WorldWideScience

Sample records for chiral unitary approach

  1. 0+ and 1+ heavy mesons in heavy chiral unitary approach

    International Nuclear Information System (INIS)

    In terms of the heavy chiral unitary approach, the Ds0*(2317), Ds1*(2460) and D0*(2308) resonances are discussed within the molecular state model. By examining the poles of the full unitary coupled-channel scattering amplitude on appropriate Riemann sheets, the former two states can be well reproduced, but not the third state. If one believes that the third state and first state are corresponding states in the non-strange and strange sectors, respectively, and they are all dominated by the molecular structure, there should exist one wide-width state at about 2.1 GeV and one narrow-width state at about 2.44 GeV, which are associated with the D0*(2308) state. Meanwhile, we predict possible B0*(5536) [B1*(5581)] and B0*(5819) [B1*(5877)] states in the non-strange sector as the corresponding states of the strange Bs0*(5725) [Bs1*(5778)] ones

  2. eta, eta-prime --> pi+ pi- l+ l- in a chiral unitary approach

    CERN Document Server

    Borasoy, B

    2007-01-01

    The decays eta, eta-prime --> pi+ pi- l+ l- with l = e, mu are investigated within a chiral unitary approach which combines the chiral effective Lagrangian with a coupled-channels Bethe-Salpeter equation. Predictions for the decay widths and spectra are given.

  3. The $\\Xi^* \\bar{K}$ and $\\Omega \\eta$ interaction within a chiral unitary approach

    CERN Document Server

    Xu, Siqi; Chen, Xurong; Jia, Duojie

    2015-01-01

    In this work we study the interaction of the coupled channels $\\Omega \\eta$ and $\\Xi^* \\bar{K}$ within the chiral unitary approach. The systems under consideration have total isospins $0$, strangeness $S = -3$, and spin $3/2$. We studied the $s$ wave interaction which implies that the possible resonances generated in the system can have spin-parity $J^P = 3/2^-$. The unitary amplitudes in coupled channels develop poles that can be associated with some known baryonic resonances. We find there is a dynamically generated $3/2^-$ $\\Omega$ state with mass around $1800$ MeV, which is in agreement with the predictions of the five-quark model.

  4. Scalar Lambda N and Lambda Lambda interaction in a chiral unitary approach

    CERN Document Server

    Sasaki, K; Vacas, M J V

    2006-01-01

    We study the central part of Lambda N and Lambda Lambda potential by considering the correlated and uncorrelated two-meson exchange besides the omega exchange contribution. The correlated two-meson is evaluated in a chiral unitary approach. We find that a short range repulsion is generated by the correlated two-meson potential which also produces an attraction in the intermediate distance region. The uncorrelated two-meson exchange produces a sizeable attraction in all cases which is counterbalanced by omega exchange contribution.

  5. Two $\\Lambda(1405)$ states in a chiral unitary approach with a fully-calculated loop function

    CERN Document Server

    Dong, Fang-Yong; Pang, Jing-Long

    2016-01-01

    The Bethe-Salpeter equation is solved in the framework of unitary coupled-channel approximation by using the pseudoscalar meson-baryon octet interaction. The loop function of the intermediate meson and baryon is deduced accurately in a fully dimensional regularization scheme, where the off-shell correction is supplemented. Two $\\Lambda(1405)$ states are generated dynamically in the strangeness $S=-1$ and isospin $I=0$ sector, and their masses, decay widths and couplings to the meson and the baryon are similar to those values obtained in the on-shell factorization. However, the scattering amplitudes at these two poles become weaker than the cases in the on-shell factorization.

  6. Chiral unitary theory: Application to nuclear problems

    Indian Academy of Sciences (India)

    E Oset; D Cabrera; H C Chiang; C Garcia Recio; S Hirenzaki; S S Kamalov; J Nieves; Y Okumura; A Ramos; H Toki; M J Vicente Vacas

    2001-08-01

    In this talk we briefly describe some basic elements of chiral perturbation theory, , and how the implementation of unitarity and other novel elements lead to a better expansion of the -matrix for meson–meson and meson–baryon interactions. Applications are then done to the interaction in nuclear matter in the scalar and vector channels, antikaons in nuclei and - atoms, and how the meson properties are changed in a nuclear medium.

  7. Eta-photoproduction in a gauge-invariant chiral unitary framework

    CERN Document Server

    Ruic, Dino; Meissner, Ulf-G

    2011-01-01

    We analyse photoproduction of eta mesons off the proton in a gauge-invariant chiral unitary framework. The interaction kernel for meson-baryon scattering is derived from the leading order chiral effective Lagrangian and iterated in a Bethe-Salpeter equation. The recent precise threshold data from the Crystal Ball at MAMI can be described rather well and the complex pole corresponding to the S11(1535) is extracted. An extension of the kernel is also discussed.

  8. Two-pion exchange electromagnetic current in chiral effective field theory using the method of unitary transformation

    CERN Document Server

    Koelling, S; Krebs, H; Meißner, U -G

    2009-01-01

    We derive the leading two-pion exchange contributions to the two-nucleon electromagnetic current operator in the framework of chiral effective field theory using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  9. An Informal Overview of the Unitary Group Approach

    Energy Technology Data Exchange (ETDEWEB)

    Sonnad, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kruse, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baker, R. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy

    2016-06-13

    The Unitary Groups Approach (UGA) is an elegant and conceptually unified approach to quantum structure calculations. It has been widely used in molecular structure calculations, and holds the promise of a single computational approach to structure calculations in a variety of different fields. We explore the possibility of extending the UGA to computations in atomic and nuclear structure as a simpler alternative to traditional Racah algebra based approaches. We provide a simple introduction to the basic UGA and consider some of the issues in using the UGA with spin dependent, multi-body Hamiltonians requiring multi-shell bases adapted to additional symmetries. While the UGA is perfectly capable of dealing with such problems, it is seen that the complexity rises dramatically, and the UGA is not at this time, a simpler alternative to Racah algebra based approaches.

  10. An Informal Overview of the Unitary Group Approach

    Energy Technology Data Exchange (ETDEWEB)

    Sonnad, V. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Escher, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kruse, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Baker, R. [Louisiana State Univ., Baton Rouge, LA (United States). Dept. of Physics and Astronomy

    2016-06-13

    The Unitary Groups Approach (UGA) is an elegant and conceptually unified approach to quantum structure calculations. It has been widely used in molecular structure calculations, and holds the promise of a single computational approach to structure calculations in a variety of different fields. We explore the possibility of extending the UGA to computations in atomic and nuclear structure as a simpler alternative to traditional Racah algebra-based approaches. We provide a simple introduction to the basic UGA and consider some of the issues in using the UGA with spin-dependent, multi-body Hamiltonians requiring multi-shell bases adapted to additional symmetries. While the UGA is perfectly capable of dealing with such problems, it is seen that the complexity rises dramatically, and the UGA is not at this time, a simpler alternative to Racah algebra-based approaches.

  11. Effect of Born and unitary impurity scattering on the Kramer–Pesch shrinkage of a vortex core in a chiral p-wave superconductor

    International Nuclear Information System (INIS)

    Highlights: •We theoretically study an impurity scattering effect on the vortex core structure in a chiral p-wave superconductor. •A low-temperature vortex core shrinkage (or Kramer–Pesch effect) is investigated. •The robustness of the Kramer–Pesch effect against an impurity scattering in the Born limit is lost in the unitary limit. -- Abstract: We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer–Pesch effect) in a chiral p-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of superconductivity. We find that the robustness of the Kramer–Pesch effect against the impurity scattering in the Born limit is lost in the unitary limit

  12. Effect of Born and unitary impurity scattering on the Kramer–Pesch shrinkage of a vortex core in a chiral p-wave superconductor

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Nobuhiko, E-mail: n-hayashi@21c.osakafu-u.ac.jp [NanoSquare Research Center (N2RC), Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai 599-8570 (Japan); Kurosawa, Noriyuki [Department of Basic Science, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Arahata, Emiko [Institute of Industrial Science, University of Tokyo, Komaba, Meguro, Tokyo 153-8505 (Japan); Kato, Yusuke [Department of Basic Science, University of Tokyo, Komaba, Meguro, Tokyo 153-8902 (Japan); Tanuma, Yasunari [Faculty of Engineering and Resource Science, Akita University, Akita 010-8502 (Japan); Tanaka, Yukio [Department of Applied Physics, Nagoya University, Nagoya 464-8603 (Japan); Golubov, Alexander A. [Faculty of Science and Technology and MESA Institute for Nanotechnology, University of Twente, 7500 AE Enshede (Netherlands)

    2013-11-15

    Highlights: •We theoretically study an impurity scattering effect on the vortex core structure in a chiral p-wave superconductor. •A low-temperature vortex core shrinkage (or Kramer–Pesch effect) is investigated. •The robustness of the Kramer–Pesch effect against an impurity scattering in the Born limit is lost in the unitary limit. -- Abstract: We theoretically investigate a non-magnetic impurity effect on the temperature dependence of the vortex core shrinkage (Kramer–Pesch effect) in a chiral p-wave superconductor. The Born limit and the unitary limit scattering are compared within the framework of the quasiclassical theory of superconductivity. We find that the robustness of the Kramer–Pesch effect against the impurity scattering in the Born limit is lost in the unitary limit.

  13. Chiral Symmetry in algebraic and analytic approaches

    OpenAIRE

    Vereshagin, V.; Dillig, M.; Vereshagin, A.

    1996-01-01

    We compare among themselves two different methods for the derivation of results following from the requirement of polynomial boundedness of tree-level chiral amplitudes. It is shown that the results of the algebraic approach are valid also in the framework of the analytical one. This means that the system of Sum Rules and Bootstrap equations previously obtained with the help of the latter approach can be analyzed in terms of reducible representations of the unbroken Chiral group with the know...

  14. Superspace Unitary Operator for Some Interesting Abelian Models: Superfield Approach

    CERN Document Server

    Bhanja, T; Malik, R P

    2015-01-01

    Within the framework of augmented version of superfield formalism, we choose the superspace unitary operator and show its usefulness in the derivation of Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetry transformations for a set of interesting models for the Abelian 1-form gauge theory. These models are (i) a one (0+1)-dimensional (1D) toy model of a rigid rotor, (ii) the two (1+1)-dimensional (2D) modified versions of the Proca and anomalous Abelian 1-form gauge theories, and (iii) the 2D self-dual bosonic field theory. We provide, in some sense, the alternatives to the horizontality condition (HC) and the gauge invariant restrictions (GIRs) in the language of the above superspace (SUSP) unitary operator. One of the key observations of our present endeavor is the result that the SUSP unitary operator and its hermitian conjugate are found to be the same for all the Abelian models under consideration (including the interacting Abelian 1-form gauge theories with Dirac and complex scalar fields which have...

  15. Compton scattering in a unitary approach with causality constraints

    NARCIS (Netherlands)

    Kondratyuk, S.; Scholten, O.

    2000-01-01

    Pion-loop corrections for Compton scattering are calculated in a novel approach bused on the use of dispersion relations in a formalism obeying unitarity. The basic framework is presented, including an application to Compton scattering. In the approach the effects of the non-pole contribution arisin

  16. The chiral magnetic effect in hydrodynamical approach

    OpenAIRE

    Sadofyev, A. V.; Isachenkov, M. V.

    2010-01-01

    In quark-gluon plasma nonzero chirality can be induced by the chiral anomaly. When a magnetic field is applied to a system with nonzero chirality an electromagnetic current is induced along the magnetic field. This phenomenon is called the chiral magnetic effect. In this paper appearance of the chiral magnetic effect in hydrodynamical approximation is shown. We consider a hydrodynamical model for chiral liquid with two independent currents of left and right handed particles in the presence of...

  17. New approaches in sensitive chiral CE.

    Science.gov (United States)

    Sánchez-Hernández, Laura; Guijarro-Diez, Miguel; Marina, María Luisa; Crego, Antonio L

    2014-01-01

    CE has shown to have a big potential for chiral separations, with advantages such as high efficiency, high resolution, and low sample and reagents consumption. Nevertheless, when UV detection is employed, CE has some drawbacks, especially the low sensitivity obtained due to the short optical path length. Notwithstanding, sensitivity improvements can be achieved when different approaches are employed, such as sample treatment strategies (off-line or on-line), in-capillary sample preconcentration techniques, and/or alternative detection systems to UV-Vis (such as fluorescence, conductimetry, electrochemiluminiscence, MS, etc.). This article reviews the most recent methodological and instrumental advances reported from June 2011 to May 2013 for enhancing the sensitivity in chiral analysis by CE. The sensitivity achieved for the enantioseparated analytes and the applications carried out using the developed methodologies are also summarized.

  18. A phenomenological approach to the equation of state of a unitary Fermi gas

    Indian Academy of Sciences (India)

    M V N Murthy; M Brack; R K Bhaduri

    2014-06-01

    We propose a phenomenological approach for the equation of state of a unitary Fermi gas. The universal equation of state is parametrized in terms of Fermi–Dirac integrals. This reproduces the experimental data over the accessible range of fugacity and normalized temperature, but cannot describe the superfluid phase transition found in the MIT experiment [Ku et al, Science 335, 563 (2012)]. The most sensitive data for compressibility and specific heat at phase transition can, however, be fitted by introducing into the grand partition function a pair of complex conjugate zeros lying in the complex fugacity plane slightly off the real axis.

  19. Matrix Tensor Product Approach to the Equivalence of Multipartite States under Local Unitary Transformations

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The equivalence of multipartite quantum mixed states under local unitary transformations is studied. A criterion for the equivalence of non-degenerate mixed multipartite quantum states under local unitary transformationsis presented.

  20. A new approach to chiral fermions on the lattice

    International Nuclear Information System (INIS)

    We wish to describe a method for formulating, on the lattice, field theories that contain Dirac particles with chiral couplings to gauge fields. As is well-known, the most straight-forward lattice transcription of the continuum action for a Dirac particle leads to the doubling problem: for every particle of a given chirality in the continuum theory, there appear on the lattice, in d dimensions, 2d particles, with equal numbers of particles of left- and right-handed chirality. No-go theorems, state that it is impossible to eliminate the doubling problem and still maintain an exact chiral gauge symmetry. Rather than follow an approach that attempts to circumvent the no-go theorems we, instead, explore the possibility of abandoning exact chiral symmetry

  1. Statistical Mechanical Approach to the Equation of State of Unitary Fermi Gases

    CERN Document Server

    De Silva, Theja N

    2016-01-01

    We combine a Tan's universal relation with a basic statistical mechanical approach to derive a general equation of state for unitary Fermi gases. The universal equation of state is written as a series solution to a self consistent integral equation where the general solution is a linear combination of Fermi functions. By truncating our series solution to four terms with already known exact theoretical inputs at limiting cases, namely the first three virial coefficients and the Bertsch parameter, we find a good agreement with experimental measurements in the entire temperature region in the normal state. Our analytical equation of state agrees with experimental data up to the fugacity $z = 18$, which is a vast improvement over the other analytical equations of state available where the agreements is \\emph{only} up to $z \\approx 7$.

  2. Supersymmetric Unitary Operator in QED with Dirac and Complex Scalar Fields: Superfield Approach

    CERN Document Server

    Shukla, D; Malik, R P

    2015-01-01

    We exploit the strength of supersymmetric (SUSY) unitary operator to obtain the results of the application of horizontality condition (HC) within the framework of augmented version of superfield formalism that is applied to the interacting systems of Abelian 1-form gauge theories where U(1) Abelian 1-form gauge field couples to the Dirac and complex scalar fields in the physical four (3 + 1)-dimensions of spacetime. These interacting theories are generalized onto a (4, 2)-dimensional supermanifold that is parametrized by the four (3 + 1)-dimensional (4D) spacetime variable and a pair of Grassmannian variables. To derive the (anti-)BRST symmetries for the matter fields, we impose the gauge invariant restrictions (GIRs) on the superfields defined on the (4, 2)-dimensional supermanifold. We discuss various outcomes that emerge from our knowledge of the SUSY unitary operator.

  3. Universal Superspace Unitary Operator for Some Interesting Abelian Models: Superfield Approach

    Directory of Open Access Journals (Sweden)

    T. Bhanja

    2016-01-01

    Full Text Available Within the framework of augmented version of superfield formalism, we derive the superspace unitary operator and show its usefulness in the derivation of Becchi-Rouet-Stora-Tyutin (BRST and anti-BRST symmetry transformations for a set of interesting models for the Abelian 1-form gauge theories. These models are (i a one (0+1-dimensional (1D toy model of a rigid rotor, (ii the two (1+1-dimensional (2D modified versions of the Proca and anomalous Abelian 1-form gauge theories, and (iii the 2D self-dual bosonic gauge field theory. We provide, in some sense, the alternatives to the horizontality condition (HC and the gauge invariant restrictions (GIRs in the language of the above superspace (SUSP unitary operator. One of the key observations of our present endeavor is the result that the SUSP unitary operator and its Hermitian conjugate are found to be the same for all the Abelian models under consideration (including the 4D interacting Abelian 1-form gauge theories with Dirac and complex scalar fields which have been discussed earlier. Thus, we establish the universality of the SUSP operator for the above Abelian theories.

  4. A novel approach for LC-MS/MS-based chiral metabolomics fingerprinting and chiral metabolomics extraction using a pair of enantiomers of chiral derivatization reagents.

    Science.gov (United States)

    Takayama, Takahiro; Mochizuki, Toshiki; Todoroki, Kenichiro; Min, Jun Zhe; Mizuno, Hajime; Inoue, Koichi; Akatsu, Hiroyasu; Noge, Ichiro; Toyo'oka, Toshimasa

    2015-10-22

    Chiral metabolites are found in a wide variety of living organisms and some of them are understood to be physiologically active compounds and biomarkers. However, the overall analysis of chiral metabolomics is quite difficult due to the high number of metabolites, the significant diversity in their physicochemical properties, and concentration range from metabolite-to-metabolite. To solve this difficulty, we developed a novel approach for chiral metabolomics fingerprinting and chiral metabolomics extraction, which is based on the labeling of a pair of enantiomers of chiral derivatization reagents (i.e., DMT-(S,R)-Pro-OSu and DMT-3(S,R)-Apy) and precursor ion scan chromatography of the derivatives. The multivariate statistics is also required for this strategy. The proposed procedures were evaluated by the detection of a diagnostic marker (i.e., d-lactic acid) using the saliva of diabetic patients. This method was used for the determination of biomarker candidates of chiral amines and carboxyls in Alzheimer's disease (AD) brain homogenates. As the results, l-phenylalanine (L-Phe) and l-lactic acid (L-LA) were identified as the decreased and increased biomarker candidates in the AD brain, respectively. Therefore, the proposed approach seems to be helpful for the determination of non-target chiral metabolomics possessing amines and carboxyls. PMID:26526912

  5. Ground State Energy of Unitary Fermion Gas with the Thomson Problem Approach

    Institute of Scientific and Technical Information of China (English)

    CHEN Ji-Sheng

    2007-01-01

    The dimensionless universal coefficient § defines the ratio of the unitary fermions energy density to that for the ideal non-interacting ones in the non-relativistic limit with T = 0. The classical Thomson problem is taken as a nonperturbative quantum many-body arm to address the ground state energy including the Iow energy nonlinear quantum fluctuation/correlation effects. With the relativistic Dirac continuum field theory formalism, the concise expression for the energy density functional of the strongly interacting limit fermions at both finite temperature and density is obtained. Analytically, the universal factor is calculated to be § = 4/9. The energy gap is △ = 5/18 k2f/(2m).

  6. Antikaon induced Ξ production from a chiral model at NLO

    Directory of Open Access Journals (Sweden)

    Feijoo A.

    2014-01-01

    Full Text Available We study the meson-baryon interaction in the strangeness S = −1 sector using a chiral unitary approach, paying particular attention to the K̄N → KΞ reaction, especially important for constraining the next-to-leading order chiral terms, and considering also the effect of high spin hyperonic resonances. We also present results for the production of Ξ hyperons in nuclei

  7. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach

    Directory of Open Access Journals (Sweden)

    Davood Mousanezhad

    2016-03-01

    Full Text Available The effects of two geometric refinement strategies widespread in natural structures, chirality and self-similar hierarchy, on the in-plane elastic response of two-dimensional honeycombs were studied systematically. Simple closed-form expressions were derived for the elastic moduli of several chiral, anti-chiral, and hierarchical honeycombs with hexagon and square based networks. Finite element analysis was employed to validate the analytical estimates of the elastic moduli. The results were also compared with the numerical and experimental data available in the literature. We found that introducing a hierarchical refinement increases the Young’s modulus of hexagon based honeycombs while decreases their shear modulus. For square based honeycombs, hierarchy increases the shear modulus while decreasing their Young’s modulus. Introducing chirality was shown to always decrease the Young’s modulus and Poisson’s ratio of the structure. However, chirality remains the only route to auxeticity. In particular, we found that anti-tetra-chiral structures were capable of simultaneously exhibiting anisotropy, auxeticity, and remarkably low shear modulus as the magnitude of the chirality of the unit cell increases.

  8. Modular approach to novel chiral aryl-ferrocenyl phosphines by Suzuki cross-coupling

    DEFF Research Database (Denmark)

    Jensen, Jakob Feldthusen; Søtofte, Inger; Sorensen, H.O.;

    2002-01-01

    Two novel planar chiral and atropisomeric P,N and P,O aryl-ferrocenyl ligand systems have been developed. The strategy is short and involves a new synthetic approach to aryl-ferrocenyl compounds via a Suzuki cross-coupling procedure. The modular design can easily give access to variety of chiral...

  9. Chiral and deconfinement phase transition in the Hamiltonian approach to QCD in Coulomb gauge

    CERN Document Server

    Reinhardt, H

    2016-01-01

    The chiral and deconfinement phase transitions are investigated within the variational Hamiltonian approach to QCD in Coulomb gauge. The temperature $\\beta^{-1}$ is introduced by compactifying a spatial dimension. Thereby the whole temperature dependence is encoded in the vacuum state on the spatial manifold $\\mathbb{R}^2 \\times S^1(\\beta)$. The chiral quark condensate and the dual quark condensate (dressed Polyakov loop) are calculated as function of the temperature. From their inflection points the pseudo-critical temperatures for the chiral and deconfinement crossover transitions are determined. Using the zero-temperature quark and gluon propagators obtained within the variational approach as input, we find 226 MeV and 262 MeV, respectively, for the chiral and deconfinement transition.

  10. The effective action approach applied to nuclear chiral sigma model

    International Nuclear Information System (INIS)

    The nuclear chiral sigma model of nuclear matter is considered by means of the Cornwall-Jackiw-tomboulis (CTJ) effective action. The method provides a very general framework for investigating many important problems: chiral symmetry in nuclear medium, energy density of nuclear ground state, nuclear Schwinger-Dyson (SD) equations, etc. It is shown that the SD equations for sigma-omega mixing are actually not present in this formalism. For numerical computation purposes the Hartree-Fock (HF) approximation for ground state energy density is also presented. (author). 26 refs

  11. Approaching the chiral point in two-flavour lattice simulations

    International Nuclear Information System (INIS)

    We investigate the behaviour of the pion decay constant and the pion mass in two-flavour lattice QCD, with the physical and chiral points as ultimate goal. Measurements come from the ensembles generated by the CLS initiative using the O(a)-improved Wilson formulation, with lattice spacing down to about 0.05 fermi and pion masses as low as 190 MeV. The applicability of SU(2) chiral perturbation theory is investigated, and various functional forms, and their range of validity, are compared. The physical scale is set through the kaon decay constant, whose measurement is enabled by inserting a third, heavier valence strange quark.

  12. Approaching the chiral point in two-flavour lattice simulations

    CERN Document Server

    Lottini, Stefano

    2014-01-01

    We investigate the behaviour of the pion decay constant and the pion mass in two-flavour lattice QCD, with the physical and chiral points as ultimate goal. Measurements come from the ensembles generated by the CLS initiative using the O(a)-improved Wilson formulation, with lattice spacing down to about 0.05 fermi and pion masses as low as 190 MeV. The applicability of SU(2) chiral perturbation theory is investigated, and various functional forms, and their range of validity, are compared. The physical scale is set through the kaon decay constant, whose measurement is enabled by inserting a third, heavier valence strange quark.

  13. Recent developments in chiral dynamics of hadrons and hadrons in nuclei

    CERN Document Server

    Oset, E; Kaskulov, M; Roca, L; Sarkar, S; Strottman, D D; Vacas, M J V; Magas, V K; Ramos, A; Hernández, E

    2007-01-01

    In this talk I present recent developments in the field of hadronic physics and hadrons in the nuclear medium. I review the unitary chiral approach to meson baryon interaction and address the topics of the two dynamically generated $\\Lambda(1405)$ resonances, with experiments testing it, the $\\Lambda(1520)$ and $\\Delta(1700)$ resonances, plus the $\\Lambda(1520)$, $\\Sigma(1385)$ and $\\omega$ in the nuclear medium.

  14. Geometry of mixed states and degeneracy structure of geometric phases for multi-level quantum systems. A unitary group approach

    CERN Document Server

    Ercolessi, E; Morandi, G; Mukunda, N

    2001-01-01

    We analyze the geometric aspects of unitary evolution of general states for a multilevel quantum system by exploiting the structure of coadjoint orbits in the unitary group Lie algebra. Using the same method in the case of SU(3) we study the effect of degeneracies on geometric phases for three-level systems. This is shown to lead to a highly nontrivial generalization of the result for two-level systems in which degeneracy results in a "monopole" structure in parameter space. The rich structures that arise are related to the geometry of adjoint orbits in SU(3). The limiting case of a two-level degeneracy in a three-level system is shown to lead to the known monopole structure.

  15. A chiral covariant approach to $\\rho\\rho$ scattering

    CERN Document Server

    Gülmez, D; Oller, J A

    2016-01-01

    We analyze vector meson - vector meson scattering in a unitarized chiral theory based on a chiral covariant framework. We show that a pole assigned to the the scalar meson $f_0(1370)$ can be dynamically generated from the $\\rho\\rho$ interaction, while this is not the case for the tensor meson $f_2(1270)$ as found in earlier works. We show that the generation of the tensor state is untenable due to an artefact of the extreme non-relativistic kinematics used before. We further consider the effects arising from the coupling of channels with different orbital angular momenta. We suggest to use the formalism outlined here to obtain more reliable results for the dynamical generation of resonances in the vector-vector interaction.

  16. Master formula approach to broken chiral U(3)xU(3) symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki Kamano

    2010-04-01

    The master formula approach to chiral symmetry breaking proposed by Yamagishi and Zahed is extended to the U_R(3)xU_L(3) group, in which effects of the U_A(1) anomaly and the flavor symmetry breaking m_u \

  17. Numerical study of chiral plasma instability within the classical statistical field theory approach

    Science.gov (United States)

    Buividovich, P. V.; Ulybyshev, M. V.

    2016-07-01

    We report on a numerical study of real-time dynamics of electromagnetically interacting chirally imbalanced lattice Dirac fermions within the classical statistical field theory approach. Namely, we perform exact simulations of the real-time quantum evolution of fermionic fields coupled to classical electromagnetic fields, which are in turn coupled to the vacuum expectation value of the fermionic electric current. We use Wilson-Dirac Hamiltonian for fermions, and noncompact action for the gauge field. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, the electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to transform to helicity of the electromagnetic field. By performing simulations on large lattices we show that in most cases this decay process is accompanied by the inverse cascade phenomenon, which transfers energy from short-wavelength to long-wavelength electromagnetic fields. In some simulations, however, we observe a very clear signature of inverse cascade for the helical magnetic fields that is not accompanied by the axial charge decay. This suggests that the relation between the inverse cascade and axial charge decay is not as straightforward as predicted by the simplest form of anomalous Maxwell equations.

  18. Approach to Chandrasekhar-Kendall-Woltjer State in a Chiral Plasma

    CERN Document Server

    Xia, Xiao-liang; Wang, Qun

    2016-01-01

    We study the time evolution of the magnetic field in a plasma with a chiral magnetic current. The Vector Spherical Harmonic functions (VSH) are used to expand all fields. We define a measure for the Chandrasekhar-Kendall-Woltjer (CKW) state, which has a simple form in VSH expansion. We propose the conditions for a general class of initial momentum spectra that will evolve into the CKW state. For this class of initial conditions, to approach the CKW state, (i) a non-vanishing chiral magnetic conductivity is necessary, and (ii) the time integration of the product of the electric resistivity and chiral magnetic conductivity must grow faster than the time integration of the resistivity. We give a few examples to test these conditions numerically which work very well.

  19. Approach to synthesis and structure of chiral multi-functionalized organophosphorus derivatives

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The diastereomerically pure organophosphorus derivatives containing multiple chiral centers 5 and 5( were obtained, respectively, in 62%-84% yields with ≥98% de (diastereomeric excess) via asymmetric reaction of the chiron, 3-bromo-2(5H)-furanone 4 with racemic diethyl (-hydroxyl- substituted-phosphonates 3+ 3( and further through the separation of the diastereomeric mixture by chromatography. The structures of the chiral organophosphorus derivatives were identified on the basis of their elementary and spectroscopic data, such as IR, 1H NMR,13C NMR, MS and X-ray crystallography. In this report, the synthetic methods ofthe active organophosphorus substrates, the structure characterization and resolution, the optical purity and the stereochemistry of the chiral products were discussed. These results provide a new idea and a good method for synthesizing some natural organophosphorus compounds and approaching their biological activities, also a facile route to the application of organophosphorus substrates.

  20. In-medium properties of kaons in a chiral approach

    International Nuclear Information System (INIS)

    The first order self-energy corrections of the kaon in the symmetric nuclear matter are calculated from kaon-nucleon scattering matrix elements using a chiral Lagrangian within the framework of relativistic mean field approximation. It shows that the effective mass and the potential of K+ meson are identical with those of K- meson in the nuclear matter, respectively. The effective mass of the kaon in the nuclear matter decreases with the nuclear density increasing, and is not relevant to the kaon-nucleon Sigma term. The kaon-nucleus potential is positive and increases with the nuclear density. Moreover, the influence of the resonance Λ(1405) on the K--nucleus potential due to the re-scattering term is discussed. Our results indicate the K- meson could not be bound in the nuclei even if the contribution of Λ(1405) resonance is considered. (author)

  1. Unitary lens semiconductor device

    Science.gov (United States)

    Lear, Kevin L.

    1997-01-01

    A unitary lens semiconductor device and method. The unitary lens semiconductor device is provided with at least one semiconductor layer having a composition varying in the growth direction for unitarily forming one or more lenses in the semiconductor layer. Unitary lens semiconductor devices may be formed as light-processing devices such as microlenses, and as light-active devices such as light-emitting diodes, photodetectors, resonant-cavity light-emitting diodes, vertical-cavity surface-emitting lasers, and resonant cavity photodetectors.

  2. Theory of unitary Bose gases

    OpenAIRE

    van Heugten, J. J. R. M.; Stoof, H. T. C.

    2013-01-01

    We develop an analytical approach for the description of an atomic Bose gas at unitarity. By focusing in first instance on the evaluation of the single-particle density matrix, we derive several universal properties of the unitary Bose gas, such as the chemical potential, the contact, the speed of sound, the condensate density and the effective interatomic interaction. The theory is also generalized to describe Bose gases with a finite scattering length and then reduces to the Bogoliubov theo...

  3. Ground-state energies and charge radii of $^{4}$He, $^{16}$O, $^{40}$Ca, and $^{56}$Ni in the unitary-model-operator approach

    CERN Document Server

    Miyagi, Takayuki; Okamoto, Ryoji; Otsuka, Takaharu

    2015-01-01

    We study the nuclear ground-state properties by using the unitary-model-operator approach (UMOA). Recently, the particle-basis formalism has been introduced in the UMOA and enables us to employ the charge-dependent nucleon-nucleon interaction. We evaluate the ground-state energies and charge radii of $^{4}$He, $^{16}$O, $^{40}$Ca, and $^{56}$Ni with the charge-dependent Bonn potential. The ground-state energy is dominated by the contributions from the one- and two-body cluster terms, while, for the radius, the one-particle-one-hole excitations are more important than the two-particle-two-hole excitations. The calculated results reproduce the trend of experimental data of the saturation property for finite nuclei.

  4. Elastic properties of chiral, anti-chiral, and hierarchical honeycombs:A simple energy-based approach

    Institute of Scientific and Technical Information of China (English)

    Davood Mousanezhad; Babak Haghpanah; Ranajay Ghosh; Abdel Magid Hamouda; Hamid Nayeb-Hashemi; Ashkan Vaziri

    2016-01-01

    The effects of two geometric refinement strategies widespread in natural structures, chirality and self-similar hierarchy, on the in-plane elastic response of two-dimensional honeycombs were studied systematically. Simple closed-form expressions were derived for the elastic moduli of several chiral, anti-chiral, and hierarchical honeycombs with hexagon and square based networks. Finite element analysis was employed to validate the analytical estimates of the elastic moduli. The results were also compared with the numerical and experimental data available in the literature. We found that introducing a hier-archical refinement increases the Young’s modulus of hexagon based honeycombs while decreases their shear modulus. For square based honeycombs, hierarchy increases the shear modulus while decreasing their Young’s modulus. Introducing chirality was shown to always decrease the Young’s modulus and Poisson’s ratio of the structure. However, chirality remains the only route to auxeticity. In particular, we found that anti-tetra-chiral structures were capable of simultaneously exhibiting anisotropy, auxeticity, and remarkably low shear modulus as the magnitude of the chirality of the unit cell increases.

  5. PODOLSKY'S ELECTRODYNAMICS UNDER A CHIRAL APPROACH ELECTRODINÁMICA DE PODOLSKY BAJO UN ENFOQUE QUIRAL

    Directory of Open Access Journals (Sweden)

    Héctor Torres-Silva

    2008-11-01

    Full Text Available In this paper we show that a new approach leads to Maxwell's and Podolsky's electrodynamics, provided we start from chiral constitutive relations instead of the usual Coulomb's law.En este trabajo se muestra que un nuevo esquema conduce a la electrodinámica de Maxwell y a la electrodinámica de Podolsky, partiendo con relaciones constitutivas quirales en lugar de la usual ley de Coulomb.

  6. New tests of the gauge-fixing approach to lattice chiral gauge theories

    International Nuclear Information System (INIS)

    We report on recent progress with the gauge-fixing approach to lattice chiral gauge theories. The bosonic sector of the gauge-fixing approach is studied with fully dynamical U(1) gauge fields. We demonstrate that it is important to formulate the Lorentz gauge-fixing action such that the dense set of lattice Gribov copies is removed, and the gauge-fixing action has a unique absolute minimum. We then show that the spectrum in the continuum limit contains only the desired massless photon, as expected

  7. Self-dual chiral boson: augmented superfield approach

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, D.; Bhanja, T. [Banaras Hindu University, Department of Physics, Faculty of Science, Centre of Advanced Studies, Varanasi, U.P. (India); Malik, R.P. [Banaras Hindu University, Department of Physics, Faculty of Science, Centre of Advanced Studies, Varanasi, U.P. (India); Banaras Hindu University, Faculty of Science, DST Centre for Interdisciplinary Mathematical Sciences, Varanasi, U.P. (India)

    2014-09-15

    We exploit the standard tools and techniques of the augmented version of the Bonora-Tonin superfield formalism to derive the off-shell nilpotent and absolutely anticommuting (anti-)Becchi-Rouet-Stora-Tyutin (BRST) and (anti-)co-BRST symmetry transformations for the BRST-invariant Lagrangian density of a self-dual bosonic system. In the derivation of the full set of the above symmetry transformations, we invoke the (dual-)horizontality conditions, and (anti-)BRST- and (anti-)co-BRST-invariant restrictions on the superfields that are defined on the (2, 2)-dimensional supermanifold. The latter is parameterized by the bosonic variable x{sup μ} (μ = 0, 1) and a pair of Grassmannian variables θ and anti θ (with θ{sup 2} = anti θ{sup 2} = 0 and θ anti θ + anti θθ = 0). The dynamics of this system is such that, instead of the full (2, 2)-dimensional superspace coordinates (x{sup μ}, θ, anti θ), we require only the specific (1, 2)-dimensional super-subspace variables (t, θ, anti θ) for its description. This is a novel observation in the context of the superfield approach to the BRST formalism. The application of the dual-horizontality condition, in the derivation of a set of proper (anti-)co-BRST symmetries, is also one of the newingredients of our present endeavor where we have exploited the augmented version of the superfield approach to the BRST formalism. (orig.)

  8. Application of the graphical unitary group approach to the energy second derivative for CI wave functions via the coupled perturbed CI equations

    Energy Technology Data Exchange (ETDEWEB)

    Fox, D.J.

    1983-10-01

    Analytic derivatives of the potential energy for Self-Consistent-Field (SCF) wave functions have been developed in recent years and found to be useful tools. The first derivative for configuration interaction (CI) wave functions is also available. This work details the extension of analytic methods to energy second derivatives for CI wave functions. The principal extension required for second derivatives is evaluation of the first order change in the CI wave function with respect to a nuclear perturbation. The shape driven graphical unitary group approach (SDGUGA) direct CI program was adapted to evaluate this term via the coupled-perturbed CI equations. Several iterative schemes are compared for use in solving these equations. The pilot program makes no use of molecular symmetry but the timing results show that utilization of molecular symmetry is desirable. The principles for defining and solving a set of symmetry adapted equations are discussed. Evaluation of the second derivative also requires the solution of the second order coupled-perturbed Hartree-Fock equations to obtain the correction to the molecular orbitals due to the nuclear perturbation. This process takes a consistently higher percentage of the computation time than for the first order equations alone and a strategy for its reduction is discussed.

  9. Application of the graphical unitary group approach to the energy second derivative for CI wave functions via the coupled perturbed CI equations

    International Nuclear Information System (INIS)

    Analytic derivatives of the potential energy for Self-Consistent-Field (SCF) wave functions have been developed in recent years and found to be useful tools. The first derivative for configuration interaction (CI) wave functions is also available. This work details the extension of analytic methods to energy second derivatives for CI wave functions. The principal extension required for second derivatives is evaluation of the first order change in the CI wave function with respect to a nuclear perturbation. The shape driven graphical unitary group approach (SDGUGA) direct CI program was adapted to evaluate this term via the coupled-perturbed CI equations. Several iterative schemes are compared for use in solving these equations. The pilot program makes no use of molecular symmetry but the timing results show that utilization of molecular symmetry is desirable. The principles for defining and solving a set of symmetry adapted equations are discussed. Evaluation of the second derivative also requires the solution of the second order coupled-perturbed Hartree-Fock equations to obtain the correction to the molecular orbitals due to the nuclear perturbation. This process takes a consistently higher percentage of the computation time than for the first order equations alone and a strategy for its reduction is discussed

  10. Entanglement quantification by local unitaries

    CERN Document Server

    Monras, A; Giampaolo, S M; Gualdi, G; Davies, G B; Illuminati, F

    2011-01-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as "shield entanglement". They are constructed by first considering the (squared) Hilbert- Schmidt distance of the state from the set of states obtained by applying to it a given local unitary. To the action of each different local unitary there corresponds a different distance. We then minimize these distances over the sets of local unitaries with different spectra, obtaining an entire family of different entanglement monotones. We show that these shield entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary f...

  11. A multiscale approach for estimating the chirality effects in carbon nanotube reinforced composites

    Science.gov (United States)

    Joshi, Unnati A.; Sharma, Satish C.; Harsha, S. P.

    2012-08-01

    In this paper, the multiscale representative volume element approach is proposed for modeling the elastic behavior of carbon nanotubes reinforced composites. The representative volume element incorporates the continuum approach, while carbon nanotube characterizes the atomistic approach. Space frame structure similar to three dimensional beams and point masses are employed to simulate the discrete geometrical constitution of the single walled carbon nanotube. The covalent bonds between carbon atoms found in the hexagonal lattices are assigned elastic properties using beam elements. The point masses applied on each node are coinciding with the carbon atoms work as mass of beam elements. The matrix phase is modeled as a continuum medium using solid elements. These two regions are interconnected by interfacial zone using beam elements. Analysis of nanocomposites having single walled carbon nanotube with different chiralities is performed, using an atomistic finite element model based on a molecular structural mechanics approach. Using the proposed multi scale model, the deformations obtained from the simulations are used to predict the elastic and shear moduli of the nanocomposites. A significant enhancement in the stiffness of the nanocomposites is observed. The effects of interfacial shear strength, stiffness, tensile strength, chirality, length of carbon nanotube, material of matrix, types of representative volume elements and types of loading conditions on the mechanical behavior of the nanocomposites are estimated. The finite element results are compared with the rule of mixtures using formulae. It is found that the results offered by proposed model, are in close proximity with those obtained by the rule of mixtures.

  12. Black holes, quantum information, and unitary evolution

    CERN Document Server

    Giddings, Steven B

    2012-01-01

    The unitary crisis for black holes indicates an apparent need to modify local quantum field theory. This paper explores the idea that quantum mechanics and in particular unitarity are fundamental principles, but at the price of familiar locality. Thus, one should seek to parameterize unitary evolution, extending the field theory description of black holes, such that their quantum information is transferred to the external state. This discussion is set in a broader framework of unitary evolution acting on Hilbert spaces comprising subsystems. Here, various constraints can be placed on the dynamics, based on quantum information-theoretic and other general physical considerations, and one can seek to describe dynamics with "minimal" departure from field theory. While usual spacetime locality may not be a precise concept in quantum gravity, approximate locality seems an important ingredient in physics. In such a Hilbert space approach an apparently "coarser" form of localization can be described in terms of tenso...

