of these studied nuclei. The observed doublet bands in these isotopes are shown to be reproduced reasonably well by the TPSM calculations. Further, the TPSM calculations for neutron-rich nuclei indicate that the ideal manifestation of the chirality can be realised in {sup 106}Rh and {sup 112}Ag, where the doublet bands have similar electromagnetic properties along with small differences in excitation energies. (orig.)

  11. Field-dependent spin chirality and frustration in V3 and Cu3 nanomagnets in transverse magnetic field. 2. Spin configurations, chirality and intermediate spin magnetization in distorted trimers

    International Nuclear Information System (INIS)

    Belinsky, Moisey I.

    2014-01-01

    Highlights: • Distorted spin configurations determine field behavior of the variable chiralities. • Distortions change spin chiralities, intermediate M 12 ± and staggered magnetization. • Magnetizations, distorted vector and scalar chiralities are strongly correlated. • Distorted V 3 , Cu 3 nanomagnets possess large vector chirality in the ground state in B ⊥ . • Chiralities and distortions in EPR, INS and NMR spectra were considered. - Abstract: Correlated spin configurations, magnetizations, frustration, vector κ ¯ z and scalar χ ¯ chiralities are considered for distorted V ‾ 3 , /Cu 3 / anisotropic DM nanomagnets in transverse B x ‖X and longitudinal B‖Z fields. Different planar configurations in the ground and excited states of distorted nanomagnets in B x determine different field behavior of the vector chiralities and the degenerate frustration in these states correlated with the M ~ 12 ± (B x ) intermediate spin (IS) magnetization which describes the S 12 characteristics, χ=0. Distortion results in the reduced κ ¯ z <1 chirality in the ground distorted configuration and in the maximum κ z =±1 in the excited states with the planar 120° configurations at avoided level crossing. In B‖Z, distorted longitudinal spin-collinear configurations are characterized by the reduced degenerate frustration, out-of-plane staggered and IS M ~ 12 ± (B z ) magnetizations, and in-plane toroidal moments, correlated with the κ ¯ z , χ ¯ chiralities, χ ¯ =±|κ ¯ z |. The chiralities and IS magnetization in EPR, INS and NMR spectra are considered. The quantitative correlations describe variable spin chirality, frustration and field manipulation of chiralities in nanomagnets

  12. COMPASS results on the transverse spin asymmetry in hadron-pair production in SIDIS

    Directory of Open Access Journals (Sweden)

    Braun Christopher

    2015-01-01

    Full Text Available The parton distribution function h1q (x of a transversely polarized quark q inside a transversely polarized nucleon, is chiral-odd and therefore not accessible in inclusive deep-inelastic scattering. It can however be observed in semi-inclusive deep-inelastic scattering (SIDIS in combination with another chiral-odd function, for instance the dihadron interference fragmentation function (DiFF H1⊲q. The 160 GeV/c polarized muon beam of CERN’s M2 beamline allows COMPASS to investigate transverse spin effects using polarized solid-state targets. In this contribution an overview of COMPASS results for the azimuthal asymmetry in identified dihadron production is given. Pions and kaons were identified by a RICH detector. Recently, the full set of this asymmetry from the COMPASS data on the deuteron and the proton target became available. All data, including early data sets, were analyzed using the same methods and requirements. The results are compared to model predictions and HERMES data. Also a point-by-point extraction of the Transversity distribution functions h1(x for u and d quarks was carried out with this full data set. Further investigations on the correlation between the dihadron asymmetry and the Collins asymmetries of the two hadrons of the pair have revealed an interesting dependence of these three asymmetries on the difference ∆Φ of the azimuthal angles of the two hadrons.

  13. Chiral Magnetic Spirals

    International Nuclear Information System (INIS)

    Basar, Goekce; Dunne, Gerald V.; Kharzeev, Dmitri E.

    2010-01-01

    We argue that the presence of a very strong magnetic field in the chirally broken phase induces inhomogeneous expectation values, of a spiral nature along the magnetic field axis, for the currents of charge and chirality, when there is finite baryon density or an imbalance between left and right chiralities. This 'chiral magnetic spiral' is a gapless excitation transporting the currents of (i) charge (at finite chirality), and (ii) chirality (at finite baryon density) along the direction of the magnetic field. In both cases it also induces in the transverse directions oscillating currents of charge and chirality. In heavy ion collisions, the chiral magnetic spiral possibly provides contributions both to the out-of-plane and the in-plane dynamical charge fluctuations recently observed at BNL RHIC.

  14. Transverse target spin asymmetries in exclusive $\\rho^0$ muoproduction

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Andrieux, V; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Berlin, A; Bernhard, J; Bertini, R; Bicker, K; Bieling, J; Birsa, R; Bisplinghoff, J; Boer, M; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Büchele, M; Burtin, E; Capozza, L; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Dasgupta, S S; Dasgupta, S; Denisov, O Yu; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M jr; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Frolov, V; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmüller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Guthörl, T; Haas, F; von Harrach, D; Hahne, D; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Höppner, Ch; Horikawa, N; d'Hose, N; Huber, S; Ishimoto, S; Ivanshin, Yu; Iwata, T; Jahn, R; Jary, V; Jasinski, P; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kroumchtein, Z V; Kuchinski, N; Kunne, F; Kurek, K; Kurjata, R P; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Marchand, C; Martin, A; Marzec, J; Matousek, J; Matsuda, H; Matsuda, T; Meshcheryakov, G; Meyer, W; Michigami, T; Mikhailov, Yu V; Miyachi, Y; Morreale, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Novy, J; Nowak, W D; Nunes, A.S; Olshevsky, A G; Ostrick, M; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Pesek, M; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pretz, J; Quaresma, M; Quintans, C; Ramos, S; Reicherz, G; Rocco, E; Rodionov, V; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmidt, A; Schmidt, K; Schmitt, L; Schmïden, H; Schönning, K; Schopferer, S; Schott, M; Shevchenko, O Yu; Silva, L; Sinha, L; Sirtl, S; Slunecka, M; Sosio, S; Sozzi, F; Srnka, A; Steiger, L; Stolarski, M; Sulc, M; Sulej, R; Suzuki, H; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Thibaud, F; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vondra, J; Wang, L; Weisrock, T; Wilfert, M; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Zhuravlev, N; Ziembicki, M

    2014-01-01

    Exclusive production of $\\rho^0$ mesons was studied at the COMPASS experiment by scattering 160 GeV/$c$ muons off transversely polarised protons. Five single-spin and three double-spin azimuthal asymmetries were measured as a function of $Q^2$, $x_{Bj}$, or $p_{T}^{2}$. The $\\sin \\phi_S$ asymmetry is found to be $-0.019 \\pm 0.008(stat.) \\pm 0.003(syst.)$. All other asymmetries are also found to be of small magnitude and consistent with zero within experimental uncertainties. Very recent calculations using a GPD-based model agree well with the present results. The data is interpreted as evidence for the existence of chiral-odd, transverse generalized parton distributions.

  15. COMPASS results on the transverse spin asymmetry in identified dihadron production in SIDIS

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Christopher [Univ. Erlangen (Germany)

    2014-07-01

    The parton distribution function h{sub 1}{sup q}(x) of a transversely polarized quark q inside a transversely polarized nucleon, is chiral-odd and therefore not accessible in inclusive deep-inelastic scattering. It can only be observed in semi-inclusive deep-inelastic scattering (SIDIS) in combination with another chiral-odd function like the dihadron interference fragmentation function (IFF) H{sub 1,q} {sup triangleleft}. The 160 GeV/c polarized muon beam of CERNs M2 beamline allows COMPASS to investigate transverse spin effects using polarized solid state targets. In this contribution an overview of COMPASS results for the azimuthal asymmetry in identified dihadron production is given. Taking advantage of the very precise particle identification of the apparatus using the RICH detector an identification of the hadrons which form the pairs in terms of pions and kaons was performed. Recently, the full set of this asymmetry from the COMPASS data on the deuteron and the proton target is available. The latter has been taken in the years 2007 and 2010, while the deuteron date dates back to the years 2003 and 2004. Data sets from same targets have been combined and analyzed using homogeneous cuts and methods. This allows for a detailed comparison of the obtained results to each other, to the corresponding results of the HERMES experiment and to model predictions. Furthermore an extraction of the so-called ''Transversity'' distribution h{sub 1}(x) for u and d quarks was carried out.

  16. Cosmic chirality both true and false.

    Science.gov (United States)

    Barron, Laurence D

    2012-12-01

    The discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. It is well known that parity violation infiltrates into ordinary matter via an interaction between the nucleons and electrons, mediated by the Z(0) particle, that lifts the degeneracy of the mirror-image enantiomers of a chiral molecule. Being odd under P but even under T, this P-violating interaction exhibits true chirality and so may induce absolute enantioselection under all circumstances. It has been suggested that CP violation may also infiltrate into ordinary matter via a P-odd, T-odd interaction mediated by the (as yet undetected) axion. This CP-violating interaction exhibits false chirality and so may induce absolute enantioselection in processes far from equilibrium. Both true and false cosmic chirality should be considered together as possible sources of homochirality in the molecules of life. Copyright © 2012 Wiley Periodicals, Inc.

  17. Transverse charge and magnetization densities: Improved chiral predictions down to b=1 fms

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon, Jose Manuel [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Hiller Blin, Astrid N. [Johannes Gutenberg Univ., Mainz (Germany); Vicente Vacas, Manuel J. [Spanish National Research Council (CSIC), Valencia (Spain). Univ. of Valencia (UV), Inst. de Fisica Corpuscular; Weiss, Christian [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2018-03-01

    The transverse charge and magnetization densities provide insight into the nucleon’s inner structure. In the periphery, the isovector components are clearly dominant, and can be computed in a model-independent way by means of a combination of chiral effective field theory (cEFT) and dispersion analysis. With a novel N=D method, we incorporate the pion electromagnetic formfactor data into the cEFT calculation, thus taking into account the pion-rescattering effects and r-meson pole. As a consequence, we are able to reliably compute the densities down to distances b1 fm, therefore achieving a dramatic improvement of the results compared to traditional cEFT calculations, while remaining predictive and having controlled uncertainties.

  18. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran, E-mail: tigran@caltech.edu [Department of Physics, University of Illinois, 845 W Taylor Street, Chicago, IL 60607 (United States); Jet Propulsion Laboratory, 4800 Oak Grove Dr, M/S 298, Pasadena, CA 91109 (United States); Murchikova, Elena [TAPIR, California Institute of Technology, MC 350-17, Pasadena, CA 91125 (United States)

    2017-06-15

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium {sup 3}He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  19. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran; Murchikova, Elena

    2017-01-01

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium "3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves) and transverse velocity (chiral Alfvén wave). We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  20. Thermal chiral vortical and magnetic waves: New excitation modes in chiral fluids

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2017-06-01

    Full Text Available In certain circumstances, chiral (parity-violating medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark–gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in an external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density (chiral vortical and chiral magnetic waves and transverse velocity (chiral Alfvén wave. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the wave is absent and the excitation reduces to the charge diffusion mode. We also comment on the frame-dependent contributions to the obtained propagation velocities.

  1. Association of microsatellite polymorphisms of the GPDS1 locus with normal tension glaucoma in the Japanese population

    Directory of Open Access Journals (Sweden)

    Kayo Nakamura

    2009-04-01

    Full Text Available Kayo Nakamura1*, Masao Ota2*, Akira Meguro1, et al1Department of Ophthalmology, Yokohama City University School of Medicine, Yokohama, Kanagawa, Japan; 2Departmentof Legal Medicine, Shinshu University School of Medicine, Matsumoto, Nagano, JapanBackground: To investigate whether the GPDS1 locus, a potential causative locus of pigment-dispersion syndrome, is associated with normal-tension glaucoma (NTG in Japanese patients. Materials and methods: We used polymerase chain reaction amplification with sequencespecific primers to analyze 20 polymorphic microsatellite markers in and around the GPDS1 locus with an automated DNA analyzer and automated fragment detection by fluorescent-based technology. The DNA samples used for these analyses were obtained from ethnicity- and gendermatched patients, including 141 Japanese patients with NTG and 101 healthy controls. Patients exhibiting a comparatively early onset were selected as this suggests that genetic factors may show stronger involvement.Results: One allele of D7S2462 exhibited a frequency that was significantly decreased in NTG cases compared to controls (P = 0.0013, Pc = 0.019, OR = 0.48, 95% CI = 0.30–0.75. Alleles at another six microsatellite loci were positively or negatively associated with NTG, but these associations did not retain statistical significance after Bonferroni correction (P < 0.05, Pc > 0.05.Conclusion: Our study showed a significant association between the GPDS1 locus and NTG, suggesting that there may be some genetic risk factor(s in the development of NTG.Keywords: microsatellite, normal tension glaucoma, glaucoma-related pigment dispersion syndrome, GPDS1, DPP6

  2. Flavor structure of the nucleon electromagnetic form factors and transverse charge densities in the chiral quark-soliton model

    Science.gov (United States)

    Silva, António; Urbano, Diana; Kim, Hyun-Chul

    2018-02-01

    We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model (χQSM) with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (ms) corrections. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). Finally, we discuss the transverse charge densities for both unpolarized and polarized nucleons. The transverse charge density inside a neutron turns out to be negative in the vicinity of the center within the SU(3) χQSM, which can be explained by the contribution of the strange quark.

  3. DVCS at HERMES. The recoil detector and transverse target spin asymmetries

    Energy Technology Data Exchange (ETDEWEB)

    Murray, M.J.

    2008-02-15

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. One of the most exciting topics studied at HERMES is Deeply Virtual Compton Scattering (DVCS) which is the simplest interaction that provides a gateway for access to Generalised Parton Distributions (GPDs). GPDs are a theoretical framework which can be used to calculate the total angular momentum of the quarks in the nucleon. As such, they provide one piece of the puzzle of nucleonic spin structure. In 2005, HERMES was upgraded in the target region with a Recoil Detector that allows it to make truly exclusive measurements of the DVCS interaction for the first time. The design and construction of the Recoil Detector is discussed herein, in addition to a complete analysis of the Transverse Target Spin Asymmetry (TTSA) in DVCS. Experimental facilities that enable measurement of this asymmetry are rare. The importance of the information on the TTSA from HERMES is made yet greater as the transversely polarised target that allows the asymmetry to be measured has been replaced by an unpolarised target. This was to allow the Recoil Detector to be installed. The final stage of this thesis shows a model-dependent method for constraining the angular momentum of the quarks in the nucleon and speculates as to the other pieces of the spin puzzle. (orig.)

  4. DVCS at HERMES. The recoil detector and transverse target spin asymmetries

    International Nuclear Information System (INIS)

    Murray, M.J.

    2008-02-01

    The HERMES experiment is a large forward angle spectrometer located at the HERA accelerator ring at DESY, Hamburg. One of the most exciting topics studied at HERMES is Deeply Virtual Compton Scattering (DVCS) which is the simplest interaction that provides a gateway for access to Generalised Parton Distributions (GPDs). GPDs are a theoretical framework which can be used to calculate the total angular momentum of the quarks in the nucleon. As such, they provide one piece of the puzzle of nucleonic spin structure. In 2005, HERMES was upgraded in the target region with a Recoil Detector that allows it to make truly exclusive measurements of the DVCS interaction for the first time. The design and construction of the Recoil Detector is discussed herein, in addition to a complete analysis of the Transverse Target Spin Asymmetry (TTSA) in DVCS. Experimental facilities that enable measurement of this asymmetry are rare. The importance of the information on the TTSA from HERMES is made yet greater as the transversely polarised target that allows the asymmetry to be measured has been replaced by an unpolarised target. This was to allow the Recoil Detector to be installed. The final stage of this thesis shows a model-dependent method for constraining the angular momentum of the quarks in the nucleon and speculates as to the other pieces of the spin puzzle. (orig.)

  5. Exclusive $\\rho^0$ muoproduction on transversely polarised protons and deuterons

    CERN Document Server

    Adolph, C.; Alexakhin, V.Yu.; Alexandrov, Yu.; Alexeev, G.D.; Amoroso, A.; Antonov, A.A.; Austregesilo, A.; Badelek, B.; Balestra, F.; Barth, J.; Baum, G.; Bedfer, Y.; Bernhard, J.; Bertini, R.; Bettinelli, M.; Bicker, K.; Bieling, J.; Birsa, R.; Bisplinghoff, J.; Bordalo, P.; Bradamante, F.; Braun, C.; Bravar, A.; Bressan, A.; Buchele, M.; Burtin, E.; Capozza, L.; Chiosso, M.; Chung, S.U.; Cicuttin, A.; Crespo, M.L.; Dalla Torre, S.; Das, S.; Dasgupta, S.S.; Dasgupta, S.; Denisov, O.Yu.; Dhara, L.; Donskov, S.V.; Doshita, N.; Duic, V.; Dunnweber, W.; Dziewiecki, M.; Efremov, A.; Elia, C.; Eversheim, P.D.; Eyrich, W.; Faessler, M.; Ferrero, A.; Filin, A.; Finger, M.; Finger, M., Jr.; Fischer, H.; Franco, C.; du Fresne von Hohenesche, N.; Friedrich, J.M.; Frolov, V.; Garfagnini, R.; Gautheron, F.; Gavrichtchouk, O.P.; Gerassimov, S.; Geyer, R.; Giorgi, M.; Gnesi, I.; Gobbo, B.; Goertz, S.; Grabmuller, S.; Grasso, A.; Grube, B.; Gushterski, R.; Guskov, A.; Guthorl, T.; Haas, F.; von Harrach, D.; Heinsius, F.H.; Herrmann, F.; Hess, C.; Hinterberger, F.; Horikawa, N.; Hoppner, Ch.; d'Hose, N.; Ishimoto, S.; Ivanov, O.; Ivanshin, Yu.; Iwata, T.; Jahn, R.; Jary, V.; Jasinski, P.; Jegou, G.; Joosten, R.; Kabuss, E.; Kang, D.; Ketzer, B.; Khaustov, G.V.; Khokhlov, Yu.A.; Kisselev, Yu.; Klein, F.; Klimaszewski, K.; Koblitz, S.; Koivuniemi, J.H.; Kolosov, V.N.; Kondo, K.; Konigsmann, K.; Konorov, I.; Konstantinov, V.F.; Korzenev, A.; Kotzinian, A.M.; Kouznetsov, O.; Kramer, M.; Kroumchtein, Z.V.; Kunne, F.; Kurek, K.; Lauser, L.; Lednev, A.A.; Lehmann, A.; Levorato, S.; Lichtenstadt, J.; Liska, T.; Maggiora, A.; Magnon, A.; Makke, N.; Mallot, G.K.; Mann, A.; Marchand, C.; Martin, A.; Marzec, J.; Matsuda, T.; Meshcheryakov, G.; Meyer, W.; Michigami, T.; Mikhailov, Yu.V.; Moinester, M.A.; Morreale, A.; Mutter, A.; Nagaytsev, A.; Nagel, T.; Negrini, T.; Nerling, F.; Neubert, S.; Neyret, D.; Nikolaenko, V.I.; Nowak, W.D.; Nunes, A.S.; Olshevsky, A.G.; Ostrick, M.; Padee, A.; Panknin, R.; Panzieri, D.; Parsamyan, B.; Paul, S.; Perevalova, E.; Pesaro, G.; Peshekhonov, D.V.; Piragino, G.; Platchkov, S.; Pochodzalla, J.; Polak, J.; Polyakov, V.A.; Pretz, J.; Quaresma, M.; Quintans, C.; Rajotte, J.F.; Ramos, S.; Rapatsky, V.; Reicherz, G.; Richter, A.; Rocco, E.; Rondio, E.; Rossiyskaya, N.S.; Ryabchikov, D.I.; Samoylenko, V.D.; Sandacz, A.; Sapozhnikov, M.G.; Sarkar, S.; Savin, I.A.; Sbrizzai, G.; Schiavon, P.; Schill, C.; Schluter, T.; Schmidt, K.; Schmitt, L.; Schonning, K.; Schopferer, S.; Schott, M.; Schroder, W.; Shevchenko, O.Yu.; Silva, L.; Sinha, L.; Sissakian, A.N.; Slunecka, M.; Smirnov, G.I.; Sosio, S.; Sozzi, F.; Srnka, A.; Steiger, L.; Stolarski, M.; Sulc, M.; Sulej, R.; Suzuki, H.; Sznajder, P.; Takekawa, S.; Ter Wolbeek, J.; Tessaro, S.; Tessarotto, F.; Tkatchev, L.G.; Uhl, S.; Uman, I.; Vandenbroucke, M.; Virius, M.; Vlassov, N.V.; Wang, L.; Wilfert, M.; Windmolders, R.; Wislicki, W.; Wollny, H.; Zaremba, K.; Zavertyaev, M.; Zemlyanichkina, E.; Ziembicki, M.; Zhuravlev, N.; Zvyagin, A.

    2012-01-01

    The transverse target spin azimuthal asymmetry A_UT in hard exclusive production of rho^0 mesons was measured at COMPASS by scattering 160 GeV/c muons off transversely polarised protons and deuterons. The measured asymmetry is sensitive to the nucleon helicity-flip generalised parton distributions E^q, which are related to the orbital angular momentum of quarks in the nucleon. The Q^2, x_B and p_t^2 dependence of A_UT is presented in a wide kinematic range. Results for deuterons are obtained for the first time. The measured asymmetry is small in the whole kinematic range for both protons and deuterons, which is consistent with the theoretical interpretation that contributions from GPDs E^u and E^d approximately cancel.

  6. Chirality invariance and 'chiral' fields

    International Nuclear Information System (INIS)

    Ziino, G.

    1978-01-01

    The new field model derived in the present paper actually gives a definite answer to three fundamental questions concerning elementary-particle physics: 1) The phenomenological dualism between parity and chirality invariance: it would be only an apparent display of a general 'duality' principle underlying the intrinsic nature itself of (spin 1/2) fermions and expressed by the anticommutativity property between scalar and pseudoscalar charges. 2) The real physical meaning of V - A current structure: it would exclusively be connected to the one (just pointed out) of chiral fields themselves. 3) The unjustified apparent oddness shown by Nature in weak interactions, for the fact of picking out only one of the two (left- and right-handed) fermion 'chiral' projections: the key to such a 'mystery' would just be provided by the consequences of the dual and partial character of the two fermion-antifermion field bases. (Auth.)

  7. Chiral surface waves for enhanced circular dichroism

    Science.gov (United States)

    Pellegrini, Giovanni; Finazzi, Marco; Celebrano, Michele; Duò, Lamberto; Biagioni, Paolo

    2017-06-01

    We present a novel chiral sensing platform that combines a one-dimensional photonic crystal design with a birefringent surface defect. The platform sustains simultaneous transverse electric and transverse magnetic surface modes, which are exploited to generate chiral surface waves. The present design provides homogeneous and superchiral fields of both handednesses over arbitrarily large areas in a wide spectral range, resulting in the enhancement of the circular dichroism signal by more than two orders of magnitude, thus paving the road toward the successful combination of surface-enhanced spectroscopies and electromagnetic superchirality.

  8. Controllable rotational inversion in nanostructures with dual chirality.

    Science.gov (United States)

    Dai, Lu; Zhu, Ka-Di; Shen, Wenzhong; Huang, Xiaojiang; Zhang, Li; Goriely, Alain

    2018-04-05

    Chiral structures play an important role in natural sciences due to their great variety and potential applications. A perversion connecting two helices with opposite chirality creates a dual-chirality helical structure. In this paper, we develop a novel model to explore quantitatively the mechanical behavior of normal, binormal and transversely isotropic helical structures with dual chirality and apply these ideas to known nanostructures. It is found that both direction and amplitude of rotation can be finely controlled by designing the cross-sectional shape. A peculiar rotational inversion of overwinding followed by unwinding, observed in some gourd and cucumber tendril perversions, not only exists in transversely isotropic dual-chirality helical nanobelts, but also in the binormal/normal ones when the cross-sectional aspect ratio is close to 1. Beyond this rotational inversion region, the binormal and normal dual-chirality helical nanobelts exhibit a fixed directional rotation of unwinding and overwinding, respectively. Moreover, in the binormal case, the rotation of these helical nanobelts is nearly linear, which is promising as a possible design for linear-to-rotary motion converters. The present work suggests new designs for nanoscale devices.

  9. Chiral magnetic effect of light

    Science.gov (United States)

    Hayata, Tomoya

    2018-05-01

    We study a photonic analog of the chiral magnetic (vortical) effect. We discuss that the vector component of magnetoelectric tensors plays a role of "vector potential," and its rotation is understood as "magnetic field" of a light. Using the geometrical optics approximation, we show that "magnetic fields" cause an anomalous shift of a wave packet of a light through an interplay with the Berry curvature of photons. The mechanism is the same as that of the chiral magnetic (vortical) effect of a chiral fermion, so that we term the anomalous shift "chiral magnetic effect of a light." We further study the chiral magnetic effect of a light beyond geometric optics by directly solving the transmission problem of a wave packet at a surface of a magnetoelectric material. We show that the experimental signal of the chiral magnetic effect of a light is the nonvanishing of transverse displacements for the beam normally incident to a magnetoelectric material.

  10. Characteristics of domain wall chirality and propagation in a Y-junction nanowire

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, W.-Y.; Yoon, Seungha; Kwon, J.-H. [School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Grünberg, P. [Gruenberg Center for Magnetic Nanomaterials, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Cho, B. K., E-mail: chobk@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of); Gruenberg Center for Magnetic Nanomaterials, Gwangju Institute of Science and Technology (GIST), Gwangju 61005 (Korea, Republic of)

    2016-01-14

    Chirality-dependent propagation of transverse wall along a nanowire was investigated using a Y-junction with spin-valve structure. It was found that the Y-junction can be used for convenient and effective electric detection of transverse domain wall chirality, especially in a nanowire with sub-200 nm width, where it is difficult to electrically detect chirality using conventional artificial defect, such as a notch, due to small resistance change. Domain wall propagation path in the Y-junction was found to be determined by the wall chirality, whether clockwise or counterclockwise. Using the Y-junction nanowire, characteristics of domain wall chirality that was nucleated in a nucleation pad, attached at the end of a nanowire, were studied and found to be in good agreement with the results of theoretical simulation.

  11. Single and double polarization asymmetries from deeply virtual exclusive pi^0 electroproduction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Andrey [University of Connecticut, Storrs, CT; Avakian, Harut A. [Jefferson Lab, Newport News, VA; Burkert, Volker D. [Jefferson Lab, Newport News, VA

    2014-10-01

    The target and double spin asymmetry measurements of exclusive p0 electroproduction were performed for the first time in DIS region at Jefferson Lab using the CEBAF Large Acceptance Spectrometer (CLAS) and longitudinally polarized proton target. The wide kinematic coverage and good resolution of CLAS allowed measurements in full azimuthal range providing an opportunity to extract single and double spin asymmetries proportional to polarized structure functions. Their angular dependencies in hadronic center-of-mass system were analyzed, and extracted moments are compared to recent theoretical handbag-based calculations based on chiral-even and chiral-odd GPDs contributions. The interpretation of present results within the framework of the modified perturbative approach and their use as a constraint for models of the t behavior will be discussed.

  12. Helicity-dependent generalized parton distributions for nonzero skewness

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Chandan [Chinese Academy of Sciences, Institute of Modern Physics, Lanzhou (China)

    2017-09-15

    We investigate the helicity-dependent generalized parton distributions (GPDs) in momentum as well as transverse position (impact) spaces for the u and d quarks in a proton when the momentum transfer in both the transverse and the longitudinal directions are nonzero. The GPDs are evaluated using the light-front wave functions of a quark-diquark model for nucleon where the wave functions are constructed by the soft-wall AdS/QCD correspondence. We also express the GPDs in the boost-invariant longitudinal position space. (orig.)

  13. The chirality operators for Heisenberg spin systems

    International Nuclear Information System (INIS)

    Subrahmanyam, V.

    1994-01-01

    The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs

  14. Even- and Odd-Parity Charmed Meson Masses in Heavy Hadron Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mehen; Roxanne Springer

    2005-03-01

    We derive mass formulae for the ground state, J{sup P} = 0{sup -} and 1{sup -}, and first excited even-parity, J{sup P} = 0{sup +} and 1{sup +}, charmed mesons including one loop chiral corrections and {Omicron}(1/m{sub c}) counterterms in heavy hadron chiral perturbation theory. We show a variety of fits to the current data. We find that certain parameter relations in the parity doubling model are not renormalized at one loop, providing a natural explanation for the equality of the hyperfine splittings of ground state and excited doublets.

  15. Fermions in odd space-time dimensions: back to basics

    International Nuclear Information System (INIS)

    Anguiano Jesus de, Ma.; Bashir, A.

    2005-01-01

    It is a well-known feature of odd space-time dimensions d that there exist two inequivalent fundamental representations A and B of the Dirac gamma matrices. Moreover, the parity transformation swaps the fermion fields living in A and B. As a consequence, a parity-invariant Lagrangian can only be constructed by incorporating both the representation. Based upon these ideas and contrary to long-held belief, we show that in addition to a discrete exchange symmetry for the massless case, we can also define chiral symmetry provided the Lagrangian contains fields corresponding to both the inequivalent representations. We also study the transformation properties of the corresponding chiral currents under parity and charge-conjugation operations. We work explicitly in 2 + 1 dimensions and later show how some of these ideas generalize to an arbitrary number of odd dimensions. (author)

  16. CP violation physics in B-decays, highlights from the GPDs ( ATLAS and CMS): analysis for Bs → J/ψφ.

    CERN Document Server

    Smizanska, M; The ATLAS collaboration

    2014-01-01

    CP violation physics in B-decays - highlights from the GPDs, ATLAS and CMS are given. Details are presented for time-dependent CP violation studies in Bs → J/ψφ using 2011 data and potential for Run2 based on ATLAS simulations is presented.

  17. Sigma decomposition: the CP-odd Lagrangian

    Energy Technology Data Exchange (ETDEWEB)

    Hierro, I.M. [Dipartimento di Fisica “G. Galilei”, Università di Padova and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padua (Italy); Merlo, L. [Instituto de Física Teórica, IFT-UAM/CSIC, Universidad Autónoma de Madrid,Cantoblanco, 28049, Madrid (Spain); Rigolin, S. [Dipartimento di Fisica “G. Galilei”, Università di Padova and INFN, Sezione di Padova,Via Marzolo 8, I-35131 Padua (Italy)

    2016-04-04

    In Alonso et al., http://dx.doi.org/10.1007/JHEP12(2014)034, the CP-even sector of the effective chiral Lagrangian for a generic composite Higgs model with a symmetric coset has been constructed, up to four momenta. In this paper, the CP-odd couplings are studied within the same context. If only the Standard Model bosonic sources of custodial symmetry breaking are considered, then at most six independent operators form a basis. One of them is the weak-θ term linked to non-perturbative sources of CP violation, while the others describe CP-odd perturbative couplings between the Standard Model gauge bosons and an Higgs-like scalar belonging to the Goldstone boson sector. The procedure is then applied to three distinct exemplifying frameworks: the original SU(5)/SO(5) Georgi-Kaplan model, the minimal custodial-preserving SO(5)/SO(4) model and the minimal SU(3)/(SU(2)×U(1)) model, which intrinsically breaks custodial symmetry. Moreover, the projection of the high-energy electroweak effective theory to the low-energy chiral effective Lagrangian for a dynamical Higgs is performed, uncovering strong relations between the operator coefficients and pinpointing the differences with the elementary Higgs scenario.

  18. Partner bands of 126Cs - first observation of chiral electromagnetic selection rules

    International Nuclear Information System (INIS)

    Grodner, E.; Sankowska, I.; Morek, T.; Rohozinski, S.G.; Droste, Ch.; Srebrny, J.; Pasternak, A.A.; Kisielinski, M.; Kowalczyk, M.; Kownacki, J.; Mierzejewski, J.; Krol, A.

    2011-01-01

    The lifetimes of the excited states belonging to the chiral partner bands built on the πh 11/2 xνh 11/2 -1 configuration in 126 Cs have been measured using the DSA technique. For the first time the large set of the experimental transition probabilities is in qualitative agreement with all selection rules predicted for the strong chiral symmetry breaking limit. The selection rules originate from two general features of a chiral nucleus, namely, from the existence of well separated left- and right-handed systems built of three angular momentum vectors and extra symmetries appearing in addition to the chiral symmetry breaking. The B(M1) staggering resulting from these additional symmetries is sensitive to triaxiality of odd-odd nuclei as well as configuration of valence particles.

  19. Analytic progress on exact lattice chiral symmetry

    International Nuclear Information System (INIS)

    Kikukawa, Y.

    2002-01-01

    Theoretical issues of exact chiral symmetry on the lattice are discussed and related recent works are reviewed. For chiral theories, the construction with exact gauge invariance is reconsidered from the point of view of domain wall fermion. The issue in the construction of electroweak theory is also discussed. For vector-like theories, we discuss unitarity (positivity), Hamiltonian approach, and several generalizations of the Ginsparg-Wilson relation (algebraic and odd-dimensional)

  20. Odd-parity currents induced by dynamic deformations in graphene-like systems

    International Nuclear Information System (INIS)

    Zhang, Kai; Zhang, Erhu; Chen, Huawei; Zhang, Shengli

    2016-01-01

    Reduced (3  +  1)-dimensional Dirac systems with inter-pseudo-spin and inter-valley scattering are employed to investigate current responses to (chiral) gauge fields in graphene-like systems. From (chiral) current—(chiral) current correlation functions, we derive the current responses. Except for electric currents induced by external gauge fields, we find the inter-valley scattering can break the topological nature of odd-parity currents. Given the proper conditions, this property can help us realize valley-polarized electric currents. Through the dynamic deformations generating the chiral gauge fields, we find the vortex-like currents while their profiles can be tuned by superposition of some deformations. In particular, we find a more manageable approach to realize the topological electric current by choosing a linear dynamic deformation. (paper)

  1. Transverse flow of kaons in heavy-ion collisions

    CERN Document Server

    Zheng Yu Ming; Fuchs, C; Faessler, A; Xiao Wu; Hua Da Ping; Yan Yu Peng

    2002-01-01

    The transverse flow of positively charged kaons from heavy-ion collisions at intermediate energy is investigated within the framework of the quantum molecular dynamics model. The calculated results show that the experimental data are only consistent with those including the kaon mean-field potential from the chiral Lagrangian. This indicates that the transverse flow pattern of kaons is a useful probe of the kaon potential in a nuclear medium

  2. Extraction of Generalized Parton Distributions from combined Deeply Virtual Compton Scattering and Timelike Compton scattering fits

    Science.gov (United States)

    Boer, Marie

    2017-09-01

    Generalized Parton Distributions (GPDs) contain the correlation between the parton's longitudinal momentum and their transverse distribution. They are accessed through hard exclusive processes, such as Deeply Virtual Compton Scattering (DVCS). DVCS has already been measured in several experiments and several models allow for extracting GPDs from these measurements. Timelike Compton Scattering (TCS) is, at leading order, the time-reversal equivalent process to DVCS and accesses GPDs at the same kinematics. Comparing GPDs extracted from DVCS and TCS is a unique way for proving GPD universality. Combining fits from the two processes will also allow for better constraining the GPDs. We will present our method for extracting GPDs from DVCS and TCS pseudo-data. We will compare fit results from the two processes in similar conditions and present what can be expected in term of contraints on GPDs from combined fits.

  3. Transverse Imaging of the Proton in Exclusive Diffractive pp Scattering

    International Nuclear Information System (INIS)

    Christian Weiss; Leonid Frankfurt; Charles Hyde-Wright; Mark Strikman

    2006-01-01

    In a forthcoming paper we describe a new approach to rapidity gap survival (RGS) in the production of high-mass systems (H = dijet, Higgs, etc.) in exclusive double-gap diffractive pp scattering, pp -> p + H + p. It is based on the idea that hard and soft interactions are approximately independent (QCD factorization), and allows us to calculate the RGS probability in a model-independent way in terms of the gluon generalized parton distributions (GPDs) in the colliding protons and the pp elastic scattering amplitude. Here we focus on the transverse momentum dependence of the cross section. By measuring the ''diffraction pattern'', one can perform detailed tests of the interplay of hard and soft interactions, and even extract information about the gluon GPD in the proton from the data

  4. Measuring the electromagnetic chirality of 2D arrays under normal illumination.

    Science.gov (United States)

    Garcia-Santiago, X; Burger, S; Rockstuhl, C; Fernandez-Corbaton, I

    2017-10-15

    We present an electromagnetic chirality measure for 2D arrays of subwavelength periodicities under normal illumination. The calculation of the measure uses only the complex reflection and transmission coefficients from the array. The measure allows the ordering of arrays according to their electromagnetic chirality, which further allows a quantitative comparison of different design strategies. The measure is upper bounded, and the extreme properties of objects with high values of electromagnetic chirality make them useful in both near- and far-field applications. We analyze the consequences that different possible symmetries of the array have on its electromagnetic chirality. We use the measure to study four different arrays. The results indicate the suitability of helices for building arrays of high electromagnetic chirality, and the low effectiveness of a substrate for breaking the transverse mirror symmetry.

  5. TRANSVERSELY POLARIZED Λ PRODUCTION

    International Nuclear Information System (INIS)

    BORER, D.

    2000-01-01

    Transversely polarized Λ production in hard scattering processes is discussed in terms of a leading twist T-odd fragmentation function which describes the fragmentation of an unpolarized quark into a transversely polarized Λ. We focus on the properties of this function and its relevance for the RHIC and HERMES experiments

  6. Microscopic nuclear structure models and methods: chiral symmetry, wobbling motion and γ –bands

    International Nuclear Information System (INIS)

    Sheikh, Javid A; Bhat, Gowhar H; Dar, Waheed A; Jehangir, Sheikh; Ganai, Prince A

    2016-01-01

    A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of γ -bands, chiral doublet bands and the wobbling mode. In the TPSM approach, γ -bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering γ -bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the γ -band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of γ -bands observed up to the highest spin in dysposium, hafnium, mercury and uranium isotopes. Furthermore, several measurements related to chiral symmetry breaking and wobbling motion have been reported recently. These phenomena, which are possible only for triaxial nuclei, have been investigated using the TPSM approach. It is shown that doublet bands observed in lighter odd–odd Cs-isotopes can be considered as candidates for chiral symmetry breaking. Transverse wobbling motion recently observed in 135 Pr has also been investigated and it is shown that TPSM approach provides a reasonable description of the measured properties. (invited comment)

  7. TMDs and GPDs at a future Electron-Ion Collider

    International Nuclear Information System (INIS)

    Ent, Rolf

    2016-01-01

    In the U.S., an Electron-Ion Collider (EIC) of energy √(s) = 20-100 GeV is under design, with two options studied at Brookhaven National Lab and Jefferson Laboratory. The recent 2015 US Nuclear Science Long-Range Planning effort included a future EIC as a recommendation for future construction. The EIC will be unique in colliding polarised electrons off polarised protons and light nuclei, providing the spin degrees of freedom essential to pursue its physics program driven by spin structure, multi-dimensional tomographic images of protons and nuclei, and discovery of the role of collective effects of gluons in nuclei. The foreseen luminosity of the EIC, coupled with its energy variability and reach, will allow unprecedented three-dimensional imaging of the gluon and sea quark distributions, via both TMDs and GPDs, and to explore correlations amongst them. Its hermetic detection capability of correlated fragments promises to similarly allow for precise tomographic images of the quark-gluon landscape in nuclei, transcending from light few-body nuclei to the heaviest nuclei, and could uncover how the TMD and GPD landscape changes when gluons display an anticipated collective behavior at the higher energies. (orig.)

  8. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  9. Some aspects of chirality: Fermion masses and chiral p-forms

    Energy Technology Data Exchange (ETDEWEB)

    Kleppe, A

    1997-05-01

    The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m{sub 0} implies the existence of other Dirac fields where the corresponding quanta have masses Rm{sub 0}, R{sup 2}m{sub 0}, .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way.

  10. Some aspects of chirality: Fermion masses and chiral p-forms

    International Nuclear Information System (INIS)

    Kleppe, A.

