Nuclear matter saturation with chiral three-nucleon interactions fitted to light nuclei properties
Energy Technology Data Exchange (ETDEWEB)
Logoteta, Domenico [INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); Bombaci, Ignazio, E-mail: ignazio.bombaci@unipi.it [Dipartimento di Fisica, Universitá di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy); European Gravitational Observatory, Via E. Amaldi, I-56021 S. Stefano a Macerata, Cascina (Italy); Kievsky, Alejandro [INFN, Sezione di Pisa, Largo Bruno Pontecorvo 3, I-56127 Pisa (Italy)
2016-07-10
The energy per particle of symmetric nuclear matter and pure neutron matter is calculated using the many-body Brueckner–Hartree–Fock approach and employing the Chiral Next-to-next-to-next-to leading order (N3LO) nucleon–nucleon (NN) potential, supplemented with various parametrizations of the Chiral Next-to-next-to leading order (N2LO) three-nucleon interaction. Such combination is able to reproduce several observables of the physics of light nuclei for suitable choices of the parameters entering in the three-nucleon interaction. We find that some of these parametrizations provide a satisfactory saturation point of symmetric nuclear matter and values of the symmetry energy and its slope parameter L in very good agreement with those extracted from various nuclear experimental data. Thus, our results represent a significant step toward a unified description of few- and many-body nuclear systems starting from two- and three-nucleon interactions based on the symmetries of QCD.
Isotopic chains around oxygen from evolved chiral two- and three-nucleon interactions.
Cipollone, A; Barbieri, C; Navrátil, P
2013-08-09
We extend the formalism of self-consistent Green's function theory to include three-body interactions and apply it to isotopic chains around oxygen for the first time. The third-order algebraic diagrammatic construction equations for two-body Hamiltonians can be exploited upon defining system-dependent one- and two-body interactions coming from the three-body force, and, correspondingly, dropping interaction-reducible diagrams. The Koltun sum rule for the total binding energy acquires a correction due to the added three-body interaction. This formalism is then applied to study chiral two- and three-nucleon forces evolved to low momentum cutoffs. The binding energies of nitrogen, oxygen, and fluorine isotopes are reproduced with good accuracy and demonstrate the predictive power of this approach. Leading order three-nucleon forces consistently bring results close to the experiment for all neutron rich isotopes considered and reproduce the correct driplines for oxygen and nitrogen. The formalism introduced also allows us to calculate form factors for nucleon transfer on doubly magic systems.
Three nucleon interaction and nuclear composition
International Nuclear Information System (INIS)
Pandharipande, V.R.
1983-01-01
The author discusses results of some of the calculations carried out by J. Carlson, I. Lagaris, J. Lomnitz-Adler, R.A. Smith, R.B. Wiringa and himself to study the three nucleon interaction. The group has attempted to calculate the wavefunctions and binding energies of 3 H, 3 He, 4 He and nuclear matter, with the variational method, from a nonrelativistic Hamiltonian. Only nucleon degrees of freedom are retained in this Hamiltonian; the effects of other degrees of freedom are implicit in the two and three nucleon potentials. The author discusses further the calculations carried out, in collaboration with B. Friman, and R.B. Wiringa, to study the composition of nuclei. Nucleons interact by many processes including exchange of pions with or without excitation to isobar (Δ) states. Thus the nucleus contains pions being exchanged, and some nucleons in the Δ state. The group attempts to calculate the number and momentum distribution of these exchanged pions, and the fraction of time a nucleon in the nucleus is in the Δ state. 21 references, 4 figures
Di-nucleon structures in homogeneous nuclear matter based on two- and three-nucleon interactions
Energy Technology Data Exchange (ETDEWEB)
Arellano, Hugo F. [University of Chile, Department of Physics - FCFM, Santiago (Chile); CEA, DAM, DIF, Arpajon (France); Isaule, Felipe [University of Chile, Department of Physics - FCFM, Santiago (Chile); Rios, Arnau [University of Surrey, Department of Physics, Faculty of Engineering and Physical Sciences, Guildford (United Kingdom)
2016-09-15
We investigate homogeneous nuclear matter within the Brueckner-Hartree-Fock (BHF) approach in the limits of isospin-symmetric nuclear matter (SNM) as well as pure neutron matter at zero temperature. The study is based on realistic representations of the internucleon interaction as given by Argonne v{sub 18}, Paris, Nijmegen I and II potentials, in addition to chiral N{sup 3}LO interactions, including three-nucleon forces up to N{sup 2}LO. Particular attention is paid to the presence of di-nucleon bound states structures in {sup 1}S{sub 0} and {sup 3}SD{sub 1} channels, whose explicit account becomes crucial for the stability of self-consistent solutions at low densities. A characterization of these solutions and associated bound states is discussed. We confirm that coexisting BHF single-particle solutions in SNM, at Fermi momenta in the range 0.13-0.3 fm{sup -1}, is a robust feature under the choice of realistic internucleon potentials. (orig.)
Toyokawa, Masakazu; Yahiro, Masanobu; Matsumoto, Takuma; Kohno, Michio
2018-02-01
An important current subject is to clarify the properties of chiral three-nucleon forces (3NFs) not only in nuclear matter but also in scattering between finite-size nuclei. Particularly for elastic scattering, this study has just started and the properties are not understood for a wide range of incident energies (E_in). We investigate basic properties of chiral 3NFs in nuclear matter with positive energies by using the Brueckner-Hartree-Fock method with chiral two-nucleon forces at N3LO and 3NFs at NNLO, and analyze the effects of chiral 3NFs on 4He elastic scattering from targets ^{208}Pb, ^{58}Ni, and ^{40}Ca over a wide range of 30 ≲ E_in/A_P ≲ 200 MeV by using the g-matrix folding model, where A_P is the mass number of the projectile. In symmetric nuclear matter with positive energies, chiral 3NFs make the single-particle potential less attractive and more absorptive. The effects mainly come from the Fujita-Miyazawa 2π-exchange 3NF and become slightly larger as E_in increases. These effects persist in the optical potentials of 4He scattering. As for the differential cross sections of 4He scattering, chiral-3NF effects are large for E_in/A_P ≳ 60 MeV and improve the agreement of the theoretical results with the measured ones. Particularly for E_in/A_P ≳ 100 MeV, the folding model reproduces measured differential cross sections pretty well. Cutoff (Λ) dependence is investigated for both nuclear matter and 4He scattering by considering two cases of Λ=450 and 550 MeV. The uncertainty coming from the dependence is smaller than chiral-3NF effects even at E_in/A_P=175 MeV.
Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr
2015-05-29
We provide a unified ab initio description of the ^{6}Li ground state and elastic scattering of deuterium (d) on ^{4}He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying spectrum of ^{6}Li. The calculation reproduces the empirical binding energy of ^{6}Li, yielding an asymptotic D- to S-state ratio of the ^{6}Li wave function in the d+α configuration of -0.027, in agreement with a determination from ^{6}Li-^{4}He elastic scattering, but overestimates the excitation energy of the 3^{+} state by 350 keV. The bulk of the computed differential cross section is in good agreement with data. These results endorse the application of the present approach to the evaluation of the ^{2}H(α,γ)^{6}Li radiative capture, responsible for the big-bang nucleosynthesis of ^{6}Li.
Energy Technology Data Exchange (ETDEWEB)
Epelbaum, E.; Krebs, H. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Gasparyan, A.M. [Ruhr-Universitaet Bochum, Institut fuer Theoretische Physik II, Bochum (Germany); Bolshaya Cheremushkinskaya 25, SSC RF ITEP, Moscow (Russian Federation); Schat, C. [Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, Departamento de Fisica, FCEyN, Buenos Aires (Argentina)
2015-03-01
We confirm the claim of Phillips and Schat (Phys. Rev. C 88, 034002 (2013)) that 20 operators are sufficient to represent the most general local isospin-invariant three-nucleon force and derive explicit relations between the two sets of operators suggested in the above-mentioned work and that by Krebs et al. (Phys. Rev. C 87, 054007 (2013)). We use the set of 20 operators to discuss the chiral expansion of the long- and intermediate-range parts of the three-nucleon force up to next-to-next-to-next-to-next-to-leading order in the standard formulation without explicit Δ(1232) degrees of freedom. We also address implications of the large-N{sub c} expansion in QCD for the size of the various three-nucleon force contributions. (orig.)
Weak interaction in a three nucleon system: search for an asymmetry in radiative capture n-d
International Nuclear Information System (INIS)
Avenier, M.
1982-01-01
Experimental determination of the weak interaction rate in a three nucleon neutron-deuteron system: this weak interaction is observed through pseudoscalar parameters such as the asymetric angular distribution of the capture photon in relation with the system polarization. Orientation of the system is achieved by use of a polarized cold neutron beam. This phenomena is explained as a result of weak coupling between nucleons and mesons. Measurements of the gamma asymmetries observed when tests are conducted with or without heavy water and effects of depolarization are discussed [fr
Nuclear matter calculations with chiral interactions
Logoteta, Domenico; Bombaci, Ignazio; Kievsky, Alejandro
2018-03-01
Using two-nucleon and three-nucleon interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit Δ isobar contributions, we calculate the energy per particle of symmetric nuclear matter and pure neutron matter employing the microscopic Brueckner–Hartree–Fock approach. Specifically, we present nuclear matter calculations using the new fully local in coordinate-space two-nucleon interaction at the next-to-next-to-next-to-leading-order (N3LO) of ChPT with Δ isobar intermediate states (N3LOΔ) recently developed by Piarulli et al. [1] supplemented with a local N2LO three-nucleon interaction with explicit Δ isobar degrees of freedom. We show that for this combination of two- and three-nucleon interactions it is possible to obtain a good saturation point of symmetric nuclear matter. We also calculate the nuclear symmetry energy and compare our results with the available empirical constraints on this quantity.
Properties of Nuclei up to A =16 using Local Chiral Interactions
Lonardoni, D.; Carlson, J.; Gandolfi, S.; Lynn, J. E.; Schmidt, K. E.; Schwenk, A.; Wang, X. B.
2018-03-01
We report accurate quantum Monte Carlo calculations of nuclei up to A =16 based on local chiral two- and three-nucleon interactions up to next-to-next-to-leading order. We examine the theoretical uncertainties associated with the chiral expansion and the cutoff in the theory, as well as the associated operator choices in the three-nucleon interactions. While in light nuclei the cutoff variation and systematic uncertainties are rather small, in O 16 these can be significant for large coordinate-space cutoffs. Overall, we show that chiral interactions constructed to reproduce properties of very light systems and nucleon-nucleon scattering give an excellent description of binding energies, charge radii, and form factors for all these nuclei, including open-shell systems in A =6 and 12.
International Nuclear Information System (INIS)
Sperisen, F.; Gruebler, W.; Koenig, V.; Schmelzbach, P.A.; Elsener, K.; Jenny, B.; Schweizer, C.; Ulbricht, J.; Doleschall, P.
1982-01-01
Measurements of three vector-to-vector and seven vector-to-tensor polarization transfer coefficients of the 2 H(p vector, d vector) 1 H elastic scattering at Esub(p) = 10 MeV are reported in the angular range between THETAsub(cm) = 92 0 and 180 0 . These second-order observables are compared with Faddeev calculations. It is shown that the vector-to-tensor components depend largely on the details of the N-N P-wave interaction. (orig.)
Quantum Monte Carlo calculations with chiral effective field theory interactions
Energy Technology Data Exchange (ETDEWEB)
Tews, Ingo
2015-10-12
The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By
International Nuclear Information System (INIS)
Ducharme, C.
1969-01-01
This work is related to the interpretation of the results concerning the three nucleon experiment, D(n,nnp), at 14.5 MeV, carried out by double time-of-flight spectrometry. The present work consists in the simulation of the main parasitic events using the Monte-Carlo method for extracting them from the experimental distribution around the n-n pole. (author) [fr
Three-nucleon forces and the trinucleon bound states
International Nuclear Information System (INIS)
Friar, J.L.; Frois, B.
1986-04-01
A summary of the bound-state working group session of the ''International Symposium on the Three-Body Force in the Three-Nucleon System'' is presented. The experimental evidence for three-nucleon forces has centered on two ground state properties: the tritium binding energy and the trinucleon form factors. Both are discussed
Off-energy-shell variations of two-nucleon transition matrix and three-nucleon problem
International Nuclear Information System (INIS)
Stingl, M.; Sauer, P.U.
1975-01-01
For a schematic three-nucleon problem, approximate analytic expressions are derived for the functional derivatives of measurable three-particle quantities with respect to off-shell variations of the triplet-s two-nucleon transition matrix. Those quantities include neutron-deuteron scattering lengths, trinucleon binding energies, and the 3 He charge form-factor minimum; correlations between off-shell changes in the latter two are discussed. An indication is given how results of this kind may be to decide whether or not a given set of discrepancies between calculated and experimental three-nucleon observables can be reconciled in terms of off-shell variations of a nonretarded hermitean two-nucleon interaction. The treatment is not restricted to special classes of phase-shift equivalent potentials or phase-shift preserving transformations but instead makes use of a systematic parameterization of off-shell variations in terms of symmetric rational approximants of increasing order
Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange
Energy Technology Data Exchange (ETDEWEB)
Higa, R; Valderrama, M Pavon; Arriola, E Ruiz
2007-06-14
The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.
Three-nucleon forces in exotic open-shell isotopes
Directory of Open Access Journals (Sweden)
Somà V.
2014-03-01
Full Text Available Advances in the self-consistent Green’s function approach to finite nuclei are discussed, including the implementation of three-nucleon forces and the extension to the Gorkov formalism. We report results on binding energies in the nitrogen and fluorine isotopic chains, as well as spectral functions of 22O. The application to medium-mass open-shell systems is illustrated by separation energy spectra of two argon isotopes, which are compared to one-neutron removal experiments.
Three-body force in the three-nucleon system
International Nuclear Information System (INIS)
Gibson, B.F.
1986-01-01
A brief summary of the symposium is presented. Three-nucleon force models are discussed, including the two-pion exchange potential, NN-ΔN coupled-channels model, and phenomenological parametrization. Relevant experimental data and model calculations are discussed including form factors, binding energies, charge radii, and charge density for 3 H and 3 He. A calculation of the EMC effect for 3 He is also made using Sasakawa's wave function and compared to experimental data obtained at SLAC. The paper ends with discussions of proton-deuteron scattering, investigations at intermediate energies, and QCD efforts to understand the three-body problem
Light-Nuclei Spectra from Chiral Dynamics
Piarulli, M.; Baroni, A.; Girlanda, L.; Kievsky, A.; Lovato, A.; Lusk, Ewing; Marcucci, L. E.; Pieper, Steven C.; Schiavilla, R.; Viviani, M.; Wiringa, R. B.
2018-02-01
In recent years local chiral interactions have been derived and implemented in quantum Monte Carlo methods in order to test to what extent the chiral effective field theory framework impacts our knowledge of few- and many-body systems. In this Letter, we present Green's function Monte Carlo calculations of light nuclei based on the family of local two-body interactions presented by our group in a previous paper in conjunction with chiral three-body interactions fitted to bound- and scattering-state observables in the three-nucleon sector. These interactions include Δ intermediate states in their two-pion-exchange components. We obtain predictions for the energy levels and level ordering of nuclei in the mass range A =4 - 12 , accurate to ≤2 % of the binding energy, in very satisfactory agreement with experimental data.
Leading order relativistic chiral nucleon-nucleon interaction
Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie
2018-01-01
Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )
The Sendai triton calculation with three-nucleon potentials
International Nuclear Information System (INIS)
Sasakawa, T.
1986-01-01
Where can we see the effects of quarks remains a fundamental question in nuclear theory physics. A bold approach is to try to reproduce physical quantities theoretically by utilizing a quark picture with imagination. A conservative but safer approach may be to study the triton as thoroughly as possible using realistic two- and three-nucleon potentials. We are taking the latter approach. In fact, our calculation of the EMC effect, which was one thought to be a realization of the quark-gluon picture of nuclei, suggests that we might not have to make recourse to this picture. The calculation was done for 3 He, while experimental data for 4 He are shown. We hope that an experiment for 3 He is done soon, to check whether our conservative approach actually works for the EMC effect. (orig./WL)
Tailoring the chiral magnetic interaction between two individual atoms
Wiebe, J.; Khajetoorians, A. A.; Steinbrecher, M.; Ternes, M.; Bouhassoune, M.; Dos Santos Dias, M.; Lounis, S.; Wiesendanger, R.
Chiral magnets are a promising route toward dense magnetic storage technology due to their inherent nano-scale dimensions and energy efficient properties. Engineering chiral magnets requires atomic-level control of the magnetic exchange interactions, including the Dzyaloshinskii-Moriya interaction, which defines a rotational sense for the magnetization of two coupled magnetic moments. Here we show that the indirect conduction electron mediated Dzyaloshinskii-Moriya interaction between two individual magnetic atoms on a metallic surface can be manipulated by changing the interatomic distance with the tip of a scanning tunneling microscope. We quantify this interaction by comparing our measurements to a quantum magnetic model and ab-initio calculations yielding a map of the chiral ground states of pairs of atoms depending on the interatomic separation. The map enables tailoring the chirality of the magnetization in dilute atomic-scale magnets. Acknowledgements: SFB668, GrK1286, SFB767, LO 1659 5-1, Emmy Noether Program of the DFG, FOM of NWO, VH-NG-717.
Interaction of chiral rafts in self-assembled colloidal membranes
Xie, Sheng; Hagan, Michael F.; Pelcovits, Robert A.
2016-03-01
Colloidal membranes are monolayer assemblies of rodlike particles that capture the long-wavelength properties of lipid bilayer membranes on the colloidal scale. Recent experiments on colloidal membranes formed by chiral rodlike viruses showed that introducing a second species of virus with different length and opposite chirality leads to the formation of rafts—micron-sized domains of one virus species floating in a background of the other viruses [Sharma et al., Nature (London) 513, 77 (2014), 10.1038/nature13694]. In this article we study the interaction of such rafts using liquid crystal elasticity theory. By numerically minimizing the director elastic free energy, we predict the tilt angle profile for both a single raft and two rafts in a background membrane, and the interaction between two rafts as a function of their separation. We find that the chiral penetration depth in the background membrane sets the scale for the range of the interaction. We compare our results with the experimental data and find good agreement for the strength and range of the interaction. Unlike the experiments, however, we do not observe a complete collapse of the data when rescaled by the tilt angle at the raft edge.
General operator form of the non-local three-nucleon force
Energy Technology Data Exchange (ETDEWEB)
Topolnicki, K. [Jagiellonian University, M. Smoluchowski Institute of Physics, Krakow (Poland)
2017-09-15
This paper describes a procedure to obtain the general form of the three-nucleon force. The result is an operator form where the momentum space matrix element of the three-nucleon potential is written as a linear combination of 320 isospin-spin-momentum operators and scalar functions of momenta. Any spatial and isospin rotation invariant three-nucleon force can be written in this way and in order for the potential to be Hermitian, symmetric under parity inversion, time reversal and particle exchange, the scalar functions must have definite transformation properties under these discrete operations. A complete list of the isospin-spin-momentum operators and scalar function transformation properties is given. (orig.)
Triton as a three-nucleon - one-meson problem
International Nuclear Information System (INIS)
Noyes, H.P.; Orlowski, M.K.
1982-06-01
The standard method for basing nuclear physics on elementary particle physics is to first derive a potential and then use this interaction in the nonrelativistic Schroedinger equation for the nucleonic degrees of freedom. Unfortunately there has never been a consensus as to how to perform the first step. Currently we have dispersion-theoretic models and one-boson-exchange models which contain much the same physics, but which differ in detail; more modern approaches start from quark bags, but again there is no consensus as to whether the bag should be large or small. In this paper we offer an alternative approach in which the mesonic and nucleonic degrees of freedom are put on the same footing
Chiral realization of the non-leptonic weak interactions
International Nuclear Information System (INIS)
Ecker, G.
1990-01-01
After a short introduction to chiral perturbation theory an attempt to relate the strong and the non-leptonic weak low-energy constants is reviewed. The weak deformation model is stimulated both by the geometrical structure of chiral perturbation theory and by phenomenological considerations. Applications to the radiative decays K → πγγ and K L → γe + e - are discussed. (Author) 38 refs., 4 figs
Chiral and color-superconducting phase transitions with vector interaction in a simple model
International Nuclear Information System (INIS)
Kitazawa, Masakiyo; Koide, Tomoi; Kunihiro, Teiji; Nemoto, Yukio
2002-01-01
We investigate effects of the vector interaction on chiral and color superconducting (CSC) phase transitions at finite density and temperature in a simple Nambu-Jona-Lasinio model. It is shown that the repulsive density-density interaction coming from the vector term, which is present in the effective chiral models but has been omitted, enhances the competition between the chiral symmetry breaking (χSB) and CSC phase transition, and thereby makes the thermodynamic potential have a shallow minimum over a wide range of values of the correlated chiral and CSC order parameters. We find that when the vector coupling is increased, the first order transition between the χSB and CSC phases becomes weaker, and the coexisting phase in which both the chiral and color-gauge symmetry are dynamically broken comes to exist over a wider range of the density and temperature. We also show that there can exist two endpoints, which are tricritical points in the chiral limit, along the critical line of the first order transition in some range of values of the vector coupling. Although our analysis is based on a simple model, the nontrivial interplay between the χSB and CSC phases induced by the vector interaction is expected to be a universal phenomenon and might give a clue to understanding results obtained with two-color QCD on the lattice. (author)
Probing the three-nucleon force using nucleon-deuteron breakup reactions
International Nuclear Information System (INIS)
Howell, C.R.; Lambert, J.M.; Witala, H.