  13. On the pole content of coupled channels chiral approaches used for the K bar N system

    Science.gov (United States)

    Cieplý, A.; Mai, M.; Meißner, Ulf-G.; Smejkal, J.

    2016-10-01

    Several theoretical groups describe the antikaon-nucleon interaction at low energies within approaches based on the chiral SU(3) dynamics and including next-to-leading order contributions. We present a comparative analysis of the pertinent models and discuss in detail their pole contents. It is demonstrated that the approaches lead to very different predictions for the K- p amplitude extrapolated to subthreshold energies as well as for the K- n amplitude. The origin of the poles generated by the models is traced to the so-called zero coupling limit, in which the inter-channel couplings are switched off. This provides new insights into the pole contents of the various approaches. In particular, different concepts of forming the Λ (1405) resonance are revealed and constraints related to the appearance of such poles in a given approach are discussed.

  14. Entanglement quantification by local unitaries

    OpenAIRE

    A. Monras; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.

    2011-01-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitaries play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as "mirror entanglement". They are constructed by first considering the (squared) Hilbert-S...

  15. Front-Form Chiral Multiplets

    CERN Document Server

    Gómez-Rocha, María

    2012-01-01

    In this article we point out that the unitary transformation that relates the chiral basis $\\{R; I J^{PC}\\}$ and the $\\{I; ^{2S+1}L_J \\}$ basis, which was already derived for canonical spin in instant form, is also applicable in light-cone representations. From the most general expression for the Clebsch-Gordan coefficients of the Poincar\\'e group one can see that the chiral limit brings the angular momentum coupling into a simple form that permits a clear relation in terms of SU(2) Clebsch-Gordan coefficients. It provides a tool of measurement of chiral symmetry in relativistic composite systems.

  16. On unitary reconstruction of linear optical networks

    CERN Document Server

    Tillmann, Max; Walther, Philip

    2015-01-01

    Linear optical elements are pivotal instruments in the manipulation of classical and quantum states of light. The vast progress in integrated quantum photonic technology enables the implementation of large numbers of such elements on chip while providing interferometric stability. As a trade-off these structures face the intrinsic challenge of characterizing their optical transformation as individual optical elements are not directly accessible. Thus the unitary transformation needs to be reconstructed from a dataset generated with having access to the input and output ports of the device only. Here we present a novel approach to unitary reconstruction that significantly improves upon existing approaches. We compare its performance to several approaches via numerical simulations for networks up to 14 modes. We show that an adapted version of our approach allows to recover all mode-dependent losses and to obtain highest reconstruction fidelities under such conditions.

  17. A new approach to derive Pfaffian structures for random matrix ensembles

    International Nuclear Information System (INIS)

    Correlation functions for matrix ensembles with orthogonal and unitary-symplectic rotation symmetry are more complicated to calculate than in the unitary case. The supersymmetry method and the orthogonal polynomials are two techniques to tackle this task. Recently, we presented a new method to average ratios of characteristic polynomials over matrix ensembles invariant under the unitary group. Here, we extend this approach to ensembles with orthogonal and unitary-symplectic rotation symmetry. We show that Pfaffian structures can be derived for a wide class of orthogonal and unitary-symplectic rotation invariant ensembles in a unifying way. This also includes those for which this structure was not known previously, as the real Ginibre ensemble and the Gaussian real chiral ensemble with two independent matrices as well.

  18. Screening Approach for Chiral Separation of β-Aminoketones by HPLC on Various Polysaccharide-Based Chiral Stationary Phases.

    Science.gov (United States)

    Addadi, Khadidja; Sekkoum, Khaled; Belboukhari, Nasser; Cheriti, Abdelkrim; Aboul-Enein, Hassan Y

    2015-05-01

    Nine β-aminoketones were synthesized via Mannich reaction when benzaldehyde was condensed with some primary amines and acetophenone. The purified compounds were identified by using spectroscopic methods. The enantiomeric separation of these derivatives was carried out by high-performance liquid chromatography (HPLC) using several coated and immobilized polysaccharide stationary phases, namely, Chiralcel(®) OD-H, Chiralcel(®) OD, Chiralcel(®) OJ, Chiralpak(®) AD, Chiralpak(®) IA, and Chiralpak(®) IB using different mobile phases composed of n-hexane and alcohol mixed in various ratios or pure ethanol or isopropanol. The retention behavior and selectivity of these chiral stationary phases were examined in isocratic normal phase mode. The results indicate that cellulose derivatives have higher enantioselectivity than amylose derivatives for the separation of racemic β-amino ketones. PMID:25752940

  19. Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach

    CERN Document Server

    Novitsky, Andrey V; Zhukovsky, Sergei V

    2010-01-01

    The electronic Lorentz theory is employed to determine the electromagnetic response of planar split-ring metamaterials. Starting from the dynamics of individual free carriers, the effective permittivity tensor of the metamaterial is calculated. Whenever the split ring lacks in-plane mirror symmetry, the corresponding permit- tivity tensor has a crystallographic structure of an elliptically dichroic medium, and the metamaterial exhibits optical properties of planar chiral structures. Its transmission spectra are different for right-handed vs. left- handed circular polarization of the incident wave, so the structure changes its transmittance when the direction of incidence is reversed. The magnitude of this change is shown to be related to the geometric parameters of the split ring. The proposed approach can be straightforwardly generalized to a wide variety of metal-dielectric metamaterial geometries.

  20. Chiral symmetry

    CERN Document Server

    Ecker, G

    1999-01-01

    Broken chiral symmetry has become the basis for a unified treatment of hadronic interactions at low energies. After reviewing mechanisms for spontaneous chiral symmetry breaking, I outline the construction of the low--energy effective field theory of the Standard Model called chiral perturbation theory. The loop expansion and the renormalization procedure for this nonrenormalizable quantum field theory are developed. Evidence for the standard scenario with a large quark condensate is presented, in particular from high--statistics lattice calculations of the meson mass spectrum. Elastic pion--pion scattering is discussed as an example of a complete calculation to O(p^6) in the low--energy expansion. The meson--baryon system is the subject of the last lecture. After a short summary of heavy baryon chiral perturbation theory, a recent analysis of pion--nucleon scattering to O(p^3) is reviewed. Finally, I describe some very recent progress in the chiral approach to the nucleon--nucleon interaction.

  1. Nuclear electromagnetic currents from chiral EFT

    International Nuclear Information System (INIS)

    Using the method of unitary transformation in combination with chiral effective field theory we derive the pion exchange contributions to the two-nucleon electromagnetic current. A formal definition of the current operator in this scheme and the power counting is presented. We discuss the implications of additional unitary transformations that have to be present to ensure the renormalizability of the one-pion exchange current. Further, we give explicit and compact results for the current in coordinate-space.

  2. Entanglement Continuous Unitary Transformations

    CERN Document Server

    Sahin, S; Orus, R

    2016-01-01

    Continuous unitary transformations are a powerful tool to extract valuable information out of quantum many-body Hamiltonians, in which the so-called flow equation transforms the Hamiltonian to a diagonal or block-diagonal form in second quantization. Yet, one of their main challenges is how to approximate the infinitely-many coupled differential equations that are produced throughout this flow. Here we show that tensor networks offer a natural and non-perturbative truncation scheme in terms of entanglement. The corresponding scheme is called "entanglement-CUT" or eCUT. It can be used to extract the low-energy physics of quantum many-body Hamiltonians, including quasiparticle energy gaps. We provide the general idea behind eCUT and explain its implementation for finite 1d systems using the formalism of matrix product operators, and we present proof-of-principle results for the spin-1/2 1d quantum Ising model in a transverse field. Entanglement-CUTs can also be generalized to higher dimensions and to the thermo...

  3. Unitary Transformation in Quantum Teleportation

    Institute of Scientific and Technical Information of China (English)

    WANG Zheng-Chuan

    2006-01-01

    In the well-known treatment of quantum teleportation, the receiver should convert the state of his EPR particle into the replica of the unknown quantum state by one of four possible unitary transformations. However, the importance of these unitary transformations must be emphasized. We will show in this paper that the receiver cannot transform the state of his particle into an exact replica of the unknown state which the sender wants to transfer if he has not a proper implementation of these unitary transformations. In the procedure of converting state, the inevitable coupling between EPR particle and environment which is needed by the implementation of unitary transformations will reduce the accuracy of the replica.

  4. Chirality in Nonlinear Optics

    Science.gov (United States)

    Haupert, Levi M.; Simpson, Garth J.

    2009-05-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.

  5. A resolution approach of racemic phenylalanine with aqueous two-phase systems of chiral tropine ionic liquids.

    Science.gov (United States)

    Wu, Haoran; Yao, Shun; Qian, Guofei; Yao, Tian; Song, Hang

    2015-10-30

    Aqueous two-phase systems (ATPS) based on tropine type chiral ionic liquids and inorganic salt solution were designed and prepared for the enantiomeric separation of racemic phenylalanine. The phase behavior of IL-based ATPS was comprehensive investigated, and phase equilibrium data were correlated by Merchuk equation. Various factors were also systematically investigated for their influence on separation efficiency. Under the appropriate conditions (0.13g/g [C8Tropine]pro, 35mg/g Cu(Ac)2, 20mg/g d,l-phenylalanine, 0.51g/g H2O and 0.30g/g K2HPO4), the enantiomeric excess value of phenylalanine in solid phase (mainly containing l-enantiomer) was 65%. Finally, the interaction mechanism was studied via 1D and 2D NMR. The results indicate that d-enantiomer of phenylalanine interacts more strongly with chiral ILs and Cu(2+) based on the chiral ion-pairs space coordination mechanism, which makes it tend to remain in the top IL-rich phase. By contrast, l-enantiomer is transferred into the solid phase. Above chiral ionic liquids aqueous two-phase systems have demonstrated obvious resolution to racemic phenylalanine and could be promising alterative resolution approach for racemic amino acids in aqueous circumstance.

  6. Chiral approach to nuclear matter: Role of explicit short-range NN-terms

    CERN Document Server

    Fritsch, S

    2003-01-01

    We extend a recent chiral approach to nuclear matter by including the most general (momentum-independent) NN-contact interaction. Iterating this two-parameter contact-vertex with itself and with one-pion exchange the emerging energy per particle exhausts all terms possible up-to-and-including fourth order in the small momentum expansion. The equation of state of pure neutron matter, $\\bar E_n(k_n)$, can be reproduced very well up to quite high neutron densities of $\\rho_n=0.5\\fmd$ by adjusting the strength of a repulsive $nn$-contact interaction. Binding and saturation of isospin-symmetric nuclear matter is a generic feature of our perturbative calculation. Fixing the maximum binding energy per particle to $-\\bar E(k_{f0})= 15.3 $MeV we find that any possible equilibrium density $\\rho_0$ lies below $\\rho_0^{\\rm max}=0.191\\fmd$. The additional constraint from the neutron matter equation of state leads however to a somewhat too low saturation density of $\\rho_0 =0.134 \\fmd$. We also investigate the effects of t...

  7. Understanding complex chiral plasmonics

    Science.gov (United States)

    Duan, Xiaoyang; Yue, Song; Liu, Na

    2015-10-01

    Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant

  8. Implementation of bipartite or remote unitary gates with repeater nodes

    Science.gov (United States)

    Yu, Li; Nemoto, Kae

    2016-08-01

    We propose some protocols to implement various classes of bipartite unitary operations on two remote parties with the help of repeater nodes in-between. We also present a protocol to implement a single-qubit unitary with parameters determined by a remote party with the help of up to three repeater nodes. It is assumed that the neighboring nodes are connected by noisy photonic channels, and the local gates can be performed quite accurately, while the decoherence of memories is significant. A unitary is often a part of a larger computation or communication task in a quantum network, and to reduce the amount of decoherence in other systems of the network, we focus on the goal of saving the total time for implementing a unitary including the time for entanglement preparation. We review some previously studied protocols that implement bipartite unitaries using local operations and classical communication and prior shared entanglement, and apply them to the situation with repeater nodes without prior entanglement. We find that the protocols using piecewise entanglement between neighboring nodes often require less total time compared to preparing entanglement between the two end nodes first and then performing the previously known protocols. For a generic bipartite unitary, as the number of repeater nodes increases, the total time could approach the time cost for direct signal transfer from one end node to the other. We also prove some lower bounds of the total time when there are a small number of repeater nodes. The application to position-based cryptography is discussed.

  9. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  10. Implementation of discrete unitary transformations by multimode waveguide holograms.

    Science.gov (United States)

    Tseng, Shuo-Yen; Kim, Younggu; Richardson, Christopher J K; Goldhar, Julius

    2006-07-10

    Integration of holograms into multimode waveguides allows the implementation of arbitrary unitary mode transformations and unitary matrix-vector multiplication. Theoretical analysis is used to justify a design approach to implement specific functions in these devices. Based on this approach, a compact mode-order converter, a Hadamard transformer, and a spatial pattern generator-correlator are proposed and analyzed. Beam propagation simulations are used to verify the theoretical calculations and to address bandwidth, scalability, and fabrication criteria. Optical pattern generators were successfully fabricated using standard photolithographic techniques to demonstrate the feasibility of the devices. PMID:16807593

  11. Teleportation of M-Qubit Unitary Operations

    Institute of Scientific and Technical Information of China (English)

    郑亦庄; 顾永建; 郭光灿

    2002-01-01

    We discuss teleportation of unitary operations on a two-qubit in detail, then generalize the bidirectional state teleportation scheme from one-qubit to M-qubit unitary operations. The resources required for the optimal implementation of teleportation of an M-qubit unitary operation using a bidirectional state teleportation scheme are given.

  12. Exact and approximate unitary 2-designs and their application to fidelity estimation

    International Nuclear Information System (INIS)

    We develop the concept of a unitary t-design as a means of expressing operationally useful subsets of the stochastic properties of the uniform (Haar) measure on the unitary group U(2n) on n qubits. In particular, sets of unitaries forming 2-designs have wide applicability to quantum information protocols. We devise an O(n)-size in-place circuit construction for an approximate unitary 2-design. We then show that this can be used to construct an efficient protocol for experimentally characterizing the fidelity of a quantum process on n qubits with quantum circuits of size O(n) without requiring any ancilla qubits, thereby improving upon previous approaches.

  13. On the pole content of coupled channels chiral approaches used for the $\\bar{K}N$ system

    CERN Document Server

    Cieplý, A; Meißner, Ulf-G; Smejkal, J

    2016-01-01

    Several theoretical groups describe the antikaon-nucleon interaction at low energies within approaches based on the chiral SU(3) dynamics and including next-to-leading order contributions. We present a comparative analysis of the pertinent models and discuss in detail their pole contents. It is demonstrated that the approaches lead to very different predictions for the $K^{-}p$ amplitude extrapolated to subthreshold energies as well as for the $K^{-}n$ amplitude. The origin of the poles generated by the models is traced to the so-called zero coupling limit, in which the inter-channel couplings are switched off. This provides new insights into the pole contents of the various approaches. In particular, different concepts of forming the $\\Lambda(1405)$ resonance are revealed and constraints related to the appearance of such poles in a given approach are discussed.

  14. Recent Developments in Chiral Unitary Dynamics of Resonances

    CERN Document Server

    Oset, E; Gamermann, D; Vacas, M J Vicente; Strottman, D; Khemchandani, K P; Torres, A Martinez; Oller, J A; Roca, L

    2007-01-01

    In this talk I summarize recent findings made on the description of axial vector mesons as dynamically generated states from the interaction of peseudoscalar mesons and vector mesons, dedicating some attention to the two $K_1(1270)$ states. Then I review the generation of open and hidden charm scalar and axial states. Finally, I present recent results showing that the low lying $1/2^+$ baryon resonances for S=-1 can be obtained as bound states or resonances of two mesons and one baryon in coupled channels dynamics.

  15. Topics in three flavor chiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nissler, Robin

    2007-07-01

    In this work, we investigate several processes in low-energy hadron physics by combining chiral perturbation theory (ChPT), the effective field theory of quantum chromodynamics (QCD) at low energies, with a unitarization method based on the Bethe-Salpeter equation. Such so-called chiral unitary approaches are capable of describing processes in the three flavor sector of the strong interaction which involve substantial effects from final-state interactions and the excitation of (subthreshold) resonances, a domain where the perturbative framework of ChPT is not applicable. In part I of this work we study {eta} and {eta}' decays which constitute a perfect tool to examine symmetries and symmetry breaking patterns of QCD being incorporated in a model-independent fashion in ChPT. In particular, these decays allow to investigate the breaking of isospin symmetry due to the light quark mass difference m{sub d}-m{sub u} as well as effects of anomalies stemming from the quantum nature of QCD. For these reasons the decays of {eta} and {eta}' have also attracted considerable experimental interest. They are currently under investigation at several facilities including KLOE rate at DA{phi}NE, Crystal Ball at MAMI, WASA-at-COSY, VES at IHEP, and CLEO at CESR. In part II we investigate low-energy meson-baryon scattering in the strangeness S=-1 sector which is dominated by the {lambda}(1405) resonance immediately below the anti KN threshold. The anti KN interaction below threshold is of relevance for the quest of possible deeply bound anti K-nuclear clusters and has recently received an additional tight constraint: the K{sup -}p scattering length as determined from kaonic hydrogen by the KEK and the DEAR collaborations. Apart from successfully describing a large amount of experimental data and furnishing predictions for yet unmeasured quantities, our calculations allow to interrelate different experimental observables providing important consistency tests of experiments. E

  16. Localized Excitations from Localized Unitary Operators

    CERN Document Server

    Sivaramakrishnan, Allic

    2016-01-01

    Localized unitary operators are basic probes of locality and causality in quantum systems: localized unitary operators create localized excitations in entangled states. Working with an explicit form, we explore the properties of these operators in quantum mechanics and quantum field theory. We show that, unlike unitary operators, local non-unitary operators generically create non-local excitations. We present a local picture for quantum systems in which localized experimentalists can only act through localized Hamiltonian deformations, and therefore localized unitary operators. We demonstrate that localized unitary operators model certain quantum quenches exactly. We show how the Reeh-Schlieder theorem follows intuitively from basic properties of entanglement, non-unitary operators, and the local picture. We show that a recent quasi-particle picture for excited-state entanglement entropy in conformal field theories is not universal for all local operators. We prove a causality relation for entanglement entrop...

  17. Unitary Transformation in Probabilistic Teleportation

    OpenAIRE

    Tian, Xiu-Lao; Zhang, Wei; Xi, Xiao-Qiang

    2012-01-01

    We proposed a general transformation in probabilistic teleportation, which is based on different entanglement matching coefficients $K$ corresponding to different unitary evolution which provides one with more flexible evolution method experimentally. Through analysis based on the Bell basis and generalized Bell basis measurement for two probabilistic teleportation, we suggested a general probability of successful teleportation, which is not only determined by the entanglement degree of trans...

  18. Chiral forces and molecular dissymmetry

    International Nuclear Information System (INIS)

    Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected

  19. Non-unitary fusion categories and their doubles via endomorphisms

    CERN Document Server

    Evans, David E

    2015-01-01

    We realise non-unitary fusion categories using subfactor-like methods, and compute their quantum doubles and modular data. For concreteness we focus on generalising the Haagerup-Izumi family of Q-systems. For example, we construct endomorphism realisations of the (non-unitary) Yang-Lee model, and non-unitary analogues of one of the even subsystems of the Haagerup subfactor and of the Grossman-Snyder system. We supplement Izumi's equations for identifying the half-braidings, which were incomplete even in his Q-system setting. We conjecture a remarkably simple form for the modular S and T matrices of the doubles of these fusion categories. We would expect all of these doubles to be realised as the category of modules of a rational VOA and conformal net of factors. We expect our approach will also suffice to realise the non-semisimple tensor categories arising in logarithmic conformal field theories.

  20. Chiral dynamics of baryon resonances and hadrons in a nuclear medium

    Indian Academy of Sciences (India)

    E Oset; D Cabrera; V K Magas; L Roca; S Sarkar; M J Vicente Vacas; A Ramos

    2006-04-01

    In these lectures I make an introduction to chiral unitary theory applied to the meson-baryon interaction and show how several well-known resonances are dynamically generated, and others are predicted. Two very recent experiments are analyzed, one of them showing the existence of two (1405) states and the other one providing support for the (1520) resonance as a quasi-bound state of $\\sum (1385) $. The use of chiral Lagrangians to account for the hadronic interaction at the elementary level introduces a new approach to deal with the modification of meson and baryon properties in a nuclear medium. Examples of it for $\\bar{K}$, and modification in the nuclear medium are presented.

  1. An Analytic Approach to Sunset Diagrams in Chiral Perturbation Theory: Theory and Practice

    CERN Document Server

    Ananthanarayan, B; Ghosh, Shayan; Hebbar, Aditya

    2016-01-01

    We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two-mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files, which may serve as pedagogical supplements to the methods described in this paper.

  2. Chiral Thermodynamic Model of QCD and its Critical Behavior in the Closed-Time-Path Green Function Approach

    CERN Document Server

    Huang, Da

    2011-01-01

    By applying the closed-time-path Green function formalism to the chiral dynamical model based on an effective Lagrangian of chiral quarks with the nonlinear-realized meson fields as bosonized auxiliary fields, we then arrive at a chiral thermodynamic model for the meson fields with finite temperature. Particular attention is paid to the spontaneous chiral symmetry breaking and restoration from the dynamically generated effective composite Higgs potential of meson fields at finite temperature. It is shown that the minimal condition of the effective composite Higgs potential of meson fields leads to the thermodynamic gap equation at finite temperature, which enables us to investigate the critical behavior of the effective chiral thermodynamical model and to explore the QCD phase transition. After fixing the free parameters in the effective chiral Lagrangian at low energies with zero temperature, we determine the critical temperature of the chiral symmetry restoration and present a consistent prediction for the ...

  3. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation.

    Science.gov (United States)

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-07-12

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.

  4. Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation

    Science.gov (United States)

    Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping

    2016-07-01

    Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.

  5. Truncations of random unitary matrices

    CERN Document Server

    Zyczkowski, K; Zyczkowski, Karol; Sommers, Hans-Juergen

    1999-01-01

    We analyze properties of non-hermitian matrices of size M constructed as square submatrices of unitary (orthogonal) random matrices of size N>M, distributed according to the Haar measure. In this way we define ensembles of random matrices and study the statistical properties of the spectrum located inside the unit circle. In the limit of large matrices, this ensemble is characterized by the ratio M/N. For the truncated CUE we derive analytically the joint density of eigenvalues from which easily all correlation functions are obtained. For N-M fixed and N--> infinity the universal resonance-width distribution with N-M open channels is recovered.

  6. What unitary matrix models are not?

    CERN Document Server

    Lafrance, R; Lafrance, Rene; Myers, Robert

    1993-01-01

    We report results of two investigations of the double-scaling equations for the unitary matrix models. First, the fixed area partition functions have all positive coefficients only for the first four critical points. This implies that the critical points at $k\\ge5$ describe non-unitary continuum theories. Secondly, we examine a conjectured connection to branched polymers, but find that the scaling solutions of the unitary models do not agree with those of a particular model describing branched polymers.

  7. Defining a Unitary Business: An Economist's View

    OpenAIRE

    Charles E. McLure, Jr.

    1983-01-01

    The definition of a unitary business has figured prominently in several recent decisions of the U.S. Supreme Court on the constitutionality of state corporate income taxes. This paper employs economic analysis to frame a three part test of whether a unitary business exists. Underlying the tests is the notion that a unitary business exists when separate accounting can not satisfactorily isolate the profits of individual firms. The first test is common control. The second is whether transfer pr...

  8. Augmented Superfield Approach to Nilpotent Symmetries in Self-Dual Chiral Bosonic Field Theory

    CERN Document Server

    Srinivas, N; Malik, R P

    2015-01-01

    We exploit the beauty and strength of the symmetry invariant restrictions on the superfields to derive the Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and (anti-) co-BRST symmetry transformations in the case of a two (1+1)-dimensional (2D) self-dual chiral bosonic field theory within the framework of augmented superfield formalism. Our 2D ordinary theory is generalized onto a (2, 2)-dimensional supermanifold which is parameterized by the superspace variable $Z^M = (x^\\mu, \\theta, \\bar\\theta)$ where $x^\\mu$ (with $\\mu = 0, 1$) are the ordinary 2D bosonic coordinates and ($\\theta,\\, \\bar\\theta$) are a pair of Grassmannian variables with their standard relationships: $\\theta^2 = {\\bar\\theta}^2 =0, \\theta\\,\\bar\\theta + \\bar\\theta\\theta = 0$. We impose the (anti-)BRST and (anti-)co-BRST invariant restrictions on the superfields, defined on the (anti-)chiral (2, 1)-dimensional super-submanifolds of the above {\\it general} (2, 2)-dimensional supermanifold, to derive the above nilpotent symmetries. We do not exploit ...

  9. Implications of the Oklo Phenomenon in a Chiral Approach to Nuclear Matter

    Science.gov (United States)

    Davis, Edward D.

    2015-09-01

    It has been customary to use data from the Oklo natural nuclear reactor to place bounds on the change that has occurred in the electromagnetic fine structure constant α over the last 2 billion years. Alternatively, an analysis could be based on a recently proposed expression for shifts in resonance energies which relates them to changes in both α and the average m q of the u and d current quark masses, and which makes explicit the dependence on mass number A and atomic number Z. (Recent model independent results on hadronic -terms suggest sensitivity to the strange quark mass is negligible.) The most sophisticated analysis, to date, of the quark mass term invokes a calculation of the nuclear mean-field within the Walecka model of quantum hadrodynamics. We comment on this study and consider an alternative in which the link to low-energy quantum chromodynamics and its pattern of chiral symmetry-breaking is more readily discernible. Specifically, we investigate the sensitivity to changes in the pion mass of a single nucleon potential determined by an in-medium chiral perturbation theory (PT) calculation which includes virtual -excitations. Subject to some reasonable assumptions about low-energy constants, we confirm that the m q -contribution to resonance shifts is enhanced by a factor of 10 or so relative to the -term and deduce that the Oklo data for Sm imply that.

  10. Singular Value Decomposition for Unitary Symmetric Matrix

    Institute of Scientific and Technical Information of China (English)

    ZOUHongxing; WANGDianjun; DAIQionghai; LIYanda

    2003-01-01

    A special architecture called unitary sym-metric matrix which embodies orthogonal, Givens, House-holder, permutation, and row (or column) symmetric ma-trices as its special cases, is proposed, and a precise corre-spondence of singular values and singular vectors between the unitary symmetric matrix and its mother matrix is de-rived. As an illustration of potential, it is shown that, for a class of unitary symmetric matrices, the singular value decomposition (SVD) using the mother matrix rather than the unitary symmetric matrix per se can save dramatically the CPU time and memory without loss of any numerical precision.

  11. Chiral Odd GPDs

    Directory of Open Access Journals (Sweden)

    Goldstein Gary R.

    2015-01-01

    Full Text Available Nucleon spin structure, transversity and the tensor charge are of central importance to understanding the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the proton via twist 3 GPDs is shown. The “flexible parametrization” of chiral even GPDs is reviewed and its transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on π0 and η electroproduction.

  12. The unitary convolution approximation for heavy ions

    CERN Document Server

    Grande, P L

    2002-01-01

    The convolution approximation for the impact-parameter dependent energy loss is reviewed with emphasis on the determination of the stopping force for heavy projectiles. In this method, the energy loss in different impact-parameter regions is well determined and interpolated smoothly. The physical inputs of the model are the projectile-screening function (in the case of dressed ions), the electron density and oscillators strengths of the target atoms. Moreover, the convolution approximation, in the perturbative mode (called PCA), yields remarkable agreement with full semi-classical-approximation (SCA) results for bare as well as for screened ions at all impact parameters. In the unitary mode (called UCA), the method contains some higher-order effects (yielding in some cases rather good agreement with full coupled-channel calculations) and approaches the classical regime similar as the Bohr model for large perturbations (Z/v>>1). The results are then used to compare with experimental values of the non-equilibri...

  13. Many flavor approach to study the nature of chiral phase transition of two-flavor QCD

    CERN Document Server

    Yamada, Norikazu; Iwami, Ryo

    2016-01-01

    We perform lattice numerical simulations to study the phase transition of QCD at finite temperature to clarify the nature of the transition of massless two flavor QCD. We investigate QCD with two light and Nf heavy quarks instead of two-flavor QCD, and focus on the light quark mass dependence of the critical heavy mass, below which the transition is of first order. The heavy quarks are incorporated into two flavor configurations in the form of the hopping parameter expansion through the reweighting technique. The nature of the transition is identified by the shape of the constraint effective potential at the critical temperature. Our result indicates that the critical heavy mass remains finite in the chiral limit of the two flavors, suggesting the phase transition of massless two-flavor QCD is of second order.

  14. Modeling spontaneous chiral symmetry breaking and deracemization phenomena: discrete versus continuum approaches.

    Science.gov (United States)

    Blanco, Celia; Ribó, Josep M; Hochberg, David

    2015-02-01

    We derive the class of population balance equations (PBE), recently applied to model the Viedma deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes erases the microreversible nature of the molecular interactions in the population growth rate functions and limits the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the ideal racemic composition up to observable enantiometric excess levels.

  15. Chiral Electronics

    OpenAIRE

    Kharzeev, Dmitri E.; Yee, Ho-Ung

    2012-01-01

    We consider the properties of electric circuits involving Weyl semimetals. The existence of the anomaly-induced chiral magnetic current in a Weyl semimetal subjected to magnetic field causes an interesting and unusual behavior of such circuits. We consider two explicit examples: i) a circuit involving the "chiral battery" and ii) a circuit that can be used as a "quantum amplifier" of magnetic field. The unique properties of these circuits stem from the chiral anomaly and may be utilized for c...

  16. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  17. Unitary Inequivalent Representations in Quantum Physics

    OpenAIRE

    Stepanian, Arman; Kohandel, Mahsa

    2013-01-01

    First we will discuss the concept of unitary inequivalentness in quantum physics. Then by giving some examples in the Quantum Field Theory(QFT), we will show the role of unitary inequivalent representations to understand some phenomena such as Hawking effect.

  18. Composed ensembles of random unitary ensembles

    CERN Document Server

    Pozniak, M; Kus, M; Pozniak, Marcin; Zyczkowski, Karol; Kus, Marek

    1997-01-01

    Composed ensembles of random unitary matrices are defined via products of matrices, each pertaining to a given canonical circular ensemble of Dyson. We investigate statistical properties of spectra of some composed ensembles and demonstrate their physical relevance. We discuss also the methods of generating random matrices distributed according to invariant Haar measure on the orthogonal and unitary group.

  19. Tensor Products of Random Unitary Matrices

    CERN Document Server

    Tkocz, Tomasz; Kus, Marek; Zeitouni, Ofer; Zyczkowski, Karol

    2012-01-01

    Tensor products of M random unitary matrices of size N from the circular unitary ensemble are investigated. We show that the spectral statistics of the tensor product of random matrices becomes Poissonian if M=2, N become large or M become large and N=2.

  20. Kitaev honeycomb tensor networks: exact unitary circuits and applications

    CERN Document Server

    Schmoll, Philipp

    2016-01-01

    The Kitaev honeycomb model is a paradigm of exactly-solvable models, showing non-trivial physical properties such as topological quantum order, abelian and non-abelian anyons, and chirality. Its solution is one of the most beautiful examples of the interplay of different mathematical techniques in condensed matter physics. In this paper, we show how to derive a tensor network (TN) description of the eigenstates of this spin-1/2 model in the thermodynamic limit, and in particular for its ground state. In our setting, eigenstates are naturally encoded by an exact 3d TN structure made of fermionic unitary operators, corresponding to the unitary quantum circuit building up the many-body quantum state. In our derivation we review how the different "solution ingredients" of the Kitaev honeycomb model can be accounted for in the TN language, namely: Jordan-Wigner transformation, braidings of Majorana modes, fermionic Fourier transformation, and Bogoliubov transformation. The TN built in this way allows for a clear u...

  1. Enantiodifferentiation of chiral baclofen by β-cyclodextrin using capillary electrophoresis: A molecular modeling approach

    Science.gov (United States)

    Suliman, FakhrEldin O.; Elbashir, Abdalla A.

    2012-07-01

    Using capillary electrophoresis baclofen (BF) enantiomers were separated only in the presence of β-cyclodextrin (βCD) as a chiral selector when added to the background electrolyte. Proton nuclear magnetic resonance and electrospray ionization mass spectrometry (ESI-MS) techniques were used to determine the structure of the BF-βCD inclusion complexes. From the MS data BF was found to form a 1:1 complex with α- and βCD, while the NMR data suggest location of the aromatic ring of BF into the cyclodextrin cavity. A molecular modeling study, using the semiempirical PM6 calculations was used to investigate the mechanism of enantiodifferentiation of BF with cyclodextrins. Optimization of the structures of the complexes by PM6 method indicated that separation is obtained in the presence of β-CD due to a large binding energy difference (ΔΔE) of 46.8 kJ mol-1 between S-BF-βCD and R-BF-βCD complexes. In the case of αCD complexes ΔΔE was 1.3 kJ mol-1 indicating poor resolution between the two enantiomers. Furthermore, molecular dynamic simulations show that the formation of more stable S-BF-βCD complex compared to R-BF-β-CD complex is primarily due to differences in intermolecular hydrogen bonding.

  2. Implications of the Oklo phenomenon in a chiral approach to nuclear matter

    CERN Document Server

    Davis, Edward D

    2014-01-01

    It has been customary to use data from the Oklo natural nuclear reactor to place bounds on the change that has occurred in the electromagnetic fine structure constant $\\alpha$ over the last 2 billion years. Alternatively, an analysis could be based on a recently proposed expression for shifts in resonance energies which relates them to changes in both $\\alpha$ and the average $m_q$ of the $u$ and $d$ current quark masses, and which makes explicit the dependence on mass number $A$ and atomic number $Z$. (Recent model independent results on hadronic $\\sigma$-terms suggest sensitivity to the strange quark mass is negligible.) The most sophisticated analysis, to date, of the quark mass term invokes a calculation of the nuclear mean-field within the Walecka model of quantum hadrodynamics. We comment on this study and consider an alternative in which the link to low-energy quantum chromodynamics (QCD) and its pattern of chiral symmetry-breaking is more readily discernible. Specifically, we investigate the sensitivi...

  3. The chiral anomaly in conformal and ordinary simple supergravity in Fujikawa's approach

    International Nuclear Information System (INIS)

    In this contribution the authors reobtain the chiral anomaly of simple ordinary supergravity by means of Fujikawa's method as well as by the Pauli-Villars method. Then they present, as a new result, the axial anomaly for simple conformal supergravity. Axial anomalies have been discussed extensively in recent articles. For supergravity, the issue is, as usual, more subtle than elsewhere, because one must fix gauges and add ghosts for the fermions in the loop. The axial anomal in simple ordinary supergravity has been calculated by various methods. The authors begin by reobtaining the same result by means of the original Fujikawa method, since it is interesting in itself and will be used to illustrate certain aspects in the conformal computation. The authors show that using as regulator either the operator which is obtained directly from the classical action plus gauge fixing term, or simply the Dirac operator itself, yields the same result. The authors present the Pauli-Villars computation because it most clearly shows which regulator should be used for a given anomaly

  4. Unitary dilation models of Turing machines in quantum mechanics

    International Nuclear Information System (INIS)

    A goal of quantum-mechanical models of the computation process is the description of operators that model changes in the information-bearing degrees of freedom. Iteration of the operators should correspond to steps in the computation, and the final state of halting computations should be stable under iteration. The problem is that operators constructed directly from the process description do not have these properties. In general these operators annihilate the halted state. If information-erasing steps are present, there are additional problems. These problems are illustrated in this paper by consideration of operators for two simple one-step processes and two simple Turing machines. In general the operators are not unitary and, if erasing steps are present, they are not even contraction operators. Various methods of extension or dilation to unitary operators are discussed. Here unitary power dilations are considered as a solution to these problems. It is seen that these dilations automatically provide a good solution to the initial- and final-state problems. For processes with erasing steps, recording steps must be included prior to the dilation, but only for the steps that erase information. Hamiltonians for these processes are also discussed. It is noted that H, described by exp(-iHΔ)=UT, where UT is a unitary step operator for the process and Δ a time interval, has complexity problems. These problems and those noted above are avoided here by the use of the Feynman approach to constructing Hamiltonians directly from the unitary power dilations of the model operators. It is seen that the Hamiltonians so constructed have some interesting properties

  5. Compactifications of the Heterotic string with unitary bundles

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, T.

    2006-05-23

    In this thesis we investigate a large new class of four-dimensional supersymmetric string vacua defined as compactifications of the E{sub 8} x E{sub 8} and the SO(32) heterotic string on smooth Calabi-Yau threefolds with unitary gauge bundles and heterotic five-branes. The first part of the thesis discusses the implementation of this idea into the E{sub 8} x E{sub 8} heterotic string. After specifying a large class of group theoretic embeddings featuring unitary bundles, we analyse the effective four-dimensional N=1 supergravity upon compactification. From the gauge invariant Kaehler potential for the moduli fields we derive a modification of the Fayet-Iliopoulos D-terms arising at one-loop in string perturbation theory. From this we conjecture a one-loop deformation of the Hermitian Yang-Mills equation and introduce the idea of {lambda}-stability as the perturbatively correct stability concept generalising the notion of Mumford stability valid at tree-level. We then proceed to a definition of SO(32) heterotic vacua with unitary gauge bundles in the presence of heterotic five-branes and find agreement of the resulting spectrum with the S-dual framework of Type I/Type IIB orientifolds. A similar analysis of the effective four-dimensional supergravity is performed. Further evidence for the proposed one-loop correction to the stability condition is found by identifying the heterotic corrections as the S-dual of the perturbative part of {pi}-stability as the correct stability concept in Type IIB theory. After reviewing the construction of holomorphic stable vector bundles on elliptically fibered Calabi-Yau manifolds via spectral covers, we provide semi-realistic examples for SO(32) heterotic vacua with Pati-Salam and MSSM-like gauge sectors. We finally discuss the construction of realistic vacua with flipped SU(5) GUT and MSSM gauge group within the E{sub 8} x E{sub 8} framework, based on the embedding of line bundles into both E{sub 8} factors. Some of the appealing

  6. Extremal spacings of random unitary matrices

    CERN Document Server

    Smaczynski, Marek; Kus, Marek; Zyczkowski, Karol

    2012-01-01

    Extremal spacings between unimodular eigenvalues of random unitary matrices of size N pertaining to circular ensembles are investigated. Probability distributions for the minimal spacing for various ensembles are derived for N=4. We show that for large matrices the average minimal spacing s_min of a random unitary matrix behaves as N^(-1/(1+B)) for B equal to 0,1 and 2 for circular Poisson, orthogonal and unitary ensembles, respectively. For these ensembles also asymptotic probability distributions P(s_min) are obtained and the statistics of the largest spacing s_max are investigated.

  7. Intercept Capacity: Unknown Unitary Transformation

    Directory of Open Access Journals (Sweden)

    Bill Moran

    2008-11-01

    Full Text Available We consider the problem of intercepting communications signals between Multiple-Input Multiple-Output (MIMO communication systems. To correctly detect a transmitted message it is necessary to know the gain matrix that represents the channel between the transmitter and the receiver. However, even if the receiver has knowledge of the message symbol set, it may not be possible to estimate the channel matrix. Blind Source Separation (BSS techniques, such as Independent Component Analysis (ICA can go some way to extracting independent signals from individual transmission antennae but these may have been preprocessed in a manner unknown to the receiver. In this paper we consider the situation where a communications interception system has prior knowledge of the message symbol set, the channel matrix between the transmission system and the interception system and is able to resolve the transmissionss from independent antennae. The question then becomes: what is the mutual information available to the interceptor when an unknown unitary transformation matrix is employed by the transmitter.

  8. Unitary groups and spectral sets

    CERN Document Server

    Dutkay, Dorin Ervin

    2012-01-01

    We study spectral theory for bounded Borel subsets of $\\br$ and in particular finite unions of intervals. For Hilbert space, we take $L^2$ of the union of the intervals. This yields a boundary value problem arising from the minimal operator $\\Ds = \\frac1{2\\pi i}\\frac{d}{dx}$ with domain consisting of $C^\\infty$ functions vanishing at the endpoints. We offer a detailed interplay between geometric configurations of unions of intervals and a spectral theory for the corresponding selfadjoint extensions of $\\Ds$ and for the associated unitary groups of local translations. While motivated by scattering theory and quantum graphs, our present focus is on the Fuglede-spectral pair problem. Stated more generally, this problem asks for a determination of those bounded Borel sets $\\Omega$ in $\\br^k$ such that $L^2(\\Omega)$ has an orthogonal basis of Fourier frequencies (spectrum), i.e., a total set of orthogonal complex exponentials restricted to $\\Omega$. In the general case, we characterize Borel sets $\\Omega$ having t...