    1997-05-01

    The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m 0 implies the existence of other Dirac fields where the corresponding quanta have masses Rm 0 , R 2 m 0 , .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way

  11. Chiral discrimination in nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Lazzeretti, Paolo

    2017-11-01

    Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is favoured in general (e.g. L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry) because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ‘blind’ to chirality, i.e. unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between true and false chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e. the trace of a second-rank tensor, the mixed electric dipole/magnetic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality and symmetry properties under the combined set of fundamental discrete operations, namely charge conjugation, parity (space inversion) and time (motion) reversal.

  12. Transport of the moving barrier driven by chiral active particles

    Science.gov (United States)

    Liao, Jing-jing; Huang, Xiao-qun; Ai, Bao-quan

    2018-03-01

    Transport of a moving V-shaped barrier exposed to a bath of chiral active particles is investigated in a two-dimensional channel. Due to the chirality of active particles and the transversal asymmetry of the barrier position, active particles can power and steer the directed transport of the barrier in the longitudinal direction. The transport of the barrier is determined by the chirality of active particles. The moving barrier and active particles move in the opposite directions. The average velocity of the barrier is much larger than that of active particles. There exist optimal parameters (the chirality, the self-propulsion speed, the packing fraction, and the channel width) at which the average velocity of the barrier takes its maximal value. In particular, tailoring the geometry of the barrier and the active concentration provides novel strategies to control the transport properties of micro-objects or cargoes in an active medium.

  13. Constraints on a parity-even/time-reversal-odd interaction

    International Nuclear Information System (INIS)

    Oers, Willem T.H. van

    2000-01-01

    Time-Reversal-Invariance non-conservation has for the first time been unequivocally demonstrated in a direct measurement, one of the results of the CPLEAR experiment. What is the situation then with regard to time-reversal-invariance non-conservation in systems other than the neutral kaon system? Two classes of tests of time-reversal-invariance need to be distinguished: the first one deals with parity violating (P-odd)/time-reversal-invariance non-conserving (T-odd) interactions, while the second one deals with P-even/T-odd interactions (assuming CPT conservation this implies C-conjugation non-conservation). Limits on a P-odd/T-odd interaction follow from measurements of the electric dipole moment of the neutron. This in turn provides a limit on a P-odd/T-odd pion-nucleon coupling constant which is 10 -4 times the weak interaction strength. Limits on a P-even/T-odd interaction are much less stringent. The better constraint stems also from the measurement of the electric dipole moment of the neutron. Of all the other tests, measurements of charge-symmetry breaking in neutron-proton elastic scattering provide the next better constraint. The latter experiments were performed at TRIUMF (at 477 and 347 MeV) and at IUCF (at 183 MeV). Weak decay experiments (the transverse polarization of the muon in K + →π 0 μ + ν μ and the transverse polarization of the positrons in polarized muon decay) have the potential to provide comparable or possibly better constraints

  14. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    International Nuclear Information System (INIS)

    Savaloni, Hadi; Haydari-Nasab, Fatemh; Malmir, Mariam

    2011-01-01

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30 o and 70 o incidence angles and at different azimuthal angles (φ). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the φ angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths ( o incidence angle.

  15. Fulltext PDF

    Indian Academy of Sciences (India)

    It measures the distribution of quark transverse spin in a nucleon polarized transverse to its. (infinite) momentum. It is a chiral-odd .... A . A measurement on gt may also tell us how important the relativistic and sea quark effects are for gA.

  16. Influence of triaxiality on the signature inversion in odd-odd nuclei

    International Nuclear Information System (INIS)

    Zheng, R.R.; Luo, X.D.; Timar, J.; Sohler, S.; Nyako, B.M.; Zolnai, L.; Paul, E.S.

    2004-01-01

    Complete text of publication follows. Signature inversion in the A ∼ 100 region has been reported earlier only in the case of the odd-odd 98 Rh nucleus. Our studies on the 100-103 Rh isotopes and a close inspection of the known πg 9/2 νh 11/ 2 bands of the Rh (Z = 45) and Ag (Z = 47) isotopes revealed that the signature splitting effects, earlier considered as quenchings of signature splitting, are not only quenchings but signature inversions. Indeed, the energetically favored signature at low spins in these πg 9/2 νh 11/2 bands is the α = 1 branch (odd spins) instead of the expected α = 0 branch (even spins). The systematic occurrence of signature inversion in this mass region is discussed in Refs. together with attempts to understand its behavior qualitatively. Among many attempts for interpreting the mechanism of signature inversion in odd-odd nuclei, a model using an axially symmetric rotor plus two quasi-particles has already been successfully applied to describe the observed signature inversions in the A ∼ 80 and A ∼ 160 mass regions. According to this model the signature inversion is caused by the competition between the Coriolis and the proton-neutron residual interactions in low K space. Such calculations have been also successfully applied to the π g9/2 νh 11/2 bands in the odd-odd 98 Rh and 102 Rh nuclei. Recent observations of chiral band structures in the nearby Rh nuclei suggest a possibility of triaxiality in these nuclei, too. In the present work we examined the possible influence of triaxiality on the signature inversion using a triaxial rotor plus two-quasiparticle model and compared the results with the experimental data of 98 Rh and 102 Rh. The calculations provided a better agreement with the experiment than the axially symmetric calculations. Compared to the axially symmetric case, the triaxiality applied in the Hamiltonian enlarges the amplitudes of high-spin signature zigzags at small triaxial deformation and might push the

  17. Measurement of transvers spin effects by means of two-hadron correlations in the COMPASS experiment; Messung transversaler Spineffekte mittels zwei Hadronen Korrelation am COMPASS-Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Massmann, Frank Michael

    2008-06-23

    The quark structure of the nucleon can at neglection of intrinsic quark transverse momenta be completely described by two quark distribution functions. These are the unpolarized quark distribution function q(x), the helicity distribution function {delta}q(x), and the transvers quark-spin distribution function {delta}{sub T}q(x). This lastly mentioned function called transversity function, is chirallyn odd an can therefore only be measured in a combination with another chirally odd function. An access possibility to the transversity function {delta}{sub T}q(x) is the semi-inclusive two-hadron production in deep inelastic scattering on a transversely polarized target. Thereby the folding of the chirally odd two-hadron interference fragmentation function (IFF) H{sub 1} {sup angle} (z,M{sub h}{sup 2}) and the chirally odd transversity function. The IFF H{sub 1} {sup angle} (z,M{sub h}{sup 2}) is the spin-dependent part of a fragmentation function, which describes the fragmentation of a transversely polarized quark in two unpolarized hadrons. The production of the two hadrons pursues in an interference between different wave-state of the hadron pairs. Azimuthal asymmetries in the produced hadron pairs are measured. The measurements, which are described in this thesis, were performed in the COMPASS experiment at CERN in the years 2002-2004, which is a solid-state-target experiment at the SPS accelerator. After an introduction in chapter 2 the basing theoretical concepts for the measurement of the transversity function are presented. In chapter 3 the COMPASS experiment is described. Finally in chapter 4 the evaluation methods are discussed, the results of the azimuthal asymmetries shown and compared with theoretical predictions. [German] Die Quark-Struktur des Nukleons laesst sich bei Vernachlaessigung intrinsischer Quarktransversalimpulse vollstaendig durch drei Quark Verteilungsfunktionen beschreiben. Diese sind die unpolarisierte Quark Verteilungsfunktion q(x), die

  18. Transverse angular momentum in topological photonic crystals

    Science.gov (United States)

    Deng, Wei-Min; Chen, Xiao-Dong; Zhao, Fu-Li; Dong, Jian-Wen

    2018-01-01

    Engineering local angular momentum of structured light fields in real space enables applications in many fields, in particular, the realization of unidirectional robust transport in topological photonic crystals with a non-trivial Berry vortex in momentum space. Here, we show transverse angular momentum modes in silicon topological photonic crystals when considering transverse electric polarization. Excited by a chiral external source with either transverse spin angular momentum or transverse phase vortex, robust light flow propagating along opposite directions is observed in several kinds of sharp-turn interfaces between two topologically-distinct silicon photonic crystals. A transverse orbital angular momentum mode with alternating phase vortex exists at the boundary of two such photonic crystals. In addition, unidirectional transport is robust to the working frequency even when the ring size or location of the pseudo-spin source varies in a certain range, leading to the superiority of the broadband photonic device. These findings enable one to make use of transverse angular momentum, a kind of degree of freedom, to achieve unidirectional robust transport in the telecom region and other potential applications in integrated photonic circuits, such as on-chip robust delay lines.

  19. SoLID-SIDIS: Future Measurements of Transversity, TMDs and more

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhihong [Duke University, Durham, NC

    2015-09-01

    Over the past few decades, investigations of the nucleon structure mainly focused on the one-dimensional study of parton distributions and structure functions. New theoretical developments, including both transverse momentum distributions (TMDs) and generalized parton distributions (GPDs), provide a new way to understand the 3-dimensional structure of the nucleon. TMDs give access to the nucleon tomography in the momentum space, and also provide an opportunity to evaluate the contribution of quarks’ and gluons’ orbital angular momenta to the nucleon spin. The experimental study of TMDs requires a device with high luminosity, large kinematic coverage and great detection resolutions. With the Jefferson Lab (JLab) 12 GeV electron beam, we have proposed a Solenoidal Large Intensity Device (SoLID) in Hall A which is capable of performing such measurements. Several newly approved experiments will perform measurements of both the single and double spin asymmetries via semi-inclusive deep inelastic scattering (SIDIS) from polarized 3He ("neutron") and proton targets. The new data will provide important information to extract TMDs with unprecedented precision. Besides, we are also able to use SoLID to explore many more important physics topics. Several experiments for the measurements of PVDIS and J=y production have been approved, and new proposals are under development. For example, with the similar SIDIS configuration, we are actively developing new measurements to study GPDs via deep virtual Compton scattering (DVCS) with polarized targets, doubly-DVCS, deep virtual meson production, time-like Compton scattering, and so on. Our collaboration has submitted the pre-conceptual design report to JLab and successfully passed the Director’s Review in early 2015. Our collaborators are focusing on optimizing the detector system, finalizing the detector designs and proceeding on the detector R&D. We are looking forward to having the DOE Science Review in the near

  20. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    effects in hyperon semileptonic decays from lattice QCD / S. Simula. Uncertainty bands for chiral extrapolations / B.U. Musch. Update of the nucleon electromagnetic form factors / C. B. Crawford. N and N to ? transition from factors from lattice QCD / C. Alexandrou. The [equation] transition at low Q2 and the pionic contribution / S. Stave. Strange Quark CoNtributions to the form factors of the nucleon / F. Benmokhtar. Dynamical polarizabilities of the nucleon / B. Pasquini. Hadron magnetic moments and polarizabilities in lattice QCD / F.X. Lee. Spin-dependent compton scattering from 3He and the neutron spin polarizabilities / H. Gao. Chiral dynamics from Dyson-Schwinger equations / C.D. Roberts. Radiative neutron [Beta symbol]-decay in effective field theory / S. Gardner. Comparison between different renormalization schemes for co-variant BChPT / T.A. Gail. Non-perturbative study of the light pseudoscalar masses in chiral dynamics / José Antonio Oller. Masses and widths of hadrons in nuclear matter / M. Kotulla. Chiral effective field theory at finite density / R.J. Furnstahl. The K-nuclear interaction: a search fro deeply bound K-nuclear clusters / P. Camerini. Moments of GPDs from lattice QCD / D.G. Richards. Generalized parton distributions in effective field theory / J.W. Chen. Near-threshold pion production: experimental update / M.W. Ahmed. Pion photoproduction near threshold theory update / L. Tiator.

  1. The anomalous chiral Lagrangian of order p6

    International Nuclear Information System (INIS)

    Bijnens, J.; Talavera, P.

    2002-01-01

    We construct the effective chiral Lagrangian for chiral perturbation theory in the mesonic odd-intrinsic-parity sector at order p 6 . The Lagrangian contains 24 in principle measurable terms and no contact terms for the general case of N f light flavors, 23 terms for three and 5 for two flavors. In the two flavor case we need a total of 13 terms if an external singlet vector field is included. We discuss and implement the methods used to reduce to a minimal set. The infinite parts needed for renormalization are calculated and presented as well. (orig.)

  2. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation

    Science.gov (United States)

    Neufeld, Ofer; Cohen, Oren

    2018-03-01

    Optical chirality (OC)—one of the fundamental quantities of electromagnetic fields—corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  3. Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation.

    Science.gov (United States)

    Neufeld, Ofer; Cohen, Oren

    2018-03-30

    Optical chirality (OC)-one of the fundamental quantities of electromagnetic fields-corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.

  4. Correlation functions in hard and (semi-)inclusive processes

    International Nuclear Information System (INIS)

    Schlegel, Marc; Meissner, Stephan; Metz, Andreas

    2009-01-01

    Possible relations between two a priori different classes of parton distributions, the Generalized Parton Distributions (GPDs) and the Transverse Momentum Dependent parton distributions (TMDs), are discussed in this note. Although these relations were proven to hold exactly only in simple models they imply an appealingly simple and intuitive explanation for single-spin asymmetries in semi-inclusive deep-inelastic scattering. In this context we perform a first classification of common mother functions of GPDs and TMDs, so-called Generalized Transverse Momentum Dependent parton distributions (GTMDs), investigate their GPD- and TMD-limits, and gain new insight into the nature of these relations.

  5. Imaging the proton via hard exclusive production in diffractive pp scattering

    International Nuclear Information System (INIS)

    Charles Hyde; Leonid Frankfurt; Mark Strikman; Christian Weiss

    2007-01-01

    We discuss the prospects for probing Generalized Parton Distributions (GPDs) via exclusive production of a high-mass system (H = heavy quarkonium, di-photon, di-jet, Higgs boson) in diffractive pp scattering, pp -> p + H + p. In such processes the interplay of hard and soft interactions gives rise to a diffraction pattern in the final-state proton transverse momenta, which is sensitive to the transverse spatial distribution of partons in the colliding protons. We comment on the plans for diffractive pp measurements at RHIC and LHC. Such studies could complement future measurements of GPDs in hard exclusive ep scattering (JLab, COMPASS, EIC)

  6. Cross-channel analysis of quark and gluon generalized parton distributions with helicity flip

    International Nuclear Information System (INIS)

    Pire, B.; Semenov-Tian-Shansky, K.; Szymanowski, L.; Wallon, S.

    2014-01-01

    Quark and gluon helicity flip generalized parton distributions (GPDs) address the transversity quark and gluon structure of the nucleon. In order to construct a theoretically consistent parametrization of these hadronic matrix elements, we work out the set of combinations of those GPDs suitable for the SO(3) partial wave (PW) expansion in the cross-channel. This universal result will help to build up a flexible parametrization of these important hadronic non-perturbative quantities, using, for instance, the approaches based on the conformal PW expansion of GPDs such as the Mellin-Barnes integral or the dual parametrization techniques. (orig.)

  7. Cross-channel analysis of quark and gluon generalized parton distributions with helicity flip

    Energy Technology Data Exchange (ETDEWEB)

    Pire, B. [CNRS, CPhT, Ecole Polytechnique, Palaiseau (France); Semenov-Tian-Shansky, K. [Universite de Liege, IFPA, Departement AGO, Liege (Belgium); Szymanowski, L. [National Centre for Nuclear Research (NCBJ), Warsaw (Poland); Wallon, S. [Universite de Paris-Sud, CNRS, LPT, Orsay (France); Universite Paris 06, Faculte de Physique, UPMC, Paris (France)

    2014-05-15

    Quark and gluon helicity flip generalized parton distributions (GPDs) address the transversity quark and gluon structure of the nucleon. In order to construct a theoretically consistent parametrization of these hadronic matrix elements, we work out the set of combinations of those GPDs suitable for the SO(3) partial wave (PW) expansion in the cross-channel. This universal result will help to build up a flexible parametrization of these important hadronic non-perturbative quantities, using, for instance, the approaches based on the conformal PW expansion of GPDs such as the Mellin-Barnes integral or the dual parametrization techniques. (orig.)

  8. Chiral near-fields around chiral dolmen nanostructure

    International Nuclear Information System (INIS)

    Fu, Tong; Wang, Tiankun; Chen, Yuyan; Wang, Yongkai; Qu, Yu; Zhang, Zhongyue

    2017-01-01

    Discriminating the handedness of the chiral molecule is of great importance in the field of pharmacology and biomedicine. Enhancing the chiral near-field is one way to increase the chiral signal of chiral molecules. In this paper, the chiral dolmen nanostructure (CDN) is proposed to enhance the chiral near-field. Numerical results show that the CDN can increase the optical chirality of the near-field by almost two orders of magnitude compared to that of a circularly polarized incident wave. In addition, the optical chirality of the near-field of the bonding mode is enhanced more than that of the antibonding mode. These results provide an effective method for tailoring the chiral near-field for biophotonics sensors. (paper)

  9. Analytic study of transverse shunt resistance and even-odd mode coupling of a rod type RFQ

    International Nuclear Information System (INIS)

    Koscielniak, S.

    1994-06-01

    To minimize the ohmic power losses, it is necessary to maximize the transverse shunt resistance, R shunt . The cell of a rod-type RFQ is modelled by a parallel two-rod transmission line supported above a parallel ground conductor by two legs. Due to coupling between neighboring supports, the loading impedance is modified depending on the leg spacing. The shunt resistance is improved by reducing the cell length and increasing the leg spacing, and maximized when the legs are equally spaced. However, this is also the condition for strong excitation of the unwanted 'even-mode' in which a potential difference exists between the ends of the rods mid-plane and the grounding conductor or tank, Once the legs of the support are longitudinally separated, some even-mode excitation of the structure is inevitable because some current must be injected into the ground conductor; the even-mode excitation rises as leg separation increases. Further, when the desired odd-mode voltage is symmetric about the cell centre, the even-mode voltage is anti-symmetric This paper is a very much abridged version of two internal design notes[3], [4]. (author). 4 refs.,1 fig

  10. Mechanical separation of chiral dipoles by chiral light

    International Nuclear Information System (INIS)

    Canaguier-Durand, Antoine; Hutchison, James A; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    We calculate optical forces and torques exerted on a chiral dipole by chiral light fields and reveal genuine chiral forces in combining the chiral contents of both light field and dipolar matter. Here, the optical chirality is characterized in a general way through the definition of optical chirality density and chirality flow. We show, in particular, that both terms have mechanical effects associated, respectively, with reactive and dissipative components of the chiral forces. Remarkably, these chiral force components are directly related to standard observables: optical rotation for the reactive component and circular dichroism for the dissipative one. As a consequence, the resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This suggests promising strategies for using chiral light forces to mechanically separate chiral objects according to their enantiomeric form. (paper)

  11. Nano-structural characteristics and optical properties of silver chiral nano-flower sculptured thin films

    Energy Technology Data Exchange (ETDEWEB)

    Savaloni, Hadi, E-mail: savaloni@khayam.ut.ac.ir [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of); Haydari-Nasab, Fatemh; Malmir, Mariam [Department of Physics, University of Tehran, North-Kargar Street, Tehran (Iran, Islamic Republic of)

    2011-08-15

    Silver chiral nano-flowers with 3-, 4- and 5-fold symmetry were produced using oblique angle deposition method in conjunction with the rotation of sample holder with different speeds at different sectors of each revolution corresponding to symmetry order of the acquired nano-flower. Atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM), were employed to obtain morphology and nano-structure of the films. Optical characteristics of silver chiral nano-flower thin films were obtained using single beam spectrophotometer with both s- and p-polarization incident light at 30{sup o} and 70{sup o} incidence angles and at different azimuthal angles ({phi}). Optical spectra showed both TM (TDM (transverse dipole mode) and TQM (transverse quadruple mode)) and LM (longitudinal mode) Plasmon resonance peaks. For 3- and 4-fold symmetry chiral nano-flowers the s-polarization extinction spectra obtained at different azimuthal angles did not show significant change in the Plasmon peak position while 5-fold symmetry chiral nano-flower showed a completely different behavior, which may be the result of increased surface anisotropy, so when the {phi} angle is changed the s-polarization response from the surface can change more significantly than that for lower symmetries. In general, for 3-, 4- and 5-fold symmetry chiral nano-flowers a sharp peak at lower wavelengths (<450 nm) is observed in the s-polarization spectra, while in addition to this peak a broad peak at longer wavelengths (i.e., LM) observed in the p-polarization spectra, which is more dominant for 70{sup o} incidence angle.

  12. Heisenberg spin glass experiments and the chiral ordering scenario

    International Nuclear Information System (INIS)

    Campbell, Ian A.; Petit, Dorothee C.M.C.

    2010-01-01

    An overview is given of experimental data on Heisenberg spin glass materials so as to make detailed comparisons with numerical results on model Heisenberg spin glasses, with particular reference to the chiral driven ordering transition scenario due to Kawamura and collaborators. On weak anisotropy systems, experiments show critical exponents which are very similar to those estimated numerically for the model Heisenberg chiral ordering transition but which are quite different from those at Ising spin glass transitions. Again on weak anisotropy Heisenberg spin glasses, experimental torque data show well defined in-field transverse ordering transitions up to strong applied fields, in contrast to Ising spin glasses where fields destroy ordering. When samples with stronger anisotropies are studied, critical and in-field behavior tend progressively towards the Ising limit. It can be concluded that the essential physics of laboratory Heisenberg spin glasses mirrors that of model Heisenberg spin glasses, where chiral ordering has been demonstrated numerically. (author)

  13. The role of the core in degeneracy of chiral candidate band doubling

    International Nuclear Information System (INIS)

    Timar, J.; Sohler, D.; Vaman, C.; SUNY, Stony Brook, NY; Starosta, K.; Fossan, D.B.; Koike, T.; Tohoku Univ., Sendai; Lee, I.Y.; Macchiavelli, A.O.

    2005-01-01

    Complete text of publication follows. Nearly degenerate ΔI=1 rotational bands have been observed recently in several odd-odd nuclei in the A ∼ 130 and A ∼ 100 mass regions. The properties of these doublet bands have been found to agree with the scenario of spontaneous formation of chirality and disagree with other possible scenarios. However, the most recent results obtained from life-time experiments for some chiral candidate nuclei in the A ∼ 130 mass region seem to contradict the chiral interpretation of the doublet bands in these nuclei based on the observed differences in the absolute electromagnetic transition rates; the transition rates expected for chiral doublets are predicted to be very similar. Therefore it is interesting to search for new types of experimental data that may provide further possibilities to distinguish between alternative interpretations, and may uncover new properties of the mechanism that is responsible for the band doubling in these nuclei. Such a new type of experimental data was found by studying the chiral candidate bands in neighboring Rh nuclei. High-spin states of 103 Rh were studied using the 96 Zr( 11 B,4n) reaction at 40 MeV beam energy and chiral partner candidate bands have been found in it. As a result of this observation a special quartet of neighboring chiral candidate nuclei can be investigated for the first time. With this quartet identified a comparison between the behavior of the nearly degenerate doublet bands belonging to the same core but to different valence quasiparticle configurations, as well as belonging to different cores but to the same valence quasiparticle configuration, becomes possible. The comparison shows that the energy separation of these doublet band structures depends mainly on the core properties and only at less extent on the valence quasiparticle coupling. This observation sets up new criteria for the explanations of the band doublings, restricting the possible scenarios and providing

  14. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality.

    Science.gov (United States)

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-11-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.

  15. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    Science.gov (United States)

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Superconducting proximity in three-dimensional Dirac materials: Odd-frequency, pseudoscalar, pseudovector, and tensor-valued superconducting orders

    Science.gov (United States)

    Faraei, Zahra; Jafari, S. A.

    2017-10-01

    We find that a conventional s -wave superconductor in proximity to a three-dimensional Dirac material (3DDM), to all orders of perturbation in tunneling, induces a combination of s - and p -wave pairing only. We show that the Lorentz invariance of the superconducting pairing prevents the formation of Cooper pairs with higher orbital angular momenta in the 3DDM. This no-go theorem acquires stronger form when the probability of tunneling from the conventional superconductor to positive and negative energy states of 3DDM are equal. In this case, all the p -wave contribution except for the lowest order, identically vanish and hence we obtain an exact result for the induced p -wave superconductivity in 3DDM. Fierz decomposing the superconducting matrix we find that the temporal component of the vector superconducting order and the spatial components of the pseudovector order have odd-frequency pairing symmetry. We find that the latter is odd with respect to exchange of position and chirality of the electrons in the Cooper pair and is a spin-triplet, which is necessary for NMR detection of such an exotic pseudovector pairing. Moreover, we show that the tensorial order breaks into a polar vector and an axial vector and both of them have conventional pairing symmetry except for being a spin triplet. According to our study, for gapless 3DDM, the tensorial superconducting order will be the only order that is odd with respect to the chemical potential μ . Therefore we predict that a transverse p -n junction binds Majorana fermions. This effect can be used to control the neutral Majorana fermions with electric fields.

  17. Effect of vacancy defect on electrical properties of chiral single-walled carbon nanotube under external electrical field

    International Nuclear Information System (INIS)

    Luo Yu-Pin; Tien Li-Gan; Tsai Chuen-Horng; Lee Ming-Hsien; Li Feng-Yin

    2011-01-01

    Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with mono-vacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Analytical Formulae linking Quark Confinement and Chiral Symmetry Breaking

    International Nuclear Information System (INIS)

    Doi, Takahiro M.; Redlich, Krzysztof; Sasaki, Chihiro; Suganuma, Hideo

    2016-01-01

    Dirac spectrum representations of the Polyakov loop fluctuations are derived on the temporally odd-number lattice, where the temporal length is odd with the periodic boundary condition. We investigate the Polyakov loop fluctuations based on these analytical relations. It is semi-analytically and numerically found that the low-lying Dirac eigenmodes have little contribution to the Polyakov loop fluctuations, which are sensitive probe for the quark deconfinement. Our results suggest no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD

  19. Three-dimensional Majorana fermions in chiral superconductors.

    Science.gov (United States)

    Kozii, Vladyslav; Venderbos, Jörn W F; Fu, Liang

    2016-12-01

    Using a systematic symmetry and topology analysis, we establish that three-dimensional chiral superconductors with strong spin-orbit coupling and odd-parity pairing generically host low-energy nodal quasiparticles that are spin-nondegenerate and realize Majorana fermions in three dimensions. By examining all types of chiral Cooper pairs with total angular momentum J formed by Bloch electrons with angular momentum j in crystals, we obtain a comprehensive classification of gapless Majorana quasiparticles in terms of energy-momentum relation and location on the Fermi surface. We show that the existence of bulk Majorana fermions in the vicinity of spin-selective point nodes is rooted in the nonunitary nature of chiral pairing in spin-orbit-coupled superconductors. We address experimental signatures of Majorana fermions and find that the nuclear magnetic resonance spin relaxation rate is significantly suppressed for nuclear spins polarized along the nodal direction as a consequence of the spin-selective Majorana nature of nodal quasiparticles. Furthermore, Majorana nodes in the bulk have nontrivial topology and imply the presence of Majorana bound states on the surface, which form arcs in momentum space. We conclude by proposing the heavy fermion superconductor PrOs 4 Sb 12 and related materials as promising candidates for nonunitary chiral superconductors hosting three-dimensional Majorana fermions.

  20. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  1. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    Science.gov (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  2. Hadron-pair production on transversely polarized targets in semi-inclusive deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Christopher

    2014-07-29

    Nucleons such as protons and neutrons are composite objects made of quarks, which are bound together by the strong force via the exchange of gluons. The probability of finding a quark of flavor q carrying the momentum fraction x of the fast moving parent nucleon is described by a parton distribution function (PDF) f{sub 1}{sup q}(x), the number density. The spin, an intrinsic angular momentum of elementary particles such as quarks but also of composite objects like nucleons, couples with magnetic fields, which allows one to align it. Taking into account this additional parameter, the spin, the scheme of PDFs in leading twist is expanded by the helicity distribution g{sub 1}{sup q}(x) and the transversity distribution h{sub 1}{sup q}(x). The first distribution covers the case where the nucleon and the quark are longitudinally polarized, while a transverse polarization is taken into account by the latter. A tool for the investigation of the PDFs is inclusive deep inelastic scattering (DIS) of electro-magnetic probes off (un)polarized nucleons at fixed-target experiments. This only gives access to f{sub 1}{sup q}(x) and g{sub 1}{sup q}(x), while the chiral-odd nature of the transversity distribution prevents a measurement without detecting the final hadronic states. However, h{sub 1}{sup q}(x) can be observed in semi-inclusive DIS (SIDIS) in combination with another chiral-odd function like the dihadron fragmentation function H{sub 1} {sup angle} {sup q} in the production of a hadron-pair. The resulting experimental challenge is the reason why f{sub 1}{sup q}(x) and g{sub 1}{sup q}(x) have been investigated for almost four decades, while h{sub 1}{sup q}(x) is still subject to recent measurements and analyses. The 160 GeV/c polarized muon beam of CERN's M2 beamline allows the COMPASS experiment to investigate spin effects using polarized solid-state targets. Since the year 2002 COMPASS has collected unique data sets on transversely polarized targets of lithium

  3. C P -odd sector and θ dynamics in holographic QCD

    Science.gov (United States)

    Areán, Daniel; Iatrakis, Ioannis; Järvinen, Matti; Kiritsis, Elias

    2017-07-01

    The holographic model of V-QCD is used to analyze the physics of QCD in the Veneziano large-N limit. An unprecedented analysis of the C P -odd physics is performed going beyond the level of effective field theories. The structure of holographic saddle points at finite θ is determined, as well as its interplay with chiral symmetry breaking. Many observables (vacuum energy and higher-order susceptibilities, singlet and nonsinglet masses and mixings) are computed as functions of θ and the quark mass m . Wherever applicable the results are compared to those of chiral Lagrangians, finding agreement. In particular, we recover the Witten-Veneziano formula in the small x →0 limit, we compute the θ dependence of the pion mass, and we derive the hyperscaling relation for the topological susceptibility in the conformal window in terms of the quark mass.

  4. Chiral retrieval method based on right circularly polarized and left circularly polarized waves

    International Nuclear Information System (INIS)

    Martín, Ernesto; Muñoz, Juan; Margineda, José; Molina-Cuberos, Gregorio J; García-Collado, Ángel J

    2014-01-01

    The free-wave characterization of metamaterials is usually carried out by illuminating a sample with a linearly polarized plane electromagnetic wave. At points before and after the sample, sensors are introduced to measure the transverse components of the field, in order to compute the reflection and transmission coefficients related with the co- and cross-polar field components. Based on this information, retrieval algorithms allow parameters like rotation angle, effective chirality and refraction index to be calculated. Here we propose to use the transmission signals under illumination with plane circularly polarized waves, without sensing the reflection signal, to calculate the chirality parameter and the rotation angle due to the electromagnetic activity of the material. This new method, which allows a simpler characterization of a chiral slab, is applied to the study of metamaterials composed of both periodic and random distributions of metallic structures with chiral symmetry. The experimental results are contrasted with simulations and alternative measurements obtained using linearly polarized waves. (paper)

  5. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  6. On chiral and non chiral 1D supermultiplets

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2011-01-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  7. The chiral anomaly in non-leptonic weak interactions

    International Nuclear Information System (INIS)

    Bijnens, J.; Pich, A.; Ecker, G.

    1992-01-01

    The interplay between the chiral anomaly and the non-leptonic weak hamiltonian is studied. The structure of the corresponding effective lagrangian of odd intrinsic parity is established. It is shown that the factorizable contributions (leading in 1/N C ) to that lagrangian can be calculated without free parameters. As a first application, the decay K + →π + π 0 γ is investigated. (orig.)

  8. Chiral amphiphilic self-assembled alpha,alpha'-linked quinque-, sexi, and septithiophenes : synthesis, stability and odd-even effects

    NARCIS (Netherlands)

    Henze, O.; Feast, W.J.; Gardebien, F.; Jonkheijm, P.; Lazzaroni, R.; Leclère, P.E.L.G.; Meijer, E.W.; Schenning, A.P.H.J.

    2006-01-01

    The synthesis, characterization, and self-assembly in butanol of a series of well-defined ,'-linked quinqui-, sexi-, and septithiophenes substituted, via ester links at their termini, by chiral oligo(ethylene oxide) chains carrying an alpha, beta, delta, and epsilon methyl, respectively, are

  9. Principal chiral model on superspheres

    International Nuclear Information System (INIS)

    Mitev, V.; Schomerus, V.; Quella, T.

    2008-09-01

    We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S 3 vertical stroke 2 , we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)

  10. Siegel's chiral boson and the chiral Schwinger model

    International Nuclear Information System (INIS)

    Berger, T.

    1992-01-01

    In this paper Siegel's proposal for a Lagrangian formulation of a chiral boson is analyzed by applying recent results on 2d chiral quantum gravity. A model is derived whose solution consists of a massive scalar and two massless chiral scalars. Therefore it is a minimally bosonized two-fermion chiral Schwinger model

  11. Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities.

  12. Higher (odd dimensional quantum Hall effect and extended dimensional hierarchy

    Directory of Open Access Journals (Sweden)

    Kazuki Hasebe

    2017-07-01

    Full Text Available We demonstrate dimensional ladder of higher dimensional quantum Hall effects by exploiting quantum Hall effects on arbitrary odd dimensional spheres. Non-relativistic and relativistic Landau models are analyzed on S2k−1 in the SO(2k−1 monopole background. The total sub-band degeneracy of the odd dimensional lowest Landau level is shown to be equal to the winding number from the base-manifold S2k−1 to the one-dimension higher SO(2k gauge group. Based on the chiral Hopf maps, we clarify the underlying quantum Nambu geometry for odd dimensional quantum Hall effect and the resulting quantum geometry is naturally embedded also in one-dimension higher quantum geometry. An origin of such dimensional ladder connecting even and odd dimensional quantum Hall effects is illuminated from a viewpoint of the spectral flow of Atiyah–Patodi–Singer index theorem in differential topology. We also present a BF topological field theory as an effective field theory in which membranes with different dimensions undergo non-trivial linking in odd dimensional space. Finally, an extended version of the dimensional hierarchy for higher dimensional quantum Hall liquids is proposed, and its relationship to quantum anomaly and D-brane physics is discussed.

  13. Two-chiral-component microemulsion electrokinetic chromatography-chiral surfactant and chiral oil: part 1. dibutyl tartrate.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-06-01

    The first simultaneous use of a chiral surfactant and a chiral oil for microemulsion EKC (MEEKC) is reported. Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and dibutyl tartrate (D, L, or racemic, 1.23% v/v) were examined as chiral pseudostationary phases (PSPs) for the separation of six pairs of pharmaceutical enantiomers: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Subtle differences were observed for three chromatographic figures of merit (alpha(enant), alpha(meth), k) among the chiral microemulsions; a moderate difference was observed for efficiency (N) and elution range. Dual-chirality microemulsions provided both the largest and smallest enantioselectivities, due to small positive and negative synergies between the chiral microemulsion components. For the ephedrine family of compounds, dual-chiral microemulsions with surfactant and oil in opposite stereochemical configurations provided higher enantioselectivities than the single-chiral component microemulsion (RXX), whereas dual-chiral microemulsions with surfactant and oil in the same stereochemical configurations provided lower enantioselectivities than RXX. Slight to moderate enantioselective synergies were confirmed using a thermodynamic model. Efficiencies observed with microemulsions comprised of racemic dibutyl tartrate or dibutyl-D-tartrate were significantly higher than those obtained with dibutyl-L-tartrate, with an average difference in plate count of about 25 000. Finally, one two-chiral-component microemulsion (RXS) provided significantly better resolution than the remaining one- and two-chiral-component microemulsions for the ephedrine-based compounds, but only slightly better or equivalent resolution for non-ephedrine compounds.

  14. Decays of a NMSSM CP-odd Higgs in the low-mass region

    Energy Technology Data Exchange (ETDEWEB)

    Domingo, Florian [Instituto de Física Teórica (UAM/CSIC), Universidad Autónoma de Madrid,Cantoblanco, E-28049 Madrid (Spain); Instituto de Física de Cantabria (CSIC-UC),E-39005 Santander (Spain)

    2017-03-09

    A popular regime in the NMSSM parameter space involves a light CP-odd Higgs A{sub 1}. This scenario has consequences for e.g. light singlino Dark Matter annihilating in the A{sub 1}-funnel. In order to confront the pseudoscalar to experimental limits such as flavour observables, Upsilon decays or Beam-Dump experiments, it is necessary to control the interactions of this particle with hadronic matter and derive the corresponding decays. The partonic description cannot be relied upon for masses close to m{sub A{sub 1}}∼1 GeV and we employ a chiral lagrangian, then extended to a spectator model for somewhat larger masses, to describe the interplay of the CP-odd Higgs with hadrons. Interestingly, a mixing can develop between A{sub 1} and neutral pseudoscalar mesons, leading to substantial hadronic decays and a coupling of A{sub 1} to the chiral anomaly. Additionally, quartic A{sub 1}-meson couplings induce tri-meson decays of the Higgs pseudoscalar. We investigate these effects and propose an estimate of the Higgs widths for masses below m{sub A{sub 1}}≲3 GeV. While we focus on the case of the NMSSM, our results are applicable to a large class of models.

  15. Deeply Virtual Compton Scattering Studies at Jefferson Lab

    International Nuclear Information System (INIS)

    Sabatie, F.

    2010-11-01

    This document describes the early experimental effort at Jefferson Lab to unravel the Generalized Parton Distributions (GPD), using the Deeply Virtual Compton Scattering (DVCS) process. The GPDs contain the usual form factors and parton distribution functions, but in addition, they include correlations between states of different longitudinal and transverse momenta. They therefore give access to a three-dimensional picture of the nucleon. DVCS is the cleanest process allowing to extract GPDs, and as early as 2000, a number of experiments were proposed for this purpose. The results of the first exploratory experiments are presented as well as the first measurements of linear combinations of GPDs. In addition, a thorough discussion on the insights gained from these early experiments is proposed, linked with the theoretical tools used to extract GPDs from DVCS data. Finally, improvements on what was done for this first experimental phase are proposed and discussed, and new proposals and measurements are described. (author)

  16. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  17. One-hadron transverse spin effects on a proton target at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Adolph, Christoph

    2013-02-19

    The nucleon spin structure on quark level can be described at leading twist by three quark distribution functions, when the contribution of the transverse momentum of the quarks is ignored. The unpolarized distribution function f(x) describes the probability of finding a quark with a momentum fraction x of the nucleon momentum. The helicity distribution function g(x) gives the difference in probability of finding quarks with momentum fraction x with spins parallel and antiparallel to the nucleon spin inside a longitudinally polarized nucleon. The last one, the so-called transversity distribution function h(x), describes the difference in probability of finding quarks with momentum fraction x with spins parallel and antiparallel to the nucleon spin inside a transversely polarized nucleon. The distribution functions f(x) and g(x) have been investigated for almost four decades, while h(x) is still mostly unknown. Due to its chiral-odd nature, it cannot be accessed in inclusive deep-inelastic scattering (DIS), but it can be measured in semi inclusive deep inelastic scattering (SIDIS) of leptons off a transversely polarized nucleon target, where it leads in combination with the so-called Collins fragmentation function H {sup perpendicular} {sup to} {sub 1} to an azimuthal asymmetry in the distribution of the hadrons produced. If additionally the transverse momentum of the quarks is taken into account, eight distribution functions are needed at leading order to describe the structure of the nucleon. For a transversely polarized nucleon target the Sivers effect is of special interest, as it describes the fragmentation of an unpolarized quark inside a transversely polarized target nucleon, which can be measured as an asymmetry in the azimuthal distribution of the hadrons produced. Parameterizing the SIDIS cross section up to twist-three leads to 18 structure functions of which eight depend on a transversely polarized target. Four of the eight are connected to leading order

  18. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks.

    Science.gov (United States)

    Das, Saikat; Xu, Shixian; Ben, Teng; Qiu, Shilun

    2018-05-16

    Endowed with chiral channels and pores, chiral metal-organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality-enriched MOFs with accessible pores. The ability of the materials to form host-guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed-matrix membranes (MMMs) composed of chirality-enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton and a resulting model-dependent constraint on the total angular momentum of quarks in the nucleon

    International Nuclear Information System (INIS)

    Ye, Zhenyu

    2007-02-01

    In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)

  20. Transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton and a resulting model-dependent constraint on the total angular momentum of quarks in the nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Zhenyu

    2007-02-15

    In this thesis we report on the rst results on the transverse target-spin asymmetry associated with deeply virtual Compton scattering on the proton. It is shown that this asymmetry can provide one of the rare possibilities to access the Generalized Parton Distribution (GPD) E of the nucleon, and thus, through models for E, also to the total angular momentum of u and d quarks in the nucleon. The measurement was performed using the 27.6 GeV positron beam of the HERA storage ring and the transversely polarized hydrogen target of the HERMES experiment at DESY. The two leading azimuthal amplitudes of the asymmetry are extracted from the HERMES 2002-2004 data, corresponding to an integrated luminosity of 65.3 pb.1. By comparing the results obtained at HERMES and theoretical predictions based on a phenomenological model of GPDs, we obtain a model-dependent constraint on the total angular momentum of quarks in the nucleon. (orig.)