1995-01-01
Results of our recent kinematically complete cross-section measurements of the space-star and coplanar-star configurations in n-d breakup at 13.0 MeV are reported. The experimental setup and details of the analysis are described. The new data for the space-star configuration are in good agreement with previous n-d data but differ significantly from both ''exact'' n-d calculations and p-d data. In contrast, the new coplanar-star data are in fair agreement with the calculations but are in gross disagreement with previous n-d data. The implications of these data for three-nucleon forces are discussed. (orig.)
Composite-meson--quark interactions under the condition of dynamical breaking of chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Hirata, M.
1989-03-01
Starting from the QCD-inspired model Hamiltonian which can lead to the dynamical breakdown of chiral symmetry, we describe a vacuum consisting of a condensate of q-barq pairs and furthermore meson states and composite-meson field operators within the new Tamm-Dancoff approximation. Using these fields operators and the Hamiltonian we construct composite-meson--quark interactions.
Description of meson strong and electromagnetic interactions in quantum chiral theory
International Nuclear Information System (INIS)
Volkov, M.K.; Pervushin, V.N.
1978-01-01
Strong and electromagnetic interactions of mesons in the framework of the chiral theory are considered. The pion-pion scattering phases, the pion electromagnetic form factor, the mean squared radius of a K-meson, and the electric and magnetic polarizabilities of pions are calculated using the superpropagator method. The rho-meson mass, Msub(rho)=800 MeV, is calculated too
Properties of 4He and 6Li with improved chiral EFT interactions
Directory of Open Access Journals (Sweden)
Maris P.
2016-01-01
Full Text Available We present recent results for 4He and 6Li obtained with improved NN interactions derived from chiral effective field theory up to N4LO. The many-body calculations are performed order-by-order in the chiral expansion. At N3LO and N4LO additional renormalization using the Similarity Renormalization Group is adopted to improve numerical convergence of the many-body calculations. We discuss results for the ground state energies, as well as the magnetic moment and the low-lying spectrum of 6Li.
Directory of Open Access Journals (Sweden)
Ioseph L. Buchbinder
2018-01-01
Full Text Available We investigate cubic interactions between a chiral superfield and higher spin superfields corresponding to irreducible representations of the 4 D , N = 1 super-Poincaré algebra. We do this by demanding an invariance under the most general transformation, linear in the chiral superfield. Following Noether’s method we construct an infinite tower of higher spin supercurrent multiplets which are quadratic in the chiral superfield and include higher derivatives. The results are that a single, massless, chiral superfield can couple only to the half-integer spin supermultiplets ( s + 1 , s + 1 / 2 and for every value of spin there is an appropriate improvement term that reduces the supercurrent multiplet to a minimal multiplet which matches that of superconformal higher spins. On the other hand a single, massive, chiral superfield can couple only to higher spin supermultiplets of type ( 2 l + 2 , 2 l + 3 / 2 (only odd values of s, s = 2 l + 1 and there is no minimal multiplet. Furthermore, for the massless case we discuss the component level higher spin currents and provide explicit expressions for the integer and half-integer spin conserved currents together with a R-symmetry current.
Description of meson strong weak and electromagnetic interactions in quantum chiral theory
International Nuclear Information System (INIS)
Volkov, M.K.; Ehbert, D.
1979-01-01
The picture of all the principal meson decays of the basic octet has been obtained in the framework of the SU(3)xSU(3) symmetric chiral model of the field theory. An attempt is made to generalize the nonlinear chiral model for the case of charmed hadrons, i.e., a transition from the SU(3)xSU(3) group to the SU(4)xSU(4) group. The authors have succeeded in elucidating unambiguously the role of the Kabibbo angle both in weak and strong interactions (it defines the structure of weak hadron currents and hadron mass splitting in isotopic multiplets). Proceeding from decays of the basic octet mesons it has been shown that the nonlinear chiral SU(3)xSU(3) symmetric theory may be considered as the quantum field theory, which satisfactorily describes the low-energy meson physics in two first orders of the perturbation theory (tree and single-loop approximations)
Chiral pinwheel clusters lacking local point chirality.
Sun, Kai; Shao, Ting-Na; Xie, Jia-Le; Lan, Meng; Yuan, Hong-Kuan; Xiong, Zu-Hong; Wang, Jun-Zhong; Liu, Ying; Xue, Qi-Kun
2012-07-09
The supramolecular pinwheel cluster is a unique chiral structure with evident handedness. Previous studies reveal that the chiral pinwheels are composed of chiral or achiral molecules with polar groups, which result in strong intermolecular interactions such as hydrogen-bonding or dipole interactions. Herein, it is shown that the simple linear aromatic molecule, pentacene, can be self-assembled into large chiral pinwheel clusters on the semimetal Bi(111) surface, due to enhanced intermolecular interactions. The pentacene pinwheels reveal two levels of organizational chirality: the chiral hexamers resulting from asymmetric shifting along the long molecular axis, and chiral arrangement of six hexamers with a rotor motif. Furthermore, a new relation between the local point chirality and organizational chirality is identified from the pinwheels: the former is not essential for the latter in 2D pinwheel clusters of the pentacene molecule. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
St. Kistryn; E. Stephan; A. Biegun; K. Bodek; A. Deltuva; E. Epelbaum; K. Ermisch; W. Gloeckle; J. Golak; N. Kalantar-Nayestanaki; H. Kamada; M. Kis; B. Klos; A. Kozela; J. Kuros-Zolnierczuk; M. Mahjour-Shafiei; U.-G. Meissner; A. Micherdzinska; A. Nogga; P. U. Sauer; R. Skibinski; R. Sworst; H. Witala; J. Zejma; W. Zipper
2005-01-01
High precision cross-section data of the deuteron-proton breakup reaction at 130 MeV are presented for 72 kinematically complete configurations. The data cover a large region of the available phase space, divided into a systematic grid of kinematical variables. They are compared with theoretical predictions, in which the full dynamics of the three-nucleon (3N) system is obtained in three different ways: realistic nucleon-nucleon (NN) potentials are combined with model 3N forces (3NF's) or with an effective 3NF resulting from explicit treatment of the Delta-isobar excitation. Alternatively, the chiral perturbation theory approach is used at the next-to-next-to-leading order with all relevant NN and 3N contributions taken into account. The generated dynamics is then applied to calculate cross-section values by rigorous solution of the 3N Faddeev equations. The comparison of the calculated cross sections with the experimental data shows a clear preference for the predictions in which the 3NF's are included. The majority of the experimental data points is well reproduced by the theoretical predictions. The remaining discrepancies are investigated by inspecting cross sections integrated over certain kinematical variables. The procedure of global comparisons leads to establishing regularities in disagreements between the experimental data and the theoretically predicted values of the cross sections. They indicate deficiencies still present in the assumed models of the 3N system dynamics
Czech Academy of Sciences Publication Activity Database
Růžička, Martin; Koval, Dušan; Vávra, Jan; Reyes Gutierrez, Paul Eduardo; Teplý, Filip; Kašička, Václav
2016-01-01
Roč. 1467, Oct 7 (2016), s. 417-426 ISSN 0021-9673 R&D Projects: GA ČR(CZ) GA15-01948S; GA ČR GA13-32974S; GA ČR GA13-19213S Institutional support: RVO:61388963 Keywords : affinity capillary electrophoresis * binding constant * chiral separation * helquats * noncovalent interactions * partial filling Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 3.981, year: 2016
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
of singular potentials and power counting / M.P. Valderrrama. The challenge of calculating Baryon-Baryon scattering from lattice QCD / S.R. Beane. Precise absolute np scattering cross section and the charged [Pie symbol] NN coupling constant / S. E. Vigdor. Probing hadronic parity violation using few nucleon systems / S.A. Page. Extracting the neutron-neutron scattering length from neutron-deuteron breakup / C.R. Howell. Extraction of [equationl] from [Pie symbol]-d --> [equation] / A. Grudestig. The three- and four-body system with large scattering length / L. Platter. 3N and 4N systems and the Ay puzzle / T. Clegg. Recent progress in nuclear lattice simulations with effective field theory / D. Lee. Few-body studies at KVI / J.G. Messchendorp. Results of three nucleon experiments from RIKEN / K. Sekiguchi. A new opportunity to measure the total photoabsorption cross section of helium / P. T. Debevec. Three-body photodisintegration of 3He with double polarizations / X. Zong. Large two-pion exchange contributions to the pp --> pp[Pie symbol]0 reaction / F. Myhrer. Towards a systematic theory of nuclear forces / E. Epelbaum. Ab initio calculations of eletromagnetic reactions in light nuclei / W. Leidemann. Electron scattering from a polarized deuterium target at BLAST / R. Fatemi. Neutron-neutron scattering length from the reaction [equation] / V. Lensky. Renormalization group analysis of nuclear current operators / S.X. Nakamura. Recent results and future plans at MAX-LAB / K.G. Fissum. Nucleon polarizabilities from deutron compton scattering, and its lessons for chiral power counting / H. W. Grie hammer. Compton scattering on HE-3 / D. Choudhury -- pt. D. Hadron structure and Meson-Baryon interactions. Summary of the working group on Hadron structure and Meson-Baryon interactions / G. Feldman and T.R. Hemmert. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice discretization errors in chiral effective field theories / B.C. Tiburzi. SU(3)-breaking
Three-nucleon transfer reactions and cluster structure in the A = 15 to A = 19 nuclei
International Nuclear Information System (INIS)
Martz, L.M.
1978-01-01
The ( 6 Li,t) and ( 6 Li, 3 He) reactions were studied on targets of 12 C, 13 C, 14 N, 15 N, and 16 O at E/sub Li/ approx. = 44 MeV and theta/sub lab/ approx. = 15 0 . A preferential population of final states was exhibited in spectra for the A = 15 to A = 19 nuclei. The strong forward peaking of angular distributions in the 13 C( 6 Li,t) 16 O and 13 C( 6 Li, 3 He) 16 N reactions can be reproduced by DWBA calculations but not by the Hauser-Feshbach model. Such indications of a primarily direct mechanism at forward angles suggest use of these three-nucleon-transfer reactions to identify candidates for 3p-nh states. A comparison with other multinucleon transfer data, e.g., those from ( 7 Li,α) and ( 7 Li,t) reactions on 13 C and 15 N targets, further tests dominant particle-hole configurations. The relationship between ( 6 Li,t) and ( 6 Li, 3 He) spectra reveals analog states, notably T = 1, T/sub z/ = 0 levels at high excitation in 16 O. Nuclear theory is used to investigate the role of triton clustering in such structure. The 2N + L = 6 band predicted by a folded-potential model of 18 O = 15 N + t shows an underlying correspondence to the experimental levels in triton-transfer data. Triton spectroscopic factors calculated from the SU(3) shell model further suggest the broad influence of clustering phenomena in this mass region. Experimental evidence of systematic behavior in the triton binding energies of proposed p/sup -n/(sd) 3 configurations was found
Measurements of the n->d scattering at 250 MeV and three-nucleon forces
International Nuclear Information System (INIS)
Maeda, Y.; Sakai, H.; Fujita, K.; Hatano, M.; Kamiya, J.; Kawabata, T.; Kuboki, H.; Hatanaka, K.; Okamura, H.; Saito, T.; Sakemi, Y.; Sasano, M.; Sekiguchi, K.; Shimizu, Y.; Suda, K.; Tameshige, Y.; Tamii, A.; Wakasa, T.; Yako, K.; Greenfield, M.B.; Kamada, H.; Witala, H.
2007-01-01
The differential cross sections and the vector analyzing powers for the nd elastic scattering at E n = 250 MeV have been measured for the study of the three-nucleon force (3NF) effects in the Coulomb-free system. To cover a wide angular region, the experiments were performed by using two different methods at the (n, p) facility and at the NTOF facility which constructed at the Research Center for Nuclear Physics (RCNP). The results were compared with theoretical predictions of the Faddeev calculations based on the modern nucleon-nucleon (NN) forces with the three-nucleon force (3NF). The inclusion of 3NFs leads to a good description of the cross section except for the backward angles. The results were also compared with the theoretical predictions with relativistic corrections. The direct data-to-data comparison of the cross sections of the nd and pd was performed
Features of electron-phonon interactions in nanotubes with chiral symmetry in magnetic field
Kibis, O V
2001-01-01
Interaction of the electrons with acoustic phonons in the nanotube with chiral symmetry by availability of the magnetic field, parallel to the nanotube axis, is considered. It is shown that the electron energy spectrum is asymmetric relative to the electron wave vector inversion and for that reason the electron-phonon interaction appears to be different for similar phonons with mutually contrary directions of the wave vector. This phenomenon leads to origination of the electromotive force by the spatially uniform electron gas heating and to appearance of the quadrupole component in the nanotube volt-ampere characteristics
Directory of Open Access Journals (Sweden)
Shimizu Y.
2010-04-01
Full Text Available Measurements of a complete set of deuteron analyzing powers (iT11, T20, T21, T22 for elastic deuteron–proton scattering at 250 MeV/nucleon have been performed with polarized deuteron beams at RIKEN RI Beam Factory. The obtained data are compared with the Faddeev calculations based on the modern nucleon–nucleon forces together with the Tucson-Melbourne’99, and UrbanaIX three nucleon forces.
One-dimensional model of chiral fermions with Feshbach resonant interactions
Prem, Abhinav; Gurarie, Victor
2018-02-01
We study a model of two species of 1D linearly dispersing fermions interacting via an s-wave Feshbach resonance at zero temperature. While this model is known to be integrable, it possesses novel features that have not previously been investigated. Here, we present an exact solution based on the coordinate Bethe Ansatz. In the limit of infinite resonance strength, which we term the strongly interacting limit, the two species of fermions behave as free Fermi gases. In the limit of infinitely weak resonance, or the weakly interacting limit, the gases can be in different phases depending on the detuning, the relative velocities of the particles, and the particle densities. When the molecule moves faster or slower than both species of atoms, the atomic velocities get renormalized and the atoms may even become non-chiral. On the other hand, when the molecular velocity is between that of the atoms, the system may behave like a weakly interacting Lieb–Liniger gas.
Chiral symmetry and chiral-symmetry breaking
International Nuclear Information System (INIS)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed
Chiral-glass transition in a diluted dipolar-interaction Heisenberg system
International Nuclear Information System (INIS)
Zhang Kaicheng; Liu Guibin; Zhu Yan
2011-01-01
Recently, numerical simulations reveal that a spin-glass transition can occur in the three-dimensional diluted dipolar system. By defining the chirality of triple spins in a diluted dipolar Heisenberg spin glass, we study the chiral ordering in the system using parallel tempering algorithm and heat bath method. The finite-size scaling analysis reveals that the system undergoes a chiral-glass transition at finite temperature. - Highlights: → We define the chirality in a diluted dipolar Heisenberg system. → The system undergoes a chiral-glass transition at finite temperature. → We extract the critical exponents of the chiral-glass transition.
Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun
2017-11-01
Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.
Induction of axial chirality in divanillin by interaction with bovine serum albumin.
Directory of Open Access Journals (Sweden)
Diego Venturini
Full Text Available Vanillin is a plant secondary metabolite and has numerous beneficial health applications. Divanillin is the homodimer of vanillin and used as a taste enhancer compound and also a promissory anticancer drug. Here, divanillin was synthesized and studied in the context of its interaction with bovine serum albumin (BSA. We found that divanillin acquires axial chirality when complexed with BSA. This chiroptical property was demonstrated by a strong induced circular dichroism (ICD signal. In agreement with this finding, the association constant between BSA and divanillin (3.3 x 105 mol-1L was higher compared to its precursor vanillin (7.3 x 104 mol-1L. The ICD signal was used for evaluation of the association constant, demonstration of the reversibility of the interaction and determination of the binding site, revealing that divanillin has preference for Sudlow's site I in BSA. This property was confirmed by displacement of the fluorescent markers warfarin (site I and dansyl-L-proline (site II. Molecular docking simulation confirmed the higher affinity of divanillin to site I. The highest scored conformation obtained by docking (dihedral angle 242° was used for calculation of the circular dichroism spectrum of divanillin using Time-Dependent Density Functional Theory (TDDFT. The theoretical spectrum showed good similarity with the experimental ICD. In summary, we have demonstrated that by interacting with the chiral cavities in BSA, divanillin became a atropos biphenyl, i.e., the free rotation around the single bound that links the aromatic rings was impeded. This phenomenon can be explained considering the interactions of divanillin with amino acid residues in the binding site of the protein. This chiroptical property can be very useful for studying the effects of divanillin in biological systems. Considering the potential pharmacological application of divanillin, these findings will be helpful for researchers interested in the pharmacological
Lippert, Kai-Alexander; Mukherjee, Chandan; Broschinski, Jan-Philipp; Lippert, Yvonne; Walleck, Stephan; Stammler, Anja; Bögge, Hartmut; Schnack, Jürgen; Glaser, Thorsten
2017-12-18
Single-molecule magnets (SMMs) retain a magnetization without applied magnetic field for a decent time due to an energy barrier U for spin-reversal. Despite the success to increase U, the difficult to control magnetic quantum tunneling often leads to a decreased effective barrier U eff and a fast relaxation. Here, we demonstrate the influence of the exchange coupling on the tunneling probability in two heptanuclear SMMs hosting the same spin-system with the same high spin ground state S t = 21/2. A chirality-induced symmetry reduction leads to a switch of the Mn III -Mn III exchange from antiferromagnetic in the achiral SMM [Mn III 6 Cr III ] 3+ to ferromagnetic in the new chiral SMM RR [Mn III 6 Cr III ] 3+ . Multispin Hamiltonian analysis by full-matrix diagonalization demonstrates that the ferromagnetic interactions in RR [Mn III 6 Cr III ] 3+ enforce a well-defined S t = 21/2 ground state with substantially less mixing of M S substates in contrast to [Mn III 6 Cr III ] 3+ and no tunneling pathways below the top of the energy barrier. This is experimentally verified as U eff is smaller than the calculated energy barrier U in [Mn III 6 Cr III ] 3+ due to tunneling pathways, whereas U eff equals U in RR [Mn III 6 Cr III ] 3+ demonstrating the absence of quantum tunneling.
Chauhan, B.; Kumar, S.; Malik, R. P.
2018-02-01
We derive the off-shell nilpotent (fermionic) (anti-)BRST symmetry transformations by exploiting the (anti-)chiral superfield approach (ACSA) to Becchi-Rouet-Stora-Tyutin (BRST) formalism for the interacting Abelian 1-form gauge theories where there is a coupling between the U(1) Abelian 1-form gauge field and Dirac as well as complex scalar fields. We exploit the (anti-)BRST invariant restrictions on the (anti-)chiral superfields to derive the fermionic symmetries of our present D-dimensional Abelian 1-form gauge theories. The novel observation of our present investigation is the derivation of the absolute anticommutativity of the nilpotent (anti-)BRST charges despite the fact that our ordinary D-dimensional theories are generalized onto the (D,1)-dimensional (anti-) chiral super-submanifolds (of the general (D,2)-dimensional supermanifold) where only the (anti-)chiral super expansions of the (anti-)chiral superfields have been taken into account. We also discuss the nilpotency of the (anti-)BRST charges and (anti-)BRST invariance of the Lagrangian densities of our present theories within the framework of ACSA to BRST formalism.
Energy Technology Data Exchange (ETDEWEB)
Krueger, Thomas
2016-10-19
The physics of neutron-rich systems is of great interest in nuclear and astrophysics. Precise knowledge of the properties of neutron-rich nuclei is crucial for understanding the synthesis of heavy elements. Infinite neutron matter determines properties of neutron stars, a final stage of heavy stars after a core-collapse supernova. It also provides a unique theoretical laboratory for nuclear forces. Strong interactions are determined by quantum chromodynamics (QCD). However, QCD is non-perturbative at low energies and one presently cannot directly calculate nuclear forces from it. Chiral effective field theory circumvents these problems and connects the symmetries of QCD to nuclear interactions. It naturally and systematically includes many-nucleon forces and gives access to uncertainty estimates. We use chiral interactions throughout all calculation in this thesis. Neutron stars are very extreme objects. The densities in their interior greatly exceed those in nuclei. The exact composition and properties of neutron stars is still unclear but they consist mainly of neutrons. One can explore neutron stars theoretically with calculations of neutron matter. In the inner core of neutron stars exist very high densities and thus maybe exotic phases of matter. To investigate whether there exists a phase transition to such phases even at moderate densities we study the chiral condensate in neutron matter, the order parameter of chiral symmetry breaking, and find no evidence for a phase transition at nuclear densities. We also calculate the more extreme system of spin-polarised neutron matter. With this we address the question whether there exists such a polarised phase in neutron stars and also provide a benchmark system for lattice QCD. We find spin-polarised neutron matter to be an almost non-interacting Fermi gas. To understand the cooling of neutron stars neutron pairing is of great importance. Due to the high densities especially triplet pairing is of interest. We
Chiral Inorganic Nanostructures.