  9. Magnetic moments of charm baryons in chiral perturbation theory

    International Nuclear Information System (INIS)

    Magnetic moments of the charm baryons of the sextet and of the 3*-plet are re-evaluated in the framework of Heavy Hadron Chiral Perturbation Theory (HHCPT). NRQM and broken SU(4) unitary symmetry model are used to obtain tree-level magnetic moments. Calculations of a unitary symmetry part of one-loop contributions to magnetic moments of the charm baryons are performed in detail in terms of the SU(4) couplings of charm baryons to Goldstone bosons. The relations between the magnetic moments of the sextet 1/2 baryons with the one-loop corrections are shown to coincide with the NRQM relations. The correspondence between HHCPT results and those of NRQM and unitary symmetry model is discussed. It is shown that one-loop corrections can effectively be absorbed into the tree-level formulae for the magnetic moments of the charm baryons in the broken SU(4) unitary symmetry model and partially in the NRQM. (author)

  10. Dileptons and Chiral Symmetry Restoration

    CERN Document Server

    Hohler, P M

    2015-01-01

    We report on recent work relating the medium effects observed in dilepton spectra in heavy-ion collisions to potential signals of chiral symmetry restoration. The key connection remains the approach to spectral function degeneracy between the vector-isovector channel with its chiral partner, the axialvector-isovector channel. Several approaches are discussed to elaborate this connection, namely QCD and Weinberg sum rules with input for chiral order parameters from lattice QCD, and chiral hadronic theory to directly evaluate the medium effects of the axialvector channel and the pertinent pion decay constant as function of temperature. A pattern emerges where the chiral mass splitting between rho and a_1 burns off and is accompanied by a strong broadening of the spectral distributions.

  11. On some classes of bipartite unitary operators

    Science.gov (United States)

    Deschamps, Julien; Nechita, Ion; Pellegrini, Clément

    2016-08-01

    We investigate unitary operators acting on a tensor product space, with the property that the quantum channels they generate, via the Stinespring dilation theorem, are of a particular type, independently of the state of the ancilla system in the Stinespring relation. The types of quantum channels we consider are those of interest in quantum information theory: unitary conjugations, constant channels, unital channels, mixed unitary channels, positive partial transpose channels, and entanglement breaking channels. For some of the classes of bipartite unitary operators corresponding to the above types of channels, we provide explicit characterizations, necessary and/or sufficient conditions for membership, and we compute the dimension of the corresponding algebraic variety. Inclusions between these classes are considered, and we show that for small dimensions, many of these sets are identical.

  12. Non-unitary probabilistic quantum computing

    Science.gov (United States)

    Gingrich, Robert M.; Williams, Colin P.

    2004-01-01

    We present a method for designing quantum circuits that perform non-unitary quantum computations on n-qubit states probabilistically, and give analytic expressions for the success probability and fidelity.

  13. An explicit family of unitaries with exponentially minimal length Pauli geodesics

    OpenAIRE

    Huang, Wei

    2007-01-01

    Recently, Nielsen et al have proposed a geometric approach to quantum computation. They've shown that the size of the minimum quantum circuits implementing a unitary U, up to polynomial factors, equals to the length of minimal geodesic from identity I through U. They've investigated a large class of solutions to the geodesic equation, called Pauli geodesics. They've raised a natural question whether we can explicitly construct a family of unitaries U that have exponentially long minimal lengt...

  14. Quantum state engineering via unitary transformations

    OpenAIRE

    Vidiella-Barranco, A.; Roversi, J. A.

    1998-01-01

    We construct a Hamiltonian for the generation of arbitrary pure states of the quantized electromagnetic field. The proposition is based upon the fact that a unitary transformation for the generation of number states has been already found. The general unitary transformation here obtained, would allow the use of nonlinear interactions for the production of pure states. We discuss the applicability of this method by giving examples of generation of simple superposition states. We also compare o...

  15. Entanglement quantification by local unitary operations

    International Nuclear Information System (INIS)

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  16. Entanglement quantification by local unitary operations

    Energy Technology Data Exchange (ETDEWEB)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.; Illuminati, F. [Dipartimento di Matematica e Informatica, Universita degli Studi di Salerno, CNISM, Unita di Salerno, and INFN, Sezione di Napoli-Gruppo Collegato di Salerno, Via Ponte don Melillo, I-84084 Fisciano (Italy); Adesso, G.; Davies, G. B. [School of Mathematical Sciences, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2011-07-15

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  17. Uncertainty Relations for General Unitary Operators

    OpenAIRE

    Bagchi, Shrobona; Pati, Arun Kumar

    2015-01-01

    We derive several uncertainty relations for two arbitrary unitary operators acting on physical states of any Hilbert space (finite or infinite dimensional). We show that our bounds are tighter in various cases than the ones existing in the current literature. With regard to the minimum uncertainty state for the cases of both the finite as well as the infinite dimensional unitary operators, we derive the minimum uncertainty state equation by the analytic method. As an application of this, we f...

  18. Entanglement quantification by local unitary operations

    Science.gov (United States)

    Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.

    2011-07-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  19. Dynamic Chirality in Nuclei

    International Nuclear Information System (INIS)

    Chirality has recently been proposed as a novel feature of rotating nuclei [1]. Because the chiral symmetry is dichotomic, its spontaneous breaking by the axial angular momentum vector leads to doublets of closely lying rotational bands of the same parity. To investigate nuclear chirality, next to establish the existence of almost degenerate rotational bands, it is necessary to measure also other observables and compare them to the model predictions. The crucial test for the suggested nuclei as candidates to express chirality is based on precise lifetime measurements. Two lifetime experiments and theoretical approaches for the description of the experimental results will be presented. Lifetimes of exited states in 134Pr were measured [2,3] by means of the recoil distance Doppler-shift and Doppler-shift attenuation techniques. The branching ratios and the electric or magnetic character of the transitions were also investigated [3]. The experiments were performed at IReS, Strasbourg, using the EUROBALL IV spectrometer, in conjunction with the inner bismuth germanate ball and the Cologne coincidence plunger apparatus. Exited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F, 4n)134Pr. The possible chiral interpretation of twin bands was investigated in the two-quasiparticle triaxial rotor [1] and interacting boson-fermion-fermion models [4]. Both theoretical approaches can describe the level-scheme of 134Pr. The analysis of the wave functions has shown that the possibility for the angular momenta of the proton, neutron, and core to find themselves in the favorable, almost orthogonal geometry, is present but is far from being dominant [3,5]. The structure is characterized by large β and γ fluctuations. The existence of doublets of bands in 134Pr can be attributed to weak chirality dominated by shape fluctuations. In a second experiment branching ratios and lifetimes in 136Pm were measured by means of the recoil distance Doppler-shift and

  20. Optimal quantum learning of a unitary transformation

    International Nuclear Information System (INIS)

    We address the problem of learning an unknown unitary transformation from a finite number of examples. The problem consists in finding the learning machine that optimally emulates the examples, thus reproducing the unknown unitary with maximum fidelity. Learning a unitary is equivalent to storing it in the state of a quantum memory (the memory of the learning machine) and subsequently retrieving it. We prove that, whenever the unknown unitary is drawn from a group, the optimal strategy consists in a parallel call of the available uses followed by a 'measure-and-rotate' retrieving. Differing from the case of quantum cloning, where the incoherent 'measure-and-prepare' strategies are typically suboptimal, in the case of learning the 'measure-and-rotate' strategy is optimal even when the learning machine is asked to reproduce a single copy of the unknown unitary. We finally address the problem of the optimal inversion of an unknown unitary evolution, showing also in this case the optimality of the 'measure-and-rotate' strategies and applying our result to the optimal approximate realignment of reference frames for quantum communication.

  1. Single-qubit unitary gates by graph scattering

    CERN Document Server

    Blumer, Benjamin A; Feder, David L

    2011-01-01

    We consider the effects of plane-wave states scattering off finite graphs, as an approach to implementing single-qubit unitary operations within the continuous-time quantum walk framework of universal quantum computation. Four semi-infinite tails are attached at arbitrary points of a given graph, representing the input and output registers of a single qubit. For a range of momentum eigenstates, we enumerate all of the graphs with up to $n=9$ vertices for which the scattering implements a single-qubit gate. As $n$ increases, the number of new unitary operations increases exponentially, and for $n>6$ the majority correspond to rotations about axes distributed roughly uniformly across the Bloch sphere. Rotations by both rational and irrational multiples of $\\pi$ are found.

  2. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  3. Chiral Superconductors

    OpenAIRE

    Kallin, Catherine; Berlinsky, John

    2015-01-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a c...

  4. Asymptotic expansions for the Gaussian unitary ensemble

    DEFF Research Database (Denmark)

    Haagerup, Uffe; Thorbjørnsen, Steen

    2012-01-01

    Let g : R ¿ C be a C8-function with all derivatives bounded and let trn denote the normalized trace on the n × n matrices. In Ref. 3 Ercolani and McLaughlin established asymptotic expansions of the mean value ¿{trn(g(Xn))} for a rather general class of random matrices Xn, including the Gaussian...... Unitary Ensemble (GUE). Using an analytical approach, we provide in the present paper an alternative proof of this asymptotic expansion in the GUE case. Specifically we derive for a random matrix Xn that where k is an arbitrary positive integer. Considered as mappings of g, we determine the coefficients...... aj(g), j ¿ N, as distributions (in the sense of L. Schwarts). We derive a similar asymptotic expansion for the covariance Cov{Trn[f(Xn)], Trn[g(Xn)]}, where f is a function of the same kind as g, and Trn = n trn. Special focus is drawn to the case where and for ¿, µ in C\\R. In this case the mean and...

  5. Decomposition of unitary matrices for finding quantum circuits: application to molecular Hamiltonians.

    Science.gov (United States)

    Daskin, Anmer; Kais, Sabre

    2011-04-14

    Constructing appropriate unitary matrix operators for new quantum algorithms and finding the minimum cost gate sequences for the implementation of these unitary operators is of fundamental importance in the field of quantum information and quantum computation. Evolution of quantum circuits faces two major challenges: complex and huge search space and the high costs of simulating quantum circuits on classical computers. Here, we use the group leaders optimization algorithm to decompose a given unitary matrix into a proper-minimum cost quantum gate sequence. We test the method on the known decompositions of Toffoli gate, the amplification step of the Grover search algorithm, the quantum Fourier transform, and the sender part of the quantum teleportation. Using this procedure, we present the circuit designs for the simulation of the unitary propagators of the Hamiltonians for the hydrogen and the water molecules. The approach is general and can be applied to generate the sequence of quantum gates for larger molecular systems. PMID:21495747

  6. Chiral quark model

    Indian Academy of Sciences (India)

    H Weigel

    2003-11-01

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.

  7. Mass-Selective Chiral Analysis.

    Science.gov (United States)

    Boesl, Ulrich; Kartouzian, Aras

    2016-06-12

    Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here. PMID:27070181

  8. Mass-Selective Chiral Analysis

    Science.gov (United States)

    Boesl, Ulrich; Kartouzian, Aras

    2016-06-01

    Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here.

  9. Multiscale differential phase contrast analysis with a unitary detector

    KAUST Repository

    Lopatin, Sergei

    2015-12-30

    A new approach to generate differential phase contrast (DPC) images for the visualization and quantification of local magnetic fields in a wide range of modern nano materials is reported. In contrast to conventional DPC methods our technique utilizes the idea of a unitary detector under bright field conditions, making it immediately usable by a majority of modern transmission electron microscopes. The approach is put on test to characterize the local magnetization of cylindrical nanowires and their 3D ordered arrays, revealing high sensitivity of our method in a combination with nanometer-scale spatial resolution.

  10. Nonequilibrium chiral perturbation theory and disoriented chiral condensates

    CERN Document Server

    Nicola, A G

    1999-01-01

    We analyse the extension of Chiral Perturbation Theory to describe a meson gas out of thermal equilibrium. For that purpose, we let the pion decay constant be a time-dependent function and work within the Schwinger-Keldysh contour technique. A useful connection with curved space-time QFT allows to consistently renormalise the model, introducing two new low-energy constants in the chiral limit. We discuss the applicability of our approach within a Relativistic Heavy-Ion Collision environment. In particular, we investigate the formation of Disoriented Chiral Condensate domains in this model, via the parametric resonance mechanism.

  11. Punctuated Chirality

    Science.gov (United States)

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-12-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  12. Punctuated Chirality

    CERN Document Server

    Gleiser, Marcelo; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  13. Local discrimination scheme for some unitary operations

    Science.gov (United States)

    Cao, TianQing; Gao, Fei; Tian, GuoJing; Xie, ShuCui; Wen, QiaoYan

    2016-09-01

    It has been shown that for two different multipartite unitary operations U 1 and U 2, when tr( U 1 † U 2) = 0, they can always be perfectly distinguished by local operations and classical communication in the single-run scenario. However, how to find the detailed scheme to complete the local discrimination is still a fascinating problem. In this paper, aiming at some U 1 and U 2 acting on the bipartite and tripartite space respectively, especially for U 1 † U 2 locally unitary equivalent to the high dimensional X-type hermitian unitary matrix V with tr V = 0, we put forward the explicit local distinguishing schemes in the single-run scenario.

  14. Special unitary groups in polarimetry theory

    Science.gov (United States)

    Cloude, Shane R.

    1994-09-01

    In this paper we consider application of the general theory of unitary matrices to the problem of wave propagation and scattering involving polarized waves. Having outlined useful parameterizations of these low dimensional matrix groups, we then develop a general processing strategy which we suggest is useful for the extraction of physical information from a range of scattering and propagation matrices in optics and radar. Examples are presented of application of the unitary matrix structure to the problems of absolute phase definition and random wave scattering.

  15. Unitary Multiperfect Numbers in Certain Quadratic Rings

    OpenAIRE

    Defant, Colin

    2014-01-01

    A unitary divisor $c$ of a positive integer $n$ is a positive divisor of $n$ that is relatively prime to $\\displaystyle{\\frac{n}{c}}$. For any integer $k$, the function $\\sigma_k^*$ is a multiplicative arithmetic function defined so that $\\sigma_k^*(n)$ is the sum of the $k^{th}$ powers of the unitary divisors of $n$. We provide analogues of the functions $\\sigma_k^*$ in imaginary quadratic rings that are unique factorization domains. We then explore properties of what we call $n$-powerfully ...

  16. Generalized Unitaries and the Picard Group

    OpenAIRE

    Skeide, M.

    2005-01-01

    After discussing some basic facts about generalized module maps, we use the representation theory of the algebra of adjointable operators on a Hilbert B-module E to show that the quotient of the group of generalized unitaries on E and its normal subgroup of unitaries on E is a subgroup of the group of automorphisms of the range ideal of E in B. We determine the kernel of the canonical mapping into the Picard group of the range ideal in terms of the group of its quasi inner automorphisms. As a...

  17. Color Energy Of A Unitary Cayley Graph

    Directory of Open Access Journals (Sweden)

    Adiga Chandrashekar

    2014-11-01

    Full Text Available Let G be a vertex colored graph. The minimum number χ(G of colors needed for coloring of a graph G is called the chromatic number. Recently, Adiga et al. [1] have introduced the concept of color energy of a graph Ec(G and computed the color energy of few families of graphs with χ(G colors. In this paper we derive explicit formulas for the color energies of the unitary Cayley graph Xn, the complement of the colored unitary Cayley graph (Xnc and some gcd-graphs.

  18. Unified models and unitary symmetry

    International Nuclear Information System (INIS)

    The experimentally established small size of the space time region where weak interactions occur; ''the weak beg'', is taken as a starting point for a dynamical model for parity violation in weak interactions. It is argued that weakly interacting Dirac bi-spinors behave as massles in the weak beg, and then they split into pairs of decoupled Weyl spinors. As a consequence, any P, C, T conserving gauge Lagrangian in terms of multiplets of Dirac fields will split, in the weak bag, into P and C violating terms representing the weak interactions of the concerned fermions. Following the criterion of maximal simplicity and economy, some SU(N), U(N) symmetruc models are presented. It is shown that (a) Reduction of SU(3) x P, C, T symmetry to SU(2) x U(1) x PC, T for weak interactions is easily obtained by force of chiral projectors. (b) The models are apt to represent all weak and e.m. properties of known leptons and a unified model for weak and e.m. interactions, generalization of the Salam-Weinberg model, emerges with the mixing angle theta depending on N in SU(N). For N=3 the model coincides with the Salam-Weinberg model with theta=30sup(deg). At present experimental data seem to favour the SU(4) model where sin sup(2)theta = 1/3. (c) Absence of ΔS=1 neutral currents can easily be explained already in the frame of SU(3). (d) Integer charges for leptons and fractional charges for quarks can be fitted in appropriate SU(3)-U(3) models. (e) In U(N) symmetric models the resulting q.e.d. presents Pauli-Villars regularization of the self-energy and vertex parts, and the Schwinger-Dyson equations for self-masses are of the Fredholm type as a consequence of the U(N) symmetry and of the neutral currents. The possibility then arises of a full q.e.d. regularization by weak interactions. (f) Neutral current interactions are parity conserving (axial) among charged particles, while parity violating among neutral-charged, neutral-neutral ones in all models presented. A generalized

  19. Quarks, baryons and chiral symmetry

    CERN Document Server

    Hosaka, Atsushi

    2001-01-01

    This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w

  20. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  1. On Chiral Space Groups and Chiral Molecules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.

  2. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    ZHANG; XuMu

    2001-01-01

    Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals  ……

  3. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals

  4. Quantum Systems and Alternative Unitary Descriptions

    CERN Document Server

    Marmo, G; Ventriglia, F

    2003-01-01

    Motivated by the existence of bi-Hamiltonian classical systems and the correspondence principle, in this paper we analyze the problem of finding Hermitian scalar products which turn a given flow on a Hilbert space into a unitary one. We show how different invariant Hermitian scalar products give rise to different descriptions of a quantum system in the Ehrenfest and Heisenberg picture.

  5. Boundary Relations, Unitary Colligations, and Functional Models

    NARCIS (Netherlands)

    Behrndt, Jussi; Hassi, Seppo; de Snoo, Henk

    2009-01-01

    Recently a new notion, the so-called boundary relation, has been introduced involving an analytic object, the so-called Weyl family. Weyl families and boundary relations establish a link between the class of Nevanlinna families and unitary relations acting from one Krein in space, a basic (state) sp

  6. Dirac cohomology of unitary representations of equal rank exceptional groups

    Institute of Scientific and Technical Information of China (English)

    Fu-hai ZHU; Ke LIANG

    2007-01-01

    In this paper, we consider the unitary representations of equal rank exceptional groups of type E with a regular lambda-lowest K-type and classify those unitary representations with the nonzero Dirac cohomology.

  7. Laser Writing of Multiscale Chiral Polymer Metamaterials

    Directory of Open Access Journals (Sweden)

    E. P. Furlani

    2012-01-01

    Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.

  8. Punctuated Chirality

    OpenAIRE

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high int...

  9. Chiral streamers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Dandan; Cao, Xin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, Xinpei, E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Comonwealth Scientific and Industrial Research Organization, P.O. Box 218, Sydney, New South Wales 2070 (Australia)

    2015-10-15

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  10. Chiral streamers

    Science.gov (United States)

    Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya Ken

    2015-10-01

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  11. Transition from Poisson to circular unitary ensemble

    Indian Academy of Sciences (India)

    Vinayak; Akhilesh Pandey

    2009-09-01

    Transitions to universality classes of random matrix ensembles have been useful in the study of weakly-broken symmetries in quantum chaotic systems. Transitions involving Poisson as the initial ensemble have been particularly interesting. The exact two-point correlation function was derived by one of the present authors for the Poisson to circular unitary ensemble (CUE) transition with uniform initial density. This is given in terms of a rescaled symmetry breaking parameter Λ. The same result was obtained for Poisson to Gaussian unitary ensemble (GUE) transition by Kunz and Shapiro, using the contour-integral method of Brezin and Hikami. We show that their method is applicable to Poisson to CUE transition with arbitrary initial density. Their method is also applicable to the more general ℓ CUE to CUE transition where CUE refers to the superposition of ℓ independent CUE spectra in arbitrary ratio.

  12. Generalized Unitaries and the Picard Group

    Indian Academy of Sciences (India)

    Michael Skeide

    2006-11-01

    After discussing some basic facts about generalized module maps, we use the representation theory of the algebra $\\mathscr{B}^a(E)$ of adjointable operators on a Hilbert $\\mathcal{B}$-module to show that the quotient of the group of generalized unitaries on and its normal subgroup of unitaries on is a subgroup of the group of automorphisms of the range ideal $\\mathcal{B}_E$ of in $\\mathcal{B}$. We determine the kernel of the canonical mapping into the Picard group of $\\mathcal{B}_E$ in terms of the group of quasi inner automorphisms of $\\mathcal{B}_E$. As a by-product we identify the group of bistrict automorphisms of the algebra of adjointable operators on modulo inner automorphisms as a subgroup of the (opposite of the) Picard group.

  13. Recurrence for discrete time unitary evolutions

    CERN Document Server

    Grünbaum, F A; Werner, A H; Werner, R F

    2012-01-01

    We consider quantum dynamical systems specified by a unitary operator U and an initial state vector \\phi. In each step the unitary is followed by a projective measurement checking whether the system has returned to the initial state. We call the system recurrent if this eventually happens with probability one. We show that recurrence is equivalent to the absence of an absolutely continuous part from the spectral measure of U with respect to \\phi. We also show that in the recurrent case the expected first return time is an integer or infinite, for which we give a topological interpretation. A key role in our theory is played by the first arrival amplitudes, which turn out to be the (complex conjugated) Taylor coefficients of the Schur function of the spectral measure. On the one hand, this provides a direct dynamical interpretation of these coefficients; on the other hand it links our definition of first return times to a large body of mathematical literature.

  14. Scalable Noise Estimation with Random Unitary Operators

    CERN Document Server

    Emerson, J; Zyczkowski, K; Emerson, Joseph; Alicki, Robert; Zyczkowski, Karol

    2005-01-01

    We describe a scalable stochastic method for the experimental measurement of generalized fidelities characterizing the accuracy of the implementation of a coherent quantum transformation. The method is based on the motion reversal of random unitary operators. In the simplest case our method enables direct estimation of the average gate fidelity. The more general fidelities are characterized by a universal exponential rate of fidelity loss. In all cases the measurable fidelity decrease is directly related to the strength of the noise affecting the implementation -- quantified by the trace of the superoperator describing the non--unitary dynamics. While the scalability of our stochastic protocol makes it most relevant in large Hilbert spaces (when quantum process tomography is infeasible), our method should be immediately useful for evaluating the degree of control that is achievable in any prototype quantum processing device. By varying over different experimental arrangements and error-correction strategies a...

  15. Scalable noise estimation with random unitary operators

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Joseph [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada); Alicki, Robert [Institute of Theoretical Physics and Astrophysics, University of Gdansk, Wita Stwosza 57, PL 80-952 Gdansk (Poland); Zyczkowski, Karol [Perimeter Institute for Theoretical Physics, Waterloo, ON (Canada)

    2005-10-01

    We describe a scalable stochastic method for the experimental measurement of generalized fidelities characterizing the accuracy of the implementation of a coherent quantum transformation. The method is based on the motion reversal of random unitary operators. In the simplest case our method enables direct estimation of the average gate fidelity. The more general fidelities are characterized by a universal exponential rate of fidelity loss. In all cases the measurable fidelity decrease is directly related to the strength of the noise affecting the implementation, quantified by the trace of the superoperator describing the non-unitary dynamics. While the scalability of our stochastic protocol makes it most relevant in large Hilbert spaces (when quantum process tomography is infeasible), our method should be immediately useful for evaluating the degree of control that is achievable in any prototype quantum processing device. By varying over different experimental arrangements and error-correction strategies, additional information about the noise can be determined.

  16. Unitary and room air-conditioners

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-09-01

    The scope of this technology evaluation on room and unitary air conditioners covers the initial investment and performance characteristics needed for estimating the operating cost of air conditioners installed in an ICES community. Cooling capacities of commercially available room air conditioners range from 4000 Btu/h to 36,000 Btu/h; unitary air conditioners cover a range from 6000 Btu/h to 135,000 Btu/h. The information presented is in a form useful to both the computer programmer in the construction of a computer simulation of the packaged air-conditioner's performance and to the design engineer, interested in selecting a suitably sized and designed packaged air conditioner.

  17. One dimensional quantum walk with unitary noise

    CERN Document Server

    Shapira, D; Bracken, A J; Hackett, M; Shapira, Daniel; Biham, Ofer; Hackett, Michelle

    2003-01-01

    The effect of unitary noise on the discrete one-dimensional quantum walk is studied using computer simulations. For the noiseless quantum walk, starting at the origin (n=0) at time t=0, the position distribution Pt(n) at time t is very different from the Gaussian distribution obtained for the classical random walk. Furthermore, its standard deviation, sigma(t) scales as sigma(t) ~ t, unlike the classical random walk for which sigma(t) ~ sqrt{t}. It is shown that when the quantum walk is exposed to unitary noise, it exhibits a crossover from quantum behavior for short times to classical-like behavior for long times. The crossover time is found to be T ~ alpha^(-2) where alpha is the standard deviation of the noise.

  18. Black Hole Thermodynamics Based on Unitary Evolutions

    CERN Document Server

    Feng, Yu-Lei

    2015-01-01

    In this paper, we try to construct black hole thermodynamics based on the fact that, the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy $S_{BH}$ cannot be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's "first law" cannot be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described in a unitary manner effectively, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.

  19. Black hole thermodynamics based on unitary evolutions

    Science.gov (United States)

    Feng, Yu-Lei; Chen, Yi-Xin

    2015-10-01

    In this paper, we try to construct black hole thermodynamics based on the fact that the formation and evaporation of a black hole can be described by quantum unitary evolutions. First, we show that the Bekenstein-Hawking entropy SBH may not be a Boltzmann or thermal entropy. To confirm this statement, we show that the original black hole's ‘first law’ may not simply be treated as the first law of thermodynamics formally, due to some missing metric perturbations caused by matter. Then, by including those (quantum) metric perturbations, we show that the black hole formation and evaporation can be described effectively in a unitary manner, through a quantum channel between the exterior and interior of the event horizon. In this way, the paradoxes of information loss and firewall can be resolved effectively. Finally, we show that black hole thermodynamics can be constructed in an ordinary way, by constructing statistical mechanics.

  20. Unitary representations and harmonic analysis an introduction

    CERN Document Server

    Sugiura, M

    1990-01-01

    The principal aim of this book is to give an introduction to harmonic analysis and the theory of unitary representations of Lie groups. The second edition has been brought up to date with a number of textual changes in each of the five chapters, a new appendix on Fatou''s theorem has been added in connection with the limits of discrete series, and the bibliography has been tripled in length.

  1. Unitary correlation in nuclear reaction theory

    OpenAIRE

    Mukhamedzhanov, A. M.; Kadyrov, A. S.

    2010-01-01

    We prove that the amplitudes for the (d,p), (d,pn) and (e,e'p) reactions determining the asymptotic behavior of the exact scattering wave functions in the corresponding channels are invariant under unitary correlation operators while the spectroscopic factors are not. Moreover, the exact reaction amplitudes are not parametrized in terms of the spectroscopic factors and cannot provide a tool to determine the spectroscopic factors.

  2. Asymmetric synthesis using chiral-encoded metal

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-08-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.

  3. Asymmetric synthesis using chiral-encoded metal.

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-01-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity. PMID:27562028

  4. Chiral geometry in multiple chiral doublet bands

    CERN Document Server

    Zhang, Hao

    2015-01-01

    The chiral geometry of the multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters $\\gamma$ in the particle rotor model with $\\pi h_{11/2}\\otimes \

  5. Hypernucleus-16O in the density-dependent Hartree approach based on the chiral-σ model

    International Nuclear Information System (INIS)

    A relativistic density-dependent interaction has been used to study hypernucleus 16O. The density-dependent coupling constants of the relativistic effective Hartree-Lagrangian are obtained from the relativistic Brueckner-Bethe-Goldstone results of nuclear matter in the chiral-σ model. With these density-dependent coupling constants, the bound states and the single-particle energy spectra of the hypernuclei Λ16O and Σ16O are obtained. The theoretical results of Λ16O are in agreement with the experimental data fairly well

  6. Chiral symmetry breaking, color superconductivity and quark matter phase diagram: a variational approach 12.38.Gc

    CERN Document Server

    Mishra, H

    2001-01-01

    We discuss in this note simultaneous existence of chiral symmetry breaking and color superconductivity at finite temperature and density in a Nambu-Jona-Lasinio type model. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. There exist nontrivial solutions to the gap equations at finite densities with both quark-antiquark as well as diquark condensates for the 'ground' state. However, such a phase is thermodynamically unstable with the pressure being negative in this region. We also compute the equation of state, and obtain the structure of the phase diagram in the model.

  7. Sustainable development in English metropolitan authorities : an investigation using unitary development plans.

    OpenAIRE

    Bruff, Garreth Edward

    1997-01-01

    Sustainable development can be approached from many different perspectives. Whilst short, 'punchy' definitions have successfully communicated and popularised sustainable development, a detailed and meaningful application of the concept is much more problematic. In order to address the situation, this thesis investigates the potential of unitary development plans (UDPs) to operationalise sustainable development in the current political and economic context. The study utilises a ...

  8. Chiral heat wave and mixed waves in kinetic theory

    CERN Document Server

    Frenklakh, D

    2016-01-01

    We study collective excitations in hot rotating chiral media in presence of magnetic field in kinetic theory, namely Chiral Heat Wave and its' mixings with Chiral Vortical Wave and Chiral Magnetic Wave. Our results for velocities of these waves have slight alterations from those obtained earlier. We explain the origin of these alterations and also give the most general expressions for the velocities of all these waves in hydrodynamic approach.

  9. Chiral nuclear thermodynamics

    CERN Document Server

    Fiorilla, Salvatore; Weise, Wolfram

    2011-01-01

    We calculate the equation of state of nuclear matter for arbitrary isospin-asymmetry up to three loop order in the free energy density in the framework of in-medium chiral perturbation theory. In our approach 1\\pi- and 2\\pi-exchange dynamics with the inclusion of the \\Delta-isobar excitation as an explicit degree of freedom, corresponding to the long- and intermediate-range correlations, are treated explicitly. Few contact terms fixed to reproduce selected known properties of nuclear matter encode the short-distance physics. Two-body as well as three-body forces are systematically included. We find a critical temperature of about 15 MeV for symmetric nuclear matter. We investigate the dependence of the liquid-gas first-order phase transition on isospin-asymmetry. In the same chiral framework we calculate the chiral condensate of isospin-symmetric nuclear matter at finite temperatures. The contribution of the \\Delta-isobar excitation is essential for stabilizing the condensate. As a result, we find no indicati...

  10. Quantum reading of unitary optical devices

    International Nuclear Information System (INIS)

    We address the problem of quantum reading of optical memories, namely the retrieving of classical information stored in the optical properties of a media with minimum energy. We present optimal strategies for ambiguous and unambiguous quantum reading of unitary optical memories, namely when one's task is to minimize the probability of errors in the retrieved information and when perfect retrieving of information is achieved probabilistically, respectively. A comparison of the optimal strategy with coherent probes and homodyne detection shows that the former saves orders of magnitude of energy when achieving the same performances. Experimental proposals for quantum reading which are feasible with present quantum optical technology are reported

  11. New identities between unitary minimal Virasoro characters

    Energy Technology Data Exchange (ETDEWEB)

    Taormina, A. (Dept. of Mathematical Sciences, Univ. of Durham (United Kingdom))

    1994-10-01

    Two sets of identities between unitary minimal Virasoro characters at levels m = 3, 4, 5 are presented and proven. The first identity suggests a connection between the Ising and the tricritical Ising models since the m = 3 Virasoro characters are obtained as bilinears of m = 4 Virasoro characters. The second identity gives the tricritical Ising model characters as bilinears in the Ising model characters and the six combinations of m = 5 Virasoro characters which do not appear in the spectrum of the three state Potts model. The implication of these identities on the study of the branching rules of N = 4 superconformal characters into SU(2) x SU(2) characters is discussed. (orig.)

  12. Unitary water-to-air heat pumps

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J.E.

    1977-10-01

    Performance and cost functions for nine unitary water-to-air heat pumps ranging in nominal size from /sup 1///sub 2/ to 26 tons are presented in mathematical form for easy use in heat pump computer simulations. COPs at nominal water source temperature of 60/sup 0/F range from 2.5 to 3.4 during the heating cycle; during the cooling cycle EERs range from 8.33 to 9.09 with 85/sup 0/F entering water source temperatures. The COP and EER values do not include water source pumping power or any energy requirements associated with a central heat source and heat rejection equipment.

  13. Quantum mechanics with non-unitary symmetries

    CERN Document Server

    Bistrovic, B

    2000-01-01

    This article shows how to properly extend symmetries of non-relativistic quantum mechanics to include non-unitary representations of Lorentz group for all spins. It follows from this that (almost) all existing relativistic single particle Lagrangians and equations are incorrect. This is shown in particular for Dirac's equation and Proca equations. It is shown that properly constructed relativistic extensions have no negative energies, zitterbewegung effects and have proper symmetric energy-momentum tensor and angular momentum density tensor. The downside is that states with negative norm are inevitable in all representations.

  14. Chiral mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  15. Moduli spaces of unitary conformal field theories

    International Nuclear Information System (INIS)

    We investigate various features of moduli spaces of unitary conformal field theories. A geometric characterization of rational toroidal conformal field theories in arbitrary dimensions is presented and discussed in relation to singular tori and those with complex multiplication. We study the moduli space M2 of unitary two-dimensional conformal field theories with central charge c = 2. All the 26 non-exceptional non-isolated irreducible components of M2 are constructed that may be obtained by an orbifold procedure from toroidal theories. The parameter spaces and partition functions are calculated explicitly. All multicritical points and lines are determined, such that all but three of these 26 components are directly or indirectly connected to the space of toroidal theories in M2. Relating our results to those by Dixon, Ginsparg, Harvey on the classification of c = 3/2 superconformal field theories, we give geometric interpretations to all non-isolated orbifolds discussed by them and correct their statements on multicritical points within the moduli space of c = 3/2 superconformal field theories. In the main part of this work, we investigate the moduli space M of N = (4, 4) superconformal field theories with central charge c = 6. After a slight emendation of its global description we give generic partition functions for models contained in M. We explicitly determine the locations of various known models in the component of M associated to K3 surfaces

  16. Chiral symmetry on the lattice

    International Nuclear Information System (INIS)

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model

  17. Chiral mobile phase in ligand-exchange chromatography of amino acids: exploring the copper(II) salt anion effect with a computational approach.

    Science.gov (United States)

    Sardella, Roccaldo; Macchiarulo, Antonio; Carotti, Andrea; Ianni, Federica; Rubiño, Maria Eugenia García; Natalini, Benedetto

    2012-12-21

    With the use of a chiral ligand-exchange chromatography (CLEC) system operating with the O-benzyl-(S)-serine [(S)-OBS] [1,2] as the chiral mobile phase (CMP) additive to the eluent, the effect of the copper(II) anion type on retention (k) and separation (α) factors was evaluated, by rationally changing the following experimental conditions: salt concentration and temperature. The CLEC-CMP analysis was carried out on ten amino acidic racemates and with nine different cupric salts. While the group of analytes comprised both aliphatic (leucine, isoleucine, nor-leucine, proline, valine, nor-valine, and α-methyl-valine) and aromatic (1-aminoindan-1,5-dicarboxylic acid, phenylglycine, and tyrosine) species, representative organic (formate, methanesulfonate, and trifluoroacetate) and inorganic (bromide, chloride, fluoride, nitrate, perchlorate, and sulfate) Cu(II) salts were selected as the metal source into the eluent. This route of investigation was pursued with the aim of identifying analogies among the employed Cu(II) salts, by observing the variation profile of the selected chromatographic parameters, upon a change of the above experimental conditions. All the data were collected and analyzed through a statistical approach (PCA and k-means clustering) that revealed the presence of two behavioral classes of cupric salts, sharing the same variation profile for k and α values. Interestingly, this clustering can be explained in terms of ESP (electrostatic surface potential) balance (ESP(bal)) values, obtained by an ab initio calculation operated on the cupric salts. The results of this appraisal could aid the rational choice of the most suitable eluent system, to succeed in the enantioseparation of difficult-to-resolve compounds, along with the eventual scale-up to a semi-preparative level. PMID:22926052

  18. Chiral Gravitational Waves from Chiral Fermions

    CERN Document Server

    Anber, Mohamed M

    2016-01-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  19. Orientation-Dependent Handedness and Chiral Design

    Science.gov (United States)

    Efrati, Efi; Irvine, William T. M.

    2014-01-01

    Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems—a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial—and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles.

  20. Perfect state transfer in unitary Cayley graphs over local rings

    Directory of Open Access Journals (Sweden)

    Yotsanan Meemark

    2014-12-01

    Full Text Available In this work, using eigenvalues and eigenvectors of unitary Cayley graphs over finite local rings and elementary linear algebra, we characterize which local rings allowing PST occurring in its unitary Cayley graph. Moreover, we have some developments when $R$ is a product of local rings.

  1. Unitary dynamics of spherical null gravitating shells

    CERN Document Server

    Hajicek, P

    2001-01-01

    The dynamics of a thin spherically symmetric shell of zero-rest-mass matter in its own gravitational field is studied. A form of action principle is used that enables the reformulation of the dynamics as motion on a fixed background manifold. A self-adjoint extension of the Hamiltonian is obtained via the group quantization method. Operators of position and of direction of motion are constructed. The shell is shown to avoid the singularity, to bounce and to reexpand to that asymptotic region from which it contracted; the dynamics is, therefore, truly unitary. If a wave packet is sufficiently narrow and/or energetic then an essential part of it can be concentrated under its Schwarzschild radius near the bounce point but no black hole forms. The quantum Schwarzschild horizon is a linear combination of a black and white hole apparent horizons rather than an event horizon.

  2. New identities between unitary minimal Virasoro characters

    Science.gov (United States)

    Taormina, Anne

    1994-10-01

    Two sets of identities between unitary minimal Virasoro characters at levels m=3, 4, 5 are presented and proven. The first identity suggests a connection between the Ising and the tricritical Ising models since the m=3 Virasoro characters are obtained as bilinears of m=4 Virasoro characters. The second identity given the tricritical Ising model characters as bilinears in the Ising model characters and the six combinations of m=5 Virasoro characters which do not appear in the spectrum of the three state Potts model. The implication of these identities on the study of the branching rules of N=4 superconformal characters intoSwidehat{U(2)} × Swidehat{U(2)} characters is discussed.

  3. New Identities between Unitary Minimal Virasoro Characters

    CERN Document Server

    Taormina, A

    1994-01-01

    Two sets of identities between unitary minimal Virasoro characters at levels $m=3,4,5$ are presented and proven. The first identity suggests a connection between the Ising and tricritical Ising models since the $m=3$ Virasoro characters are obtained as bilinears of $m=4$ Virasoro characters. The second identity gives the tricritical Ising model characters as bilinears in the Ising model characters and the six combinations of $m=5$ Virasoro characters which do not appear in the spectrum of the three state Potts model. The implication of these identities on the study of the branching rules of $N=4$ superconformal characters into $\\widehat{SU(2)} \\times \\widehat{SU(2)}$ characters is discussed.

  4. Generalized additivity in unitary conformal field theories

    Directory of Open Access Journals (Sweden)

    Gideon Vos

    2015-10-01

    Full Text Available It was demonstrated in [2,12] that d=4 unitary CFT's satisfy a special property: if a scalar operator with conformal dimension Δ exists in the operator spectrum, then the conformal bootstrap demands that large spin primary operators have to exist in the operator spectrum of the CFT with a conformal twist close to 2Δ+2N for any integer N. In this paper the conformal bootstrap methods in [1] that were used to find the anomalous dimension of the N=0 operators have been generalized to recursively find the anomalous dimension of all large spin operators of this class. In AdS these operators can be interpreted as the excited states of the product states of objects that were found in other works.

  5. Anomalous Chiral Superfluidity

    OpenAIRE

    Lublinsky, Michael(Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel); Zahed, Ismail

    2009-01-01

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavour anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is ...

  6. Two-nucleon electromagnetic current in chiral effective field theory: one-pion exchange and short-range contributions

    CERN Document Server

    Koelling, S; Krebs, H; Meißner, U -G

    2011-01-01

    We derive the leading one-loop contribution to the one-pion exchange and short-range two-nucleon electromagnetic current operator in the framework of chiral effective field theory. The derivation is carried out using the method of unitary transformation. Explicit results for the current and charge densities are given in momentum and coordinate space.

  7. Nuclear axial current operators to fourth order in chiral effective field theory

    CERN Document Server

    Krebs, H; Meißner, U -G

    2016-01-01

    We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized single-, two- and three-nucleon contributions to the charge and current operators and pseudoscalar operators including the relevant relativistic corrections. We also verify explicitly the validity of the continuity equation.

  8. Proline Based Chiral Ionic Liquids for Enantioselective Michael Reaction

    Directory of Open Access Journals (Sweden)

    Kaoru Nobuoka

    2014-01-01

    Full Text Available Chiral ionic liquids, starting from (S-proline, have been prepared and evaluated the ability of a chiral catalyst. In Michael reaction of trans-β-nitrostyrene and cyclohexanone, all the reactions were carried out under homogeneous conditions without any solvent except for excess cyclohexanone. The chiral ionic liquid catalyst with the positive charge delocalized bulky pyrrolidinium cation shows excellent yields (up to 92%, diastereoselectivities (syn/anti = 96/4, and enantioselectivities (up to 95% ee and could be reused at least three times without any loss of its catalytic activity. Such results demonstrated a promising new approach for green and economic chiral synthesis by using the chiral ionic liquids as a chiral catalyst and a chiral medium.