  1. Chiral solitons in spinor polariton rings

    Science.gov (United States)

    Zezyulin, D. A.; Gulevich, D. R.; Skryabin, D. V.; Shelykh, I. A.

    2018-04-01

    We consider theoretically one-dimensional polariton ring accounting for both longitudinal-transverse (TE-TM) and Zeeman splittings of spinor polariton states and spin-dependent polariton-polariton interactions. We present a class of solutions in the form of the localized defects rotating with constant angular velocity and analyze their properties for realistic values of the parameters of the system. We show that the effects of the geometric phase arising from the interplay between the external magnetic field and the TE-TM splitting introduce chirality in the system and make solitons propagating in clockwise and anticlockwise directions nonequivalent. This can be interpreted as a solitonic analog of the Aharonov-Bohm effect.

  2. Higher Spin Superfield Interactions with the Chiral Supermultiplet: Conserved Supercurrents and Cubic Vertices

    Directory of Open Access Journals (Sweden)

    Ioseph L. Buchbinder

    2018-01-01

    Full Text Available We investigate cubic interactions between a chiral superfield and higher spin superfields corresponding to irreducible representations of the 4 D , N = 1 super-Poincaré algebra. We do this by demanding an invariance under the most general transformation, linear in the chiral superfield. Following Noether’s method we construct an infinite tower of higher spin supercurrent multiplets which are quadratic in the chiral superfield and include higher derivatives. The results are that a single, massless, chiral superfield can couple only to the half-integer spin supermultiplets ( s + 1 , s + 1 / 2 and for every value of spin there is an appropriate improvement term that reduces the supercurrent multiplet to a minimal multiplet which matches that of superconformal higher spins. On the other hand a single, massive, chiral superfield can couple only to higher spin supermultiplets of type ( 2 l + 2 , 2 l + 3 / 2 (only odd values of s, s = 2 l + 1 and there is no minimal multiplet. Furthermore, for the massless case we discuss the component level higher spin currents and provide explicit expressions for the integer and half-integer spin conserved currents together with a R-symmetry current.

  3. Chiral Spirals from Discontinuous Chiral Symmetry

    Science.gov (United States)

    Kojo, Toru

    2014-09-01

    Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. NSF Grants PHY09-69790, PHY13-05891.

  4. Time reversal odd effects in semi-inclusive deep inelastic scattering

    International Nuclear Information System (INIS)

    Schlegel, M.

    2006-04-01

    In this thesis the semi-iclusive deep inelastic scattering l+h→l'+h+X is studied in the framework of the parton model. Especially sum rules are checked which contain transverse-momentum dependent parton distributions. Furthermore the influence of T-odd effects on the subleading order of a twist expansion are investigated. (HSI)

  5. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A.

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  6. Chiral nanophotonics chiral optical properties of plasmonic systems

    CERN Document Server

    Schäferling, Martin

    2017-01-01

    This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .

  7. Transverse spin effect: A means to probe photinos

    Energy Technology Data Exchange (ETDEWEB)

    Mekhfi, M. (International Centre for Theoretical Physics, Trieste (Italy))

    1991-12-02

    We consider the e{sup +}e{sup -} system in storage rings with its natural polarization being transverse to the beam direction. We ristrict the analysis to neutrino-like events {nu} (neutrino), {nu}tilde (neutrino), {gamma}tilde (photino) and propose to measure the associated transverse spin asymmetry. We prove that for s >> 4m{sup 2} sub({nu}tilde), photino production is the unique channel which leads to non-vanishing transverse asymmetry. The {nu} ({nu}tilde) in contrast does not contribute through W{sup -} (W{sup t}ilde) exchange due to chirality while for the Z-boson exchange the {nu} and its supersymmetric partner {nu}tilde, contribute equal amounts but with opposite signs in a way similar to that encountered in SUSY-GUTS (hierarchy problem), and hence give a net vanishing result. Using recent limits on the sneutrino mass, we set up the minimum value of {radical}s above which one may expept the photino to dominate over the neutrino. Also we give a qualitative estimate of the asymmetry and find that it is within the actual precision of such experiments. In this respect transverse asymmetry measurements when restricted to the proposed class of events are a possible probe to new physics beyond the standard model. (orig.).

  8. Amplitude ratios in ρ0 leptoproductions and GPDs

    Directory of Open Access Journals (Sweden)

    Goloskokov S.V.

    2017-01-01

    Using the model results we calculate the ratio of different helicity amplitudes for a transversely polarized proton target to the leading twist longitudinal amplitude. Our results are close to the amplitude ratios measured by HERMES.

  9. Momentum transfer dependence of generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Neetika [Indian Institute of Science Education and Research Mohali, S.A.S. Nagar, Punjab (India)

    2016-11-15

    We revisit the model for parametrization of the momentum dependence of nucleon generalized parton distributions in the light of recent MRST measurements of parton distribution functions (A.D. Martin et al., Eur. Phys. J. C 63, 189 (2009)). Our parametrization method with a minimum set of free parameters give a sufficiently good description of data for Dirac and Pauli electromagnetic form factors of proton and neutron at small and intermediate values of momentum transfer. We also calculate the GPDs for up- and down-quarks by decomposing the electromagnetic form factors for the nucleon using the charge and isospin symmetry and also study the evolution of GPDs to a higher scale. We further investigate the transverse charge densities for both the unpolarized and transversely polarized nucleon and compare our results with Kelly's distribution. (orig.)

  10. Conformal scalar fields and chiral splitting on super Riemann surfaces

    International Nuclear Information System (INIS)

    D'Hoker, E.; Phong, D.H.

    1989-01-01

    We provide a complete description of correlation functions of scalar superfields on a super Riemann surface, taking into account zero modes and non-trivial topology. They are built out of chirally split correlation functions, or conformal blocks at fixed internal momenta. We formulate effective rules which determine these completely in terms of geometric invariants of the super Riemann surface. The chirally split correlation functions have non-trivial monodromy and produce single-valued amplitudes only upon integration over loop momenta. Our discussion covers the even spin structure as well as the odd spin structure case which had been the source of many difficulties in the past. Super analogues of Green's functions, holomorphic spinors, and prime forms emerge which should pave the way to function theory on super Riemann surfaces. In superstring theories, chirally split amplitudes for scalar superfields are crucial in enforcing the GSO projection required for consistency. However one really knew how to carry this out only in the operator formalism to one-loop order. Our results provide a way of enforcing the GSO projection to any loop. (orig.)

  11. Thermodynamics and CP-odd transport in holographic QCD with finite magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Drwenski, Tara; Gürsoy, Umut [Institute for Theoretical Physics, Utrecht University,Leuvenlaan 4, 3584 CE Utrecht (Netherlands); Iatrakis, Ioannis [Department of Physics and Astronomy, Stony Brook University,Stony Brook, New York 11794-3800 (United States)

    2016-12-13

    We consider a bottom-up holographic model of QCD at finite temperature T and magnetic field B, and study dependence of thermodynamics and CP-odd transport on these variables. As the magnetic field couples to the flavor sector only, one should take the Veneziano limit where the number of flavors and colors are large while their ratio is kept fixed. We investigate the corresponding holographic background in the approximation where the ratio of flavors to colors is finite but small. We demonstrate that B-dependence of the entropy of QCD is in qualitative agreement with the recent lattice studies. Finally we study the CP-odd transport properties of this system. In particular, we determine the Chern-Simons decay rate at finite B and T, that is an important ingredient in the Chiral Magnetic Effect.

  12. Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates

    NARCIS (Netherlands)

    Helmich, F.A.; Lee, C.C.; Schenning, A.P.H.J.; Meijer, E.W.

    2010-01-01

    Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the

  13. Chiral Cliffs: Investigating the Influence of Chirality on Binding Affinity.

    Science.gov (United States)

    Schneider, Nadine; Lewis, Richard A; Fechner, Nikolas; Ertl, Peter

    2018-05-11

    Chirality is understood by many as a binary concept: a molecule is either chiral or it is not. In terms of the action of a structure on polarized light, this is indeed true. When examined through the prism of molecular recognition, the answer becomes more nuanced. In this work, we investigated chiral behavior on protein-ligand binding: when does chirality make a difference in binding activity? Chirality is a property of the 3D structure, so recognition also requires an appreciation of the conformation. In many situations, the bioactive conformation is undefined. We set out to address this by defining and using several novel 2D descriptors to capture general characteristic features of the chiral center. Using machine-learning methods, we built different predictive models to estimate if a chiral pair (a set of two enantiomers) might exhibit a chiral cliff in a binding assay. A set of about 3800 chiral pairs extracted from the ChEMBL23 database was used to train and test our models. By achieving an accuracy of up to 75 %, our models provide good performance in discriminating chiral cliffs from non-cliffs. More importantly, we were able to derive some simple guidelines for when one can reasonably use a racemate and when an enantiopure compound is needed in an assay. We critically discuss our results and show detailed examples of using our guidelines. Along with this publication we provide our dataset, our novel descriptors, and the Python code to rebuild the predictive models. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Effect of Quark Spins to the Hadron Distributions for Chiral Magnetic Wave in Ultrarelativistic Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Byungsik [Korea University, Seoul (Korea, Republic of)

    2017-07-15

    Topological fluctuation of the gluon field in quantum chromodynamics modifies the vacuum structure, and causes various chiral anomalies. In the strong magnetic field generated by semi-central heavy-ion collisions, the axial and vector density fluctuations propagate along the external magnetic field, called the chiral magnetic wave. Up to now the investigation of the various chiral anomalies in heavy ion collisions has been focussed on the charge distribution in the transverse plane. However, this paper points out that the information on the charge distribution is not enough and the spin effect should also be taken into account. Considering the charge and spin distributions together, π{sup ±} with spin 0 are not proper particle species to study the chiral anomalies, as the signal may be significantly suppressed as one of the constituent (anti)quarks should come from background to form the pseudoscalar states. It is, therefore, necessary to analyze explicitly the vector mesons with spin 1 (K⋆{sup ±} (892)) and baryons with spin 3/2 (Δ{sup ++}(1232), Σ{sup −} (1385) and Ω{sup −} ). If the chiral anomaly effects exist, the elliptic flow parameter is expected to be larger for negative particles for each particle species.

  15. Non-uniform chiral phase in effective chiral quark models

    International Nuclear Information System (INIS)

    Sadzikowski, M.; Broniowski, W.

    2000-01-01

    We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)

  16. Insight into the chiral induction in supramolecular stacks through preferential chiral salvation

    NARCIS (Netherlands)

    George, S.J.; Tomovic, Z.; Schenning, A.P.H.J.; Meijer, E.W.

    2011-01-01

    Preferred handedness in the supramolecular chirality of self-assembled achiral oligo(p-phenylenevinylene) (OPV) derivatives is induced by chiral solvents and spectroscopic probing provides insight into the mechanistic aspects of this chiral induction through chiral solvation

  17. Autoamplification of molecular chirality through the induction of supramolecular chirality

    NARCIS (Netherlands)

    van Dijken, Derk Jan; Beierle, John M.; Stuart, Marc C. A.; Szymanski, Wiktor; Browne, Wesley R.; Feringa, Ben L.

    2014-01-01

    The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring-open diarylethenes is doped with a small amount of their chiral, ring-closed counterpart. The

  18. Active chiral fluids.

    Science.gov (United States)

    Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F

    2012-09-01

    Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.

  19. Vibrational-rotational model of odd-odd nuclei

    International Nuclear Information System (INIS)

    Afanas'ev, A.V.; Guseva, T.V.; Tamberg, Yu.Ya.

    1988-01-01

    The rotational vibrational (RV) model of odd nuclei is generalized to odd-odd nuclei. The hamiltonian, wave functions and matrix elements of the RV-model of odd-odd nuclei are obtained. The expressions obtained for matrix elements of the RV-model of odd-odd nuclei can be used to study the role of vibrational additions in low-lying two-particle states of odd-odd deformed nuclei. Such calculations permit to study more correctly the residual neutron-proton interaction of valent nucleons with respect to collectivization effects

  20. Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis

    Directory of Open Access Journals (Sweden)

    Mireia Oromí-Farrús

    2012-01-01

    Full Text Available The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α=3.00 and 2-hexyl acetates (α=1.95. This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC.

  1. Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis.

    Science.gov (United States)

    Oromí-Farrús, Mireia; Torres, Mercè; Canela, Ramon

    2012-01-01

    The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α = 3.00) and 2-hexyl acetates (α = 1.95). This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC.

  2. Weak ωNN coupling in the non-linear chiral model

    International Nuclear Information System (INIS)

    Shmatikov, M.

    1988-01-01

    In the non-linear chiral model with the soliton solution stabilized by the ω-meson field the weak ωNN coupling constants are calculated. Applying the vector dominance model for the isoscalar current the constant of the isoscalar P-odd ωNN interaction h ω (0) =0 is obtained while the constant of the isovector (of the Lagrangian of the ωNN interaction proves to be h ω (1) ≅ 1.0x10 -7

  3. Nucleon structure in the chiral regime with domain wall fermions on an improved staggered sea

    International Nuclear Information System (INIS)

    R.G. Edwards; G. Fleming; Ph. Hagler; J.W. Negele; K. Orginos; A.V. Pochinsky; D.B. Renner; D.G. Richards; W. Schroers

    2006-01-01

    Moments of unpolarized, helicity, and transversity distributions, electromagnetic form factors, and generalized form factors of the nucleon are presented from a preliminary analysis of lattice results using pion masses down to 359 MeV. The twist two matrix elements are calculated using a mixed action of domain wall valence quarks and asqtad staggered sea quarks and are renormalized perturbatively. Several observables are extrapolated to the physical limit using chiral perturbation theory. Results are compared with experimental moments of quark distributions and electromagnetic form factors and phenomenologically determined generalized form factors, and the implications on the transverse structure and spin content of the nucleon are discussed

  4. Spin-frustrated V3 and Cu3 nanomagnets with Dzialoshinsky-Moriya exchange. 2. Spin structure, spin chirality and tunneling gaps

    International Nuclear Information System (INIS)

    Belinsky, Moisey I.

    2009-01-01

    The spin chirality and spin structure of the Cu 3 and V 3 nanomagnets with the Dzialoshinsky-Moriya (DM) exchange interaction are analyzed. The correlations between the vector κ and the scalar χ chirality are obtained. The DM interaction forms the spin chirality which is equal to zero in the Heisenberg clusters. The dependences of the spin chirality on magnetic field and deformations are calculated. The cluster distortions reduce the spin chirality. The vector chirality is reduced partially and the scalar chirality vanishes in the transverse magnetic field. In the isosceles clusters, the DM exchange and distortions determine the sign and degree of the spin chirality κ. The correlations between the chirality parameters κ n and the intensities of the EPR and INS transitions are obtained. The vector chirality κ n describes the spin chirality of the Cu 3 and V 3 nanomagnets, the scalar chirality describes the pseudoorbital moment of the DM cluster. It is shown that in the consideration of the DM exchange, the spin states DM mixing and tunneling gaps at level crossing fields depend on the coordinate system of the DM model. The calculations in the DM exchange models in the right-handed and left-handed frame show opposite magnetic behavior at the level crossing field and allow to explain the opposite schemes of the tunneling gaps and levels crossing, which have been obtained in different treatments. The results of the DM model in the right-handed frame are consistent with the results of the group-theoretical analysis, whereas the results in the left-handed frame are inconsistent with that. The correlations between the spin chirality of the ground state and tunneling gaps at the level crossing field are obtained for the equilateral and isosceles nanoclusters.

  5. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2010-04-23

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  6. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    International Nuclear Information System (INIS)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui; Du Yu

    2010-01-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  7. A Kaluza–Klein inspired action for chiral p-forms and their anomalies

    International Nuclear Information System (INIS)

    Bonetti, Federico; Grimm, Thomas W.; Hohenegger, Stefan

    2013-01-01

    The dynamics of chiral p-forms can be captured by a lower-dimensional parity-violating action motivated by a Kaluza–Klein reduction on a circle. The massless modes are (p−1)-forms with standard kinetic terms and Chern–Simons couplings to the Kaluza–Klein vector of the background metric. The massive modes are p-forms charged under the Kaluza–Klein vector and admit parity-odd first-order kinetic terms. Gauge invariance is implemented by a Stückelberg-like mechanism using (p−1)-forms. A Chern–Simons term for the Kaluza–Klein vector is generated at one loop by massive p-form modes. These findings are shown to be consistent with anomalies and supersymmetry for six-dimensional supergravity theories with chiral tensor multiplets

  8. Chiral discotics; expression and amplification of chirality

    NARCIS (Netherlands)

    Brunsveld, L.; Meijer, E.W.; Rowan, A.E.; Nolte, R.J.M.; Denmark, S.E.; Nolte, R.J.M.; Meijer, E.W.

    2003-01-01

    In this contribution, chirality and discotic liquid crystals are discussed as a tool for studying the self-assembly of these molecules, both in solution and in the solid state. Therefore, the objective of this chapter is to summarize and elucidate how molecular chirality can be expressed in discotic

  9. Odd-parity light baryon resonances

    International Nuclear Information System (INIS)

    Gamermann, D.; Garcia-Recio, C.; Salcedo, L. L.; Nieves, J.

    2011-01-01

    We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T matrix for meson-baryon scattering in the s wave. The building blocks of the scheme are the π and N octets, the ρ nonet and the Δ decuplet. We identify poles in this unitary T matrix and interpret them as resonances. We study here the nonexotic sectors with strangeness S=0, -1, -2, -3 and spin J=(1/2), (3/2) and (5/2). Many of the poles generated can be associated with known N, Δ, Σ, Λ, Ξ and Ω resonances with negative parity. We show that most of the low-lying three and four star odd-parity baryon resonances with spin (1/2) and (3/2) can be related to multiplets of the spin-flavor symmetry group SU(6). This study allows us to predict the spin-parity of the Ξ(1620), Ξ(1690), Ξ(1950), Ξ(2250), Ω(2250) and Ω(2380) resonances, which have not been determined experimentally yet.

  10. Chiral supramolecular organization from a sheet-like achiral gel: a study of chiral photoinduction.

    Science.gov (United States)

    Royes, Jorge; Polo, Víctor; Uriel, Santiago; Oriol, Luis; Piñol, Milagros; Tejedor, Rosa M

    2017-05-31

    Chiral photoinduction in a photoresponsive gel based on an achiral 2D architecture with high geometric anisotropy and low roughness has been investigated. Circularly polarized light (CPL) was used as a chiral source and an azobenzene chromophore was employed as a chiral trigger. The chiral photoinduction was studied by evaluating the preferential excitation of enantiomeric conformers of the azobenzene units. Crystallographic data and density functional theory (DFT) calculations show how chirality is transferred to the achiral azomaterials as a result of the combination of chiral photochemistry and supramolecular interactions. This procedure could be applied to predict and estimate chirality transfer from a chiral physical source to a supramolecular organization using different light-responsive units.

  11. Chiral measurements with the Fixed-Point Dirac operator and construction of chiral currents

    International Nuclear Information System (INIS)

    Hasenfratz, P.; Hauswirth, S.; Holland, K.; Joerg, T.; Niedermayer, F.

    2002-01-01

    In this preliminary study, we examine the chiral properties of the parametrized Fixed-Point Dirac operator D FP , see how to improve its chirality via the Overlap construction, measure the renormalized quark condensate Σ-circumflex and the topological susceptibility χ t , and investigate local chirality of near zero modes of the Dirac operator. We also give a general construction of chiral currents and densities for chiral lattice actions

  12. Effects of chirality and surface stresses on the bending and buckling of chiral nanowires

    International Nuclear Information System (INIS)

    Wang, Jian-Shan; Shimada, Takahiro; Kitamura, Takayuki; Wang, Gang-Feng

    2014-01-01

    Due to their superior optical, elastic and electrical properties, chiral nanowires have many applications as sensors, probes, and building blocks of nanoelectromechanical systems. In this paper, we develop a refined Euler–Bernoulli beam model for chiral nanowires with surface effects and material chirality incorporated. This refined model is employed to investigate the bending and buckling of chiral nanowires. It is found that surface effects and material chirality significantly affect the elastic behaviour of chiral nanowires. This study is helpful not only for understanding the size-dependent behaviour of chiral nanowires, but also for characterizing their mechanical properties. (paper)

  13. Influence of microemulsion chirality on chromatographic figures of merit in EKC: results with novel three-chiral-component microemulsions and comparison with one- and two-chiral-component microemulsions.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    Novel microemulsion formulations containing all chiral components are described for the enantioseparation of six pairs of pharmaceutical enantiomers (atenolol, ephedrine, metoprolol, N-methyl ephedrine, pseudoephedrine, and synephrine). The chiral surfactant dodecoxycarbonylvaline (DDCV, R- and S-), the chiral cosurfactant S-2-hexanol, and the chiral oil diethyl tartrate (R- and S-) were combined to create four different chiral microemulsions, three of which were stable. Results obtained for enantioselectivity, efficiency, and resolution were compared for the triple-chirality systems and the single-chirality system that contained chiral surfactant only. Improvements in enantioselectivity and resolution were achieved by simultaneously incorporating three chiral components into the aggregate. The one-chiral-component microemulsion provided better efficiencies. Enantioselective synergies were identified for the three-chiral-component nanodroplets using a thermodynamic model. Additionally, two types of dual-chirality systems, chiral surfactant/chiral cosurfactant and chiral surfactant/chiral oil, were examined in terms of chromatographic figures of merit, with the former providing much better resolution. The two varieties of two-chiral-component microemulsions gave similar values for enantioselectivity and efficiency. Lastly, the microemulsion formulations were divided into categories based on the number of chiral microemulsion reagents and the average results for each pair of enantiomers were analyzed for trends. In general, enantioselectivity and resolution were enhanced while efficiency was decreased as more chiral components were used to create the pseudostationary phase (PSP).

  14. Chiral heat wave and mixing of magnetic, vortical and heat waves in chiral media

    International Nuclear Information System (INIS)

    Chernodub, M.N.

    2016-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective mode associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This mode, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. The coupling of the Chiral Magnetic and Chiral Vortical Waves is also demonstrated. We find that the coupled waves — which are coherent fluctuations of the vector, axial and energy currents — have generally different velocities compared to the velocities of the individual waves.

  15. Chiral polarization scale of QCD vacuum and spontaneous chiral symmetry breaking

    International Nuclear Information System (INIS)

    Alexandru, Andrei; Horv, Ivan

    2013-01-01

    It has recently been found that dynamics of pure glue QCD supports the low energy band of Dirac modes with local chiral properties qualitatively different from that of a bulk: while bulk modes suppress chirality relative to statistical independence between left and right, the band modes enhance it. The width of such chirally polarized zone – chiral polarization scale bigwedge ch – has been shown to be finite in the continuum limit at fixed physical volume. Here we present evidence that bigwedge ch remains non-zero also in the infinite volume, and is therefore a dynamical scale in the theory. Our experiments in N f = 2+1 QCD support the proposition that the same holds in the massless limit, connecting bigwedge ch to spontaneous chiral symmetry breaking. In addition, our results suggest that thermal agitation in quenched QCD destroys both chiral polarization and condensation of Dirac modes at the same temperature T ch > T c .

  16. Chiral Induction with Chiral Conformational Switches in the Limit of Low "Sergeants to Soldiers" Ratio

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli; Bombis, Christian; Knudsen, Martin Markvard

    2014-01-01

    Molecular-level insights into chiral adsorption phenomena are highly relevant within the fields of asymmetric heterogeneous catalysis or chiral separation and may contribute to understand the origins of homochirality in nature. Here, we investigate chiral induction by the "sergeants and soldiers......" mechanism for an oligo(phenylene ethynylene) based chiral conformational switch by coadsorbing it with an intrinsically chiral seed on Au(111). Through statistical analysis of scanning tunneling microscopy (STM) data we demonstrate successful chiral induction with a very low concentration of seeding...... molecules down to 3%. The microscopic mechanism for the observed chiral induction is suggested to involve nucleation of the intrinsically chiral seeds, allowing for effective transfer and amplification of chirality to large numbers of soldier target molecules....

  17. Field-driven sense elements for chirality-dependent domain wall detection and storage

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, S. R. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States); Maryland Nanocenter, University of Maryland, College Park, Maryland 20742 (United States); Unguris, J. [Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, Maryland 20899 (United States)

    2013-12-14

    A method for locally sensing and storing data of transverse domain wall chirality in planar nanowire logic and memory systems is presented. Patterned elements, in close proximity to the nanowires, respond to the asymmetry in the stray field from the domain wall to produce a chirality-dependent response. When a bias field is applied, a stray field-assisted reversal of the element magnetization results in a reversed remanent state, measurable by scanning electron microscopy with polarization analysis (SEMPA). The elements are designed as triangles with tips pointing toward the nanowire, allowing the shape anisotropy to be dominated by the base but having a portion with lower volume and lower energy barrier closest to the domain wall. Micromagnetic modeling assists in the design of the nanowire-triangle systems and experiments using SEMPA confirm the importance of aspect ratio and spacing given a constant bias field magnitude.

  18. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  19. Nonlinear spectroscopic studies of chiral media

    International Nuclear Information System (INIS)

    Belkin, Mikhail Alexandrovich

    2004-01-01

    Molecular chirality plays an important role in chemistry, biology, and medicine. Traditional optical techniques for probing chirality, such as circular dichroism and Raman optical activity rely on electric-dipole forbidden transitions. As a result, their intrinsic low sensitivity limits their use to probe bulk chirality rather than chiral surfaces, monolayers or thin films often important for chemical or biological systems. Contrary to the traditional chirality probes, chiral signal in sum-frequency generation (SFG) is electric-dipole allowed both on chiral surface and in chiral bulk making it a much more promising tool for probing molecular chirality. SFG from a chiral medium was first proposed in 1965, but had never been experimentally confirmed until this thesis work was performed. This thesis describes a set of experiments successfully demonstrating that chiral SFG responses from chiral monolayers and liquids are observable. It shows that, with tunable inputs, SFG can be used as a sensitive spectroscopic tool to probe chirality in both electronic and vibrational resonances of chiral molecules. The monolayer sensitivity is feasible in both cases. It also discusses the relevant theoretical models explaining the origin and the strength of the chiral signal in vibrational and electronic SFG spectroscopies

  20. Silver Films with Hierarchical Chirality.

    Science.gov (United States)

    Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai

    2017-07-17

    Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Dynamical symmetries for odd-odd nuclei

    International Nuclear Information System (INIS)

    Balantekin, A.B.

    1986-01-01

    Recent work for developing dynamical symmetries and supersymmetries is reviewed. An accurate description of odd-odd nuclei requires inclusion of the fermion-fermion force (the residual interaction) and the distinguishing of fermion configurations which are particle like and those which are hole like. A parabolic dependence of the proton-neutron multiplet in odd-odd nuclei is demonstrated. It is shown that a group structure for Bose-Fermi symmetries can be embedded in a supergroup. These methods are used to predict level schemes for Au-196 and Au-198. 11 refs., 3 figs

  2. Propagation of Electromagnetic Waves in Slab Waveguide Structure Consisting of Chiral Nihility Claddings and Negative-Index Material Core Layer

    Science.gov (United States)

    Helal, Alaa N. Abu; Taya, Sofyan A.; Elwasife, Khitam Y.

    2018-06-01

    The dispersion equation of an asymmetric three-layer slab waveguide, in which all layers are chiral materials is presented. Then, the dispersion equation of a symmetric slab waveguide, in which the claddings are chiral materials and the core layer is negative index material, is derived. Normalized cut-off frequencies, field profile, and energies flow of right-handed and left-handed circularly polarized modes are derived and plotted. We consider both odd and even guided modes. Numerical results of guided low-order modes are provided. Some novel features, such as abnormal dispersion curves, are found.

  3. Odd things, in odd places, in odd races | Ferndale | South African ...

    African Journals Online (AJOL)

    Odd things, in odd places, in odd races. L Ferndale, R Wise, S R Thomson. Abstract. No Abstract. South African Gastroenterology Vol. 5 (3) 2007: pp. 9-12. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT · http://dx.doi.org/10.4314/sagr.v5i3.30737 · AJOL African Journals ...

  4. Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS2 Nanostructures.

    Science.gov (United States)

    Purcell-Milton, Finn; McKenna, Robert; Brennan, Lorcan J; Cullen, Conor P; Guillemeney, Lilian; Tepliakov, Nikita V; Baimuratov, Anvar S; Rukhlenko, Ivan D; Perova, Tatiana S; Duesberg, Georg S; Baranov, Alexander V; Fedorov, Anatoly V; Gun'ko, Yurii K

    2018-02-27

    Two-dimensional (2D) nanomaterials have been intensively investigated due to their interesting properties and range of potential applications. Although most research has focused on graphene, atomic layered transition metal dichalcogenides (TMDs) and particularly MoS 2 have gathered much deserved attention recently. Here, we report the induction of chirality into 2D chiral nanomaterials by carrying out liquid exfoliation of MoS 2 in the presence of chiral ligands (cysteine and penicillamine) in water. This processing resulted in exfoliated chiral 2D MoS 2 nanosheets showing strong circular dichroism signals, which were far past the onset of the original chiral ligand signals. Using theoretical modeling, we demonstrated that the chiral nature of MoS 2 nanosheets is related to the presence of chiral ligands causing preferential folding of the MoS 2 sheets. There was an excellent match between the theoretically calculated and experimental spectra. We believe that, due to their high aspect ratio planar morphology, chiral 2D nanomaterials could offer great opportunities for the development of chiroptical sensors, materials, and devices for valleytronics and other potential applications. In addition, chirality plays a key role in many chemical and biological systems, with chiral molecules and materials critical for the further development of biopharmaceuticals and fine chemicals, and this research therefore should have a strong impact on relevant areas of science and technology such as nanobiotechnology, nanomedicine, and nanotoxicology.

  5. Chiral ward-Takahashi identities at finite temperature and chiral phase transition in (2+1) dimensional chiral Gross-Neveu model

    International Nuclear Information System (INIS)

    Shen Kun; Qiu Zhongping

    1993-01-01

    Chiral Ward-Takahashi identities at finite temperature are derived in (2+1) dimensional chiral Gross-Neveu model. In terms of these identities, fermion mass generation and the mass spectra of bound states are investigate at finite temperature. Taking the fermion mass as an order parameter, the authors discuss the phase structure and chiral phase transition and obtain the critical temperature

  6. Leading twist nuclear shadowing, nuclear generalized parton distributions and nuclear DVCS at small x

    Energy Technology Data Exchange (ETDEWEB)

    Guzey, Vadim; Goeke, Klaus; Siddikov, Marat

    2009-01-01

    We generalize the leading twist theory of nuclear shadowing and calculate quark and gluon generalized parton distributions (GPDs) of spinless nuclei. We predict very large nuclear shadowing for nuclear GPDs. In the limit of the purely transverse momentum transfer, our nuclear GPDs become impact parameter dependent nuclear parton distributions (PDFs). Nuclear shadowing induces non-trivial correlations between the impact parameter $b$ and the light-cone fraction $x$. We make predictions for the deeply virtual Compton scattering (DVCS) amplitude and the DVCS cross section on $^{208}$Pb at high energies. We calculate the cross section of the Bethe-Heitler (BH) process and address the issue of the extraction of the DVCS signal from the $e A \\to e \\gamma A$ cross section. We find that the $e A \\to e \\gamma A$ differential cross section is dominated by DVCS at the momentum transfer $t$ near the minima of the nuclear form factor. We also find that nuclear shadowing leads

  7. Transverse intrinsic localized modes in monatomic chain and in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Hizhnyakov, V. [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia); Klopov, M. [Department of Physics, Faculty of Science, Tallinn University of Technology, Ehitajate 5, 19086 Tallinn (Estonia); Shelkan, A., E-mail: shell@ut.ee [Institute of Physics, University of Tartu, Ravila 14c, 50411 Tartu (Estonia)

    2016-03-06

    In this paper an analytical and numerical study of anharmonic vibrations of monatomic chain and graphene in transverse (perpendicular) with respect to the chain/plane direction is presented. Due to the lack of odd anharmonicities and presence of hard quartic anharmonicity for displacements in this direction, there may exist localized anharmonic transverse modes with the frequencies above the spectrum of the corresponding phonons. Although these frequencies are in resonance with longitudinal (chain) or in-plane (graphene) phonons, the modes can decay only due to a weak anharmonic process. Therefore the lifetime of these vibrations may be very long. E.g. in the chain, according to our theoretical and numerical calculations it may exceed 10{sup 10} periods. We call these vibrations as transverse intrinsic localized modes. - Highlights: • In a stretched monatomic chain, long-living nonlinear transverse localized modes may exist. • Transverse vibrations of a chain slowly decay due to creation of longitudinal phonons. • Lifetime of transverse vibrations of a chain may exceed billion periods of vibrations. • In stretched graphene, long-living out-of-plain localized vibrations may exist.

  8. Random interactions, isospin, and the ground states of odd-A and odd-odd nuclei

    International Nuclear Information System (INIS)

    Horoi, Mihai; Volya, Alexander; Zelevinsky, Vladimir

    2002-01-01

    It was recently shown that the ground state quantum numbers of even-even nuclei have a high probability to be reproduced by an ensemble of random but rotationally invariant two-body interactions. In the present work we extend these investigations to odd-A and odd-odd nuclei, considering in particular the isospin effects. Studying the realistic shell model as well as the single-j model, we show that random interactions have a tendency to assign the lowest possible total angular momentum and isospin to the ground state. In the sd shell model this reproduces correctly the isospin but not the spin quantum numbers of actual odd-odd nuclei. An odd-even staggering effect in probability of various ground state quantum numbers is present for even-even and odd-odd nuclei, while it is smeared out for odd-A nuclei. The observed regularities suggest the underlying mechanism of bosonlike pairing of fermionic pairs in T=0 and T=1 states generated by the off-diagonal matrix elements of random interactions. The relation to the models of random spin interactions is briefly discussed

  9. Chirality: from QCD to condensed matter

    International Nuclear Information System (INIS)

    Kharzeev, D.

    2015-01-01

    This lecture is about chirality and consists of 4 parts. In the first part a general introduction of chirality is given and its implementation in nuclear and particle physics, in particular the chiral magnetic effect, as well as Chirality in quantum materials (CME, optoelectronics, photonics) are discussed. The 2nd lecture is about the chiral magnetic effect. The 3rd lecture deals with the chiral magnetic effect and hydrodynamics and the last part with chirality and light. (nowak)

  10. Chirality in adsorption on solid surfaces.

    Science.gov (United States)

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral

  11. Chirality in molecular collision dynamics

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  12. Fluxionally chiral DMAP catalysts: kinetic resolution of axially chiral biaryl compounds.

    Science.gov (United States)

    Ma, Gaoyuan; Deng, Jun; Sibi, Mukund P

    2014-10-27

    Can organocatalysts that incorporate fluxional groups provide enhanced selectivity in asymmetric transformations? To address this issue, we have designed chiral 4-dimethylaminopyridine (DMAP) catalysts with fluxional chirality. These catalysts were found to be efficient in promoting the acylative kinetic resolution of secondary alcohols and axially chiral biaryl compounds with selectivity factors of up to 37 and 51, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S. Y. [Department of Physics, Chonbuk National University, 561-756, Jeonbuk (Korea, Republic of); Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States); Christensen, N. D. [Department of Physics, Illinois State University, 61790, Normal, IL (United States); Salmon, D.; Wang, X., E-mail: xiw77@pitt.edu [Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, University of Pittsburgh, 15260, Pittsburgh, PA (United States)

    2015-10-06

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -}→P{sup +}P{sup -}→(ℓ{sup +}D{sup 0})(ℓ{sup -}D{sup -bar0}) at high-energy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -}→P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider.

  14. Photoexcitation circular dichroism in chiral molecules

    Science.gov (United States)

    Beaulieu, S.; Comby, A.; Descamps, D.; Fabre, B.; Garcia, G. A.; Géneaux, R.; Harvey, A. G.; Légaré, F.; Mašín, Z.; Nahon, L.; Ordonez, A. F.; Petit, S.; Pons, B.; Mairesse, Y.; Smirnova, O.; Blanchet, V.

    2018-05-01

    Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.

  15. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu; Yi, Jun; Li, Ming-yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang

    2018-01-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  16. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu

    2018-02-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  17. The new spin physics program of the COMPASS experiment

    Directory of Open Access Journals (Sweden)

    Silva Luís

    2015-01-01

    Full Text Available The COMPASS experiment, at CERN SPS, has been compiling for more than a decade successful and precise results on nucleon structure and hadron spectroscopy, leading to statistical errors much smaller than previously measured. The new COMPASS spin physics program, starting this year, aims to a rather complete nucleon structure description; this new representation goes beyond the collinear approximation by including the quark intrinsic transverse momentum distributions. The theoretical framework, for this new picture of the nucleon, is given by the Transverse Momentum Dependent distributions (TMDs and by the Generalised Parton Distributions (GPDs. The TMDs, in particular Sivers, Boer-Mulders, pretzelosity and transversity functions will be obtained through the polarised Drell-Yan process, for the first time. The results will be complementary to those already obtained via polarised Semi-Inclusive Deep Inelastic Scattering (SIDIS. Also unpolarised SIDIS will be studied, allowing the knowledge improvement of the strange quark PDF and the access to the kaon fragmentation functions (FFs. Deeply Virtual Compton Scattering (DVCS off an unpolarised hydrogen target will be used to study the GPDs, in a kinematic region not yet covered by any existing experiment.

  18. Massive torsion modes, chiral gravity and the Adler-Bell-Jackiw anomaly

    International Nuclear Information System (INIS)

    Chang, Lay Nam; Soo Chopin

    2003-01-01

    Regularization of quantum field theories introduces a mass scale which breaks axial rotational and scaling invariances. We demonstrate from first principles that axial torsion and torsion trace modes have non-transverse vacuum polarization tensors, and become massive as a result. The underlying reasons are similar to those responsible for the Adler-Bell-Jackiw (ABJ) and scaling anomalies. Since these are the only torsion components that can couple minimally to spin-1/2 particles, the anomalous generation of masses for these modes, naturally of the order of the regulator scale, may help to explain why torsion and its associated effects, including CPT violation in chiral gravity, have so far escaped detection. As a simpler manifestation of the reasons underpinning the ABJ anomaly than triangle diagrams, the vacuum polarization demonstration is also pedagogically useful. In addition, it is shown that the teleparallel limit of a Weyl fermion theory coupled only to the left-handed spin connection leads to a counter term which is the Samuel-Jacobson-Smolin action of chiral gravity in four dimensions

  19. Massive torsion modes, chiral gravity and the Adler-Bell-Jackiw anomaly

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Lay Nam [Department of Physics, Virginia Tech., Blacksburg, VA 24061-0435 (United States); Soo Chopin [Department of Physics, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2003-04-07

    Regularization of quantum field theories introduces a mass scale which breaks axial rotational and scaling invariances. We demonstrate from first principles that axial torsion and torsion trace modes have non-transverse vacuum polarization tensors, and become massive as a result. The underlying reasons are similar to those responsible for the Adler-Bell-Jackiw (ABJ) and scaling anomalies. Since these are the only torsion components that can couple minimally to spin-1/2 particles, the anomalous generation of masses for these modes, naturally of the order of the regulator scale, may help to explain why torsion and its associated effects, including CPT violation in chiral gravity, have so far escaped detection. As a simpler manifestation of the reasons underpinning the ABJ anomaly than triangle diagrams, the vacuum polarization demonstration is also pedagogically useful. In addition, it is shown that the teleparallel limit of a Weyl fermion theory coupled only to the left-handed spin connection leads to a counter term which is the Samuel-Jacobson-Smolin action of chiral gravity in four dimensions.