Ma, Wei; Xu, Liguang; de Moura, André F; Wu, Xiaoling; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A
2017-06-28
The field of chiral inorganic nanostructures is rapidly expanding. It started from the observation of strong circular dichroism during the synthesis of individual nanoparticles (NPs) and their assemblies and expanded to sophisticated synthetic protocols involving nanostructures from metals, semiconductors, ceramics, and nanocarbons. Besides the well-established chirality transfer from bioorganic molecules, other methods to impart handedness to nanoscale matter specific to inorganic materials were discovered, including three-dimentional lithography, multiphoton chirality transfer, polarization effects in nanoscale assemblies, and others. Multiple chiral geometries were observed with characteristic scales from ångströms to microns. Uniquely high values of chiral anisotropy factors that spurred the development of the field and differentiate it from chiral structures studied before, are now well understood; they originate from strong resonances of incident electromagnetic waves with plasmonic and excitonic states typical for metals and semiconductors. At the same time, distinct similarities with chiral supramolecular and biological systems also emerged. They can be seen in the synthesis and separation methods, chemical properties of individual NPs, geometries of the nanoparticle assemblies, and interactions with biological membranes. Their analysis can help us understand in greater depth the role of chiral asymmetry in nature inclusive of both earth and space. Consideration of both differences and similarities between chiral inorganic, organic, and biological nanostructures will also accelerate the development of technologies based on chiroplasmonic and chiroexcitonic effects. This review will cover both experiment and theory of chiral nanostructures starting with the origin and multiple components of mirror asymmetry of individual NPs and their assemblies. We shall consider four different types of chirality in nanostructures and related physical, chemical, and
Chirality invariance and 'chiral' fields
International Nuclear Information System (INIS)
Ziino, G.
1978-01-01
The new field model derived in the present paper actually gives a definite answer to three fundamental questions concerning elementary-particle physics: 1) The phenomenological dualism between parity and chirality invariance: it would be only an apparent display of a general 'duality' principle underlying the intrinsic nature itself of (spin 1/2) fermions and expressed by the anticommutativity property between scalar and pseudoscalar charges. 2) The real physical meaning of V - A current structure: it would exclusively be connected to the one (just pointed out) of chiral fields themselves. 3) The unjustified apparent oddness shown by Nature in weak interactions, for the fact of picking out only one of the two (left- and right-handed) fermion 'chiral' projections: the key to such a 'mystery' would just be provided by the consequences of the dual and partial character of the two fermion-antifermion field bases. (Auth.)
Leading order relativistic hyperon-nucleon interactions in chiral effective field theory
Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bing-Wei
2018-01-01
We apply a recently proposed covariant power counting in nucleon-nucleon interactions to study strangeness S=‑1 {{\\varLambda }}N-{{\\varSigma }}N interactions in chiral effective field theory. At leading order, Lorentz invariance introduces 12 low energy constants, in contrast to the heavy baryon approach, where only five appear. The Kadyshevsky equation is adopted to resum the potential in order to account for the non-perturbative nature of hyperon-nucleon interactions. A fit to the 36 hyperon-nucleon scattering data points yields {χ }2≃ 16, which is comparable with the sophisticated phenomenological models and the next-to-leading order heavy baryon approach. However, one cannot achieve a simultaneous description of the nucleon-nucleon phase shifts and strangeness S=‑1 hyperon-nucleon scattering data at leading order. Supported by the National Natural Science Foundation of China (11375024, 11522539, 11375120), the China Postdoctoral Science Foundation (2016M600845, 2017T100008) and the Fundamental Research Funds for the Central Universities
Elimination of rotational degrees of freedom in expansion methods for three nucleons
International Nuclear Information System (INIS)
Efros, V.D.
2002-01-01
Euler angles determining rotations of a system as a whole are conveniently separated in three-particle basis functions. Analytic integration of matrix elements over Euler angles is done in a general form. Results for the Euler angle integrated matrix elements of a realistic NN Interaction are listed. The partial wave decomposition of correlated three-body states is considered. (author)
International Nuclear Information System (INIS)
Alkofer, R.; Reinhardt, H.
1995-01-01
This book is an introduction to chiral quark dynamics. In the first chapter the reduction of low-energy QCD to QFD with the derivation of effective low-energy quark interactions and invariance properties is described. Then the effective meson theory is introduced. In this connection the functional integral bosonization of the quark-antiquark interaction, the small amplitude expansion of the action, the dynamical breaking of chiral symmetry, the Bethe-Salpeter equation for pseudoscalar mesons, the gauged linear σ model, the Skyrme model, and the chiral anomaly are considered. Then baryons are described as chiral solitons. Finally baryons are considered as bound states of diquarks and quarks. (HSI)
Nuclear spin-orbit interaction from chiral pion-nucleon dynamics
International Nuclear Information System (INIS)
Kaiser, N.
2002-01-01
Using the two-loop approximation of chiral perturbation theory, we calculate the momentum and density dependent nuclear spin-orbit strength U ls (p,k f ). This quantity is derived from the spin-dependent part of the interaction energy Σ spin =((i)/(2))σ→·(q→xp→)U ls (p,k f ) of a nucleon scattering off weakly inhomogeneous isospin symmetric nuclear matter. We find that iterated 1π-exchange generates at saturation density, k f0 =272.7 MeV, a spin-orbit strength at p=0 of U ls (0,k f0 )≅35 MeV fm 2 , in perfect agreement with the empirical value used in the shell model. This novel spin-orbit strength is neither of relativistic nor of short range origin. The potential V ls underlying the empirical spin-orbit strength Ubar ls =V ls r ls 2 becomes a rather weak one, V ls ≅17 MeV, after the identification r ls =m π -1 as suggested by the present calculation. We observe, however, a strong p-dependence of U ls (p,k f0 ) leading even to a sign change above p=200 MeV. This and other features of the emerging spin-orbit Hamiltonian which go beyond the usual shell model parametrization leave questions about the ultimate relevance of the spin-orbit interaction generated by 2π-exchange for a finite nucleus. We also calculate the complex-valued isovector single-particle potential U I (p,k f )+iW I (p,k f ) in isospin asymmetric nuclear matter proportional to τ 3 (N-Z)/(N+Z). For the real part we find reasonable agreement with empirical values and the imaginary part vanishes at the Fermi-surface p=k f
Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F
2012-09-01
Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.
International Nuclear Information System (INIS)
Ebert, D.; Volkov, M.K.
1978-01-01
Starting from a phenomenological chiral SU(4)xSU(4) Lagrangian for hadrons weak and electromagnetic interactions are introduced by considering nonlinear realizations of the gauge group SU(2)sub(L)xU(1) of the Weinberg-Salam model. The final effective Lagrangian for the weak interaction of hadrons has the usual current x current structure. The charmed charged currents are of the Cabibbo type, the neutral current satisfies the condition Δ S = 0 of the G.I.M. scheme
Chiral symmetry and chiral-symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Bombaci, Ignazio; Logoteta, Domenico
2018-02-01
Aims: We report a new microscopic equation of state (EOS) of dense symmetric nuclear matter, pure neutron matter, and asymmetric and β-stable nuclear matter at zero temperature using recent realistic two-body and three-body nuclear interactions derived in the framework of chiral perturbation theory (ChPT) and including the Δ(1232) isobar intermediate state. This EOS is provided in tabular form and in parametrized form ready for use in numerical general relativity simulations of binary neutron star merging. Here we use our new EOS for β-stable nuclear matter to compute various structural properties of non-rotating neutron stars. Methods: The EOS is derived using the Brueckner-Bethe-Goldstone quantum many-body theory in the Brueckner-Hartree-Fock approximation. Neutron star properties are next computed solving numerically the Tolman-Oppenheimer-Volkov structure equations. Results: Our EOS models are able to reproduce the empirical saturation point of symmetric nuclear matter, the symmetry energy Esym, and its slope parameter L at the empirical saturation density n0. In addition, our EOS models are compatible with experimental data from collisions between heavy nuclei at energies ranging from a few tens of MeV up to several hundreds of MeV per nucleon. These experiments provide a selective test for constraining the nuclear EOS up to 4n0. Our EOS models are consistent with present measured neutron star masses and particularly with the mass M = 2.01 ± 0.04 M⊙ of the neutron stars in PSR J0348+0432.
Zhu, Hanyu
2018-02-01
Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.
Elastic nucleon-deuteron scattering and breakup with chiral forces
Directory of Open Access Journals (Sweden)
Witała Henryk
2016-01-01
Full Text Available Results on three-nucleon (3N elastic scattering and breakup below the pion production threshold are discussed. The large discrepancies found between a theory based on numerical solutions of 3N Faddeev equations with standard nucleon-nucleon (NN potentials only and data point to the need for three-nucleon forces (3NF’s. This notion is supported by the fact that another possible reason for the discrepancies in elastic nucleon-deuteron (Nd scattering, relativistic effects, turned out to be small. Results for a new generation of chiral NN forces (up to N4LO together with theoretical truncation errors are shown. They support conclusions obtained with standard NN potentials
International Nuclear Information System (INIS)
Conte, E.; Pieralice, M.
1987-01-01
An investigation on the chirality of the positrons from 22 Na and on their asymmetrical interactions with D-, L-, and DL-alanines was carried out. By using nuclear gamma-spectroscopy, the asymmetrical interaction was proved to be induced with a distinguishably asymmetrical effect
Chiral recognition in separation science: an overview.
Scriba, Gerhard K E
2013-01-01
Chiral recognition phenomena play an important role in nature as well as analytical separation sciences. In separation sciences such as chromatography and capillary electrophoresis, enantiospecific interactions between the enantiomers of an analyte and the chiral selector are required in order to observe enantioseparations. Due to the large structural variety of chiral selectors applied, different mechanisms and structural features contribute to the chiral recognition process. This chapter briefly illustrates the current models of the enantiospecific recognition on the structural basics of various chiral selectors.
Kohno, M.
2018-03-01
Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.
Chirality in molecular collision dynamics
Lombardi, Andrea; Palazzetti, Federico
2018-02-01
Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.
Sandratskii, L. M.
2017-07-01
The purpose of the paper is to gain deeper insight into microscopic formation of the Dzyaloshinskii-Moriya interaction (DMI). The paper aims at the development of the physical picture able to address apparently contradicting conclusions of recent studies concerning the location of the DMI energy in the real and reciprocal spaces as well as the relation between values of the atomic moments and the DMI strength. The main tools of our study are the first-principles calculations of the energies of the spiral magnetic states with opposite chiralities. We suggest a method of the calculation of the spiral structures with account for the spin-orbit coupling (SOC). It is based on the application of the generalized Bloch theorem and generalized Bloch functions and allows to reduce the consideration of arbitrary incommensurate spiral to small chemical unit cell. The method neglects the anisotropy in the plane orthogonal to the rotation axis of the spirals that does not influence importantly the DMI energy. For comparison, the supercell calculation with full account for the SOC is performed. The concrete calculations are performed for the Co/Pt bilayer. We consider the distribution of the DMI energy in both real and reciprocal spaces and the dependence of the DMI on the number of electrons. The results of the calculations reveal a number of energy compensations in the formation of the DMI. Thus, the partial atomic contributions as functions of the spiral wave vector q are nonmonotonic and have strongly varying slopes. However, in the total DMI energy these atom-related features compensate each other, resulting in a smooth q dependence. The reason for the peculiar form of the partial DMI contributions is a q -dependent difference in the charge distribution between q and -q spirals. The strongly q -dependent relation between atomic contributions shows that the real-space distribution of the DMI energy obtained for a selected q value cannot be considered as a general
International Nuclear Information System (INIS)
Musakhanov, M.M.
1980-01-01
The chiral bag model is considered. It is suggested that pions interact only with the surface of a quark ''bag'' and do not penetrate inside. In the case of a large bag the pion field is rather weak and goes to the linearized chiral bag model. Within that model the baryon mass spectrum, β decay axial constant, magnetic moments of baryons, pion-baryon coupling constants and their form factors are calculated. It is shown that pion corrections to the calculations according to the chiral bag model is essential. The obtained results are found to be in a reasonable agreement with the experimental data
New chiral fermions, a new gauge interaction, Dirac neutrinos, and dark matter
Energy Technology Data Exchange (ETDEWEB)
Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy,2145 Sheridan Road, Evanston, IL 60208 (United States)
2015-10-07
We propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, U(1){sub ν}, for all new light fermionic states. Anomaly cancellations mandate the existence of several new fermion fields with nontrivial U(1){sub ν} charges. We develop a concrete model of this type, for which we show that (i) some fermions remain massless after U(1){sub ν} breaking — similar to SM neutrinos — and (ii) accidental global symmetries translate into stable massive particles — similar to SM protons. These ingredients provide a solution to the dark matter and neutrino mass puzzles assuming one also postulates the existence of heavy degrees of freedom that act as “mediators' between the two sectors. The neutrino mass mechanism described here leads to parametrically small Dirac neutrino masses, and the model also requires the existence of at least four Dirac sterile neutrinos. Finally, we describe a general technique to write down chiral-fermions-only models that are at least anomaly-free under a U(1) gauge symmetry.
Amplification of chirality in liquid crystals
Eelkema, Rienk; Feringa, Ben L.
2006-01-01
The amplification of molecular chirality by liquid crystalline systems is widely applied in investigations towards enantioselective solvent - solute interactions, chiral supramolecular assemblies, smart materials, and the development of liquid crystal displays. Here we present an overview of recent
Bratkovskaya, E. L.; Moreau, P.; Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.
2018-02-01
The effect of the chiral symmetry restoration (CSR) on observables from heavy-ion collisions is studied in the energy range =3-20 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear σ - ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon ∑-term we adopt ∑π ≈ 45 MeV which corresponds to a 'world average'. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at =3-20 GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the non-strange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive ones. Our results provide a microscopic explanation for the "horn" structure in the excitation function of the K+/π+ ratio: the CSR in the hadronic phase produces the steep increase of this particle ratio up to ≈ 7 GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium.
Inoue, Yoshihisa
2004-01-01
Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S
Beilinson, Alexander
2004-01-01
Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch
Matching Pion-Nucleon Roy-Steiner Equations to Chiral Perturbation Theory
Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.
2015-11-01
We match the results for the subthreshold parameters of pion-nucleon scattering obtained from a solution of Roy-Steiner equations to chiral perturbation theory up to next-to-next-to-next-to-leading order, to extract the pertinent low-energy constants including a comprehensive analysis of systematic uncertainties and correlations. We study the convergence of the chiral series by investigating the chiral expansion of threshold parameters up to the same order and discuss the role of the Δ (1232 ) resonance in this context. Results for the low-energy constants are also presented in the counting scheme usually applied in chiral nuclear effective field theory, where they serve as crucial input to determine the long-range part of the nucleon-nucleon potential as well as three-nucleon forces.
Quark structure of chiral solitons
Energy Technology Data Exchange (ETDEWEB)
Dmitri Diakonov
2004-05-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ''chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ''soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
Energy Technology Data Exchange (ETDEWEB)
Roncaratti, L. F., E-mail: lz@fis.unb.br; Leal, L. A.; Silva, G. M. de [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Pirani, F. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Aquilanti, V. [Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, 06123 Perugia (Italy); Instituto de Física, Universidade Federal da Bahia, 40210 Salvador (Brazil); Gargano, R. [Instituto de Física, Universidade de Brasília, 70910 Brasília (Brazil); Departments of Chemistry and Physics, University of Florida, Quantum Theory Project, Gainesville, Florida 32611 (United States)
2014-10-07
We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry of the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.
Koshti, Vijay S; Sen, Anirban; Shinde, Dinesh; Chikkali, Samir H
2017-10-17
Supramolecular phosphine-derived catalysts are known to provide high enantioselectivity in asymmetric transformations such as hydrogenation, but direct evidence unravelling the role of secondary interactions is largely missing. As a representative case study, the role of hydrogen bonding in asymmetric hydrogenation catalysed by p-chiral supramolecular phosphines is investigated. To establish the nature of hydrogen bonding in the self-assembled Rh-complex, NMR experiments were performed at different concentrations and temperatures. It was found that with increasing concentration of 1-(3-(phenyl(o-tolyl)phosphanyl)phenyl)urea ligand (L1), the NH and NH 2 peaks shift downfield. This indicated the presence of intermolecular hydrogen bonding in L1. This observation was further supported by variable temperature NMR experiments wherein, with decreasing temperature, the NH and NH 2 resonances of L1 shifted downfield. The downfield shift once again suggests the existence of intermolecular hydrogen bonding in L1. In contrast, the chemical shift of NH and NH 2 signals did not significantly change with increasing concentration of the self-assembled Rh-complex (C1). This observation suggested the existence of intramolecular hydrogen bonding in the self-assembled complex. The concentration experiment was further corroborated by variable temperature NMR experiments. No change in the chemical shift of NH 2 resonance could be detected with decreasing temperature, which corroborates the existence of intramolecular hydrogen bonding in C1. In a stoichiometric experiment, C1 was treated with hydrogenation substrate N-acetyldehydrophenylalanine (S2) and the proton NMR was recorded. The NH 2 protons of the self-assembled Rh-complex were found to shift downfield, as compared to untreated parent C1. These observations indicated that there is a hydrogen bonding interaction between the Rh-complex and the substrate. To further attest this hypothesis, NH and NH 2 groups were exchanged with ND
Chiral Spin Liquid on a Kagome Antiferromagnet Induced by the Dzyaloshinskii-Moriya Interaction
Messio, Laura; Bieri, Samuel; Lhuillier, Claire; Bernu, Bernard
2017-06-01
The quantum spin liquid material herbertsmithite is described by an antiferromagnetic Heisenberg model on the kagome lattice with a non-negligible Dzyaloshinskii-Moriya interaction (DMI). A well-established phase transition to the q =0 long-range order occurs in this model when the DMI strength increases, but the precise nature of a small-DMI phase remains controversial. Here, we describe a new phase obtained from Schwinger-boson mean-field theory that is stable at small DMI, and which can explain the dispersionless spectrum seen in the inelastic neutron scattering experiment by Han et al. [Nature (London) 492, 406 (2012), 10.1038/nature11659]. It is a time-reversal symmetry breaking Z2 spin liquid, with the unique property of a small and constant spin gap in an extended region of the Brillouin zone. The phase diagram as a function of DMI and spin size is given, and dynamical spin structure factors are presented.
Quarks, baryons and chiral symmetry
Hosaka, Atsushi
2001-01-01
This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w
Chiral perturbation theory with nucleons
Energy Technology Data Exchange (ETDEWEB)
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, {pi}N scattering and the {sigma}-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon.
Chiral perturbation theory with nucleons
International Nuclear Information System (INIS)
Meissner, U.G.
1991-09-01
I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon
Nuclear axial current operators to fourth order in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Krebs, H., E-mail: hermann.krebs@rub.de [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Epelbaum, E., E-mail: evgeny.epelbaum@rub.de [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93016 (United States); Meißner, U.-G., E-mail: meissner@hiskp.uni-bonn.de [Helmholtz-Institut für Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institut für Kernphysik, Institute for Advanced Simulation, and Jülich Center for Hadron Physics, Forschungszentrum Jülich, D-52425 Jülich (Germany); JARA - High Performance Computing, Forschungszentrum Jülich, D-52425 Jülich (Germany)
2017-03-15
We present the complete derivation of the nuclear axial charge and current operators as well as the pseudoscalar operators to fourth order in the chiral expansion relative to the dominant one-body contribution using the method of unitary transformation. We demonstrate that the unitary ambiguity in the resulting operators can be eliminated by the requirement of renormalizability and by matching of the pion-pole contributions to the nuclear forces. We give expressions for the renormalized single-, two- and three-nucleon contributions to the charge and current operators and pseudoscalar operators including the relevant relativistic corrections. We also verify explicitly the validity of the continuity equation.
International Nuclear Information System (INIS)
Colanero, K.; Chu, M.-C.
2002-01-01
We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results
Naumann, Christoph; Kuchel, Philip W.