  9. The Macromolecular Route to Chiral Amplification.

    Science.gov (United States)

    Green; Park; Sato; Teramoto; Lifson; Selinger; Selinger

    1999-11-01

    Cooperative phenomena, described by one-dimensional statistical physical methods, are observed between the enantiomeric characteristics of monomeric materials and the polymers they produce. The effect of minute energies associated with this amplified chirality, although currently not interpretable, can be easily measured. Nonlinear relationships between enantiomeric excess or enantiomeric content and polymer properties may offer the possibility of developing chiral catalysts and chiral chromatographic materials in which the burden of large enantiomeric excess or content may be considerably alleviated. New approaches to information and sensor technology may become possible. PMID:10556885

  10. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  11. Chiral Rotational Spectroscopy

    CERN Document Server

    Cameron, Robert P; Barnett, Stephen M

    2015-01-01

    We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.

  12. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  13. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  14. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    OpenAIRE

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-01-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [arXiv:0706.1561]. In analogy with the finite-dimensional case, we demonstrate that the $1 \\times M$ bipartite en...

  15. A unitary test of the Ratios Conjecture

    CERN Document Server

    Goes, John; Miller, Steven J; Montague, David; Ninsuwan, Kesinee; Peckner, Ryan; Pham, Thuy

    2009-01-01

    The Ratios Conjecture of Conrey, Farmer and Zirnbauer predicts the answers to numerous questions in number theory, ranging from n-level densities and correlations to mollifiers to moments and vanishing at the central point. The conjecture gives a recipe to generate these answers, which are believed to be correct up to square-root cancelation. These predictions have been verified, for suitably restricted test functions, for the 1-level density of orthogonal and symplectic families of L-functions. In this paper we verify the conjecture's predictions for the unitary family of all Dirichlet $L$-functions with prime conductor; we show square-root agreement between prediction and number theory if the support of the Fourier transform of the test function is in (-1,1), and for support up to (-2,2) we show agreement up to a power savings in the family's cardinality. The interesting feature in this family (which has not surfaced in previous investigations) is determining what is and what is not a diagonal term in the R...

  16. Quantum Entanglement Growth Under Random Unitary Dynamics

    CERN Document Server

    Nahum, Adam; Vijay, Sagar; Haah, Jeongwan

    2016-01-01

    Characterizing how entanglement grows with time in a many-body system, for example after a quantum quench, is a key problem in non-equilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time--dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the `entanglement tsunami' in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar--Parisi--Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like $(\\text{time})^{1/3}$ and are spatially correlated over a distance $\\propto (\\text{time})^{2/3}$. We derive KPZ universal behaviour in three complementary ways, by mapping random entanglement growth to: (i) a stochastic model of a growing surface; (ii) a `minimal cut' picture, reminisce...

  17. Unitary Evolution and Cosmological Fine-Tuning

    CERN Document Server

    Carroll, Sean M

    2010-01-01

    Inflationary cosmology attempts to provide a natural explanation for the flatness and homogeneity of the observable universe. In the context of reversible (unitary) evolution, this goal is difficult to satisfy, as Liouville's theorem implies that no dynamical process can evolve a large number of initial states into a small number of final states. We use the invariant measure on solutions to Einstein's equation to quantify the problems of cosmological fine-tuning. The most natural interpretation of the measure is the flatness problem does not exist; almost all Robertson-Walker cosmologies are spatially flat. The homogeneity of the early universe, however, does represent a substantial fine-tuning; the horizon problem is real. When perturbations are taken into account, inflation only occurs in a negligibly small fraction of cosmological histories, less than $10^{-6.6\\times 10^7}$. We argue that while inflation does not affect the number of initial conditions that evolve into a late universe like our own, it neve...

  18. Nozzle dam having a unitary plug

    Science.gov (United States)

    Veronesi, Luciano; Wepfer, Robert M.

    1992-01-01

    Apparatus for sealing the primary-side coolant flow nozzles of a nuclear steam generator. The steam generator has relatively small diameter manway openings for providing access to the interior of the steam generator including the inside surface of each nozzle, the manway openings having a diameter substantially less than the inside diameter of each nozzle. The apparatus includes a bracket having an outside surface for matingly sealingly engaging the inside surface of the nozzle. The bracket also has a plurality of openings longitudinally therethrough and a plurality of slots transversely therein in communication with each opening. A plurality of unitary plugs sized to pass through the manway opening are matingly sealingly disposed in each opening of the bracket for sealingly plugging each opening. Each plug includes a plurality of arms operable to engage the slots of the bracket for connecting each plug to the bracket, so that the nozzle is sealed as the plugs seal the openings and are connected to the bracket.

  19. Unitary Transformations in Quantum Field Theory and Bound States

    CERN Document Server

    Shebeko, A V

    2001-01-01

    Finding the eigenstates of the total Hamiltonian H or its diagonalization is the important problem of quantum physics. However, in relativistic quantum field theory (RQFT) its complete and exact solution is possible for a few simple models only. Unitary transformations (UT's) considered in this survey do not diagonalize H, but convert H into a form which enables us to find approximately some H eigenstates. During the last years there have appeared many papers devoted to physical applications of such UT's. Our aim is to present a systematic and self-sufficient exposition of the UT method. The two general kinds of UT's are pointed out, distinct variations of each kind being possible. We consider in detail the problem of finding the simplest H eigenstates for interacting mesons and nucleons using the so-called ``clothing'' UT and Okubo's UT. These UT's allow us to suggest definite approaches to the problem of two-particle (deuteron-like) bound states in RQFT. The approaches are shown to yield the same two-nucleo...

  20. Virial theorem and universality in a unitary fermi gas.

    Science.gov (United States)

    Thomas, J E; Kinast, J; Turlapov, A

    2005-09-16

    Unitary Fermi gases, where the scattering length is large compared to the interparticle spacing, can have universal properties, which are independent of the details of the interparticle interactions when the range of the scattering potential is negligible. We prepare an optically trapped, unitary Fermi gas of 6Li, tuned just above the center of a broad Feshbach resonance. In agreement with the universal hypothesis, we observe that this strongly interacting many-body system obeys the virial theorem for an ideal gas over a wide range of temperatures. Based on this result, we suggest a simple volume thermometry method for unitary gases. We also show that the observed breathing mode frequency, which is close to the unitary hydrodynamic value over a wide range of temperature, is consistent with a universal hydrodynamic gas with nearly isentropic dynamics. PMID:16197054

  1. Virial theorem and universality in a unitary fermi gas.

    Science.gov (United States)

    Thomas, J E; Kinast, J; Turlapov, A

    2005-09-16

    Unitary Fermi gases, where the scattering length is large compared to the interparticle spacing, can have universal properties, which are independent of the details of the interparticle interactions when the range of the scattering potential is negligible. We prepare an optically trapped, unitary Fermi gas of 6Li, tuned just above the center of a broad Feshbach resonance. In agreement with the universal hypothesis, we observe that this strongly interacting many-body system obeys the virial theorem for an ideal gas over a wide range of temperatures. Based on this result, we suggest a simple volume thermometry method for unitary gases. We also show that the observed breathing mode frequency, which is close to the unitary hydrodynamic value over a wide range of temperature, is consistent with a universal hydrodynamic gas with nearly isentropic dynamics.

  2. Mutually unbiased bases generated by a single unitary operator

    Energy Technology Data Exchange (ETDEWEB)

    Ranade, Kedar [Institut fuer Quantenphysik, Universitaet Ulm (Germany); Kern, Oliver; Seyfarth, Ulrich [Institut fuer Angewandte Physik, Technische Universitaet Darmstadt (Germany)

    2010-07-01

    In this talk, we discuss a method for constructing unitary operators which generate mutually unbiased bases on Hilbert spaces H=C{sup d} for d being a power-of-two dimension (i. e. d = 2{sup m}, m element of N). Such operators U have order d+1, and the columns of U,U{sup 2},.., U{sup d+1} = 1 define mutually unbiased bases. The construction is based on finding a maximal commuting unitary operator basis of the matrix algebra associated to the Hilbert space and a Clifford group unitary transformation which maps the equivalence classes of a partition of this operator basis onto another. We explicitly construct unitary operators which generate mutually unbiased bases in all dimensions d = 2{sup m} for m{<=}22.

  3. Time reversal and exchange symmetries of unitary gate capacities

    OpenAIRE

    Harrow, Aram W.; Shor, Peter W.

    2005-01-01

    Unitary gates are an interesting resource for quantum communication in part because they are always invertible and are intrinsically bidirectional. This paper explores these two symmetries: time-reversal and exchange of Alice and Bob. We will present examples of unitary gates that exhibit dramatic separations between forward and backward capacities (even when the back communication is assisted by free entanglement) and between entanglement-assisted and unassisted capacities, among many others...

  4. On the generalized unitary parasupersymmetry algebra of Beckers-Debergh

    OpenAIRE

    Chenaghlou, A.; H. Fakhri

    2002-01-01

    An appropriate generalization of the unitary parasupersymmetry algebra of Beckers-Debergh to arbitrary order is presented in this paper. A special representation for realizing of the even arbitrary order unitary parasupersymmetry algebra of Beckers-Debergh is analyzed by one dimensional shape invariance solvable models, 2D and 3D quantum solvable models obtained from the shape invariance theory as well. In particular in the special representation, it is shown that the isospectrum Hamiltonians...

  5. All unitary cubic curvature gravities in D dimensions

    CERN Document Server

    Sisman, Tahsin Cagri; Tekin, Bayram

    2011-01-01

    We construct all the unitary cubic curvature gravity theories based on the contractions of the Riemann tensor in D-dimensional (anti)-de Sitter spacetimes. Our construction is based on finding the equivalent quadratic action for the general cubic curvature theory and imposing ghost and tachyon freedom. To carry out the procedure we have also classified all the unitary quadratic models. We use our general results to study the recently found cubic curvature theories and the string generated cubic curvature gravity model.

  6. Amendable Gaussian channels:restoring entanglement via a unitary filter

    OpenAIRE

    Pasquale, A.; Mari, A.; Porzio, A.; Giovannetti, V.

    2013-01-01

    We show that there exist Gaussian channels which are amendable. A channel is amendable if when applied twice is entanglement breaking while there exists a unitary filter such that, when interposed between the first and second action of the map, prevents the global transformation from being entanglement breaking [Phys. Rev. A 86, 052302 (2012)]. We find that, depending on the structure of the channel, the unitary filter can be a squeezing transformation or a phase shift operation. We also prop...

  7. Virial Theorem and Universality in a Unitary Fermi Gas

    OpenAIRE

    Thomas, J E; Kinast, J.; Turlapov, A.

    2005-01-01

    Unitary Fermi gases, where the scattering length is large compared to the interparticle spacing, can have universal properties, which are independent of the details of the interparticle interactions when the range of the scattering potential is negligible. We prepare an optically-trapped, unitary Fermi gas of $^6$Li, tuned just above the center of a broad Feshbach resonance. In agreement with the universal hypothesis, we observe that this strongly-interacting many-body system obeys the virial...

  8. The Theory of Unitary Development of Chengdu and Chongqing

    Institute of Scientific and Technical Information of China (English)

    HuangQing

    2005-01-01

    Chengdu and Chongqing are two megalopolises with the synthesized economic strength and the strongest urban competitiveness in the entire western region, which have very important positions in the development of western China. Through horizontal contrast of social economic developing level of the two cities, the two cities' economic foundation of unitary development is analyzed from complementary and integrative relationship. Then the policies and measures of economic unitary development of two cities is put forward.

  9. Unitary relations in time-dependent harmonic oscillators

    OpenAIRE

    Song, Dae-Yup

    1998-01-01

    For a harmonic oscillator with time-dependent (positive) mass and frequency, an unitary operator is shown to transform the quantum states of the system to those of a harmonic oscillator system of unit mass and time-dependent frequency, as well as operators. For a driven harmonic oscillator, it is also shown that, there are unitary transformations which give the driven system from the system of same mass and frequency without driving force. The transformation for a driven oscillator depends on...

  10. Reducible chiral metamaterials

    CERN Document Server

    Ciattoni, Alessandro; Rizza, Carlo

    2016-01-01

    We introduce the concept of 3D reducible metamaterials whose constituent permittivity can be modelled by a factorized profile. The separated cartesian coordinates dependence, easily achieved in all-optical reconfigurable materials, allows to physically regard a reducible metamaterial as a superposition of three fictitious 1D generating media. We prove that, in the long-wavelength limit, the electromagnetic response of reducible metamaterials can be reconstructed from the properties of the 1D generating media whose interplay provides large freedom to control the electromagnetic chirality. Our approach introduces an unprecedented decomposition strategy in metamaterial science which allows the full ab-initio and flexible design of a complex 3D bianisotropic response by using 1D metamaterials as basic building blocks.

  11. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  12. Quantum Monte Carlo calculations with chiral effective field theory interactions

    International Nuclear Information System (INIS)

    The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By

  13. Energy-Efficient Full Diversity Collaborative Unitary Space-Time Block Code Design via Unique Factorization of Signals

    CERN Document Server

    Xia, Dong; Dumitrescu, Sorina

    2011-01-01

    In this paper, a novel concept called a \\textit{uniquely factorable constellation pair} (UFCP) is proposed for the systematic design of a noncoherent full diversity collaborative unitary space-time block code by normalizing two Alamouti codes for a wireless communication system having two transmitter antennas and a single receiver antenna. It is proved that such a unitary UFCP code assures the unique identification of both channel coefficients and transmitted signals in a noise-free case as well as full diversity for the noncoherent maximum likelihood (ML) receiver in a noise case. To further improve error performance, an optimal unitary UFCP code is designed by appropriately and uniquely factorizing a pair of energy-efficient cross quadrature amplitude modulation (QAM) constellations to maximize the coding gain subject to a transmission bit rate constraint. After a deep investigation of the fractional coding gain function, a technical approach developed in this paper to maximizing the coding gain is to caref...

  14. Orientifold ABJM Matrix Model: Chiral Projections and Worldsheet Instantons

    CERN Document Server

    Moriyama, Sanefumi

    2016-01-01

    We study the partition function of the orientifold ABJM theory, which is a superconformal Chern-Simons theory associated with the orthosymplectic supergroup. We find that the partition function associated with any orthosymplectic supergroup can be realized as that of a Fermi gas system whose density matrix is identical to that associated with the corresponding unitary supergroup with a projection to the even or odd chirality. Furthermore we propose an identity and use it to identify all of the Gopakumar-Vafa invariants for the worldsheet instanton effects systematically.

  15. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    International Nuclear Information System (INIS)

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes

  16. Geometric characterization of separability and entanglement in pure Gaussian states by single-mode unitary operations

    Science.gov (United States)

    Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio

    2007-10-01

    We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.

  17. Chiral Superfluidity for QCD

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  18. Compton scattering in a unitary approach with causality constraints 11.55.Fv; 13.40.Gp; 13.60.Fz; Nucleon-photon vertex; Off-shell form factors; K-matrix formalism; Compton scattering; Dispersion relations

    CERN Document Server

    Kondratyuk, S

    2000-01-01

    Pion-loop corrections for Compton scattering are calculated in a novel approach based on the use of dispersion relations in a formalism obeying unitarity. The basic framework is presented, including an application to Compton scattering. In the approach the effects of the non-pole contribution arising from pion dressing are expressed in terms of (half-off-shell) form factors and the nucleon self-energy. These quantities are constructed through the application of dispersion integrals to the pole contribution of loop diagrams, the same as those included in the calculation of the amplitudes through a K-matrix formalism. The prescription of minimal substitution is used to restore gauge invariance. The resulting relativistic-covariant model combines constraints from unitarity, causality, and crossing symmetry.

  19. Mechanical separation of chiral dipoles by chiral light

    CERN Document Server

    Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.

  20. Application of cyclodextrins in chiral capillary electrophoresis.

    Science.gov (United States)

    Rezanka, Pavel; Navrátilová, Klára; Rezanka, Michal; Král, Vladimír; Sýkora, David

    2014-10-01

    CE represents a very powerful separation tool in the area of chiral separations. CD-mediated chiral CE is a continuously flourishing technique within the frame of the electromigration methods. In this review, a brief overview of the synthetic procedures leading to modified CDs is provided first. Next, selected aspects related to the utilization of CDs in chiral CE are discussed specifically in the view of recently published data. Advantages of CDs and basic principles of chiral CE are remained. The topic of the determination of binding constants is touched. Particular attention is paid to the effort aiming at better understanding of the molecular level of the enantiorecognition between CDs and the analyte in the solution. Powerful approaches extensively utilized in this field are NMR, molecular modeling, and computer simulations. Then, a summary of applications of CDs in the CE enantioseparations is given, covering years 2008-2013. Finally, the general trend of modified CDs use in separation science is statistically evaluated.

  1. Nuclear Chiral EFT in the Precision Era

    CERN Document Server

    Epelbaum, Evgeny

    2015-01-01

    Chiral effective field theory has established itself as the method of choice to study nuclear forces and low-energy nuclear dynamics. I review the status and prospects of this approach and discuss ongoing efforts to advance the precision frontier for ab initio description of few-nucleon systems. Special emphasis is put on the precise determination of the two-nucleon force at fifth order in the chiral expansion, role of the chiral symmetry, the convergence pattern of the chiral expansion and the quantification of the theoretical uncertainties. The discussed topics are essential for ongoing studies towards elucidating the structure of the three-nucleon force which will be briefly addressed as well.

  2. Anomalous chiral superfluidity

    Energy Technology Data Exchange (ETDEWEB)

    Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)

    2010-02-08

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.

  3. Chiral Shock Waves

    CERN Document Server

    Sen, Srimoyee

    2016-01-01

    We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.

  4. Polarized pK{sup -} scattering in Unitary Baryon Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Bouzas, Antonio O. [CINVESTAV-IPN, Departamento de Fisica Aplicada, Carretera Antigua a Progreso Km. 6, Apdo. Postal 73 ' ' Cordemex' ' , Merida, Yucatan (Mexico)

    2010-03-15

    We study pK{sup -} scattering in the energy range from threshold through the {lambda} (1520) peak in UBChPT, taking into account O(q) vertices from meson-baryon contact interactions and s- and u-channel ground-state baryon exchange, s- and u-channel decuplet- and nonet-baryon exchange and t -channel vector-meson exchange, as well as O(q {sup 2}) flavor-breaking vertices. Detailed fits to data are presented, including a substantial body of differential cross-section data with meson momentum q{sub lab} >300 MeV not considered in previous treatments. (orig.)

  5. Chiral Unitary Dynamics of Hadrons and Hadrons in a Nuclear Medium

    CERN Document Server

    Oset, E; Gamermann, D; Vacas, M J Vicente; Strottman, D; Khemchandani, K P; Torres, A Martinez; Oller, J A; Roca, L; Napsuciale, Mauro

    2008-01-01

    In this talk I summarize recent findings around the description of axial vector mesons as dynamically generated states from the interaction of pseudoscalar mesons and vector mesons, dedicating some attention to the two $K_1(1270)$ states. Then I review the generation of open and hidden charm scalar and axial states, and how some recent experiment supports the existence of the new hidden charm scalar state predicted. I present recent results showing that the low lying $1/2^+$ baryon resonances for S=-1 can be obtained as bound states or resonances of two mesons and one baryon in coupled channels. Then show the differences with the S=0 case, where the $N^*(1710)$ appears also dynamically generated from the two pion one nucleon system, but the $N^*(1440)$ does not appear, indicating a more complex structure of the Roper resonance. Finally I shall show how the state X(2175), recently discovered at BABAR and BES, appears naturally as a resonance of the $\\phi K \\bar{K}$ system.

  6. Polarized $pK^-$ scattering in Unitary Baryon Chiral Perturbation Theory

    CERN Document Server

    Bouzas, Antonio O

    2010-01-01

    We study $pK^-$ scattering in the energy range from threshold through the $\\Lambda(1520)$ peak in UBChPT, taking into account $\\mathcal{O}(q)$ vertices from meson-baryon contact interactions and $s$- and $u$-channel ground-state baryon exchange, $s$- and $u$-channel decuplet- and nonet-baryon exchange and $t$-channel vector-meson exchange, as well as $\\mathcal{O}(q^2)$ flavor-breaking vertices. Detailed fits to data are presented, including a substantial body of differential cross-section data with meson momentum $q_\\mathrm{lab} > 300$ MeV not considered in previous treatments.

  7. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  8. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications.

    Science.gov (United States)

    Wang, Zuojia; Cheng, Feng; Winsor, Thomas; Liu, Yongmin

    2016-10-14

    Optical chiral metamaterials have recently attracted considerable attention because they offer new and exciting opportunities for fundamental research and practical applications. Through pragmatic designs, the chiroptical response of chiral metamaterials can be several orders of magnitude higher than that of natural chiral materials. Meanwhile, the local chiral fields can be enhanced by plasmonic resonances to drive a wide range of physical and chemical processes in both linear and nonlinear regimes. In this review, we will discuss the fundamental principles of chiral metamaterials, various optical chiral metamaterials realized by different nanofabrication approaches, and the applications and future prospects of this emerging field.

  9. Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications

    Science.gov (United States)

    Wang, Zuojia; Cheng, Feng; Winsor, Thomas; Liu, Yongmin

    2016-10-01

    Optical chiral metamaterials have recently attracted considerable attention because they offer new and exciting opportunities for fundamental research and practical applications. Through pragmatic designs, the chiroptical response of chiral metamaterials can be several orders of magnitude higher than that of natural chiral materials. Meanwhile, the local chiral fields can be enhanced by plasmonic resonances to drive a wide range of physical and chemical processes in both linear and nonlinear regimes. In this review, we will discuss the fundamental principles of chiral metamaterials, various optical chiral metamaterials realized by different nanofabrication approaches, and the applications and future prospects of this emerging field.

  10. Detecting Chirality in Molecules by Linearly Polarized Laser Fields

    Science.gov (United States)

    Yachmenev, Andrey; Yurchenko, Sergei N.

    2016-07-01

    A new scheme for enantiomer differentiation of chiral molecules using a pair of linearly polarized intense ultrashort laser pulses with skewed mutual polarization is presented. The technique relies on the fact that the off-diagonal anisotropic contributions to the electric polarizability tensor for two enantiomers have different signs. Exploiting this property, we are able to excite a coherent unidirectional rotation of two enantiomers with a π phase difference in the molecular electric dipole moment. The approach is robust and suitable for relatively high temperatures of molecular samples, making it applicable for selective chiral analysis of mixtures, and to chiral molecules with low barriers between enantiomers. As an illustration, we present nanosecond laser-driven dynamics of a tetratomic nonrigid chiral molecule with short-lived chirality. The ultrafast time scale of the proposed technique is well suited to study parity violation in molecular systems in short-lived chiral states.

  11. Detecting chirality in molecules by linearly polarized laser fields

    CERN Document Server

    Yachmenev, Andrey

    2016-01-01

    A new scheme for enantiomer differentiation of chiral molecules using a pair of linearly polarized intense ultrashort laser pulses with skewed mutual polarization is presented. The technique relies on the fact that the off-diagonal anisotropic contributions to the electric polarizability tensor for two enantiomers have different signs. Exploiting this property, we are able to excite a coherent unidirectional rotation of two enantiomers with a {\\pi} phase difference in the molecular electric dipole moment. The approach is robust and suitable for relatively high temperatures of molecular samples, making it applicable for selective chiral analysis of mixtures, and to chiral molecules with low barriers between enantiomers. As an illustration, we present nanosecond laser-driven dynamics of a tetratomic non-rigid chiral molecule with short-lived chirality. The ultrafast time scale of the proposed technique is well suited to study parity violation in molecular systems in short-lived chiral states.

  12. Chiral geometry in multiple chiral doublet bands

    Science.gov (United States)

    Zhang, Hao; Chen, Qibo

    2016-02-01

    The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)

  13. Universal Superspace Unitary Operator and Nilpotent (Anti-)dual BRST Symmetries: Superfield Formalism

    CERN Document Server

    Bhanja, T; Malik, R P

    2016-01-01

    We exploit the key concepts of the augmented version of superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism to derive the superspace (SUSP) dual unitary operator (and its Hermitian conjugate) and demonstrate their utility in the derivation of the nilpotent and absolutely anticommuting (anti-)dual BRST symmetry transformations for a set of interesting models of the Abelian 1-form gauge theories. These models are the one (0+1)-dimensional (1D) rigid rotor, modified versions of the two (1+1)-dimensional (2D) Proca as well as anomalous gauge theories and 2D model of a self-dual bosonic field theory. We show the universality of the SUSP dual unitary operator and its Hermitian conjugate in the cases of all the Abelian models under consideration. These SUSP dual unitary operators, besides maintaining the explicit group structure, provide the alternatives to the dual-horizontality condition (DHC) and dual-gauge invariant restrictions (DGIRs) of the superfield formalism. The derivation of the dual unitar...

  14. Wormholes from Chiral Fields

    International Nuclear Information System (INIS)

    In this paper, Lorentzian wormholes with a phantom field and chiral matter fields have been obtained. In addition, it is shown that for different values of the gravitational coupling of the chiral fields, the wormhole geometry changes. Finally, the stability of the corresponding wormholes is studied and it is shown that are unstable (eg. Ellis's wormhole instability)

  15. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast to t...

  16. Chiral selection and frequency response of spiral waves in reaction-diffusion systems under a chiral electric field

    Science.gov (United States)

    Li, Bing-Wei; Cai, Mei-Chun; Zhang, Hong; Panfilov, Alexander V.; Dierckx, Hans

    2014-05-01

    Chirality is one of the most fundamental properties of many physical, chemical, and biological systems. However, the mechanisms underlying the onset and control of chiral symmetry are largely understudied. We investigate possibility of chirality control in a chemical excitable system (the Belousov-Zhabotinsky reaction) by application of a chiral (rotating) electric field using the Oregonator model. We find that unlike previous findings, we can achieve the chirality control not only in the field rotation direction, but also opposite to it, depending on the field rotation frequency. To unravel the mechanism, we further develop a comprehensive theory of frequency synchronization based on the response function approach. We find that this problem can be described by the Adler equation and show phase-locking phenomena, known as the Arnold tongue. Our theoretical predictions are in good quantitative agreement with the numerical simulations and provide a solid basis for chirality control in excitable media.

  17. Chiral Magnetic "Superfluidity"

    CERN Document Server

    Sadofyev, Andrey V

    2015-01-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will {\\it not} contribute to the drag experienced by an impurity. We argue on very general basis that those systems with a strong magnetic field would exhibit the behavior of 'superfluidity" -- the motion of the heavy impurity is frictionless, in analog to the case of a superfluid. However, this "superfluidity" exists even for chiral media at finite temperature and only in the directional longitudinal with the magnetic field, in contrast to the ordinary superfluid. We will call this novel phenomenon as the Chiral Magnetic "Superfluidity". We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion ...

  18. Efficient unitary designs with nearly time-independent Hamiltonian dynamics

    CERN Document Server

    Nakata, Yoshifumi; Koashi, Masato; Winter, Andreas

    2016-01-01

    We provide new constructions of unitary $t$-designs for general $t$ on one qudit and $N$ qubits, and propose a design Hamiltonian, a random Hamiltonian of which dynamics always forms a unitary design after a threshold time, as a basic framework to investigate randomising time evolution in quantum many-body systems. The new constructions are based on recently proposed schemes of repeating random unitaires diagonal in mutually unbiased bases. We first show that, if a pair of the bases satisfies a certain condition, the process on one qudit approximately forms a unitary $t$-design after $O(t)$ repetitions. We then construct quantum circuits on $N$ qubits that achieve unitary $t$-designs for $t = o(N^{1/2})$ using $O(t N^2)$ gates, improving the previous result using $O(t^{10}N^2)$ gates in terms of $t$. Based on these results, we present a design Hamiltonian with periodically changing two-local spin-glass-type interactions, leading to fast and relatively natural realisations of unitary designs in complex many-bo...

  19. Power counting for nuclear forces in chiral effective field theory

    CERN Document Server

    Long, Bingwei

    2016-01-01

    The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.

  20. Cyclodextrin-Functionalized Monolithic Capillary Columns: Preparation and Chiral Applications.

    Science.gov (United States)

    Adly, Frady G; Antwi, Nana Yaa; Ghanem, Ashraf

    2016-02-01

    In this review, the recently reported approaches for the preparation of cyclodextrin-functionalized capillary monolithic columns are highlighted, with few applications in chiral separations using capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Chirality 28:97-109, 2016. © 2015 Wiley Periodicals, Inc.

  1. Chiral condensates and QCD vacuum in two dimensions

    CERN Document Server

    Christiansen, H R

    1997-01-01

    We analyze the chiral symmetries of flavored quantum chromodynamics in two dimensions and show the existence of chiral condensates within the path-integral approach. The massless and massive cases are discussed as well, for arbitrary finite and infinite number of colors. Our results put forward the question of topological issues when matter is in the fundamental representation of the gauge group.

  2. Chiral Magnetic Effect and Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    FU Wei-Jie; LIU Yu-Xin; WU Yue-Liang

    2011-01-01

    We study the influence of the chiral phase transition on the chiral magnetic effect.The azimuthal chargeparticle correlations as functions of the temperature are calculated.It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition.It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value.We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.

  3. Total Synthesis of Chiral Biaryl Natural Products by Asymmetric Biaryl Coupling ‡

    OpenAIRE

    Kozlowski, Marisa C.; Morgan, Barbara J.; Linton, Elizabeth C.

    2009-01-01

    This tutorial review highlights the use of catalytic asymmetric 2-naphthol couplings in total synthesis. The types of chirality, chiral biaryl natural products, prior approaches to chiral biaryl natural products, and other catalytic asymmetric biaryl couplings are outlined. The three main categories of chiral catalysts for 2-naphthol coupling (Cu, V, Fe) are described with discussion of their limitations and advantages. Applications of the copper catalyzed couplings in biomimetic syntheses ar...

  4. Compressor-fan unitary structure for air conditioning system

    Science.gov (United States)

    Dreiman, N.

    2015-08-01

    An extremely compact, therefore space saving unitary structure of short axial length is produced by radial integration of a revolving piston rotary compressor and an impeller of a centrifugal fan. The unitary structure employs single motor to run as the compressor so the airflow fan and eliminates duality of motors, related power supply and control elements. Novel revolving piston rotary compressor which provides possibility for such integration comprises the following: a suction gas delivery system which provides cooling of the motor and supplies refrigerant into the suction chamber under higher pressure (supercharged); a modified discharge system and lubricating oil supply system. Axial passages formed in the stationary crankshaft are used to supply discharge gas to a condenser, to return vaporized cooling agent from the evaporator to the suction cavity of the compressor, to pass a lubricant and to accommodate wiring supplying power to the unitary structure driver -external rotor electric motor.

  5. Qubiter Algorithm Modification, Expressing Unstructured Unitary Matrices with Fewer CNOTs

    CERN Document Server

    Tucci, R R

    2004-01-01

    A quantum compiler is a software program for decomposing ("compiling") an arbitrary unitary matrix into a sequence of elementary operations (SEO). The author of this paper is also the author of a quantum compiler called Qubiter. Qubiter uses a matrix decomposition called the Cosine-Sine Decomposition (CSD) that is well known in the field of Computational Linear Algebra. One way of measuring the efficiency of a quantum compiler is to measure the number of CNOTs it uses to express an unstructured unitary matrix (a unitary matrix with no special symmetries). We will henceforth refer to this number as $\\epsilon$. In this paper, we show how to improve $\\epsilon$ for Qubiter so that it matches the current world record for $\\epsilon$, which is held by another quantum compiling algorithm based on CSD.

  6. Defect of a Kronecker product of unitary matrices

    CERN Document Server

    Tadej, Wojciech

    2010-01-01

    The defect d(U) of an NxN unitary matrix U with no zero entries is the dimension (called the generalized defect D(U)) of the real space of directions, moving into which from U we do not disturb the moduli |U_ij| as well as the Gram matrix U'*U in the first order, diminished by 2N-1. Calculation of d(U) involves calculating the dimension of the space in R^(N^2) spanned by a certain set of vectors associated with U. We split this space into a direct sum, assuming that U is a Kronecker product of unitary matrices, thus making it easier to perform calculations numerically. Basing on this, we give a lower bound on D(U) (equivalently d(U)), supposing it is achieved for most unitaries with a fixed Kronecker product structure. Also supermultiplicativity of D(U) with respect to Kronecker subproducts of U is shown.

  7. Time reversal and exchange symmetries of unitary gate capacities

    CERN Document Server

    Harrow, A W; Harrow, Aram W.; Shor, Peter W.

    2005-01-01

    Unitary gates are an interesting resource for quantum communication in part because they are always invertible and are intrinsically bidirectional. This paper explores these two symmetries: time-reversal and exchange of Alice and Bob. We will present examples of unitary gates that exhibit dramatic separations between forward and backward capacities (even when the back communication is assisted by free entanglement) and between entanglement-assisted and unassisted capacities, among many others. Along the way, we will give a general time-reversal rule for relating the capacities of a unitary gate and its inverse that will explain why previous attempts at finding asymmetric capacities failed. Finally, we will see how the ability to erase quantum information and destroy entanglement can be a valuable resource for quantum communication.

  8. Chiral symmetry and functional integral

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa Saravi, R.E.; Muschietti, M.A.; Schaposnik, F.A.; Solomin, J.E.

    1984-10-15

    The change in the fermionic functional integral measure under chiral rotations is analyzed. Using the zeta-function method, the evaluation of chiral Jacobians to theories including non-hermitian Dirac operators D, can be extended in a natural way. (This being of interest, for example, in connection with the Weinberg-Salam model or with the relativistic string theory). Results are compared with those obtained following other approaches, the possible discrepancies are analyzed and the equivalence of the different methods under certain conditions on D is proved. Also shown is how to compute the Jacobian for the case of a finite chiral transformation and this result is used to develop a sort of path-integral version of bosonization in d = 2 space-time dimensions. This result is used to solve in a very simple and economical way relevant d = 2 fermionic models. Furthermore, some interesting features in connection with the theta-vacuum in d = 2,4 gauge theories are discussed.

  9. Classification of delocalization power of global unitary operations in terms of LOCC one-piece relocalization

    Directory of Open Access Journals (Sweden)

    Akihito Soeda

    2010-06-01

    Full Text Available We study how two pieces of localized quantum information can be delocalized across a composite Hilbert space when a global unitary operation is applied. We classify the delocalization power of global unitary operations on quantum information by investigating the possibility of relocalizing one piece of the quantum information without using any global quantum resource. We show that one-piece relocalization is possible if and only if the global unitary operation is local unitary equivalent of a controlled-unitary operation. The delocalization power turns out to reveal different aspect of the non-local properties of global unitary operations characterized by their entangling power.

  10. Applications of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  11. On the generalized unitary parasupersymmetry algebra of Beckers-Debergh

    CERN Document Server

    Chenaghlou, A

    2003-01-01

    An appropriate generalization of the unitary parasupersymmetry algebra of Beckers-Debergh to arbitrary order is presented in this paper. A special representation for realizing of the even arbitrary order unitary parasupersymmetry algebra of Beckers-Debergh is analyzed by one dimensional shape invariance solvable models, 2D and 3D quantum solvable models obtained from the shape invariance theory as well. In particular in the special representation, it is shown that the isospectrum Hamiltonians consist of the two partner Hamiltonians of the shape invariance theory.

  12. On the Generalized Unitary Parasupersymmetry Algebra of Beckers-Debergh

    Science.gov (United States)

    Chenaghlou, A.; Fakhri, H.

    An appropriate generalization of the unitary parasupersymmetry algebra of Beckers-Debergh to arbitrary order is presented in this paper. A special representation for realizing the even arbitrary order unitary parasupersymmetry algebra of Beckers-Debergh is analyzed by one-dimensional shape invariance solvable models, 2D and 3D quantum solvable models obtained from the shape invariance theory as well. In particular, in the special representation, it is shown that the isospectrum Hamiltonians consist of the two partner Hamiltonians of the shape invariance theory.

  13. Tables of the principal unitary representations of Fedorov groups

    CERN Document Server

    Faddeyev, D K

    1961-01-01

    Tables of the Principal Unitary Representations of Fedorov Groups contains tables of all the principal representations of Fedorov groups from which all irreducible unitary representations can be obtained with the help of some standard operations. The work originated at a seminar on mathematical crystallography held in 1952-1953 at the Faculty of Mathematics and Mechanics of the Leningrad State University. The book is divided into two parts. The first part discusses the relation between the theory of representations and the generalized Fedorov groups in Shubnikov's sense. It shows that all un

  14. A construction of fully diverse unitary space-time codes

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Fully diverse unitary space-time codes are useful in multiantenna communications, especially in multiantenna differential modulation. Recently, two constructions of parametric fully diverse unitary space-time codes for three antennas system have been introduced. We propose a new construction method based on the constructions. In the present paper, fully diverse codes for systems of odd prime number antennas are obtained from this construction. Space-time codes from present construction are found to have better error performance than many best known ones.

  15. Non-unitary probabilistic quantum computing circuit and method

    Science.gov (United States)

    Williams, Colin P. (Inventor); Gingrich, Robert M. (Inventor)

    2009-01-01

    A quantum circuit performing quantum computation in a quantum computer. A chosen transformation of an initial n-qubit state is probabilistically obtained. The circuit comprises a unitary quantum operator obtained from a non-unitary quantum operator, operating on an n-qubit state and an ancilla state. When operation on the ancilla state provides a success condition, computation is stopped. When operation on the ancilla state provides a failure condition, computation is performed again on the ancilla state and the n-qubit state obtained in the previous computation, until a success condition is obtained.

  16. The covariant chiral ring

    Science.gov (United States)

    Bourget, Antoine; Troost, Jan

    2016-03-01

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N = (4 , 4) supersymmetry in two dimensions. For seed target spaces K3 and T 4, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  17. The Covariant Chiral Ring

    CERN Document Server

    Bourget, Antoine

    2015-01-01

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T4, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  18. Unitary three-body calculation of nucleon-nucleon scattering

    International Nuclear Information System (INIS)

    We calculate nucleon-nucleon elastic scattering phase parameters based on a unitary, relativistic, pion-exchange model. The results are highly dependent on the off-shell amplitudes of πN scattering. The isobar-dominated model for the P33 interaction leads to too small pion production rates owing to its strong suppression of off-shell pions. We propose to expand the idea of the Δ-isobar model in such a manner as to incorporate a background (non-pole) interaction. The two-potential model, which was first applied to the P11 partial wave by Mizutani and Koltun, is applied also to the P33 wave. Our phenomenological model for πN interaction in the P33 partial wave differs from the conventional model only in its off-shell extrapolation, and has two different variants for the πN → Δ vertex. The three-body approach of Kloet and Silbar is extended such that the background interactions can be included straightfowardly. We make detailed comparisons of the new model with the conventional one and find that our model adequately reproduces the 1D2 phase parameters as well as those of peripheral partial waves. We also find that the longitudinal total cross section difference ΔσL(pp → NNπ) comes closer to the data compared to Kloet and Silbar. We discuss about the backward pion propagation in the three-body calculation, and the Pauli-principle violating states for the background P11 interaction. (author)

  19. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  20. Imprinting Chirality in Silica Nanotubes by N-Stearoyl-serine Template.

    Science.gov (United States)

    Levi, Gila; Scolnik, Yosef; Mastai, Yitzhak

    2016-09-01

    In this article, we describe the synthesis of imprinted chiral silica nanotubes based on the use of a chiral N-stearoyl l-serine (C18Ser) anionic surfactant as the chiral template. The resulting chiral silica nanotube structures were characterized by electronic microscopy (transmission electron microscopy (TEM) and scanning electron microscopy (SEM)) and nitrogen isotherms that proved the formation of well-ordered silica nanotubes. A C18Ser surfactant template was used for the preparation of the silica nanotubes, due to its effective molecular organization within the silica network. After chemical extraction of the chiral template, the enantioselectivity feature of the silica nanotubes was confirmed by selective adsorption of the enantiomers using circular dichroism (CD) and isothermal titration calorimetry (ITC) measurements. Although these measurements show a relatively low chiral selectivity of the silica nanotubes (ca. 6% enantiomeric excess), the system described here offers new approaches for the application of chiral porous materials in chirality. PMID:27533529

  1. Improvement of the chirality near avoided resonance crossing in optical microcavity

    Institute of Scientific and Technical Information of China (English)

    SONGQingHai[1,2; GUZhiYuan[1; ZHANGNan[1; WANGKaiYang[1; YINingBo[1; XIAOShuMin[1

    2015-01-01

    Chirality is one of the important phenomena at the vicinity of exceptional point (EP). The conventional understanding is that the chirality is determined by asymmetrical scattering efficiency (η), which reaches to zero only when the resonance ap- proaches EP. Here we study the possibility to enhance the chirality in open systems with a more robust mechanism. By com- bining chirality with avoided resonance crossing, we show that the chirality and 7 can be dramatically modified. Taking a spi- ral shaped annular cavity as an example, we show that the chirality of optical resonances can be significantly improved when two sets of chiral states approach each other, The imbalance between counterclockwise (CCW) components and clockwise (CW) components has been enhanced by more than an order of magnitude. Our research provides a new route to tailor and control the chirality in open systems.