  20. Theoretical Issues

    Energy Technology Data Exchange (ETDEWEB)

    Marc Vanderhaeghen

    2007-04-01

    The theoretical issues in the interpretation of the precision measurements of the nucleon-to-Delta transition by means of electromagnetic probes are highlighted. The results of these measurements are confronted with the state-of-the-art calculations based on chiral effective-field theories (EFT), lattice QCD, large-Nc relations, perturbative QCD, and QCD-inspired models. The link of the nucleon-to-Delta form factors to generalized parton distributions (GPDs) is also discussed.

  1. Effect of diameter and chirality on the structure and electronic properties of BC2N nanotubes

    International Nuclear Information System (INIS)

    Akhavan, Mojdeh; Jalili, Seifollah; Schofield, Jeremy

    2015-01-01

    Highlights: • BC 2 N nanotubes with different diameters and four chirality types are studied. • Two lowest-diameter zigzag BC 2 N tubes are metallic and others are semiconducting. • Band gap of zigzag tubes is more sensitive to diameter compared to armchair tubes. • Even–odd oscillation is observed for the band gap of one kind of zigzag tubes. • The energy and band gap for large-diameter tubes converge to BC 2 N sheet values. - Abstract: Density functional theory calculations are used to investigate a series of BC 2 N nanotubes with a wide range of diameters. Two types of zigzag and two types of armchair nanotubes are studied to survey the effect of diameter and chirality on energetics and electronic properties of nanotubes. Two nanotubes are found to be metallic and others show semiconducting behavior. The diameter is shown to have a greater impact on the band gap of zigzag nanotubes than those of armchair tubes. (n, 0) zigzag nanotubes show an even–odd band gap oscillation, which can be explained by the electron density distribution of the lowest unoccupied crystalline orbital. The stability of the nanotubes is also assessed using strain energies and it is shown that the strain energy does not depend on nanotube type and chirality. In the limit of large diameters, the geometry and band gap of all nanotubes converge to BC 2 N sheet data

  2. Dual parametrization of the proton generalized parton distribution functions H and E, and description of the deeply virtual Compton scattering cross sections and asymmetries

    International Nuclear Information System (INIS)

    Guzey, V.; Teckentrup, T.

    2006-01-01

    We develop the minimal model of a new leading order parametrization of generalized parton distributions (GPDs) introduced by Polyakov and Shuvaev. The model for GPDs H and E is formulated in terms of the forward quark distributions, the Gegenbauer moments of the D-term, and the forward limit of the GPD E. The model is designed primarily for small and medium-size values of x B , x B ≤0.2. We examine two different models of the t dependence of the GPDs: the factorized exponential model and the nonfactorized Regge-motivated model. Using our model, we successfully described the deeply virtual Compton scattering (DVCS) cross section measured by H1 and ZEUS, the moments of the beam-spin A LU sinφ , the beam-charge A C cosφ , and the transversely polarized target A UT sinφcosφ DVCS asymmetries measured by HERMES and A LU sinφ measured by CLAS. The data on A C cosφ prefer the Regge-motivated model of the t dependence of the GPDs. The data on A UT sinφcosφ indicate that the u and d quarks carry only a small fraction of the proton total angular momentum

  3. Chiral-Yang-Mills theory, non commutative differential geometry, and the need for a Lie super-algebra

    International Nuclear Information System (INIS)

    Thierry-Mieg, Jean

    2006-01-01

    In Yang-Mills theory, the charges of the left and right massless Fermions are independent of each other. We propose a new paradigm where we remove this freedom and densify the algebraic structure of Yang-Mills theory by integrating the scalar Higgs field into a new gauge-chiral 1-form which connects Fermions of opposite chiralities. Using the Bianchi identity, we prove that the corresponding covariant differential is associative if and only if we gauge a Lie-Kac super-algebra. In this model, spontaneous symmetry breakdown naturally occurs along an odd generator of the super-algebra and induces a representation of the Connes-Lott non commutative differential geometry of the 2-point finite space

  4. Identifying chiral bands in real nuclei

    International Nuclear Information System (INIS)

    Shirinda, O.; Lawrie, E.A.

    2012-01-01

    The application of the presently used fingerprints of chiral bands (originally derived for strongly broken chirality) is investigated for real chiral systems. In particular the chiral fingerprints concerning the B(M1) staggering patterns and the energy staggering are studied. It is found that both fingerprints show considerable changes for real chiral systems, a behaviour that creates a significant risk for misinterpretation of the experimental data and can lead to a failure to identify real chiral systems. (orig.)

  5. Chirality-controlled crystallization via screw dislocations.

    Science.gov (United States)

    Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric

    2018-04-11

    Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.

  6. Time reversal odd fragmentation functions in semi-inclusive deep inelastic lepton-hadron scattering

    Energy Technology Data Exchange (ETDEWEB)

    Mulders, P.J. [National Inst. for Nuclear Physics and High Energy Physics, Amsterdam (Netherlands); Levelt, J. [Univ. of Erlangen-Nuernberg (Germany)

    1994-04-01

    In semi-inclusive scattering of polarized leptons from unpolarized hadrons, one can measure a time reversal odd structure function. It shows up as a sin({phi}) asymmetry of the produced hadrons. This asymmetry can be expressed as the product of a twist-three {open_quotes}hadron {r_arrow} quark{close_quotes} profile function and a time reversal odd twist-two {open_quotes}quark {r_arrow} hadron{close_quotes} fragmentation function. This fragmentation function can only be measured for nonzero transverse momenta of the produced hadron. Its appearance is a consequence of final state interactions between the produced hadron and the rest of the final state.

  7. Spin Chirality of Cu3 and V3 Nanomagnets. 1. Rotation Behavior of Vector Chirality, Scalar Chirality, and Magnetization in the Rotating Magnetic Field, Magnetochiral Correlations.

    Science.gov (United States)

    Belinsky, Moisey I

    2016-05-02

    The rotation behavior of the vector chirality κ, scalar chirality χ, and magnetization M in the rotating magnetic field H1 is considered for the V3 and Cu3 nanomagnets, in which the Dzialoshinsky-Moriya coupling is active. The polar rotation of the field H1 of the given strength H1 results in the energy spectrum characterized by different vector and scalar chiralities in the ground and excited states. The magnetochiral correlations between the vector and scalar chiralities, energy, and magnetization in the rotating field were considered. Under the uniform polar rotation of the field H1, the ground-state chirality vector κI performs sawtooth oscillations and the magnetization vector MI performs the sawtooth oscillating rotation that is accompanied by the correlated transformation of the scalar chirality χI. This demonstrates the magnetochiral effect of the joint rotation behavior and simultaneous frustrations of the spin chiralities and magnetization in the rotating field, which are governed by the correlation between the chiralities and magnetization.

  8. Chiral forces and molecular dissymmetry

    International Nuclear Information System (INIS)

    Mohan, R.

    1992-01-01

    Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected

  9. Distinction between even and odd steps in the magnetization of a Mn_12-acetate crystal.

    Science.gov (United States)

    Suzuki, Yoko; Mertes, K. M.; Sarachik, M. P.; Paltiel, Y.; Shtrikman, H.; Zeldov, E.; Rumberger, E. M.; Hendrickson, D. N.; Christou, G.

    2002-03-01

    Data for the magnetization of a Mn_12-acetate crystal obtained for different sweep rates of a magnetic field applied along the anisotropy axis have been shown(K. M. Mertes, Y. Suzuki, M. P. Sarachik, Y. Paltiel, H. Shtrikman, E . Zeldov, E. M. Rumberger, D. N. Hendrickson, and G. Christou, Phys. Rev. Lett. 87), 227205 (2001). to collapse onto the single scaled curve predicted by Chudnovsky and Garanin(E. M. Chudnovsky and D. A. Garanin, Phys. Rev. Lett. 87, 187203 (2001).) for the case when the dominant symmetry-breaking term that drives tunneling is a second order transverse anisotropy. A detailed analysis of the data indicates there is a clear distinction between even resonances, driven by transverse anisotropy, and odd resonances which require a contribution due to a transverse internal magnetic field. It will also be shown that scaling is not obtained if one assumes that the tunneling is driven solely by transverse fields.

  10. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  11. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    Koch, V.

    1996-01-01

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  12. Spin and chirality effects in antler-topology processes at high energy e{sup +}e{sup -} colliders

    Energy Technology Data Exchange (ETDEWEB)

    Choi, S.Y. [Chonbuk National University, Department of Physics, Jeonbuk (Korea, Republic of); University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States); Christensen, N.D. [Illinois State University, Department of Physics, Normal, IL (United States); Salmon, D.; Wang, X. [University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh Particle physics, Astrophysics, and Cosmology Center, Pittsburgh, PA (United States)

    2015-10-15

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e{sup +}e{sup -} → P{sup +}P{sup -} → (l{sup +}D{sup 0})(l{sup +} anti D{sup 0}) at highenergy e{sup +}e{sup -} colliders with polarized beams. Generally the production process e{sup +}e{sup -} → P{sup +}P{sup -} can occur not only through the s-channel exchange of vector bosons, V{sup 0}, including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S{sup 0} and T{sup 0}, and the u-channel exchange of new doubly charged states, U{sup --}. The general set of (nonchiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P{sup +}P{sup -} pair production in e{sup +}e{sup -} collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e{sup +}e{sup -} collider. (orig.)

  13. Chiral algebras for trinion theories

    International Nuclear Information System (INIS)

    Lemos, Madalena; Peelaers, Wolfger

    2015-01-01

    It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.

  14. Simplified chiral superfield propagators for chiral constant mass superfields

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1983-01-01

    Unconstrained superfield potentials are introduced to derive Feynman rules for chiral superfields following conventional procedure which is easy and instructive. Propagators for the case when the mass parameters are constant chiral superfields are derived. The propagators reported here are very simple compared to those available in literature and allow a manageable calculation of higher loops. (Author) [pt

  15. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer.

    Science.gov (United States)

    Deng, Ming; Zhang, Li; Jiang, Yuqian; Liu, Minghua

    2016-11-21

    Chiral self-assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self-assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to self-assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self-assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Wigner Functions and Quark Orbital Angular Momentum

    OpenAIRE

    Mukherjee, Asmita; Nair, Sreeraj; Ojha, Vikash Kumar

    2014-01-01

    Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs) and transverse momentum dependent parton distributions (TMDs). We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  17. Timoshenko beam model for chiral materials

    Science.gov (United States)

    Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.

    2018-06-01

    Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.

  18. Enantiopure Ferrocene-Based Planar-Chiral Iridacycles: Stereospecific Control of Iridium-Centred Chirality.

    Science.gov (United States)

    Arthurs, Ross A; Ismail, Muhammad; Prior, Christopher C; Oganesyan, Vasily S; Horton, Peter N; Coles, Simon J; Richards, Christopher J

    2016-02-24

    Reaction of [IrCp*Cl2 ]2 with ferrocenylimines (Fc=NAr, Ar=Ph, p-MeOC6 H4 ) results in ferrocene C-H activation and the diastereoselective synthesis of half-sandwich iridacycles of relative configuration Sp *,RIr *. Extension to (S)-2-ferrocenyl-4-(1-methylethyl)oxazoline gave highly diastereoselective control over the new elements of planar chirality and metal-based pseudo-tetrahedral chirality, to give both neutral and cationic half-sandwich iridacycles of absolute configuration Sc ,Sp ,RIr . Substitution reactions proceed with retention of configuration, with the planar chirality controlling the metal-centred chirality through an iron-iridium interaction in the coordinatively unsaturated cationic intermediate. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Chiral Responsive Liquid Quantum Dots.

    Science.gov (United States)

    Zhang, Jin; Ma, Junkai; Shi, Fangdan; Tian, Demei; Li, Haibing

    2017-08-01

    How to convert the weak chiral-interaction into the macroscopic properties of materials remains a huge challenge. Here, this study develops highly fluorescent, selectively chiral-responsive liquid quantum dots (liquid QDs) based on the hydrophobic interaction between the chiral chains and the oleic acid-stabilized QDs, which have been designated as (S)-1810-QDs. The fluorescence spectrum and liquidity of thermal control demonstrate the fluorescence properties and the fluidic behavior of (S)-1810-QDs in the solvent-free state. Especially, (S)-1810-QDs exhibit a highly chiral-selective response toward (1R, 2S)-2-amino-1,2-diphenyl ethanol. It is anticipated that this study will facilitate the construction of smart chiral fluidic sensors. More importantly, (S)-1810-QDs can become an attractive material for chiral separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Applications of chiral symmetry

    International Nuclear Information System (INIS)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates

  1. Magnetic dipole moments of odd-odd lanthanides

    International Nuclear Information System (INIS)

    Sharma, S.D.; Gandhi, R.

    1988-01-01

    Magnetic dipole moments of odd-odd lanthanides. Collective model of odd-odd nuclei is applied to predict the magnetic dipole moments, (μ) of odd-odd lanthanides. A simplified version of expression for μ based on diagonalisation of Hamiltonian (subsequent use of eigenvectors to compute μ) is developed for cases of ground state as well as excited states using no configuration mixing and is applied to the cases of odd-odd lanthanides. The formulae applied to the eleven (11) cases of ground states show significant improvement over the results obtained using shell model. Configuration mixing and coriolis coupling is expected to cause further improvement in the results. On comparing the earlier work in this direction the present analysis has clarified that in the expression μ the projection factors have different signs for the case I=Ωp - Ωn and I=Ωn - Ωp, and sign of μ is negative in general in the second case while it is positive in all others of spin projection alignments. Although the general expression holds for excited states as well but in lanthanide region, the experimental reports of magnetic dipole moments of excite states (band heads of higher rational sequences) are not available except in case of five (5) neutron resonance states which cannot be handled on the basis of the present approach with no configuration mixing. Although in the present discussion, the model could not be applied to excited states but the systematics of change in its magnitude with increasing spin at higher rational states is very well understood. The particle part supressed under faster rotation of the nuclear core and thus finally at higher spin I, the value μ is given by μ=g c I (same as in case of even-even nuclei). These systematics are to be verified whenever enough data for higher excited states are available. (author). 11 refs

  2. Helical Polyacetylenes Induced via Noncovalent Chiral Interactions and Their Applications as Chiral Materials.

    Science.gov (United States)

    Maeda, Katsuhiro; Yashima, Eiji

    2017-08-01

    Construction of predominantly one-handed helical polyacetylenes with a desired helix sense utilizing noncovalent chiral interactions with nonracemic chiral guest compounds based on a supramolecular approach is described. As with the conventional dynamic helical polymers possessing optically active pendant groups covalently bonded to the polymer chains, this noncovalent helicity induction system can show significant chiral amplification phenomena, in which the chiral information of the nonracemic guests can transfer with high cooperativity through noncovalent bonding interactions to induce an almost single-handed helical conformation in the polymer backbone. An intriguing "memory effect" of the induced macromolecular helicity is observed for some polyacetylenes, which means that the helical conformations induced in dynamic helical polyacetylene can be transformed into metastable static ones by tuning their helix-inversion barriers. Potential applications of helical polyacetylenes with controlled helix sense constructed by the "noncovalent helicity induction and/or memory effect" as chiral materials are also described.

  3. Increments to chiral recognition facilitating enantiomer separations of chiral acids, bases, and ampholytes using Cinchona-based zwitterion exchanger chiral stationary phases.

    Science.gov (United States)

    Wernisch, Stefanie; Pell, Reinhard; Lindner, Wolfgang

    2012-07-01

    The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Chiral Synthons in Pesticide Syntheses

    NARCIS (Netherlands)

    Feringa, Bernard

    1988-01-01

    The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the

  5. Conflicting coupling of unpaired nucleons in odd-odd nuclei

    International Nuclear Information System (INIS)

    Volkov, D.A.; Levon, A.I.

    1990-01-01

    Phenomenological approach is described, using it, energy spectra of odd-odd nucleus collective bands based on conflicting state of unpaired nucleons can be calculated. It is ascertained that in a conflicting bond unpaired nucleon acts as a spectator, i.e. energy spectra of collective bands in odd-odd nuclei are similar to the spectra of collective bands in heighbouring odd nuclei, which are based on the state of a strongly bound nucleon is included in the conflicting configuration

  6. Chiral bag model

    International Nuclear Information System (INIS)

    Musakhanov, M.M.

    1980-01-01

    The chiral bag model is considered. It is suggested that pions interact only with the surface of a quark ''bag'' and do not penetrate inside. In the case of a large bag the pion field is rather weak and goes to the linearized chiral bag model. Within that model the baryon mass spectrum, β decay axial constant, magnetic moments of baryons, pion-baryon coupling constants and their form factors are calculated. It is shown that pion corrections to the calculations according to the chiral bag model is essential. The obtained results are found to be in a reasonable agreement with the experimental data

  7. Cell Chirality Drives Left-Right Asymmetric Morphogenesis.

    Science.gov (United States)

    Inaki, Mikiko; Sasamura, Takeshi; Matsuno, Kenji

    2018-01-01

    Most macromolecules found in cells are chiral, meaning that they cannot be superimposed onto their mirror image. However, cells themselves can also be chiral, a subject that has received little attention until very recently. In our studies on the mechanisms of left-right (LR) asymmetric development in Drosophila , we discovered that cells can have an intrinsic chirality to their structure, and that this "cell chirality" is generally responsible for the LR asymmetric development of certain organs in this species. The actin cytoskeleton plays important roles in the formation of cell chirality. In addition, Myosin31DF ( Myo31DF ), which encodes Drosophila Myosin ID, was identified as a molecular switch for cell chirality. In other invertebrate species, including snails and Caenorhabditis elegans , chirality of the blastomeres, another type of cell chirality, determines the LR asymmetry of structures in the body. Thus, chirality at the cellular level may broadly contribute to LR asymmetric development in various invertebrate species. Recently, cell chirality was also reported for various vertebrate cultured cells, and studies suggested that cell chirality is evolutionarily conserved, including the essential role of the actin cytoskeleton. Although the biological roles of cell chirality in vertebrates remain unknown, it may control LR asymmetric development or other morphogenetic events. The investigation of cell chirality has just begun, and this new field should provide valuable new insights in biology and medicine.

  8. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  9. Relativistic Chiral Kinetic Theory

    International Nuclear Information System (INIS)

    Stephanov, Mikhail

    2016-01-01

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  10. Relativistic Chiral Kinetic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Stephanov, Mikhail

    2016-12-15

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  11. Pure chiral optical fibres.

    Science.gov (United States)

    Poladian, L; Straton, M; Docherty, A; Argyros, A

    2011-01-17

    We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.

  12. Chiral perturbation theory with nucleons

    International Nuclear Information System (INIS)

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon

  13. Field theoretic consistency of QCD operator product expansion contributions from chiral non-invariant condensates

    International Nuclear Information System (INIS)

    Elias, V.; Steele, T.G.

    1987-01-01

    Several field theoretic aspects of the operator product expansion (OPE) augmentation of QCD have been examined. Gauge independence of quark self-energies at the mass shell corresponding to the mass m (characterizing the OPE expansion parameter m/p) has been verified to all orders of the OPE for dimension 3 and 5 chiral symmetry breaking condensates. Similarly, the necessary transversality of the quark condensate contribution to the gluon self-energy has been verified, provided that propagator masses appearing in the self-energy are equilibrated with the OPE mass parameter m

  14. QCD and the chiral critical point

    International Nuclear Information System (INIS)

    Gavin, S.; Gocksch, A.; Pisarski, R.D.

    1994-01-01

    As an extension of QCD, consider a theory with ''2+1'' flavors, where the current quark masses are held in a fixed ratio as the overall scale of the quark masses is varied. At nonzero temperature and baryon density it is expected that in the chiral limit the chiral phase transition is of first order. Increasing the quark mass from zero, the chiral transition becomes more weakly first order, and can end in a chiral critical point. We show that the only massless field at the chiral critical point is a σ meson, with the universality class that of the Ising model. Present day lattice simulations indicate that QCD is (relatively) near to the chiral critical point

  15. Chirality-dependent cellular uptake of chiral nanocarriers and intracellular delivery of different amounts of guest molecules

    Science.gov (United States)

    Kehr, Nermin Seda; Jose, Joachim

    2017-12-01

    We demonstrate the organic molecules loaded and chiral polymers coated periodic mesoporous organosilica (PMO) to generate chiral nanocarriers that we used to study chirality-dependent cellular uptake in serum and serum-free media and the subsequent delivery of different amounts of organic molecules into cells. Our results show that the amount of internalized PMO and thus the transported amount of organic molecules by nanocarrier PMO into cells was chirality dependent and controlled by hard/soft protein corona formation on the PMO surfaces. Therefore, this study demonstrate that chiral porous nanocarriers could potentially be used as advanced drug delivery systems which are able to use the specific chiral surface-protein interactions to influence/control the amount of (bio)active molecules delivered to cells in drug delivery and/or imaging applications.

  16. Coulomb Excitation of Odd-Mass and Odd-Odd Cu Isotopes using REX-ISOLDE and Miniball

    CERN Multimedia

    Lauer, M; Iwanicki, J S

    2002-01-01

    We propose to study the properties of the odd-mass and the odd-odd neutron-rich Cu nuclei applying the Coulomb excitation technique and using the REX-ISOLDE facility coupled to the Miniball array. The results from the Coulex experiments accomplished at REX-ISOLDE after its upgrade to 3 MeV/u during the last year have shown the power of this method and its importance in order to obtain information on the collective properties of even-even nuclei. Performing an experiment on the odd-mass and on the odd-odd neutron-rich Cu isotopes in the vicinity of N=40 should allow us to determine and interpret the effective proton and neutron charges in the region and to unravel the lowest proton-neutron multiplets in $^{68,70}$Cu. This experiment can take the advantage of the unique opportunity to accelerate isomerically separated beams using the RILIS ion source at ISOLDE.

  17. Three-Dimensional parton structure of light nuclei

    Science.gov (United States)

    Scopetta, Sergio; Del Dotto, Alessio; Kaptari, Leonid; Pace, Emanuele; Rinaldi, Matteo; Salmè, Giovanni

    2018-03-01

    Two promising directions beyond inclusive deep inelastic scattering experiments, aimed at unveiling the three dimensional structure of the bound nucleon, are reviewed, considering in particular the 3He nuclear target. The 3D structure in coordinate space can be accessed through deep exclusive processes, whose non-perturbative part is encoded in generalized parton distributions. In this way, the distribution of partons in the transverse plane can be obtained. As an example of a deep exclusive process, coherent deeply virtual Compton scattering off 3He nuclei, important to access the neutron generalized parton distributions (GPDs), will be discussed. In Impulse Approximation (IA), the sum of the two leading twist, quark helicity conserving GPDs of 3He, H and E, at low momentum transfer, turns out to be dominated by the neutron contribution. Besides, a technique, able to take into account the nuclear effects included in the Impulse Approximation analysis, has been developed. The spin dependent GPD \\tilde H of 3He is also found to be largely dominated, at low momentum transfer, by the neutron contribution. The knowledge of the GPDs H,E and \\tilde H of 3He is relevant for the planning of coherent DVCS off 3He measurements. Semi-inclusive deep inelastic scattering processes access the momentum space 3D structure parameterized through transverse momentum dependent parton distributions. A distorted spin-dependent spectral function has been recently introduced for 3He, in a non-relativistic framework, to take care of the final state interaction between the observed pion and the remnant in semi-inclusive deep inelastic electron scattering off transversely polarized 3He. The calculation of the Sivers and Collins single spin asymmetries for 3He, and a straightforward procedure to effectively take into account nuclear dynamics and final state interactions, will be reviewed. The Light-front dynamics generalization of the analysis is also addressed.

  18. Detecting the chirality for coupled quantum dots

    International Nuclear Information System (INIS)

    Cao Huijuan; Hu Lian

    2008-01-01

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots

  19. Oscillation damping of chiral string loops

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Dokuchaev, Vyacheslav

    2002-01-01

    Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations

  20. Wigner Functions and Quark Orbital Angular Momentum

    Directory of Open Access Journals (Sweden)

    Mukherjee Asmita

    2015-01-01

    Full Text Available Wigner distributions contain combined position and momentum space information of the quark distributions and are related to both generalized parton distributions (GPDs and transverse momentum dependent parton distributions (TMDs. We report on a recent model calculation of the Wigner distributions for the quark and their relation to the orbital angular momentum.

  1. Chiral algebras of class S

    CERN Document Server

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.

    2015-01-01

    Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.

  2. Nanoscale chirality in metal and semiconductor nanoparticles.

    Science.gov (United States)

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  3. Chiral Thirring–Wess model

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Anisur, E-mail: anisur.rahman@saha.ac.in

    2015-10-15

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.

  4. Chiral Thirring–Wess model

    International Nuclear Information System (INIS)

    Rahaman, Anisur

    2015-01-01

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson

  5. Study of generalized parton distributions and deeply virtual Compton scattering on the nucleon with the CLAS and CLAS12 detectors at the Jefferson Laboratory (Virginia, US)

    International Nuclear Information System (INIS)

    Guegan, B.

    2012-11-01

    The Generalized Parton Distributions (GPDs) provide a new description of the nucleon structure in terms of its elementary constituents, the quarks and the gluons. The GPDs give access to a unified picture of the nucleon, correlating the information obtained from the measurements of the Form Factors and the Parton Distribution Functions. They describe the correlation between the transverse position and the longitudinal momentum fraction of the partons in the nucleon. Deeply Virtual Compton Scattering (DVCS), the electroproduction of a real photon on a single quark of the nucleon eN → e'N'γ, is the most straightforward exclusive process allowing access to the GPDs. A dedicated experiment to study DVCS with the CLAS detector of Jefferson Lab has been carried out using a 5.883 GeV polarized electron beam and an unpolarized hydrogen target, allowing to collect DVCS events in the widest kinematic range ever explored in the valence region: 1 2 2 , 0.1 B 2 . In this work, we present the extraction of three different DVCS observables: the unpolarized cross section, the difference of polarized cross sections and the beam spin asymmetry. We present comparisons with GPD model. We show a preliminary extraction of the GPDs using the latest fitting code procedure on our data, and a preliminary interpretation of the results in terms of parton density. (author)

  6. Broadband reflection of polymer-stabilized chiral nematic liquid crystals induced by a chiral azobenzene compound.

    Science.gov (United States)

    Chen, Xingwu; Wang, Ling; Chen, Yinjie; Li, Chenyue; Hou, Guoyan; Liu, Xin; Zhang, Xiaoguang; He, Wanli; Yang, Huai

    2014-01-21

    A chiral nematic liquid crystal-photopolymerizable monomer-chiral azobenzene compound composite was prepared and then polymerized under UV irradiation. The reflection wavelength of the composite can be extended to cover the 1000-2400 nm range and also be adjusted to the visible light region by controlling the concentration of chiral compounds.

  7. Orientation-Dependent Handedness and Chiral Design

    Directory of Open Access Journals (Sweden)

    Efi Efrati

    2014-01-01

    Full Text Available Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems—a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial—and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles.

  8. Macdonald index and chiral algebra

    Science.gov (United States)

    Song, Jaewon

    2017-08-01

    For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.

  9. An N = 2 worldsheet approach to D-branes in bihermitian geometries: I. Chiral and twisted chiral fields

    International Nuclear Information System (INIS)

    Sevrin, Alexander; Staessens, Wieland; Wijns, Alexander

    2008-01-01

    We investigate N = (2, 2) supersymmetric nonlinear σ-models in the presence of a boundary. We restrict our attention to the case where the bulk geometry is described by chiral and twisted chiral superfields corresponding to a bihermitian bulk geometry with two commuting complex structures. The D-brane configurations preserving an N = 2 worldsheet supersymmetry are identified. Duality transformations interchanging chiral for twisted chiral fields and vice versa while preserving all supersymmetries are explicitly constructed. We illustrate our results with various explicit examples such as the WZW-model on the Hopf surface S 3 x S 1 . The duality transformations provide e.g new examples of coisotropic A-branes on Kaehler manifolds (which are not necessarily hyper-Kaehler). Finally, by dualizing a chiral and a twisted chiral field to a semi-chiral multiplet, we initiate the study of D-branes in bihermitian geometries where the cokernel of the commutator of the complex structures is non-empty.

  10. Propagation of superconducting coherence via chiral quantum-Hall edge channels.

    Science.gov (United States)

    Park, Geon-Hyoung; Kim, Minsoo; Watanabe, Kenji; Taniguchi, Takashi; Lee, Hu-Jong

    2017-09-08

    Recently, there has been significant interest in superconducting coherence via chiral quantum-Hall (QH) edge channels at an interface between a two-dimensional normal conductor and a superconductor (N-S) in a strong transverse magnetic field. In the field range where the superconductivity and the QH state coexist, the coherent confinement of electron- and hole-like quasiparticles by the interplay of Andreev reflection and the QH effect leads to the formation of Andreev edge states (AES) along the N-S interface. Here, we report the electrical conductance characteristics via the AES formed in graphene-superconductor hybrid systems in a three-terminal configuration. This measurement configuration, involving the QH edge states outside a graphene-S interface, allows the detection of the longitudinal and QH conductance separately, excluding the bulk contribution. Convincing evidence for the superconducting coherence and its propagation via the chiral QH edge channels is provided by the conductance enhancement on both the upstream and the downstream sides of the superconducting electrode as well as in bias spectroscopy results below the superconducting critical temperature. Propagation of superconducting coherence via QH edge states was more evident as more edge channels participate in the Andreev process for high filling factors with reduced valley-mixing scattering.

  11. Transversals of Complex Polynomial Vector Fields

    DEFF Research Database (Denmark)

    Dias, Kealey

    Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field. Given...... a concrete polynomial, it seems to take quite a bit of work to prove that it is generic, i.e. structurally stable. This has been done for a special class of degree d polynomial vector fields having simple equilibrium points at the d roots of unity, d odd. In proving that such vector fields are generic...

  12. Laser Writing of Multiscale Chiral Polymer Metamaterials

    Directory of Open Access Journals (Sweden)

    E. P. Furlani

    2012-01-01

    Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.

  13. The covariant chiral ring

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)

    2016-03-23

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  14. Novel electrochemical method for the characterization of the degree of chirality in chiral polyaniline.

    Science.gov (United States)

    Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li

    2013-01-01

    A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality. Copyright © 2012 Wiley Periodicals, Inc.

  15. Molecular-Level Design of Heterogeneous Chiral Catalysis

    International Nuclear Information System (INIS)

    Zaera, Francisco

    2012-01-01

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration

  16. Molecular-level Design of Heterogeneous Chiral Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gellman, Andrew John [Carnegie Mellon University; Sholl, David S. [Georgia Institute of Technology; Tysoe, Wilfred T. [University of Wisconsin - Milwaukee; Zaera, Francisco [University of California at Riverside

    2013-04-28

    Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111

  17. Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry

    Directory of Open Access Journals (Sweden)

    Michiya Fujiki

    2014-08-01

    Full Text Available Controlled mirror symmetry breaking arising from chemical and physical origin is currently one of the hottest issues in the field of supramolecular chirality. The dynamic twisting abilities of solvent molecules are often ignored and unknown, although the targeted molecules and polymers in a fluid solution are surrounded by solvent molecules. We should pay more attention to the facts that mostly all of the chemical and physical properties of these molecules and polymers in the ground and photoexcited states are significantly influenced by the surrounding solvent molecules with much conformational freedom through non-covalent supramolecular interactions between these substances and solvent molecules. This review highlights a series of studies that include: (i historical background, covering chiral NaClO3 crystallization in the presence of d-sugars in the late 19th century; (ii early solvent chirality effects for optically inactive chromophores/fluorophores in the 1960s–1980s; and (iii the recent development of mirror symmetry breaking from the corresponding achiral or optically inactive molecules and polymers with the help of molecular chirality as the solvent use quantity.

  18. Event-by-event fluctuations of average transverse momentum in central Pb + Pb collisions at 158 GeV per nucleon

    CERN Document Server

    Appelshauser, H.; Bailey, S.J.; Barna, D.; Barnby, L.S.; Bartke, J.; Barton, R.A.; Betev, L.; Bialkowska, H.; Billmeier, A.; Blyth, C.O.; Bock, R.; Boimska, B.; Bormann, C.; Brady, F.P.; Brockmann, R.; Brun, R.; Buncic, P.; Caines, H.L.; Carr, L.D.; Cebra, D.A.; Cooper, G.E.; Cramer, J.G.; Cristinziani, M.; Csato, P.; Dunn, J.; Eckardt, V.; Eckhardt, F.; Ferguson, M.I.; Fischer, H.G.; Flierl, D.; Fodor, Z.; Foka, P.; Freund, P.; Friese, V.; Fuchs, M.; Gabler, F.; Gal, J.; Ganz, R.; Gazdzicki, M.; Geist, Walter M.; Gladysz, E.; Grebieszkow, J.; Gunther, J.; Harris, J.W.; Hegyi, S.; Henkel, T.; Hill, L.A.; Hummler, H.; Igo, G.; Irmscher, D.; Jacobs, P.; Jones, P.G.; Kadija, K.; Kolesnikov, V.I.; Kowalski, M.; Lasiuk, B.; Levai, P.; Malakhov, A.I.; Margetis, S.; Markert, C.; Melkumov, G.L.; Mock, A.; Molnar, J.; Nelson, John M.; Oldenburg, M.; Odyniec, G.; Palla, G.; Panagiotou, A.D.; Petridis, A.; Piper, A.; Porter, R.J.; Poskanzer, Arthur M.; Prindle, D.J.; Puhlhofer, F.; Reid, J.G.; Renfordt, R.; Retyk, W.; Ritter, H.G.; Rohrich, D.; Roland, C.; Roland, G.; Rudolph, H.; Rybicki, A.; Sammer, T.; Sandoval, A.; Sann, H.; Semenov, A.Yu.; Schafer, E.; Schmischke, D.; Schmitz, N.; Schonfelder, S.; Seyboth, P.; Seyerlein, J.; Sikler, F.; Skrzypczak, E.; Snellings, R.; Squier, G.T.A.; Stock, R.; Strobele, H.; Struck, Chr.; Susa, T.; Szentpetery, I.; Sziklai, J.; Toy, M.; Trainor, T.A.; Trentalange, S.; Ullrich, T.; Vassiliou, M.; Veres, G.; Vesztergombi, G.; Voloshin, S.; Vranic, D.; Wang, F.; Weerasundara, D.D.; Wenig, S.; Whitten, C.; Wienold, T.; Wood, L.; Xu, N.; Yates, T.A.; Zimanyi, J.; Zhu, X.Z.; Zybert, R.

    1999-01-01

    We present first data on event-by-event fluctuations in the average transverse momentum of charged particles produced in Pb+Pb collisions at the CERN SPS. This measurement provides previously unavailable information allowing sensitive tests of microscopic and thermodynamic collision models and to search for fluctuations expected to occur in the vicinity of the predicted QCD phase transition. We find that the observed variance of the event-by-event average transverse momentum is consistent with independent particle production modified by the known two-particle correlations due to quantum statistics and final state interactions and folded with the resolution of the NA49 apparatus. For two specific models of non-statistical fluctuations in transverse momentum limits are derived in terms of fluctuation amplitude. We show that a significant part of the parameter space for a model of isospin fluctuations predicted as a consequence of chiral symmetry restoration in

  19. Transversal Dirac families in Riemannian foliations

    International Nuclear Information System (INIS)

    Glazebrook, J.F.; Kamber, F.W.

    1991-01-01

    We describe a family of differential operators parametrized by the transversal vector potentials of a Riemannian foliation relative to the Clifford algebra of the foliation. This family is non-elliptic but in certain ways behaves like a standard Dirac family in the absolute case as a result of its elliptic-like regularity properties. The analytic and topological indices of this family are defined as elements of K-theory in the parameter space. We indicate how the cohomology of the parameter space is described via suitable maps to Fredholm operators. We outline the proof of a theorem of Vafa-Witten type on uniform bounds for the eigenvalues of this family using a spectral flow argument. A determinant operator is also defined with the appropriate zeta function regularization dependent on the codimension of the foliation. With respect to a generalized coupled Dirac-Yang-Mills system, we indicate how chiral anomalies are located relative to the foliation. (orig.)

  20. QCD Evolution of the Transverse Momentum Dependent Correlations

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Jian; Liang, Zuo-Tang; Yuan, Feng

    2008-12-10

    We study the QCD evolution for the twist-three quark-gluon correlation functions associated with the transverse momentum odd quark distributions. Different from that for the leading twist quark distributions, these evolution equations involve more general twist-three functions beyond the correlation functions themselves. They provide important information on nucleon structure, and can be studied in the semi-inclusive hadron production in deep inelastic scattering and Drell-Yan lepton pair production in pp scattering process.

  1. Chirality-induced magnon transport in AA-stacked bilayer honeycomb chiral magnets.

    Science.gov (United States)

    Owerre, S A

    2016-11-30

    In this Letter, we study the magnetic transport in AA-stacked bilayer honeycomb chiral magnets coupled either ferromagnetically or antiferromagnetically. For both couplings, we observe chirality-induced gaps, chiral protected edge states, magnon Hall and magnon spin Nernst effects of magnetic spin excitations. For ferromagnetically coupled layers, thermal Hall and spin Nernst conductivities do not change sign as function of magnetic field or temperature similar to single-layer honeycomb ferromagnetic insulator. In contrast, for antiferromagnetically coupled layers, we observe a sign change in the thermal Hall and spin Nernst conductivities as the magnetic field is reversed. We discuss possible experimental accessible honeycomb bilayer quantum materials in which these effects can be observed.

  2. Asymmetric synthesis using chiral-encoded metal

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  3. Chiral relay: a novel strategy for the control and amplification of enantioselectivity in chiral Lewis acid promoted reactions.

    Science.gov (United States)

    Corminboeuf, Olivier; Quaranta, Laura; Renaud, Philippe; Liu, Mei; Jasperse, Craig P; Sibi, Mukund P

    2003-01-03

    Chiral Lewis acid catalysis has emerged as one of the premiere method to control stereochemistry. Much effort has gone into the design of superior ligands with increasing steric extension to shield distant reactive sites. We report here an alternative and complementary approach based on a "chiral relay". This strategy focuses on the improved design of achiral templates which may relay and amplify the stereochemistry from ligands. The essence of this strategy is that the chiral Lewis acid would effectively convert an achiral template into a chiral non-racemic template. This approach combines the advantages of enantioselective catalysis (substoichiometric amount of the chiral inducer) with the ones of chiral auxiliary control (efficient and predictable stereocontrol).

  4. Extreme chirality in Swiss roll metamaterials

    International Nuclear Information System (INIS)

    Demetriadou, A; Pendry, J B

    2009-01-01

    The chiral Swiss roll metamaterial is a resonant, magnetic medium that exhibits a negative refractive band for one-wave polarization. Its unique structure facilitates huge chiral effects: a plane polarized wave propagating through this system can change its polarization by 90 deg. in less than a wavelength. Such chirality is at least 100 times greater than previous structures have achieved. In this paper, we discuss this extreme chiral behaviour with both numerical and analytical results.

  5. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    Science.gov (United States)

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  6. Symmetry, structure, and dynamics of monoaxial chiral magnets

    International Nuclear Information System (INIS)

    Togawa, Yoshihiko; Kousaka, Yusuke; Inoue, Katsuya; Kishine, Jun-ichiro

    2016-01-01

    Nontrivial spin orders with magnetic chirality emerge in a particular class of magnetic materials with structural chirality, which are frequently referred to as chiral magnets. Various interesting physical properties are expected to be induced in chiral magnets through the coupling of chiral magnetic orders with conduction electrons and electromagnetic fields. One promising candidate for achieving these couplings is a chiral spin soliton lattice. Here, we review recent experimental observations mainly carried out on the monoaxial chiral magnetic crystal CrNb_3S_6 via magnetic imaging using electron, neutron, and X-ray beams and magnetoresistance measurements, together with the strategy for synthesizing chiral magnetic materials and underlying theoretical backgrounds. The chiral soliton lattice appears under a magnetic field perpendicular to the chiral helical axis and is very robust and stable with phase coherence on a macroscopic length scale. The tunable and topological nature of the chiral soliton lattice gives rise to nontrivial physical properties. Indeed, it is demonstrated that the interlayer magnetoresistance scales to the soliton density, which plays an essential role as an order parameter in chiral soliton lattice formation, and becomes quantized with the reduction of the system size. These interesting features arising from macroscopic phase coherence unique to the chiral soliton lattice will lead to the exploration of routes to a new paradigm for applications in spin electronics using spin phase coherence. (author)

  7. Logic and memory concepts for all-magnetic computing based on transverse domain walls

    International Nuclear Information System (INIS)

    Vandermeulen, J; Van de Wiele, B; Dupré, L; Van Waeyenberge, B

    2015-01-01

    We introduce a non-volatile digital logic and memory concept in which the binary data is stored in the transverse magnetic domain walls present in in-plane magnetized nanowires with sufficiently small cross sectional dimensions. We assign the digital bit to the two possible orientations of the transverse domain wall. Numerical proofs-of-concept are presented for a NOT-, AND- and OR-gate, a FAN-out as well as a reading and writing device. Contrary to the chirality based vortex domain wall logic gates introduced in Omari and Hayward (2014 Phys. Rev. Appl. 2 044001), the presented concepts remain applicable when miniaturized and are driven by electrical currents, making the technology compatible with the in-plane racetrack memory concept. The individual devices can be easily combined to logic networks working with clock speeds that scale linearly with decreasing design dimensions. This opens opportunities to an all-magnetic computing technology where the digital data is stored and processed under the same magnetic representation. (paper)

  8. Chirality: a relational geometric-physical property.

    Science.gov (United States)

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term. © 2013 Wiley Periodicals, Inc.