2011-07-01
The 1H NMR spectrum of glycine in stretched gelatin gel and in cromolyn liquid crystal displays a well-resolved doublet due to 1H- 1H dipolar interaction. Multiple spectra were obtained within a wide range of offset frequencies of partially saturating radio-frequency (RF) radiation to generate steady-state irradiation envelopes or z-spectra of glycine. Maximal suppression of the doublet occurred when the irradiation was applied exactly at the centre frequency, between the two glycine peaks. This phenomenon is due to double-quantum transitions and is similar to our previous work on quadrupolar nuclei 2H (HDO) and 23Na +. When the 13C isotopomer glycine-2- 13C was used, the same effect was found in twice, split by 1JCH + 2 DCH. Additional signals in 1H and 13C NMR due to prochiral-chiral interactions were found when glycine-2- 13C was dissolved in chiral anisotropic gelatin and κ-carrageenan gels. The NMR spectra were successfully simulated assuming a 2JHH coupling constant of -16.5 Hz and two distinct dipolar coupling constants for the - 13CH 2- group ( DC,HA, and DC,HB).
Characteristics of the chiral phase transition in nonlocal quark models
International Nuclear Information System (INIS)
Gomez Dumm, D. Gomez; Scoccola, N.N.
2005-01-01
The characteristics of the chiral phase transition are analyzed within the framework of chiral quark models with nonlocal interactions in the mean-field approximation. In the chiral limit, we develop a semianalytic framework that allows us to explicitly determine the phase transition curve, the position of the critical points, some relevant critical exponents, etc. For the case of finite current quark masses, we show the behavior of various thermodynamical and chiral response functions across the phase transition
Enantioselective Biotransformation of Chiral Persistent Organic Pollutants.
Zhang, Ying; Ye, Jing; Liu, Min
2017-01-01
Enantiomers of chiral compounds commonly undergo enantioselective transformation in most biologically mediated processes. As chiral persistent organic pollutants (POPs) are extensively distributed in the environment, differences between enantiomers in biotransformation should be carefully considered to obtain exact enrichment and specific health risks. This review provides an overview of in vivo biotransformation of chiral POPs currently indicated in the Stockholm Convention and their chiral metabolites. Peer-reviewed journal articles focused on the research question were thoroughly searched. A set of inclusion and exclusion criteria were developed to identify relevant studies. We mainly compared the results from different animal models under controlled laboratory conditions to show the difference between enantiomers in terms of distinct transformation potential. Interactions with enzymes involved in enantioselective biotransformation, especially cytochrome P450 (CYP), were discussed. Further research areas regarding this issue were proposed. Limited evidence for a few POPs has been found in 30 studies. Enantioselective biotransformation of α-hexachlorocyclohexane (α-HCH), chlordane, dichlorodiphenyltrichloroethane (DDT), heptachlor, hexabromocyclododecane (HBCD), polychlorinated biphenyls (PCBs), and toxaphene, has been investigated using laboratory mammal, fish, bird, and worm models. Tissue and excreta distributions, as well as bioaccumulation and elimination kinetics after administration of racemate and pure enantiomers, have been analyzed in these studies. Changes in enantiomeric fractions have been considered as an indicator of enantioselective biotransformation of chiral POPs in most studies. Results of different laboratory animal models revealed that chiral POP biotransformation is seriously affected by chirality. Pronounced results of species-, tissue-, gender-, and individual-dependent differences are observed in in vivo biotransformation of chiral POPs
Matei, Iulia; Ionescu, Sorana; Hillebrand, Mihaela
2012-10-01
The experimental induced circular dichroism (ICD) and absorption spectra of the achiral flavonoid kaempferol upon binding to human serum albumin (HSA) were correlated to electronic CD and UV-vis spectra theoretically predicted by time-dependent density functional theory (TDDFT). The neutral and four anionic species of kaempferol in various conformations were considered in the calculations. The appearance of the experimental ICD signal was rationalized in terms of kaempferol binding to HSA in a distorted, chiral, rigid conformation. The comparison between the experimental and simulated spectra allowed for the identification of the kaempferol species that binds to HSA, namely the anion generated by deprotonation of the hydroxyl group in position 7. This approach constitutes a convenient method for evidencing the binding species and for determining its conformation in the binding pocket of the protein. Its main advantage over the UV-vis absorption method lays in the fact that only the bound ligand species gives an ICD signal.
Kashid, Vikas; Schena, Timo; Zimmermann, Bernd; Mokrousov, Yuriy; Blügel, Stefan; Shah, Vaishali; Salunke, H. G.
2014-08-01
We investigate the chiral magnetic order in freestanding planar 3d-5d biatomic metallic chains (3d: Fe, Co; 5d: Ir, Pt, Au) using first-principles calculations based on density functional theory. We find that the antisymmetric exchange interaction, commonly known as the Dzyaloshinskii-Moriya interaction (DMI), contributes significantly to the energetics of the magnetic structure. For the Fe-Pt and Co-Pt chains, the DMI can compete with the isotropic Heisenberg-type exchange interaction and the magnetocrystalline anisotropy energy, and for both cases a homogeneous left-rotating cycloidal chiral spin-spiral with a wavelength of 51 Å and 36 Å, respectively, was found. The sign of the DMI, which determines the handedness of the magnetic structure, changes in the sequence of the 5d atoms Ir(+), Pt(-), Au(+). We use the full-potential linearized augmented plane wave method and perform self-consistent calculations of homogeneous spin spirals, calculating the DMI by treating the effect of spin-orbit interaction in the basis of the spin-spiral states in first-order perturbation theory. To gain insight into the DMI results of our ab initio calculations, we develop a minimal tight-binding model of three atoms and four orbitals that contains all essential features: the spin canting between the magnetic 3d atoms, the spin-orbit interaction at the 5d atoms, and the structure inversion asymmetry facilitated by the triangular geometry. We find that spin canting can lead to spin-orbit active eigenstates that split in energy due to the spin-orbit interaction at the 5d atom. We show that the sign and strength of the hybridization, the bonding or antibonding character between d orbitals of the magnetic and nonmagnetic sites, the bandwidth, and the energy difference between occupied and unoccupied states of different spin projection determine the sign and strength of the DMI. The key features observed in the trimer model are also found in the first-principles results.
Introduction to Chiral Symmetry
Energy Technology Data Exchange (ETDEWEB)
Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2017-05-09
These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.
Chirality detection of enantiomers using twisted optical metamaterials
Zhao, Yang; Askarpour, Amir N.; Sun, Liuyang; Shi, Jinwei; Li, Xiaoqin; Alù, Andrea
2017-01-01
Many naturally occurring biomolecules, such as amino acids, sugars and nucleotides, are inherently chiral. Enantiomers, a pair of chiral isomers with opposite handedness, often exhibit similar physical and chemical properties due to their identical functional groups and composition, yet show different toxicity to cells. Detecting enantiomers in small quantities has an essential role in drug development to eliminate their unwanted side effects. Here we exploit strong chiral interactions with plasmonic metamaterials with specifically designed optical response to sense chiral molecules down to zeptomole levels, several orders of magnitude smaller than what is typically detectable with conventional circular dichroism spectroscopy. In particular, the measured spectra reveal opposite signs in the spectral regime directly associated with different chiral responses, providing a way to univocally assess molecular chirality. Our work introduces an ultrathin, planarized nanophotonic interface to sense chiral molecules with inherently weak circular dichroism at visible and near-infrared frequencies. PMID:28120825
International Nuclear Information System (INIS)
Toru, Kojo; Hidaka, Y.; Pisarski, R.; McLerran, L.
2010-01-01
We argue the properties of confining dense quark matter, 'quarkyonic' matter, from the viewpoint of both bulk properties and excitation modes. After a brief review of confining aspects, the chiral breaking/restoration will be discussed. We argue that the strong infrared correlations induce the chiral spiral, i.e., the spatial modulation of the chiral condensate which breaks the chiral symmetry locally but restore it globally. The effective dimensional reduction takes place, allowing us to analyzing the system as 2D model in which several exact results can be explicitly derived. We also discuss the excitation spectra, both mesonic and baryonic ones, on the chiral spiral. (author)
Chiral all-dielectric trimer nanoantenna
Ullah, Kaleem; Garcia-Camara, Braulio; Habib, Muhammad; Liu, Xuefeng; Krasnok, Alex; Lepeshov, Sergey; Hao, Jingjing; Liu, Juan; Yadav, N. P.
2018-03-01
Chirality is a property of certain molecules, materials or artificial nanostructures, which enables them to interact with the spin angular momentum of an incident light. This provides a different optical response, depending on the incident polarization, which gives rise to chiral optical spectroscopies. However, low-detection limits require an enhanced chiral light-matter interaction. Here, we propose a novel type of resonant chiral optical nanoantenna based on high-index dielectric (Cu2O) spherical nanoparticles arranged in a trimer geometry. We demonstrate both numerically and experimentally that this trimer nanoantenna exhibits resonantly enhanced optical dichroism and light hotspots, which are associated with this geometry. Moreover, we apply near-field optical microscopy to measure the near-field peculiarities of the proposed nanoantenna. The ability of changing the nanoantenna near field scattering by varying the light polarization is shown.
Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter
2017-01-25
Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.
Intelligent chiral sensing based on supramolecular and interfacial concepts.
Ariga, Katsuhiko; Richards, Gary J; Ishihara, Shinsuke; Izawa, Hironori; Hill, Jonathan P
2010-01-01
Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.
Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts
Directory of Open Access Journals (Sweden)
Hironori Izawa
2010-07-01
Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.
On chiral and non chiral 1D supermultiplets
International Nuclear Information System (INIS)
Toppan, Francesco
2011-01-01
In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)
On chiral and non chiral 1D supermultiplets
Energy Technology Data Exchange (ETDEWEB)
Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica
2011-07-01
In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)
Takatsuka, Kazuo
2017-02-01
The Longuet-Higgins (Berry) phase arising from nonadiabatic dynamics and the Aharonov-Bohm phase associated with the dynamics of a charged particle in the electromagnetic vector potential are well known to be individually a manifestation of a class of the so-called geometrical phase. We herein discuss another similarity between the force working on a charged particle moving in a magnetic field, the Lorentz force, and a force working on nuclei while passing across a region where they have a strong quantum mechanical kinematic (nonadiabatic) coupling with electrons in a molecule. This kinematic force is indeed akin to the Lorentz force in that its magnitude is proportional to the velocity of the relevant nuclei and works in the direction perpendicular to its translational motion. Therefore this Lorentz-like nonadiabatic force is realized only in space of more or equal to three dimensions, thereby highlighting a truly multi-dimensional effect of nonadiabatic interaction. We investigate its physical significance qualitatively in the context of breaking of molecular spatial symmetry, which is not seen otherwise without this force. This particular symmetry breaking is demonstrated in application to a coplanar collision between a planar molecule and an atom sharing the same plane. We show that the atom is guided by this force to the direction out from the plane, resulting in a configuration that distinguishes one side of the mirror plane from the other. This can serve as a trigger for the dynamics towards molecular chirality.
Advances in the Application of the Similarity Renormalization Group to Strongly Interacting Systems
Wendt, Kyle Andrew
induced non-locality is studied in detail. In order to do this, a generalization of the Weinberg Eigenvalue analysis is developed and applied to test this separation in order to study how perturbative the non-local terms are relative to a non-perturbative treatment of the local terms. Further perturbative corrections to the local solutions are studied. Nucleons are composite objects and as such three-nucleon, four-nucleon, and many-nucleon irreducible forces are necessary. These few-body forces are inherent to chiral effective field where they are formed in a natural hierarchy where the two nucleon force is dominant, with the three-nucleon next in the hierarchy and so forth. Within the SRG framework, it is necessary to evolve these few body forces in a consistent manner. During this process, new many-body forces will be induced even if there were only two-body forces initially. The details of these few-body evolutions are sensitive to the manner in which the SRG flow equation is solved and a new method for solving the momentum space SRG flow equation is developed and applied to study N2LO chiral effective field theory forces in the triton system.
International Nuclear Information System (INIS)
Shibuya, Taira; Matsuura, Hiroyasu; Ogata, Masao
2016-01-01
We study a microscopic derivation and the properties of the Dzyaloshinskii-Moriya interaction (DMI) between local magnetic moments in ferromagnet/heavy metal heterostructures. First, we derive DMI by Ruderman-Kittel-Kasuya-Yosida interaction through electrons in a heavy metal with Rashba spin orbit interaction (SOI). Next, we study the dependences of the DMI on the Rashba SOI, lattice constant, and chemical potential. We find that the DMI amplitude increases linearly when the Rashba SOI is small, has a maximum when the Rashba SOI is comparable to the hopping integral, and decreases when the Rashba SOI is large. The sign of the DMI not only changes depending on the sign of the Rashba SOI but also the lattice constants and the chemical potential of the heavy metal. The implications of the obtained results for experiments are discussed. (author)
Chiral discrimination by chemical force microscopy
McKendry, Rachel; Theoclitou, Maria-Elena; Rayment, Trevor; Abell, Chris
1998-02-01
Chirality is a fundamental aspect of chemical biology, and is of central importance in pharmacology. Consequently there is great interest in techniques for distinguishing between different chiral forms of a compound. Chemical force microscopy is a technique that combines chemical discrimination with atomic force microscopy by chemical derivatization of the scanning probe tip. It has been applied to the study of hydrophobic and hydrophilic interactions, the binding between biotin and streptavidin, and between DNA bases. Here we report on the use of chemical force microscopy to discriminate between chiral molecules. Using chiral molecules attached to the probe tip, we can distinguish the two enantiomers of mandelic acid arrayed on a surface, through differences in both the adhesion forces and the frictional forces measured by the probe.
Kesselgruber, Martin
2001-01-01
The element of planar chirality turned out to be of special importance to achieve high enantioselectivities in various asymmetric processes. In the course of this PhD thesis, the sulfoximine unit was established as a new chiral ortho-directing group for ferrocenes. By variation of the metal fragment and other structural properties of a published chiral ligand, a cyclopentadienylrhenium(I)tricarbonyl complex was identified as more selective than the original ferrocene system in the asymmetric ...
Doped Chiral Polymer Metamaterials Project
National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...
Phenomenology of anomalous chiral transports in heavy-ion collisions
Huang, Xu-Guang
2018-01-01
High-energy Heavy-ion collisions can generate extremely hot quark-gluon matter and also extremely strong magnetic fields and fluid vorticity. Once coupled to chiral anomaly, the magnetic fields and fluid vorticity can induce a variety of novel transport phenomena, including the chiral magnetic effect, chiral vortical effect, etc. Some of them require the environmental violation of parity and thus provide a means to test the possible parity violation in hot strongly interacting matter. We will discuss the underlying mechanism and implications of these anomalous chiral transports in heavy-ion collisions.
Kehr, Nermin Seda; Jose, Joachim
2017-12-01
We demonstrate the organic molecules loaded and chiral polymers coated periodic mesoporous organosilica (PMO) to generate chiral nanocarriers that we used to study chirality-dependent cellular uptake in serum and serum-free media and the subsequent delivery of different amounts of organic molecules into cells. Our results show that the amount of internalized PMO and thus the transported amount of organic molecules by nanocarrier PMO into cells was chirality dependent and controlled by hard/soft protein corona formation on the PMO surfaces. Therefore, this study demonstrate that chiral porous nanocarriers could potentially be used as advanced drug delivery systems which are able to use the specific chiral surface-protein interactions to influence/control the amount of (bio)active molecules delivered to cells in drug delivery and/or imaging applications.
Indian Academy of Sciences (India)
In this talk I review studies of hadron properties in bosonized chiral quark models for the quark ﬂavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully ...
Molecular-level Design of Heterogeneous Chiral Catalysts
Energy Technology Data Exchange (ETDEWEB)
Gellman, Andrew John [Carnegie Mellon University; Sholl, David S. [Georgia Institute of Technology; Tysoe, Wilfred T. [University of Wisconsin - Milwaukee; Zaera, Francisco [University of California at Riverside
2013-04-28
Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111
Chirality Recognition in Camphor - 1,2-PROPANEDIOL Complexes
Perez, Cristobal; Fatima, Mariyam; Krin, Anna; Schnell, Melanie
2017-06-01
The molecular interactions in complexes involving chiral molecules are of particular interest, because the interactions change in a subtle way upon replacing one of the partners by its mirror image. This is based on the fact that chiral molecules are sensitive probes for other chiral objects and chiral interactions. In this particular case, we will concentrate on molecule-molecule interactions and investigate them with broadband rotational spectroscopy. When two chiral molecules form complexes, the homochiral and heterochiral forms have different structures (and thus rotational constants and spectra) and different energies. They are diastereomers, which can easily be differentiated, for example via molecular spectroscopy. This is often exploited in chemical synthesis for identifying and separating enantiomers. The phenomena involving chirality recognition are relevant in the biosphere, in organic synthesis and in polymer design. We use chirped-pulse Fourier transform microwave (CP-FTMW) spectroscopy to study the structures and the underlying interactions of camphor-1,2-propanediol complexes. This system is also interesting because the complex formation can be expected to be ruled by an interplay between hydrogen bonding to the polar carbonyl group in camphor and dispersion interactions. The spectra are extremely rich because of the high number of conformers for 1,2-propanediol. We started out with racemic mixtures of both camphor and 1,2-propanediol. Using enantiopure samples of different handedness of the two partners nicely simplifies the spectra and guides the assignment. In the talk, we will report on the latest results for this chiral complex.
Chirality conservation in the lattice gauge theory
International Nuclear Information System (INIS)
Peskin, M.E.
1978-01-01
The derivation of conservation laws corresponding to chiral invariance in quantum field theories of interacting quarks and gluons are studied. In particular there is interest in observing how these conservation laws are constrained by the requirement that the field theory be locally gauge invariant. To examine this question, a manifestly gauge-invariant definition of local operators in a quantum field theory is introduced, a definition which relies in an essential way on the use of the formulation of gauge fields on a lattice due to Wilson and Polyakov to regulate ultraviolet divergences. The conceptual basis of the formalism is set out and applied to a long-standing puzzle in the phenomenology of quark-gluon theories: the fact that elementary particle interactions reflect the conservation of isospin-carrying chiral currents but not of the isospin-singlet chiral current. It is well known that the equation for the isospin-singlet current contains an extra term, the operator F/sub mu neu/F/sup mu neu/, not present in the other chirality conservation laws; however, this term conventionally has the form of a total divergence and so still allows the definition of a conserved chiral current. It is found that, when the effects of maintaining gauge invariance are properly taken into account, the structure of this operator is altered by renormalization effects, so that it provides an explicit breaking of the unwanted chiral invariance. The relation between this argument, based on renormaliztion, is traced to a set of more heuristic arguments based on gauge field topology given by 't Hooft; it is shown that the discussion provides a validation, through short-distance analysis, of the picture 'Hooft has proposed. The formal derivation of conservation laws for chiral currents are set out in detail
Magnetic fields and chiral asymmetry in the early hot universe
International Nuclear Information System (INIS)
Sydorenko, Maksym; Shtanov, Yuri; Tomalak, Oleksandr
2016-01-01
In this paper, we study analytically the process of external generation and subsequent free evolution of the lepton chiral asymmetry and helical magnetic fields in the early hot universe. This process is known to be affected by the Abelian anomaly of the electroweak gauge interactions. As a consequence, chiral asymmetry in the fermion distribution generates magnetic fields of non-zero helicity, and vice versa. We take into account the presence of thermal bath, which serves as a seed for the development of instability in magnetic field in the presence of externally generated lepton chiral asymmetry. The developed helical magnetic field and lepton chiral asymmetry support each other, considerably prolonging their mutual existence, in the process of 'inverse cascade' transferring magnetic-field power from small to large spatial scales. For cosmologically interesting initial conditions, the chiral asymmetry and the energy density of helical magnetic field are shown to evolve by scaling laws, effectively depending on a single combined variable. In this case, the late-time asymptotics of the conformal chiral chemical potential reproduces the universal scaling law previously found in the literature for the system under consideration. This regime is terminated at lower temperatures because of scattering of electrons with chirality change, which exponentially washes out chiral asymmetry. We derive an expression for the termination temperature as a function of the chiral asymmetry and energy density of helical magnetic field.
Applications of chiral symmetry
International Nuclear Information System (INIS)
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates
Spectral signatures of chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...
Sadofyev, Andrey; Sen, Srimoyee
2018-02-01
The linearized Einstein equation describing graviton propagation through a chiral medium appears to be helicity dependent. We analyze features of the corresponding spectrum in a collision-less regime above a flat background. In the long wave-length limit, circularly polarized metric perturbations travel with a helicity dependent group velocity that can turn negative giving rise to a new type of an anomalous dispersion. We further show that this chiral anomalous dispersion is a general feature of polarized modes propagating through chiral plasmas extending our result to the electromagnetic sector.