  2. Color chiral solitons

    CERN Document Server

    Novozhilov, V Yu; Novozhilov, Victor; Novozhilov, Yuri

    2002-01-01

    We discuss specific features of color chiral solitons (asymptotics, possibility of confainment, quantization) at example of isolated SU(2) color skyrmions, i.e. skyrmions in a background field which is the vacuum field forming the gluon condensate.

  3. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-09-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface.

  4. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism.

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg(2+)-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C-O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  5. High-effective approach from amino acid esters to chiral amino alcohols over Cu/ZnO/Al2O3 catalyst and its catalytic reaction mechanism

    Science.gov (United States)

    Zhang, Shuangshuang; Yu, Jun; Li, Huiying; Mao, Dongsen; Lu, Guanzhong

    2016-01-01

    Developing the high-efficient and green synthetic method for chiral amino alcohols is an intriguing target. We have developed the Mg2+-doped Cu/ZnO/Al2O3 catalyst for hydrogenation of L-phenylalanine methyl ester to chiral L-phenylalaninol without racemization. The effect of different L-phenylalanine esters on this title reaction was studied, verifying that Cu/ZnO/Al2O3 is an excellent catalyst for the hydrogenation of amino acid esters to chiral amino alcohols. DFT calculation was used to study the adsorption of substrate on the catalyst, and showed that the substrate adsorbs on the surface active sites mainly by amino group (-NH2) absorbed on Al2O3, and carbonyl (C=O) and alkoxy (RO-) group oxygen absorbed on the boundary of Cu and Al2O3. This catalytic hydrogenation undergoes the formation of a hemiacetal intermediate and the cleavage of the C–O bond (rate-determining step) by reacting with dissociated H to obtain amino aldehyde and methanol ad-species. The former is further hydrogenated to amino alcohols, and the latter desorbs from the catalyst surface. PMID:27619990

  6. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  7. Application of unitary group methods to cooperative phenomena in magnetic materials

    International Nuclear Information System (INIS)

    Preliminary results indicate that the methods of the unitary group approach to atomic and molecular structure calculations are extensible to other systems particularly to cooperative phenomena in magnetic film materials. It is shown that the many particle bases can be represented heirarchically in terms of Weyl-Young tableaux which are indicators of the internal atomic structure. This is particularly relevant when individual magnetic species are in close proximity and the detailed structure of each species cannot be ignored. Some actual numerical results will be presented

  8. Secure Quantum Key Distribution Network with Bell States and Local Unitary Operations

    Institute of Scientific and Technical Information of China (English)

    LI Chun-Yan; ZHOU Hong-Yu; WANG Yan; DENG Fu-Guo

    2005-01-01

    @@ We propose a theoretical scheme for secure quantum key distribution network following the ideas in quantum dense coding. In this scheme, the server of the network provides the service for preparing and measuring the Bell states,and the users encode the states with local unitary operations. For preventing the server from eavesdropping, we design a decoy when the particle is transmitted between the users. The scheme has high capacity as one particle carries two bits of information and its efficiency for qubits approaches 100%. Moreover, it is unnecessary for the users to store the quantum states, which makes this scheme more convenient in applications than others.

  9. New bases of representation for the unitary parasupersymmetry algebra

    CERN Document Server

    Fakhri,

    2003-01-01

    Representation bases of unitary parasupersymmetry algebra of arbitrary order p is constructed by some one-dimensional models which are shape invariant with respect to the main quantum number n. Consequently, the isospectral Hamiltonians and their exact solutions are obtained as labelled by the main quantum number n. (letter to the editor)

  10. New bases of representation for the unitary parasupersymmetry algebra

    Energy Technology Data Exchange (ETDEWEB)

    Fakhri, H

    2003-01-17

    Representation bases of unitary parasupersymmetry algebra of arbitrary order p is constructed by some one-dimensional models which are shape invariant with respect to the main quantum number n. Consequently, the isospectral Hamiltonians and their exact solutions are obtained as labelled by the main quantum number n. (letter to the editor)0.

  11. Linear programming bounds for unitary space time codes

    CERN Document Server

    Creignou, Jean

    2008-01-01

    The linear programming method is applied to the space $\\U_n(\\C)$ of unitary matrices in order to obtain bounds for codes relative to the diversity sum and the diversity product. Theoretical and numerical results improving previously known bounds are derived.

  12. Experimental Realization of Perfect Discrimination for Two Unitary Operations

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-Jun; HONG Zhi

    2008-01-01

    We experimentally demonstrate perfect discrimination between two unitary operations by using the sequential scheme proposed by Duan et al.[Phys. Rev. Lett. 98 (2007) 100503] Also, we show how to understand the scheme and to calculate the parameters for two-dimensional operations in the picture of the Bloch sphere.

  13. Towards a gravity dual of the unitary Fermi gas

    CERN Document Server

    Bekaert, Xavier; Moroz, Sergej

    2011-01-01

    Inspired by the method of null dimensional reduction and by the holographic correspondence between Vasiliev's higher-spin gravity and the critical O(N) model, a bulk dual of the unitary and the ideal non-relativistic Fermi gases is proposed.

  14. DU and UD-invariants of unitary groups

    International Nuclear Information System (INIS)

    Four distint ways of obtaining the eigenvalues of unitary groups, in any irreducible representation, are presented. The invariants are defined according to two different contraction conventions. Their eigenvalue can be given in terms of two classes of special partial hooks associated with the young diagram characterizing the irreducible representation considered

  15. Unitary operator bases and q-deformed algebras

    Energy Technology Data Exchange (ETDEWEB)

    Galleti, D.; Lunardi, J.T.; Pimentel, B.M. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1995-11-01

    Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed communication relation is shown to emergence in a natural way, when the deformation parameter is a root of unity. (author). 14 refs.

  16. Unitary operator bases and Q-deformed algebras

    Energy Technology Data Exchange (ETDEWEB)

    Galetti, D.; Pimentel, B.M. [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C.L. [Sao Paulo Univ., SP (Brazil). Inst. de Fisica. Grupo de Fisica Nuclear e Teorica e Fenomenologia de Particulas Elementares; Lunardi, J.T. [Universidade Estadual de Ponta Grossa, PR (Brazil). Dept. de Matematica e Estatistica

    1998-03-01

    Starting from the Schwinger unitary operator bases formalism constructed out of a finite dimensional state space, the well-know q-deformed commutation relation is shown to emerge in a natural way, when the deformation parameter is a root of unity. (author)

  17. The Wilson loop in the Gaussian Unitary Ensemble

    CERN Document Server

    Gurau, Razvan

    2016-01-01

    Using the supersymmetric formalism we compute exactly at finite $N$ the expectation of the Wilson loop in the Gaussian Unitary Ensemble and derive an exact formula for the spectral density at finite $N$. We obtain the same result by a second method relying on enumerative combinatorics and show that it leads to a novel proof of the Harer-Zagier series formula.

  18. CONSTRUCTION OF AUTHENTICATION CODES WITH ARBITRATION FROM UNITARY GEOMETRY

    Institute of Scientific and Technical Information of China (English)

    LiRuihu; OuoLuobin

    1999-01-01

    A family of authentication codes with arbitration is constructed from unitary geome-try,the parameters and the probabilities of deceptions of the codes are also computed. In a spe-cial case a perfect authentication code with arbitration is ohtalned.

  19. On the most efficient unitary transformation for programming quantum channels

    OpenAIRE

    D'Ariano, Giacomo Mauro; Perinotti, Paolo

    2005-01-01

    We address the problem of finding the optimal joint unitary transformation on system + ancilla which is the most efficient in programming any desired channel on the system by changing the state of the ancilla. We present a solution to the problem for dim(H)=2 for both system and ancilla.

  20. Norm Continuous Unitary Representations of Lie Algebras of Smooth Sections

    NARCIS (Netherlands)

    Neeb, Karl-Hermann; Janssens, Bas

    2015-01-01

    Let K→X be a smooth Lie algebra bundle over a σ-compact manifold X whose typical fiber is the compact Lie algebra k. We give a complete description of the irreducible bounded (i.e., norm continuous) unitary representations of the Frechet–Lie algebra Γ(K) of all smooth sections of K, and of the LF-Li

  1. Chiral separation in microflows

    OpenAIRE

    Kostur, Marcin; Schindler, Michael; Talkner, Peter; Hänggi, Peter

    2005-01-01

    Molecules that only differ by their chirality, so called enantiomers, often possess different properties with respect to their biological function. Therefore, the separation of enantiomers presents a prominent challenge in molecular biology and belongs to the ``Holy Grail'' of organic chemistry. We suggest a new separation technique for chiral molecules that is based on the transport properties in a microfluidic flow with spatially variable vorticity. Because of their size the thermal fluctua...

  2. The quest for chirality

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, W.A. [Department of Chemistry Stanford University, Stanford, California 94305 (United States)

    1996-07-01

    The indispensable role played by homochirality and chiral homogeneity in the self-replication of crucial biomolecules is stressed, with the conclusion that life could neither exist nor originate without these chiral molecular attributes. Hypotheses historically proposed for the origin of chiral molecules on Earth are reviewed, including biogenic theories as well as abiotic theories embracing both indeterminate and determinate mechanisms. Indeterminate mechanisms, including autocatalytic symmetry breaking, asymmetric adsorption on quartz and clay minerals, and asymmetric syntheses in chiral crystals, are discussed and evaluated in the context of the prebiotic environment. Abiotic determinate mechanisms based on electric, magnetic and gravitational fields, on circularly polarized light (CPL), and on parity violation effects are summarized, with the emphasis that only CPL has proved practicable experimentally, but that it would be implausible on the primitive Earth. Mechanisms for the amplification of small, indigenous enantiomeric excesses are discussed, with one involving the partial polymerization of amino acids and the partial hydrolysis of polypeptides suggested as potentially viable prebiotically. Aspects of the turbulent, chirality-destructive primeval environment are described, with the conclusion that all of the above mechanisms for the {ital terrestrial} prebiotic origin of chirality would be non-viable, and that an alternative extraterrestrial source for the accumulation of chiral molecules on primitive Earth must have been operative. A scenario for this is outlined, in which we postulate that asymmetric photolysis of the organic mantles on interstellar grains in molecular clouds by circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae produces chiral molecules in the grain mantles. (Abstract Truncated)

  3. Unitary Congruence and Unitary Similarity for Quaternion Matrix%四元数矩阵的酉相合与酉相似

    Institute of Scientific and Technical Information of China (English)

    蔡永裕; 黄礼平

    2009-01-01

    This paper discusses the unitary congruence of quaternion matrices, the uni-tary congruence of quaternion matrices is natural extension of the complex unitary congruence of complex matrices and has many good properties. Since unitary congruence of quaternion matrices is in connection with unitary similarity of quaternion matrices, we also discuss some properties of the unitary similarity of quaternion matrices.%本文讨论了四元数矩阵的酉相合,四元数矩阵的酉相合是复矩阵的复酉相合的自然推广,并且它有许多好的性质.由于四元数矩阵的酉相合与酉相似有着密切联系,本文还讨论了四元数矩阵的酉相似的一些性质.

  4. Efficient Biocatalytic Synthesis of Chiral Chemicals.

    Science.gov (United States)

    Zhang, Zhi-Jun; Pan, Jiang; Ma, Bao-Di; Xu, Jian-He

    2016-01-01

    Chiral chemicals are a group of important chiral synthons for the synthesis of a series of pharmaceuticals, agrochemicals, and fine chemicals. In past decades, a number of biocatalytic approaches have been developed for the green and effective synthesis of various chiral chemicals. However, the practical application of these biocatalytic processes is still hindered by the lack of highly efficient and robust biocatalysts, which usually results in the low volumetric productivity and high cost of the bioprocesses. Further step forward of biocatalysis in industrial application strongly requires the development of versatile and highly efficient biocatalysts, aiming to increase the process efficiency and facilitate the downstream processing. Recently, the fast growth of genome sequences in the database in post-genomic era offers great opportunities for accessing numerous biocatalysts with practical application potential, and the so-called genome mining approach provides time-effective and highly specific strategy for the fast identification of target enzymes with desired properties and outperforms the traditional screening of soil samples for microbial enzyme producers of interest. A number of biocatalytic processes with industrial application potential were developed thereafter. Further development of protein engineering strategies, process optimization, and cooperative work between biologists, organic chemists, and engineers is expected to make biocatalysis technology the first choice approach for the eco-friendly, highly efficient, and cost-effective synthesis of chiral chemicals in the near future. PMID:25537446

  5. Chiral anomalies and differential geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  6. Chiral Electroweak Currents in Nuclei

    CERN Document Server

    Riska, D O

    2016-01-01

    The development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown's role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  7. Chiral Synthons in Pesticide Syntheses

    NARCIS (Netherlands)

    Feringa, Bernard

    1988-01-01

    The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the implicatio

  8. On an average over the Gaussian Unitary Ensemble

    CERN Document Server

    Mezzadri, F

    2009-01-01

    We study the asymptotic limit for large matrix dimension N of the partition function of the unitary ensemble with weight exp(-z^2/2x^2 + t/x - x^2/2). We compute the leading order term of the partition function and of the coefficients of its Taylor expansion. Our results are valid in the range N^(-1/2) < z < N^(1/4). Such partition function contains all the information on a new statistics of the eigenvalues of matrices in the Gaussian Unitary Ensemble (GUE) that was introduced by Berry and Shukla (J. Phys. A: Math. Theor., Vol. 41 (2008), 385202, arXiv:0807.3474). It can also be interpreted as the moment generating function of a singular linear statistics.

  9. One-dimensional quantum walk with unitary noise

    International Nuclear Information System (INIS)

    The effect of unitary noise on the discrete one-dimensional quantum walk is studied using computer simulations. For the noiseless quantum walk, starting at the origin (n=0) at time t=0, the position distribution Pt(n) at time t is very different from the Gaussian distribution obtained for the classical random walk. Furthermore, its standard deviation, σ(t) scales as σ(t)∼t, unlike the classical random walk for which σ(t)∼√(t). It is shown that when the quantum walk is exposed to unitary noise, it exhibits a crossover from quantum behavior for short times to classical-like behavior for long times. The crossover time is found to be T∼α-2, where α is the standard deviation of the noise

  10. Unitary Noise and the Mermin-GHZ Game

    Institute of Scientific and Technical Information of China (English)

    Ivan Fialík

    2011-01-01

    Communication complexity is an area of classical computer science which studies how much communication is necessary to solve various distributed computational problems. Quantum information processing can be used to reduce the amount of communication required to carry out some distributed problems. We speak of pseudo-telepathy when it is able to completely eliminate the need for communication. Since it is generally very hard to perfectly implement a quantum winning strategy for a pseudo-telepathy game, quantum players are almost certain to make errors even though they use a winning strategy. After introducing a model for pseudo-telepathy games, we investigate the impact of erroneously performed unitary transformations on the quantum winning strategy for the Mermin-GHZ game. The question of how strong the unitary noise can be so that quantum players would still be better than classical ones is also dealt with.

  11. Random unitary evolution model of quantum Darwinism with pure decoherence

    Science.gov (United States)

    Balanesković, Nenad

    2015-10-01

    We study the behavior of Quantum Darwinism [W.H. Zurek, Nat. Phys. 5, 181 (2009)] within the iterative, random unitary operations qubit-model of pure decoherence [J. Novotný, G. Alber, I. Jex, New J. Phys. 13, 053052 (2011)]. We conclude that Quantum Darwinism, which describes the quantum mechanical evolution of an open system S from the point of view of its environment E, is not a generic phenomenon, but depends on the specific form of input states and on the type of S- E-interactions. Furthermore, we show that within the random unitary model the concept of Quantum Darwinism enables one to explicitly construct and specify artificial input states of environment E that allow to store information about an open system S of interest with maximal efficiency.

  12. No unitary bootstrap for the fractal Ising model

    CERN Document Server

    Golden, John

    2015-01-01

    We consider the conformal bootstrap for spacetime dimension $1unitary conformal field theories. We also clarify the $d\\to 1$ limit of the conformal bootstrap, showing that bounds can be - and indeed are - discontinuous in this limit. This discontinuity implies that for small $\\epsilon=d-1$ the expected critical exponents for the Ising model are disallowed, and in particular those of the $d-1$ expansion. Altogether these results strongly suggest that the Ising model universality class cannot be described by a unitary CFT below $d=2$. We argue this also from a bootstrap perspective, by showing that the $2\\leq d<4$ Ising "kink" splits into two features which grow apart below $d=2$.

  13. The Shear Viscosity in an Anisotropic Unitary Fermi Gas

    CERN Document Server

    Samanta, Rickmoy; Trivedi, Sandip P

    2016-01-01

    We consider a system consisting of a strongly interacting, ultracold unitary Fermi gas under harmonic confinement. Our analysis suggests the possibility of experimentally studying, in this system, an anisotropic shear viscosity tensor driven by the anisotropy in the trapping potential. In particular, we suggest that this experimental setup could mimic some features of anisotropic geometries that have recently been studied for strongly coupled field theories which have a gravitational dual. Results using the AdS/CFT correspondence in these theories show that in systems with a background linear potential, certain viscosity components can be made much smaller than the entropy density, parametrically violating the KSS bound. This intuition, along with results from a Boltzmann analysis that we perform, suggests that a violation of the KSS bound can perhaps occur in the unitary Fermi gas system when it is subjected to a suitable anisotropic trapping potential. We give a concrete proposal for an experimental setup w...

  14. Derandomizing Quantum Circuits with Measurement-Based Unitary Designs

    Science.gov (United States)

    Turner, Peter S.; Markham, Damian

    2016-05-01

    Entangled multipartite states are resources for universal quantum computation, but they can also give rise to ensembles of unitary transformations, a topic usually studied in the context of random quantum circuits. Using several graph state techniques, we show that these resources can "derandomize" circuit results by sampling the same kinds of ensembles quantum mechanically, analogously to a quantum random number generator. Furthermore, we find simple examples that give rise to new ensembles whose statistical moments exactly match those of the uniformly random distribution over all unitaries up to order t , while foregoing adaptive feedforward entirely. Such ensembles—known as t designs—often cannot be distinguished from the "truly" random ensemble, and so they find use in many applications that require this implied notion of pseudorandomness.

  15. Discrimination of two-qubit unitaries via local operations and classical communication.

    Science.gov (United States)

    Bae, Joonwoo

    2015-01-01

    Distinguishability is a fundamental and operational measure generally connected to information applications. In quantum information theory, from the postulates of quantum mechanics it often has an intrinsic limitation, which then dictates and also characterises capabilities of related information tasks. In this work, we consider discrimination between bipartite two-qubit unitary transformations by local operations and classical communication (LOCC) and its relations to entangling capabilities of given unitaries. We show that a pair of entangling unitaries which do not contain local parts, if they are perfectly distinguishable by global operations, can also be perfectly distinguishable by LOCC. There also exist non-entangling unitaries, e.g. local unitaries, that are perfectly discriminated by global operations but not by LOCC. The results show that capabilities of LOCC are strictly restricted than global operations in distinguishing bipartite unitaries for a finite number of repetitions, contrast to discrimination of a pair of bipartite states and also to asymptotic discrimination of unitaries. PMID:26667066

  16. Chiral Quantum Optics

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter

    2016-01-01

    At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...

  17. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  18. Unitary transformation method for solving generalized Jaynes-Cummings models

    Indian Academy of Sciences (India)

    Sudha Singh

    2006-03-01

    Two fully quantized generalized Jaynes-Cummings models for the interaction of a two-level atom with radiation field are treated, one involving intensity dependent coupling and the other involving multiphoton interaction between the field and the atom. The unitary transformation method presented here not only solves the time dependent problem but also allows a determination of the eigensolutions of the interacting Hamiltonian at the same time.

  19. ROTATION CONSTELLATION FOR DIFFERENTIAL UNITARY SPACE-TIME MODULATION

    Institute of Scientific and Technical Information of China (English)

    Li Jun; Cao Haiyan; Wei Gang

    2006-01-01

    A new constellation which is the multiplication of the rotation matrix and the diagonal matrix according to the number of transmitters is proposed to increase the diversity product, the key property to the performance of the differential unitary space-time modulation. Analyses and the simulation results show that the proposed constellation performs better and 2dB or more coding gain can be achieved over the traditional cyclic constellation.

  20. Unitary-matrix models as exactly solvable string theories

    Science.gov (United States)

    Periwal, Vipul; Shevitz, Danny

    1990-01-01

    Exact differential equations are presently found for the scaling functions of models of unitary matrices which are solved in a double-scaling limit, using orthogonal polynomials on a circle. For the case of the simplest, k = 1 model, the Painleve II equation with constant 0 is obtained; possible nonperturbative phase transitions exist for these models. Equations are presented for k = 2 and 3, and discussed with a view to asymptotic behavior.

  1. Unitary representations of the fundamental group of orbifolds

    Indian Academy of Sciences (India)

    INDRANIL BISWAS; AMIT HOGADI

    2016-10-01

    Let $X$ be a smooth complex projective variety of dimension $n$ and $\\mathcal{L}$ an ample line bundle on it. There is a well known bijective correspondence between the isomorphism classes of polystable vector bundles $E$ on $X$ with $c_{1}(E) = 0 = c_{2}(E) \\cdot c_{1} \\mathcal (L)^{n−2}$ and the equivalence classes of unitary representations of $\\pi_{1}(X)$. We show that this bijective correspondence extends to smooth orbifolds.

  2. Non linear identities between unitary minimal Virasoro characters

    Science.gov (United States)

    Taormina, Anne

    Non linear identities between unitary minimal Virasoro characters at low levels (m = 3, 4, 5) are presented as well as a sketch of some proofs. The first identity gives the Ising model characters (m = 3) as bilinears in tricritical Ising model characters (m = 4), while the second one gives the tricritical Ising model characters as bilinears in the Ising model characters and the six combinations of m = 5 Virasoro characters which do not appear in the spectrum of the three state Potts model.

  3. Unitary synaptic connections among substantia nigra pars reticulata neurons.

    Science.gov (United States)

    Higgs, Matthew H; Wilson, Charles J

    2016-06-01

    Neurons in substantia nigra pars reticulata (SNr) are synaptically coupled by local axon collaterals, providing a potential mechanism for local signal processing. Because SNr neurons fire spontaneously, these synapses are constantly active. To investigate their properties, we recorded spontaneous inhibitory postsynaptic currents (sIPSCs) from SNr neurons in brain slices, in which afferents from upstream nuclei are severed, and the cells fire rhythmically. The sIPSC trains contained a mixture of periodic and aperiodic events. Autocorrelation analysis of sIPSC trains showed that a majority of cells had one to four active unitary inputs. The properties of the unitary IPSCs (uIPSCs) were analyzed for cells with one unitary input, using a model of periodic presynaptic firing and stochastic synaptic transmission. The inferred presynaptic firing rates and coefficient of variation of interspike intervals (ISIs) corresponded well with direct measurements of spiking in SNr neurons. Methods were developed to estimate the success probability, amplitude distributions, and kinetics of the uIPSCs, while removing the contribution from aperiodic sIPSCs. The sIPSC amplitudes were not increased upon release from halorhodopsin silencing, suggesting that most synapses were not depressed at the spontaneous firing rate. Gramicidin perforated-patch recordings indicated that the average reversal potential of spontaneous inhibitory postsynaptic potentials was -64 mV. Because of the change in driving force across the ISI, the unitary inputs are predicted to have a larger postsynaptic impact when they arrive late in the ISI. Simulations of network activity suggest that this very sparse inhibitory coupling may act to desynchronize the activity of SNr neurons while having only a small effect on firing rate. PMID:26961101

  4. Chirality and Life

    Science.gov (United States)

    Barron, Laurence D.

    2008-03-01

    Chirality, meaning handedness, pervades much of modern science, from the physics of elementary particles to the chemistry of life. The amino acids and sugars from which the central molecules of life—proteins and nucleic acids—are constructed exhibit homochirality, which is expected to be a key biosignature in astrobiology. This article provides a brief review of molecular chirality and its significance for the detection of extant or extinct life on other worlds. Fundamental symmetry aspects are emphasized since these bring intrinsic physical properties of the universe to bear on the problem of the origin and role of homochirality in the living world.

  5. Chiral Heat Wave and wave mixing in chiral media

    CERN Document Server

    Chernodub, M N

    2016-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective excitation associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This excitation, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. We find that the coupled waves - which are coherent fluctuations of the vector, axial and energy currents - have generally different velocities compared to the velocities of the individual waves. We also demonstrate that rotating chiral systems subjected to external magnetic field possess non-propagating metastable thermal excitations, the Dense Hot Spots.

  6. Chiral dynamics in the gamma p --> p pi0 reaction

    CERN Document Server

    Blin, A N Hiller; Vacas, M J Vicente

    2014-01-01

    We investigate the neutral pion photoproduction on the proton near threshold in covariant chiral perturbation theory with the explicit inclusion of Delta degrees of freedom. This channel is specially sensitive to chiral dynamics and the advent of very precise data from the Mainz microtron has shown the limits of the convergence of the chiral series for both the heavy baryon and the covariant approaches. We show that the inclusion of the Delta resonance substantially improves the convergence leading to a good agreement with data for a wider range of energies.

  7. Lateral shift in one-dimensional quasiperiodic chiral photonic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Da, Jian, E-mail: dajian521@sina.com [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Mo, Qi, E-mail: moqiyueyang@163.com [School of Software, Yunnan University, Cuihu Bai Road, Kunming City, Yunnan Province 650091 (China); Cheng, Yaokun [Department of Information Engineering, Huaian Senior Vocational and Technical School, Feiyao road, Huaian 223005, Jiangsu Province (China); Liu, Taixiang [Taishan Vocational College of Nursing, Shandong Province 271000 (China)

    2015-02-01

    We investigate the lateral shift of a one-dimensional quasiperiodic photonic crystal consisting of chiral and conventional dielectric materials. The effect of structural irregularity on lateral shift is evaluated by stationary-phase approach. Our results show that the lateral shift can be modulated by varying the structural irregularity in quasiperiodic structure. Besides, the position of peak in lateral shift spectrum stays sensitive to the chiral factor of chiral materials. In comparison with that of periodic structure, quasiperiodic structure provides an extra degree of freedom to manipulate the lateral shift.

  8. Non-Abelian 1-Form Gauge Theory With Dirac Fields: Supersymmetric Unitary Operator

    CERN Document Server

    Bhanja, T; Malik, R P

    2015-01-01

    Within the framework of augmented version of superfield approach to Becchi-Rouet-Stora-Tyutin (BRST) formalism, we derive the supersymmetric (SUSY) unitary operator (and its hermitian conjugate) in the context of four (3 + 1)-dimensional (4D) interacting non-Abelian 1-form gauge theory with Dirac fields. The ordinary 4D non-Abelian theory, defined on the flat 4D Minkowski spacetime manifold, is generalized onto a (4, 2)-dimensional supermanifold which is parameterized by the spacetime bosonic coordinates x^\\mu (with \\mu = 0, 1, 2, 3) and a pair of Grassmannian variables (\\theta, \\bar\\theta) which satisfy the standard relationships: \\theta^2 = {\\bar\\theta}^2 = 0, \\theta\\,\\bar\\theta + \\bar\\theta\\,\\theta = 0. Various consequences of the application of the above SUSY unitary operator (and its hermitian conjugate) are discussed. In particular, we obtain the results of the application of the horizontality condition (HC) and gauge invariant restriction (GIR) in the language of the above SUSY operators. One of the no...

  9. Interweaving Chiral Spirals

    CERN Document Server

    Kojo, Toru; Fukushima, Kenji; McLerran, Larry; Pisarski, Robert D

    2011-01-01

    We elaborate how to construct the interweaving chiral spirals in (2+1) dimensions, that is defined as a superposition of differently oriented chiral spirals. We divide the two-dimensional Fermi sea into distinct wedges characterized by the opening angle 2 Theta and the depth Q \\simeq pF, where pF is the Fermi momentum. Each wedge earns an energy gain by forming a single chiral spiral. The optimal values for Theta and Q are chosen by the balance between this energy gain and the energy costs from the deformed Fermi surface (dominant at large Theta) and patch-patch interactions (dominant at small Theta). We estimate these energy gains and costs by means of the expansions in terms of 1/Nc, Lambda_QCD/Q, and Theta using a non-local four-Fermi interaction model: At small 1/Nc the mass gap (chiral condensate) is large enough and the interaction among quarks and the condensate is local in momentum space thanks to the form factor in our non-local model. The fact that patch-patch interactions lie only near the patch bo...

  10. Chiral magnetic effect without chirality source in asymmetric Weyl semimetals

    CERN Document Server

    Kharzeev, Dmitri; Meyer, Rene

    2016-01-01

    We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source generates a non-vanishing chiral chemical potential. This is due to the different capacities of the left- and right-handed (LH and RH) chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation f...

  11. Unitary input DEA model to identify beef cattle production systems typologies

    Directory of Open Access Journals (Sweden)

    Eliane Gonçalves Gomes

    2012-08-01

    Full Text Available The cow-calf beef production sector in Brazil has a wide variety of operating systems. This suggests the identification and the characterization of homogeneous regions of production, with consequent implementation of actions to achieve its sustainability. In this paper we attempted to measure the performance of 21 livestock modal production systems, in their cow-calf phase. We measured the performance of these systems, considering husbandry and production variables. The proposed approach is based on data envelopment analysis (DEA. We used unitary input DEA model, with apparent input orientation, together with the efficiency measurements generated by the inverted DEA frontier. We identified five modal production systems typologies, using the isoefficiency layers approach. The results showed that the knowledge and the processes management are the most important factors for improving the efficiency of beef cattle production systems.

  12. Nature of chiral spin liquids on the kagome lattice

    Science.gov (United States)

    Wietek, Alexander; Sterdyniak, Antoine; Läuchli, Andreas M.

    2015-09-01

    We investigate the stability and the nature of the chiral spin liquids which were recently uncovered in extended Heisenberg models on the kagome lattice. Using a Gutzwiller projected wave function approach, i.e., a parton construction, we obtain large overlaps with ground states of these extended Heisenberg models. We further suggest that the appearance of the chiral spin liquid in the time-reversal invariant case is linked to a classical transition line between two magnetically ordered phases.

  13. Chiral separation and twin-beam photonics

    Science.gov (United States)

    Bradshaw, David S.; Andrews, David L.

    2016-03-01

    It is well-known that, in a homogeneous fluid medium, most optical means that afford discrimination between molecules of opposite handedness are intrinsically weak effects. The reason is simple: the wide variety of origins for differential response commonly feature real or virtual electronic transitions that break a parity condition. Despite being electric dipole allowed, they manifest the chirality of the material in which they occur by breaking a selection rule that would otherwise preclude the simultaneous involvement of magnetic dipole or electric quadrupole forms of coupling. Although the latter are typically weaker than electric dipole effects by several orders of magnitude, it is the involvement of these weak forms of interaction that are responsible for chiral sensitivity. There have been a number of attempts to cleverly exploit novel optical configurations to enhance the relative magnitude - and hence potentially the efficiency - of chiral discrimination. The prospect of success in any such venture is enticing, because of the huge impact that such an advance might be expected to have in the health, food and medical sectors. Some of these proposals have utilized mirror reflection, and others surface plasmon coupling, or optical binding methods. Several recent works in the literature have drawn attention to a further possibility: the deployment of optical beam interference as a means to achieve chiral separations of sizeable extent. In this paper the underlying theory is fully developed to identify the true scope and limitations of such an approach.

  14. Detecting the chirality for coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com

    2008-04-21

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.

  15. Non-unitary neutrino propagation from neutrino decay

    International Nuclear Information System (INIS)

    Neutrino propagation in space-time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature

  16. Computing a logarithm of a unitary matrix with general spectrum

    CERN Document Server

    Loring, Terry A

    2012-01-01

    In theory, a unitary matrix U has a skew-hermitian logarithm H. In a computing environment one expects only to know U^*U \\approx I and might wish to compute H with e^H \\approx U and H^*= -H. This is relatively easy to accomplish using the Schur decomposition. Reasonable error bounds are derived. In cases where the norm of U^*U-I is somewhat large we discuss the utility of pre-processing with Newton's method of approximating the polar decomposition. In the case of U being J-skew-symmetric, one can insist that H be J-skew-symmetric and skew-Hermitian.

  17. The science of unitary human beings and interpretive human science.

    Science.gov (United States)

    Reeder, F

    1993-01-01

    Natural science and human science are identified as the bases of most nursing theories and research programs. Natural science has been disclaimed by Martha Rogers as the philosophy of science that undergirds her work. The question remains, is the science of unitary human beings an interpretive human science? The author explores the works of Rogers through a dialectic with two human scientists' works. Wilhelm Dilthey's works represent the founding or traditional view, and Jurgen Habermas' works represent a contemporary, reconstructionist view. The ways Rogerian thought contributes to human studies but is distinct from traditional and reconstructionist human sciences are illuminated. PMID:8455869

  18. Thermoelectric-induced unitary Cooper pair splitting efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Zhan; Fang, Tie-Feng [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Li, Lin [Department of Physics, Southern University of Science and Technology of China, Shenzhen 518005 (China); Luo, Hong-Gang [Center for Interdisciplinary Studies and Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Beijing Computational Science Research Center, Beijing 100084 (China)

    2015-11-23

    Thermoelectric effect is exploited to optimize the Cooper pair splitting efficiency in a Y-shaped junction, which consists of two normal leads coupled to an s-wave superconductor via double noninteracting quantum dots. Here, utilizing temperature difference rather than bias voltage between the two normal leads, and tuning the two dot levels such that the transmittance of elastic cotunneling process is particle-hole symmetric, we find current flowing through the normal leads are totally contributed from the splitting of Cooper pairs emitted from the superconductor. Such a unitary splitting efficiency is significantly better than the efficiencies obtained in experiments so far.

  19. Deformations of polyhedra and polygons by the unitary group

    Energy Technology Data Exchange (ETDEWEB)

    Livine, Etera R. [Laboratoire de Physique, ENS Lyon, CNRS-UMR 5672, 46 Allée d' Italie, Lyon 69007, France and Perimeter Institute, 31 Caroline St N, Waterloo, Ontario N2L 2Y5 (Canada)

    2013-12-15

    We introduce the set of framed (convex) polyhedra with N faces as the symplectic quotient C{sup 2N}//SU(2). A framed polyhedron is then parametrized by N spinors living in C{sup 2} satisfying suitable closure constraints and defines a usual convex polyhedron plus extra U(1) phases attached to each face. We show that there is a natural action of the unitary group U(N) on this phase space, which changes the shape of faces and allows to map any (framed) polyhedron onto any other with the same total (boundary) area. This identifies the space of framed polyhedra to the Grassmannian space U(N)/ (SU(2)×U(N−2)). We show how to write averages of geometrical observables (polynomials in the faces' area and the angles between them) over the ensemble of polyhedra (distributed uniformly with respect to the Haar measure on U(N)) as polynomial integrals over the unitary group and we provide a few methods to compute these integrals systematically. We also use the Itzykson-Zuber formula from matrix models as the generating function for these averages and correlations. In the quantum case, a canonical quantization of the framed polyhedron phase space leads to the Hilbert space of SU(2) intertwiners (or, in other words, SU(2)-invariant states in tensor products of irreducible representations). The total boundary area as well as the individual face areas are quantized as half-integers (spins), and the Hilbert spaces for fixed total area form irreducible representations of U(N). We define semi-classical coherent intertwiner states peaked on classical framed polyhedra and transforming consistently under U(N) transformations. And we show how the U(N) character formula for unitary transformations is to be considered as an extension of the Itzykson-Zuber to the quantum level and generates the traces of all polynomial observables over the Hilbert space of intertwiners. We finally apply the same formalism to two dimensions and show that classical (convex) polygons can be described in

  20. Non linear identities between unitary minimal Virasoro characters

    Energy Technology Data Exchange (ETDEWEB)

    Taormina, A. [Durham Univ. (United Kingdom). Dept. of Mathematical Sciences

    1995-12-31

    Non linear identities between unitary minimal Virasoro characters at low levels (m = 3, 4, 5) are presented as well as a sketch of some proofs. The first identity gives the Ising model characters (m = 3) as bilinears in tricritical Ising model characters (m = 4), while the second one gives the tricritical Ising model characters as bilinears in the Ising model characters and the six combinations of m = 5 Virasoro characters which do not appear in the spectrum of the three state Potts model. (orig.)

  1. Husserlian phenomenology and nursing in a unitary-transformative paradigm

    DEFF Research Database (Denmark)

    Hall, Elisabeth

    1996-01-01

    The aim of this article is to discuss Husserlian phenomenology as philosophy and methodology, and its relevance for nursing research. The main content in Husserl's phenomenological world view is described and compared to the unitary-transformative paradigm as mentioned by Newman et al...... is used to give phenomenological researchers and readers an expanding reality picturing, including memories and hopes and not only a reality of the five senses. It is concluded that phenomenology as a world view and methodology can contribute to nursing research and strengthen the identity of nursing...... as an independent discipline. The researcher, however, ought to acquire the phenomenological world view before doing a phenomenological study....

  2. Simulating Entangling Unitary Operator Using Non-maximally Entangled States

    Institute of Scientific and Technical Information of China (English)

    LI Chun-Xian; WANG Cheng-Zhi; NIE Liu-Ying; LI Jiang-Fan

    2009-01-01

    We use non-maximally entangled states (NMESs) to simulate an entangling unitary operator (EUO) w/th a certain probability. Given entanglement resources, the probability of the success we achieve is a decreasing function of the parameters of the EUO. Given an EUO, for certain entanglement resources the result is optimal, i.e., the probability obtains a maximal value, and for optimal result higher parameters of the EUO match more amount of entanglement resources. The probability of the success we achieve is higher than the known results under some condition.

  3. The science of unitary human beings and interpretive human science.

    Science.gov (United States)

    Reeder, F

    1993-01-01

    Natural science and human science are identified as the bases of most nursing theories and research programs. Natural science has been disclaimed by Martha Rogers as the philosophy of science that undergirds her work. The question remains, is the science of unitary human beings an interpretive human science? The author explores the works of Rogers through a dialectic with two human scientists' works. Wilhelm Dilthey's works represent the founding or traditional view, and Jurgen Habermas' works represent a contemporary, reconstructionist view. The ways Rogerian thought contributes to human studies but is distinct from traditional and reconstructionist human sciences are illuminated.

  4. A description of Kac-systems of multiplicative unitary operators

    Institute of Scientific and Technical Information of China (English)

    张小霞

    2001-01-01

    Let V be a multiplicative unitary operator on a separable Hilbert space H, then there are two subalgebras of B(H) denoted by A(V) and A(V), respectively, which correspond to V. If V satisfies V2 = I, then we will obtain the necessary and sufficient condition of Baaj and Skandalis' main theorem, i.e. V has a Kac-system if and only if the linear closed space of the product of the above two algebras is the compact operator space; with this condition the above algebras are also quantum groups.

  5. Implementing controlled-unitary operations over the butterfly network

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Akihito; Kinjo, Yoshiyuki; Turner, Peter S. [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We introduce a multiparty quantum computation task over a network in a situation where the capacities of both the quantum and classical communication channels of the network are limited and a bottleneck occurs. Using a resource setting introduced by Hayashi [1], we present an efficient protocol for performing controlled-unitary operations between two input nodes and two output nodes over the butterfly network, one of the most fundamental networks exhibiting the bottleneck problem. This result opens the possibility of developing a theory of quantum network coding for multiparty quantum computation, whereas the conventional network coding only treats multiparty quantum communication.

  6. Unitary evolution for a quantum Kantowski-Sachs cosmology

    CERN Document Server

    Pal, Sridip

    2015-01-01

    It is shown that like Bianchi I, V and IX models, a Kantowski-Sachs cosmological model also allows a unitary evolution on quantization. It has also been shown that this unitarity is not at the expense of the anisotropy. Non-unitarity, if there is any, cannot escape notice in this as the evolution is studied against a properly oriented time parameter fixed by the evolution of the fluid. Furthermore, we have constructed a wave-packet by superposing different energy eigenstates, thereby establishing unitarity in a non-trivial way, which is a stronger result than an energy eigenstate trivially giving time independent probability density. For $\\alpha\

  7. Non-unitary neutrino propagation from neutrino decay

    Directory of Open Access Journals (Sweden)

    Jeffrey M. Berryman

    2015-03-01

    Full Text Available Neutrino propagation in space–time is not constrained to be unitary if very light states – lighter than the active neutrinos – exist into which neutrinos may decay. If this is the case, neutrino flavor-change is governed by a handful of extra mixing and “oscillation” parameters, including new sources of CP-invariance violation. We compute the transition probabilities in the two- and three-flavor scenarios and discuss the different phenomenological consequences of the new physics. These are qualitatively different from other sources of unitarity violation discussed in the literature.

  8. Unitary orbits of Hermitian operators with convex or concave functions

    CERN Document Server

    Bourin, Jean-Christophe

    2011-01-01

    This short but self-contained survey presents a number of elegant matrix/operator inequalities for general convex or concave functions, obtained with a unitary orbit technique. Jensen, sub or super-additivity type inequalities are considered. Some of them are substitutes to classical inequalities (Choi, Davis, Hansen-Pedersen) for operator convex or concave functions. Various trace, norm and determinantal inequalities are derived. Combined with an interesting decomposition for positive semi-definite matrices, several results for partitioned matrices are also obtained.