  9. Light-front realization of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Itakura, Kazunori; Maedan, Shinji

    2001-01-01

    We discuss a description of chiral symmetry breaking in the light-front (LF) formalism. Based on careful analyses of several modes, we give clear answers to the following three fundamental questions: (i) What is the difference between the LF chiral transformation and the ordinary chiral transformation? (ii) How does a gap equation for the chiral condensate emerge? (iii) What is the consequence of the coexistence of a nonzero chiral condensate and the trivial Fock vacuum? The answer to Question (i) is given through a classical analysis of each model. Question (ii) is answered based on our recognition of the importance of characteristic constraints, such as the zero-mode and fermionic constraints. Question (iii) is intimately related to another important problem, reconciliation of the nonzero chiral condensate ≠ 0 and the invariance of the vacuum under the LF chiral transformation Q 5 LF | 0> = 0. This and Question (iii) are understood in terms of the modified chiral transformation laws of the dependent variables. The characteristic ways in which the chiral symmetry breaking is realized are that the chiral charge Q 5 LF is no longer conserved and that the transformation of the scalar and pseudoscalar fields is modified. We also discuss other outcomes, such as the light-cone wave function of the pseudoscalar meson in the Nambu-Jona-Lasinio model. (author)

  10. Chiral stationary phase optimized selectivity liquid chromatography: A strategy for the separation of chiral isomers.

    Science.gov (United States)

    Hegade, Ravindra Suryakant; De Beer, Maarten; Lynen, Frederic

    2017-09-15

    Chiral Stationary-Phase Optimized Selectivity Liquid Chromatography (SOSLC) is proposed as a tool to optimally separate mixtures of enantiomers on a set of commercially available coupled chiral columns. This approach allows for the prediction of the separation profiles on any possible combination of the chiral stationary phases based on a limited number of preliminary analyses, followed by automated selection of the optimal column combination. Both the isocratic and gradient SOSLC approach were implemented for prediction of the retention times for a mixture of 4 chiral pairs on all possible combinations of the 5 commercial chiral columns. Predictions in isocratic and gradient mode were performed with a commercially available and with an in-house developed Microsoft visual basic algorithm, respectively. Optimal predictions in the isocratic mode required the coupling of 4 columns whereby relative deviations between the predicted and experimental retention times ranged between 2 and 7%. Gradient predictions led to the coupling of 3 chiral columns allowing baseline separation of all solutes, whereby differences between predictions and experiments ranged between 0 and 12%. The methodology is a novel tool allowing optimizing the separation of mixtures of optical isomers. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Hadron properties in chiral sigma model

    International Nuclear Information System (INIS)

    Shen Hong

    2005-01-01

    The modification of hadron masses in nuclear medium is studied by using the chiral sigma model, which is extended to generate the omega meson mass by the sigma condensation in the vacuum in the same way as the nucleon mass. The chiral sigma model provides proper equilibrium properties of nuclear matter. It is shown that the effective masses of both nucleons and omega mesons decrease in nuclear medium, while the effective mass of sigma mesons increases oat finite density in the chiral sigma model. The results obtained in the chiral sigma model are compared with those obtained in the Walecka model, which includes sigma and omega mesons in a non-chiral fashion. (author)

  12. Chiral recognition in separation science: an overview.

    Science.gov (United States)

    Scriba, Gerhard K E

    2013-01-01

    Chiral recognition phenomena play an important role in nature as well as analytical separation sciences. In separation sciences such as chromatography and capillary electrophoresis, enantiospecific interactions between the enantiomers of an analyte and the chiral selector are required in order to observe enantioseparations. Due to the large structural variety of chiral selectors applied, different mechanisms and structural features contribute to the chiral recognition process. This chapter briefly illustrates the current models of the enantiospecific recognition on the structural basics of various chiral selectors.

  13. No chiral truncation of quantum log gravity?

    Science.gov (United States)

    Andrade, Tomás; Marolf, Donald

    2010-03-01

    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.

  14. On the strength of the U{sub A}(1) anomaly at the chiral phase transition in N{sub f}=2 QCD

    Energy Technology Data Exchange (ETDEWEB)

    Brandt, Bastian B. [Institut für Theoretische Physik, Goethe-Universität,D-60438 Frankfurt am Main (Germany); Institut für theoretische Physik, Universität Regensburg,D-93040 Regensburg (Germany); Francis, Anthony [Department of Physics & Astronomy, York University,4700 Keele St, Toronto, ON M3J 1P3 (Canada); Meyer, Harvey B. [PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz,Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany); Philipsen, Owe [Institut für Theoretische Physik, Goethe-Universität,D-60438 Frankfurt am Main (Germany); Robaina, Daniel; Wittig, Hartmut [PRISMA Cluster of Excellence, Institut für Kernphysik and Helmholtz Institut Mainz,Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany)

    2016-12-30

    We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using O(a)-improved Wilson quarks. Temperature scans are performed at a fixed value of N{sub t}=(aT){sup −1}=16, where a is the lattice spacing and T the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the splitting between isovector scalar and pseudoscalar screening masses around the chiral phase transition by at least a factor of three compared to its value at zero temperature. In fact, the splitting is consistent with zero within our uncertainties. This disfavours a chiral phase transition in the O(4) universality class.

  15. Direct Detection of Hardly Detectable Hidden Chirality of Hydrocarbons and Deuterated Isotopomers by a Helical Polyacetylene through Chiral Amplification and Memory.

    Science.gov (United States)

    Maeda, Katsuhiro; Hirose, Daisuke; Okoshi, Natsuki; Shimomura, Kouhei; Wada, Yuya; Ikai, Tomoyuki; Kanoh, Shigeyoshi; Yashima, Eiji

    2018-03-07

    We report the first direct chirality sensing of a series of chiral hydrocarbons and isotopically chiral compounds (deuterated isotopomers), which are almost impossible to detect by conventional optical spectroscopic methods, by a stereoregular polyacetylene bearing 2,2'-biphenol-derived pendants. The polyacetylene showed a circular dichroism due to a preferred-handed helix formation in response to the hardly detectable hidden chirality of saturated tertiary or chiroptical quaternary hydrocarbons, and deuterated isotopomers. In sharp contrast to the previously reported sensory systems, the chirality detection by the polyacetylene relies on an excess one-handed helix formation induced by the chiral hydrocarbons and deuterated isotopomers via significant amplification of the chirality followed by its static memory, through which chiral information on the minute and hidden chirality can be stored as an excess of a single-handed helix memory for a long time.

  16. Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory

    Science.gov (United States)

    Mueller, Niklas; Venugopalan, Raju

    2018-03-01

    In previous work, we outlined a worldline framework that can be used for systematic computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Towards this end, we first expressed the real part of the fermion determinant in the QCD effective action as a supersymmetric worldline action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. The chiral anomaly, in contrast, arises from the phase of the fermion determinant. Remarkably, the latter too can be expressed as a point particle worldline path integral, which can be employed to derive the anomalous axial vector current. We will show here how Berry's phase can be obtained in a consistent nonrelativistic adiabatic limit of the real part of the fermion determinant. Our work provides a general first principles demonstration that the topology of Berry's phase is distinct from that of the chiral anomaly confirming prior arguments by Fujikawa in specific contexts. This suggests that chiral kinetic treatments of the CME in heavy-ion collisions that include Berry's phase alone are incomplete. We outline the elements of a worldline covariant relativistic chiral kinetic theory that captures the physics of how the chiral current is modified by many-body scattering and topological fluctuations.

  17. Chiral dynamics with (nonstrange quarks

    Directory of Open Access Journals (Sweden)

    Kubis Bastian

    2017-01-01

    Full Text Available We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405, the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy–Steiner analysis of pion–nucleon scattering, a high-precision extraction of the elusive pion–nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  18. Photon and π"0 electroproduction at Jefferson Laboratory-Hall A

    International Nuclear Information System (INIS)

    Defurne, Maxime

    2015-01-01

    Defined in the mid 90's, the generalized parton distributions (GPDs) represent a higher level of information than the form factors and parton distribution functions: indeed they encapsulate the correlation between the fraction of longitudinal momentum and the transverse position of the partons inside the nucleon. Consequently we can access the distribution of the partons in the transverse plane according to their longitudinal momentum. Moreover we can derive the total angular orbital momentum of quarks thanks to Ji's sum rule. Experimentally, we access the GPDs through the study of deep exclusive processes (asymmetries, cross sections,...). A worldwide experimental program started in the early 2000's. This thesis presents two data analyses carried on two data sets from experiments running at Jefferson laboratory - Hall A in 2004 and 2010. From the 2004 data set, we have extracted unpolarized and polarized photon electroproduction cross sections. A careful study of the systematic errors has greatly improved the quality of the results. They seem to indicate the necessity to take into account target-mass and finite-t corrections up to twist-4. From the 2010 data set, we have performed the first separation of the longitudinal and transverse responses of neutral pion electroproduction. The results confirm the assumption of a significant contribution of the transverse response although kinematically suppressed with respect to the longitudinal response. These results of high precision validate the GPD approach and will allow to improve the existing models. (author) [fr

  19. Enantiomeric Separation of 1-(Benzofuran-2-yl)alkylamines on Chiral Stationary Phases Based on Chiral Crown Ethers

    International Nuclear Information System (INIS)

    Park, Soohyun; Kim, Sang Jun; Hyun, Myung Ho

    2012-01-01

    Optically active chiral amines are important as building blocks for pharmaceuticals and as scaffolds for chiral ligands and, consequently, many efforts have been devoted to the development of efficient methods for their preparation. For example, reduction of amine precursors with chiral catalysts, enzymatic kinetic resolution or dynamic kinetic resolution of racemic amines and the direct amination of ketones with transaminases have been developed as the efficient methods for the preparation of optically active chiral amines. During the process of developing or utilizing optically active chiral amines, the methods for the determination of their enantiomeric composition are essential. Among various methods, liquid chromatographic resolution of enantiomers on chiral stationary phases (CSPs) have been known to be one of the most accurate and economic means for the determination of the enantiomeric composition of optically active chiral compounds. Especially, CSPs based on chiral crown ethers have been successfully used for the resolution of racemic primary amines. For example, CSPs based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (CSP 1, Figure 1) or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 (CSP 2 and CSP 3, Figure 1) have been known to be quite effective for the resolution of cyclic and non-cyclic amines, various fluoroquinolone antibacterials containing a primary amino group, tocainide (antiarrhythmic agent) and its analogues, aryl-a-amino ketones and 3-amino-1,4-benzodiazepin-2-ones

  20. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  1. Is there chirality in atomic nuclei?

    International Nuclear Information System (INIS)

    Meng Jie

    2009-01-01

    Static chiral symmetries are common in nature, for example, the macroscopic spirals of snail shells, the microscopic handedness of certain molecules, and human hands. The concept of chirality in atomic nuclei was first proposed in 1997, and since then many efforts have been made to understand chiral symmetry and its spontaneous breaking in atomic nuclei. Recent theoretical and experimental progress in the verification of chirality in atomic nuclei will be reviewed, together with a discussion of the problems that await to be solved in the future. (authors)

  2. Influence of Chirality in Ordered Block Copolymer Phases

    Science.gov (United States)

    Prasad, Ishan; Grason, Gregory

    2015-03-01

    Block copolymers are known to assemble into rich spectrum of ordered phases, with many complex phases driven by asymmetry in copolymer architecture. Despite decades of study, the influence of intrinsic chirality on equilibrium mesophase assembly of block copolymers is not well understood and largely unexplored. Self-consistent field theory has played a major role in prediction of physical properties of polymeric systems. Only recently, a polar orientational self-consistent field (oSCF) approach was adopted to model chiral BCP having a thermodynamic preference for cholesteric ordering in chiral segments. We implement oSCF theory for chiral nematic copolymers, where segment orientations are characterized by quadrupolar chiral interactions, and focus our study on the thermodynamic stability of bi-continuous network morphologies, and the transfer of molecular chirality to mesoscale chirality of networks. Unique photonic properties observed in butterfly wings have been attributed to presence of chiral single-gyroid networks, this has made it an attractive target for chiral metamaterial design.

  3. Chiral four-membered cyclic nitrones; asymmetric induction in the (4+2)-cycloaddition reaction of chiral ynamines and nitroalkenes

    NARCIS (Netherlands)

    van Elburg, P.A.; Honig, G.W.N.; Reinhoudt, David

    1987-01-01

    Chiral four-membered cyclic nitrones were synthesized by the asymmetric (4+2)-cycloaddition of nitroalkenes 1 and chiral ynamines 2. The subsequent stereoselective addition of nucleophiles to these nitrones enabled the synthesis of chiral N-hydroxyazetidines.

  4. Search for the characters of chiral rotation in excited bands for the idea chiral nuclei with A ∼ 130

    International Nuclear Information System (INIS)

    Chen Qibo; Yao Jiangming; Meng Jie; Zhang Shuangquan; Qi Bin

    2010-01-01

    Since the occurrence of chirality was originally suggested in 1997 by Frauendorf and Meng [1] and experimentally observed in 2001 [2] , the investigation of chiral symmetry in atomic nuclei becomes one of the most important topics in nuclear physics. More and more chiral doublet bands [3-7] in atomic nuclei [8] have been reported. There are also many discussions about the fingerprints of chirality. In the pioneer paper [1] , the two lowest near degenerate bands given by the particle-rotor model (PRM) are interpreted as chiral doublet bands. If the nucleus has chiral geometry with proper configuration, the character of chiral rotation may appear not only in the two lowest bands, but also in the other bands. Therefore, it is interesting to search for the character of chiral rotation, Based on the PRM model with configuration corresponding to A ∼ 130 mass region, we examine the theoretical spectroscopy of higher excited bands (band3, band4, band5 and band6) beyond the two lowest bands (bandl and band2), including energies, spin-alignments, projection of total angular momentum and electromagnetic transition probabilities. The results show that band3 and band4 have characters of chirality in some spin region. (authors)

  5. Variational approach to chiral quark models

    Energy Technology Data Exchange (ETDEWEB)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira

    1987-03-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation.

  6. An overview of recent nucleon spin structure measurements at Jefferson Lab

    Energy Technology Data Exchange (ETDEWEB)

    Allada, Kalyan [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-02-01

    Jefferson Lab have made significant contributions to improve our knowledge of the longitudinal spin structure by measuring polarized structure functions, g1 and g2, down to Q2 = 0.02 GeV2. The low Q2 data is especially useful in testing the Chiral Perturbation theory (cPT) calculations. The spin-dependent sum rules and the spin polarizabilities, constructed from the moments of g1 and g2, provide an important tool to study the longitudinal spin structure. We will present an overview of the experimental program to measure these structure functions at Jefferson Lab, and present some recent results on the neutron polarizabilities, proton g1 at low Q2, and proton and neutron d2 measurement. In addition to this, we will discuss the transverse spin structure of the nucleon which can be accessed using chiral-odd transversity distribution (h1), and show some results from measurements done on polarized 3He target in Hall A.

  7. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    Long Wen

    2012-01-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  8. Chiral topological insulator of magnons

    Science.gov (United States)

    Li, Bo; Kovalev, Alexey A.

    2018-05-01

    We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class. The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence of the topological invariant is established by calculating the bulk winding number of the system. Within our model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon anomalous Hall, and Weyl magnon phases.

  9. Chiralities of spiral waves and their transitions.

    Science.gov (United States)

    Pan, Jun-ting; Cai, Mei-chun; Li, Bing-wei; Zhang, Hong

    2013-06-01

    The chiralities of spiral waves usually refer to their rotation directions (the turning orientations of the spiral temporal movements as time elapses) and their curl directions (the winding orientations of the spiral spatial geometrical structures themselves). Traditionally, they are the same as each other. Namely, they are both clockwise or both counterclockwise. Moreover, the chiralities are determined by the topological charges of spiral waves, and thus they are conserved quantities. After the inwardly propagating spirals were experimentally observed, the relationship between the chiralities and the one between the chiralities and the topological charges are no longer preserved. The chiralities thus become more complex than ever before. As a result, there is now a desire to further study them. In this paper, the chiralities and their transition properties for all kinds of spiral waves are systemically studied in the framework of the complex Ginzburg-Landau equation, and the general relationships both between the chiralities and between the chiralities and the topological charges are obtained. The investigation of some other models, such as the FitzHugh-Nagumo model, the nonuniform Oregonator model, the modified standard model, etc., is also discussed for comparison.

  10. Accessing the quark orbital angular momentum with Wigner distributions

    Energy Technology Data Exchange (ETDEWEB)

    Lorce, Cedric [IPNO, Universite Paris-Sud, CNRS/IN2P3, 91406 Orsay, France and LPT, Universite Paris-Sud, CNRS, 91406 Orsay (France); Pasquini, Barbara [Dipartimento di Fisica, Universita degli Studi di Pavia, Pavia, Italy and Istituto Nazionale di Fisica Nucleare, Sezione di Pavia, Pavia (Italy)

    2013-04-15

    The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.

  11. Accessing the quark orbital angular momentum with Wigner distributions

    International Nuclear Information System (INIS)

    Lorcé, Cédric; Pasquini, Barbara

    2013-01-01

    The quark orbital angular momentum (OAM) has been recognized as an important piece of the proton spin puzzle. A lot of effort has been invested in trying to extract it quantitatively from the generalized parton distributions (GPDs) and the transverse-momentum dependent parton distributions (TMDs), which are accessed in high-energy processes and provide three-dimensional pictures of the nucleon. Recently, we have shown that it is more natural to access the quark OAM from the phase-space or Wigner distributions. We discuss the concept of Wigner distributions in the context of quantum field theory and show how they are related to the GPDs and the TMDs. We summarize the different definitions discussed in the literature for the quark OAM and show how they can in principle be extracted from the Wigner distributions.

  12. Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.

    Science.gov (United States)

    Zhang, Ying; Ye, Jing; Liu, Min

    2017-01-01

    Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs

  13. Symmetries of Ginsparg-Wilson chiral fermions

    International Nuclear Information System (INIS)

    Mandula, Jeffrey E.

    2009-01-01

    The group structure of the variant chiral symmetry discovered by Luescher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter invariant subgroup, and the factor group, whose elements are its cosets, is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, noncommuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example, free overlap fermions, these noncanonical elements of lattice chiral symmetry are related to complex energy singularities that violate reflection positivity and impede continuation to Minkowski space.

  14. Chiral ionic liquids in chromatographic and electrophoretic separations.

    Science.gov (United States)

    Kapnissi-Christodoulou, Constantina P; Stavrou, Ioannis J; Mavroudi, Maria C

    2014-10-10

    This report provides an overview of the application of chiral ionic liquids (CILs) in separation technology, and particularly in capillary electrophoresis and both gas and liquid chromatography. There is a large number of CILs that have been synthesized and designed as chiral agents. However, only a few have successfully been applied in separation technology. Even though this application of CILs is still in its early stages, the scientific interest is increasing dramatically. This article is focused on the use of CILs as chiral selectors, background electrolyte additives, chiral ligands and chiral stationary phases in electrophoretic and chromatographic techniques. Different examples of CILs, which contain either a chiral cation, a chiral anion or both, are presented in this review article, and their major advantages along with their potential applications in chiral electrophoretic and chromatographic recognition are discussed. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Vector mesons and chiral symmetry

    International Nuclear Information System (INIS)

    Ecker, G.

    1989-01-01

    The ambiguities in the off-shell behaviour of spin-1 exchange can be resolved to O(p 4 ) in the chiral low-energy expansion if the asymptotic behaviour of QCD is properly incorporated. As a consequence, the chiral version of vector (and axial-vector) meson dominance is model independent. Additional high-energy constraints motivated by QCD determine the V,A resonance couplings uniquely. In particular, QCD in its effective chiral realization sucessfully predicts Γ(ρ→2π). 10 refs. (Author)

  16. Magnetoelectronic properties of chiral carbon nanotubes and tori

    International Nuclear Information System (INIS)

    Shyu, F L; Tsai, C C; Lee, C H; Lin, M F

    2006-01-01

    Magnetoelectronic properties of chiral carbon nanotubes and toroids are studied for any magnetic field. They are sensitive to the changes in the magnitude and the direction of the magnetic field, as well as the chirality. The important differences between chiral and achiral carbon nanotubes include band symmetry, band curvature, band crossing, band-edge state, state degeneracy, band spacing, energy gap, and semiconductor-metal transition. Carbon tori also exhibit the strong chirality dependence on the field modulation of discrete states. Chiral carbon tori might differ from chiral carbon nanotubes in energy-gap modulation, density of states, and state degeneracy

  17. Chiral corrections to the Adler-Weisberger sum rule

    Science.gov (United States)

    Beane, Silas R.; Klco, Natalie

    2016-12-01

    The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .

  18. Isomeric structures in neutron-rich odd-odd Pm (Z = 61) isotopes

    International Nuclear Information System (INIS)

    Sood, P.C.; Singh, B.; Jain, A.K.

    2008-01-01

    Each of the heavier odd-odd isotopes, namely, 152 Pm, 154 Pm and 156 Pm, have multiple low-lying isomers, almost all of them with undefined configuration and also undefined energy placement. Present investigations attempt credible characterization of the isomers using a simplified two-quasiparticle rotor model which has been widely employed for description of odd-odd deformed nuclei

  19. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    Chiral anomalies; gauge theories; bundles; connections; quantum field ... The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. ... Current Issue : Vol.

  20. Supersymmetric chiral electrodynamics as a renormalized theory

    International Nuclear Information System (INIS)

    Ansel'm, A.A.; Iogansen, A.A.

    1991-01-01

    It is well know that the QED of chiral fermions is a nonrenormalizable theory, inasmuch as the gauge current in it is not conserved because of the presence of an anomaly. It is evident that in this theory unitarity is also violated. The principal object of investigation in the present paper is supersymmetric chiral QED, supersymmetric QED is a renormalizable theory. This happens because the radiative corrections generate here a charged current of a chiral fermion that appears in the chiral (i.e., longitudinal) part of the vector supermultiplet. At first sight, the chiral part of the vector multiplet is unphysical and contains only supergauge degrees of freedom. However, this is valid only at the classical level, whereas, because of the anomaly, the radiative corrections lead to nonconservation of the gauge current, as a result of which the degrees of freedom associated with the chiral part of the vector multiplet become physical. On the other hand, owing to the nonconservation of the gauge charge, the apparently neutral fermion appearing int he chiral (longitudinal) part of the vector superfield becomes charged

  1. Survey of odd-odd deformed nuclear spectroscopy

    International Nuclear Information System (INIS)

    Hoff, R.W.

    1993-01-01

    In this paper, we survey the current experimental data that support assignment of rotational bands in odd-odd deformed nuclear in the rare earth and actinide regions. We present the results of a new study of 170 Mt nuclear structure. In a comparing experimental and calculated Gallagher-Moszkowski matrix elements for rare earth-region nuclei, we have developed a new approach to the systematics of these matrix elements

  2. Chirality plays important roles in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Shen Yumei

    2006-01-01

    The paper introduces the basic concept of chirality, target specific selectivity and their relationship in radiopharmaceuticals. If the ligands labeled by radionuclides have chiral center, the enantiomers must be separated, or the target specific selectivity will not be good. Chirality is one of the most important factors which must be considered in the study of the structure-activity relationship of radiopharmaceuticals. (authors)

  3. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  4. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    Kim, Keun-Young; Sahoo, Bindusar; Yee, Ho-Ung

    2010-06-01

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  5. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.; Ustbas, Burcin; Harkness, Kellen M.; Coskun, Hikmet; Joshi, Chakra Prasad; Besong, Tabot M.D.; Stellacci, Francesco; Bakr, Osman; Akbulut, Ozge

    2016-01-01

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  6. Synthesis and characterization of mixed ligand chiral nanoclusters

    KAUST Repository

    Guven, Zekiye P.

    2016-06-22

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.

  7. Illuminating the chirality of Weyl fermions

    Science.gov (United States)

    Ma, Qiong; Xu, Su-Yang; Chan, Ching-Kit; Zhang, Cheng-Long; Chang, Guoqing; Lin, Hsin; Jia, Shuang; Lee, Patrick; Gedik, Nuh; Jarillo-Herrero, Pablo

    In particle physics, Weyl fermions (WF) are elementary particles that travel at the speed of light and have a definite chirality. In condensed matter, it has been recently realized that WFs can arise as magnetic monopoles in the momentum space of a novel topological metal, the Weyl semimetal (WSM). Their chirality, given by the sign of the monopole charge, is the defining property of a WSM, since it directly serves as the topological number and gives rise to exotic properties such as Fermi arcs and the chiral anomaly. Moreover, the two chiralities, analogous to the two valleys in 2D materials, lead to a new degree of freedom in a 3D crystal, suggesting novel pathways to store and carry information. By shining circularly polarized light on the WSM TaAs, we illuminate the chirality of the WFs and achieve an electrical current that is highly controllable based on the WFs' chirality. Our results open up a wide range of new possibilities for experimentally studying and controlling the WFs and their associated quantum anomalies by optical and electrical means, which suggest the exciting prospect of ``Weyltronics''.

  8. New chiral zwitterionic phosphorus heterocycles: synthesis, structure, properties and application as chiral solvating agents.

    Science.gov (United States)

    Sheshenev, Andrey E; Boltukhina, Ekaterina V; Grishina, Anastasiya A; Cisařova, Ivana; Lyapkalo, Ilya M; Hii, King Kuok Mimi

    2013-06-17

    A family of new chiral zwitterionic phosphorus-containing heterocycles (zPHC) have been derived from methylene-bridged bis(imidazolines). These structures were unambiguously determined, including single-crystal XRD analysis for two compounds. The stability, acid/base and electronic properties of these dipolar phosphorus heterocycles were subsequently investigated. zPHCs can be successfully employed as a new class of chiral solvating agents for the enantiodifferentiation of chiral carboxylic and sulfonic acids by NMR spectroscopy. The stoichiometry and binding constants for the donor-acceptor complexes formed were established by NMR titration methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Chiral anomalies and differential geometry

    International Nuclear Information System (INIS)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references

  10. What's wrong with anomalous chiral gauge theory?

    International Nuclear Information System (INIS)

    Kieu, T.D.

    1994-05-01

    It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs

  11. Self-inductance of chiral conducting nanotubes

    International Nuclear Information System (INIS)

    Miyamoto, Yoshiyuki; Rubio, Angel; Louie, Steven G.; Cohen, Marvin L.

    1998-01-01

    Chiral conductivity in nanotubes has recently been predicted theoretically. The realization and application of chiral conducting nanotubes can be of great interest from both fundamental and technological viewpoints. These chiral currents, if they are realized, can be detected by measuring the self-inductance. We have treated Maxwell's equations for chiral conducting nanotubes (nanocoils) and find that the self-inductance and the resistivity of nanocoils should depend on the frequency of the alternating current even when the capacitance of the nanocoils is not taken into account. This is in contrast to elementary treatment of ordinary coils. This fact is useful to distinguish nanocoils by electrical measurements

  12. Macroscopic chirality of a liquid crystal from nonchiral molecules

    International Nuclear Information System (INIS)

    Jakli, A.; Nair, G. G.; Lee, C. K.; Sun, R.; Chien, L. C.

    2001-01-01

    The transfer of chirality from nonchiral polymer networks to the racemic B2 phase of nonchiral banana-shaped molecules is demonstrated. This corresponds to the transfer of chirality from an achiral material to another achiral material. There are two levels of chirality transfers. (a) On a microscopic level the presence of a polymer network (chiral or nonchiral) favors a chiral state over a thermodynamically stable racemic state due to the inversion symmetry breaking at the polymer-liquid crystal interfaces. (b) A macroscopically chiral (enantimerically enriched) sample can be produced if the polymer network has a helical structure, and/or contains chemically chiral groups. The chirality transfer can be locally suppressed by exposing the liquid crystal to a strong electric field treatment

  13. Chiral symmetry breaking is permitted in supersymmetric QED

    International Nuclear Information System (INIS)

    Walker, M.

    2000-01-01

    Full text: A chirally symmetric theory will generally have a chirally symmetric and a chirally asymmetric solution for the dressed fermionic propagator. It has been claimed that no chirally asymmetric solution for the fermionic propagator exists in supersymmetric QED. This result in the superfield formalism uses a gauge dependent argument whose validity has since been questioned. We present an analogous analysis using the component formalism which demonstrates that chiral symmetry breaking is permitted in this theory. We open the presentation with a brief introduction to supersymmetry, supersymmetric QED, and the superfield formalism. We describe chiral symmetry breaking and the Dyson-Schwinger equation used to analyse it. The derivation of the erroneous theorem claiming the lack of an a chiral propagator is outlined and its flaws discussed. We finish with the equivalent derivation in component fields and our contradictory result

  14. Chiral spiral induced by a strong magnetic field

    Directory of Open Access Journals (Sweden)

    Abuki Hiroaki

    2016-01-01

    Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.

  15. Broken chiral symmetry and the structure of hadrons

    International Nuclear Information System (INIS)

    Spence, W.L.

    1982-01-01

    The spontaneous breaking of chiral symmetry plays a decisive role in the structure of hadrons composed of light quarks. The formalism by which the dynamics of chiral symmetry breaking and its implications for hadronic structure can be explored in a simplified world in which fully relativistic zero-bare-mass quarks interact through a chirally symmetric instantaneous confining potential is presented. By thus modeling the essentials of the chiral limit-N/sub c/ infinity limit of QCD contact is made with the successes of existent semiphenomenological models of hadrons but post assumptions which explicitly violate chiral symetry are avoided. This revised approach then makes possible a unification of the dynamics of hadron structure with the mechanism of spontaneous chiral breaking and guarantees the appearance of the correct Goldstone excitations. The chiral breaking order parameter (absolute value anti psi psi), effective quark mass, and Goldstone boson wave function are obtainable by solving a single non-linear integral equation once a potential has been prescribed. The stability of the chiral asymmetric vacuum must then be established by studying the linear eigenvalue problem which determines the spectrum of states with vacuum quantum numbers. The nature of the instability of the chiral symmetric vacuum that leads to spontaneous symmetry breaking is explained and its apparent contingency on details of the dynamics is emphasized. It is argued that a single massless fermion in a chirally symmetric potential does form bound states for which a semi-classical description is given. Coupling to vacuum pairs of such bound states occasions the possibility of chiral symmetry breakdown

  16. Charge-odd and single-spin effects in two pion production in ep bar collisions

    International Nuclear Information System (INIS)

    Galynskij, M.V.; Kuraev, E.A.; Shajkhatdenov, B.G.; Ratcliffe, P.G.

    2000-01-01

    We consider two-photon and Bremsstrahlung mechanisms for the production of two charged pions in high-energy electron (proton) scattering off a transversely polarised proton. Interference between the relevant amplitudes generates a charge-odd contribution to the cross section for the process. In a kinematics with a jet moving along electron spin-independent part may be used for determination of phase differences for pion-pion scattering in the states with orbital momentum 0 or 2 and 1 whereas in a kinematics with a jet moving along proton spin-dependent part may be used to explain the experimental data for single-spin correlations in the production of negatively charged pions. We also discuss the backgrounds and estimate the accuracy of the results at less than 10% level. In addition simplified formulae derived for specific kinematics, with small total transverse pion momentum, are given

  17. Speciation and gene flow between snails of opposite chirality.

    Directory of Open Access Journals (Sweden)

    Angus Davison

    2005-09-01

    Full Text Available Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent "single-gene speciation" or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal-effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation. This therefore suggests a general mechanism as to how chiral variation arises in snails. In populations that contain both chiral morphs, two different situations are then possible. In the first, gene flow is substantial between morphs even without interchiral mating, because of the maternal inheritance of chirality. In the second, reproductive isolation is possible but unstable, and will also lead to gene flow if intrachiral matings occasionally produce offspring with the opposite chirality. Together, the results imply that speciation by chiral reversal is only meaningful in the context of a complex biogeographical process, and so must usually involve other factors. In order to understand the roles of reproductive character displacement and gene flow in the chiral evolution of Euhadra, it will be

  18. Higher derivative regularization and chiral anomaly

    International Nuclear Information System (INIS)

    Nagahama, Yoshinori.

    1985-02-01

    A higher derivative regularization which automatically leads to the consistent chiral anomaly is analyzed in detail. It explicitly breaks all the local gauge symmetry but preserves global chiral symmetry and leads to the chirally symmetric consistent anomaly. This regularization thus clarifies the physics content contained in the consistent anomaly. We also briefly comment on the application of this higher derivative regularization to massless QED. (author)

  19. New remarks on chiral bosonization

    International Nuclear Information System (INIS)

    Souza Dutra, A. de

    1992-01-01

    We discuss a certain duality between the constraints appearing in ordinary Lagrangian density and its first order counterpart for the gauged Siegel chiral boson. It is demonstrated the equivalence, at the classical level, of the two versions of the gauged Siegel chiral boson to its corresponding gauged Floreanini-Jackiw chiral bosons. It is also argued that the most general constrained Lagrangian density, that leads to a bosonic field obeying a first order differential equation of motion and preserve simultaneously Lorentz invariance, is just the Floreanini-Jackiw one. (author)

  20. Chiral gravity, log gravity, and extremal CFT

    International Nuclear Information System (INIS)

    Maloney, Alexander; Song Wei; Strominger, Andrew

    2010-01-01

    We show that the linearization of all exact solutions of classical chiral gravity around the AdS 3 vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.

  1. Confining but chirally symmetric dense and cold matter

    International Nuclear Information System (INIS)

    Glozman, L. Ya.

    2012-01-01

    The possibility for existence of cold, dense chirally symmetric matter with confinement is reviewed. The answer to this question crucially depends on the mechanism of mass generation in QCD and interconnection of confinement and chiral symmetry breaking. This question can be clarified from spectroscopy of hadrons and their axial properties. Almost systematical parity doubling of highly excited hadrons suggests that their mass is not related to chiral symmetry breaking in the vacuum and is approximately chirally symmetric. Then there is a possibility for existence of confining but chirally symmetric matter. We clarify a possible mechanism underlying such a phase at low temperatures and large density. Namely, at large density the Pauli blocking prevents the gap equation to generate a solution with broken chiral symmetry. However, the chirally symmetric part of the quark Green function as well as all color non-singlet quantities are still infrared divergent, meaning that the system is with confinement. A possible phase transition to such a matter is most probably of the first order. This is because there are no chiral partners to the lowest lying hadrons.

  2. Chirality-Controlled Synthesis and Applications of Single-Wall Carbon Nanotubes.

    Science.gov (United States)

    Liu, Bilu; Wu, Fanqi; Gui, Hui; Zheng, Ming; Zhou, Chongwu

    2017-01-24

    Preparation of chirality-defined single-wall carbon nanotubes (SWCNTs) is the top challenge in the nanotube field. In recent years, great progress has been made toward preparing single-chirality SWCNTs through both direct controlled synthesis and postsynthesis separation approaches. Accordingly, the uses of single-chirality-dominated SWCNTs for various applications have emerged as a new front in nanotube research. In this Review, we review recent progress made in the chirality-controlled synthesis of SWCNTs, including metal-catalyst-free SWCNT cloning by vapor-phase epitaxy elongation of purified single-chirality nanotube seeds, chirality-specific growth of SWCNTs on bimetallic solid alloy catalysts, chirality-controlled synthesis of SWCNTs using bottom-up synthetic strategy from carbonaceous molecular end-cap precursors, etc. Recent major progresses in postsynthesis separation of single-chirality SWCNT species, as well as methods for chirality characterization of SWCNTs, are also highlighted. Moreover, we discuss some examples where single-chirality SWCNTs have shown clear advantages over SWCNTs with broad chirality distributions. We hope this review could inspire more research on the chirality-controlled preparation of SWCNTs and equally important inspire the use of single-chirality SWCNT samples for more fundamental studies and practical applications.

  3. Chirality detection of enantiomers using twisted optical metamaterials

    Science.gov (United States)

    Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea

    2017-01-01

    Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies. PMID:28120825

  4. Chiral fermions on the lattice

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Strathdee, J.

    1995-01-01

    The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs

  5. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral

  6. Chiral dynamics with (non)strange quarks

    International Nuclear Information System (INIS)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S_1_1 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy–Steiner analysis of pion–nucleon scattering, a high-precision extraction of the elusive pion–nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  7. Chiral dynamics with (non)strange quarks

    Science.gov (United States)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  8. Deracemization of Racemic Amino Acids Using (R)- and (S)-Alanine Racemase Chiral Analogues as Chiral Converters

    International Nuclear Information System (INIS)

    Paik, Manjeong; Jeon, So Hee; Lee, Wonjae; Kang, Jong Seong; Kim, Kwan Mook

    2014-01-01

    Our findings show that both (R)- and (S)-ARCA can be practical chiral converters for L- and D-amino acids, respectively, in the deracemization of racemic amino acids. The overall stereoselectivities of both chiral converters are generally greater than 90%. In addition, we developed chiral and achiral HPLC methods for the analysis of stereoselectivity determination. This chromatographic method proved much more accurate and convenient at determining both enantiomer and diastereomer purity than did those previously reported. Deracemization is the stereoselective process of converting a racemate into either a pure enantiomer or a mixture in which one enantiomer is present in excess.1 Previous studies have shown that (S)-alanine racemase chiral analogue (ARCA) [(S)-2-hydroxy-2'-(3-phenyluryl-benzyl)-1,1'-binaphthyl-3-carboxaldehyde], developed as a chiral convertor compound that imitates the function of alanine racemase, plays an essential role in the stereoselective conversion of amino acid. Since (S)-ARCA showed a higher stability with D-amino acids than with L-amino acids, several L-amino acids were preferentially converted to D-amino acids via (S)-ARCA/D-amino acid imine diastereomer formation. For the deracemization process undertaken in this study, we utilized both (R)-ARCA and (S)-ARCA as chiral converters, which were expected to generate L- and D-amino acids, respectively, from the starting racemic mixtures

  9. Chiral symmetry breaking and cooling in lattice QCD

    International Nuclear Information System (INIS)

    Woloshyn, R.M.; Lee, F.X.

    1995-08-01

    Chiral symmetry breaking is calculated as a function of cooling in quenched lattice QCD. A non-zero signal is found for the chiral condensate beyond one hundred cooling steps, suggesting that there is chiral symmetry breaking associated with instantons. Quantitatively, the chiral condensate in cooled gauge field configurations is small compared to the value without cooling. (author) 7 refs., 1 tab., 3 figs

  10. Odd Structures Are Odd

    Czech Academy of Sciences Publication Activity Database

    Markl, Martin

    2017-01-01

    Roč. 27, č. 2 (2017), s. 1567-1580 ISSN 0188-7009 Institutional support: RVO:67985840 Keywords : graded vector space * monoidal structure * Odd endomorphism operad Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.643, year: 2016 http://link.springer.com/article/10.1007%2Fs00006-016-0720-8

  11. A web site for calculating the degree of chirality.

    Science.gov (United States)

    Zayit, Amir; Pinsky, Mark; Elgavi, Hadassah; Dryzun, Chaim; Avnir, David

    2011-01-01

    The web site, http://www.csm.huji.ac.il/, uses the Continuous Chirality Measure to evaluate quantitatively the degree of chirality of a molecule, a structure, a fragment. The value of this measure ranges from zero, the molecule is achiral, to higher values (the upper limit is 100); the higher the chirality value, the more chiral the molecule is. The measure is based on the distance between the chiral molecule and the nearest structure that is achiral. Questions such as the following can be addressed: by how much is one molecule more chiral than the other? how does chirality change along conformational motions? is there a correlation between chirality and enantioselectivity in a series of molecules? Both elementary and advanced features are offered. Related calculation options are the symmetry measures and shape measures. Copyright © 2009 Wiley-Liss, Inc.