Transport properties of chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Puhr, Matthias
2017-04-26
Anomalous transport phenomena have their origin in the chiral anomaly, the anomalous non-conservation of the axial charge, and can arise in systems with chiral fermions. The anomalous transport properties of free fermions are well understood, but little is known about possible corrections to the anomalous transport coefficients that can occur if the fermions are strongly interacting. The main goal of this thesis is to study anomalous transport effects in media with strongly interacting fermions. In particular, we investigate the Chiral Magnetic Effect (CME) in a Weyl Semimetal (WSM) and the Chiral Separation Effect (CSE) in finite-density Quantum Chromodynamics (QCD). The recently discovered WSMs are solid state crystals with low-energy excitations that behave like Weyl fermions. The inter-electron interaction in WSMs is typically very strong and non-perturbative calculations are needed to connect theory and experiment. To realistically model an interacting, parity-breaking WSM we use a tight-binding lattice Hamiltonian with Wilson-Dirac fermions. This model features a non-trivial phase diagram and has a phase (Aoki phase/axionic insulator phase) with spontaneously broken CP symmetry, corresponding to the phase with spontaneously broken chiral symmetry for interacting continuum Dirac fermions. We use a mean-field ansatz to study the CME in spatially modulated magnetic fields and find that it vanishes in the Aoki phase. Moreover, our calculations show that outside of the Aoki phase the electron interaction has only a minor influence on the CME. We observe no enhancement of the magnitude of the CME current. For our non-perturbative study of the CSE in QCD we use the framework of lattice QCD with overlap fermions. We work in the quenched approximation to avoid the sign problem that comes with introducing a finite chemical potential on the lattice. The overlap operator calls for the evaluation of the sign function of a matrix with a dimension proportional to the volume
Energy Technology Data Exchange (ETDEWEB)
Becher,
2002-08-08
After contrasting the low energy effective theory for the baryon sector with one for the Goldstone sector, I use the example of pion nucleon scattering to discuss some of the progress and open issues in baryon chiral perturbation theory.
Wang, Jian-Bo; Reetz, Manfred T.
2015-12-01
Racemic or enantiomerically pure alcohols can be converted with high yield into enantiopure chiral amines in a one-pot redox-neutral cascade process by the clever combination of an alcohol dehydrogenase and an appropriate amine dehydrogenase.
Nonlinear chiral transport phenomena
Chen, Jiunn-Wei; Ishii, Takeaki; Pu, Shi; Yamamoto, Naoki
2016-06-01
We study the nonlinear responses of relativistic chiral matter to the external fields such as the electric field E , gradients of temperature and chemical potential, ∇T and ∇μ . Using the kinetic theory with Berry curvature corrections under the relaxation time approximation, we compute the transport coefficients of possible new electric currents that are forbidden in usual chirally symmetric matter but are allowed in chirally asymmetric matter by parity. In particular, we find a new type of electric current proportional to ∇μ ×E due to the interplay between the effects of the Berry curvature and collisions. We also derive an analog of the "Wiedemann-Franz" law specific for anomalous nonlinear transport in relativistic chiral matter.
Pentaquarks in chiral color dielectric model
Indian Academy of Sciences (India)
In this work I compute the mass and width of this state in chiral color dielectric model. I show that ... I find that the mass of the state can be fitted to the experimentally observed mass by invoking a color neutral vector field and its interaction with the quarks. ... Institute of Physics, Sachivalaya Marg, Bhubaneswar 751 005, India ...
Disoriented chiral condensate: Theory and phenomenology
International Nuclear Information System (INIS)
Bjorken, J.D.
1997-12-01
These notes are an abbreviated version of lectures given at the 1997 Zakopane School. They contain two topics. The first is a description in elementary terms of the basic ideas underlying the speculative hypothesis that pieces of strong-interaction vacuum with a rotated chiral order parameter, disoriented chiral condensate or DCC, might be produced in high energy elementary particle collisions. The second topic is a discussion of the phenomenological techniques which may be applied to data in order to experimentally search for the existence of DCC
Lambda(1405) in chiral SU(3) dynamics
Hyodo, Tetsuo; Weise, Wolfram; Jido, Daisuke; Roca, Luis; Hosaka, Atsushi
2008-01-01
We discuss several aspects of the Lambda(1405) resonance in relation to the recent theoretical developments in chiral dynamics. We derive an effective single-channel KbarK N interaction based on chiral SU(3) coupled-channel approach, emphasizing the important role of the pi Sigma channel and the structure of the Lambda(1405) in Kbar N phenomenology. In order to clarify the structure of the resonance, we study the behavior with the number of colors (Nc) of the poles associated with the Lambda(...
Hidden QCD in Chiral Gauge Theories
DEFF Research Database (Denmark)
Ryttov, Thomas; Sannino, Francesco
2005-01-01
The 't Hooft and Corrigan-Ramond limits of massless one-flavor QCD consider the two Weyl fermions to be respectively in the fundamental representation or the two index antisymmetric representation of the gauge group. We introduce a limit in which one of the two Weyl fermions is in the fundamental...... representation and the other in the two index antisymmetric representation of a generic SU(N) gauge group. This theory is chiral and to avoid gauge anomalies a more complicated chiral theory is needed. This is the generalized Georgi-Glashow model with one vector like fermion. We show that there is an interesting...... phase in which the considered chiral gauge theory, for any N, Higgses via a bilinear condensate: The gauge interactions break spontaneously to ordinary massless one-flavor SU(3) QCD. The additional elementary fermionic matter is uncharged under this SU(3) gauge theory. It is also seen that when...
Chiral crossover transition in a finite volume
Shi, Chao; Jia, Wenbao; Sun, An; Zhang, Liping; Zong, Hongshi
2018-02-01
Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature {T}{{c}} of the crossover, showing a significant decrease in {T}{{c}} as L decreases below 3 fm. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (DMETKF2015015)
The role of resonances in chiral perturbation theory
International Nuclear Information System (INIS)
Ecker, G.; Rafael, E. de
1988-09-01
The strong interactions of low-lying meson resonances (spin ≤ 1) with the octet of pseudoscalar mesons (π,Κ,η) are considered to lowest order in the derivative expansion of chiral SU(3). The resonance contributions to the coupling constants of the O(p 4 ) effective chiral lagrangian involving pseudoscalar fields only are determined. These low-energy coupling constants are found to be dominated by the resonance contributions. Although we do not treat the vector and axial-vector mesons as gauge bosons of local chiral symmetry, vector meson dominance emerges as a prominent result of our analysis. As a further application of chiral resonance couplings, we calculate the electromagnetic pion mass difference to lowest order in chiral perturbation theory with explicit resonance fields. 29 refs., 2 figs., 5 tabs. (Author)
Chiral anomalies and differential geometry
Energy Technology Data Exchange (ETDEWEB)
Zumino, B.
1983-10-01
Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)
Li, Li; Hu, Chuanjiang; Shi, Bo; Wang, Yong
2016-05-10
A new host-guest system is formed between a benzene tricarboxamide linked zinc trisporphyrinate and a chiral monoalcohol (1-phenylethylalcohol). CD spectra show the chirality induction and inversion processes, which are controlled by the corresponding 1 : 1 and 1 : 2 coordination complexes. The binding constants calculated by UV-vis and CD spectral data are much larger than that for [Zn(TPP)] (TPP = tetraphenylporphyrin). The crystallographic structure of the host-guest complex reveals that multiple intramolecular hydrogen bonds and π-π interactions could contribute to its high binding affinity to 1-phenylethylalcohol. The DFT calculations suggest that the spatial orientations of porphyrin moieties change from the 1 : 1 complex to the 1 : 2 complex. The chirality induction and inversion processes are rationalized by the summation of pairwise interactions among multichromophores according to pairwise additivity.
Doped Chiral Polymer Metamaterials
Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)
2017-01-01
Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.
International Nuclear Information System (INIS)
Ecker, G.
1996-06-01
After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)
Chiral algebras for trinion theories
International Nuclear Information System (INIS)
Lemos, Madalena; Peelaers, Wolfger
2015-01-01
It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.
Rational concept to recognize/extract single-walled carbon nanotubes with a specific chirality.
Ozawa, Hiroaki; Fujigaya, Tsuyohiko; Niidome, Yasuro; Hotta, Naosuke; Fujiki, Michiya; Nakashima, Naotoshi
2011-03-02
Single-walled carbon nanotubes (SWNTs) have remarkable and unique electronic, mechanical, and thermal properties, which are closely related to their chiralities; thus, the chirality-selective recognition/extraction of the SWNTs is one of the central issues in nanotube science. However, any rational materials design enabling one to efficiently extract/solubilize pure SWNT with a desired chirality has yet not been demonstrated. Herein we report that certain chiral polyfluorene copolymers can well-recognize SWNTs with a certain chirality preferentially, leading to solubilization of specific chiral SWNTs. The chiral copolymers were prepared by the Ni(0)-catalyzed Yamamoto coupling reaction of 2,7-dibromo-9,9-di-n-decylfluorene and 2,7-dibromo-9,9-bis[(S)-(+)-2-methylbutyl]fluorene comonomers. The selectivity of the SWNT chirality was mainly determined by the relative fraction of the achiral and chiral side groups. By a molecular mechanics simulation, the cooperative interaction between the fluorene moiety, alkyl side chain, and graphene wall were responsible for the recognition/dissolution ability of SWNT chirality. This is a first example describing the rational design and synthesis of novel fluorene-based copolymers toward the recognition/extraction of targeted (n, m) chirality of the SWNTs.
Chiral forces and molecular dissymmetry
International Nuclear Information System (INIS)
Mohan, R.
1992-01-01
Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected
Magnetostatic mechanism for control of chirality of magnetization distributions
Nefedov, I. M.; Fraerman, A. A.; Shereshevskii, I. A.
2016-03-01
It has been shown that the magnetostatic interaction in an inhomogeneous medium leads to the removal of the chiral degeneracy of magnetic distributions. Noncollinear states of two magnetic dipoles and a helical cycloid placed over a superconducting half-space have been considered as examples. The influence of a finite penetration depth of the magnetic field on the efficiency of removal of the chiral degeneracy has been studied in the framework of the London approximation.
Homochiral Evolution in Self-Assembled Chiral Polymers and Block Copolymers.
Wen, Tao; Wang, Hsiao-Fang; Li, Ming-Chia; Ho, Rong-Ming
2017-04-18
The significance of chirality transfer is not only involved in biological systems, such as the origin of homochiral structures in life but also in man-made chemicals and materials. How the chiral bias transfers from molecular level (molecular chirality) to helical chain (conformational chirality) and then to helical superstructure or phase (hierarchical chirality) from self-assembly is vital for the chemical and biological processes in nature, such as communication, replication, and enzyme catalysis. In this Account, we summarize the methodologies for the examination of homochiral evolution at different length scales based on our recent studies with respect to the self-assembly of chiral polymers and chiral block copolymers (BCPs*). A helical (H*) phase to distinguish its P622 symmetry from that of normal hexagonally packed cylinder phase was discovered in the self-assembly of BCPs* due to the chirality effect on BCP self-assembly. Enantiomeric polylactide-containing BCPs*, polystyrene-b-poly(l-lactide) (PS-PLLA) and polystyrene-b-poly(d-lactide) (PS-PDLA), were synthesized for the examination of homochiral evolution. The optical activity (molecular chirality) of constituted chiral repeating unit in the chiral polylactide is detected by electronic circular dichroism (ECD) whereas the conformational chirality of helical polylactide chain can be explicitly determined by vibrational circular dichroism (VCD). The H* phases of the self-assembled polylactide-containing BCPs* can be directly visualized by 3D transmission electron microscopy (3D TEM) technique at which the handedness (hierarchical chirality) of the helical nanostructure is thus determined. The results from the ECD, VCD, and 3D TEM for the investigated chirality at different length scales suggest the homochiral evolution in the self-assembly of the BCPs*. For chiral polylactides, twisted lamellae in crystalline banded spherulite can be formed by dense packing scheme and effective interactions upon helical
International Nuclear Information System (INIS)
Lyubovitskij, V.E.; Gutsche, Th.; Faessler, Amand; Mau, R. Vinh
2002-01-01
We apply the perturbative chiral quark model to the study of the low-energy πN interaction. Using an effective chiral Lagrangian we reproduce the Weinberg-Tomozawa result for the S-wave πN scattering lengths. After inclusion of the photon field we give predictions for the electromagnetic O(p 2 ) low-energy couplings of the chiral perturbation theory effective Lagrangian that define the electromagnetic mass shifts of nucleons and first-order (e 2 ) radiative corrections to the πN scattering amplitude. Finally, we estimate the leading isospin-breaking correction to the strong energy shift of the π - p atom in the 1s state, which is relevant for the experiment 'pionic hydrogen' at PSI
Chiral damping of magnetic domain walls
Jué, Emilie
2015-12-21
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Realization of chiral symmetry in the ERG
International Nuclear Information System (INIS)
Echigo, Yoshio; Igarashi, Yuji
2011-01-01
We discuss within the framework of the ERG how chiral symmetry is realized in a linear σ model. A generalized Ginsparg-Wilson relation is obtained from the Ward-Takahashi identities for the Wilson action assumed to be bilinear in the Dirac fields. We construct a family of its non-perturbative solutions. The family generates the most general solutions to the Ward-Takahashi identities. Some special solutions are discussed. For each solution in this family, chiral symmetry is realized in such a way that a change in the Wilson action under non-linear symmetry transformation is canceled with a change in the functional measure. We discuss that the family of solutions reduces via a field redefinition to a family of the Wilson actions with some composite object of the scalar fields which has a simple transformation property. For this family, chiral symmetry is linearly realized with a continuum analog of the operator extension of γ 5 used on the lattice. We also show that there exist some appropriate Dirac fields which obey the standard chiral transformations with γ 5 in contrast to the lattice case. Their Yukawa interaction with scalars, however, becomes non-linear. (author)
Chiral fermions in asymptotically safe quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Meibohm, J. [Gothenburg University, Department of Physics, Goeteborg (Sweden); Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); Pawlowski, J.M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung mbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany)
2016-05-15
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions. (orig.)
Pattern production through a chiral chasing mechanism
Woolley, Thomas E.
2017-09-01
Recent experiments on zebrafish pigmentation suggests that their typical black and white striped skin pattern is made up of a number of interacting chromatophore families. Specifically, two of these cell families have been shown to interact through a nonlocal chasing mechanism, which has previously been modeled using integro-differential equations. We extend this framework to include the experimentally observed fact that the cells often exhibit chiral movement, in that the cells chase, and run away, at angles different to the line connecting their centers. This framework is simplified through the use of multiple small limits leading to a coupled set of partial differential equations which are amenable to Fourier analysis. This analysis results in the production of dispersion relations and necessary conditions for a patterning instability to occur. Beyond the theoretical development and the production of new pattern planiforms we are able to corroborate the experimental hypothesis that the global pigmentation patterns can be dependent on the chirality of the chromatophores.
Optofluidic sorting of material chirality by chiral light
Tkachenko, Georgiy; Brasselet, Etienne
2014-04-01
The lack of mirror symmetry, chirality, plays a fundamental role in physics, chemistry and life sciences. The passive separation of entities that only differ by their handedness without need of a chiral material environment remains a challenging task with attractive scientific and industrial benefits. To date, only a few experimental attempts have been reported and remained limited down to the micron scale, most of them relying on hydrodynamical forces associated with the chiral shape of the micro-objects to be sorted. Here we experimentally demonstrate that material chirality can be passively sorted in a fluidic environment by chiral light owing to spin-dependent optical forces without chiral morphology prerequisite. This brings a new twist to the state-of-the-art optofluidic toolbox and the development of a novel kind of passive integrated optofluidic sorters able to deal with molecular scale entities is envisioned.
Dynamics of chiral oscillations: a comparative analysis with spin flipping
International Nuclear Information System (INIS)
Bernardini, A E
2006-01-01
Chiral oscillation as well as spin flipping effects correspond to quantum phenomena of fundamental importance in the context of particle physics and, in particular, of neutrino physics. From the point of view of first quantized theories, we are specifically interested in pointing out the differences between chirality and helicity by obtaining their dynamic equations for a fermionic Dirac-type particle (neutrino). We also identify both effects when the non-minimal coupling with an external (electro)magnetic field in the neutrino interacting Lagrangian is taken into account. We demonstrate that, however, there is no constraint between chiral oscillations, when it takes place in vacuum, and the process of spin flipping related to the helicity quantum number, which does not take place in vacuum. To conclude, we show that the origin of chiral oscillations (in vacuum) can be interpreted as projections of very rapid oscillations of position onto the longitudinal direction of momentum
He, Y J; Qi, F; Qi, S C
2000-05-01
Life is chirally asymmetric at all scales from microscopic elementary particles to molecular and macroscopic levels. How these chiral asymmetries in life on different levels are unified remains unanswered. It has been demonstrated that both the biomolecular homochirality and biological rhythms can be caused by the right-handed helical force-field of the Earth's orbital chirality (EOC). Similar to the helical biomolecules (1), it is here suggested that the right-handed EOC force-field could make the right-handed elementary particles more stable than their left-handed enantiomers to result in the symmetry violation of elementary particles, and the EOC could also cause the macroscopic predominant selection of right-handed asymmetries of living objects (e.g. the helical seashells and plants). Our studies indicated that the weak force in weak interaction may only be a form of the EOC force-field at the microscopic particle level, and the chiral asymmetries in life on various levels could be unified by the natural right-handed EOC force-field. Moreover, the chiral and quantum effects, time, mass, rhythms and relativity could also be unified by the interaction of the EOC force-field with chiral motions and structures under certain conditions. Copyright 2000 Harcourt Publishers Ltd.
Simplified chiral superfield propagators for chiral constant mass superfields
International Nuclear Information System (INIS)
Srivastava, P.P.
1983-01-01
Unconstrained superfield potentials are introduced to derive Feynman rules for chiral superfields following conventional procedure which is easy and instructive. Propagators for the case when the mass parameters are constant chiral superfields are derived. The propagators reported here are very simple compared to those available in literature and allow a manageable calculation of higher loops. (Author) [pt
A primer for Chiral Perturbative Theory
International Nuclear Information System (INIS)
Scherer, Stefan; Schindler, Matthias R.; George Washington Univ., Washington, DC
2012-01-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)
A primer for chiral perturbation theory
Scherer, Stefan
2012-01-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.
Chiral charge flux and electroweak baryogenesis
Energy Technology Data Exchange (ETDEWEB)
Funakubo, Koichi [Saga Univ. (Japan). Dept. of Physics; Kakuto, Akira; Otsuki, Shoichiro; Takenaga, Kazunori; Toyoda, Fumihiko
1995-06-01
By treating CP-violating interaction of the electroweak bubble wall as a perturbative term, chiral charge flux through the bubble wall is estimated. It is found that the absolute value of the flux F{sub Q} has a sharp peak at m{sub 0} - a - T with F{sub Q}/(uT{sup 3}) - 10{sup -3}(Q{sub L}-Q{sub R}){Delta}{theta}. Here m{sub 0} is the fermion mass, 1/a is the wall thickness, T is the temperature at which the bubbles are growing, u is the wall velocity, Q{sub L(R)} is the chiral charge of the relevant left (right)-handed fermion and {Delta}{theta} is the measure of CP violation. (author).
Immobilized strychnine as a new chiral stationary phase for HPLC.
Sýkora, David; Vozka, Jiří; Tesařová, Eva; Kalíková, Květa; Havlík, Martin; Matějka, Pavel; Král, Vladimír
2017-08-01
A new ion-exchanger type chiral stationary phase for high-performance liquid chromatography was prepared. The synthetic protocol is based on derivatization of silica with (3-iodopropyl)trimethoxysilane in the first step followed by immobilization of strychnine via quaternization of nitrogen atom of the alkaloid strychnine. The synthesized chiral stationary phase was chromatographically characterized. The main effort was headed towards the evaluation of the enantioselectivity of the novel sorbent. For that purpose a set of suitable chiral probes, specifically, binaphthyl derivatives, was employed. The influence of methanol content, concentration of aqueous ammonium acetate buffer, and its pH on retention factors, separation selectivity, and resolution of the atropoisomers of the mentioned chiral solutes was studied in detail. It was demonstrated that the new chiral stationary phase was capable to separate atropoisomers of four out of seven testing compounds. Despite the strong influence of the above mentioned variables on retention, their impact on selectivity and resolution was rather moderate. Concerning retention mechanism, it seems that electrostatic interaction between the positively charged quaternary nitrogen of the chiral stationary phase and anionic solute participates significantly in the retention process. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Novel carbohydrate-based chiral ammonium ionic liquids derived from isomannide
DEFF Research Database (Denmark)
Kumar, Vineet; Pei, Cao; Olsen, Carl E.
2008-01-01
This report describes the synthesis and characterization of novel carbohydrate-based chiral ammonium ionic liquids using isomannide as a biorenewable substrate. The diastereomeric interactions of these chiral ammonium ionic liquids with racemic Mosher's acid salt have been studied using NMR, which...
Review of chiral perturbation theory
Indian Academy of Sciences (India)
41] which will be measured to high accuracy at Jefferson Laboratory at the experiment PrimEx. 4. Baryon chiral perturbation theory. Baryon chiral perturbation theory in the modern era was first formulated in [6]. This was a relativistic formulation ...