  9. Chiral Lagrangians and proton decay

    International Nuclear Information System (INIS)

    The phenomenological Lagrangian method is employed to obtain nucleon decay branching ratio sin conventional and supersymmetric Grand Unified Theories. After a brief survey of the theory of nucleon decay, the dominant effective baryon-number violating operators in supergravity models are derived where the observed sector is described by an SU(5) SUSY GUT. It is shown how the phenomenological Lagrangian technique may be understood from a mathematical viewpoint. This technique is then applied to calculate two- and three-body nucleon decay branching ratios in SUGRA models. Finally, the author answers criticism of the usual phenomenological Lagrangian approach when used for nucleon decay calculations by developing a hybrid chiral quark model. With this model, branching ratios for conventional and SUSY GUTs are calculated. (author)

  10. Measurement-based quantum phase estimation algorithm for finding eigenvalues of non-unitary matrices

    OpenAIRE

    Wang, Hefeng; Wu, Lian-Ao; Liu, Yu-xi; Nori, Franco

    2009-01-01

    We propose a quantum algorithm for finding eigenvalues of non-unitary matrices. We show how to construct, through interactions in a quantum system and projective measurements, a non-Hermitian or non-unitary matrix and obtain its eigenvalues and eigenvectors. This proposal combines ideas of frequent measurement, measured quantum Fourier transform, and quantum state tomography. It provides a generalization of the conventional phase estimation algorithm, which is limited to Hermitian or unitary ...

  11. Effects of chiral imbalance and magnetic field on pion superfluidity and color superconductivity

    OpenAIRE

    Cao, Gaoqing; Zhuang, Pengfei

    2015-01-01

    The effects of chiral imbalance and external magnetic field on pion superfluidity and color superconductivity are investigated in extended Nambu--Jona-Lasinio models. We take Schwinger approach to treat the interaction between charged pion condensate and magnetic field at finite isospin density and include simultaneously the chiral imbalance and magnetic field at finite baryon density. For the superfluidity, the chiral imbalance and magnetic field lead to catalysis and inverse catalysis effec...

  12. Branching laws for small unitary representations of GL(n,C)

    DEFF Research Database (Denmark)

    Möllers, Jan; Schwarz, Benjamin

    2014-01-01

    The unitary principal series representations of $G=GL(n,\\mathbb{C})$ induced from a character of the maximal parabolic subgroup $P=(GL(1,\\mathbb{C})\\times GL(n-1,\\mathbb{C}))\\ltimes\\mathbb{C}^{n-1}$ attain the minimal Gelfand--Kirillov dimension among all infinite-dimensional unitary representati......The unitary principal series representations of $G=GL(n,\\mathbb{C})$ induced from a character of the maximal parabolic subgroup $P=(GL(1,\\mathbb{C})\\times GL(n-1,\\mathbb{C}))\\ltimes\\mathbb{C}^{n-1}$ attain the minimal Gelfand--Kirillov dimension among all infinite-dimensional unitary...

  13. The universal sound velocity formula for the strongly interacting unitary Fermi gas

    Institute of Scientific and Technical Information of China (English)

    Liu Ke; Chen Ji-Sheng

    2011-01-01

    Due to the scale invariance, the thermodynamic laws of strongly interacting limit unitary Fermi gas can be similar to those of non-interacting ideal gas. For example, the virial theorem between pressure and energy density of the ideal gas P = 2E/ZV is still satisfied by the unitary Fermi gas. This paper analyses the sound velocity of unitary Fermi gases with the quasi-linear approximation. For comparison, the sound velocities for the ideal Boltzmann, Bose and Fermi gas are also given. Quite interestingly, the sound velocity formula for the ideal non-interacting gas is found to be satisfied by the unitary Fermi gas in different temperature regions.

  14. Optical Force and Torque on Dipolar Dual Chiral Particles

    CERN Document Server

    Rahimzadegan, Aso; Alaee, Rasoul; Fernandez-Corbaton, Ivan; Rockstuhl, Carsten

    2016-01-01

    On the one hand, electromagnetic dual particles preserve the helicity of light upon interaction. On the other hand, chiral particles respond differently to light of opposite helicity. These two properties on their own constitute a source of fascination. Their combined action, however, is less explored. Here, we study on analytical grounds the force and torque as well as the optical cross sections of dual chiral particles in dipolar approximation exerted by a wave of well-defined helicity, i.e. a circularly polarized plane wave. We put emphasis on particles that possess a maximally electromagnetic chiral and hence dual response. Besides the analytical insights, we also investigate the exerted optical force and torque on a real particle at the example of a metallic helix that is designed to approach the maximal electromagnetic chirality condition. Various applications in the context of optical sorting but also nanorobotics can be perceived considering the particles studied in this contribution.

  15. Chiral Crystal Growth under Grinding

    OpenAIRE

    Saito, Yukio; Hyuga, Hiroyuki

    2008-01-01

    To study the establishment of homochirality observed in the crystal growth experiment of chiral molecules from a solution under grinding, we extend the lattice gas model of crystal growth as follows. A lattice site can be occupied by a chiral molecule in R or S form, or can be empty. Molecules form homoclusters by nearest neighbor bonds. They change their chirality if they are isolated monomers in the solution. Grinding is incorporated by cutting and shafling the system randomly. It is shown ...

  16. Spiral Galaxies as Chiral Objects?

    CERN Document Server

    Capozziello, S; Capozziello, Salvatore; Lattanzi, Alessandra

    2005-01-01

    Spiral galaxies show axial symmetry and an intrinsic 2D-chirality. Environmental effects can influence the chirality of originally isolated stellar systems and a progressive loss of chirality can be recognised in the Hubble sequence. We point out a preferential modality for genetic galaxies as in microscopic systems like aminoacids, sugars or neutrinos. This feature could be the remnant of a primordial symmetry breaking characterizing systems at all scales.

  17. Chiral dynamics and baryon resonances

    OpenAIRE

    Hyodo, Tetsuo

    2010-01-01

    The structure of baryon resonance in coupled-channel meson-baryon scattering is studied from the viewpoint of chiral dynamics. The meson-baryon scattering amplitude can be successfully described together with the properties of the resonance in the scattering, by implementing the unitarity condition for the amplitude whose low energy structure is constrained by chiral theorem. Recently, there have been a major progress in the study of the structure of the resonance in chiral dynamics. We revie...

  18. A Chiral Granular Gas

    Science.gov (United States)

    Tsai, J.-C.; Ye, Fangfu; Rodriguez, Juan; Gollub, J. P.; Lubensky, T. C.

    2005-05-01

    Inspired by rattleback toys, we created small chiral wires that rotate in a preferred direction on a vertically oscillating platform and quantified their motion with experiment and simulation. We demonstrate experimentally that angular momentum of rotation about particle centers of mass is converted to collective angular momentum of center-of-mass motion in a granular gas of these wires, and we introduce a continuum model that explains our observations.

  19. Generalized simplicial chiral models

    CERN Document Server

    Alimohammadi, M

    2000-01-01

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, we generalize the simplicial chiral models by replacing the term Tr$(AA^{\\d})$ in the Lagrangian of these models, by an arbitrary class function of $AA^{\\d}; V(AA^{\\d})$. This is the same method that has been used in defining the generalized two-dimensional Yang-Mills theories (gYM_2) from ordinary YM_2. We call these models, the " generalized simplicial chiral models ". With the help of the results of one-link integral over a U(N) matrix, we compute the large-N saddle-point equations for eigenvalue density function $\\ro (z)$ in the weak ($\\b >\\b_c$) and strong ($\\b <\\b_c$) regions. In d=2, where the model somehow relates to gYM_2 theory, we solve the saddle-point equations and find $\\ro (z)$ in two region, and calculate the explicit value of critical point $\\b_c$ for $V(B)=TrB^n (B=AA^{\\d})$. For $V(B)=Tr B^2,Tr B^3$ and Tr$B^4$, we study the critical behaviour of the model at d=2, and by calculating t...

  20. Maximum of the Characteristic Polynomial of Random Unitary Matrices

    Science.gov (United States)

    Arguin, Louis-Pierre; Belius, David; Bourgade, Paul

    2016-09-01

    It was recently conjectured by Fyodorov, Hiary and Keating that the maximum of the characteristic polynomial on the unit circle of a {N× N} random unitary matrix sampled from the Haar measure grows like {CN/(log N)^{3/4}} for some random variable C. In this paper, we verify the leading order of this conjecture, that is, we prove that with high probability the maximum lies in the range {[N^{1 - ɛ},N^{1 + ɛ}]} , for arbitrarily small ɛ. The method is based on identifying an approximate branching random walk in the Fourier decomposition of the characteristic polynomial, and uses techniques developed to describe the extremes of branching random walks and of other log-correlated random fields. A key technical input is the asymptotic analysis of Toeplitz determinants with dimension-dependent symbols. The original argument for these asymptotics followed the general idea that the statistical mechanics of 1/f-noise random energy models is governed by a freezing transition. We also prove the conjectured freezing of the free energy for random unitary matrices.

  1. Shortcut to adiabaticity for an anisotropic unitary Fermi gas

    CERN Document Server

    Deng, Shujin; Yu, Qianli; Wu, Haibin

    2016-01-01

    Coherent control of complex quantum systems is a fundamental requirement in quantum information processing and engineering. Recently developed notion of shortcut to adiabaticity (STA) has spawned intriguing prospects. So far, the most experimental investigations of STA are implemented in the ideal thermal gas or the weakly interacting ultracold Bose gases. Here we report the first demonstration of a many-body STA in a 3D anisotropically trapped unitary Fermi gas. A new dynamical scaling law is demonstrated on such a strongly interacting quantum gas. By simply engineering the frequency aspect ratio of a harmonic trap, the dynamics of the gas can be manipulated and the many-body state can be transferred adiabatically from one stationary state to another one in short time scale without the excitation. The universal scaling both for non-interacting and unitary Fermi gas is also verified. This could be very important for future many-body quantum engineering and the exploration of the fundamental law of the thermod...

  2. On the construction of unitary quantum group differential calculus

    Science.gov (United States)

    Pyatov, Pavel

    2016-10-01

    We develop a construction of the unitary type anti-involution for the quantized differential calculus over {{GL}}q(n) in the case | q| =1. To this end, we consider a joint associative algebra of quantized functions, differential forms and Lie derivatives over {{GL}}q(n)/{{SL}}q(n), which is bicovariant with respect to {{GL}}q(n)/{{SL}}q(n) coactions. We define a specific non-central spectral extension of this algebra by the spectral variables of three matrices of the algebra generators. In the spectrally expended algebra, we construct a three-parametric family of its inner automorphisms. These automorphisms are used for the construction of the unitary anti-involution for the (spectrally extended) calculus over {{GL}}q(n). This work has been funded by the Russian Academic Excellence Project ‘5-100’. The results of section 5 (propositions 5.2, 5.3 and theorem 5.5) have been obtained under support of the RSF grant No.16-11-10160.

  3. Boson-Faddeev in the Unitary Limit and Efimov States

    CERN Document Server

    K"\\ohler, H S

    2010-01-01

    A numerical study of the Faddeev equation for bosons is made with two-body interactions at or close to the Unitary limit. Separable interactions are obtained from phase-shifts defined by scattering length and effective range. In EFT-language this would correspond to NLO. Both ground and Efimov state energies are calculated. For effective ranges $r_0 > 0$ and rank-1 potentials the total energy $E_T$ is found to converge with momentum cut-off $\\Lambda$ for $\\Lambda > \\sim 10/r_0$ . In the Unitary limit ($1/a=r_0= 0$) the energy does however diverge. It is shown (analytically) that in this case $E_T=E_u\\Lambda^2$. Calculations give $E_u=-0.108$ for the ground state and $E_u=-1.\\times10^{-4}$ for the single Efimov state found. The cut-off divergence is remedied by modifying the off-shell t-matrix by replacing the rank-1 by a rank-2 phase-shift equivalent potential. This is somewhat similar to the counterterm method suggested by Bedaque et al. This investigation is exploratory and does not refer to any specific ph...

  4. Isospin-violating nucleon-nucleon forces using the method of unitary transformation

    Energy Technology Data Exchange (ETDEWEB)

    Evgeny Epelbaum; Ulf-G. Meissner

    2005-02-01

    Recently, we have derived the leading and subleading isospin-breaking three-nucleon forces using the method of unitary transformation. In the present work we extend this analysis and consider the corresponding two-nucleon forces using the same approach. Certain contributions to the isospin-violating one- and two-pion exchange potential have already been discussed by various groups within the effective field theory framework. Our findings agree with the previously obtained results. In addition, we present the expressions for the subleading charge-symmetry-breaking two-pion exchange potential which were not considered before. These corrections turn out to be numerically important. Together with the three-nucleon force results presented in our previous work, the results of the present study specify completely isospin-violating nuclear force up to the order {Lambda}{sup 5}.

  5. Spatial modulation of unitary impurity-induced resonances in superconducting CeCoIn5

    Science.gov (United States)

    Zhang, Ge; Liu, Bin; Yang, Yi-Feng; Feng, Shiping

    2016-06-01

    Motivated by recent experimental progress in high-resolution scanning tunneling microscopy (STM) techniques, we investigate the local quasiparticle density of states around a unitary impurity in the heavy-fermion superconductor CeCoIn5. Based on the T-matrix approach we obtain a sharp nearly zero-energy resonance state in the strong impurity potential scattering localized around the impurity and find qualitative differences in the spatial pattern of the tunneling conductance modulated by the nodal structure of the superconducting gap. These unique features may be used as a probe of the superconducting gap symmetry and, in combination with further STM measurements, may help to confirm the {d_{{x^2} - {y^2}}} pairing in CeCoIn5 at ambient pressure.

  6. Quenched Dynamics of the Momentum Distribution of the Unitary Bose Gas

    International Nuclear Information System (INIS)

    We study the quenched dynamics of the momentum distribution of a unitary Bose gas under isotropic harmonic confinement within a time-dependent density functional approach based on our recently calculated Monte Carlo bulk equation of state. In our calculations the inter-atomic s-wave scattering length of the trapped bosons is suddenly increased to a very large value and the real-time evolution of the system is studied. Prompted by the very recent experimental data of 85Rb atoms at unitarity (Makotyn et al. in Nat Phys 10:116, 2014) we focus on the momentum distribution as a function of time. Our results suggest that at low momenta, a quasi-stationary momentum distribution is reached after a long transient, contrary to what found experimentally for large momenta which equilibrate on a time scale shorter than the one for three body losses. (author)

  7. Recent developments in chiral dynamics of hadrons and hadrons in a nuclear medium

    CERN Document Server

    Oset, E; Vacas, M J V; Kaskulov, M; Roca, L; Magas, V K; Ramos, A; Toki, H

    2007-01-01

    In this talk I present recent developments in chiral dynamics of hadrons and hadrons in a medium addressing the following points: interaction of the octet of pseudoscalar mesons with the octet of baryons of the nucleon, showing recent experimental evidence on the existence of two $\\Lambda(1405)$ states, the interaction of the octet of pseudoscalar mesons with the decuplet of baryons of the $\\Delta$, with particular emphasis on the $\\Lambda(1520)$ resonance, dynamically generated by this interaction. Then I review the interaction of kaons in a nuclear medium and briefly discuss the situation around the claims of deeply bound states in nuclei. The large renormalization of the $\\Lambda(1520)$ in the nuclear medium is shown as another example of successful application of the chiral unitary techniques.

  8. Chiral restoration and deconfinement in two-color QCD with two flavors of staggered quarks

    Energy Technology Data Exchange (ETDEWEB)

    Scheffler, David; Scior, Philipp; Smith, Dominik [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Schmidt, Christian [Fakultaet fuer Physik, Universitaet Bielefeld (Germany); Smekal, Lorenz von [Institut fuer Kernphysik, Technische Universitaet Darmstadt (Germany); Institut fuer Theoretische Physik, Justus-Liebig-Universitaet, Giessen (Germany)

    2014-07-01

    In preparation of lattice studies of the two-color QCD phase diagram we study chiral restoration and deconfinement at finite temperature with two flavors of staggered quarks using an RHMC algorithm on GPUs. We first study unquenching effects in local Polyakov loop distributions, and the Polyakov loop potential obtained via Legendre transformation, in a fixed-scale approach for heavier quarks. We also present the chiral condensate and the corresponding susceptibility over the lattice coupling across the chiral transition for lighter quarks. Using Ferrenberg-Swendsen reweighting we extract the maxima of the chiral susceptibility in order to determine pseudo-critical couplings on various lattices suitable for chiral extrapolations. These are then used to fix the relation between coupling and temperature in the chiral limit.

  9. Anomaly poles as common signatures of chiral and conformal anomalies

    Energy Technology Data Exchange (ETDEWEB)

    Armillis, Roberta, E-mail: roberta.armillis@le.infn.i [Dipartimento di Fisica, Universita del Salento and INFN Sezione di Lecce, Via Arnesano, 73100 Lecce (Italy); Coriano, Claudio, E-mail: claudio.coriano@le.infn.i [Dipartimento di Fisica, Universita del Salento and INFN Sezione di Lecce, Via Arnesano, 73100 Lecce (Italy); Department of Physics, University of Crete, Heraklion, Crete (Greece); Delle Rose, Luigi, E-mail: luigi.dellerose@le.infn.i [Dipartimento di Fisica, Universita del Salento and INFN Sezione di Lecce, Via Arnesano, 73100 Lecce (Italy)

    2009-12-07

    One feature of the chiral anomaly, analyzed in a perturbative framework, is the appearance of massless poles which account for it. They are identified by a spectral analysis of the anomaly graph and are usually interpreted as being of an infrared origin. Recent investigations show that their presence is not just confined in the infrared, but that they appear in the effective action under the most general kinematical conditions, even if they decouple in the infrared. Further studies reveal that they are responsible for the non-unitary behaviour of these theories in the ultraviolet (UV) region. We extend this analysis to the case of the conformal anomaly, showing that the effective action describing the interaction of gauge fields with gravity is characterized by anomaly poles that give the entire anomaly and are decoupled in the infrared (IR), in complete analogy with the chiral case. This complements a related analysis by Giannotti and Mottola on the trace anomaly in gravity, in which an anomaly pole has been identified in the corresponding correlator using dispersion theory in the IR. Our extension is based on an exact computation of the off-shell correlation function involving an energy-momentum tensor and two vector currents (the gauge-gauge-graviton vertex) which is responsible for the appearance of the anomaly.

  10. Anomaly Poles as Common Signatures of Chiral and Conformal Anomalies

    CERN Document Server

    Armillis, Roberta; Rose, Luigi Delle

    2009-01-01

    One feature of the chiral anomaly, analyzed in a perturbative framework, is the appearance of massless poles which account for it. They are identified by a spectral analysis of the anomaly graph and are usually interpreted as being of an infrared origin. Recent investigations shown that their presence is not just confined in the infrared, but that they appear in the effective action under the most general kinematical conditions, even if they decouple in the infrared. Further studies reveal that they are responsible for the non-unitary behaviour of these theories in the ultraviolet (UV) region. We extend this analysis to the case of the conformal anomaly, showing that the effective action describing the interaction of gauge fields with gravity is characterized by anomaly poles that give the entire anomaly and are decoupled in the infrared (IR), in complete analogy with the chiral case. This complements a related analysis by Giannotti and Mottola on the trace anomaly in gravity, in which an anomaly pole has bee...

  11. Staggering of the B(M1) value as a fingerprint of specific chiral bands structure

    CERN Document Server

    Grodner, Ernest

    2011-01-01

    Nuclear chirality has been intensively studdied for the last several years in the context of experimental as well as theoretical approach. Characteristic gamma selection rules have been predicted for the strong chiral symmetry breaking limit that has been observed in Cs isotopes. The presented analysis shows that the gamma selection rules cannot be attributed only to chiral symmetry breaking. The selection rules relate to structural composition of the chiral rotational bands, i.e. to odd particle configuration and the deformation of the core.

  12. Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.

    Science.gov (United States)

    Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak

    2015-09-01

    Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.

  13. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4

  14. Solving a Generalized Jaynes-Cummings Model by Supersymmetric Unitary Transformation

    Institute of Scientific and Technical Information of China (English)

    LU Huai-Xin; WANG Xiao-Qin; FAN Hong-Yi

    2000-01-01

    For the generalized Jaynes-Cummings model Hamiltonian which can describe two collectively radiation atoms,we find its supersymmetric structure. Based on supersymmetric quantum mechanics theory, we introduce asupersymmetric unitary transformation, in which the supersymmetric unitary transformation operator can beconstructed by supersymmetric generators of the super-Lie algebra, to diagonalize the Harniltonian. On doingso, its eigenvalue and eigenstates are obtained

  15. The Schur algorithm for generalized Schur functions III : J-unitary matrix polynomials on the circle

    NARCIS (Netherlands)

    Alpay, Daniel; Azizov, Tomas; Dijksma, Aad; Langer, Heinz

    2003-01-01

    The main result is that for J = ((1)(0) (0)(-1)) every J-unitary 2 x 2-matrix polynomial on the unit circle is an essentially unique product of elementary J-unitary 2 x 2-matrix polynomials which are either of degree 1 or 2k. This is shown by means of the generalized Schur transformation introduced

  16. Closely connected unitary realizations of the solutions to the basic interpolation problem for generalized Schur functions

    NARCIS (Netherlands)

    Wanjala, G; Kaashoek, MA; Seatzu, S; VanDerMee, C

    2005-01-01

    A generalized Schur function which is holomorphic at z = 0 can be written as the characteristic function of a closely connected unitary colligation with a Pontryagin state space. We describe the closely connected unitary colligation of a solution s(z) of the basic interpolation problem for generaliz

  17. Quark structure of chiral solitons

    CERN Document Server

    Diakonov, D

    2004-01-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  18. Qubit Transport Model for Unitary Black Hole Evaporation without Firewalls

    CERN Document Server

    Osuga, Kento

    2016-01-01

    We give an explicit toy qubit transport model for transferring information from the gravitational field of a black hole to the Hawking radiation by a continuous unitary transformation of the outgoing radiation and the black hole gravitational field. The model has no firewalls or other drama at the event horizon and fits the set of six physical constraints that Giddings has proposed for models of black hole evaporation. It does utilize nonlocal qubits for the gravitational field but assumes that the radiation interacts locally with these nonlocal qubits, so in some sense the nonlocality is confined to the gravitational sector. Although the qubit model is too crude to be quantitively correct for the detailed spectrum of Hawking radiation, it fits qualitatively with what is expected.

  19. Symmetries and currents of the ideal and unitary Fermi gases

    CERN Document Server

    Bekaert, Xavier; Moroz, Sergej

    2011-01-01

    The maximal algebra of symmetries of the free single-particle Schroedinger equation is determined and its relevance for the holographic duality in non-relativistic Fermi systems is investigated. This algebra of symmetries is an infinite dimensional extension of the Schroedinger algebra, it is isomorphic to the Weyl algebra of quantum observables, and it may be interpreted as a non-relativistic higher-spin algebra. The associated infinite collection of Noether currents bilinear in the fermions are derived from their relativistic counterparts via a light-like dimensional reduction. The minimal coupling of these currents to background sources is rewritten in a compact way by making use of Weyl quantisation. Pushing forward the similarities with the holographic correspondence between the minimal higher-spin gravity and the critical O(N) model, a putative bulk dual of the unitary and the ideal Fermi gases is discussed.

  20. The unitary conformal field theory behind 2D Asymptotic Safety

    CERN Document Server

    Nink, Andreas

    2015-01-01

    Being interested in the compatibility of Asymptotic Safety with Hilbert space positivity (unitarity), we consider a local truncation of the functional RG flow which describes quantum gravity in $d>2$ dimensions and construct its limit of exactly two dimensions. We find that in this limit the flow displays a nontrivial fixed point whose effective average action is a non-local functional of the metric. Its pure gravity sector is shown to correspond to a unitary conformal field theory with positive central charge $c=25$. Representing the fixed point CFT by a Liouville theory in the conformal gauge, we investigate its general properties and their implications for the Asymptotic Safety program. In particular, we discuss its field parametrization dependence and argue that there might exist more than one universality class of metric gravity theories in two dimensions. Furthermore, studying the gravitational dressing in 2D asymptotically safe gravity coupled to conformal matter we uncover a mechanism which leads to a...

  1. Reconstruction of the unitary symmetry in super-relativity

    CERN Document Server

    Leifer, Peter

    2008-01-01

    The reconstruction of the unitary symmetry \\cite{TFD} under non-linear dynamical mapping Hilbert space of action amplitudes $C^N$ onto projective Hilbert space $CP(N-1)$ \\cite{Le1} has been applied here to the quantum dynamics of elementary vacuum excitations. The "vacuum manifold of virtual action states" is represented here by $CP(N-1)$ whereas its tangent vectors define local dynamical variables (LDV's) describing "matter". The conservation laws of LDV's express self-conservation of the "material particles" during continuous evolution being expressed as the affine parallel transport agrees with Fubuni-Study metric, create the "affine gauge potential" as the solution of the partial differential equations. Such procedure embeds the quantum dynamics into dynamical space-time whose state-dependent coordinates arose due to encoding results of quantum measurement by the qubit spinor whose components subjected to Lorentz transformations of "quantum boosts" and "quantum rotations". Thereby, in the framework of sup...

  2. Unitary model for atomic ionization by intense XUV laser pulses

    CERN Document Server

    Bustamante, M G

    2016-01-01

    A unitary model describing the electronic transitions in an atom subject to a strong high frequency laser pulse is proposed. The model fully accounts for the initial state coupling with the continuum spectrum. Continuum-continuum as well as discrete-discrete transitions are neglected. The model leads to a single integro-differential equation for the initial state amplitude. Exact numerical and approximate closed semi-analytical solutions of this equation are obtained. A comparison of present results with full time dependent Schr\\"odinger equation solution for Hydrogen atoms subject to a laser pulse is presented. The initial state time dependent population is rather well described by the model and two approximate solutions. The electron energy spectrum is also well reproduced by the model and by a new improved Weiskopf-Wigner related approximation.

  3. Constructing Self-Dual Chiral Polytopes

    OpenAIRE

    Cunningham, Gabe

    2011-01-01

    An abstract polytope is chiral if its automorphism group has two orbits on the flags, such that adjacent flags belong to distinct orbits. There are still few examples of chiral polytopes, and few constructions that can create chiral polytopes with specified properties. In this paper, we show how to build self-dual chiral polytopes using the mixing construction for polytopes.

  4. Chiral fiber optical isolator

    Science.gov (United States)

    Kopp, Victor I.; Zhang, Guoyin; Zhang, Sheng; Genack, Azriel Z.; Neugroschl, Dan

    2009-02-01

    We propose an in-fiber chiral optical isolator based on chiral fiber polarizer technology and calculate its performance by incorporating the magnetic field into the scattering matrix. The design will be implemented in a special preform, which is passed through a miniature heat zone as it is drawn and twisted. The birefringence of the fiber is controlled by adjusted the diameter of a dual-core optical fiber. By adjusting the twist, the fiber can convert linear to circular polarization and reject one component of circular polarization. In the novel central portion of the isolator, the fiber diameter is large. The effective birefringence of the circular central core with high Verdet constant embedded in an outer core of slightly smaller index of refraction is small. The central potion is a non-reciprocal polarization converter which passes forward traveling left circularly polarized (LCP) light as LCP, while converting backward propagating LCP to right circularly polarized (RCP) light. Both polarizations of light traveling backwards are scattered out of the isolator. Since it is an all-glass structure, we anticipate that the isolator will be able to handle several watts of power and will be environmentally robust.

  5. Chiral symmetry and scalars

    International Nuclear Information System (INIS)

    The suggestion by Jaffe that if σ is a light q2q-bar2 state 0++ then even the fundamental chiral transformation properties of the σ becomes unclear, has stimulated much interest. Adler pointed out that in fact the seminal work on chiral symmetry via PCAC consistency, is really quite consistent with the σ being predominantly q2q-bar2. This interpretation was actually backed by subsequent work on effective Lagrangian methods for linear and non linear realizations. More recent work of Achasov suggests that intermediate four-quark states determine amplitudes involving other scalars a0(980) and f0(980) below 1 GeV, and the report by Ning Wu that study on σ meson in J/ψ → ωπ+π- continue to support a non qq-bar σ with mass as low as 390 MeV. It is also noted that more recent re-analysis of πK scattering by S. Ishida et al. together with the work of the E791 Collaboration, support the existence of the scalar κ particle with comparatively light mass as well

  6. On the Biological Advantage of Chirality

    CERN Document Server

    Gilat, G

    1999-01-01

    The presence of chirality in the main molecules of life may well be not just a structural artifact, but of pure biological advantage. The possibility of the existence of a phenomenon of a special mode of interaction, labeled as "chiral interaction" (CI), for which structural chirality is a necessary condition, is the main reason for such an advantage. In order to demonstrate such a possibility, macroscopic chiral devices are introduced and presented as analogies for such an interaction. For this purpose it is important to make a clear distinction between geometric and physical chiralities, where the latter are capable to perform chiral interactions with various media. Apart from chirality, a few other structural elements are required. In particular, the presence of an interface that separates between the chiral device and the medium with which it is interacting. The physical chirality is build into this very interface where chiral interaction is taking place. On a molecular level, soluble proteins in particul...

  7. Energetic molding of chiral magnetic bubbles

    Science.gov (United States)

    Lau, Derek; Sundar, Vignesh; Zhu, Jian-Gang; Sokalski, Vincent

    2016-08-01

    Topologically protected magnetic structures such as skyrmions and domain walls (DWs) have drawn a great deal of attention recently due to their thermal stability and potential for manipulation by spin current, which is the result of chiral magnetic configurations induced by the interfacial Dzyaloshinskii-Moriya interaction (DMI). Designing devices that incorporate DMI necessitates a thorough understanding of how the interaction presents and can be measured. One approach is to measure growth asymmetry of chiral bubble domains in perpendicularly magnetized thin films, which has been described elsewhere by thermally activated DW motion. Here, we demonstrate that the anisotropic angular dependence of DW energy originating from the DMI is critical to understanding this behavior. Domains in Co/Ni multilayers are observed to preferentially grow into nonelliptical teardrop shapes, which vary with the magnitude of an applied in-plane field. We model the domain profile using energetic calculations of equilibrium shape via the Wulff construction, which serves as a new paradigm for describing chiral domains that explains both the teardrop shape and the reversal of growth symmetry at large fields.

  8. Factorization of J-unitary matrix polynomials on the line and a Schur algorithm for generalized Nevanlinna functions

    NARCIS (Netherlands)

    Alpay, D.; Dijksma, A.; Langer, H.

    2004-01-01

    We prove that a 2 × 2 matrix polynomial which is J-unitary on the real line can be written as a product of normalized elementary J-unitary factors and a J-unitary constant. In the second part we give an algorithm for this factorization using an analog of the Schur transformation.

  9. Optically active metasurface with non-chiral plasmonic nanoantennas.

    Science.gov (United States)

    Shaltout, Amr; Liu, Jingjing; Shalaev, Vladimir M; Kildishev, Alexander V

    2014-08-13

    We design, fabricate, and experimentally demonstrate an optically active metasurface of λ/50 thickness that rotates linearly polarized light by 45° over a broadband wavelength range in the near IR region. The rotation is achieved through the use of a planar array of plasmonic nanoantennas, which generates a fixed phase-shift between the left circular polarized and right circular polarized components of the incident light. Our approach is built on a new supercell metasurface design methodology: by judiciously designing the location and orientation of individual antennas in the structural supercells, we achieve an effective chiral metasurface through a collective operation of nonchiral antennas. This approach simplifies the overall structure when compared to designs with chiral antennas and also enables a chiral effect which quantitatively depends solely on the supercell geometry. This allows for greater tolerance against fabrication and temperature effects. PMID:25051158

  10. Chiral Symmetry and the Nucleon-Nucleon Interaction

    Directory of Open Access Journals (Sweden)

    Ruprecht Machleidt

    2016-04-01

    Full Text Available We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD via chiral effective field theory (EFT. During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (N N interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the N N potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. The final result allows for a full assessment of the validity of the chiral EFT approach to the N N interaction.

  11. Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection

    CERN Document Server

    Banzer, Peter; Mick, Uwe; De Leon, Israel; Boyd, Robert W

    2016-01-01

    Chirality is an intriguing property of certain molecules, materials or artificial nanostructures, which allows them to interact with the spin angular momentum of the impinging light field. Due to their chiral geometry, they can distinguish between left- and right-hand circular polarization states or convert them into each other. Here, we introduce a novel approach towards optical chirality, which is observed in individual two-dimensional and geometrically mirror-symmetric nanostructures. In this scheme, the chiral optical response is induced by the chosen heterogeneous material composition of a particle assembly and the corresponding resonance behavior of the constituents it is built from, which breaks the symmetry of the system. As a proof of principle, we investigate such a structure composed of individual silicon and gold nanoparticles both experimentally as well as numerically. Our proposed concept constitutes a novel approach for designing two-dimensional chiral media tailored at the nanoscale.

  12. Cellular and Nuclear Alignment Analysis for Determining Epithelial Cell Chirality.

    Science.gov (United States)

    Raymond, Michael J; Ray, Poulomi; Kaur, Gurleen; Singh, Ajay V; Wan, Leo Q

    2016-05-01

    Left-right (LR) asymmetry is a biologically conserved property in living organisms that can be observed in the asymmetrical arrangement of organs and tissues and in tissue morphogenesis, such as the directional looping of the gastrointestinal tract and heart. The expression of LR asymmetry in embryonic tissues can be appreciated in biased cell alignment. Previously an in vitro chirality assay was reported by patterning multiple cells on microscale defined geometries and quantified the cell phenotype-dependent LR asymmetry, or cell chirality. However, morphology and chirality of individual cells on micropatterned surfaces has not been well characterized. Here, a Python-based algorithm was developed to identify and quantify immunofluorescence stained individual epithelial cells on multicellular patterns. This approach not only produces results similar to the image intensity gradient-based method reported previously, but also can capture properties of single cells such as area and aspect ratio. We also found that cell nuclei exhibited biased alignment. Around 35% cells were misaligned and were typically smaller and less elongated. This new imaging analysis approach is an effective tool for measuring single cell chirality inside multicellular structures and can potentially help unveil biophysical mechanisms underlying cellular chiral bias both in vitro and in vivo. PMID:26294010

  13. Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics

    CERN Document Server

    Ruggieri, M; Chernodub, M

    2016-01-01

    We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.

  14. Consistent chiral kinetic theory in Weyl materials: chiral magnetic plasmons

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern--Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. T...

  15. Field induced spin chirality and chirality switching in magnetic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Tartakovskaya, Elena V., E-mail: elena_tartakovskaya@yahoo.com [Institute of Magnetism NAS of Ukraine, Vernadsky blvd 36b, 03142 Kiev (Ukraine); Institute of High Technologies, Taras Shevchenko National University of Kiev, 03022 Kiev (Ukraine)

    2015-05-01

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman–Kittel–Kasuya–Yosida and the Dsyaloshinsky–Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness. - Highlights: • Field-induced spin chirality in magnetic multilayers is explained. • The roles of the RKKY, the DM and the Zeeman interactions are clarified. • Theoretical analysis of the chirality factor is in agreement with experimental data.

  16. Bi-directional modulation of AMPA receptor unitary conductance by synaptic activity

    Directory of Open Access Journals (Sweden)

    Matthews Paul

    2004-11-01

    Full Text Available Abstract Background Knowledge of how synapses alter their efficiency of communication is central to the understanding of learning and memory. The most extensively studied forms of synaptic plasticity are long-term potentiation (LTP and its counterpart long-term depression (LTD of AMPA receptor-mediated synaptic transmission. In the CA1 region of the hippocampus, it has been shown that LTP often involves a rapid increase in the unitary conductance of AMPA receptor channels. However, LTP can also occur in the absence of any alteration in AMPA receptor unitary conductance. In the present study we have used whole-cell dendritic recording, failures analysis and non-stationary fluctuation analysis to investigate the mechanism of depotentiation of LTP. Results We find that when LTP involves an increase in unitary conductance, subsequent depotentiation invariably involves the return of unitary conductance to pre-LTP values. In contrast, when LTP does not involve a change in unitary conductance then depotentiation also occurs in the absence of any change in unitary conductance, indicating a reduction in the number of activated receptors as the most likely mechanism. Conclusions These data show that unitary conductance can be bi-directionally modified by synaptic activity. Furthermore, there are at least two distinct mechanisms to restore synaptic strength from a potentiated state, which depend upon the mechanism of the previous potentiation.

  17. Chirality in photonic systems

    Science.gov (United States)

    Solnyshkov, Dmitry; Malpuech, Guillaume

    2016-10-01

    The optical modes of photonic structures are the so-called TE and TM modes that bring intrinsic spin-orbit coupling and chirality to these systems. This, combined with the unique flexibility of design of the photonic potential, and the possibility to mix photon states with excitonic resonances, sensitive to magnetic field and interactions, allows us to achieve many phenomena, often analogous to other solid-state systems. In this contribution, we review in a qualitative and comprehensive way several of these realizations, namely the optical spin Hall effect, the creation of spin currents protected by a non-trivial geometry, the Berry curvature for photons, and the photonic/polaritonic topological insulator. xml:lang="fr"

  18. Accurate and Robust Unitary Transformations of a High-Dimensional Quantum System

    Science.gov (United States)

    Anderson, B. E.; Sosa-Martinez, H.; Riofrío, C. A.; Deutsch, Ivan H.; Jessen, Poul S.

    2015-06-01

    Unitary transformations are the most general input-output maps available in closed quantum systems. Good control protocols have been developed for qubits, but questions remain about the use of optimal control theory to design unitary maps in high-dimensional Hilbert spaces, and about the feasibility of their robust implementation in the laboratory. Here we design and implement unitary maps in a 16-dimensional Hilbert space associated with the 6 S1 /2 ground state of 133Cs, achieving fidelities >0.98 with built-in robustness to static and dynamic perturbations. Our work has relevance for quantum information processing and provides a template for similar advances on other physical platforms.

  19. Unitary theories in the work of Mira Fernandes (beyond general relativity and differential geometry)

    CERN Document Server

    Lemos, José P S

    2010-01-01

    An analysis of the work of Mira Fernandes on unitary theories is presented. First it is briefly mentioned the Portuguese scientific context of the 1920s. A short analysis of the extension of Riemann geometries to new generalized geometries with new affine connections, such as those of Weyl and Cartan, is given. Based on these new geometries, the unitary theories of the gravitational and electromagnetic fields, proposed by Weyl, Eddington, Einstein, and others are then explained. Finally, the book and one paper on connections and two papers on unitary theories, all written by Mira Fernandes, are analyzed and put in context.

  20. Chiral Dynamics With Wilson Fermions

    CERN Document Server

    Splittorff, K

    2012-01-01

    Close to the continuum the lattice spacing affects the smallest eigenvalues of the Wilson Dirac operator in a very specific manner determined by the way in which the discretization breaks chiral symmetry. These effects can be computed analytically by means of Wilson chiral perturbation theory and Wilson random matrix theory. A number of insights on chiral Dynamics with Wilson fermions can be obtained from the computation of the microscopic spectrum of the Wilson Dirac operator. For example, the unusual volume scaling of the smallest eigenvalues observed in lattice simulations has a natural explanation. The dynamics of the eigenvalues of the Wilson Dirac operator also allow us to determine the additional low energy constants of Wilson chiral perturbation theory and to understand why the Sharpe-Singleton scenario is only realized in unquenched simulations.

  1. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    B Ananthanarayan

    2003-11-01

    A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  2. Chiral Quark Model of Mesons

    CERN Document Server

    Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin

    1999-01-01

    We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.

  3. Life's chirality from prebiotic environments

    Science.gov (United States)

    Gleiser, Marcelo; Walker, Sara Imari

    2012-10-01

    A key open question in the study of life is the origin of biomolecular homochirality: almost every life-form on Earth has exclusively levorotary amino acids and dextrorotary sugars. Will the same handedness be preferred if life is found elsewhere? We review some of the pertinent literature and discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events. In one scenario, autocatalytic prebiotic reactions undergo stochastic fluctuations due to environmental disturbances, in a mechanism reminiscent of evolutionary punctuated equilibrium: short-lived destructive events may lead to long-term enantiomeric excess. In another, chiral-selective polymerization reaction rates influenced by environmental effects lead to substantial chiral excess even in the absence of autocatalysis. Applying these arguments to other potentially life-bearing platforms has implications to the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic (chirally neutral) on average.

  4. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten;

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  5. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  6. Chiral symmetry and lattice fermions

    CERN Document Server

    Creutz, Michael

    2013-01-01

    Lattice gauge theory and chiral perturbation theory are among the primary tools for understanding non-perturbative aspects of QCD. I review several subtle and sometimes controversial issues that arise when combining these techniques. Among these are one failure of partially quenched chiral perturbation theory when the valence quarks become lighter than the average sea quark mass and a potential ambiguity in comparisons of perturbative and lattice properties of non-degenerate quarks.