  12. Two-color QCD with non-zero chiral chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, V.V. [Institute for High Energy Physics NRC “Kurchatov Institute' ,142281 Protvino (Russian Federation); Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Goy, V.A. [Far Eastern Federal University, School of Natural Sciences,690950 Vladivostok (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Research,BLTP, 141980 Dubna (Russian Federation); Kotov, A.Yu. [Institute of Theoretical and Experimental Physics,117259 Moscow (Russian Federation); Molochkov, A.V. [Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Müller-Preussker, M.; Petersson, B. [Humboldt-Universität zu Berlin, Institut für Physik,12489 Berlin (Germany)

    2015-06-16

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  13. A variational approach to chiral quark models

    International Nuclear Information System (INIS)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira.

    1987-01-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation. (author)

  14. Synergistic effects on enantioselectivity of zwitterionic chiral stationary phases for separations of chiral acids, bases, and amino acids by HPLC.

    Science.gov (United States)

    Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang

    2008-11-15

    In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.

  15. Transfer of chirality from adsorbed chiral molecules to the substrates highlighted by circular dichroism in angle-resolved valence photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Contini, G.; Turchini, S.; Sanna, Simone

    2012-01-01

    Studies of self-assembled chiral molecules on achiral metallic surfaces have mostly focused on the determination of the geometry of adsorbates and their electronic structure. The aim of this paper is to provide direct information on the chirality character of the system and on the chirality...... transfer from molecules to substrate by means of circular dichroism in the angular distribution of valence photoelectrons for the extended domain of the chiral self-assembled molecular structure, formed by alaninol adsorbed on Cu(100). We show, by the dichroic behavior of a mixed molecule–copper valence...... state, that the presence of molecular chiral domains induces asymmetry in the interaction with the substrate and locally transfers the chiral character to the underlying metal atoms participating in the adsorption process; combined information related to the asymmetry of the initial electronic state...

  16. Multiaxial Polarity Determines Individual Cellular and Nuclear Chirality.

    Science.gov (United States)

    Raymond, Michael J; Ray, Poulomi; Kaur, Gurleen; Fredericks, Michael; Singh, Ajay V; Wan, Leo Q

    2017-02-01

    Intrinsic cell chirality has been implicated in the left-right (LR) asymmetry of embryonic development. Impaired cell chirality could lead to severe birth defects in laterality. Previously, we detected cell chirality with an in vitro micropatterning system. Here, we demonstrate for the first time that chirality can be quantified as the coordination of multiaxial polarization of individual cells and nuclei. Using an object labeling, connected component based method, we characterized cell chirality based on cell and nuclear shape polarization and nuclear positioning of each cell in multicellular patterns of epithelial cells. We found that the cells adopted a LR bias the boundaries by positioning the sharp end towards the leading edge and leaving the nucleus at the rear. This behavior is consistent with the directional migration observed previously on the boundary of micropatterns. Although the nucleus is chirally aligned, it is not strongly biased towards or away from the boundary. As the result of the rear positioning of nuclei, the nuclear positioning has an opposite chirality to that of cell alignment. Overall, our results have revealed deep insights of chiral morphogenesis as the coordination of multiaxial polarization at the cellular and subcellular levels.

  17. Chiral anomaly, bosonization, and fractional charge

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Monteiro, M.A.R.

    1985-01-01

    We present a method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper-time method and using Seeley's asymptotic expansion. With this method we compute easily the chiral anomaly for ν = 4,6 dimensions, discuss bosonization of some massless two-dimensional models, and handle the problem of charge fractionization. In addition, we comment on the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-Hermitian operators

  18. A spectral route to determining chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We show how one-dimensional structured media can be used to measure chirality, via the spectral shift of the photonic band gap edges. Analytically, we show that a chiral contrast can, in some cases, be mapped unto an index contrast, thereby greatly simplifying the analysis of such structures. Using...... this mapping, we derive a first-order shift of the band gap edges with chirality. Potentially, this effect could be used for measuring enantiomeric excess....

  19. Quasiparticle features and level statistics of odd-odd nucleus

    International Nuclear Information System (INIS)

    Cheng Nanpu; Zheng Renrong; Zhu Shunquan

    2001-01-01

    The energy levels of the odd-odd nucleus 84 Y are calculated by using the axially symmetric rotor plus quasiparticles model. The two standard statistical tests of Random-Matrix Theory such as the distribution function p(s) of the nearest-neighbor level spacings (NNS) and the spectral rigidity Δ 3 are used to explore the statistical properties of the energy levels. By analyzing the properties of p(s) and Δ 3 under various conditions, the authors find that the quasiparticle features mainly affect the statistical properties of the odd-odd nucleus 84 Y through the recoil term and the Coriolis force in this theoretical mode, and that the chaotic degree of the energy levels decreases with the decreasing of the Fermi energy and the energy-gap parameters. The effect of the recoil term is small while the Coriolis force plays a major role in the spectral structure of 84 Y

  20. Chiral properties of baryon interpolating fields

    International Nuclear Information System (INIS)

    Nagata, Keitaro; Hosaka, Atsushi; Dmitrasinovic, V.

    2008-01-01

    We study the chiral transformation properties of all possible local (non-derivative) interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We derive and use the relations/identities among the baryon operators with identical quantum numbers that follow from the combined color, Dirac and isospin Fierz transformations. These relations reduce the number of independent baryon operators with any given spin and isospin. The Fierz identities also effectively restrict the allowed baryon chiral multiplets. It turns out that the non-derivative baryons' chiral multiplets have the same dimensionality as their Lorentz representations. For the two independent nucleon operators the only permissible chiral multiplet is the fundamental one, ((1)/(2),0)+(0,(1)/(2)). For the Δ, admissible Lorentz representations are (1,(1)/(2))+((1)/(2),1) and ((3)/(2),0)+(0,(3)/(2)). In the case of the (1,(1)/(2))+((1)/(2),1) chiral multiplet, the I(J)=(3)/(2)((3)/(2)) Δ field has one I(J)=(1)/(2)((3)/(2)) chiral partner; otherwise it has none. We also consider the Abelian (U A (1)) chiral transformation properties of the fields and show that each baryon comes in two varieties: (1) with Abelian axial charge +3; and (2) with Abelian axial charge -1. In case of the nucleon these are the two Ioffe fields; in case of the Δ, the (1,(1)/(2))+((1)/(2),1) multiplet has an Abelian axial charge -1 and the ((3)/(2),0)+(0,(3)/(2)) multiplet has an Abelian axial charge +3. (orig.)

  1. Search for chirality in 109Ag

    International Nuclear Information System (INIS)

    Timar, J.; Nyako, B.M.; Berek, G.; Gal, J.; Kalinka, G.; Krasznahorkay, A.; Molnar, J.; Zolnai, L.

    2007-01-01

    Complete text of publication follows. The existence of nuclear chirality is one of the most intriguing questions of contemporary high-spin nuclear structure studies. Rotational doublet-band candidates for chiral structures have been observed mostly in two regions of the nuclear chart: around 134 Pr, and around 104 Rh. In this second region chirality in the Rh isotopes are rather well studied, chiral doubling have also been observed in 100 Tc, however, results obtained for chirality in the studied Ag nuclei ( 105 Ag and 106 Ag) look rather contradictory. Thus, it is interesting to study these doublet bands in the nearby higher-mass Ag nuclei. In order to search for a chiral-candidate partner band to the yrast πg 9/2 v(h 11/2 ) 2 band in 109 Ag, high-spin states of this nucleus have been studied using the 96 Zr( 18 O,p4n) reaction. The experiment was performed at iThemba LABS using 8 Clover detectors of the AFRODITE array and the DIAMANT charged-particle array to detect the γ-rays and the charged particles, respectively. Altogether ∼140 million γγ-coincidence events were collected. Approximately 10 million events of them correspond to the reaction channel producing 109 Ag. No chiral candidate partner band has been found to the πg 9/2 v(h 11/2 ) 2 band with this statistics, however, the level scheme could be extended by several new levels and γ-transitions. A preliminary level scheme of 109 Ag obtained from the ongoing data analysis is shown in Fig. 1

  2. Generalized chiral membrane dynamics

    International Nuclear Information System (INIS)

    Cordero, R.; Rojas, E.

    2003-01-01

    We develop the dynamics of the chiral superconducting membranes (with null current) in an alternative geometrical approach. Besides of this, we show the equivalence of the resulting description with the one known Dirac-Nambu-Goto (DNG) case. Integrability for chiral string model is obtained using a proposed light-cone gauge. In a similar way, domain walls are integrated by means of a simple Ansatz. (Author)

  3. The ''closed'' chiral symmetry and its application to tetraquark

    International Nuclear Information System (INIS)

    Chen, Hua-Xing

    2012-01-01

    We investigate the chiral (flavor) structure of tetraquarks, and study chiral transformation properties of the ''non-exotic'' [(anti 3, 3)+(3, anti 3)] and [(8,1)+(1,8)] tetraquark chiral multiplets. We find that as long as this kind of tetraquark states contains one quark and one antiquark having the same chirality, such as q L q L anti q L anti q R + q R q R anti q R anti q L , they transform in the same way as the lowest level anti q q chiral multiplets under chiral transformations. There is only one [(anti 3, 3)+(3, anti 3)] chiral multiplet whose quark-antiquark pairs all have the opposite chirality (q L q L anti q R anti q R + q R q R anti q L anti q L ), and it transforms differently from others. Based on these studies, we construct local tetraquark currents belonging to the ''non-exotic'' chiral multiplet [(anti 3, 3)+(3, anti 3)] and having quantum numbers J PC =1 -+ . (orig.)

  4. Hierarchical chirality transfer in the growth of Towel Gourd tendrils

    Science.gov (United States)

    Wang, Jian-Shan; Wang, Gang; Feng, Xi-Qiao; Kitamura, Takayuki; Kang, Yi-Lan; Yu, Shou-Wen; Qin, Qing-Hua

    2013-01-01

    Chirality plays a significant role in the physical properties and biological functions of many biological materials, e.g., climbing tendrils and twisted leaves, which exhibit chiral growth. However, the mechanisms underlying the chiral growth of biological materials remain unclear. In this paper, we investigate how the Towel Gourd tendrils achieve their chiral growth. Our experiments reveal that the tendrils have a hierarchy of chirality, which transfers from the lower levels to the higher. The change in the helical angle of cellulose fibrils at the subcellular level induces an intrinsic torsion of tendrils, leading to the formation of the helical morphology of tendril filaments. A chirality transfer model is presented to elucidate the chiral growth of tendrils. This present study may help understand various chiral phenomena observed in biological materials. It also suggests that chirality transfer can be utilized in the development of hierarchically chiral materials having unique properties. PMID:24173107

  5. Spectroscopy of the odd-odd chiral candidate nucleus 102Rh

    Directory of Open Access Journals (Sweden)

    Yavahchova M.S.

    2014-03-01

    Full Text Available Excited states in 102Rh were populated in the fusion-evaporation reaction 94Zr(11B, 3n102Rh at a beam energy of 36 MeV, using the INGA spectrometer at IUAC, New Delhi. The angular correlations and the electromagnetic character of some of the 03B3-ray transitions observed in 102Rh were investigated in detail. A new candidate for achiral twin band was identified in 102Rh for the first time.

  6. Chiral Rayleigh particles discrimination in dynamic dual optical traps

    International Nuclear Information System (INIS)

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador

    2017-01-01

    Highlights: • A chiral optical conveyor belt for enantiomeric separation of nanopar-ticles is numerically demonstrated. • Chiral resolution has been theoretically analyzed for chiral spheres immersed in water. • Electromagnetic fields have been designed for obtaining Chiral selective optical tweezers to separate enantiomers in different spatial regions. - Abstract: A chiral optical conveyor belt for enantiomeric separation of nanoparticles is numerically demonstrated by using different types of counter propagating elliptical Laguerre Gaussian beams with different beam waist and topological charge. The analysis of chiral resolution has been made for particles immersed in water demonstrating that in the analyzed conditions one type of enantiomer is trapped in a deep potential and the others are transported by the chiral conveyor toward another trap located in a different geometrical region.

  7. Tilted axis rotation in odd-odd {sup 164}Tm

    Energy Technology Data Exchange (ETDEWEB)

    Reviol, W.; Riedinger, L.L.; Wang, X.Z.; Zhang, J.Y. [Univ. of Tennessee, Knoxville, TN (United States)] [and others

    1996-12-31

    Ten band structures are observed in {sup 164}Tm, among them sets of parallel and anti-parallel couplings of the proton and neutron spins. The Tilted Axis Cranking scheme is applied for the first time to an odd-odd nucleus in a prominent region of nuclear deformation.

  8. Chiral anomaly, bosonization and fractional charge

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Rego Monteiro, M.A. do.

    1984-01-01

    A method to evaluate the Jacobian of chiral rotations, regulating determinants through the proper time method and using Seeley's asymptotic expansion is presented. With this method the chiral anomaly ofr ν=4,6 dimensions is computed easily, bosonization of some massless two-dimensional models is discussed and the problem of charge fractionization is handled. Besides, the general validity of Fujikawa's approach to regulate the Jacobian of chiral rotations with non-hermitean operators is commented. (Author) [pt

  9. Supersymmetry and the chiral Schwinger model

    International Nuclear Information System (INIS)

    Amorim, R.; Das, A.

    1998-01-01

    We have constructed the N= (1) /(2) supersymmetric general Abelian model with asymmetric chiral couplings. This leads to a N= (1) /(2) supersymmetrization of the Schwinger model. We show that the supersymmetric general model is plagued with problems of infrared divergence. Only the supersymmetric chiral Schwinger model is free from such problems and is dynamically equivalent to the chiral Schwinger model because of the peculiar structure of the N= (1) /(2) multiplets. copyright 1998 The American Physical Society

  10. Chiral Tunnelling in Twisted Graphene Bilayer

    OpenAIRE

    He, Wen-Yu; Chu, Zhao-Dong; He, Lin

    2013-01-01

    The perfect transmission in graphene monolayer and the perfect reflection in Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in twisted graphene bilayer shows adjustable probability of chiral tunnelling for normal incidence: they can be changed fr...

  11. Electromagnetic couplings of the chiral perturbation theory Lagrangian from the perturbative chiral quark model

    International Nuclear Information System (INIS)

    Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh

    2002-01-01

    We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI

  12. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1980-01-01

    The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour

  13. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Directory of Open Access Journals (Sweden)

    Hironori Izawa

    2010-07-01

    Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  14. Enantioseparation and chiral recognition mechanism of new chiral derivatives of xanthones on macrocyclic antibiotic stationary phases.

    Science.gov (United States)

    Fernandes, Carla; Tiritan, Maria Elizabeth; Cass, Quezia; Kairys, Visvaldas; Fernandes, Miguel Xavier; Pinto, Madalena

    2012-06-08

    A chiral HPLC method using four macrocyclic antibiotic chiral stationary phases (CSPs) has been investigated for determination of the enantiomeric purity of fourteen new chiral derivatives of xanthones (CDXs). The separations were performed with the CSPs Chirobiotic T, Chirobiotic TAG, Chirobiotic V and Chirobiotic R under multimodal elution conditions (normal-phase, reversed-phase and polar ionic mode). The analyses were performed at room temperature in isocratic mode and UV and CD detection at a wavelength of 254 nm. The best enantioselectivity and resolution were achieved on Chirobiotic R and Chirobiotic T CSPs, under normal elution conditions, with R(S) ranging from 1.25 to 2.50 and from 0.78 to 2.06, respectively. The optimized chromatographic conditions allowed the determination of the enantiomeric ratio of eight CDXs, always higher than 99%. In order to better understand the chromatographic behavior at a molecular level, and the structural features associated with the chiral recognition mechanism, computational studies by molecular docking were carried out using VDock. These studies shed light on the mechanisms involved in the enantioseparation for this important class of chiral compounds. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Chiral symmetry breaking and confinement - solutions of relativistic wave equations

    International Nuclear Information System (INIS)

    Murugesan, P.

    1983-01-01

    In this thesis, an attempt is made to explore the question whether confinement automatically leads to chiral symmetry breaking. While it should be accepted that chiral symmetry breaking manifests in nature in the absence of scalar partners of pseudoscalar mesons, it does not necessarily follow that confinement should lead to chiral symmetry breaking. If chiral conserving forces give rise to observed spectrum of hadrons, then the conjuncture that confinement is responsible for chiral symmetry breaking is not valid. The method employed to answer the question whether confinement leads to chiral symmetry breaking or not is to solve relativistic wave equations by introducing chiral conserving as well as chiral breaking confining potentials and compare the results with experimental observations. It is concluded that even though chiral symmetry is broken in nature, confinement of quarks need not be the cause of it

  16. Topological chiral phonons in center-stacked bilayer triangle lattices

    Science.gov (United States)

    Xu, Xifang; Zhang, Wei; Wang, Jiaojiao; Zhang, Lifa

    2018-06-01

    Since chiral phonons were found in an asymmetric two-dimensional hexagonal lattice, there has been growing interest in the study of phonon chirality, which were experimentally verified very recently in monolayer tungsten diselenide (2018 Science 359 579). In this work, we find chiral phonons with nontrivial topology in center-stacked bilayer triangle lattices. At the Brillouin-zone corners, (), circularly polarized phonons and nonzero phonon Berry curvature are observed. Moreover, we find that the phonon chirality remain robust with changing sublattice mass ratio and interlayer coupling. The chiral phonons at the valleys are demonstrated in doubler-layer sodium chloride along the [1 1 1] direction. We believe that the findings on topological chiral phonons in triangle lattices will give guidance in the study of chiral phonons in real materials and promote the phononic applications.

  17. Minimally doubled fermions and spontaneous chiral symmetry breaking

    Directory of Open Access Journals (Sweden)

    Osmanaj (Zeqirllari Rudina

    2018-01-01

    Full Text Available Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks – Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss – Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.

  18. Minimally doubled fermions and spontaneous chiral symmetry breaking

    Science.gov (United States)

    Osmanaj (Zeqirllari), Rudina; Hyka (Xhako), Dafina

    2018-03-01

    Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks - Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss - Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.

  19. Sum-Frequency Generation from Chiral Media and Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Na [Univ. of California, Berkeley, CA (United States)

    2006-02-13

    Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers.

  20. Sum-Frequency Generation from Chiral Media and Interfaces

    International Nuclear Information System (INIS)

    Ji, Na

    2006-01-01

    Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers

  1. Inversion of Supramolecular Chirality by Sonication-Induced Organogelation

    Science.gov (United States)

    Maity, Sibaprasad; Das, Priyadip; Reches, Meital

    2015-01-01

    Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions. PMID:26553508

  2. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids.

    Science.gov (United States)

    Suzuki, Yumiko

    2018-06-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines.

  3. Probing molecular chirality by coherent optical absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Jia, W. Z. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Wei, L. F. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  4. Lattice regularized chiral perturbation theory

    International Nuclear Information System (INIS)

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  5. Chiral tunneling in a twisted graphene bilayer.

    Science.gov (United States)

    He, Wen-Yu; Chu, Zhao-Dong; He, Lin

    2013-08-09

    The perfect transmission in a graphene monolayer and the perfect reflection in a Bernal graphene bilayer for electrons incident in the normal direction of a potential barrier are viewed as two incarnations of the Klein paradox. Here we show a new and unique incarnation of the Klein paradox. Owing to the different chiralities of the quasiparticles involved, the chiral fermions in a twisted graphene bilayer show an adjustable probability of chiral tunneling for normal incidence: they can be changed from perfect tunneling to partial or perfect reflection, or vice versa, by controlling either the height of the barrier or the incident energy. As well as addressing basic physics about how the chiral fermions with different chiralities tunnel through a barrier, our results provide a facile route to tune the electronic properties of the twisted graphene bilayer.

  6. SU(3) chiral symmetry for baryons

    International Nuclear Information System (INIS)

    Dmitrasinovic, V.

    2011-01-01

    Three-quark nucleon interpolating fields in QCD have well-defined SU L (3)xSU R (3) and U A (1) chiral transformation properties, viz. [(6,3)+(3,6)], [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] and their 'mirror' images. It has been shown (phenomenologically) in Ref. [2] that mixing of the [(6,3)+(3,6)] chiral multiplet with one ordinary ('naive') and one 'mirror' field belonging to the [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] multiplets can be used to fit the values of the isovector (g A (3) ) and the flavor-singlet (isoscalar) axial coupling (g A (0) ) of the nucleon and then predict the axial F and D coefficients, or vice versa, in reasonable agreement with experiment. In an attempt to derive such mixing from an effective Lagrangian, we construct all SU L (3)xSU R (3) chirally invariant non-derivative one-meson-baryon interactions and then calculate the mixing angles in terms of baryons' masses. It turns out that there are (strong) selection rules: for example, there is only one non-derivative chirally symmetric interaction between J 1/2 fields belonging to the [(6,3)+(3,6)] and the [(3,3-bar)+(3-bar,3)] chiral multiplets, that is also U A (1) symmetric. We also study the chiral interactions of the [(3,3-bar)+(3-bar,3)] and [(8,1)+(1,8)] nucleon fields. Again, there are selection rules that allow only one off-diagonal non-derivative chiral SU L (3)xSU R (3) interaction of this type, that also explicitly breaks the U A (1) symmetry. We use this interaction to calculate the corresponding mixing angles in terms of baryon masses and fit two lowest lying observed nucleon (resonance) masses, thus predicting the third (J = 1/2, I = 3/2)Δ resonance, as well as one or two flavor-singlet Λ hyperon(s), depending on the type of mixing. The effective chiral Lagrangians derived here may be applied to high density matter calculations.

  7. The synthesis and characterization of novel brush-type chiral stationary phase based on terpenoid selector for resolution of chiral drugs

    Directory of Open Access Journals (Sweden)

    Wang Dao-Cai

    2016-01-01

    Full Text Available In the light of the chiral resolution mechanism and structures of brush-type CSP, a new chiral selector 4′-carboxyl-1′-ursolic methyl ester-3β-yl-benzoate has been prepared. Then the terpenoid chiral selector was covalently linked to 3-aminopropyl silica gel. Its structure identification data are provided by 1H NMR, MS and elementary analysis. The enantiodiscriminating capability of the brush-type CSP was evaluated by static adsorption experiment with methyl mandelate, aniline derivative of mandelic acid, benzoin and ibuprofen. Experimental results demonstrated that the chiral selector has selectivity, and the enantiomers of methyl mandelate and ibuprofen could be separated on the CSP, which indicated that the novel brush-type CSP possess a bright prospects for chiral separation potentially.

  8. Chiral charge erasure via thermal fluctuations of magnetic helicity

    International Nuclear Information System (INIS)

    Long, Andrew J.; Sabancilar, Eray

    2016-01-01

    We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ≳1/(αμ_5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ_5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δ H∼λT and τ∼αλ"3T"2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t∼T"3/(α"5μ_5"4) until it reaches an equilibrium value H∼μ_5T"2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ_5< T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t∼T/(α"3μ_5"2). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.

  9. A chiral aluminum solvating agent (CASA) for 1H NMR chiral analysis of alcohols at low temperature.

    Science.gov (United States)

    Seo, Min-Seob; Jang, Sumin; Kim, Hyunwoo

    2018-03-16

    A chiral aluminum solvating agent (CASA) was demonstrated to be a general and efficient reagent for 1H NMR chiral analysis of alcohols. The sodium salt of the CASA (CASA-Na) showed a complete baseline peak separation of the hydroxyl group for various chiral alcohols including primary, secondary, and tertiary alcohols with alkyl and aryl substituents in CD3CN. Due to the weak intermolecular interaction, 1H NMR measurement at low temperature (-40 to 10 °C) was required.

  10. Generalized chiral perturbation theory

    International Nuclear Information System (INIS)

    Knecht, M.; Stern, J.

    1994-01-01

    The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs

  11. Chiral separation of substituted phenylalanine analogues using chiral palladium phosphine complexes with enantioselective liquid-liquid extraction

    NARCIS (Netherlands)

    Verkuijl, B.J.V.; Schuur, B.; Minnaard, A.J.; Vries, de J.G.; Feringa, B.L.

    2010-01-01

    Chiral palladium phosphine complexes have been employed in the chiral separation of amino acids and phenylalanine analogues in particular. The use of (S)-xylyl-BINAP as a ligand for the palladium complex in enantioselective liquid–liquid extraction allowed the separation of the phenylalanine

  12. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    Energy Technology Data Exchange (ETDEWEB)

    Rogachevskii, Igor; Kleeorin, Nathan [Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Ruchayskiy, Oleg [Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Boyarsky, Alexey [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Fröhlich, Jürg [Institute of Theoretical Physics, ETH Hönggerberg, CH-8093 Zurich (Switzerland); Brandenburg, Axel; Schober, Jennifer, E-mail: gary@bgu.ac.il [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2017-09-10

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  13. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    International Nuclear Information System (INIS)

    Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg; Boyarsky, Alexey; Fröhlich, Jürg; Brandenburg, Axel; Schober, Jennifer

    2017-01-01

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  14. A nonlocal model of chiral dynamics

    International Nuclear Information System (INIS)

    Holdom, B.; Terning, J.; Verbeek, K.

    1989-01-01

    We consider a nonlocal generalization of the nonlinear σ model. Our chirally symmetric model couples quarks with self-energy Σ(p) to Goldstone bosons (GBs). By integrating out the quarks we obtain a chiral lagrangian, the parameters of which are finite integrals of Σ(p). We find that chiral symmetry is not sufficient to derive the well-known Pagels-Stokar formula for the GB decay constant. We reproduce the Wess-Zumino term and we illustrate the dependence of other four derivative coefficients on Σ(p). (orig.)

  15. Chirality and chiroptical properties of amyloid fibrils.

    Science.gov (United States)

    Dzwolak, Wojciech

    2014-09-01

    Chirality of amyloid fibrils-linear beta-sheet-rich aggregates of misfolded protein chains-often manifests in morphological traits such as helical twist visible in atomic force microscopy and in chiroptical properties accessible to vibrational circular dichroism (VCD). According to recent studies the relationship between molecular chirality of polypeptide building blocks and superstructural chirality of amyloid fibrils may be more intricate and less deterministic than previously assumed. Several puzzling experimental findings have put into question earlier intuitive ideas on: 1) the bottom-up chirality transfer upon amyloidogenic self-assembly, and 2) the structural origins of chiroptical properties of protein aggregates. For example, removal of a single amino acid residue from an amyloidogenic all-L peptide was shown to reverse handedness of fibrils. On the other hand, certain types of amyloid aggregates revealed surprisingly strong VCD spectra with the sign and shape dependent on the conditions of fibrillation. Hence, microscopic and chiroptical studies have highlighted chirality as one more aspect of polymorphism of amyloid fibrils. This brief review is intended to outline the current state of research on amyloid-like fibrils from the perspective of their structural and superstructural chirality and chiroptical properties. © 2014 Wiley Periodicals, Inc.

  16. Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.

    Science.gov (United States)

    Wen, Tao; Wang, Hsiao-Fang; Li, Ming-Chia; Ho, Rong-Ming

    2017-04-18

    The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*). A helical (H*) phase to distinguish its P622 symmetry from that of normal hexagonally packed cylinder phase was discovered in the self-assembly of BCPs* due to the chirality effect on BCP self-assembly. Enantiomeric polylactide-containing BCPs*, polystyrene-b-poly(l-lactide) (PS-PLLA) and polystyrene-b-poly(d-lactide) (PS-PDLA), were synthesized for the examination of homochiral evolution. The optical activity (molecular chirality) of constituted chiral repeating unit in the chiral polylactide is detected by electronic circular dichroism (ECD) whereas the conformational chirality of helical polylactide chain can be explicitly determined by vibrational circular dichroism (VCD). The H* phases of the self-assembled polylactide-containing BCPs* can be directly visualized by 3D transmission electron microscopy (3D TEM) technique at which the handedness (hierarchical chirality) of the helical nanostructure is thus determined. The results from the ECD, VCD, and 3D TEM for the investigated chirality at different length scales suggest the homochiral evolution in the self-assembly of the BCPs*. For chiral polylactides, twisted lamellae in crystalline banded spherulite can be formed by dense packing scheme and effective interactions upon helical

  17. Asymmetric Michael Addition Mediated by Chiral Ionic Liquids

    Science.gov (United States)

    Suzuki, Yumiko

    2018-01-01

    Chiral ionic liquids with a focus on their applications in asymmetric Michael additions and related reactions were reviewed. The examples were classified on the basis of the mode of asymmetric induction (e.g., external induction/non-covalent interaction or internal induction/covalent bond formation), the roles in reactions (as a solvent or catalyst), and their structural features (e.g., imidazolium-based chiral cations, other chiral oniums; proline derivatives). Most of the reactions with high chiral induction are Michael addition of ketones or aldehydes to chalcones or nitrostyrenes where proline-derived chiral ionic liquids catalyze the reaction through enamine/ iminium formation. Many reports demonstrate the recyclability of ionic liquid-tagged pyrrolidines. PMID:29861702

  18. Chiroptical studies on supramolecular chirality of molecular aggregates.

    Science.gov (United States)

    Sato, Hisako; Yajima, Tomoko; Yamagishi, Akihiko

    2015-10-01

    The attempts of applying chiroptical spectroscopy to supramolecular chirality are reviewed with a focus on vibrational circular dichroism (VCD). Examples were taken from gels, solids, and monolayers formed by low-molecular mass weight chiral gelators. Particular attention was paid to a group of gelators with perfluoroalkyl chains. The effects of the helical conformation of the perfluoroalkyl chains on the formation of chiral architectures are reported. It is described how the conformation of a chiral gelator was determined by comparing the experimental and theoretical VCD spectra together with a model proposed for the molecular aggregation in fibrils. The results demonstrate the potential utility of the chiroptical method in analyzing organized chiral aggregates. © 2015 Wiley Periodicals, Inc.

  19. Modeling level structures of odd-odd deformed nuclei

    International Nuclear Information System (INIS)

    Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.

    1984-01-01

    A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for 238 Np, 244 Am, and 250 Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs

  20. Intrinsic Chirality Origination in Carbon Nanotubes.

    Science.gov (United States)

    Pierce, Neal; Chen, Gugang; P Rajukumar, Lakshmy; Chou, Nam Hawn; Koh, Ai Leen; Sinclair, Robert; Maruyama, Shigeo; Terrones, Mauricio; Harutyunyan, Avetik R

    2017-10-24

    Elucidating the origin of carbon nanotube chirality is key for realizing their untapped potential. Currently, prevalent theories suggest that catalyst structure originates chirality via an epitaxial relationship. Here we studied chirality abundances of carbon nanotubes grown on floating liquid Ga droplets, which excludes the influence of catalyst features, and compared them with abundances grown on solid Ru nanoparticles. Results of growth on liquid droplets bolsters the intrinsic preference of carbon nuclei toward certain chiralities. Specifically, the abundance of the (11,1)/χ = 4.31° tube can reach up to 95% relative to (9,4)/χ = 17.48°, although they have exactly the same diameter, (9.156 Å). However, the comparative abundances for the pair, (19,3)/χ = 7.2° and (17,6)/χ = 14.5°, with bigger diameter, (16.405 Å), fluctuate depending on synthesis temperature. The abundances of the same pairs of tubes grown on floating solid polyhedral Ru nanoparticles show completely different trends. Analysis of abundances in relation to nucleation probability, represented by a product of the Zeldovich factor and the deviation interval of a growing nuclei from equilibrium critical size, explain the findings. We suggest that the chirality in the nanotube in general is a result of interplay between intrinsic preference of carbon cluster and induction by catalyst structure. This finding can help to build the comprehensive theory of nanotube growth and offers a prospect for chirality-preferential synthesis of carbon nanotubes by the exploitation of liquid catalyst droplets.

  1. Chiral filtration-induced spin/valley polarization in silicene line defects

    Science.gov (United States)

    Ren, Chongdan; Zhou, Benhu; Sun, Minglei; Wang, Sake; Li, Yunfang; Tian, Hongyu; Lu, Weitao

    2018-06-01

    The spin/valley polarization in silicene with extended line defects is investigated according to the chiral filtration mechanism. It is shown that the inner-built quantum Hall pseudo-edge states with identical chirality can serve as a chiral filter with a weak magnetic field and that the transmission process is restrained/strengthened for chiral states with reversed/identical chirality. With two parallel line defects, which act as natural chiral filtration, the filter effect is greatly enhanced, and 100% spin/valley polarization can be achieved.

  2. Physics of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1991-01-01

    This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)

  3. Cell chirality: emergence of asymmetry from cell culture.

    Science.gov (United States)

    Wan, Leo Q; Chin, Amanda S; Worley, Kathryn E; Ray, Poulomi

    2016-12-19

    Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left-right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Author(s).

  4. Spin-directed momentum transfers in SIDIS baryon production

    International Nuclear Information System (INIS)

    Sivers, D.

    2016-01-01

    The measurement of transverse single-spin asymmetries for baryon production in the target fragmentation region of semi-inclusive deep-inelastic scattering (SIDIS), can produce important insight into those nonperturbative aspects of QCD directly associated with confinement and with the dynamical breaking of chiral symmetry. We discuss here, in terms of spin-directed momentum transfers, the powerful quantum field- theoretical constraints on the spin-orbit dynamics underlying these transverse spin observables. The A τ -odd spin-directed momentum shifts, originating either in the target nucleon (δk TN ) or in the QCD jets (δp TN ) produced in the deep inelastic scattering process, represent significant quantum entanglement effects connecting information from current fragmentation with observables in target fragmentation. (author)

  5. Consistency tests of Ampcalculator and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial-based approach

    International Nuclear Information System (INIS)

    Ananthanarayan, B.; Sentitemsu Imsong, I.; Das, Diganta

    2012-01-01

    Ampcalculator (AMPC) is a Mathematica copyright based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O(p 4 )) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G 27 . Another illustrative set of amplitudes at tree level we provide is in the context of τ-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics. (orig.)

  6. Massive states in chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Saha Inst. of Nuclear Physics, Calcutta (India)

    1995-08-01

    It is shown that the chiral nonanalytic terms generated by {Delta}{sub 33} resonance in the nucleon self-energy is reproduced in chiral perturbation theory by perturbing appropriate local operators contained in the pion-nucleon effective Lagrangian itself. (orig.)

  7. Measurement of the transverse polarization of electrons emitted in free-neutron decay.

    Science.gov (United States)

    Kozela, A; Ban, G; Białek, A; Bodek, K; Gorel, P; Kirch, K; Kistryn, St; Kuźniak, M; Naviliat-Cuncic, O; Pulut, J; Severijns, N; Stephan, E; Zejma, J

    2009-05-01

    Both components of the transverse polarization of electrons (sigmaT1, sigmaT2) emitted in the beta-decay of polarized, free neutrons have been measured. The T-odd, P-odd correlation coefficient quantifying sigmaT2, perpendicular to the neutron polarization and electron momentum, was found to be R=0.008+/-0.015+/-0.005. This value is consistent with time reversal invariance and significantly improves limits on the relative strength of imaginary scalar couplings in the weak interaction. The value obtained for the correlation coefficient associated with sigmaT1, N=0.056+/-0.011+/-0.005, agrees with the Standard Model expectation, providing an important sensitivity test of the experimental setup.

  8. Enantiomeric Profiling of Chiral Pharmacologically Active Compounds in the Environment with the Usage of Chiral Liquid Chromatography 
Coupled with Tandem Mass Spectrometry

    Science.gov (United States)

    Camacho-Muñoz, Dolores; Petrie, Bruce; Castrignanò, Erika; Kasprzyk-Hordern, Barbara

    2016-01-01

    The issue of drug chirality is attracting increasing attention among the scientific community. The phenomenon of chirality has been overlooked in environmental research (environmental occurrence, fate and toxicity) despite the great impact that chiral pharmacologically active compounds (cPACs) can provoke on ecosystems. The aim of this paper is to introduce the topic of chirality and its implications in environmental contamination. Special attention has been paid to the most recent advances in chiral analysis based on liquid chromatography coupled with mass spectrometry and the most popular protein based chiral stationary phases. Several groups of cPACs of environmental relevance, such as illicit drugs, human and veterinary medicines were discussed. The increase in the number of papers published in the area of chiral environmental analysis indicates that researchers are actively pursuing new opportunities to provide better understanding of environmental impacts resulting from the enantiomerism of cPACs. PMID:27713682

  9. Lateral shifting in one dimensional chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    You Yuan, E-mail: yctcyouyuan@163.com [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China); Chen Changyuan [School of Physics and Electronics, Yancheng Teachers University, Yancheng, 224002 Jiangsu (China)

    2012-07-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  10. Lateral shifting in one dimensional chiral photonic crystal

    International Nuclear Information System (INIS)

    You Yuan; Chen Changyuan

    2012-01-01

    We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.

  11. Chiral Plasmonic Nanostructures Fabricated by Circularly Polarized Light.

    Science.gov (United States)

    Saito, Koichiro; Tatsuma, Tetsu

    2018-05-09

    The chirality of materials results in a wide variety of advanced technologies including image display, data storage, light management including negative refraction, and enantioselective catalysis and sensing. Here, we introduce chirality to plasmonic nanostructures by using circularly polarized light as the sole chiral source for the first time. Gold nanocuboids as precursors on a semiconductor were irradiated with circularly polarized light to localize electric fields at specific corners of the cuboids depending on the handedness of light and deposited dielectric moieties as electron oscillation boosters by the localized electric field. Thus, plasmonic nanostructures with high chirality were developed. The present bottom-up method would allow the large-scale and cost-effective fabrication of chiral materials and further applications to functional materials and devices.

  12. Spin-Selective Transmission and Devisable Chirality in Two-Layer Metasurfaces.

    Science.gov (United States)

    Li, Zhancheng; Liu, Wenwei; Cheng, Hua; Chen, Shuqi; Tian, Jianguo

    2017-08-15

    Chirality is a nearly ubiquitous natural phenomenon. Its minute presence in most naturally occurring materials makes it incredibly difficult to detect. Recent advances in metasurfaces indicate that they exhibit devisable chirality in novel forms; this finding offers an effective opening for studying chirality and its features in such nanostructures. These metasurfaces display vast possibilities for highly sensitive chirality discrimination in biological and chemical systems. Here, we show that two-layer metasurfaces based on twisted nanorods can generate giant spin-selective transmission and support engineered chirality in the near-infrared region. Two designed metasurfaces with opposite spin-selective transmission are proposed for treatment as enantiomers and can be used widely for spin selection and enhanced chiral sensing. Specifically, we demonstrate that the chirality in these proposed metasurfaces can be adjusted effectively by simply changing the orientation angle between the twisted nanorods. Our results offer simple and straightforward rules for chirality engineering in metasurfaces and suggest intriguing possibilities for the applications of such metasurfaces in spin optics and chiral sensing.

  13. Non-perturbative chiral corrections for lattice QCD

    International Nuclear Information System (INIS)

    Thomas, A.W.; Leinweber, D.B.; Lu, D.H.