Algebraic study of chiral anomalies
Indian Academy of Sciences (India)
2012-06-14
Jun 14, 2012 ... Abstract. The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles ... Editor's Note: †Reproduced with kind permission from Springer Science+Business Media: Algebraic study of chiral anoma- ..... We shall see in the sequel several examples in which this ambiguity helps.
Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.
Kahle, Kimberly A; Foley, Joe P
2007-08-01
In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities.
Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles.
Lee, Hye-Eun; Ahn, Hyo-Yong; Mun, Jungho; Lee, Yoon Young; Kim, Minkyung; Cho, Nam Heon; Chang, Kiseok; Kim, Wook Sung; Rho, Junsuk; Nam, Ki Tae
2018-04-01
Understanding chirality, or handedness, in molecules is important because of the enantioselectivity that is observed in many biochemical reactions 1 , and because of the recent development of chiral metamaterials with exceptional light-manipulating capabilities, such as polarization control 2-4 , a negative refractive index 5 and chiral sensing 6 . Chiral nanostructures have been produced using nanofabrication techniques such as lithography 7 and molecular self-assembly 8-11 , but large-scale and simple fabrication methods for three-dimensional chiral structures remain a challenge. In this regard, chirality transfer represents a simpler and more efficient method for controlling chiral morphology 12-18 . Although a few studies 18,19 have described the transfer of molecular chirality into micrometre-sized helical ceramic crystals, this technique has yet to be implemented for metal nanoparticles with sizes of hundreds of nanometres. Here we develop a strategy for synthesizing chiral gold nanoparticles that involves using amino acids and peptides to control the optical activity, handedness and chiral plasmonic resonance of the nanoparticles. The key requirement for achieving such chiral structures is the formation of high-Miller-index surfaces ({hkl}, h ≠ k ≠ l ≠ 0) that are intrinsically chiral, owing to the presence of 'kink' sites 20-22 in the nanoparticles during growth. The presence of chiral components at the inorganic surface of the nanoparticles and in the amino acids and peptides results in enantioselective interactions at the interface between these elements; these interactions lead to asymmetric evolution of the nanoparticles and the formation of helicoid morphologies that consist of highly twisted chiral elements. The gold nanoparticles that we grow display strong chiral plasmonic optical activity (a dis-symmetry factor of 0.2), even when dispersed randomly in solution; this observation is supported by theoretical calculations and direct
Energy Technology Data Exchange (ETDEWEB)
Bacca, S. [TRIUMF, Vancouver, BC (Canada); Barnea, Nir [Hebrew Univ. of Jerusalem (Israel); Hagen, Gaute [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Miorelli, Mirko [TRIUMF, Vancouver, BC (Canada); Orlandini, Giuseppina [Univ. of Trento (Italy); Papenbrock, Thomas F. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
2014-12-24
We combine the coupled-cluster method and the Lorentz integral transform for the computation of inelastic reactions into the continuum. We show that the bound-state-like equation characterizing the Lorentz integral transform method can be reformulated based on extensions of the coupled-cluster equation-of-motion method, and we discuss strategies for viable numerical solutions. Starting from a chiral nucleon-nucleon interaction at next-to-next-to-next-to-leading order, we compute the giant dipole resonances of ^{4}He, ^{16,22}O, and ^{40}Ca, truncating the coupled-cluster equation-of-motion method at the two-particle–two-hole excitation level. Within this scheme, we find a low-lying E1 strength in the neutron-rich ^{22}O nucleus, which compares fairly well with data from Leistenschneider et al. [Phys. Rev. Lett. 86, 5442 (2001)]. We also compute the electric dipole polarizability in ^{40}Ca. Deficiencies of the employed Hamiltonian lead to overbinding, too-small charge radii, and a too-small electric dipole polarizability in ^{40}Ca.
Chiral analysis of baryon form factors
Energy Technology Data Exchange (ETDEWEB)
Gail, T.A.
2007-11-08
This work presents an extensive theoretical investigation of the structure of the nucleon within the standard model of elementary particle physics. In particular, the long range contributions to a number of various form factors parametrizing the interactions of the nucleon with an electromagnetic probe are calculated. The theoretical framework for those calculations is chiral perturbation theory, the exact low energy limit of Quantum Chromo Dynamics, which describes such long range contributions in terms of a pion-cloud. In this theory, a nonrelativistic leading one loop order calculation of the form factors parametrizing the vector transition of a nucleon to its lowest lying resonance, the {delta}, a covariant calculation of the isovector and isoscalar vector form factors of the nucleon at next to leading one loop order and a covariant calculation of the isoscalar and isovector generalized vector form factors of the nucleon at leading one loop order are performed. In order to perform consistent loop calculations in the covariant formulation of chiral perturbation theory an appropriate renormalization scheme is defined in this work. All theoretical predictions are compared to phenomenology and results from lattice QCD simulations. These comparisons allow for a determination of the low energy constants of the theory. Furthermore, the possibility of chiral extrapolation, i.e. the extrapolation of lattice data from simulations at large pion masses down to the small physical pion mass is studied in detail. Statistical as well as systematic uncertainties are estimated for all results throughout this work. (orig.)
The topological structures in strongly coupled QGP with chiral fermions on the lattice
Energy Technology Data Exchange (ETDEWEB)
Sharma, Sayantan [Physics Department, Brookhaven National Laboratory, Upton, New York-11973 (United States); Dick, Viktor [Fakultät für Physik, Universität Bielefeld, Universitätstasse 25, D33619 Bielefeld (Germany); Karsch, Frithjof [Physics Department, Brookhaven National Laboratory, Upton, New York-11973 (United States); Fakultät für Physik, Universität Bielefeld, Universitätstasse 25, D33619 Bielefeld (Germany); Laermann, Edwin [Fakultät für Physik, Universität Bielefeld, Universitätstasse 25, D33619 Bielefeld (Germany); Mukherjee, Swagato [Physics Department, Brookhaven National Laboratory, Upton, New York-11973 (United States)
2016-12-15
The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a systematic study of the finite size and cut-off effects since the signals of U(1) violation are sensitive to it. We also provide a glimpse of the microscopic topological structures of the QCD medium that are responsible for the strongly interacting nature of the quark gluon plasma phase. We study the effect of these microscopic constituents through our first calculations for the topological susceptibility of QCD at finite temperature, which could be a crucial input for the equation of state for anomalous hydrodynamics.
Dynamical chiral symmetry breaking and Bethe-Salpeter equation
Energy Technology Data Exchange (ETDEWEB)
Naito, Kenichi [Tokyo Inst. of Tech. (Japan)
1998-08-01
{pi} meson, (pseudo) Nambu-Goldstone particle caused by a spontaneous breaking of chiral symmetry, was studied by use of Bethe-Salpeter (BS) equation in the limits of effective model as a bound state of quark and antiquark. The effective model has nonlocal interaction and proved to satisfy the Gell-Mann-Oaks-Renner (GMOR) mass formula by treating correct Noether current in spite of loss of local chiral invariance of interaction term. GMOR mass formula: M{sub {pi}}{sup 2}f{sub {pi}}{sup 2}{approx_equal}-2m{sub 0}
Stardust, Supernovae and the Chirality of the Amino Acids
Energy Technology Data Exchange (ETDEWEB)
Boyd, R N; Kajino, T; Onaka, T
2011-03-09
A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.
Supernovae, neutrinos and the chirality of amino acids.
Boyd, Richard N; Kajino, Toshitaka; Onaka, Takashi
2011-01-01
A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the (14)N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's proteinaceous amino acids.
Stardust, Supernovae and the Chirality of the Amino Acids
International Nuclear Information System (INIS)
Boyd, R.N.; Kajino, T.; Onaka, T.
2011-01-01
A mechanism for creating enantiomerism in the amino acids, the building blocks of the proteins, that involves global selection of one chirality by interactions between the amino acids and neutrinos from core-collapse supernovae is described. The selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth's amino acids.
Supernovae, Neutrinos and the Chirality of Amino Acids
Boyd, Richard N.; Kajino, Toshitaka; Onaka, Takashi
2011-01-01
A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids. PMID:21747686
Supernovae, Neutrinos and the Chirality of Amino Acids
Directory of Open Access Journals (Sweden)
Toshitaka Kajino
2011-05-01
Full Text Available A mechanism for creating an enantioenrichment in the amino acids, the building blocks of the proteins, that involves global selection of one handedness by interactions between the amino acids and neutrinos from core-collapse supernovae is defined. The chiral selection involves the dependence of the interaction cross sections on the orientations of the spins of the neutrinos and the 14N nuclei in the amino acids, or in precursor molecules, which in turn couple to the molecular chirality. It also requires an asymmetric distribution of neutrinos emitted from the supernova. The subsequent chemical evolution and galactic mixing would ultimately populate the Galaxy with the selected species. The resulting amino acids could either be the source thereof on Earth, or could have triggered the chirality that was ultimately achieved for Earth’s proteinaceous amino acids.
Optical Chirality in Nonlinear Optics: Application to High Harmonic Generation
Neufeld, Ofer; Cohen, Oren
2018-03-01
Optical chirality (OC)—one of the fundamental quantities of electromagnetic fields—corresponds to the instantaneous chirality of light. It has been utilized for exploring chiral light-matter interactions in linear optics, but has not yet been applied to nonlinear processes. Motivated to explore the role of OC in the generation of helically polarized high-order harmonics and attosecond pulses, we first separate the OC of transversal and paraxial beams to polarization and orbital terms. We find that the polarization-associated OC of attosecond pulses corresponds approximately to that of the pump in the quasimonochromatic case, but not in the multichromatic pump cases. We associate this discrepancy with the fact that the polarization OC of multichromatic pumps vary rapidly in time along the optical cycle. Thus, we propose new quantities, noninstantaneous polarization-associated OC, and time-scale-weighted polarization-associated OC, and show that these quantities link the chirality of multichromatic pumps and their generated attosecond pulses. The presented extension to OC theory should be useful for exploring various nonlinear chiral light-matter interactions. For example, it stimulates us to propose a tricircular pump for generation of highly elliptical attosecond pulses with a tunable ellipticity.
Towards chiral diamines as chiral catalytic precursors for the borane ...
Indian Academy of Sciences (India)
2)-2-anilinomethylpiperidine (2) have been employed as chiral catalytic sources in the borane-mediated asymmetric reduction of prochiral ketones thus providing the resulting secondary alcohols in good enantiomeric purities (up to 81% ) ...
Cook, Jamie E.
2012-01-01
Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.
Krishnan, Chethan; Raju, Avinash
2017-06-01
We construct a candidate for the most general chiral higher spin theory with AdS3 boundary conditions. In the Chern-Simons language, on the left it has the Drinfeld-Sokolov reduced form, but on the right all charges and chemical potentials are turned on. Altogether (for the spin-3 case) these are 19 functions. Despite this, we show that the resulting metric has the form of the "most general" AdS3 boundary conditions discussed by Grumiller and Riegler. The asymptotic symmetry algebra is a product of a W3 algebra on the left and an affine s l (3 )k current algebra on the right, as desired. The metric and higher spin fields depend on all the 19 functions. We compare our work with previous results in the literature.
Continuous chiral separations in microreactors
Susanti, Susanti; Meinds, Tim G.; Pinxterhuis, Erik; Schuur, Boelo; de Vries, Johannes G.; Feringa, B.L.; Winkelman, Jozef; Yue, Jun; Heeres, Hero
2016-01-01
The potential of microreactors for enantioselective liquid-liquid extraction has been explored. The experiments were performed in capillary microreactors with combined reactive extraction and phase separation, for the chiral separation of a representative racemic amino acid derivative
Review of chiral perturbation theory
Indian Academy of Sciences (India)
Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.
Consistent, high-quality two-nucleon potentials up to fifth order of the chiral expansion
Machleidt, R.
2018-02-01
We present N N potentials through five orders of chiral effective field theory ranging from leading order (LO) to next-to-next-to-next-to-next-to-leading order (N4LO). The construction may be perceived as consistent in the sense that the same power counting scheme as well as the same cutoff procedures are applied in all orders. Moreover, the long-range parts of these potentials are fixed by the very accurate πN low-energy constants (LECs) as determined in the Roy-Steiner equations analysis by Hoferichter, Ruiz de Elvira and coworkers. In fact, the uncertainties of these LECs are so small that a variation within the errors leads to effects that are essentially negligible, reducing the error budget of predictions considerably. The N N potentials are fit to the world N N data below pion-production threshold of the year of 2016. The potential of the highest order (N4LO) reproduces the world N N data with the outstanding χ 2/datum of 1.15, which is the highest precision ever accomplished for any chiral N N potential to date. The N N potentials presented may serve as a solid basis for systematic ab initio calculations of nuclear structure and reactions that allow for a comprehensive error analysis. In particular, the consistent order by order development of the potentials will make possible a reliable determination of the truncation error at each order. Our family of potentials is non-local and, generally, of soft character. This feature is reflected in the fact that the predictions for the triton binding energy (from two-body forces only) converges to about 8.1 MeV at the highest orders. This leaves room for three-nucleon-force contributions of moderate size.
High-quality two-nucleon potentials up to fifth order of the chiral expansion
Entem, D. R.; Machleidt, R.; Nosyk, Y.
2017-08-01
We present NN potentials through five orders of chiral effective field theory ranging from leading order (LO) to next-to-next-to-next-to-next-to-leading order (N4LO ). The construction may be perceived as consistent in the sense that the same power counting scheme as well as the same cutoff procedures are applied in all orders. Moreover, the long-range parts of these potentials are fixed by the very accurate π N low-energy constants (LECs) as determined in the Roy-Steiner equations analysis by Hoferichter, Ruiz de Elvira, and coworkers. In fact, the uncertainties of these LECs are so small that a variation within the errors leads to effects that are essentially negligible, reducing the error budget of predictions considerably. The NN potentials are fit to the world NN data below the pion-production threshold of the year 2016. The potential of the highest order (N4LO ) reproduces the world NN data with the outstanding χ2/datum of 1.15, which is the highest precision ever accomplished for any chiral NN potential to date. The NN potentials presented may serve as a solid basis for systematic ab initio calculations of nuclear structure and reactions that allow for a comprehensive error analysis. In particular, the consistent order by order development of the potentials will make possible a reliable determination of the truncation error at each order. Our family of potentials is nonlocal and, generally, of soft character. This feature is reflected in the fact that the predictions for the triton binding energy (from two-body forces only) converges to about 8.1 MeV at the highest orders. This leaves room for three-nucleon-force contributions of moderate size.
Need for spontaneous breakdown of chiral symmetry
International Nuclear Information System (INIS)
Salomone, A.; Schechter, J.; Tudron, T.
1981-01-01
The question of whether the chiral symmetry of the theory of strong interactions (with massless quarks) is required to be spontaneously broken is examined in the framework of a previously discussed effective Lagrangian for quantum chromodynamics. The assumption that physical masses of the theory be finite leads in a very direct way to the necessity of spontaneous breakdown. This result holds for all N/sub F/> or =2, where N/sub F/ is the number of different flavors of light quarks. The atypical cases N/sub F/ = 1,2 are discussed separately
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Chiral thermodynamics of nuclear matter
International Nuclear Information System (INIS)
Fiorilla, Salvatore
2012-01-01
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
International Nuclear Information System (INIS)
Cho, Nam Sook; Kim, Hyun Sook; Song, Mi Sook
2011-01-01
In contrast with optical methods, there is no need to characterize the pure enantiomers. Instead, the NMR method makes use of chiral reagents that convert a mixture of enantiomers into a mixture of diastereomeric complexes. Integration of the resulting NMR spectra yields a direct measurement of enantiomeric purity as long as there is a sufficiently large difference between the chemical shifts of the two diastereoisomeric complexes to produce baseline-resolved peaks. Absolute enantiomeric configurations can also be determined using this method. Chiral lanthanide shift reagents have been used since the 1970s to form addition complexes with various compounds through interactions with electron donor sites. Lanthanide-induced, pseudo-contact shifts (LIS) are a function of the distance, r, between the nuclei under observation and the lanthanide center, and the angle, θ, between the line connecting the metal ion with the observed nucleus and the line representing the CLSR magnetic axis
Spin flexoelectricity and chiral spin structures in magnetic films
Pyatakov, A. P.; Sergeev, A. S.; Mikailzade, F. A.; Zvezdin, A. K.
2015-06-01
In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism are discussed. The phenomenological arguments based on the geometrical idea of curvature-induced effects are supported by analysis of the microscopic mechanisms of spin flexoelectricity based on three-site ion indirect exchange and twisted RKKY interaction models.
Scattering of decuplet baryons in chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Haidenbauer, J. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Petschauer, S.; Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany)
2017-11-15
A formalism for treating the scattering of decuplet baryons in chiral effective field theory is developed. The minimal Lagrangian and potentials in leading-order SU(3) chiral effective field theory for the interactions of octet baryons (B) and decuplet baryons (D) for the transitions BB → BB, BB <-> DB, DB → DB, BB <-> DD, DB <-> DD, and DD → DD are provided. As an application of the formalism we compare with results from lattice QCD simulations for ΩΩ and NΩ scattering. Implications of our results pertinent to the quest for dibaryons are discussed. (orig.)
Macdonald index and chiral algebra
Song, Jaewon
2017-08-01
For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.
Chiral ligand exchange countercurrent chromatography: Enantioseparation of amino acids.
Xiong, Qing; Jin, Jing; Lv, Liqiong; Bu, Zhisi; Tong, Shengqiang
2018-03-01
This work deals with the enantioseparation of α-amino acids by chiral ligand exchange high-speed countercurrent chromatography using N-n-dodecyl-l-hydroxyproline as a chiral ligand and copper(II) as a transition metal ion. A biphasic solvent system composed of n-hexane/n-butanol/aqueous phase with different volume ratios was selected for each α-amino acid. The enantioseparation conditions were optimized by enantioselective liquid-liquid extractions, in which the main influence factors, including type of chiral ligand, concentration of chiral ligand and transition metal ion, separation temperature, and pH of the aqueous phase, were investigated for racemic phenylalanine. Altogether, we tried to enantioseparate 15 racemic α-amino acids by the analytical countercurrent chromatography, of which only five of them could be successfully enantioseparated. Different elution sequence for phenylalanine enantiomer was observed compared with traditional liquid chromatography and the proposed interactions between chiral ligand, transition metal ion (Cu 2+ ), and enantiomer are discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Chirality-selected phase behaviour in ionic polypeptide complexes
Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; Kade, Matthew J.; Priftis, Dimitrios; Black, Katie A.; Wong, Derek; Klein, Ryan A.; Pierce, Charles F.; Margossian, Khatcher O.; Whitmer, Jonathan K.; Qin, Jian; de Pablo, Juan J.; Tirrell, Matthew
2015-01-01
Polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation. PMID:25586861
Chirality Quantum Phase Transition in Noncommutative Dirac Oscillator
International Nuclear Information System (INIS)
Wang Shao-Hua; Hou Yu-Long; Jing Jian; Wang Qing; Long Zheng-Wen
2014-01-01
The charged Dirac oscillator on a noncommutative plane coupling to a uniform perpendicular magnetic held is studied in this paper. We map the noncommutative plane to a commutative one by means of Bopp shift and study this problem on the commutative plane. We find that this model can be mapped onto a quantum optics model which contains Anti—Jaynes—Cummings (AJC) or Jaynes—Cummings (JC) interactions when a dimensionless parameter ζ (which is the function of the intensity of the magnetic held) takes values in different regimes. Furthermore, this model behaves as experiencing a chirality quantum phase transition when the dimensionless parameter ζ approaches the critical point. Several evidences of the chirality quantum phase transition are presented. We also study the non-relativistic limit of this model and find that a similar chirality quantum phase transition takes place in its non-relativistic limit. (physics of elementary particles and fields)
Helimagnon Resonances in an Intrinsic Chiral Magnonic Crystal
Weiler, Mathias; Aqeel, Aisha; Mostovoy, Maxim; Leonov, Andrey; Geprägs, Stephan; Gross, Rudolf; Huebl, Hans; Palstra, Thomas T. M.; Goennenwein, Sebastian T. B.
2017-12-01
We experimentally study magnetic resonances in the helical and conical magnetic phases of the chiral magnetic insulator Cu2OSeO3 at the temperature T =5 K . Using a broadband microwave spectroscopy technique based on vector network analysis, we identify three distinct sets of helimagnon resonances in the frequency range 2 GHz ≤f ≤20 GHz with low magnetic damping α ≤0.003 . The extracted resonance frequencies are in accordance with calculations of the helimagnon band structure found in an intrinsic chiral magnonic crystal. The periodic modulation of the equilibrium spin direction that leads to the formation of the magnonic crystal is a direct consequence of the chiral magnetic ordering caused by the Dzyaloshinskii-Moriya interaction. The mode coupling in the magnonic crystal allows excitation of helimagnons with wave vectors that are multiples of the spiral wave vector.