  7. On the infinite fern of Galois representations of unitary type

    CERN Document Server

    Chenevier, Gaetan

    2009-01-01

    Let E be a CM number field, F its maximal totally real subfield, c the generator of Gal(E/F), p an odd prime totally split in E, and S a finite set of places of E containing the places above p. Let r : G_{E,S} --> GL_3(F_p^bar) be a modular, absolutely irreducible, Galois representation of type U(3), i.e. such that r^* = r^c, and let X(r) be the rigid analytic generic fiber of its universal G_{E,S}-deformation of type U(3). We show that each irreducible component of the Zariski-closure of the modular points in X(r) has dimension at least 6[F:Q]. We study an analogue of the infinite fern of Gouvea-Mazur in this context and deal with the Hilbert modular case as well. As important steps, we prove that any first order deformation of a generic enough crystalline representation of Gal(Q_p^bar/Q_p) (of any dimension) is a linear combination of trianguline deformations, and that unitary eigenvarieties (of any rank) are etale over the weight space at the non-critical classical points. As another application, we obtain...

  8. Unitary fermions and Lüscher's formula on a crystal

    Science.gov (United States)

    Valiente, Manuel; Zinner, Nikolaj T.

    2016-11-01

    We consider the low-energy particle-particle scattering properties in a periodic simple cubic crystal. In particular, we investigate the relation between the two-body scattering length and the energy shift experienced by the lowest-lying unbound state when this is placed in a periodic finite box. We introduce a continuum model for s-wave contact interactions that respects the symmetry of the Brillouin zone in its regularisation and renormalisation procedures, and corresponds to the naïve continuum limit of the Hubbard model. The energy shifts are found to be identical to those obtained in the usual spherically symmetric renormalisation scheme upon resolving an important subtlety regarding the cutoff procedure. We then particularize to the Hubbard model, and find that for large finite lattices the results are identical to those obtained in the continuum limit. The results reported here are valid in the weak, intermediate and unitary limits. These may be used to significantly ease the extraction of scattering information, and therefore effective interactions in condensed matter systems in realistic periodic potentials. This can achieved via exact diagonalisation or Monte Carlo methods, without the need to solve challenging, genuine multichannel collisional problems with very restricted symmetry simplifications.

  9. Exciting Quantized Vortex Rings in a Superfluid Unitary Fermi Gas

    Science.gov (United States)

    Bulgac, Aurel

    2014-03-01

    In a recent article, Yefsah et al., Nature 499, 426 (2013) report the observation of an unusual quantum excitation mode in an elongated harmonically trapped unitary Fermi gas. After phase imprinting a domain wall, they observe collective oscillations of the superfluid atomic cloud with a period almost an order of magnitude larger than that predicted by any theory of domain walls, which they interpret as a possible new quantum phenomenon dubbed ``a heavy soliton'' with an inertial mass some 50 times larger than one expected for a domain wall. We present compelling evidence that this ``heavy soliton'' is instead a quantized vortex ring by showing that the main aspects of the experiment can be naturally explained within an extension of the time-dependent density functional theory (TDDFT) to superfluid systems. The numerical simulations required the solution of some 260,000 nonlinear coupled time-dependent 3-dimensional partial differential equations and was implemented on 2048 GPUs on the Cray XK7 supercomputer Titan of the Oak Ridge Leadership Computing Facility.

  10. An Invariant of Topologically Ordered States Under Local Unitary Transformations

    Science.gov (United States)

    Haah, Jeongwan

    2016-03-01

    For an anyon model in two spatial dimensions described by a modular tensor category, the topological S-matrix encodes the mutual braiding statistics, the quantum dimensions, and the fusion rules of anyons. It is nontrivial whether one can compute the S-matrix from a single ground state wave function. Here, we define a class of Hamiltonians consisting of local commuting projectors and an associated matrix that is invariant under local unitary transformations. We argue that the invariant is equivalent to the topological S-matrix. The definition does not require degeneracy of the ground state. We prove that the invariant depends on the state only, in the sense that it can be computed by any Hamiltonian in the class of which the state is a ground state. As a corollary, we prove that any local quantum circuit that connects two ground states of quantum double models (discrete gauge theories) with non-isomorphic abelian groups must have depth that is at least linear in the system's diameter. As a tool for the proof, a manifestly Hamiltonian-independent notion of locally invisible operators is introduced. This gives a sufficient condition for a many-body state not to be generated from a product state by any small depth quantum circuit; this is a many-body entanglement witness.

  11. Unitary Networks from the Exact Renormalization of Wave Functionals

    CERN Document Server

    Fliss, Jackson R; Parrikar, Onkar

    2016-01-01

    The exact renormalization group (ERG) for $O(N)$ vector models (at large $N$) on flat Euclidean space can be interpreted as the bulk dynamics corresponding to a holographically dual higher spin gauge theory on $AdS_{d+1}$. This was established in the sense that at large $N$ the generating functional of correlation functions of single trace operators is reproduced by the on-shell action of the bulk higher spin theory, which is most simply presented in a first-order (phase space) formalism. In this paper, we extend the ERG formalism to the wave functionals of arbitrary states of the $O(N)$ vector model at the free fixed point. We find that the ERG flow of the ground state and a specific class of excited states is implemented by the action of unitary operators which can be chosen to be local. Consequently, the ERG equations provide a continuum notion of a tensor network. We compare this tensor network with the entanglement renormalization networks, MERA, and its continuum version, cMERA, which have appeared rece...

  12. Conditional Mutual Information of Bipartite Unitaries and Scrambling

    CERN Document Server

    Ding, Dawei; Walter, Michael

    2016-01-01

    One way to diagnose chaos in bipartite unitary channels is via the negativity of the tripartite information of the corresponding Choi state, which for certain choices of the subsystems reduces to the negative conditional mutual information (CMI). We study this quantity from a quantum information-theoretic perspective to clarify its role in diagnosing scrambling. When the CMI is zero, we find that the channel has a special normal form consisting of local channels between individual inputs and outputs. However, we find that arbitrarily low CMI does not imply arbitrary proximity to a channel of this form, although it does imply a type of approximate recoverability of one of the inputs. When the CMI is maximal, we find that the residual channel from an individual input to an individual output is completely depolarizing when the other inputs are maximally mixed. However, we again find that this result is not robust. We also extend some of these results to the multipartite case and to the case of Haar-random pure i...

  13. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    Energy Technology Data Exchange (ETDEWEB)

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  14. Holographic Fluctuations from Unitary de Sitter Invariant Field Theory

    CERN Document Server

    Banks, Tom; Torres, T J; Wainwright, Carroll L

    2013-01-01

    We continue the study of inflationary fluctuations in Holographic Space Time models of inflation. We argue that the holographic theory of inflation provides a physical context for what is often called dS/CFT. The holographic theory is a quantum theory which, in the limit of a large number of e-foldings, gives rise to a field theory on $S^3$, which is the representation space for a unitary representation of SO(1,4). This is not a conventional CFT, and we do not know the detailed non-perturbative axioms for correlation functions. However, the two- and three-point functions are completely determined by symmetry, and coincide up to a few constants (really functions of the background FRW geometry) with those calculated in a single field slow-roll inflation model. The only significant deviation from slow roll is in the tensor fluctuations. We predict zero tensor tilt and roughly equal weight for all three conformally invariant tensor 3-point functions (unless parity is imposed as a symmetry). We discuss the relatio...

  15. Neutron matter at low density and the unitary limit

    CERN Document Server

    Baldo, M

    2007-01-01

    Neutron matter at low density is studied within the hole-line expansion. Calculations are performed in the range of Fermi momentum $k_F$ between 0.4 and 0.8 fm$^{-1}$. It is found that the Equation of State is determined by the $^1S_0$ channel only, the three-body forces contribution is quite small, the effect of the single particle potential is negligible and the three hole-line contribution is below 5% of the total energy and indeed vanishing small at the lowest densities. Despite the unitary limit is actually never reached, the total energy stays very close to one half of the free gas value throughout the considered density range. A rank one separable representation of the bare NN interaction, which reproduces the physical scattering length and effective range, gives results almost indistinguishable from the full Brueckner G-matrix calculations with a realistic force. The extension of the calculations below $k_F = 0.4$ fm$^{-1}$ does not indicate any pathological behavior of the neutron Equation of State.

  16. Efficient chemoenzymatic synthesis of chiral pincer ligands.

    Science.gov (United States)

    Felluga, Fulvia; Baratta, Walter; Fanfoni, Lidia; Pitacco, Giuliana; Rigo, Pierluigi; Benedetti, Fabio

    2009-05-01

    Chiral, nonracemic pincer ligands based on the 6-phenyl-2-aminomethylpyridine and 2-aminomethylbenzo[h]quinoline scaffolds were obtained by a chemoenzymatic approach starting from 2-pyridyl and 2-benzoquinolyl ethanone. In the enantiodifferentiating step, secondary alcohols of opposite absolute configuration were obtained by a baker's yeast reduction of the ketones and by lipase-mediated dynamic kinetic resolution of the racemic alcohols. Their transformation into homochiral 1-methyl-1-heteroarylethanamines occurred without loss of optical purity, giving access to pincer ligands used in enantioselective catalysis.

  17. Implementability of two-qubit unitary operations over the butterfly network and the ladder network with free classical communication

    Energy Technology Data Exchange (ETDEWEB)

    Akibue, Seiseki [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo (Japan); Murao, Mio [Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan and NanoQuine, The University of Tokyo, Tokyo (Japan)

    2014-12-04

    We investigate distributed implementation of two-qubit unitary operations over two primitive networks, the butterfly network and the ladder network, as a first step to apply network coding for quantum computation. By classifying two-qubit unitary operations in terms of the Kraus-Cirac number, the number of non-zero parameters describing the global part of two-qubit unitary operations, we analyze which class of two-qubit unitary operations is implementable over these networks with free classical communication. For the butterfly network, we show that two classes of two-qubit unitary operations, which contain all Clifford, controlled-unitary and matchgate operations, are implementable over the network. For the ladder network, we show that two-qubit unitary operations are implementable over the network if and only if their Kraus-Cirac number do not exceed the number of the bridges of the ladder.

  18. A viscoelastic Unitary Crack-Opening strain tensor for crack width assessment in fractured concrete structures

    Science.gov (United States)

    Sciumè, Giuseppe; Benboudjema, Farid

    2016-09-01

    A post-processing technique which allows computing crack width in concrete is proposed for a viscoelastic damage model. Concrete creep is modeled by means of a Kelvin-Voight cell while the damage model is that of Mazars in its local form. Due to the local damage approach, the constitutive model is regularized with respect to finite element mesh to avoid mesh dependency in the computed solution (regularization is based on fracture energy). The presented method is an extension to viscoelasticity of the approach proposed by Matallah et al. (Int. J. Numer. Anal. Methods Geomech. 34(15):1615-1633, 2010) for a purely elastic damage model. The viscoelastic Unitary Crack-Opening (UCO) strain tensor is computed accounting for evolution with time of surplus of stress related to damage; this stress is obtained from decomposition of the effective stress tensor. From UCO the normal crack width is then derived accounting for finite element characteristic length in the direction orthogonal to crack. This extension is quite natural and allows for accounting of creep impact on opening/closing of cracks in time dependent problems. A graphical interpretation of the viscoelastic UCO using Mohr's circles is proposed and application cases together with a theoretical validation are presented to show physical consistency of computed viscoelastic UCO.

  19. Integrability of a master chiral quantum field model

    International Nuclear Information System (INIS)

    The paper deals with solution of a master chiral field model in two-dimensional space-time using the quantum method of inverse problem. A dominant role in the approach is played by the idea of relativistic model production on the basis of magnetic model in the scaling limit at S→ infinity. L-M pair of a master chiral field model is discussed. Formulae for regularized quantum Hamiltonian and Bethe-Ansatz above pseudovacuum are derived. The description of excitations and Dirac filling for the ground state is given. Continuous limit from magnetic model above physical vacuum is considered

  20. Radiative corrections to chiral amplitudes in quasiperipheral kinematics

    CERN Document Server

    Bytev, V; Galynsky, M V; Kuraev, E A

    2005-01-01

    Chiral amplitudes for quasi-peripheral processes are calculated in Born and one loop corrections level. Amplitudes of subprocess describing interaction of virtual photon and real photon with creation of the charged fermion pair for various chiral states are considered in details. The similar results are presented for Compton subprocess with virtual photon. Contribution of emission of virtual, soft and hard real additional photons was taken into account explicitly. The relevant cross sections expressed in terms of impact factors are in agreement with structure functions approach in leading logarithmical approximation Contributions of next to leading terms are presented in analytical form. Accuracy estimation is discussed.

  1. Asymmetric transmission in planar chiral metamaterials: microscopic explanation

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, S. V.

    2011-01-01

    Lorentz electron theory is a powerful approach for description of macroscopic parameters of a medium based on microscopic characteristics of the individual electron. For a planar array of chiral metallic split rings, we determine the averaged electron’s characteristics in a sprit ring and apply...

  2. A note on optical activity and extrinsic chirality

    CERN Document Server

    Arteaga, Oriol

    2015-01-01

    It has been assumed that optical activity can be measured by illuminating alternatively a material with left- and right- handed circular polarized light and analyzing the differential response. This simple and intuitive approach is in general incorrect, and has led to misleading idea that extrinsic chirality involves optical activity.

  3. New method for dynamical fermions and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    The reasons for the feasibility of the Microcanonical Fermionic Average (M F A) approach to lattice gauge theory with dynamical fermions are discussed. We then present a new exact algorithm, which is free from systematic errors and convergent even in the chiral limit. (orig.)

  4. (Pi+Pi-) Atom in Chiral Perturbation Theory

    OpenAIRE

    Ivanov, M. A.; Lyubovitskij, V. E.; Lipartia, E. Z.; Rusetsky, A. G.

    1998-01-01

    Hadronic (Pi+Pi-) atom is studied in the relativistic perturbative approach based on the Bethe-Salpeter equation. The general expression for the atom lifetime is derived. Lowest-order corrections to the relativistic Deser-type formula for the atom lifetime are evaluated within the Chiral Perturbation Theory.

  5. Chirality in Bare and Passivated Gold Nanoclusters

    CERN Document Server

    Garzon, I L; Rodrigues-Hernandez, J I; Sigal, I; Beltran, M R; Michaelian, K

    2002-01-01

    Chiral structures have been found as the lowest-energy isomers of bare (Au$_{28}$ and Au$_{55}) and thiol-passivated (Au$_{28}(SCH$_{3})$_{16}$ and Au$_{38}$(SCH$_{3}$)$_{24}) gold nanoclusters. The degree of chirality existing in the chiral clusters was calculated using the Hausdorff chirality measure. We found that the index of chirality is higher in the passivated clusters and decreases with the cluster size. These results are consistent with the observed chiroptical activity recently reported for glutahione-passivated gold nanoclusters, and provide theoretical support for the existence of chirality in these novel compounds.

  6. Error correcting codes for binary unitary channels on multipartite quantum systems

    CERN Document Server

    Choi, M D; Kribs, D W; Zyczkowski, K; Choi, Man-Duen; Holbrook, John A.; Kribs, David W.; Zyczkowski, Karol

    2006-01-01

    We conduct an analysis of ideal error correcting codes for randomized unitary channels determined by two unitary error operators -- what we call ``binary unitary channels'' -- on multipartite quantum systems. In a wide variety of cases we give a complete description of the code structure for such channels. Specifically, we find a practical geometric technique to determine the existence of codes of arbitrary dimension, and then derive an explicit construction of codes of a given dimension when they exist. For instance, given any binary unitary noise model on an n-qubit system, we design codes that support n-2 qubits. We accomplish this by verifying a conjecture for higher rank numerical ranges of normal operators in many cases.

  7. Utilization of alternate chirality enantiomers in microbial communities

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-09-01

    Our previous study of chirality led to interesting findings for some anaerobic extremophiles: the ability to metabolize substrates with alternate chirality enantiomers of amino acids and sugars. We have subsequently found that not just separate microbial species or strains but entire microbial communities have this ability. The functional division within a microbial community on proteo- and sugarlytic links was also reflected in a microbial diet with L-sugars and D-amino acids. Several questions are addressed in this paper. Why and when was this feature developed in a microbial world? Was it a secondary de novo adaptation in a bacterial world? Or is this a piece of genetic information that has been left in modern genomes as an atavism? Is it limited exclusively to prokaryotes, or does this ability also occur in eukaryotes? In this article, we have used a broader approach to study this phenomenon using anaerobic extremophilic strains from our laboratory collection. A series of experiments were performed on physiologically different groups of extremophilic anaerobes (pure and enrichment cultures). The following characteristics were studied: 1) the ability to grow on alternate chirality enantiomers - L-sugars and D- amino acids; 2) Growthinhibitory effect of alternate chirality enantiomers; 3) Stickland reaction with alternate chirality amino acids. The results of this research are presented in this paper.

  8. Using the Chiral Organophosphorus Derivatizing Agents for Determination of the Enantiomeric Composition of Chiral Carboxylic Acids by 31PNMR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Chao CHE; Zhong Ning ZHANG; Gui Lan HUANG; Xin Xing WANG; Zhao Hai QIN

    2004-01-01

    The use of chiral organophosphorus derivatizing agents prepared in situ from chiral tartrate or chiral diamine for the 31PNMR determination of the enantiomeric composition of chiral carboxylic acids is described. The method is accurate, reliable and convenient.

  9. Photo- and pion electroproduction in chiral effective field theory; Photo- und Elektropionproduktion in chiraler effektiver Feldtheorie

    Energy Technology Data Exchange (ETDEWEB)

    Hilt, Marius

    2011-12-13

    This thesis is concerned with pion photoproduction (PPP) and pion electroproduction (PEP) in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. For that purpose two different approaches are used. Firstly, a one-loop-order calculation up to chiral order O(q{sup 4}) including pions and nucleons as degrees of freedom, is performed to describe the energy dependence of the reactions over a large range. To improve the dependence on the virtuality of the photon in PEP, in a second approach vector mesons are included as explicit degrees of freedom. The latter calculation includes one-loop contributions up to chiral order O(q{sup 3}). Only three of the four physical processes of PPP and PEP can be accessed experimentally. These reactions are measured at several different facilities, e.g. Mainz, Bonn, or Saskatoon. The data obtained there are used to explore the limits of chiral perturbation theory. This thesis is the first complete manifestly Lorentz-invariant calculation up to order O(q{sup 4}) for PPP and PEP, and the first calculation ever for these processes including vector mesons explicitly. Beside the calculation of physical observables, a partial wave decomposition is performed and the most important multipoles are analyzed. They may be extracted from the calculated amplitudes and allow one to examine the nucleon and {delta} resonances. The number of diagrams one has to calculate is very large. In order to handle these expressions, several routines were developed for the computer algebra system Mathematica. For the multipole decomposition, two different programs are used. On the one hand, a modified version of the so-called {chi}MAID has been employed. On the other hand, similar routines were developed for Mathematica. In the end, the different calculations are compared with respect to their applicability to PPP and PEP.

  10. Projective symmetry group classification of chiral spin liquids

    Science.gov (United States)

    Bieri, Samuel; Lhuillier, Claire; Messio, Laura

    2016-03-01

    We present a general review of the projective symmetry group classification of fermionic quantum spin liquids for lattice models of spin S =1 /2 . We then introduce a systematic generalization of the approach for symmetric Z2 quantum spin liquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral Z2 states, we study the subset of U(1) phases variationally in the antiferromagnetic J1-J2-Jd Heisenberg model on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of these phases.

  11. Power Counting Regime of Chiral Effective Field Theory and Beyond

    CERN Document Server

    Hall, J M M; Leinweber, D B

    2010-01-01

    Chiral effective field theory complements numerical simulations of quantum chromodynamics (QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of the power-counting regime (PCR) of chiral effective field theory, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety of renormalization schemes and associated parameters, techniques to identify the PCR where results are independent of the renormalization scheme are established. The nucleon mass is considered as a benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation results are also examined to search for the possible presence of an intrinsic scale which may b...

  12. One loop divergences and anomalies from chiral superfields in supergravity

    CERN Document Server

    Butter, Daniel

    2009-01-01

    We apply the heat kernel method (using Avramidi's non-recursive technique) to the study of the effective action of chiral matter in a complex representation of an arbitrary gauge sector coupled to background U(1) supergravity. This generalizes previous methods, which restricted to 1) real representations of the gauge sector in traditional Poincar\\'e supergravity or 2) vanishing supergravity background. In this new scheme, we identify a classical ambiguity in these theories which mixes the supergravity U(1) with the gauge U(1). At the quantum level, this ambiguity is maintained since the effective action changes only by a local counterterm as one shifts a U(1) factor between the supergravity and gauge sectors. An immediate application of our formalism is the calculation of the one-loop gauge, Kahler, and reparametrization anomalies of chiral matter coupled to minimal supergravity from purely chiral loops. Our approach gives an anomaly whose covariant part is both manifestly supersymmetric and non-perturbative ...

  13. Spontaneous Magnetization of the Integrable Chiral Potts Model

    CERN Document Server

    Au-Yang, Helen

    2010-01-01

    We show how $Z$-invariance in the chiral Potts model provides a strategy to calculate the pair correlation in the general integrable chiral Potts model using only the superintegrable eigenvectors. When the distance between the two spins in the correlation function becomes infinite it becomes the square of the order parameter. In this way, we show that the spontaneous magnetization can be expressed in terms of the inner products of the eigenvectors of the $N$ asymptotically degenerate maximum eigenvalues. Using our previous results on these eigenvectors, we are able to obtain the order parameter as a sum almost identical to the one given by Baxter. This gives the known spontaneous magnetization of the chiral Potts model by an entirely different approach.

  14. Chiral and Deconfining Phase Transitions from Holographic QCD Study

    CERN Document Server

    Fang, Zhen; Li, Danning

    2015-01-01

    A first attempt to accommodate the chiral and deconfining phase transitions of QCD in the bottom-up holographic framework is given. We constrain the relation between dilaton field $\\phi$ and metric warp factor $A_e$ and get several reasonable models in the Einstein-Dilaton system. Using the potential reconstruction approach, we solve the corresponding gravity background. Then we fit the background-related parameters by comparing the equation of state with the two-flavor lattice QCD results. After that we study the temperature dependent behavior of Polyakov loop and chiral condensate under those background solutions. We find that the results are in good agreement with the two-flavor lattice results. All the studies about the equation of state, the Polyakov loop and the chiral condensate signal crossover behavior of the phase transitions, which is consistent with the current understanding on the QCD phase transitions with physical quark mass. Furthermore, the extracted transition temperatures are comparable wit...

  15. The universal quantum driving force to speed up a quantum computation -- The unitary quantum dynamics

    OpenAIRE

    Miao, Xijia

    2011-01-01

    It is shown in the paper that the unitary quantum dynamics in quantum mechanics is the universal quantum driving force to speed up a quantum computation. This assertion supports strongly in theory that the unitary quantum dynamics is the fundamental and universal principle in nature. On the other hand, the symmetric structure of Hilbert space of a composite quantum system is the quantum-computing resource that is not owned by classical computation. A new quantum-computing speedup theory is se...

  16. Lower bounds for communication capacities of two-qudit unitary operations

    OpenAIRE

    Berry, Dominic W.

    2007-01-01

    We show that entangling capacities based on the Jamiolkowski isomorphism may be used to place lower bounds on the communication capacities of arbitrary bipartite unitaries. Therefore, for these definitions, the relations which have been previously shown for two-qubit unitaries also hold for arbitrary dimensions. These results are closely related to the theory of the entanglement-assisted capacity of channels. We also present more general methods for producing ensembles for communication from ...

  17. Can a non-unitary effect be prominent In neutrino oscillation measurements?

    Institute of Scientific and Technical Information of China (English)

    L(U) Lei; WANG Wen-Yu; XIONG zhao-Hua

    2010-01-01

    Subject to neutrino experiments, the mixing matrix of ordinary neutrinos can still have small vi-olation from unitarity. We introduce a quasi-unitary matrix to interpret this violation and propose a natural scheme to parameterize it. A quasi-unitary factor △QF is defined to be measured in neutrino oscillation exper-iments and the numerical results show that the improvement in experimental precision may help us figure out the secret of neutrino mixing.

  18. Dynamically induced robust phonon transport and chiral cooling in an optomechanical system

    CERN Document Server

    Kim, Seunghwi; Taylor, Jacob M; Bahl, Gaurav

    2016-01-01

    The transport of sound and heat, in the form of phonons, has a fundamental material limit: disorder-induced scattering. In electronic and optical settings, introduction of chiral transport - in which carrier propagation exhibits broken parity symmetry - provides robustness against such disorder by preventing elastic backscattering. Here we experimentally demonstrate a path for achieving robust phonon transport even in the presence of material disorder, by dynamically inducing chirality through traveling-wave optomechanical coupling. Using this approach, we demonstrate dramatic optically-induced chiral transport for clockwise and counterclockwise phonons in a symmetric resonator. This induced chirality also enhances isolation from the thermal bath and leads to gain-free reduction of the intrinsic damping of the phonons. Surprisingly, this passive mechanism is also accompanied by a chiral reduction in heat load leading to a novel optical cooling of the mechanics. This technique has the potential to improve upon...

  19. Maximum Rate of Unitary-Weight, Single-Symbol Decodable STBCs

    CERN Document Server

    Karmakar, Sanjay; Rajan, B Sundar

    2011-01-01

    It is well known that the Space-time Block Codes (STBCs) from Complex orthogonal designs (CODs) are single-symbol decodable/symbol-by-symbol decodable (SSD). The weight matrices of the square CODs are all unitary and obtainable from the unitary matrix representations of Clifford Algebras when the number of transmit antennas $n$ is a power of 2. The rate of the square CODs for $n = 2^a$ has been shown to be $\\frac{a+1}{2^a}$ complex symbols per channel use. However, SSD codes having unitary-weight matrices need not be CODs, an example being the Minimum-Decoding-Complexity STBCs from Quasi-Orthogonal Designs. In this paper, an achievable upper bound on the rate of any unitary-weight SSD code is derived to be $\\frac{a}{2^{a-1}}$ complex symbols per channel use for $2^a$ antennas, and this upper bound is larger than that of the CODs. By way of code construction, the interrelationship between the weight matrices of unitary-weight SSD codes is studied. Also, the coding gain of all unitary-weight SSD codes is proved...

  20. Three chiral ionic liquids as additives for enantioseparation in capillary electrophoresis and their comparison with conventional modifiers.

    Science.gov (United States)

    Zhang, Qi; Qi, Xueyong; Feng, Chunlai; Tong, Shanshan; Rui, Mengjie

    2016-09-01

    The combined use of chiral ionic liquids (ILs) and conventional chiral selectors in CE to establish synergistic system has proven to be a convenient and effective approach for enantioseparation. In this work, three amino acid chiral ILs, tetramethylammonium-l-arginine (TMA-l-Arg), tetramethylammonium-l-hydroxyproline (TMA-l-Hyp) and tetramethylammonium-l-isoleucine (TMA-l-Ile), were first applied in CE enantioseparation to investigate their potential synergistic effect with hydroxypropyl-β-cyclodextrin (HP-β-CD). Markedly improved separations were obtained in the chiral ILs/HP-β-CD synergistic systems compared with single HP-β-CD system. Parameters, such as the chiral ILs concentration, HP-β-CD concentration, buffer pH, applied voltage and capillary temperature, were optimized. A systematic comparison of chiral ILs with conventional (commonly used) modifiers was also performed, including the use of achiral ILs, conventional salts and molecular organic solvents. In addition, the chiral configuration of ILs was investigated to demonstrate the existence of synergistic effect between chiral ILs and HP-β-CD. All these results indicate that chiral ILs, as additives for CE chiral separation, has significant superiority over conventional modifiers in certain cases. PMID:27515552

  1. Chiral symmetry in rotating systems

    Science.gov (United States)

    Malik, Sham S.

    2015-08-01

    The triaxial rotating system at critical angular momentum I ≥Iband exhibits two enatiomeric (the left- and right-handed) forms. These enatiomers are related to each other through dynamical chiral symmetry. The chiral symmetry in rotating system is defined by an operator χ ˆ =Rˆy (π) T ˆ, which involves the product of two distinct symmetries, namely, continuous and discrete. Therefore, new guidelines are required for testing its commutation with the system Hamiltonian. One of the primary objectives of this study is to lay down these guidelines. Further, the possible impact of chiral symmetry on the geometrical arrangement of angular momentum vectors and investigation of observables unique to nuclear chiral-twins is carried out. In our model, the angular momentum components (J1, J2, J3) occupy three mutually perpendicular axes of triaxial shape and represent a non-planar configuration. At certain threshold energy, the equation of motion in angular momentum develops a second order phase transition and as a result two distinct frames (i.e., the left- and right-handed) are formed. These left- and right-handed states correspond to a double well system and are related to each other through chiral operator. At this critical angular momentum, the centrifugal and Coriolis interactions lower the barrier in the double well system. The tunneling through the double well starts, which subsequently lifts the degeneracy among the rotational states. A detailed analysis of the behavior of rotational energies, spin-staggering, and the electromagnetic transition probabilities of the resulting twin-rotational bands is presented. The ensuing model results exhibit similarities with many observed features of the chiral-twins. An advantage of our formalism is that it is quite simple and it allows us to pinpoint the understanding of physical phenomenon which lead to chiral-twins in rotating systems.

  2. Triaxial projected shell model study of chiral rotation in odd-odd nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Palit, R., E-mail: palit@tifr.res.in [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005 (India)

    2012-01-20

    Chiral rotation observed in {sup 128}Cs is studied using the newly developed microscopic triaxial projected shell model (TPSM) approach. The observed energy levels and the electromagnetic transition probabilities of the nearly degenerate chiral dipole bands in this isotope are well reproduced by the present model. This demonstrates the broad applicability of the TPSM approach, based on a schematic interaction and angular-momentum projection technique, to explain a variety of low- and high-spin phenomena in triaxial rotating nuclei.

  3. Vacuum structure in a chiral R+R{sup n} modification of pure supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Ferrara, Sergio [Physics Department, Theory Unit, CERN, CH 1211, Geneva 23 (Switzerland); INFN – Laboratori Nazionali di Frascati, Via Enrico Fermi 40, I-00044 Frascati (Italy); Kehagias, Alex [Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens (Greece); Department of Theoretical Physics, 24 quai E. Ansermet, CH-1211, Geneva 4 (Switzerland); Porrati, Massimo [CCPP, Department of Physics, NYU, 4 Washington Pl., New York, NY 10016 (United States)

    2013-11-25

    We discuss an R+R{sup n} class of modified N=1, D=4 supergravity models where the deformation is a monomial R{sup n}|{sub F} in the chiral scalar curvature multiplet R of the “old minimal” auxiliary field formulation. The scalaron and goldstino multiplets are dual to each other in this theory. Since one of them is not dynamical, this theory, as recently shown, cannot be used as the supersymmetric completion of R+R{sup n} gravity. This is confirmed by investigating the scalar potential and its critical points in the dual standard supergravity formulation with a single chiral multiplet with specific Kähler potential and superpotential. We study the vacuum structure of this dual theory and we find that there is always a supersymmetric Minkowski critical point which however is pathological for n⩾3 as it corresponds to a corner (n=3) and a cusp (n>3) point of the potential. For n>3 an anti-de Sitter regular supersymmetric vacuum emerges. As a result, this class of models are not appropriate to describe inflation. We also find the mass spectrum and we provide a general formula for the masses of the scalars of a chiral multiplet around the anti-de Sitter critical point and their relation to osp(1,4) unitary representations.

  4. On the chirality of the SM and the fermion content of GUTs

    Directory of Open Access Journals (Sweden)

    Renato M. Fonseca

    2015-08-01

    Full Text Available The Standard Model (SM is a chiral theory, where right- and left-handed fermion fields transform differently under the gauge group. Extra fermions, if they do exist, need to be heavy otherwise they would have already been observed. With no complex mechanisms at work, such as confining interactions or extra-dimensions, this can only be achieved if every extra right-handed fermion comes paired with a left-handed one transforming in the same way under the Standard Model gauge group, otherwise the new states would only get a mass after electroweak symmetry breaking, which would necessarily be small (∼100 GeV. Such a simple requirement severely constrains the fermion content of Grand Unified Theories (GUTs. It is known for example that three copies of the representations 5¯+10 of SU(5 or three copies of the 16 of SO(10 can reproduce the Standard Model's chirality, but how unique are these arrangements? In a systematic way, this paper looks at the possibility of having non-standard mixtures of fermion GUT representations yielding the correct Standard Model chirality. Family unification is possible with large special unitary groups — for example, the 171 representation of SU(19 may decompose as 3(16+120+3(1 under SO(10.

  5. Chiral Thirring–Wess model

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Anisur, E-mail: anisur.rahman@saha.ac.in

    2015-10-15

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.

  6. Tactoids of chiral liquid crystals

    Science.gov (United States)

    Palacio-Betancur, Viviana; Villada-Gil, Stiven; Zhou, Ye; Armas-Pérez, Julio C.; de Pablo, Juan José; Hernández-Ortiz, Juan Pablo

    The phase diagram of chiral liquid crystals confined in ellipsoids is obtained, by following a theoretically informed Monte Carlo relaxation of the tensor alignment field Q. The free energy of the system is described by a functional in the framework of the Landau-de Gennes formalism. This study also includes the effect of anchoring strength, curvature, and chirality of the system. In the low chirality region of the phase diagram we found the twist bipolar (BS) phase and some cholesteric phases such as the radial spherical structure (RSS), twist cylinder (TC) and double twist cylinder (DTC) whose axis of rotation is not necessarily aligned with the major axis of the geometry. For high chirality scenarios, the disclination lines are twisted or bent near the surface preventing the formation of symmetric networks of defects, although an hexagonal pattern is formed on the surface which might serve as open sites for collocation of colloids. By analyzing the free energies of isochoric systems, prolate geometries tend to be more favorable for high chirality and low anchoring conditions. Universidad Nacional de Colombia Ph.D. grant and COLCIENCIAS under the Contract No. 110-165-843-748. CONACYT for Postdoctoral Fellowships Nos. 186166 and 203840.

  7. Chiral gap effect in curved space

    CERN Document Server

    Flachi, Antonino

    2014-01-01

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  8. Unitary Transformations in the Quantum Model for Conceptual Conjunctions and its Application to Data Representation

    Directory of Open Access Journals (Sweden)

    Tomas eVeloz

    2015-11-01

    Full Text Available Quantum models of concept combinations have been successful in representing various experimental situations that cannot be accommodated by traditional models based on classical probability or fuzzy set theory. In many cases, the focus has been on producing a representation that fits experimental results to validate quantum models. However, these representations are not always consistent with the cognitive modeling principles. Moreover, some important issues related to the representation of concepts such as the dimensionality of the realization space, the uniqueness of solutions, and the compatibility of measurements, have been overlooked.In this paper, we provide a dimensional analysis of the realization space for the two-sector Fock space model for conjunction of concepts focusing on the first and second sectors separately. We then introduce various representation of concepts that arise from the use of unitary operators in the realization space. In these concrete representations, a pair of concepts and their combination are modeled by a single conceptual state, and by a collection of exemplar-dependent operators. Therefore, they are consistent with cognitive modeling principles. %Moreover, we show that each representation is unique up to change of basis. This framework not only provides a uniform approach to model an entire data set, but, because all measurement operators are expressed in the same basis, allows us to address the question of compatibility of measurements. In particular, we present evidence that it may be possible to predict non-commutative effects from partial measurements of conceptual combinations.

  9. Field induced spin chirality and chirality switching in magnetic multilayers

    Science.gov (United States)

    Tartakovskaya, Elena V.

    2015-05-01

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman-Kittel-Kasuya-Yosida and the Dsyaloshinsky-Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness.

  10. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  11. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    1998-01-01

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral powe

  12. Neutrino Oscillation Induced by Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei

    2009-01-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  13. Shear Viscosity of Turbulent Chiral Plasma

    CERN Document Server

    Kumar, Avdhesh; Das, Amita; Kaw, P K

    2016-01-01

    It is well known that the difference between the chemical potentials of left-handed and right-handed particles in a parity violating (chiral) plasma can lead to an instability. We show that the chiral instability may drive turbulent transport. Further we estimate the anomalous viscosity of chiral plasma arising from the enhanced collisionality due to turbulence.

  14. Solutions of ward's modified chiral model

    International Nuclear Information System (INIS)

    We discuss the adaptation of Uhlenbeck's method of solving the chiral model in 2 Euclidean dimensions to Ward's modified chiral model in (2+1) dimensions. We show that the method reduces the problem of solving the second-order partial differential equations for the chiral field to solving a sequence of first-order partial differential equations for time dependent projector valued fields

  15. Recasting Communication Theory and Research: A Cybernetic Approach.

    Science.gov (United States)

    Hill, Gary A.

    The author's main concern is to provide a research format which will supply a unitary conception of communication. The wide range of complex topics and variety of concepts embraced by communication theory and the rather disparate set of phenomena encompassed by communication research create this need for a unitary study approach capable of linking…

  16. Chiral cardiovascular drugs: an overview.

    Science.gov (United States)

    Ranade, Vasant V; Somberg, John C

    2005-01-01

    Stereochemistry in drug molecules is rapidly becoming an important aspect in drug research, design, and development. Recently, individual stereoisomers of drug molecules with asymmetric centers such as fexofenadine, cetirizine, verapamil, fluoxetine, levalbutarol, and amphetamine, for example, have been separated and developed as individual drugs. These stereoisomers have different therapeutic activity, and each isomer has contributed differently with respect to its formulation's pharmacologic activity, side effects, and toxicity. The present overview discusses chirality among a select group of cardiovascular drugs, their stereochemical synthesis/preparation, isolation techniques using chiral chromatography, methods for confirmation of their enantiomeric purity, pharmacodynamics, and pharmacokinetics. Chirality has been visualized as an important factor in cardiovascular research. It is also becoming evident in other areas of therapeutics.

  17. Synthetic Applications of Chiral Furanboronate

    Institute of Scientific and Technical Information of China (English)

    CHAN; KinFai

    2001-01-01

    We recently uncovered that consecutive reactions of chiral furfural-boronate 1 with a lithium alkoxide and a nucleophile led to the formation of alcohols 2 with good diastereoselection in favor of S-configuration at the newly generated chiral carbon. In addition, it was also found that 2a and 2b were chromatographically separable on a silica gel column. This reaction is believed to involve a tetrahedral borate intermediate, as can be substantiated by 11BNMR spectroscopic studies. Chiral furanmethanolboronates 2a(or 2b) underwent a palladium-catalyzed Suzuki coupling to form enantiomerically pure furans 3, which can be further converted to the synthetically useful hydroxypyranones 4.1,2,3 In addition, Mukaiyama reaction of 1 also led to chromatographically separable diastereomeric aldol-products. The scope and limitation of these conversions will be discussed.  ……

  18. Chiral interaction and biomolecular evolution

    International Nuclear Information System (INIS)

    Recent developments in the concept of chiral interaction open now new options and dynamical possibilities for biomolecules which have so far been overlooked. A few of these possibilities are mentioned, such as the control mechanism of enzymatic activity and the role played by non-ergodicity in evolutionary processes. It is shown that chiral interaction, being a surface phenomenon, does not obey Barron's symmetry constraints, which are suitable for force fields present in bulk interactions. In particular, the situation at the ocean-air surface in the prebiotic era is described, as well as the possible role played by chiral interaction in conjunction with the terrestrial magnetic field normal to the ocean surface, which could have lead to a process of deracernization at the ocean-air interface. (author)

  19. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul;

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...

  20. Novel Chiral Auxiliaries of BIAZOLs

    Institute of Scientific and Technical Information of China (English)

    CHEN; Arh-Hwang

    2001-01-01

    Asymmetric catalysis is one of the most challenging and formidable endeavor in organic synthesis. The development of chiral auxiliaries is a key in the asymmetric catalysis. Azulenoids, a parent structure of bicyclo[5.3.0]decapentaene with 10 πelectrons, are useful as dye materials, medical treatment of inflammation and hypertension, and the development of liquid crystals. In continuing to investigate synthetic application of azulenoids, we have studied to develop novel chiral auxiliaries of BIAZOLs. The BIAZOLs were synthesized from dicyclopentadiene and characterized using spectroscopies.  ……

  1. Novel Chiral Auxiliaries of BIAZOLs

    Institute of Scientific and Technical Information of China (English)

    CHEN Arh-Hwang; YUAN Shou-Bin; CHIU Shu-Ching

    2001-01-01

    @@ Asymmetric catalysis is one of the most challenging and formidable endeavor in organic synthesis. The development of chiral auxiliaries is a key in the asymmetric catalysis. Azulenoids, a parent structure of bicyclo[5.3.0]decapentaene with 10 πelectrons, are useful as dye materials, medical treatment of inflammation and hypertension, and the development of liquid crystals. In continuing to investigate synthetic application of azulenoids, we have studied to develop novel chiral auxiliaries of BIAZOLs. The BIAZOLs were synthesized from dicyclopentadiene and characterized using spectroscopies.

  2. Chiral Baryon with Quantized Pions

    CERN Document Server

    McNeil, J A

    1993-01-01

    We study a hybrid chiral model for the nucleon based on the linear sigma model with explicit quarks. We solve the model using a Fock-space configuration consisting of three quarks plus three quarks and a pion as the ground state ansatz in place of the ``hedgehog'' ansatz. We minimize the expectation value of the chiral hamiltonian in this ground state configuration and solve the resulting equations for nucleon quantum numbers. We calculate the canonical set of nucleon observables and compare with previous work.

  3. Strange chiral nucleon form factors

    CERN Document Server

    Hemmert, T R; Meißner, Ulf G; Hemmert, Thomas R.; Kubis, Bastian; Meissner, Ulf-G.