    2002-01-01

    We explore the chiral aspects of extrapolation of observables calculated within lattice QCD, using the nucleon magnetic moments as an example. Our analysis shows that the biggest effects of chiral dynamics occur for quark masses corresponding to a pion mass below 600 MeV. In this limited range chiral perturbation theory is not rapidly convergent, but we can develop some understanding of the behaviour through chiral quark models. This model dependent analysis leads us to a simple Pade approximant which builds in both the limits m π → 0 and m π → ∞ correctly and permits a consistent, model independent extrapolation to the physical pion mass which should be extremely reliable. (author)

  14. Modification of the twist angle in chiral nematic polymer films by photoisomerization of the chiral dopant

    NARCIS (Netherlands)

    Witte, van de P.; Neuteboom, E.E.; Brehmer, M.; Lub, Johan

    1999-01-01

    A method for the production of polarization sensitive recordings in liquid crystalline polymers is presented. The system is based on local modification of the twist angle of chiral nematic polymer films. The twist angle of the polymer film is varied by modifying the chemical structure of the chiral

  15. DEVELOPMENT AND REGISTRATION OF CHIRAL DRUGS

    NARCIS (Netherlands)

    WITTE, DT; ENSING, K; FRANKE, JP; DEZEEUW, RA

    1993-01-01

    In this review we describe the impact of chirality on drug development and registration in the United States, Japan and the European Community. Enantiomers may have differences in their pharmacological profiles, and, therefore, chiral drugs ask for special analytical and pharmacological attention

  16. LINEARLY POLARIZED PROBES OF SURFACE CHIRALITY

    NARCIS (Netherlands)

    VERBIEST, T; KAURANEN, M; MAKI, JJ; TEERENSTRA, MN; SCHOUTEN, AJ; NOLTE, RJM; PERSOONS, A

    1995-01-01

    We present a new nonlinear optical technique to study surface chirality. We demonstrate experimentally that the efficiency of second-harmonic generation from isotropic chiral surfaces is different for excitation with fundamental light that is +45 degrees and -45 degrees linearly polarized with

  17. Conflicting Coupling of Unpaired Nucleons and the Structure of Collective Bands in Odd-Odd Nuclei

    International Nuclear Information System (INIS)

    Levon, A.I.; Pasternak, A.A.

    2011-01-01

    The conflicting coupling of unpaired nucleons in odd-odd nuclei is discussed. A very simple explanation is suggested for the damping of the energy spacing of the lowest levels in the rotational bands in odd-odd nuclei with the 'conflicting' coupling of an odd proton and an odd neutron comparative to those of the bands based on the state of a strongly coupled particle in the neighboring odd nucleus entering the 'conflicting' configuration.

  18. Chirality Relay in 2,2'-Substituted 1,1'-Binaphthyl: Access to Propeller Chirality of the Tricoordinate Boron Center.

    Science.gov (United States)

    Wang, Chen; Sun, Zuo-Bang; Xu, Qing-Wen; Zhao, Cui-Hua

    2016-11-14

    It is a challenging issue to achieve propeller chirality for triarylboranes owing to the low transition barrier between the P and M forms of the boron center. Herein, we report a new strategy to achieve propeller chirality of triarylboranes. It was found that the chirality relay from axially chiral 1,1'-binaphthyl to propeller chirality of the trivalent boron center can be realized when a Me 2 N and a Mes 2 B group (Mes=mesityl) are introduced at the 2,2'-positions of the 1,1'-binaphthyl skeleton (BN-BNaph) owing to the strong π-π interaction between the Me 2 N-bonded naphthyl ring and the phenyl ring of one adjacent Mes group, which not only exerts great steric hindrance on the rotation of the two Mes groups but also gives unequal stability to the two configurations of the boron center for a given configuration of the binaphthyl moiety. The stereostructures of the boron center were fully characterized through 1 H NMR spectroscopy, X-ray crystal analyses, and theoretical calculations. Detailed comparisons with the analog BN-Ph-BNaph, in which the Mes 2 B group is separated from 1,1'-binaphthyl by a para-phenylene spacer, confirmed the essential role of π-π interaction for the successful chirality relay in BN-BNaph. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. The three dimensional dual of 4D chirality

    International Nuclear Information System (INIS)

    Porrati, M.; Girardello, L.

    2009-01-01

    Chiral gauge theories can be defined in four-dimensional Anti de Sitter space, but AdS boundary conditions explicitly break the chiral symmetry in a specific, well defined manner, which in turns results in an anomalous Ward identity. When the 4D theory admits a dual description in terms of a 3D CFT, the 3D dual of the broken chiral symmetry is a certain double-trace deformation of the CFT, which produces the same anomalous chiral Ward identities that obtains in the 4D bulk theory.

  20. Cell chirality: its origin and roles in left-right asymmetric development.

    Science.gov (United States)

    Inaki, Mikiko; Liu, Jingyang; Matsuno, Kenji

    2016-12-19

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by 'cortical inheritance'. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left-right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Authors.

  1. Cell chirality: its origin and roles in left–right asymmetric development

    Science.gov (United States)

    Inaki, Mikiko; Liu, Jingyang

    2016-01-01

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by ‘cortical inheritance’. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left–right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821533

  2. Asymmetric chiral colour

    International Nuclear Information System (INIS)

    Cuypers, F.

    1990-01-01

    Chiral colour is considered in a general framework where the coupling constants associated with each SU(3) component are allowed to be different. To reproduce QCD at low energy, gluons and axigluons cannot then be maximally mixed. Present data form e + e - colliders contrains the axigluon mass to values between 50 GeV and 375 GeV whilst the mixing angle is bounded by 13deg and 45deg. The lower limit of the axigluon mass is a definite bound at 90% C.L., whereas the upper limit only applies if chiral colour is to explain the anomalously high rates of hadron production at TRISTAN. (orig.)

  3. Chiral-glass transition in a diluted dipolar-interaction Heisenberg system

    International Nuclear Information System (INIS)

    Zhang Kaicheng; Liu Guibin; Zhu Yan

    2011-01-01

    Recently, numerical simulations reveal that a spin-glass transition can occur in the three-dimensional diluted dipolar system. By defining the chirality of triple spins in a diluted dipolar Heisenberg spin glass, we study the chiral ordering in the system using parallel tempering algorithm and heat bath method. The finite-size scaling analysis reveals that the system undergoes a chiral-glass transition at finite temperature. - Highlights: → We define the chirality in a diluted dipolar Heisenberg system. → The system undergoes a chiral-glass transition at finite temperature. → We extract the critical exponents of the chiral-glass transition.

  4. Chiral interaction and biomolecular evolution

    International Nuclear Information System (INIS)

    Gilat, G.

    1992-01-01

    Recent developments in the concept of chiral interaction open now new options and dynamical possibilities for biomolecules which have so far been overlooked. A few of these possibilities are mentioned, such as the control mechanism of enzymatic activity and the role played by non-ergodicity in evolutionary processes. It is shown that chiral interaction, being a surface phenomenon, does not obey Barron's symmetry constraints, which are suitable for force fields present in bulk interactions. In particular, the situation at the ocean-air surface in the prebiotic era is described, as well as the possible role played by chiral interaction in conjunction with the terrestrial magnetic field normal to the ocean surface, which could have lead to a process of deracernization at the ocean-air interface. (author)

  5. Fusion rules of chiral algebras

    International Nuclear Information System (INIS)

    Gaberdiel, M.

    1994-01-01

    Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)

  6. Probing chirality with a femtosecond reaction microscope

    Directory of Open Access Journals (Sweden)

    Janssen M. H. M.

    2013-03-01

    Full Text Available Detection of molecular chirality with high sensitivity and selectivity is important for many analytical and practical applications. Photoionization has emerged as a very sensitive probe of chirality in molecules. We show here that a table top setup with a femtosecond laser and a single imaging detector for both photoelectrons and photoions enables detection of chirality up to 3 orders of magnitude better than the existing conventional absorption based techniques.

  7. The role of resonances in chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.; Rafael, E. de

    1988-09-01

    The strong interactions of low-lying meson resonances (spin ≤ 1) with the octet of pseudoscalar mesons (π,Κ,η) are considered to lowest order in the derivative expansion of chiral SU(3). The resonance contributions to the coupling constants of the O(p 4 ) effective chiral lagrangian involving pseudoscalar fields only are determined. These low-energy coupling constants are found to be dominated by the resonance contributions. Although we do not treat the vector and axial-vector mesons as gauge bosons of local chiral symmetry, vector meson dominance emerges as a prominent result of our analysis. As a further application of chiral resonance couplings, we calculate the electromagnetic pion mass difference to lowest order in chiral perturbation theory with explicit resonance fields. 29 refs., 2 figs., 5 tabs. (Author)

  8. Enhanced T-odd, P-odd electromagnetic moments in reflection asymmetric nuclei

    International Nuclear Information System (INIS)

    Spevak, V.; Auerbach, N.; Flambaum, V.V.

    1997-01-01

    Collective P- and T-odd moments produced by parity and time invariance violating forces in reflection asymmetric nuclei are considered. The enhanced collective Schiff, electric dipole, and octupole moments appear due to the mixing of rotational levels of opposite parity. These moments can exceed single-particle moments by more than 2 orders of magnitude. The enhancement is due to the collective nature of the intrinsic moments and the small energy separation between members of parity doublets. In turn these nuclear moments induce enhanced T- and P-odd effects in atoms and molecules. A simple estimate is given and a detailed theoretical treatment of the collective T-, P-odd electric moments in reflection asymmetric, odd-mass nuclei is presented. In the present work we improve on the simple liquid drop model by evaluating the Strutinsky shell correction and include corrections due to pairing. Calculations are performed for octupole deformed long-lived odd-mass isotopes of Rn, Fr, Ra, Ac, and Pa and the corresponding atoms. Experiments with such atoms may improve substantially the limits on time reversal violation. copyright 1997 The American Physical Society

  9. Can the chirality of the ISM be measured

    Science.gov (United States)

    Pendleton, Y.; Sandford, S. A.; Werner, Michael W.; Lauer, J.; Chang, Sherwood

    1990-01-01

    Many moderately complex carbon-based molecules of the type associated with biological systems can exist in one of two mirror-image forms (left-handed and right-handed), which can be distinguished on the basis of their influence on the state of polarization of a light beam. Both forms are possible in nature; yet in living organisms it is invariably the rule that one of these two species predominates. This gives rise to a net chirality. One possible explanation for the net chirality is that the early earth was somehow seeded from the ISM with an excess of chiral organic compounds which led to the development of life forms which are based on left-handed amino acids and right-handed sugars. Molecular spectroscopy of the interstellar medium (ISM) has revealed a complex variety of molecular species similar to those thought to have been available in the oceans and atmospheres of the earth at the time life formed. The detection of such molecules demonstrates the generality of the chemical processes occurring in both environments. If this generality extends to the processes which produce chirality, it may be possible to detect a net chirality in the ISM. This is of particular interest because determining whether or not net chirality exists elsewhere in the universe is an essential aspect of understanding how life developed on earth and how widely distributed it might be. Researchers report preliminary results of a feasibility study to determine whether or not a net chirality in the ISM can be measured. If laboratory results identify candidate chiral molecules that might exist in the ISM, the next step in this feasibility study will be to estimate the detectability of the chiral signature in astrophysical environments.

  10. Can the chirality of the ISM be measured

    International Nuclear Information System (INIS)

    Pendleton, Y.; Sandford, S.A.; Werner, M.W.; Lauer, J.; Chang, S.

    1990-01-01

    Many moderately complex carbon-based molecules of the type associated with biological systems can exist in one of two mirror-image forms (left-handed and right-handed), which can be distinguished on the basis of their influence on the state of polarization of a light beam. Both forms are possible in nature; yet in living organisms it is invariably the rule that one of these two species predominates. This gives rise to a net chirality. One possible explanation for the net chirality is that the early earth was somehow seeded from the ISM with an excess of chiral organic compounds which led to the development of life forms which are based on left-handed amino acids and right-handed sugars. Molecular spectroscopy of the interstellar medium (ISM) has revealed a complex variety of molecular species similar to those thought to have been available in the oceans and atmospheres of the earth at the time life formed. The detection of such molecules demonstrates the generality of the chemical processes occurring in both environments. If this generality extends to the processes which produce chirality, it may be possible to detect a net chirality in the ISM. This is of particular interest because determining whether or not net chirality exists elsewhere in the universe is an essential aspect of understanding how life developed on earth and how widely distributed it might be. Researchers report preliminary results of a feasibility study to determine whether or not a net chirality in the ISM can be measured. If laboratory results identify candidate chiral molecules that might exist in the ISM, the next step in this feasibility study will be to estimate the detectability of the chiral signature in astrophysical environments

  11. Intrinsic Chirality and Prochirality at Air/R-(+)- and S-(-)-Limonene Interfaces: Spectral Signatures with Interference Chiral Sum-Frequency Generation Vibrational Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Li; Zhang, Yun; Wei, Zhehao; Wang, Hongfei

    2014-06-04

    We report in this work detailed measurements on the chiral and achiral sum-frequency vibrational spectra in the C-H stretching vibration region (2800-3050cm-1) of the air/liquid interfaces of R-limonene and S-limonene, using the recently developed high-resolution broadband sum-frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The achiral SFG spectra of R-limonene and S-limonene, as well as the equal amount (50/50) racemic mixture show that the enantiomers are with the same interfacial orientations. The interference chiral SFG spectra of the limonene enantiomers exhibit spectral signature from chiral response of the Cα-H stretching mode, and spectral signature from prochiral response of the CH2 asymmetric stretching mode, respectively. The chiral spectral feature of the Cα-H stretching mode changes sign from R-limonene to S-limonene, and disappears for the 50/50 racemic mixture. While the prochiral spectral feature of the CH2 asymmetric stretching mode is the same for R-limonene and S-limonene, and also surprisingly remains the same for the 50/50 racemic mixture. These results provided detail information in understanding the structure and chirality of molecular interfaces, and demonstrated the sensitivity and potential of SFG-VS as unique spectroscopic tool for chirality characterization and chiral recognition at the molecular interface.

  12. Chiral metamaterials: from optical activity and negative refractive index to asymmetric transmission

    International Nuclear Information System (INIS)

    Li, Zhaofeng; Mutlu, Mehmet; Ozbay, Ekmel

    2013-01-01

    We summarize the progress in the development and application of chiral metamaterials. After a brief review of the salient features of chiral metamaterials, such as giant optical activity, circular dichroism, and negative refractive index, the common method for the retrieval of effective parameters for chiral metamaterials is surveyed. Then, we introduce some typical chiral structures, e.g., chiral metamaterial consisting of split ring resonators, complementary chiral metamaterial, and composite chiral metamaterial, on the basis of the studies of the authors’ group. The coupling effect during the construction of bulk chiral metamaterials is mentioned and discussed. We introduce the application of bianisotropic chiral structures in the field of asymmetric transmission. Finally, we mention a few directions for future research on chiral metamaterials. (review article)

  13. Quark matter in a chiral chromodielectric model

    International Nuclear Information System (INIS)

    Broniowski, W.; Kutschera, M.; Cibej, M.; Rosina, M.

    1989-03-01

    Zero and finite temperature quark matter is studied in a chiral chromodielectric model with quark, meson and chromodielectric degrees of freedom. Mean field approximation is used. Two cases are considered: two-flavor and three-flavor quark matter. It is found that at sufficiently low densities and temperatures the system is in a chirally broken phase, with quarks acquiring effective masses of the order of 100 MeV. At higher densities and temperatures a chiral phase transition occurs and the quarks become massless. A comparison to traditional nuclear physics suggests that the chirally broken phase with massive quark gas may be the ground state of matter at densities of the order of a few nuclear saturation densities. 24 refs., 5 figs. (author)

  14. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations

    Science.gov (United States)

    Schober, Jennifer; Rogachevskii, Igor; Brandenburg, Axel; Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg; Kleeorin, Nathan

    2018-05-01

    Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left- and right-handed relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect (α μ effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the total chirality. The α μ effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of proto-neutron stars are discussed.

  15. Chiral Recognition by Fluorescence: One Measurement for Two Parameters

    Directory of Open Access Journals (Sweden)

    Shanshan Yu

    2014-01-01

    Full Text Available This outlook describes two strategies to simultaneously determine the enantiomeric composition and concentration of a chiral substrate by a single fluorescent measurement. One strategy utilizes a pseudoenantiomeric sensor pair that is composed of a 1,1′-bi-2-naphthol-based amino alcohol and a partially hydrogenated 1,1′-bi-2-naphthol-based amino alcohol. These two molecules have the opposite chiral configuration with fluorescent enhancement at two different emitting wavelengths when treated with the enantiomers of mandelic acid. Using the sum and difference of the fluorescent intensity at the two wavelengths allows simultaneous determination of both concentration and enantiomeric composition of the chiral acid. The other strategy employs a 1,1′-bi-2-naphthol-based trifluoromethyl ketone that exhibits fluorescent enhancement at two emission wavelengths upon interaction with a chiral diamine. One emission responds mostly to the concentration of the chiral diamine and the ratio of the two emissions depends on the chiral configuration of the enantiomer but independent of the concentration, allowing both the concentration and enantiomeric composition of the chiral diamine to be simultaneously determined. These strategies would significantly simplify the practical application of the enantioselective fluorescent sensors in high-throughput chiral assay.

  16. From cosmic chirality to protein structure: Lord Kelvin's legacy.

    Science.gov (United States)

    Barron, Laurence D

    2012-11-01

    A selection of my work on chirality is sketched in two distinct parts of this lecture. Symmetry and Chirality explains how the discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. The concepts of true chirality (time-invariant enantiomorphism) and false chirality (time-noninvariant enantiomorphism) that emerge provide an extension of Lord Kelvin's original definition of chirality to situations where motion is an essential ingredient thereby clarifying, inter alia, the nature of physical influences able to induce absolute enantioselection. Consideration of symmetry violations reveals that strict enantiomers (exactly degenerate) are interconverted by the combined CP operation. Raman optical activity surveys work, from first observation to current applications, on a new chiroptical spectroscopy that measures vibrational optical activity via Raman scattering of circularly polarized light. Raman optical activity provides incisive information ranging from absolute configuration and complete solution structure of smaller chiral molecules and oligomers to protein and nucleic acid structure of intact viruses. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.

  17. Rationalization of chirality induction and inversion in a zinc trisporphyrinate by a chiral monoalcohol.

    Science.gov (United States)

    Li, Li; Hu, Chuanjiang; Shi, Bo; Wang, Yong

    2016-05-10

    A new host-guest system is formed between a benzene tricarboxamide linked zinc trisporphyrinate and a chiral monoalcohol (1-phenylethylalcohol). CD spectra show the chirality induction and inversion processes, which are controlled by the corresponding 1 : 1 and 1 : 2 coordination complexes. The binding constants calculated by UV-vis and CD spectral data are much larger than that for [Zn(TPP)] (TPP = tetraphenylporphyrin). The crystallographic structure of the host-guest complex reveals that multiple intramolecular hydrogen bonds and π-π interactions could contribute to its high binding affinity to 1-phenylethylalcohol. The DFT calculations suggest that the spatial orientations of porphyrin moieties change from the 1 : 1 complex to the 1 : 2 complex. The chirality induction and inversion processes are rationalized by the summation of pairwise interactions among multichromophores according to pairwise additivity.

  18. A Review on Chiral Chromatography and its Application to the ...

    African Journals Online (AJOL)

    MoZarD

    amounts of material and is for measuring the relative proportions of ... the stationary phase must themselves be made chiral, giving differing ... electrophoretic medium that change it to chiral mobile phase (Eliel, et ... column containing a chiral stationary phase is also called a chiral ... densitometry, and a TLC method for the.

  19. Chiral thermodynamics of nuclear matter

    International Nuclear Information System (INIS)

    Fiorilla, Salvatore

    2012-01-01

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  20. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  1. Study on the high-spin states and signature inversion of odd-odd nucleus 170Ta

    International Nuclear Information System (INIS)

    Deng Fuguo; Zhou Hongyu; Sun Huibin; Lu Jingbin; Zhao Guangyi; Yin Lichang; Liu Yunzuo

    2002-01-01

    The high-spin states of odd-odd nucleus 170 Ta were populated via the 155 Gd( 19 F, 4n) 170 Ta reaction with beam energy of 97 MeV provided by the HI-13 tandem accelerator of China Institute of Atomic Energy. Three rotational bands have been pushed to higher spin states and the signature inversion point of the semidecoupled band based on the πh 9/2 1/2 - [541] direct x νi 13/2 configuration has been observed to be 19.5 ℎ. The systematic features of the signature inversion in semidecoupled bands in odd-odd rare earth nuclei were summarized. The systematic differences of signature inversion, especially the difference in the energy splitting between the yrast hands and the semidecoupled hands in odd-odd rare earth nuclei are pointed out and discussed for the first time. It seems that p-n interaction between the odd proton and odd neutron in the odd-odd nuclei plays an important role

  2. Chiral and parity symmetry breaking for planar fermions: Effects of a heat bath and uniform external magnetic field

    International Nuclear Information System (INIS)

    Ayala, Alejandro; Bashir, Adnan; Gutierrez, Enif; Raya, Alfredo; Sanchez, Angel

    2010-01-01

    We study chiral symmetry breaking for relativistic fermions, described by a parity-violating Lagrangian in 2+1-dimensions, in the presence of a heat bath and a uniform external magnetic field. Working within their four-component formalism allows for the inclusion of both parity-even and -odd mass terms. Therefore, we can define two types of fermion antifermion condensates. For a given value of the magnetic field, there exist two different critical temperatures which would render one of these condensates identically zero, while the other would survive. Our analysis is completely general: it requires no particular simplifying hierarchy among the energy scales involved, namely, bare masses, field strength, and temperature. However, we do reproduce some earlier results, obtained or anticipated in literature, corresponding to special kinematical regimes for the parity conserving case. Relating the chiral condensate to the one-loop effective Lagrangian, we also obtain the magnetization and the pair production rate for different fermion species in a uniform electric field through the replacement B→-iE.

  3. Inexpensive chirality on the lattice

    International Nuclear Information System (INIS)

    Kamleh, W.; Williams, A.G.; Adams, D.

    2000-01-01

    Full text: Implementing lattice fermions that resemble as closely as possible continuum fermions is one of the main goals of the theoretical physics community. Aside from a lack of infinitely powerful computers, one of the main impediments to this is the Nielsen-Ninomiya No-Go theorem for chirality on the lattice. One of the consequences of this theorem is that exact chiral symmetry and a lack of fermion doublers cannot be simultaneously satisfied for fermions on the lattice. In the commonly used Wilson fermion formulation, chiral symmetry is explicitly sacrificed on the lattice to avoid fermion doubling. Recently, an alternative has come forward, namely, the Ginsparg-Wilson relation and one of its solutions, the Overlap fermion. The Ginsparg-Wilson relation is a statement of lattice-deformed chirality. The Overlap-Dirac operator is a member of the family of solutions of the Ginsparg-Wilson relation. In recent times, Overlap fermions have been of great interest to the community due to their excellent chiral properties. However, they are significantly more expensive to implement than Wilson fermions. This expense is primarily due to the fact that the Overlap implementation requires an evaluation of the sign function for the Wilson-Dirac operator. The sign function is approximated by a high order rational polynomial function, but this approximation is poor close to the origin. The less near-zero modes that the Wilson- Dirac operator possesses, the cheaper the Overlap operator will be to implement. A means of improving the eigenvalue properties of the Wilson-Dirac operator by the addition of a so-called 'Clover' term is put forward. Numerical results are given that demonstrate this improvement. The Nielsen-Ninomiya no-go theorem and chirality on the lattice are reviewed. The general form of solutions of the Ginsparg-Wilson relation are given, and the Overlap solution is discussed. Properties of the Overlap-Dirac operator are given, including locality and analytic

  4. Patterns of symmetry breaking in chiral QCD

    Science.gov (United States)

    Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail

    2018-05-01

    We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.

  5. Chiral superfluidity of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran

    2012-08-01

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T c c ) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  6. Chiral Drug Analysis in Forensic Chemistry: An Overview

    Directory of Open Access Journals (Sweden)

    Cláudia Ribeiro

    2018-01-01

    Full Text Available Many substances of forensic interest are chiral and available either as racemates or pure enantiomers. Application of chiral analysis in biological samples can be useful for the determination of legal or illicit drugs consumption or interpretation of unexpected toxicological effects. Chiral substances can also be found in environmental samples and revealed to be useful for determination of community drug usage (sewage epidemiology, identification of illicit drug manufacturing locations, illegal discharge of sewage and in environmental risk assessment. Thus, the purpose of this paper is to provide an overview of the application of chiral analysis in biological and environmental samples and their relevance in the forensic field. Most frequently analytical methods used to quantify the enantiomers are liquid and gas chromatography using both indirect, with enantiomerically pure derivatizing reagents, and direct methods recurring to chiral stationary phases.

  7. Chiral recognition with enantioselective ion exchangers based on carbamoylated cinchonan derivatives as chiral selectors for the HPLC enantioseparation

    International Nuclear Information System (INIS)

    Laemmerhofer, M.

    1996-11-01

    The high-performance liquid chromatographic (HPLC) separation of enantiomers is preferentially performed using chiral stationary phases (CSPs). If the chiral auxiliary (selector, SO) contains charged or ionizable groups one gets ion exchanger type CSPs which may bind and retain oppositely charged analytes (selectands, SAs). We prepared anion exchanger type CSPs with various quinine and quinidine carbarnates as chiral SOs immobilized either on porous or non-porous silica. These CSPs are able to resolve the enantiomers of a wide spectrum of chiral carboxylic, sulfonic, phosphonic, phosphoric acids and of many other chiral acidic solutes (e.g. N-derivatized alpha-, beta- , gamma-amino acids as 2,4-dinitrophenyl, 3,5-dinitrobenzoyl, benzoyl, acetyl, formyl, t.-butoxycarbonyl, benzyloxycarbonyl, 9-fluorenylmethoxycarbonyl, dansyl amino acids and peptides, alpha-arylalkylcarboxylic acids as profens, alpha-aryloxyalkylcarboxylic acids, alpha-arylthioalkylcarboxylic acids and acidic drugs like etodolac, proglumide, acenocournarol, leucovorin, omeprazole, pantoprazole) employing buffered aqueous mobile phases or non-aqueous mobile phases with buffer dissolved in the organic solvent. The influence of mobile phase parameters and other experimental conditions on retention and enantioselectivity has been evaluated for isocratic and gradient elution techniques, aided by the commercial method development computer software DryLab. Several 'Quantitative Structure-Retention Relationships' (QSRR) have been derived, which allowed prediction of enantioselectivity of new analytes and moreover the optimization of the SO-structure. Spectroscopic investigations as H-NMR, FTIR of certain SO-SA-complexes have been exerted to unveil the mechanism of chiral recognition. (author)

  8. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  9. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles.

    Science.gov (United States)

    Lee, Hye-Eun; Ahn, Hyo-Yong; Mun, Jungho; Lee, Yoon Young; Kim, Minkyung; Cho, Nam Heon; Chang, Kiseok; Kim, Wook Sung; Rho, Junsuk; Nam, Ki Tae

    2018-04-01

    Understanding chirality, or handedness, in molecules is important because of the enantioselectivity that is observed in many biochemical reactions 1 , and because of the recent development of chiral metamaterials with exceptional light-manipulating capabilities, such as polarization control 2-4 , a negative refractive index 5 and chiral sensing 6 . Chiral nanostructures have been produced using nanofabrication techniques such as lithography 7 and molecular self-assembly 8-11 , but large-scale and simple fabrication methods for three-dimensional chiral structures remain a challenge. In this regard, chirality transfer represents a simpler and more efficient method for controlling chiral morphology 12-18 . Although a few studies 18,19 have described the transfer of molecular chirality into micrometre-sized helical ceramic crystals, this technique has yet to be implemented for metal nanoparticles with sizes of hundreds of nanometres. Here we develop a strategy for synthesizing chiral gold nanoparticles that involves using amino acids and peptides to control the optical activity, handedness and chiral plasmonic resonance of the nanoparticles. The key requirement for achieving such chiral structures is the formation of high-Miller-index surfaces ({hkl}, h ≠ k ≠ l ≠ 0) that are intrinsically chiral, owing to the presence of 'kink' sites 20-22 in the nanoparticles during growth. The presence of chiral components at the inorganic surface of the nanoparticles and in the amino acids and peptides results in enantioselective interactions at the interface between these elements; these interactions lead to asymmetric evolution of the nanoparticles and the formation of helicoid morphologies that consist of highly twisted chiral elements. The gold nanoparticles that we grow display strong chiral plasmonic optical activity (a dis-symmetry factor of 0.2), even when dispersed randomly in solution; this observation is supported by theoretical calculations and direct

  10. The chiral bosonization in non-Abelian gauge theories

    International Nuclear Information System (INIS)

    Andrianov, A.A.; Novozhilov, Y.

    1985-01-01

    The chiral bosonization in non-Abelian gauge theories is described starting directly from the QCD functional. For a given mass scale Λ, the QCD may be equivalently represented by colour chiral fields, gauge fields and high energy fermions. The effective action for colour chiral fields may admit the existence of a colour Skyrmion-boson with the baryon number 2/3. (author)

  11. Chirality - The forthcoming 160th Anniversary of Pasteur's Discovery

    OpenAIRE

    Molčanov, K.; Kojić-Prodić., B.

    2007-01-01

    The presented review on chirality is dedicated to the centennial birth anniversary of Nobel laureate Vladimir Prelog and 160 years of Pasteur's discovery of chirality on tartrates. Chirality has been recognized in nature by artists and architects, who have used it for decorations and basic constructions, as shown in the Introduction. The progress of science through history has enabled the gathering of knowledge on chirality and its many ways of application. The key historical discoveries abou...

  12. Chiral symmetry restoration and quasi-elastic electron-nucleus scattering

    International Nuclear Information System (INIS)

    Henley, E.M.; Krein, G.

    1989-01-01

    Chiral symmetry is known to be an important concept in hadronic interactions. It holds in QCD, but is known to be broken at low energies. It is therefore useful to study chiral symmetry and its breaking together with its consequences in nuclear physics. It is the latter phenomena we consider here. It is difficult to study nonperturbative QCD at low energies and models are needed. The Nambu-Jona-Lasinio (NJL) model fits this category; it incorporates chiral symmetry and its breaking, and allows one to study its effects in nucleons and nuclei. In particular, the constituent quark mass varies with density (ρ) and temperature (T). At high ρ and T chiral symmetry is restored. It is the ρ dependence which yields important effects in electron scattering due to partial restoration of chiral symmetry in nuclei. We begin with the NJL model with a small chiral symmetry breaking

  13. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases.

    Science.gov (United States)

    Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-12-01

    The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The paradigm of Pseudodual Chiral Models

    International Nuclear Information System (INIS)

    Zachos, C.K.; Curtright, T.L.

    1994-01-01

    This is a synopsis and extension of Phys. Rev. D49 5408 (1994). The Pseudodual Chiral Model illustrates 2-dimensional field theories which possess an infinite number of conservation laws but also allow particle production, at variance with naive expectations-a folk theorem of integrable models. We monitor the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the (very different) usual Chiral Model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model. We further find the canonical transformation which connects the usual chiral model to its fully equivalent dual model, thus contradistinguishing the pseudodual theory

  15. Diels-Alder cycloaddition strategy for kinetic resolution of chiral pyrazolidinones.

    Science.gov (United States)

    Sibi, Mukund P; Kawashima, Keisuke; Stanley, Levi M

    2009-09-03

    A rare example of the application of a catalytic, enantioselective Diels-Alder cycloaddition to affect a kinetic resolution has been developed. Chiral pyrazolidinones are resolved with high selectivity through a process that utilizes a relay of stereochemical information from a permanent chiral center to a fluxional chiral center to enhance the inherent selectivity of the chiral Lewis acid catalyst.

  16. Reversible optical transcription of supramolecular chirality into molecular chirality

    NARCIS (Netherlands)

    Jong, Jaap J.D. de; Lucas, Linda N.; Kellogg, Richard M.; Esch, Jan H. van; Feringa, Bernard

    2004-01-01

    In nature, key molecular processes such as communication, replication, and enzyme catalysis all rely on a delicate balance between molecular and supramolecular chirality. Here we report the design, synthesis, and operation of a reversible, photoresponsive, self-assembling molecular system in which

  17. Tailoring the chirality of light emission with spherical Si-based antennas.

    Science.gov (United States)

    Zambrana-Puyalto, Xavier; Bonod, Nicolas

    2016-05-21

    Chirality of light is of fundamental importance in several enabling technologies with growing applications in life sciences, chemistry and photodetection. Recently, some attention has been focused on chiral quantum emitters. Consequently, optical antennas which are able to tailor the chirality of light emission are needed. Spherical nanoresonators such as colloids are of particular interest to design optical antennas since they can be synthesized at a large scale and they exhibit good optical properties. Here, we show that these colloids can be used to tailor the chirality of a chiral emitter. To this purpose, we derive an analytic formalism to model the interaction between a chiral emitter and a spherical resonator. We then compare the performances of metallic and dielectric spherical antennas to tailor the chirality of light emission. It is seen that, due to their strong electric dipolar response, metallic spherical nanoparticles spoil the chirality of light emission by yielding achiral fields. In contrast, thanks to the combined excitation of electric and magnetic modes, dielectric Si-based particles feature the ability to inhibit or to boost the chirality of light emission. Finally, it is shown that dual modes in dielectric antennas preserve the chirality of light emission.

  18. Chiral Floquet Phases of Many-Body Localized Bosons

    Directory of Open Access Journals (Sweden)

    Hoi Chun Po

    2016-12-01

    Full Text Available We construct and classify chiral topological phases in driven (Floquet systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-body localization (MBL in the bulk are argued to lead to stable chiral phases. These chiral phases do not require any symmetry and in fact owe their existence to the absence of energy conservation in driven systems. Surprisingly, we show that they are classified by a quantized many-body index, which is well defined for any MBL Floquet system. The value of this index, which is always the logarithm of a positive rational number, can be interpreted as the entropy per Floquet cycle pumped along the edge, formalizing the notion of quantum-information flow. We explicitly compute this index for specific models and show that the nontrivial topology leads to edge thermalization, which provides an interesting link between bulk topology and chaos at the edge. We also discuss chiral Floquet phases in interacting fermionic systems and their relation to chiral bosonic phases.

  19. Chiral rings and anomalies in supersymmetric gauge theory

    International Nuclear Information System (INIS)

    Cachazo, Freddy; Witten, Edward; Seiberg, Nathan; Douglas, Michael R.

    2002-01-01

    Motivated by recent work of Dijkgraaf and Vafa, we study anomalies and the chiral ring structure in a supersymmetric U(N) gauge theory with an adjoint chiral superfield and an arbitrary superpotential. A certain generalization of the Konishi anomaly leads to an equation which is identical to the loop equation of a bosonic matrix model. This allows us to solve for the expectation values of the chiral operators as functions of a finite number of 'integration constants'. From this, we can derive the Dijkgraaf-Vafa relation of the effective superpotential to a matrix model. Some of our results are applicable to more general theories. For example, we determine the classical relations and quantum deformations of the chiral ring of N=1 super Yang-Mills theory with SU(N) gauge group, showing, as one consequence, that all supersymmetric vacua of this theory have a nonzero chiral condensate. (author)

  20. Assembling optically active and nonactive metamaterials with chiral units

    Directory of Open Access Journals (Sweden)

    Xiang Xiong

    2012-12-01

    Full Text Available Metamaterials constructed with chiral units can be either optically active or nonactive depending on the spatial configuration of the building blocks. For a class of chiral units, their effective induced electric and magnetic dipoles, which originate from the induced surface electric current upon illumination of incident light, can be collinear at the resonant frequency. This feature provides significant advantage in designing metamaterials. In this paper we concentrate on several examples. In one scenario, chiral units with opposite chiralities are used to construct the optically nonactive metamaterial structure. It turns out that with linearly polarized incident light, the pure electric or magnetic resonance (and accordingly negative permittivity or negative permeability can be selectively realized by tuning the polarization of incident light for 90°. Alternatively, units with the same chirality can be assembled as a chiral metamaterial by taking the advantage of the collinear induced electric and magnetic dipoles. It follows that for the circularly polarized incident light, negative refractive index can be realized. These examples demonstrate the unique approach to achieve certain optical properties by assembling chiral building blocks, which could be enlightening in designing metamaterials.

  1. Chiral recognition and determination of enantiomeric excess by mass spectrometry: A review

    International Nuclear Information System (INIS)

    Yu, Xiangying; Yao, Zhong-Ping

    2017-01-01

    Chiral analysis is of great importance to fundamental and applied research in chemical, biological and pharmaceutical sciences. Due to the superiority of mass spectrometry (MS) over other analytical methods in terms of speed, specificity and sensitivity, chiral analysis by MS has attracted much interest in recent years. Chiral analysis by MS typically involves introduction of a chiral selector to form diastereomers with analyte enantiomers, and comparison of the behaviors of diastereomers in MS. Chiral differentiation can be achieved by comparing the relative abundances of diastereomers, the thermodynamic or kinetic constants of ion-molecule reactions of diastereomers in the gas phase, the dissociation of diastereomers in MS/MS, or the mobility of diastereomers in ion mobility mass spectrometry. In this review, chiral recognition and determination of enantiomeric excess by these chiral MS methods were summarized, and the prospects of chiral analysis by MS were discussed. - Highlights: • Both chiral recognition and determination of enantiomeric excess by mass spectrometry are systematically reviewed. • Classification is based on the behavioral differences of diastereomers formed between chiral analytes and chiral selectors. • Development of ion mobility mass spectrometry for chiral differentiation is covered. • Various methods are highlighted and compared.

  2. Chiral recognition and determination of enantiomeric excess by mass spectrometry: A review

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Xiangying [College of Pharmacy, Jinan University, Guangzhou 510632, Guangdong (China); State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057 (China); Yao, Zhong-Ping, E-mail: zhongping.yao@polyu.edu.hk [State Key Laboratory of Chinese Medicine and Molecular Pharmacology (Incubation) and Shenzhen Key Laboratory of Food Biological Safety Control, Shenzhen Research Institute of Hong Kong Polytechnic University, Shenzhen 518057 (China); Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules (Yanbian University), Ministry of Education, Yanji 133002, Jilin (China); State Key Laboratory of Chirosciences, Food Safety and Technology Research Centre and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong Special Administrative Region (China)

    2017-05-22

    Chiral analysis is of great importance to fundamental and applied research in chemical, biological and pharmaceutical sciences. Due to the superiority of mass spectrometry (MS) over other analytical methods in terms of speed, specificity and sensitivity, chiral analysis by MS has attracted much interest in recent years. Chiral analysis by MS typically involves introduction of a chiral selector to form diastereomers with analyte enantiomers, and comparison of the behaviors of diastereomers in MS. Chiral differentiation can be achieved by comparing the relative abundances of diastereomers, the thermodynamic or kinetic constants of ion-molecule reactions of diastereomers in the gas phase, the dissociation of diastereomers in MS/MS, or the mobility of diastereomers in ion mobility mass spectrometry. In this review, chiral recognition and determination of enantiomeric excess by these chiral MS methods were summarized, and the prospects of chiral analysis by MS were discussed. - Highlights: • Both chiral recognition and determination of enantiomeric excess by mass spectrometry are systematically reviewed. • Classification is based on the behavioral differences of diastereomers formed between chiral analytes and chiral selectors. • Development of ion mobility mass spectrometry for chiral differentiation is covered. • Various methods are highlighted and compared.

  3. Chiral nucleon-nucleon forces in nuclear structure calculations

    Directory of Open Access Journals (Sweden)

    Coraggio L.

    2016-01-01

    Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  4. Recent status of the chiral bag model

    International Nuclear Information System (INIS)

    Hosaka, Atsushi; Toki, Hiroshi.

    1995-01-01

    In this note, recent status of the chiral bag model is presented. As it combines the MIT quark bag model and the Skyrme model, the chiral bag model interpolates the two models smoothly as a function of the chiral bag radius R. The correct limit of R → ∞ is reproduced by including the higher order terms in the Ω expansion of the cranking method. It resolves the so-called small g A problem in a class of models where the semiclassical method is used. (author)

  5. On infinite regular and chiral maps

    OpenAIRE

    Arredondo, John A.; Valdez, Camilo Ramírez y Ferrán

    2015-01-01

    We prove that infinite regular and chiral maps take place on surfaces with at most one end. Moreover, we prove that an infinite regular or chiral map on an orientable surface with genus can only be realized on the Loch Ness monster, that is, the topological surface of infinite genus with one end.

  6. Insights on some chiral smectic phases

    Indian Academy of Sciences (India)

    journal of. August 2003 physics pp. 285–295. Insights on some chiral ... Liquid crystals; smectics; chirality; frustrated phases; twist grain boundary phases. ... molecules are more or less packed in layers and smectic phases can be seen ..... (imaging plate or CCD camera) which was located at about 300 mm from the sample.

  7. Alpha-cluster preformation factor within cluster-formation model for odd-A and odd-odd heavy nuclei

    Science.gov (United States)

    Saleh Ahmed, Saad M.