Chirality transfer across length-scales in nematic liquid crystals: fundamentals and applications.
Pieraccini, Silvia; Masiero, Stefano; Ferrarini, Alberta; Piero Spada, Gian
2011-01-01
When a chiral dopant is dissolved in an achiral liquid crystal medium, the whole sample organizes into a helical structure with a characteristic length-scale of the order of microns. The relation between chirality at these quite different length-scales can be rationalized by a relatively simple model, which retains the relevant factors coming into play: the molecular shape of the chiral dopant, which controls the chirality of short range intermolecular interactions, and the elastic properties of the nematic environment, which control the restoring torques opposing distortion of the director. In this tutorial review the relation between molecular and phase chirality will be reviewed and several applications of the chiral doping of nematic LCs will be discussed. These range from the exploitation of the amplified molecular chirality for stereochemical purposes (e.g., the determination of the absolute configuration or the enantiomeric excess), to newer applications in physico-chemical fields. The latter take advantage of the periodicity of the chiral field, with length-scales ranging from hundreds to thousands of nanometres, which characterise the cholesteric phase.
Chirality in adsorption on solid surfaces.
Zaera, Francisco
2017-12-07
In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral
Decay of kaonium in a chiral approach
Klevansky, S. P.; Lemmer, R. H.
2011-08-01
The decay of the KK hadronic atom kaonium is investigated non-perturbatively using meson-meson interaction amplitudes taken from leading order chiral perturbation theory in an approach adapted from that proposed by Oller and Oset (1997) [18]. The Kudryavtsev-Popov eigenvalue equation is solved numerically for the energy shift and decay width due to strong interactions in the 1s state. These calculations introduce a cutoff ˜1.4 GeV in O(4) momentum space that is necessary to regulate divergent loop contributions to the meson-meson scattering amplitudes in the strong-interaction sector. One finds lifetimes of (2.2±0.9)×10 s for the ground state of kaonium.
Decay of kaonium in a chiral approach
International Nuclear Information System (INIS)
Klevansky, S.P.; Lemmer, R.H.
2011-01-01
The decay of the K + K - hadronic atom kaonium is investigated non-perturbatively using meson-meson interaction amplitudes taken from leading order chiral perturbation theory in an approach adapted from that proposed by Oller and Oset (1997) . The Kudryavtsev-Popov eigenvalue equation is solved numerically for the energy shift and decay width due to strong interactions in the 1s state. These calculations introduce a cutoff ∼1.4 GeV in O(4) momentum space that is necessary to regulate divergent loop contributions to the meson-meson scattering amplitudes in the strong-interaction sector. One finds lifetimes of (2.2±0.9)x10 -18 s for the ground state of kaonium.
Doped Chiral Polymer Negative Index Materials (DCPNIM)
National Aeronautics and Space Administration — Doped Chiral Polymer-Negative Index Materials (DCP-NIM) with tunable resonance frequencies are developed by adding various plasmonic nanoinclusions into chiral...
Chiral Dynamics in Pion-Photon Reactions Habilitation
Friedrich, Jan Michael
As the lightest particle of the strong force, the pion plays a central role in the field of strong interactions, and understanding its properties is of prime relevance for understanding the strong interaction in general. The low-energy behaviour of pions is of particular interest. Although the quark-gluon substructure and their quantum chromodynamics is not apparent then, this specific inner structure causes the presence of approximate symmetries in pion-pion interactions and in pion decays, which gives rise to the systematic description of processes involving pions in terms of few low-energy constants. Specifically, the chiral symmetry and its spontaneous and explicit breaking, treated in chiral perturbation theory (ChPT), leads to firm predictions for low-energy properties of the pion. To those belong the electromagnetic polarisabilities of the pion, describing the leading-order structure effect in pion Compton scattering. The research presented in this work is concerned with the interaction of pions and ph...
Tactoids of chiral liquid crystals
Palacio-Betancur, Viviana; Villada-Gil, Stiven; Zhou, Ye; Armas-Pérez, Julio C.; de Pablo, Juan José; Hernández-Ortiz, Juan Pablo
The phase diagram of chiral liquid crystals confined in ellipsoids is obtained, by following a theoretically informed Monte Carlo relaxation of the tensor alignment field Q. The free energy of the system is described by a functional in the framework of the Landau-de Gennes formalism. This study also includes the effect of anchoring strength, curvature, and chirality of the system. In the low chirality region of the phase diagram we found the twist bipolar (BS) phase and some cholesteric phases such as the radial spherical structure (RSS), twist cylinder (TC) and double twist cylinder (DTC) whose axis of rotation is not necessarily aligned with the major axis of the geometry. For high chirality scenarios, the disclination lines are twisted or bent near the surface preventing the formation of symmetric networks of defects, although an hexagonal pattern is formed on the surface which might serve as open sites for collocation of colloids. By analyzing the free energies of isochoric systems, prolate geometries tend to be more favorable for high chirality and low anchoring conditions. Universidad Nacional de Colombia Ph.D. grant and COLCIENCIAS under the Contract No. 110-165-843-748. CONACYT for Postdoctoral Fellowships Nos. 186166 and 203840.
What's wrong with anomalous chiral gauge theory?
International Nuclear Information System (INIS)
Kieu, T.D.
1994-05-01
It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs
Solutions of ward's modified chiral model
International Nuclear Information System (INIS)
Ioannidou, T.; Zakrzewski, W.J.
1997-01-01
We discuss the adaptation of Uhlenbeck's method of solving the chiral model in 2 Euclidean dimensions to Ward's modified chiral model in (2+1) dimensions. We show that the method reduces the problem of solving the second-order partial differential equations for the chiral field to solving a sequence of first-order partial differential equations for time dependent projector valued fields
Introduction to chiral symmetry in QCD
Directory of Open Access Journals (Sweden)
Sazdjian H.
2017-01-01
Full Text Available The main aspects of chiral symmetry in QCD are presented. The necessity of its spontaneous breakdown is explained. Some low-energy theorems are reviewed. The role of chiral effective Lagrangians in the formulation and realization of chiral perturbation theory is emphasized. The consequences of the presence of anomalies are sketched.
Developments of Chiral Metallocenes as Polymerization Catalysts
Directory of Open Access Journals (Sweden)
Takeshi Shiono
2005-07-01
Full Text Available This review article describes developments in chiral metallocenes as polymerization catalysts focusing on C2 symmetric ansa-zirconocene complexes. Selective synthesis of rac-isomers of ansa-zirconocenes are surveyed. Isospecific polymerizations of propylene catalyzed by chiral zirconocenes are summarized. Advanced series of polymerizations by chiral metallocenes such as asymmetric polymerization and polymerization of polar monomers are also introduced.
Covariant perturbation theory and chiral superpropagators
Ecker, G
1972-01-01
The authors use a covariant formulation of perturbation theory for the non-linear chiral invariant pion model to define chiral superpropagators leading to S-matrix elements which are independent of the choice of the pion field coordinates. The relation to the standard definition of chiral superpropagators is discussed. (11 refs).
Chiral sedimentation of extended objects in viscous media
Krapf, Nathan W.; Witten, Thomas A.; Keim, Nathan C.
2009-05-01
We study theoretically the chirality of a generic rigid object’s sedimentation in a fluid under gravity in the low Reynolds number regime. We represent the object as a collection of small Stokes spheres or stokeslets and the gravitational force as a constant point force applied at an arbitrary point of the object. For a generic configuration of stokeslets and forcing point, the motion takes a simple form in the nearly free draining limit where the stokeslet radius is arbitrarily small. In this case, the internal hydrodynamic interactions between stokeslets are weak, and the object follows a helical path while rotating at a constant angular velocity ω about a fixed axis. This ω is independent of initial orientation and thus constitutes a chiral response for the object. Even though there can be no such chiral response in the absence of hydrodynamic interactions between the stokeslets, the angular velocity obtains a fixed nonzero limit as the stokeslet radius approaches zero. We characterize empirically how ω depends on the placement of the stokeslets, concentrating on three-stokeslet objects with the external force applied far from the stokeslets. Objects with the largest ω are aligned along the forcing direction. In this case, the limiting ω varies as the inverse square of the minimum distance between stokeslets. We illustrate the prevalence of this robust chiral motion with experiments on small macroscopic objects of arbitrary shape.
Fusion rules of chiral algebras
International Nuclear Information System (INIS)
Gaberdiel, M.
1994-01-01
Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)
Chirally motivated K- nuclear potentials
International Nuclear Information System (INIS)
Cieply, A.; Friedman, E.; Gal, A.; Gazda, D.; Mares, J.
2011-01-01
In-medium subthreshold K-bar N scattering amplitudes calculated within a chirally motivated meson-baryon coupled-channel model are used self consistently to confront K - atom data across the periodic table. Substantially deeper K - nuclear potentials are obtained compared to the shallow potentials derived in some approaches from threshold K-bar N amplitudes, with ReV K chiral =-(85±5) MeV at nuclear matter density. When K-bar NN contributions are incorporated phenomenologically, a very deep K - nuclear potential results, ReV K c hiral+phen. =-(180±5) MeV, in agreement with density dependent potentials obtained in purely phenomenological fits to the data. Self consistent dynamical calculations of K - -nuclear quasibound states generated by V K chiral are reported and discussed.
Chiral symmetry on the lattice
Energy Technology Data Exchange (ETDEWEB)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
Creutz, M.
1994-11-01
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Towards chiral diamines as chiral catalytic precursors for the borane ...
Indian Academy of Sciences (India)
Administrator
anilinomethylpiperidine (2) have been employed as chiral catalytic sources in the borane-mediated asymmetric reduction of prochiral ketones ..... 7⋅86 min (S) and 8.53 min (R)]. 2.7c (S)-2-Bromo-1-(4-bromophenyl)ethanol [(S)– ... of (a) compound 8 and (b) compound 15-TFA salt (Hydrogen atoms were omitted for clarity).
Chiral trans-1,2-diaminocyclohexane derivatives as chiral solvating ...
Indian Academy of Sciences (India)
Administrator
pounds in biological and pharmaceutical chemistry,. 1–4 there is increasing requirement for fast and accurate methodologies for the determination of enantiomeric composition of these chiral compounds. Among the various available methods, NMR spectroscopy has the advantages of easy performance and accessibi- lity.
Chiral xenobiotics bioaccumulations and environmental health prospectives.
Hussain, Iqbal; ALOthman, Zeid A; Alwarthan, Abdulrahman A; Sanagi, Mohd Marsin; Ali, Imran
2015-08-01
The chiral xenobiotics are very dangerous for all of us due to the different enantioselective toxicities of the enantiomers. Besides, these have different enantioselective bioaccumulations and behaviors in our body and other organisms. It is of urgent need to understand the enantioselective bioaccumulations, toxicities, and the health hazards of the chiral xenobiotics. The present article describes the classification, sources of contamination, distribution, enantioselective bioaccumulation, and the toxicities of the chiral xenobiotics. Besides, the efforts are also made to discuss the prevention and remedial measures of the havoc of the chiral xenobiotics. The challenges of the chiral xenobiotics have also been highlighted. Finally, future prospectives are also discussed.
Degenerate and chiral states in the extended Heisenberg model on the kagome lattice
Gómez Albarracín, F. A.; Pujol, P.
2018-03-01
We present a study of the low-temperature phases of the antiferromagnetic extended classical Heisenberg model on the kagome lattice, up to third-nearest neighbors. First, we focus on the degenerate lines in the boundaries of the well-known staggered chiral phases. These boundaries have either semiextensive or extensive degeneracy, and we discuss the partial selection of states by thermal fluctuations. Then, we study the model under an external magnetic field on these lines and in the staggered chiral phases. We pay particular attention to the highly frustrated point, where the three exchange couplings are equal. We show that this point can be mapped to a model with spin-liquid behavior and nonzero chirality. Finally, we explore the effect of Dzyaloshinskii-Moriya (DM) interactions in two ways: a homogeneous and a staggered DM interaction. In both cases, there is a rich low-temperature phase diagram, with different spontaneously broken symmetries and nontrivial chiral phases.
Why (almost) all bundles are chiral
Kost-Smith, Zachary V.; Blackwell, Robert A.; Glaser, Matthew A.
2014-03-01
We examine the self assembly of bundles of achiral hard rods with distributed, short-range attractive interactions. We show that in the majority of cases the equilibrium state of the bundle is chiral, with a double twist structure. We use biased Monte Carlo techniques and cell theory to compute the free energy as a function of an appropriately defined twist order parameter, and show that the formation of spontaneously chiral bundles is driven by maximization of orientational entropy. The finite curvature of the bundle boundary permits orientational escape, in which the circumferential angular range of motion of the rods is maximized for some finite average tilt. We map out the phase diagram of bundles in terms of the density, the ratio of rod length to bundle radius, L / R , and rod aspect ratio, L / D , and find transitions between untwisted, weakly twisted, and strongly twisted states. This work helps explain the common observation of twisted macroscopic bundles, and may provide insight into observations of twist in self-assembled membranes of colloidal rods.[2] This work funded by NSF MRSEC Grant DMR-0820579.
8th International Workshop on Chiral Dynamics
2016-01-01
The International Workshop on Chiral Dynamics 2015, the eighth in a series which started in 1994 at MIT, and was later held in Mainz (1997), Jefferson Lab (2000 and 2012), Bonn (2003), Duke (2006) and Bern (2009), will take place in Pisa, from June 29 to July 3 2015, and will be jointly hosted by the Department of Physics of the University of Pisa and the Pisa branch of the Istituto Nazionale di Fisica Nucleare. The purpose of this workshop series is to bring physicists together who are active in this field, as well as those who are interested, to discuss and debate the most recent achievements and future developments. The workshop will have a near equal contribution from theorists and experimentalists and, as in the latest editions, a strong synergy with the lattice community will be present. Topics: Hadron structure Isospin breaking in hadronic systems Meson-meson and meson-baryon interaction Effective field theory and chiral perturbation theory Few-body physics Compton scattering and the polarizabilities o...
Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides
Energy Technology Data Exchange (ETDEWEB)
Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew
2016-10-01
Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained beta-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer
Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides
Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew
2016-10-01
Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer
Chirality effect in disordered graphene ribbon junctions
International Nuclear Information System (INIS)
Long Wen
2012-01-01
We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)
Planar chiral metamaterials for biosensing applications
Murugkar, Sangeeta; De Leon, Israel; Horton, Matthew; Qassim, Hammam; Leach, Jonathan; Boyd, Robert W.
2013-02-01
There has been a considerable effort recently in the development of planar chiral metamaterials. Owing to the lack of inversion symmetry, these materials have been shown to display interesting physical properties such as negative index of refraction and giant optical activity. However, the biosensing capabilities of these chiral metamaterials have not been fully explored. Ultrasensitive detection and structural characterization of proteins adsorbed on chiral plasmonic substrates was demonstrated recently using UV-visible circular dichroism (CD) spectroscopy. Second harmonic generation microscopy is an extremely sensitive nonlinear optical probe to investigate the chirality of biomaterials. In this study, we characterize the chiral response of chiral plasmonic metamaterials using second harmonic generation microscopy and CD spectroscopy. These planar chiral metamaterials, fabricated by electron-beam lithography, consist of right-handed and left-handed gold gammadions of length 400 nm and thickness 100nm, deposited on a glass substrate and arranged in a square lattice with a periodicity of 800nm.
New Cu(II) coordination polymer by chiral tridentate Schiff base ligand
Messai, Amel; Bilge, Duygu; Bilge, Metin; Parlak, Cemal
2017-06-01
The present research reports the synthesis, X-ray, magnetic and electronic properties for novel coordination polymer based upon copper (II) with chiral tridentate Schiff base ligand synthesized at condensation of acetylacetone and L-leucine amino acid. The investigation was also conducted by quantum mechanical calculations. The large energy gap indicates a high kinetic stability. Magnetic measurement gives predominant antiferromagnetic interactions within the chain. Results reveals further insight into copper(II) chiral tridentate Schiff base complexes.
Single chirality through crystal grinding
Noorduin, W.L.
2010-01-01
The properties of chiral molecules in living organisms can be different for left- and right-handed molecules. Therefore, ways to produce molecules of single handedness are of paramount importance, especially for economical, high yielding processes to synthesize pharmaceutical compounds that must be
Principles of chiral perturbation theory
International Nuclear Information System (INIS)
Leutwyler, H.
1995-01-01
An elementary discussion of the main concepts used in chiral perturbation theory is given in textbooks and a more detailed picture of the applications may be obtained from the reviews. Concerning the foundations of the method, the literature is comparatively scarce. So, I will concentrate on the basic concepts and explain why the method works. (author)
The chiral condensate in matter
International Nuclear Information System (INIS)
Brockmann, R.; Weise, W.
1995-01-01
The change of the chiral condensate in dense matter is discussed. Especially the higher order terms in the density of nuclear matter are evaluated (in the relativistic Brueckner-Hartree-Fock approach). Implications for nuclear physics and relativistic heavy ion collisions are discussed, such as the strong Dirac scalar mean field that results from the density dependence of . (orig.)
Review of chiral perturbation theory
Indian Academy of Sciences (India)
A review of chiral perturbation theory and recent developments on the comparison of its predictions with .... terms of the effective Lagrangian at two-loop or O(p6) order is now available [12]. The formidable task of ... and straightforward manner for the system and are of great importance for the analysis of experimental ...
Descendants of the Chiral Anomaly
Jackiw, R.
2000-01-01
Chern-Simons terms are well-known descendants of chiral anomalies, when the latter are presented as total derivatives. Here I explain that also Chern-Simons terms, when defined on a 3-manifold, may be expressed as total derivatives.
Chiral phosphines in nucleophilic organocatalysis
Directory of Open Access Journals (Sweden)
Yumei Xiao
2014-09-01
Full Text Available This review discusses the tertiary phosphines possessing various chiral skeletons that have been used in asymmetric nucleophilic organocatalytic reactions, including annulations of allenes, alkynes, and Morita–Baylis–Hillman (MBH acetates, carbonates, and ketenes with activated alkenes and imines, allylic substitutions of MBH acetates and carbonates, Michael additions, γ-umpolung additions, and acylations of alcohols.
Topics in three flavor chiral dynamics
International Nuclear Information System (INIS)
Nissler, Robin
2007-01-01
In this work, we investigate several processes in low-energy hadron physics by combining chiral perturbation theory (ChPT), the effective field theory of quantum chromodynamics (QCD) at low energies, with a unitarization method based on the Bethe-Salpeter equation. Such so-called chiral unitary approaches are capable of describing processes in the three flavor sector of the strong interaction which involve substantial effects from final-state interactions and the excitation of (subthreshold) resonances, a domain where the perturbative framework of ChPT is not applicable. In part I of this work we study η and η' decays which constitute a perfect tool to examine symmetries and symmetry breaking patterns of QCD being incorporated in a model-independent fashion in ChPT. In particular, these decays allow to investigate the breaking of isospin symmetry due to the light quark mass difference m d -m u as well as effects of anomalies stemming from the quantum nature of QCD. For these reasons the decays of η and η' have also attracted considerable experimental interest. They are currently under investigation at several facilities including KLOE rate at DAΦNE, Crystal Ball at MAMI, WASA-at-COSY, VES at IHEP, and CLEO at CESR. In part II we investigate low-energy meson-baryon scattering in the strangeness S=-1 sector which is dominated by the Λ(1405) resonance immediately below the anti KN threshold. The anti KN interaction below threshold is of relevance for the quest of possible deeply bound anti K-nuclear clusters and has recently received an additional tight constraint: the K - p scattering length as determined from kaonic hydrogen by the KEK and the DEAR collaborations. Apart from successfully describing a large amount of experimental data and furnishing predictions for yet unmeasured quantities, our calculations allow to interrelate different experimental observables providing important consistency tests of experiments. E.g. the DEAR results are shown to be
Topics in three flavor chiral dynamics
Energy Technology Data Exchange (ETDEWEB)
Nissler, Robin
2007-07-01
In this work, we investigate several processes in low-energy hadron physics by combining chiral perturbation theory (ChPT), the effective field theory of quantum chromodynamics (QCD) at low energies, with a unitarization method based on the Bethe-Salpeter equation. Such so-called chiral unitary approaches are capable of describing processes in the three flavor sector of the strong interaction which involve substantial effects from final-state interactions and the excitation of (subthreshold) resonances, a domain where the perturbative framework of ChPT is not applicable. In part I of this work we study {eta} and {eta}' decays which constitute a perfect tool to examine symmetries and symmetry breaking patterns of QCD being incorporated in a model-independent fashion in ChPT. In particular, these decays allow to investigate the breaking of isospin symmetry due to the light quark mass difference m{sub d}-m{sub u} as well as effects of anomalies stemming from the quantum nature of QCD. For these reasons the decays of {eta} and {eta}' have also attracted considerable experimental interest. They are currently under investigation at several facilities including KLOE rate at DA{phi}NE, Crystal Ball at MAMI, WASA-at-COSY, VES at IHEP, and CLEO at CESR. In part II we investigate low-energy meson-baryon scattering in the strangeness S=-1 sector which is dominated by the {lambda}(1405) resonance immediately below the anti KN threshold. The anti KN interaction below threshold is of relevance for the quest of possible deeply bound anti K-nuclear clusters and has recently received an additional tight constraint: the K{sup -}p scattering length as determined from kaonic hydrogen by the KEK and the DEAR collaborations. Apart from successfully describing a large amount of experimental data and furnishing predictions for yet unmeasured quantities, our calculations allow to interrelate different experimental observables providing important consistency tests of experiments. E
Spectral statistics in chiral-orthogonal disordered systems
International Nuclear Information System (INIS)
Evangelou, S N; Katsanos, D E
2003-01-01
We describe the singularities in the averaged density of states and the corresponding statistics of the energy levels in two- (2D) and three-dimensional (3D) chiral symmetric and time-reversal invariant disordered systems, realized in bipartite lattices with real off-diagonal disorder. For off-diagonal disorder of zero mean, we obtain a singular density of states in 2D which becomes much less pronounced in 3D, while the level-statistics can be described by a semi-Poisson distribution with mostly critical fractal states in 2D and Wigner surmise with mostly delocalized states in 3D. For logarithmic off-diagonal disorder of large strength, we find behaviour indistinguishable from ordinary disorder with strong localization in any dimension but in addition one-dimensional 1/ vertical bar E vertical bar Dyson-like asymptotic spectral singularities. The off-diagonal disorder is also shown to enhance the propagation of two interacting particles similarly to systems with diagonal disorder. Although disordered models with chiral symmetry differ from non-chiral ones due to the presence of spectral singularities, both share the same qualitative localization properties except at the chiral symmetry point E=0 which is critical
Chiral higher spin theories and self-duality
Ponomarev, Dmitry
2017-12-01
We study recently proposed chiral higher spin theories — cubic theories of interacting massless higher spin fields in four-dimensional flat space. We show that they are naturally associated with gauge algebras, which manifest themselves in several related ways. Firstly, the chiral higher spin equations of motion can be reformulated as the self-dual Yang-Mills equations with the associated gauge algebras instead of the usual colour gauge algebra. We also demonstrate that the chiral higher spin field equations, similarly to the self-dual Yang-Mills equations, feature an infinite algebra of hidden symmetries, which ensures their integrability. Secondly, we show that off-shell amplitudes in chiral higher spin theories satisfy the generalised BCJ relations with the usual colour structure constants replaced by the structure constants of higher spin gauge algebras. We also propose generalised double copy procedures featuring higher spin theory amplitudes. Finally, using the light-cone deformation procedure we prove that the structure of the Lagrangian that leads to all these properties is universal and follows from Lorentz invariance.