    1999-01-01

    We investigate the strange electric and magnetic form factors of the nucleon in the framework of heavy baryon chiral perturbation theory to third order in the chiral expansion. All counterterms can be fixed from data. In particular, the two unknown singlet couplings can be deduced from the parity-violating electron scattering experiments performed by the SAMPLE and the HAPPEX collaborations. Within the given uncertainties, our analysis leads to a small and positive electric strangeness radius, $ = (0.05 \\pm 0.16) fm^2$. We also deduce the consequences for the upcoming MAMI A4 experiment.

  4. Analysis of Reduction in Area in MIMO Receivers Using SQRD Method and Unitary Transformation with Maximum Likelihood Estimation (MLE and Minimum Mean Square Error Estimation (MMSE Techniques

    Directory of Open Access Journals (Sweden)

    Sabitha Gauni

    2014-03-01

    Full Text Available In the field of Wireless Communication, there is always a demand for reliability, improved range and speed. Many wireless networks such as OFDM, CDMA2000, WCDMA etc., provide a solution to this problem when incorporated with Multiple input- multiple output (MIMO technology. Due to the complexity in signal processing, MIMO is highly expensive in terms of area consumption. In this paper, a method of MIMO receiver design is proposed to reduce the area consumed by the processing elements involved in complex signal processing. In this paper, a solution for area reduction in the Multiple input multiple output(MIMO Maximum Likelihood Receiver(MLE using Sorted QR Decomposition and Unitary transformation method is analyzed. It provides unified approach and also reduces ISI and provides better performance at low cost. The receiver pre-processor architecture based on Minimum Mean Square Error (MMSE is compared while using Iterative SQRD and Unitary transformation method for vectoring. Unitary transformations are transformations of the matrices which maintain the Hermitian nature of the matrix, and the multiplication and addition relationship between the operators. This helps to reduce the computational complexity significantly. The dynamic range of all variables is tightly bound and the algorithm is well suited for fixed point arithmetic.

  5. Improved description of the πN-scattering phenomenology in covariant baryon chiral perturbation theory

    Directory of Open Access Journals (Sweden)

    Alarcón Jose Manuel

    2014-06-01

    Full Text Available We highlight some of the recent advances in the application of chiral effective field theory (chiral EFT with baryons to the πN scattering process. We recall some problems that cast doubt on the applicability of chiral EFT to πN and show how the relativistic formalism, once the Δ(1232-resonance is included as an explicit degree of freedom, solves these issues. Finally it is shown how this approach can be used to extract the σ-terms from phenomenological information.

  6. Scaling laws in chiral hydrodynamic turbulence

    CERN Document Server

    Yamamoto, Naoki

    2016-01-01

    We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.

  7. Chiral magnetic effect in the PNJL model

    CERN Document Server

    Fukushima, Kenji; Gatto, Raoul

    2010-01-01

    We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential $\\mu_5$ which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of $\\mu_5$ on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.

  8. K stability and stability of chiral ring

    CERN Document Server

    Collins, Tristan C; Yau, Shing-Tung

    2016-01-01

    We define a notion of stability for chiral ring of four dimensional N=1 theory by introducing test chiral rings and generalized a maximization. We conjecture that a chiral ring is the chiral ring of a superconformal field theory if and only if it is stable. We then study N=1 field theory derived from D3 branes probing a three-fold singularity X, and show that the K stability which implies the existence of Ricci-flat conic metric on X is equivalent to the stability of chiral ring of the corresponding field theory.

  9. Scaling laws in chiral hydrodynamic turbulence

    Science.gov (United States)

    Yamamoto, Naoki

    2016-06-01

    We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry, only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.

  10. Properties of hyperons in chiral perturbation theory

    CERN Document Server

    Camalich, J Martin; Alvarez-Ruso, L; Vacas, M J Vicente

    2009-01-01

    The development of chiral perturbation theory in hyperon phenomenology has been troubled due to power-counting subtleties and to a possible slow convergence. Furthermore, the presence of baryon-resonances, e.g. the lowest-lying decuplet, complicates the approach, and the inclusion of their effects may become necessary. Recently, we have shown that a fairly good convergence is possible using a renormalization prescription of the loop-divergencies which recovers the power counting, is covariant and consistent with analyticity. Moreover, we have systematically incorporated the decuplet resonances taking care of both power-counting and $consistency$ problems. A model-independent understanding of diferent properties including the magnetic moments of the baryon-octet, the electromagnetic structure of the decuplet resonances and the hyperon vector coupling $f_1(0)$, has been successfully achieved within this approach. We will briefly review these developments and stress the important role they play for an accurate d...

  11. Secure two-party quantum evaluation of unitaries against specious adversaries

    CERN Document Server

    Dupuis, Frédéric; Salvail, Louis

    2010-01-01

    We describe how any two-party quantum computation, specified by a unitary which simultaneously acts on the registers of both parties, can be privately implemented against a quantum version of classical semi-honest adversaries that we call specious. Our construction requires two ideal functionalities to garantee privacy: a private SWAP between registers held by the two parties and a classical private AND-box equivalent to oblivious transfer. If the unitary to be evaluated is in the Clifford group then only one call to SWAP is required for privacy. On the other hand, any unitary not in the Clifford requires one call to an AND-box per R-gate in the circuit. Since SWAP is itself in the Clifford group, this functionality is universal for the private evaluation of any unitary in that group. SWAP can be built from a classical bit commitment scheme or an AND-box but an AND-box cannot be constructed from SWAP. It follows that unitaries in the Clifford group are to some extent the easy ones. We also show that SWAP cann...

  12. Matrix elements and duality for type 2 unitary representations of the Lie superalgebra gl(m|n)

    International Nuclear Information System (INIS)

    The characteristic identity formalism discussed in our recent articles is further utilized to derive matrix elements of type 2 unitary irreducible gl(m|n) modules. In particular, we give matrix element formulae for all gl(m|n) generators, including the non-elementary generators, together with their phases on finite dimensional type 2 unitary irreducible representations which include the contravariant tensor representations and an additional class of essentially typical representations. Remarkably, we find that the type 2 unitary matrix element equations coincide with the type 1 unitary matrix element equations for non-vanishing matrix elements up to a phase

  13. Matrix elements and duality for type 2 unitary representations of the Lie superalgebra gl(m|n)

    Science.gov (United States)

    Werry, Jason L.; Gould, Mark D.; Isaac, Phillip S.

    2015-12-01

    The characteristic identity formalism discussed in our recent articles is further utilized to derive matrix elements of type 2 unitary irreducible gl(m|n) modules. In particular, we give matrix element formulae for all gl(m|n) generators, including the non-elementary generators, together with their phases on finite dimensional type 2 unitary irreducible representations which include the contravariant tensor representations and an additional class of essentially typical representations. Remarkably, we find that the type 2 unitary matrix element equations coincide with the type 1 unitary matrix element equations for non-vanishing matrix elements up to a phase.

  14. Thermal chiral vortical and magnetic waves: new excitation modes in chiral fluids

    CERN Document Server

    Kalaydzhyan, Tigran

    2016-01-01

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark-gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in a external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density, the chiral vortical and chiral magnetic waves. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the excitation reduces to a charge diffusion mode or is completely absent. We also correct the dispersion relation for the chiral magnetic wave.

  15. Chiral Cosmological Models: Dark Sector Fields Description

    CERN Document Server

    Chervon, S V

    2014-01-01

    The present review is devoted to a Chiral Cosmological Model as the self-gravitating nonlinear sigma model with the potential of (self)interactions employed in cosmology. The chiral cosmological model has successive applications in descriptions of the inflationary epoch of the Universe evolution; the present accelerated expansion of the Universe also can be described by the chiral fields multiplet as the dark energy in wide sense. To be more illustrative we are often addressed to the two-component chiral cosmological model. Namely, the two-component chiral cosmological model describing the phantom field with interaction to a canonical scalar field is analyzed in details. New generalized model of quintom character is proposed and exact solutions are founded out. In the review we represented the perturbation theory for chiral cosmological model with the aim to describe the structure formation using the progress achieved in the inflation theory. It was shown that cosmological perturbations from chiral fields can...

  16. Chiral interactions of light induced by low-dimensional dynamics in complex potentials

    CERN Document Server

    Yu, Sunkyu; Piao, Xianji; Min, Bumki; Park, Namkyoo

    2014-01-01

    Chirality is a universal feature in nature, as observed in fermion interactions and DNA helicity. Much attention has been given to the chiral interactions of light, not only regarding its physical interpretation but also focusing on intriguing phenomena in excitation, absorption, generation, and refraction. Although recent progress in metamaterials and 3-dimensional writing technology has spurred artificial enhancements of optical chirality, most approaches are founded on the same principle of the mixing of electric and magnetic responses. However, due to the orthogonal form of electric and magnetic fields, intricate designs are commonly required for mixing. Here, we propose an alternative route to optical chirality, exploiting the nonmagnetic mixing of amplifying and decaying electric modes based on non-Hermitian theory. We show that a 1-dimensional helical eigenmode can exist singularly in a complex anisotropic material, in sharp contrast to the 2-dimensional eigenspaces employed in previous approaches. We ...

  17. Partially conserved axial-vector current and model chiral field theories in nuclear physics

    International Nuclear Information System (INIS)

    We comment on the relation between the two standard approaches to chiral symmetry--namely, the current algebra/partially conserved axial-vector current approach and the chiral Lagrangian method--in a manner intended to clarify recent and probable future applications of this symmetry in nuclear physics. Specifically, we show that in explicit chiral field theories the canonical πN scattering amplitude does not have the famed ''Adler zero'' unless partial conservation of axial-vector current holds as an operator equation. This implies that there are a number of familiar chiral models in which the ''Adler self-consistency'' condition does not apply to the canonical pion field. Among the problems of current interest for which our remarks are relevant are the studies of the pion-nucleus optical potential, pion condensation, and the attempts to formulate a model field theory having both reasonable nuclear saturation and good low energy pion phenomenology

  18. The chiral symplectic universality class

    OpenAIRE

    Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi

    2003-01-01

    We report a numerical investigation of localization in the SU(2) model without diagonal disorder. At the band center, chiral symmetry plays an important role. Our results indicate that states at the band center are critical. States away from the band center but not too close to the edge of the spectrum are metallic as expected for Hamiltonians with symplectic symmetry.

  19. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    Juan Mañes; Raymond Stora; Bruno Zumino

    2012-06-01

    The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. Some of the techniques used in the study of the anomaly are improved or generalized, including a systematic way of generating towers of ‘descent equations’.

  20. Accurate and robust unitary transformation of a high-dimensional quantum system

    CERN Document Server

    Anderson, B E; Riofrío, C A; Deutsch, I H; Jessen, P S

    2014-01-01

    Quantum control in large dimensional Hilbert spaces is essential for realizing the power of quantum information processing. For closed quantum systems the relevant input/output maps are unitary transformations, and the fundamental challenge becomes how to implement these with high fidelity in the presence of experimental imperfections and decoherence. For two-level systems (qubits) most aspects of unitary control are well understood, but for systems with Hilbert space dimension d>2 (qudits), many questions remain regarding the optimal design of control Hamiltonians and the feasibility of robust implementation. Here we show that arbitrary, randomly chosen unitary transformations can be efficiently designed and implemented in a large dimensional Hilbert space (d=16) associated with the electronic ground state of atomic 133Cs, achieving fidelities above 0.98 as measured by randomized benchmarking. Generalizing the concepts of inhomogeneous control and dynamical decoupling to d>2 systems, we further demonstrate t...

  1. DOA estimation for monostatic MIMO radar based on unitary root-MUSIC

    Science.gov (United States)

    Wang, Wei; Wang, Xianpeng; Li, Xin; Song, Hongru

    2013-11-01

    Direction of arrival (DOA) estimation is an important issue for monostatic MIMO radar. A DOA estimation method for monostatic MIMO radar based on unitary root-MUSIC is presented in this article. In the presented method, a reduced-dimension matrix is first utilised to transform the high dimension of received signal data into low dimension one. Then, a low-dimension real-value covariance matrix is obtained by forward-backward (FB) averaging and unitary transformation. The DOA of targets can be achieved by unitary root-MUSIC. Due to the FB averaging of received signal data and the eigendecomposition of the real-valued matrix covariance, the proposed method owns better angle estimation performance and lower computational complexity. The simulation results of the proposed method are presented and the performances are investigated and discussed.

  2. A note on local unitary equivalence of isotropic-like states

    Science.gov (United States)

    Zhang, Ting-Gui; Hua, Bo-Bo; Li, Ming; Zhao, Ming-Jing; Yang, Hong

    2015-12-01

    We consider the local unitary equivalence of a class of quantum states in a bipartite case and a multipartite case. The necessary and sufficient condition is presented. As special cases, the local unitary equivalent classes of isotropic state and Werner state are provided. Then we study the local unitary similar equivalence of this class of quantum states and analyze the necessary and sufficient condition. Project supported by the National Natural Science Foundation of China (Grant Nos. 11401032, 61473325, 11501153, 11105226, 11275131, and 11401106), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 15CX08011A and 24720122013), the Natural Science Foundation of Hainan Province, China (Grant Nos. 20151005 and 20151010), and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry.

  3. The temperature dependence of the chiral condensate in the Schwinger model with Matrix Product States

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Ba nuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics

    2014-12-15

    We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.

  4. The temperature dependence of the chiral condensate in the Schwinger model with Matrix Product States

    CERN Document Server

    Saito, Hana; Cichy, Krzysztof; Cirac, J Ignacio; Jansen, Karl

    2014-01-01

    We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.

  5. Neutral kaon mixing beyond the standard model with nf=2+1 chiral fermions

    CERN Document Server

    Boyle, P A; Hudspith, R J

    2012-01-01

    We compute the hadronic matrix elements of the four-quark operators needed for the study of neutral kaon mixing beyond the Standard Model (SM). We use nf=2+1 flavours of domain-wall fermions (DWF) which exhibit good chiral-flavour symmetry. The renormalization is performed non-perturbatively through the RI-MOM scheme and our results are converted perturbatively to MSbar. The computation is performed on a single lattice spacing a=0.086 fm with a lightest unitary pion mass of 290 MeV. The various systematic errors, including the discretisation effects, are estimated and discussed. Our results confirm a previous quenched study, where large ratios of non-SM to SM matrix elements were obtained.

  6. Theory of Magnetic Edge States in Chiral Graphene Nanoribbons

    Science.gov (United States)

    Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven

    2011-03-01

    Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.

  7. An Anderson-like model of the QCD chiral transition

    Science.gov (United States)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  8. 2-D DOA Estimation Based on Unitary-ESPRIT Algorithm%基于Unitary-ESPRIT算法的二维DOA估计

    Institute of Scientific and Technical Information of China (English)

    张远安; 董国; 张艳艳

    2013-01-01

    An Unitary ESPRIT algorithm for the estimation of Direction-of-arrival angles is proposed,and the receiving array is a planar array with symmetrically distributed sensors. Different from the 2-D MUSIC algorithm,2-D Root MUSIC algorithm and 2-D ESPRIT algorithm,the 2-D Unitary ESPRIT algorithm converts the complex matrix into a real one,which makes the calculation easily and reduces the time for the estimation of DOAs. At the same time,it enhances the accuracy of the estimation of DOAs. In briefly,the 2-D Unitary ESPRIT algorithm is an effective method for the estimation of DOAs.%  提出了一种采用酉ESPRIT(Unitary-Estimation of Signal Parameters via Rotational Invariant Technique,U-nitary-ESPRIT)算法对目标的二维波达方向(Direction-of-Arrival,DOA)进行估计,接收信号模型为中心对称的平面阵。与二维MUSIC(Multiple Signal Classification)算法、二维求根MUSIC算法、二维ESPRIT算法不同的是,该算法将复矩阵运算转化为实矩阵计算,简化了运算复杂程度,并且目标的DOA估计精度也相应的得到提高,是一种比较高效的DOA估计算法。

  9. Matrix elements for type 1 unitary irreducible representations of the Lie superalgebra gl(m|n)

    International Nuclear Information System (INIS)

    Using our recent results on eigenvalues of invariants associated to the Lie superalgebra gl(m|n), we use characteristic identities to derive explicit matrix element formulae for all gl(m|n) generators, particularly non-elementary generators, on finite dimensional type 1 unitary irreducible representations. We compare our results with existing works that deal with only subsets of the class of type 1 unitary representations, all of which only present explicit matrix elements for elementary generators. Our work therefore provides an important extension to existing methods, and thus highlights the strength of our techniques which exploit the characteristic identities

  10. The second law of thermodynamics under unitary evolution and external operations

    International Nuclear Information System (INIS)

    The von Neumann entropy cannot represent the thermodynamic entropy of equilibrium pure states in isolated quantum systems. The diagonal entropy, which is the Shannon entropy in the energy eigenbasis at each instant of time, is a natural generalization of the von Neumann entropy and applicable to equilibrium pure states. We show that the diagonal entropy is consistent with the second law of thermodynamics upon arbitrary external unitary operations. In terms of the diagonal entropy, thermodynamic irreversibility follows from the facts that quantum trajectories under unitary evolution are restricted by the Hamiltonian dynamics and that the external operation is performed without reference to the microscopic state of the system

  11. Reduced Dynamics from the Unitary Group to Some Flag Manifolds : Interacting Matrix Riccati Equations

    CERN Document Server

    Fujii, Kazuyuki

    2008-01-01

    In this paper we treat the time evolution of unitary elements in the N level system and consider the reduced dynamics from the unitary group U(N) to flag manifolds of the second type (in our terminology). Then we derive a set of differential equations of matrix Riccati types interacting with one another and present an important problem on a nonlinear superposition formula that the Riccati equation satisfies. Our result is a natural generalization of the paper {\\bf Chaturvedi et al} (arXiv : 0706.0964 [quant-ph]).

  12. The second law of thermodynamics under unitary evolution and external operations

    Energy Technology Data Exchange (ETDEWEB)

    Ikeda, Tatsuhiko N., E-mail: ikeda@cat.phys.s.u-tokyo.ac.jp [Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Physics Department, Boston University, Boston, MA 02215 (United States); Sakumichi, Naoyuki [Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Polkovnikov, Anatoli [Physics Department, Boston University, Boston, MA 02215 (United States); Ueda, Masahito [Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2015-03-15

    The von Neumann entropy cannot represent the thermodynamic entropy of equilibrium pure states in isolated quantum systems. The diagonal entropy, which is the Shannon entropy in the energy eigenbasis at each instant of time, is a natural generalization of the von Neumann entropy and applicable to equilibrium pure states. We show that the diagonal entropy is consistent with the second law of thermodynamics upon arbitrary external unitary operations. In terms of the diagonal entropy, thermodynamic irreversibility follows from the facts that quantum trajectories under unitary evolution are restricted by the Hamiltonian dynamics and that the external operation is performed without reference to the microscopic state of the system.

  13. Study of optical techniques for the Ames unitary wind tunnel, part 7

    Science.gov (United States)

    Lee, George

    1993-01-01

    A summary of optical techniques for the Ames Unitary Plan wind tunnels are discussed. Six optical techniques were studied: Schlieren, light sheet and laser vapor screen, angle of attack, model deformation, infrared imagery, and digital image processing. The study includes surveys and reviews of wind tunnel optical techniques, some conceptual designs, and recommendations for use of optical methods in the Ames Unitary Plan wind tunnels. Particular emphasis was placed on searching for systems developed for wind tunnel use and on commercial systems which could be readily adapted for wind tunnels. This final report is to summarize the major results and recommendations.

  14. Classical 1D maps, quantum graphs and ensembles of unitary matrices

    Energy Technology Data Exchange (ETDEWEB)

    Pakonski, Prot [Uniwersytet Jagiellonski, Instytut Fizyki im. M. Smoluchowskiego, Cracow (Poland)]. E-mail: pakonski@if.uj.edu.pl; Zyczkowski, Karol; Kus, Marek [Centrum Fizyki Teoretycznej PAN, Warsaw (Poland)]. E-mails: karol@cft.edu.pl; marek@cft.edu.pl

    2001-10-26

    We study a certain class of classical one-dimensional piecewise linear maps. For these systems we introduce an infinite family of Markov partitions in equal cells. The symbolic dynamics generated by these systems is described by bi-stochastic (doubly stochastic) matrices. We analyse the structure of graphs generated from the corresponding symbolic dynamics. We demonstrate that the spectra of quantized graphs corresponding to the regular classical systems have locally Poissonian statistics, while quantized graphs derived from classically chaotic systems display statistical properties characteristic of the circular unitary ensemble, even though the corresponding unitary matrices are sparse. (author)

  15. On the unitary representations of a class of N=4 superconformal algebras

    Energy Technology Data Exchange (ETDEWEB)

    Guenaydin, M.; Petersen, J.L.; Taormina, A.; Proeyen, A. van

    1989-08-14

    We derive properties of unitary highest weight representations of the N=4 superconformal algebras in 2 dimensions, characterized by two SU(2) Kac-Moody subalgebras. For the range 3 /le/ c < 6 we can prove that we have constructed all unitary highest weight representations. These reduce in N=2 to the discrete series. For other values of the parameters we derive bounds on the values of h, and we conjecture that these are complete. This is motivated by explicit constructions of representations for various values of the parameters. For the so-called massless representations we do indeed prove that our treatment is complete. (orig.).

  16. On the unitary representations of a class of N = 4 superconformal algebras

    Science.gov (United States)

    Günaydin, M.; Petersen, J. L.; Taormina, A.; Van Proeyen, A.

    1989-08-01

    We derive properties of unitary highest weight representations of the N = 4 superconformal algebras in 2 dimensions, characterized by two overlineSU(2)Kač-Moody subalgebras. For the range 3 ⩽ c < 6 we can prove that we have constructed all unitary highest weight representations. These reduce in N = 2 to the discrete series. For other values of the parameters we derive bounds on the values of h, and we conjecture that these are complete. This is motivated by explicit constructions of representations for various values of the parameters. For the so-called massless representations we do indeed prove that our treatment is complete.

  17. On Parametrization of the Linear GL(4,C) and Unitary SU(4) Groups in Terms of Dirac Matrices

    Science.gov (United States)

    Red'Kov, Victor M.; Bogush, Andrei A.; Tokarevskaya, Natalia G.

    2008-02-01

    Parametrization of 4 × 4-matrices G of the complex linear group GL(4,C) in terms of four complex 4-vector parameters (k,m,n,l) is investigated. Additional restrictions separating some subgroups of GL(4,C) are given explicitly. In the given parametrization, the problem of inverting any 4 × 4 matrix G is solved. Expression for determinant of any matrix G is found: det G = F(k,m,n,l). Unitarity conditions G+ = G-1 have been formulated in the form of non-linear cubic algebraic equations including complex conjugation. Several simplest solutions of these unitarity equations have been found: three 2-parametric subgroups G1, G2, G3 - each of subgroups consists of two commuting Abelian unitary groups; 4-parametric unitary subgroup consis! ting of a product of a 3-parametric group isomorphic SU(2) and 1-parametric Abelian group. The Dirac basis of generators Λk, being of Gell-Mann type, substantially differs from the basis λi used in the literature on SU(4) group, formulas relating them are found - they permit to separate SU(3) subgroup in SU(4). Special way to list 15 Dirac generators of GL(4,C) can be used {Λk} = {μiÅνjÅ(μiVνj = KÅL ÅM )}, which permit to factorize SU(4) transformations according to S = eiaμ eibνeikKeilLeimM, where two first factors commute with each other and are isomorphic to SU(2) group, the three last ones are 3-parametric groups, each of them consisting of three Abelian commuting unitary subgroups. Besides, the structure of fifteen Dirac matrices Λk permits to separate twenty 3-parametric subgroups in SU(4) isomorphic to SU(2); those subgroups might be used as bigger elementary blocks in constructing of a general transformation SU(4). It is shown how one can specify the present approach for the pseudounitary group SU(2,2) and SU(3,1).

  18. Chiral extraction of ketoprofen enantiomers with chiral selector tartaric esters

    Institute of Scientific and Technical Information of China (English)

    ZHOU Dan; LIU Jia-jia; TANG Ke-wen; HUANG Ke-long

    2007-01-01

    Distribution behavior of ketoprofen enantiomers was examined in methanol aqueous and organic solvent mixture containing tartaric esters. The influence of length of alkyl chain of tartaric esters, concentration of L-tartaric esters and methanol aqueous, kind of organic solvent on partition ratio and separation factors was investigated. The results show that L-tartaric and D-tartaric esters have different chiral recognition abilities. S-ketoprofen is easily extracted by L-tartaric esters, and R-ketoprofen is easily extracted by D-tartaric esters. L-tartaric esters form more stable diastereomeric complexes with S-enantiomer than that with R-enantiomer. This distribution behavior is consistent with chiral recognition mechanism. With the increase of the concentration of tartaric ester from 0 to 0.3 mol/L, partition coefficient K and separation factor α increase. Also, the kind of organic solvent and the concentration of the methanol aqueous have significant influence on K and α.

  19. Molecular chirality and chiral capsule-type dimer formation of cyclic triamides via hydrogen-bonding interactions.

    Science.gov (United States)

    Fujimoto, Noriko; Matsumura, Mio; Azumaya, Isao; Nishiyama, Shizuka; Masu, Hyuma; Kagechika, Hiroyuki; Tanatani, Aya

    2012-05-18

    Chiral properties of bowl-shaped cyclic triamides bearing functional groups with hydrogen-bonding ability were examined. Chiral induction of cyclic triamide 3a was observed by addition of chiral amine in solution, and chiral separation was achieved by simple crystallization to afford chiral capsule-type dimer structure of 4a.

  20. Holography, chiral Lagrangian and form factor relations

    CERN Document Server

    Zuo, Fen

    2013-01-01

    We perform a detailed study of mesonic properties in a class of holographic models of QCD, which is described by the Yang-Mills plus Chern-Simons action. By decomposing the 5 dimensional gauge field into resonances and integrating out the massive ones, we reproduce the Chiral Perturbative Theory Lagrangian up to ${\\cal O}(p^6)$ and obtain all the relevant low energy constants (LECs). The numerical predictions of the LECs show minor model dependence, and agree reasonably with the determinations from other approaches. Interestingly, various model-independent relations appear among them. Some of these relations are found to be the large-distance limits of universal relations between form factors of the anomalous and even-parity sectors of QCD.

  1. Origin of resonances in chiral dynamics

    CERN Document Server

    Hyodo, Tetsuo; Hosaka, Atsushi

    2009-01-01

    The nature of baryon resonances is studied in the dynamical chiral coupled-channel approach for meson-baryon scattering. In general, origin of resonances in two-body scattering can be classified into two categories: dynamically generated states and genuine elementary particles. We demonstrate that the genuine contribution in the loop function can be excluded by adopting a natural renormalization scheme. The origin of resonances can be studied by looking at the effective interaction in the natural renormalization scheme, which is deduced from the phenomenological amplitude fitted to experimental data. Applying this method to the baryon resonances, we find that the dominant component for the Lambda(1405) resonance is dynamical, while a genuine contribution plays a substantial role for the structure of the N(1535).

  2. Focusing, Power Tunneling and Rejection from Chiral and/or Chiral Nihility/Nihility Metamaterials Layers

    CERN Document Server

    Shah, Syed Touseef Hussain; Syed, Aqeel A; Naqvi, Qaisar Abbas

    2013-01-01

    Focusing of electromagnetic plane wave from a large size paraboloidal reflector, composed of layers of chiral and/or chiral nihility metamaterials, has been studied us- ing Maslov's method. First, the transmission and reflection of electromagnetic plane wave from two parallel layers of chiral and/or chiral nihility metamaterials are cal- culated using transfer matrix method. The effects of change of angle of incidence, chirality parameters and impedances of layers are noted and discussed. Special cases by taking very large and small values of permittivity of second layer, while assuming value of corresponding chirality equal to zero, are also treated. These special cases are equivalent to reflection from a perfect electric conductor backed chiral layer and nihility backed chiral layer, respectively. Results of reflection from parallel layers have been utilized to study focusing from a large size paraboloidal reflector. The present study, on focusing from a paraboloidal re{\\deg}ector, not only unifies several ...

  3. Mechanism of chirality conversion by periodic change of temperature: Role of chiral clusters

    Science.gov (United States)

    Katsuno, Hiroyasu; Uwaha, Makio

    2016-01-01

    By grinding crystals in a solution, the chirality of crystal structure (and the molecular chirality for the case of chiral molecules as well) can be converted, and the cause of the phenomenon is attributed to crystal growth with chiral clusters. We show that the recently found chirality conversion with a periodic change of temperature can also be explained by crystal growth with chiral clusters. With the use of a generalized Becker-Döring model, which includes enantio-selective incorporation of small chiral clusters to large solid clusters, the change of cluster distribution and the mass flow between clusters are studied. The chiral clusters act as a reservoir to pump out the minority species to the majority, and the exponential amplification of the enantiomeric excess found in the experiment is reproduced in the numerical calculation.

  4. The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules as probes of constraints from analyticity and chiral symmetry in dynamical models for pion-nucleon scattering

    CERN Document Server

    Kondratyuk, S; Myhrer, F; Scholten, O

    2004-01-01

    The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: 1) by evaluating of the scattering amplitude at the corresponding low-energy kinematics and 2) by evaluating the sum-rule integrals with the calculated total cross section. The discrepancy between the results of the two methods provides a measure of the breaking of analyticity and chiral symmetry in the model. The contribution of the $\\Delta$ resonance, including its dressing with meson loops, is discussed in some detail and found to be small.

  5. Anomalous Maxwell equations for inhomogeneous chiral plasma

    CERN Document Server

    Gorbar, E V; Vilchinskii, S; Rudenok, I; Boyarsky, A; Ruchayskiy, O

    2016-01-01

    Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous relativistic plasma. We also derive equations for the electric and chiral charge chemical potentials that close the Maxwell equations in such a plasma. The analysis is done in the regimes with and without a drift of the plasma as a whole. In addition to the currents present in the homogeneous plasma (Hall current, chiral magnetic, chiral separation, and chiral electric separation effects, as well as Ohm's current) we derive several new terms associated with inhomogeneities of the plasma. Apart from various diffusion-like terms, we find also new dissipation-less terms that are independent of relaxation time. Their origin can be traced to the Berry curvature modifications of the kinetic theory.

  6. Anomalous Maxwell equations for inhomogeneous chiral plasma

    Science.gov (United States)

    Gorbar, E. V.; Shovkovy, I. A.; Vilchinskii, S.; Rudenok, I.; Boyarsky, A.; Ruchayskiy, O.

    2016-05-01

    Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous relativistic plasma. We also derive equations for the electric and chiral chemical potentials that close the Maxwell equations in such a plasma. The analysis is done in the regimes with and without a drift of the plasma as a whole. In addition to the currents present in the homogeneous plasma (Hall current, chiral magnetic, chiral separation, and chiral electric separation effects, as well as Ohm's current) we derive several new terms associated with inhomogeneities of the plasma. Apart from various diffusionlike terms, we find also new dissipationless terms that are independent of relaxation time. Their origin can be traced to the Berry curvature modifications of the kinetic theory.

  7. Absolute Asymmetric Synthesis: The Origin, Control, and Amplification of Chirality

    OpenAIRE

    Delden, Richard A. van; Feringa, Bernard

    1999-01-01

    One of the fundamental and intriguing aspects of life is the homochirality of the essential molecules. From the early days of stereochemistry, the origin of chirality in biological systems has been a challenge to the chemical sciences and numerous theories and experiments have been reported. Despite the great progress in asymmetric synthesis, there are only a few genuine absolute asymmetric syntheses known today. Novel approaches based on the interplay of molecular biology, organic chemistry,...

  8. Chiral kinetic theory and anomalous hydrodynamics in even spacetime dimensions

    CERN Document Server

    Dwivedi, Vatsal

    2016-01-01

    We study the hydrodynamics of a gas of noninteracting Weyl fermions coupled to the electromagnetic field in $(2N + 1) + 1$ spacetime dimensions using the chiral kinetic theory, which encodes the gauge anomaly in the Chern character of the nonabelian Berry connection over the Fermi surface. We derive the anomalous contributions to the relativistic hydrodynamic currents in equilibrium and at a finite temperature, which agree with and provides an approach complementary to the results derived previously using thermodynamic constraints.

  9. Chiral perturbation in dense matter and meson condensation controversy

    CERN Document Server

    Kubodera, K

    1994-01-01

    An outstanding problem in the study of possible kaon condensation is the striking discrepancy between the results of chiral perturbation theory and those of the PCAC-plus-current-algebra approach. I discuss here what causes this discrepancy and what needs to be done to solve the problem. In addition, I point out the importance of examining the validity of the non-relativistic approximation universally employed in the existing treatments of kaon condensation.

  10. On chirality of slime mould.

    Science.gov (United States)

    Dimonte, Alice; Adamatzky, Andrew; Erokhin, Victor; Levin, Michael

    2016-02-01

    Left-right patterning and lateralised behaviour is an ubiquitous aspect of plants and animals. The mechanisms linking cellular chirality to the large-scale asymmetry of multicellular structures are incompletely understood, and it has been suggested that the chirality of living cells is hardwired in their cytoskeleton. We examined the question of biased asymmetry in a unique organism: the slime mould Physarum polycephalum, which is unicellular yet possesses macroscopic, complex structure and behaviour. In laboratory experiment using a T-shape, we found that Physarum turns right in more than 74% of trials. The results are in agreement with previously published studies on asymmetric movement of muscle cells, neutrophils, liver cells and growing neural filaments, and for the first time reveal the presence of consistently-biased laterality in the fungi kingdom. Exact mechanisms of the slime mould's direction preference remain unknown. PMID:26747637

  11. Bootstrapping N=2 chiral correlators

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Madalena [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Liendo, Pedro [Humboldt-Univ. Berlin (Germany). IMIP

    2015-12-15

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  12. Nucleus as a chiral filter: the role of the Δ(1232)

    International Nuclear Information System (INIS)

    We describe how two different modes of chiral symmetry can be seen in nuclei. In particular, it is shown that the nuclear axial charge or more precisely the O+O-, ΔT=1 transition at zero momentum transfer probe the nuclear configuration wherein the axial charge gsub(A) is effectively enhanced in nuclear medium due to soft pions, symptomatic of the Goldstone realization of chiral symmetry in the medium while the Gamow-Teller resonances probe the configuration wherein soft pions are no longer operative, suggesting an approach toward the Wigner realization of chiral symmetry. Using the celebrated Adler-Weisberger relation, it is argued that the observed approximately 50% quenching of the Gamow-Teller strength reflects the possibility that the Gamow-Teller operator sees the quarks inside the bag, blind to the Goldstone vacuum outside. Some implications on chiral phase transitions are also discussed

  13. Detection of Zak phases and topological invariants in a chiral photonic quantum walk

    CERN Document Server

    Cardano, F; Dauphin, A; Maffei, M; Piccirillo, B; de Lisio, C; De Filippis, G; Cataudella, V; Santamato, E; Marrucci, L; Lewenstein, M; Massignan, P

    2016-01-01

    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here, we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, and we show that it rapidly approaches a multiple of the Zak phase in the long time limit. Then we measure the Zak phase in a photonic quantum walk, by direct observation of the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe, and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general, as it can be applied to all one-dimensional platforms simulating static or Floquet chiral systems.

  14. Communication: Probing the absolute configuration of chiral molecules at aqueous interfaces

    International Nuclear Information System (INIS)

    We demonstrate that the enantiomers of chiral macromolecules at an aqueous interface can be distinguished with monolayer sensitivity using heterodyne-detected vibrational sum-frequency generation (VSFG). We perform VSFG spectroscopy with a polarization combination that selectively probes chiral molecular structures. By using frequencies far detuned from electronic resonances, we probe the chiral macromolecular structures with high surface specificity. The phase of the sum-frequency light generated by the chiral molecules is determined using heterodyne detection. With this approach, we can distinguish right-handed and left-handed helical peptides at a water-air interface. We thus show that heterodyne-detected VSFG is sensitive to the absolute configuration of complex, interfacial macromolecules and has the potential to determine the absolute configuration of enantiomers at interfaces

  15. Conformal chiral boson models on twisted doubled tori and non-geometric string vacua

    CERN Document Server

    Avramis, Spyros D; Prezas, Nikolaos

    2009-01-01

    We derive and analyze the conditions for quantum conformal and Lorentz invariance of the duality symmetric interacting chiral boson sigma-models, which are conjectured to describe non-geometric string theory backgrounds. The one-loop Weyl and Lorentz anomalies are computed for the general case using the background field method. Subsequently, our results are applied to a class of (on-shell) Lorentz invariant chiral boson models which are based on twisted doubled tori. Our findings are in agreement with those expected from the effective supergravity approach, thereby firmly establishing that the chiral boson models under consideration provide the string worldsheet description of N=4 gauged supergravities with electric gaugings. Furthermore, they demonstrate that twisted doubled tori are indeed the doubled internal geometries underlying a large class of non-geometric string compactifications. For compact gaugings the associated chiral boson models are automatically conformal, a fact that is explained by showing ...

  16. Chiral liquid chromatography contribution to the determination of the absolute configuration of enantiomers.

    Science.gov (United States)

    Roussel, Christian; Del Rio, Alberto; Pierrot-Sanders, Johanna; Piras, Patrick; Vanthuyne, Nicolas

    2004-05-28

    The review covers examples in which chiral HPLC, as a source of pure enantiomers, has been combined with classical methods (X-ray, vibrational circular dichroism (VCD), enzymatic resolutions, nuclear magnetic resonance (NMR) techniques, optical rotation, circular dichroism (CD)) for the on- or off-line determination of absolute configuration of enantiomers. Furthermore, it is outlined that chiral HPLC, which associates enantioseparation process and classical purification process, opens new perspectives in the classical determination of absolute configuration by chemical correlation or chemical interconversion methods. The review also contains a discussion about the various approaches to predict the absolute configuration from the retention behavior of the enantiomers on chiral stationary phases (CSPs). Some examples illustrate the advantages and limitations of molecular modeling methods and the use of chiral recognition models. The assumptions underlying some of these methods are critically analyzed and some possible emerging new strategies are outlined. PMID:15214673

  17. Unified chiral analysis of the vector meson spectrum from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Wes Armour; Chris Allton; Derek Leinweber; Anthony Thomas; Ross Young

    2005-10-13

    The chiral extrapolation of the vector meson mass calculated in partially-quenched lattice simulations is investigated. The leading one-loop corrections to the vector meson mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. To incorporate the effect of the opening decay channel as the chiral limit is approached, the extrapolation is studied using a necessary phenomenological extension of chiral effective field theory. This chiral analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of $M_\\rho$ in excellent agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are much less enlightening.

  18. Communication: Probing the absolute configuration of chiral molecules at aqueous interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lotze, Stephan, E-mail: lotze@amolf.nl; Versluis, Jan [FOM Institute for Atomic and Molecular Physics, Science Park 104, 1098 XG Amsterdam (Netherlands); Olijve, Luuk L. C.; Schijndel, Luuk van; Milroy, Lech G.; Voets, Ilja K. [Laboratory of Macromolecular and Organic Chemistry, Department of Chemical Engineering and Chemistry, and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Bakker, Huib J., E-mail: bakker@amolf.nl [FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam (Netherlands)

    2015-11-28

    We demonstrate that the enantiomers of chiral macromolecules at an aqueous interface can be distinguished with monolayer sensitivity using heterodyne-detected vibrational sum-frequency generation (VSFG). We perform VSFG spectroscopy with a polarization combination that selectively probes chiral molecular structures. By using frequencies far detuned from electronic resonances, we probe the chiral macromolecular structures with high surface specificity. The phase of the sum-frequency light generated by the chiral molecules is determined using heterodyne detection. With this approach, we can distinguish right-handed and left-handed helical peptides at a water-air interface. We thus show that heterodyne-detected VSFG is sensitive to the absolute configuration of complex, interfacial macromolecules and has the potential to determine the absolute configuration of enantiomers at interfaces.

  19. Opportunities for chiral discrimination using high harmonic generation in tailored laser fields

    CERN Document Server

    Smirnova, Olga; Patchkovskii, Serguei

    2015-01-01

    Chiral discrimination with high harmonic generation (cHHG method) has been introduced in the recent work by R. Cireasa et al ( Nat. Phys. 11, 654 - 658, 2015). In its original implementation, the cHHG method works by detecting high harmonic emission from randomly oriented ensemble of chiral molecules driven by elliptically polarized field, as a function of ellipticity. Here we discuss future perspectives in the development of this novel method, the ways of increasing chiral dichroism using tailored laser pulses, new detection schemes involving high harmonic phase measurements, and concentration-independent approaches. Using the example of the epoxypropane molecule C$_3$H$_6$O (also known as 1,2-propylene oxide), we show theoretically that application of two-color counter-rotating elliptically polarized laser fields yields an order of magnitude enhancement of chiral dichroism compared to single color elliptical fields. We also describe how one can introduce a new functionality to cHHG: concentration-independen...

  20. Chiral Particle Separation by a Nonchiral Microlattice

    Science.gov (United States)

    Bogunovic, Lukas; Fliedner, Marc; Eichhorn, Ralf; Wegener, Sonja; Regtmeier, Jan; Anselmetti, Dario; Reimann, Peter

    2012-09-01

    We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Microparticles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relative to the fluid flow.