    2017-06-01

    The alpha-cluster probability that represents the preformation of alpha particle in alpha-decay nuclei was determined for high-intensity alpha-decay mode odd-A and odd-odd heavy nuclei, 82 CSR) and the hypothesised cluster-formation model (CFM) as in our previous work. Our previous successful determination of phenomenological values of alpha-cluster preformation factors for even-even nuclei motivated us to expand the work to cover other types of nuclei. The formation energy of interior alpha cluster needed to be derived for the different nuclear systems with considering the unpaired-nucleon effect. The results showed the phenomenological value of alpha preformation probability and reflected the unpaired nucleon effect and the magic and sub-magic effects in nuclei. These results and their analyses presented are very useful for future work concerning the calculation of the alpha decay constants and the progress of its theory.

  8. Mass generation and chiral symmetry breaking by pseudoparticles

    International Nuclear Information System (INIS)

    Hietarinta, J.; Palmer, W.F.; Pinsky, S.S.

    1978-01-01

    Massless QCD is studied with regard to mass generation and chiral SU(N/sub f/) symmetry breaking from pseudoparticle effects. While mass is generated when there is only one massless quark, and chiral U(1) is always broken, no rigorous indication of the breaking of chiral SU(N/sub f/) and mass generation is seen when there are more than one massless quarks in the original theory

  9. Nitrile ylides: diastereoselective cycloadditions using chiral oxazolidinones without Lewis acid.

    Science.gov (United States)

    Sibi, Mukund P; Soeta, Takahiro; Jasperse, Craig P

    2009-12-03

    Lewis acid complexation is generally required for chiral-auxiliary-controlled stereoselectivity, and chiral Lewis acid catalysis is frequently optimal for introducing asymmetry. In this work, we show that nitrile ylide cycloadditions to electron-poor acceptors attached to chiral auxiliaries proceed in high yield and stereoselectivity in the absence of Lewis acids. In contrast, chiral Lewis acids are inferior in these cycloadditions.

  10. Pions and the chiral bag

    International Nuclear Information System (INIS)

    Rho, M.

    1982-01-01

    As an aid to discussing the structure of nucleons and nuclei conceptual framework, heuristic arguments are presented which indicate that a hadron can be considered as a bag consisting of two different phases. The chiral structure of the phase outside the bag is discussed in terms of effective field theories and it is shown to what extent experiments in nuclei can constrain the structure of such theories. Results thus obtained are then combined to set up a set of equations for the bag structure of u and d hadrons, incorporating asymptotic freedom in the phase inside of the bag confinement of quarks and gluons by boundary conditions and spontaneously broken chiral symmetry in the outside. This set of equations which represent a chirally invariant generalization of the M.I.T. bag model is then solved. (U.K.)

  11. Chirality conservation in the lattice gauge theory

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1978-01-01

    The derivation of conservation laws corresponding to chiral invariance in quantum field theories of interacting quarks and gluons are studied. In particular there is interest in observing how these conservation laws are constrained by the requirement that the field theory be locally gauge invariant. To examine this question, a manifestly gauge-invariant definition of local operators in a quantum field theory is introduced, a definition which relies in an essential way on the use of the formulation of gauge fields on a lattice due to Wilson and Polyakov to regulate ultraviolet divergences. The conceptual basis of the formalism is set out and applied to a long-standing puzzle in the phenomenology of quark-gluon theories: the fact that elementary particle interactions reflect the conservation of isospin-carrying chiral currents but not of the isospin-singlet chiral current. It is well known that the equation for the isospin-singlet current contains an extra term, the operator F/sub mu neu/F/sup mu neu/, not present in the other chirality conservation laws; however, this term conventionally has the form of a total divergence and so still allows the definition of a conserved chiral current. It is found that, when the effects of maintaining gauge invariance are properly taken into account, the structure of this operator is altered by renormalization effects, so that it provides an explicit breaking of the unwanted chiral invariance. The relation between this argument, based on renormaliztion, is traced to a set of more heuristic arguments based on gauge field topology given by 't Hooft; it is shown that the discussion provides a validation, through short-distance analysis, of the picture 'Hooft has proposed. The formal derivation of conservation laws for chiral currents are set out in detail

  12. Chiral superfluidity of the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2012-08-15

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T{sub c}chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  13. Chirality, Metallicity, and Transition Dependent Asymmetries in Resonance Raman Excitation Profiles of Chirality-Enriched Carbon Nanotubes

    Science.gov (United States)

    Doorn, Stephen; Duque, Juan; Telg, Hagen; Haroz, Erik; Tu, Xiaomin; Zheng, Ming

    2014-03-01

    Access to carbon nanotube samples enriched in single chiralities allows the observation of new photophysical behaviors obscured or difficult to demonstrate in mixed-chirality ensembles. Recent examples include the observation of strongly asymmetric G-band excitation profiles resulting from non-Condon effects1 and the unambiguous demonstration of Raman interference effects.2 We present here our most recent results demonstrating the generality of the non-Condon behavior to include metallic species (specifically several armchair chiralities). Additionally, the Eii dependence in non-Condon behavior with excitations from E11 thru E44 for both RBM and G modes will be discussed. 1. J.G. Duque, et. al., ACS Nano, 5, 5233 (2011). 2. J.G. Duque, et. al., Phys. Rev. Lett. 108, 117404 (2012).

  14. A quantitative measure of chirality inside nucleic acid databank.

    Science.gov (United States)

    Pietropaolo, Adriana; Parrinello, Michele

    2011-08-01

    We show the capability of a chirality index (Pietropaolo et al., Proteins 2008;70:667-677) to investigate nucleic acid structures because of its high sensitivity to helical conformations. By analyzing selected structures of DNA and RNA, we have found that sequences rich in cytosine and guanine have a tendency to left-handed chirality, in contrast to regions rich in adenine or thymine which show strong negative, right-handed, chirality values. We also analyze RNA structures, where specific loops and hairpin motifs are characterized by a well-defined chirality value. We find that in nucleosome the chirality is exalted, whereas in ribosome it is reduced. Our results illustrate the sensitivity of this descriptor for nucleic acid conformations. Copyright © 2011 Wiley-Liss, Inc.

  15. Chirality and energy transfer amplified circularly polarized luminescence in composite nanohelix

    Science.gov (United States)

    Yang, Dong; Duan, Pengfei; Zhang, Li; Liu, Minghua

    2017-01-01

    Transfer of both chirality and energy information plays an important role in biological systems. Here we show a chiral donor π-gelator and assembled it with an achiral π-acceptor to see how chirality and energy can be transferred in a composite donor–acceptor system. It is found that the individual chiral gelator can self-assemble into nanohelix. In the presence of the achiral acceptor, the self-assembly can also proceed and lead to the formation of the composite nanohelix. In the composite nanohelix, an energy transfer is realized. Interestingly, in the composite nanohelix, the achiral acceptor can both capture the supramolecular chirality and collect the circularly polarized energy from the chiral donor, showing both supramolecular chirality and energy transfer amplified circularly polarized luminescence (ETACPL). PMID:28585538

  16. Association of Periodic and Rhythmic Electroencephalographic Patterns With Seizures in Critically Ill Patients.

    Science.gov (United States)

    Rodriguez Ruiz, Andres; Vlachy, Jan; Lee, Jong Woo; Gilmore, Emily J; Ayer, Turgay; Haider, Hiba Arif; Gaspard, Nicolas; Ehrenberg, J Andrew; Tolchin, Benjamin; Fantaneanu, Tadeu A; Fernandez, Andres; Hirsch, Lawrence J; LaRoche, Suzette

    2017-02-01

    Periodic and rhythmic electroencephalographic patterns have been associated with risk of seizures in critically ill patients. However, specific features that confer higher seizure risk remain unclear. To analyze the association of distinct characteristics of periodic and rhythmic patterns with seizures. We reviewed electroencephalographic recordings from 4772 critically ill adults in 3 academic medical centers from February 2013 to September 2015 and performed a multivariate analysis to determine features associated with seizures. Continuous electroencephalography. Association of periodic and rhythmic patterns and specific characteristics, such as pattern frequency (hertz), Plus modifier, prevalence, and stimulation-induced patterns, and the risk for seizures. Of the 4772 patients included in our study, 2868 were men and 1904 were women. Lateralized periodic discharges (LPDs) had the highest association with seizures regardless of frequency and the association was greater when the Plus modifier was present (58%; odds ratio [OR], 2.00, P rhythmic delta activity (LRDA) were associated with seizures in a frequency-dependent manner (1.5-2 Hz: GPDs, 24%,OR, 2.31, P = .02; LRDA, 24%, OR, 1.79, P = .05; ≥ 2 Hz: GPDs, 32%, OR, 3.30, P rhythmic delta activity compared with no periodic or rhythmic pattern (13%, OR, 1.18, P = .26). Higher prevalence of LPDs and GPDs also conferred increased seizure risk (37% frequent vs 45% abundant/continuous, OR, 1.64, P = .03 for difference; 8% rare/occasional vs 15% frequent, OR, 2.71, P = .03, vs 23% abundant/continuous, OR, 1.95, P = .04). Patterns associated with stimulation did not show an additional risk for seizures from the underlying pattern risk (P > .10). In this study, LPDs, LRDA, and GPDs were associated with seizures while generalized rhythmic delta activity was not. Lateralized periodic discharges were associated with seizures at all frequencies with and without Plus modifier, but LRDA and GPDs were associated with

  17. Magnetic fields and chiral asymmetry in the early hot universe

    Energy Technology Data Exchange (ETDEWEB)

    Sydorenko, Maksym; Shtanov, Yuri [Bogolyubov Institute for Theoretical Physics, 03680 Kiev (Ukraine); Tomalak, Oleksandr, E-mail: maxsydorenko@gmail.com, E-mail: tomalak@uni-mainz.de, E-mail: shtanov@bitp.kiev.ua [Institut für Kernphysik, Johannes Gutenberg Universität, 55128 Mainz (Germany)

    2016-10-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  18. Chirality in distorted square planar Pd(O,N)2 compounds.

    Science.gov (United States)

    Brunner, Henri; Bodensteiner, Michael; Tsuno, Takashi

    2013-10-01

    Salicylidenimine palladium(II) complexes trans-Pd(O,N)2 adopt step and bowl arrangements. A stereochemical analysis subdivides 52 compounds into 41 step and 11 bowl types. Step complexes with chiral N-substituents and all the bowl complexes induce chiral distortions in the square planar system, resulting in Δ/Λ configuration of the Pd(O,N)2 unit. In complexes with enantiomerically pure N-substituents ligand chirality entails a specific square chirality and only one diastereomer assembles in the lattice. Dimeric Pd(O,N)2 complexes with bridging N-substituents in trans-arrangement are inherently chiral. For dimers different chirality patterns for the Pd(O,N)2 square are observed. The crystals contain racemates of enantiomers. In complex two independent molecules form a tight pair. The (RC) configuration of the ligand induces the same Δ chirality in the Pd(O,N)2 units of both molecules with varying square chirality due to the different crystallographic location of the independent molecules. In complexes and atrop isomerism induces specific configurations in the Pd(O,N)2 bowl systems. The square chirality is largest for complex [(Diop)Rh(PPh3 )Cl)], a catalyst for enantioselective hydrogenation. In the lattice of two diastereomers with the same (RC ,RC) configuration in the ligand Diop but opposite Δ and Λ square configurations co-crystallize, a rare phenomenon in stereochemistry. © 2013 Wiley Periodicals, Inc.

  19. Magnetic fields and chiral asymmetry in the early hot universe

    International Nuclear Information System (INIS)

    Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr

    2016-01-01

    In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.

  20. Synthesis and characterization of mesoporous silica modified with chiral auxiliaries for their potential application as chiral stationary phase.

    Science.gov (United States)

    Mayani, Vishal J; Abdi, S H R; Kureshy, R I; Khan, N H; Agrawal, Santosh; Jasra, R V

    2008-05-16

    Novel chiral stationary phase (CSP) based on chiral aminoalcohol immobilized on ordered mesoporous silica SBA-15 1a and standard silica 1b and their copper complexes 1a' and 1b', respectively, was synthesized as potential material for chiral ligand exchange chromatography (CLEC). Microanalysis, inductively coupled plasma spectroscopy (ICP), thermo-gravimetric analysis (TGA), cross polarized magic angle spinning (CP-MAS) (13)C NMR, Powder X-ray diffraction (PXRD), FTIR, N(2) adsorption isotherm, scanning electron microscopy (SEM), transmitted electron microscope (TEM) and solid reflectance UV-vis spectroscopy were used to characterize these materials. All the chiral stationary phases thus synthesized were used for the separation of different racemic compounds such as mandelic acid, 2,2'-dihydroxy-1,1'-binaphthalene BINOL) and diethyl tartrate by simple medium-pressure column chromatography. Successful enantio-separation of racemic mandelic acid was achieved with all the stationary phases but 1a and 1b gave slightly better resolution than their copper complexes 1a' and 1b'. Remarkably these materials are stable under the given experimental conditions and can be used repeatedly for several cycles of enantioresolution. It was observed that the porosity and surface area of the stationary phase play an important role in the chiral separation.

  1. Phosphoric acids as amplifiers of molecular chirality in liquid crystalline media

    NARCIS (Netherlands)

    Eelkema, R; Feringa, BL

    2006-01-01

    A new system for the double amplification of the molecular chirality of simple chiral amines in achiral liquid crystalline media is described. It involves a conformationally flexible phosphoric acid based receptor that by binding to chiral amines induces chirality in the liquid crystalline matrix.

  2. On the Mechanical Properties of Chiral Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mahnaz Zakeri

    2013-12-01

    Full Text Available Carbon nanotubes (CNTs are specific structures with valuable characteristics. In general, the structure of each nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs are simulated and their mechanical properties are determined using finite element method. For this aim, a simple algorithm is presented which is able to model the geometry of single-walled CNTs with any desired structure based on nano-scale continuum mechanics approach. By changing the chiral angle from 0 to 30 degree for constant length to radius ratio, the effect of nanotube chirality on its mechanical properties is evaluated. It is observed that the tensile modulus of CNTs changes between 0.93-1.02 TPa for different structures, and it can be higher for chiral structures than zigzag and armchair ones. Also, for different chiral angles, the bending modulus changes between 0.76-0.82 TPa, while the torsional modulus varies in the range of 0.283-0.301TPa.

  3. Self-assembly of chiral molecular polygons.

    Science.gov (United States)

    Jiang, Hua; Lin, Wenbin

    2003-07-09

    Treatment of 2,2'-diacetyl-1,1'-binaphthyl-6,6'-bis(ethyne), L-H2, with 1 equiv of trans-Pt(PEt3)2Cl2 led to a mixture of different sizes of chiral metallocycles [trans-(PEt3)2Pt(L)]n (n = 3-8, 1-6). Each of the chiral molecular polygons 1-6 was purified by silica gel column chromatography and characterized by 1H, 13C{1H}, and 31P{1H} NMR spectroscopy, MS, IR, UV-vis, and circular dichroism spectroscopies, and microanalysis. The presence of tunable cavities (1.4-4.3 nm) and chiral functionalities in these molecular polygons promises to make them excellent receptors for a variety of guests.

  4. Chiral Drug Analysis in Forensic Chemistry: An Overview

    OpenAIRE

    Cláudia Ribeiro; Cristiana Santos; Valter Gonçalves; Ana Ramos; Carlos Afonso; Maria Elizabeth Tiritan

    2018-01-01

    Many substances of forensic interest are chiral and available either as racemates or pure enantiomers. Application of chiral analysis in biological samples can be useful for the determination of legal or illicit drugs consumption or interpretation of unexpected toxicological effects. Chiral substances can also be found in environmental samples and revealed to be useful for determination of community drug usage (sewage epidemiology), identification of illicit drug manufacturing locations, ille...

  5. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ebert, D.

    1981-01-01

    It is shown that the pion polarizability calculated in a chiral model with quark loops agrees exactly with the analogous quantity found in a chiral meson-baryon model. The results of a paper by Llanta and Tarrach are discussed critically

  6. Chiral bosonization on a Riemann surface

    International Nuclear Information System (INIS)

    Eguchi, Tohru; Ooguri, Hirosi

    1987-01-01

    We point out that the basic addition theorem of θ-functions, Fay's identity, implies an equivalence between bosons and chiral fermions on Riemann surfaces with arbitrary genus. We present a rule for a bosonized calculation of correlation functions. We also discuss ghost systems of n and (1-n) tensors and derive formulas for their chiral determinants. (orig.)

  7. Self-organized internal architectures of chiral micro-particles

    International Nuclear Information System (INIS)

    Provenzano, Clementina; Mazzulla, Alfredo; Desiderio, Giovanni; Pagliusi, Pasquale; De Santo, Maria P.; Cipparrone, Gabriella; Perrotta, Ida

    2014-01-01

    The internal architecture of polymeric self-assembled chiral micro-particles is studied by exploring the effect of the chirality, of the particle sizes, and of the interface/surface properties in the ordering of the helicoidal planes. The experimental investigations, performed by means of different microscopy techniques, show that the polymeric beads, resulting from light induced polymerization of cholesteric liquid crystal droplets, preserve both the spherical shape and the internal self-organized structures. The method used to create the micro-particles with controlled internal chiral architectures presents great flexibility providing several advantages connected to the acquired optical and photonics capabilities and allowing to envisage novel strategies for the development of chiral colloidal systems and materials

  8. Chiral ferrocenes in asymmetric catalysis: synthesis and applications

    National Research Council Canada - National Science Library

    Dai, Li-Xin; Hou, Xue-Long

    2010-01-01

    .... It provides a thorough overview of the synthesis and characterization of different types of chiral ferrocene ligands, their application to various catalytic asymmetric reactions, and versatile chiral...

  9. Future exploration of the nucleon structure at COMPASS

    International Nuclear Information System (INIS)

    Marchand, Claude

    2011-01-01

    Up to now, COMPASS experiment essentially focussed, in it's program with muon beams, on studying aspects of the longitudinal momentum structure of the nucleon in the collinear approximation, like Δq(x) and ΔG/G(x). However, quarks can also have intrinsic transverse momentum in the nucleon, which give rise to a new class of Transverse Momentum Distribution (TMD) Parton Distribution Functions. As an example, Sievers function has been measured by both COMPASS and HERMES to be non zero on the proton, paving thus the way for more precise investigations. It is precisely the goal of the new COMPASS phase II proposal to investigate in more detail new transverse description of the nucleon structure. Deeply Virtual Compton Scattering (DVCS) will allow studies in the transverse space via Generalized Parton Distributions (GPDs). Transverse Mometum Dependent PDFs will essentially be studied in Drell-Yan (DY) reaction and SIDIS, and some universality arguments in QCD imply different signs for Sievers and Boer-Mulders functions in DY and SIDIS.

  10. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  11. Signature inversion of the semi-decoupled band in the odd-odd nucleus 170Ta

    International Nuclear Information System (INIS)

    Deng Fuguo; Yang Chunxiang; Zhou Hongyu; Sun Huibin; Lu Jingbin; Zhao Guangyi; Yin Lichang; Liu Yunzuo

    2001-01-01

    The high-spin states of the odd-odd nucleus 170 Ta have been studied by the 155 Gd( 19 F, 4n) 170 Ta reaction at the beam energy of 97 MeV. The α = 1 sequence of the semi-decoupled band has been pushed to higher-spin states and the signature inversion point was observed at 19.5 ℎ. the results are compared with those of the neighbouring odd-odd nuclei

  12. Deep-Subwavelength Resolving and Manipulating of Hidden Chirality in Achiral Nanostructures.

    Science.gov (United States)

    Zu, Shuai; Han, Tianyang; Jiang, Meiling; Lin, Feng; Zhu, Xing; Fang, Zheyu

    2018-04-24

    The chiral state of light plays a vital role in light-matter interactions and the consequent revolution of nanophotonic devices and advanced modern chiroptics. As the light-matter interaction goes into the nano- and quantum world, numerous chiroptical technologies and quantum devices require precise knowledge of chiral electromagnetic modes and chiral radiative local density of states (LDOS) distributions in detail, which directly determine the chiral light-matter interaction for applications such as chiral light detection and emission. With classical optical techniques failing to directly measure the chiral radiative LDOS, deep-subwavelength imaging and control of circular polarization (CP) light associated phenomena are introduced into the agenda. Here, we simultaneously reveal the hidden chiral electromagnetic mode and acquire its chiral radiative LDOS distribution of a single symmetric nanostructure at the deep-subwavelength scale by using CP-resolved cathodoluminescence (CL) microscopy. The chirality of the symmetric nanostructure under normally incident light excitation, resulting from the interference between the symmetric and antisymmetric modes of the V-shaped nanoantenna, is hidden in the near field with a giant chiral distribution (∼99%) at the arm-ends, which enables the circularly polarized CL emission from the radiative LDOS hot-spot and the following active helicity control at the deep-subwavelength scale. The proposed V-shaped nanostructure as a functional unit is further applied to the helicity-dependent binary encoding and the two-dimensional display applications. The proposed physical principle and experimental configuration can promote the future chiral characterization and manipulation at the deep-subwavelength scale and provide direct guidelines for the optimization of chiral light-matter interactions for future quantum studies.

  13. Nuclear chiral dynamics and thermodynamics

    Science.gov (United States)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  14. Chiral perturbation theory for nucleon generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik

    2006-08-15

    We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)

  15. Bose-Einstein condensation and chiral phase transition in linear sigma model

    International Nuclear Information System (INIS)

    Shu Song; Li Jiarong

    2005-01-01

    With the linear sigma model, we have studied Bose-Einstein condensation and the chiral phase transition in the chiral limit for an interacting pion system. A μ-T phase diagram including these two phenomena is presented. It is found that the phase plane has been divided into three areas: the Bose-Einstein condensation area, the chiral symmetry broken phase area and the chiral symmetry restored phase area. Bose-Einstein condensation can occur either from the chiral symmetry broken phase or from the restored phase. We show that the onset of the chiral phase transition is restricted in the area where there is no Bose-Einstein condensation

  16. Parity doublers in chiral potential quark models

    International Nuclear Information System (INIS)

    Kalashnikova, Yu. S.; Nefediev, A. V.; Ribeiro, J. E. F. T.

    2007-01-01

    The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated

  17. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  18. Interwoven Patterns of Chirality Among Solar Structures: a Review

    Science.gov (United States)

    Martin, Sara F.

    2009-05-01

    Chirality is the handedness of solar magnetic structures as recognized in two dimensional solar images or in other solar data revealing distinct magnetic patterns. This review covers the historical succession of discoveries of the chirality of solar magnetic structures, beginning with left and right-handed helical magnetic clouds detected in many interplanetary coronal mass ejections. This led to the recognition of corresponding chiralities in coronal loop systems. Separately, chiral patterns in filaments, filament channels, sunspots, sigmoidal structures, and flare loop systems were established, interrelated, and linked to the chirality of coronal loop systems. The result was the finding that all solar chiral patterns fall into two and only two larger chiral systems with one system more prevalent in the northern hemisphere and the other in the southern hemisphere. From chiral characteristics, along with knowledge or assumptions about the magnetic field topology, we have the ability to better deduce the helicities characteristic of many solar structures. Traditionally, helicity is a property of magnetic fields with strict mathematical definitions in two well-known forms: twist and writhe. Application of the principle of the conservation of helicity to chiral systems now leads to more mature interpretations of the helicity of whole solar magnetic field systems as well as their components, which together must contain equivalent amounts of both left and right-handed helicity. From this broadened perspective, comes a better understanding of why right-handed coronal loops necessarily exist above filaments with left-handed barbs that always overly left-handed filament channels and vice versa. Along with this greater understanding, we are collectively at the point of learning to better recognize and predict the senses of roll, twist, and writhe in the axial fields of erupting prominences. These, in turn, confirm the signs of helicity in associated CMEs and magnetic clouds

  19. A series of intrinsically chiral gold nanocage structures.

    Science.gov (United States)

    Liu, X J; Hamilton, I P

    2017-07-27

    We present a series of intrinsically chiral gold nanocage structures, Au 9n+6 , which are stable for n ≥ 2. These structures consist of an Au 9n tube which is capped with Au 3 units at each end. Removing the Au 3 caps, we obtain a series of intrinsically chiral gold nanotube structures, Au 9n , which are stable for n ≥ 4. The intrinsic chirality of these structures results from the helicity of the gold strands which form the tube and not because an individual Au atom is a chiral center. The symmetry of these structures is C 3 and substructures of gold hexagons with a gold atom in the middle are particularly prominent. We focus on the properties of Au 42 (C 3 ) and Au 105 (C 3 ) which are the two smallest gold nanocage structures to be completely tiled by these Au 7 "golden-eye" substructures. Our main focus is on Au 42 (C 3 ) since gold clusters in the 40-50 atom regime are currently being investigated in gas phase experiments. We show that the intrinsically chiral Au 42 cage structure is energetically comparable with previously reported achiral cage and compact Au 42 structures. Cage structures are of particular interest because species can be encapsulated (and stabilized) inside the cage and we provide strong evidence that Au 6 @Au 42 (C 3 ) is the global minimum Au 48 structure. The intrinsically chiral gold nanocage structures, which exhibit a range of size-related properties, have potential applications in chiral catalysis and as components in nanostructured devices.

  20. Lock-in of a Chiral Soliton Lattice by Itinerant Electrons

    Science.gov (United States)

    Okumura, Shun; Kato, Yasuyuki; Motome, Yukitoshi

    2018-03-01

    Chiral magnets often show intriguing magnetic and transport properties associated with their peculiar spin textures. A typical example is a chiral soliton lattice, which is found in monoaxial chiral magnets, such as CrNb3S6 and Yb(Ni1-xCux)3Al9 in an external magnetic field perpendicular to the chiral axis. Here, we theoretically investigate the electronic and magnetic properties in the chiral soliton lattice by a minimal itinerant electron model. Using variational calculations, we find that the period of the chiral soliton lattice can be locked at particular values dictated by the Fermi wave number, in stark contrast to spin-only models. We discuss this behavior caused by the spin-charge coupling as a possible mechanism for the lock-in discovered in Yb(Ni1-xCux)3Al9 [T. Matsumura et al., https://doi.org/10.7566/JPSJ.86.124702" xlink:type="simple">J. Phys. Soc. Jpn. 86, 124702 (2017)]. We also show that the same mechanism leads to the spontaneous formation of the chiral soliton lattice even in the absence of the magnetic field.

  1. Pentaquarks in chiral color dielectric model

    Indian Academy of Sciences (India)

    Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV.

  2. Chiral symmetry breaking from Ginsparg-Wilson fermions

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent

    2000-01-01

    We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter \\Sigma, up to a multiplicative renormalization.

  3. Preface to the Special Issue: Chiral Symmetry in Hadrons and Nuclei

    International Nuclear Information System (INIS)

    Geng, Lisheng; Meng, Jie; Zhao, Qiang; Zou, Bingsong

    2014-01-01

    The recent past years have seen a remarkable progress towards a unified description of nonperturbative strong interaction phenomena based on the fundamental theory of the strong interaction, quantum chromodynamics, and effective field theories. The papers collected in this special issue focus on the recent progress in hadron and nuclear physics related to the chiral symmetry. They are written based on presentations at the Seventh International Symposium on Chiral Symmetry in Hadron and Nuclei which took place at Beihang University, Beijing, 27-30 October 2013. The sub-topics discussed in these papers include chiral and heavy-quark spin symmetry; chiral dynamics of few-body hadron systems; chiral symmetry and hadrons in a nuclear medium; chiral dynamics in nucleon-nucleon interaction and atomic nuclei; chiral symmetry in rotating nuclei; hadron structure and interactions; exotic hadrons, heavy flavor hadrons and nuclei; mesonic atoms and nuclei

  4. Non-adiabatic description of proton emission from the odd-odd nucleus 130Eu

    Directory of Open Access Journals (Sweden)

    Patial Monika

    2014-03-01

    Full Text Available We discuss the non-adiabatic quasiparticle approach for calculating the rotational spectra and decay width of odd-odd proton emitters. The Coriolis effects are incorporated in both the parent and daughter wave functions. Results for the two probable ground states (1+ and 2+ of the proton emitter 130Eu are discussed. With our calculations, we confirm the proton emitting state to be the Iπ = 1+ state, irrespective of the strength of the Coriolis interaction. This study provides us with an opportunity to look into the details of wave functions of deformed odd-odd nuclei to which the proton emission halflives are quite sensitive.

  5. A systematic study of odd-odd Gallium nuclei

    International Nuclear Information System (INIS)

    Allegro, P.R.P.; Medina, N.H.; Oliveira, J.R.B.; Ribas, R.V.; Cybulska, E.W.; Seale, W.A.; Zagatto, V.A.B.; Zahn, G.S.; Genezini, F.A.; Silveira, M.A.G.; Tabor, S.; Bender, P.; Tripathi, V.; Baby, L.

    2012-01-01

    Full text: Recently, many studies have been published attempting to explain the role of the 0g 9/2 orbital in the high spin excited states of nuclei in the region of the mass A=50-80, especially very neutron rich nuclei like, for example 59-66 Fe [1], 65,67 Cu [2], 70,80 Ge [3,4] nuclei and those with odd mass number like As, Ge and Ga [5]. Stefanescu et al. [6] demonstrated the presence of bands in the neutron-rich isotopes Ga formed from excitation of a proton to the 0g 9/2 orbital and Cheal et al. [7] revealed, from the study of the spins and moments of the ground state, changes in nuclear structure of the odd Ga isotopes between N = 40 and N 50, indicating a change in the energy gap between the 0g 9/2 orbital and the pf shell. In this work, we have performed a systematic study of odd-odd 64,66,68,70 Ga nuclei to examine the behavior of the 0g 9/2 orbital with an increasing number of neutrons. We have compared the predictions of the Large Scale Shell Model, obtained using the Antoine code [8] with the FPG [9] and JUN45 [10] effective interactions, with the experimental results obtained with in-beam gamma-ray spectroscopy experiments performed at University of Sao Paulo using SACI-PERERE spectrometer and at Florida State University using the Clover Array System. We have also performed calculations to study 67 Ge, an odd nucleus in the same mass region, in order to verify the behavior of the effective interactions in a nucleus without the proton-neutron interaction. [1] S. Lunardi. et al., Phys. Rev. C 76, 034303 (2007). [2] C. J. Chiara et al., Phys. Rev. C 85, 024309 (2012). [3] M. Sugawara et al., Phys. Rev. C 81, 024309 (2010). [4] H. Iwasaki.et al., Phys. Rev. C 78, 021304(R) (2008). [5] N. Yoshinaga et al. Phys. Rev. C 78, 044320 (2008). [6] I. Stefanescu et al., Phys. Rev. C 79, 064302 (2009). [7] B. Cheal et al. Phys. Rev. Lett. 104, 252502 (2010). [8] E. Caurier and F. Nowacki, Acta Phys. Polonica B 30, 705 (1999). [9] O. Sorlin et al., Phys. Rev. Lett

  6. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...

  7. Recent progress of chiral stationary phases for separation of enantiomers in gas chromatography.

    Science.gov (United States)

    Xie, Sheng-Ming; Yuan, Li-Ming

    2017-01-01

    Chromatography techniques based on chiral stationary phases are widely used for the separation of enantiomers. In particular, gas chromatography has developed rapidly in recent years due to its merits such as fast analysis speed, lower consumption of stationary phases and analytes, higher column efficiency, making it a better choice for chiral separation in diverse industries. This article summarizes recent progress of novel chiral stationary phases based on cyclofructan derivatives and chiral porous materials including chiral metal-organic frameworks, chiral porous organic frameworks, chiral inorganic mesoporous materials, and chiral porous organic cages in gas chromatography, covering original research papers published since 2010. The chiral recognition properties and mechanisms of separation toward enantiomers are also introduced. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Alternative Experimental Evidence for Chiral Restoration in Excited Baryons

    International Nuclear Information System (INIS)

    Glozman, L. Ya.

    2007-01-01

    It has been suggested that chiral symmetry is approximately restored in excited hadrons at zero temperature and density (effective symmetry restoration). Using very general chiral symmetry arguments, it is shown that those excited nucleons that are assumed from the spectroscopic patterns to be in approximate chiral multiplets must only weakly decay into the Nπ channel (f N*Nπ /f NNπ ) 2 NNπ . It turns out that for all those well-established excited nucleons which can be classified into chiral doublets the ratio is (f N*Nπ /f NNπ ) 2 ∼0.1 or much smaller for the high-spin states. In contrast, the only well-established excited nucleon for which the chiral partner cannot be identified from the spectroscopic data, N(1520), has a decay constant into the Nπ channel that is comparable with f NNπ

  9. Finite nuclei in relativistic models with a light chiral scalar meson

    International Nuclear Information System (INIS)

    Serot, B.D.; Furnstahl, R.J.

    1993-01-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed

  10. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Ebert, D.; Volkov, M.K.

    1981-01-01

    The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given. (orig.)

  11. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1981-01-01

    The pion polarizability is calculated in a chiral meson- quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Llanta and Tarrach is given [ru

  12. Chirality in nonlinear optics and optical switching

    NARCIS (Netherlands)

    Meijer, E.W.; Feringa, B.L.

    1993-01-01

    Chirality in molecular opto-electronics is limited sofar to the use of optically active liquid crystals and a number of optical phenomena are related to the helical macroscopic structure obtained by using one enantiomer, only. In this paper, the use of chirality in nonlinear optics and optical

  13. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué, Emilie

    2015-12-21

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  14. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué , Emilie; Safeer, C.  K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2015-01-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  15. Anion-π Catalysts with Axial Chirality.

    Science.gov (United States)

    Wang, Chao; Matile, Stefan

    2017-09-04

    The idea of anion-π catalysis is to stabilize anionic transition states by anion-π interactions on aromatic surfaces. For asymmetric anion-π catalysis, π-acidic surfaces have been surrounded with stereogenic centers. This manuscript introduces the first anion-π catalysts that operate with axial chirality. Bifunctional catalysts with tertiary amine bases next to π-acidic naphthalenediimide planes are equipped with a bulky aromatic substituent in the imide position to produce separable atropisomers. The addition of malonic acid half thioesters to enolate acceptors is used for evaluation. In the presence of a chiral axis, the selective acceleration of the disfavored but relevant enolate addition was much better than with point chirality, and enantioselectivity could be observed for the first time for this reaction with small-molecule anion-π catalysts. Enantioselectivity increased with the π acidity of the π surface, whereas the addition of stereogenic centers around the aromatic plane did not cause further improvements. These results identify axial chirality of the active aromatic plane generated by atropisomerism as an attractive strategy for asymmetric anion-π catalysis. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Theory of conductivity of chiral particles

    International Nuclear Information System (INIS)

    Kailasvuori, Janik; Šopík, Břetislav; Trushin, Maxim

    2013-01-01

    In this methodology focused paper we scrutinize the application of the band-coherent Boltzmann equation approach to calculating the conductivity of chiral particles. As the ideal testing ground we use the two-band kinetic Hamiltonian with an N-fold chiral twist that arises in a low-energy description of charge carriers in rhombohedrally stacked multilayer graphene. To understand the role of chirality in the conductivity of such particles we also consider the artificial model with the chiral winding number decoupled from the power of the dispersion. We first utilize the approximate but analytically solvable band-coherent Boltzmann approach including the ill-understood principal value terms that are a byproduct of several quantum many-body theory derivations of Boltzmann collision integrals. Further on, we employ the finite-size Kubo formula with the exact diagonalization of the total Hamiltonian perturbed by disorder. Finally, we compare several choices of Ansatz in the derivation of the Boltzmann equation according to the qualitative agreement between the Boltzmann and Kubo conductivities. We find that the best agreement can be reached in the approach where the principal value terms in the collision integral are absent. (paper)

  17. ζ-function regularization of chiral Jacobians for singular Dirac operators

    International Nuclear Information System (INIS)

    Carneiro, C.E.I.; Dias, S.A.; Thomaz, M.T.

    1989-01-01

    We propose a definition of the chiral Jacobian which uses the invariance of the generating functional under chiral rotations. This definition takes into account the contributions of all terms which, after rotation, depend on the chiral parameter α. We show that when the Dirac operator has zero eigenvalues the presence of fermionic sources gives an additional dependence on α. Our definition, by considering this α dependence, reconciles the ζ-function method of calculating chiral Jacobians with Fujikawa's

  18. Chirality-dependent friction of bulk molecular solids.

    Science.gov (United States)

    Yang, Dian; Cohen, Adam E

    2014-08-26

    We show that the solid-solid friction between bulk chiral molecular solids can depend on the relative chirality of the two materials. In menthol and 1-phenyl-1-butanol, heterochiral friction is smaller than homochiral friction, while in ibuprofen, heterochiral friction is larger. Chiral asymmetries in the coefficient of sliding friction vary with temperature and can be as large as 30%. In the three compounds tested, the sign of the difference between heterochiral and homochiral friction correlated with the sign of the difference in melting point between racemate (compound or conglomerate) and pure enantiomer. Menthol and ibuprofen each form a stable racemic compound, while 1-phenyl-1-butanol forms a racemic conglomerate. Thus, a difference between heterochiral and homochiral friction does not require the formation of a stable interfacial racemic compound. Measurements of chirality-dependent friction provide a unique means to distinguish the role of short-range intermolecular forces from all other sources of dissipation in the friction of bulk molecular solids.

  19. Chirality-Discriminated Conductivity of Metal-Amino Acid Biocoordination Polymer Nanowires.

    Science.gov (United States)

    Zheng, Jianzhong; Wu, Yijin; Deng, Ke; He, Meng; He, Liangcan; Cao, Jing; Zhang, Xugang; Liu, Yaling; Li, Shunxing; Tang, Zhiyong

    2016-09-27

    Biocoordination polymer (BCP) nanowires are successfully constructed through self-assembly of chiral cysteine amino acids and Cd cations in solution. The varied chirality of cysteine is explored to demonstrate the difference of BCP nanowires in both morphology and structure. More interestingly and surprisingly, the electrical property measurement reveals that, although all Cd(II)/cysteine BCP nanowires behave as semiconductors, the conductivity of the Cd(II)/dl-cysteine nanowires is 4 times higher than that of the Cd(II)/l-cysteine or Cd(II)/d-cysteine ones. The origin of such chirality-discriminated characteristics registered in BCP nanowires is further elucidated by theoretical calculation. These findings demonstrate that the morphology, structure, and property of BCP nanostructures could be tuned by the chirality of the bridging ligands, which will shed light on the comprehension of chirality transcription as well as construction of chirality-regulated functional materials.

  20. Rediscovering Chirality - Role of S-Metoprolol in Cardiovascular Disease Management.

    Science.gov (United States)

    Mohan, Jagdish C; Shah, Siddharth N; Chinchansurkar, Sunny; Dey, Arindam; Jain, Rishi

    2017-06-01

    The process of drug discovery and development today encompass a myriad of paths for bringing a new therapeutic molecule that has minimal adverse effects and of optimal use to the patient. Chirality was proposed in the direction of providing a purer and safer form of drug [Ex- cetrizine and levocetrizine]. Decades have passed since the introduction of this concept and numerous chiral molecules are in existence in therapeutics, yet somehow this concept has been ignored. This review aims to rediscover the ignored facts about chirality, its benefits and clear some common myths considering the example of S-Metoprolol in the management of Hypertension and other cardiovascular diseases. Relevant articles from Pubmed, Embase, Medline and Google Scholar were searched using the terms "Chiral", "Chirality", "Enantiomers", "Isomers", "Isomerism", "Stereo-chemistry", and "S-Metoprolol". Out of 103 articles found 17 articles mentioning in general about the concept of chirality and articles on study of S-metoprolol in various cardiovascular diseases were then reviewed. Many articles mention about the importance of chirality yet the concept has not been highlighted much. Clear benefits with chiral molecules have been documented for various drug molecules few amongst them being anaesthetics, antihypertensives, antidepressants. Benefits of S-metoprolol over racemate are also clear in terms of responder rates, dose of administration and adverse effects profile in various cardiovascular diseases. Chirality is a good way forward in providing a new drug molecule which is safe with lesser pharmacokinetic and pharmacodynamics variability, lesser side effects and more potent action. S-metoprolol is chirally pure form of racemate metoprolol and has lesser side effects, is safer in patients of COPD and Diabetes who also have hypertension and comparable responder rates at half the doses when compared to racemate.