Theory of Magnetic Edge States in Chiral Graphene Nanoribbons
Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven
2011-03-01
Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.
Timoshenko beam model for chiral materials
Ma, T. Y.; Wang, Y. N.; Yuan, L.; Wang, J. S.; Qin, Q. H.
2017-12-01
Natural and artificial chiral materials such as deoxyribonucleic acid (DNA), chromatin fibers, flagellar filaments, chiral nanotubes, and chiral lattice materials widely exist. Due to the chirality of intricately helical or twisted microstructures, such materials hold great promise for use in diverse applications in smart sensors and actuators, force probes in biomedical engineering, structural elements for absorption of microwaves and elastic waves, etc. In this paper, a Timoshenko beam model for chiral materials is developed based on noncentrosymmetric micropolar elasticity theory. The governing equations and boundary conditions for a chiral beam problem are derived using the variational method and Hamilton's principle. The static bending and free vibration problem of a chiral beam are investigated using the proposed model. It is found that chirality can significantly affect the mechanical behavior of beams, making materials more flexible compared with nonchiral counterparts, inducing coupled twisting deformation, relatively larger deflection, and lower natural frequency. This study is helpful not only for understanding the mechanical behavior of chiral materials such as DNA and chromatin fibers and characterizing their mechanical properties, but also for the design of hierarchically structured chiral materials.
International Nuclear Information System (INIS)
Fu, Qifeng; Zhang, Kailian; Gao, Die; Wang, Lujun; Yang, Fengqing; Liu, Yao; Xia, Zhining
2017-01-01
Bacteria, the microorganism with intrinsic chirality, have numerous fascinating chiral phenomena such as various chirality-triggered biological processes and behaviors. Herein, bacteria were firstly explored as novel chiral stationary phases in open-tubular capillary electrochromatography (OT-CEC) for enantioseparation of fluoroquinolone enantiomers and simultaneous separation of six fluoroquinolone antibiotics. The model strain, i.e. non-pathogenic Escherichia coli (E. coli) DH5α, was adhered onto the inner surface of positively charged polyethyleneimine (PEI) modified capillaries based on the bacterial adhesion characteristics and strong electrostatic interaction. The morphology and thickness of the bacteria adhesive coatings in the capillary were characterized by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Baseline separation of ofloxacin and partial separation of lomefloxacin enantiomers could be achieved by the E. coli coated columns. The preparation parameters including the coating time and concentration of bacteria that affecting the chiral resolution were intensively investigated. The electrophoretic parameters, including pH, buffer concentration and applied voltage, were also optimized. The developed method was validated (linearity, LOD, LOQ, intra-day, inter-day and column-to-column repeatability and recovery) and successfully utilized for the quantitative analysis of ofloxacin enantiomers in the ofloxacin tablets. Moreover, only a slight decrease in the separation efficiency was observed after 90 consecutive runs on the E. coli@capillary. These results demonstrated that bacteria are promising stationary phases for chiral separation in CEC. - Highlights: • Bacteria were firstly introduced in OT-CEC as a chiral stationary phase for chiral separation. • Enantioseparation of ofloxacin enantiomers was achieved on E. coli coated open tubular capillary column. • Bacterial stationary phases may be used to
Energy Technology Data Exchange (ETDEWEB)
Fu, Qifeng, E-mail: fuqifeng1990@163.com [Department of Medicinal Chemistry, Southwest Medical University, Luzhou 646000 (China); Zhang, Kailian; Gao, Die; Wang, Lujun [Department of Medicinal Chemistry, Southwest Medical University, Luzhou 646000 (China); Yang, Fengqing; Liu, Yao [School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China); Xia, Zhining, E-mail: tcm_anal_cqu@163.com [Innovative Drug Research Centre and School of Pharmaceutical Sciences, Chongqing University, Chongqing 400030 (China); School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400030 (China)
2017-05-29
Bacteria, the microorganism with intrinsic chirality, have numerous fascinating chiral phenomena such as various chirality-triggered biological processes and behaviors. Herein, bacteria were firstly explored as novel chiral stationary phases in open-tubular capillary electrochromatography (OT-CEC) for enantioseparation of fluoroquinolone enantiomers and simultaneous separation of six fluoroquinolone antibiotics. The model strain, i.e. non-pathogenic Escherichia coli (E. coli) DH5α, was adhered onto the inner surface of positively charged polyethyleneimine (PEI) modified capillaries based on the bacterial adhesion characteristics and strong electrostatic interaction. The morphology and thickness of the bacteria adhesive coatings in the capillary were characterized by field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). Baseline separation of ofloxacin and partial separation of lomefloxacin enantiomers could be achieved by the E. coli coated columns. The preparation parameters including the coating time and concentration of bacteria that affecting the chiral resolution were intensively investigated. The electrophoretic parameters, including pH, buffer concentration and applied voltage, were also optimized. The developed method was validated (linearity, LOD, LOQ, intra-day, inter-day and column-to-column repeatability and recovery) and successfully utilized for the quantitative analysis of ofloxacin enantiomers in the ofloxacin tablets. Moreover, only a slight decrease in the separation efficiency was observed after 90 consecutive runs on the E. coli@capillary. These results demonstrated that bacteria are promising stationary phases for chiral separation in CEC. - Highlights: • Bacteria were firstly introduced in OT-CEC as a chiral stationary phase for chiral separation. • Enantioseparation of ofloxacin enantiomers was achieved on E. coli coated open tubular capillary column. • Bacterial stationary phases may be used to
Chiral phase transition in the soft-wall model of AdS/QCD
Energy Technology Data Exchange (ETDEWEB)
Chelabi, Kaddour [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); University of Chinese Academy of Sciences (UCAS),Beijing 100049 (China); Laboratory of Particle Physics and Statistical Physics, Ecole Normale Superieure-Kouba,B.P. 92,16050, Vieux-Kouba, Algiers (Algeria); Fang, Zhen [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); University of Chinese Academy of Sciences (UCAS),Beijing 100049 (China); Huang, Mei [Institute of High Energy Physics, Chinese Academy of Sciences,Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,Beijing 100049 (China); Li, Danning [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); Wu, Yue-Liang [State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics,Chinese Academy of Sciences,Beijing 100190 (China); University of Chinese Academy of Sciences (UCAS),Beijing 100049 (China)
2016-04-06
We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t’Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.
Kinetics of the chiral phase transition
Energy Technology Data Exchange (ETDEWEB)
Hees, Hendrik van [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany); Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany)
2016-07-01
We simulate the kinetics of the chiral phase transition in hot and dense strongly interacting matter within a novel kinetic-theory approach. Employing an effective linear σ model for quarks, σ mesons, and pions we treat the quarks within a test-particle ansatz for solving the Boltzmann transport equation and the mesons in terms of classical fields. The decay-recombination processes like σ <-> anti q+q are treated using a kind of wave-particle dualism using the exact conservation of energy and momentum. After demonstrating the correct thermodynamic limit for particles and fields in a ''box calculation'' we apply the simulation to the dynamics of an expanding fireball similar to the medium created in ultrarelativistic heavy-ion collisions.
Evolved chiral Hamiltonians at the three-body level and beyond
Energy Technology Data Exchange (ETDEWEB)
Calci, Angelo
2014-07-14
Based on the fundamental symmetries of QCD, chiral effective field theory (EFT) provides two- (NN), three- (3N), four- (4N), and many-nucleon interactions in a consistent and systematic scheme. Recent developments to construct chiral NN+3N interactions at different chiral orders and regularizations enable exciting nuclear structure investigations as well as a quantification of the fundamental uncertainties resulting from the chiral expansion and regularization. We present the complete toolchain to employ the present and future chiral NN, 3N, and 4N interactions in nuclear structure calculations and emphasize technical developments in the three- and four-body space, such as the similarity renormalization group (SRG), the frequency conversion, and the transformation to the JT-coupled scheme. We study the predictions of the chiral NN+3N interactions in ab initio nuclear structure calculations with the importance-truncated no-core shell model and coupled-cluster approach. We demonstrate that the inclusion of chiral 3N forces improves the overall agreement with experiment for excitation energies of p-shell nuclei and it qualitatively reproduces the systematics of nuclear binding energies throughout the nuclear chart up to heavy tin isotopes. In this context it is necessary to introduce truncations in the three-body model space and we carefully analyze their impact and confirm the reliability of the reported results. The SRG evolution induces many-nucleon forces that generally cannot be included in the calculations and constitute a major limitation for the applicability of SRG-evolved chiral forces. We study the origin and effect of the induced many-nucleon forces and propose a modification of the interaction, which suppresses the induced beyond-3N forces. This enables applications of the chiral interactions far beyond the mid-p shell. Furthermore, we test alternative formulations of SRG generators aiming to prevent the induced many-body forces from the outset. The
Synthesis and reactivity of ortho-carbaborane-containing chiral aminohalophosphines.
Stadlbauer, Sven; Frank, René; Maulana, Ilham; Lönnecke, Peter; Kirchner, Barbara; Hey-Hawkins, Evamarie
2009-07-06
The synthesis of chiral ortho-carbaboranyl bis(aminohalophosphines) is presented, and spectroscopic and crystallographic data of these compounds are discussed. Furthermore, their reactivity toward alcoholysis was investigated. Quantum chemical calculations showed that the inhibition of methanolysis is of kinetic and not of thermodynamic origin. The disubstitution of the carbaboranes leads to P...P interactions as strong as a hydrogen bond that extremely lower the rate of the methanolysis.
Continuum strong QCD: Confinement and dynamical chiral symmetry breaking
International Nuclear Information System (INIS)
Continuum strong QCD is the application of models and continuum quantum field theory to the study of phenomena in hadronic physics, which includes; e.g., the spectrum of QCD bound states and their interactions. Herein the author provides a Dyson-Schwinger equation perspective, focusing on qualitative aspects of confinement and dynamical chiral symmetry breaking in cold, sparse QCD, and also elucidating consequences of the axial-vector Ward-Takahashi identity and features of the heavy-quark limit
Inexpensive chirality on the lattice
International Nuclear Information System (INIS)
Kamleh, W.; Williams, A.G.; Adams, D.
2000-01-01
Full text: Implementing lattice fermions that resemble as closely as possible continuum fermions is one of the main goals of the theoretical physics community. Aside from a lack of infinitely powerful computers, one of the main impediments to this is the Nielsen-Ninomiya No-Go theorem for chirality on the lattice. One of the consequences of this theorem is that exact chiral symmetry and a lack of fermion doublers cannot be simultaneously satisfied for fermions on the lattice. In the commonly used Wilson fermion formulation, chiral symmetry is explicitly sacrificed on the lattice to avoid fermion doubling. Recently, an alternative has come forward, namely, the Ginsparg-Wilson relation and one of its solutions, the Overlap fermion. The Ginsparg-Wilson relation is a statement of lattice-deformed chirality. The Overlap-Dirac operator is a member of the family of solutions of the Ginsparg-Wilson relation. In recent times, Overlap fermions have been of great interest to the community due to their excellent chiral properties. However, they are significantly more expensive to implement than Wilson fermions. This expense is primarily due to the fact that the Overlap implementation requires an evaluation of the sign function for the Wilson-Dirac operator. The sign function is approximated by a high order rational polynomial function, but this approximation is poor close to the origin. The less near-zero modes that the Wilson- Dirac operator possesses, the cheaper the Overlap operator will be to implement. A means of improving the eigenvalue properties of the Wilson-Dirac operator by the addition of a so-called 'Clover' term is put forward. Numerical results are given that demonstrate this improvement. The Nielsen-Ninomiya no-go theorem and chirality on the lattice are reviewed. The general form of solutions of the Ginsparg-Wilson relation are given, and the Overlap solution is discussed. Properties of the Overlap-Dirac operator are given, including locality and analytic
Chiral logarithms in quenched QCD
Energy Technology Data Exchange (ETDEWEB)
Y. Chen; S. J. Dong; T. Draper; I. Horvath; F. X. Lee; K. F. Liu; N. Mathur; and J. B. Zhang
2004-08-01
The quenched chiral logarithms are examined on a 163x28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fpi is used to set the lattice spacing, a = 0.200(3) fm. With pion mass as low as {approx}180 MeV, we see the quenched chiral logarithms clearly in mpi2/m and fP, the pseudoscalar decay constant. The authors analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (chiPT) to apply. With the constrained curve-fitting method, they are able to extract the quenched chiral logarithmic parameter delta together with other low-energy parameters. Only for mpi<=300 MeV do we obtain a consistent and stable fit with a constant delta which they determine to be 0.24(3)(4) (at the chiral scale Lambdachi = 0.8 GeV). By comparing to the 123x28 lattice, they estimate the finite volume effect to be about 2.7% for the smallest pion mass. They also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mpi {approx}500-600 MeV. The scale independent delta is determined to be 0.20(3) in this case. The authors study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2 in the nucleon mass is consistent with the prediction of one-loop chiPT. They also obtain the low energy constant L5 from fpi. They conclude from this study that it is imperative to cover only the range of data with the pion mass less than {approx}300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop chiPT.
International Nuclear Information System (INIS)
Belinsky, Moisey I.
2009-01-01
The spin chirality and spin structure of the Cu 3 and V 3 nanomagnets with the Dzialoshinsky-Moriya (DM) exchange interaction are analyzed. The correlations between the vector κ and the scalar χ chirality are obtained. The DM interaction forms the spin chirality which is equal to zero in the Heisenberg clusters. The dependences of the spin chirality on magnetic field and deformations are calculated. The cluster distortions reduce the spin chirality. The vector chirality is reduced partially and the scalar chirality vanishes in the transverse magnetic field. In the isosceles clusters, the DM exchange and distortions determine the sign and degree of the spin chirality κ. The correlations between the chirality parameters κ n and the intensities of the EPR and INS transitions are obtained. The vector chirality κ n describes the spin chirality of the Cu 3 and V 3 nanomagnets, the scalar chirality describes the pseudoorbital moment of the DM cluster. It is shown that in the consideration of the DM exchange, the spin states DM mixing and tunneling gaps at level crossing fields depend on the coordinate system of the DM model. The calculations in the DM exchange models in the right-handed and left-handed frame show opposite magnetic behavior at the level crossing field and allow to explain the opposite schemes of the tunneling gaps and levels crossing, which have been obtained in different treatments. The results of the DM model in the right-handed frame are consistent with the results of the group-theoretical analysis, whereas the results in the left-handed frame are inconsistent with that. The correlations between the spin chirality of the ground state and tunneling gaps at the level crossing field are obtained for the equilateral and isosceles nanoclusters.
International Nuclear Information System (INIS)
Li, Xiu-Hua; Zhang, Qi; Hu, Ping
2014-01-01
A multifunctional homochiral coordination polymer, [Co(H 2 O)(BDC)(4,4′-BPY)]∙3H 2 O (1) (H 2 BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions
Chirality Driven by Magnetic Dipole Response for Demultiplexing of Surface Waves
DEFF Research Database (Denmark)
Sinev, Ivan S.; Bogdanov, Andrey A.; Komissarenko, Filipp E.
2017-01-01
Surface electromagnetic waves are characterized by the intrinsic spin-orbit interaction which results in the fascinating spin-momentum locking. Therefore, directional coupling of light to surface waves can be achieved through chiral nanoantennas. Here, we show that dielectric nanoantenna provides...... chiral response with strong spectral dependence due to the interference of electric and magnetic dipole momenta when placed in the vicinity of the metal-air interface. Remarkably, chiral behaviour in the proposed scheme does not require elliptical polarization of the pump beam or the geometric chirality...... of the nanoantenna. We show that the proposed ultracompact and simple dielectric nanoantenna allows for both directional launching of surface plasmon polaritons on a thin gold film and their demultiplexing with a high spectral resolution....
Metamaterials with magnetism and chirality
Tomita, Satoshi; Kurosawa, Hiroyuki; Ueda, Tetsuya; Sawada, Kei
2018-02-01
This review introduces and overviews electromagnetism in structured metamaterials which undergo simultaneous time-reversal and space-inversion symmetry breaking due to magnetism and chirality. Direct experimental observation of optical magnetochiral effects in a single metamolecule with magnetism and chirality is demonstrated at microwave frequencies. Numerical simulations based on a finite element method reproduce the experimental results well, and predict the emergence of giant magnetochiral effects, by combining resonances in the metamolecule. Toward the realization of magnetochiral effects at higher frequencies than microwaves, a metamolecule is miniaturized in the presence of ferromagnetic resonance in a cavity and coplanar waveguide. This work opens the door to the realization of a one-way mirror and synthetic gauge fields for electromagnetic waves.
A spectral route to determining chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We show how one-dimensional structured media can be used to measure chirality, via the spectral shift of the photonic band gap edges. Analytically, we show that a chiral contrast can, in some cases, be mapped unto an index contrast, thereby greatly simplifying the analysis of such structures. Using...... this mapping, we derive a first-order shift of the band gap edges with chirality. Potentially, this effect could be used for measuring enantiomeric excess....
The chirality operators for Heisenberg spin systems
International Nuclear Information System (INIS)
Subrahmanyam, V.
1994-01-01
The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs
Chiral solitons a review volume
1987-01-01
This review volume on topological and nontopological chiral solitons presents a global view on the current developments of this field in particle and nuclear physics. The book addresses problems in quantization, restoration of translational and rotational symmetry, and the field theoretical approach to solitons which are common problems in the field of solitons. Primarily aimed for graduate students and the novice in the field, the collected articless cover a broad spectrum of topics in formalism as well as phenomenology.
Chiral Lagrangians and the SSC
International Nuclear Information System (INIS)
Dawson, S.
1991-09-01
In the event that the SSC does not observe any resonances such as a Higgs boson or a techni-rho meson, we would like to know if the SSC can still discover something about the nature of the electroweak symmetry breaking. We will use chiral Lagrangian techniques to address this question and analyze their utility for studying events containing W and Z gauge bosons at the SSC. 20 refs., 4 figs
An epistemological note on chirality
International Nuclear Information System (INIS)
Mislow, K.; Bickart, P.
1976-01-01
The terms ''chiral'' and ''achiral'' are sharply defined when applied to geometric figures or models. The same terms are also commonly used to refer to the real systems to which these models have been adjoined. e.g., molecules, solvents, or reagents. Here, the terms are not sharply defined but depend upon conditions or measurement. The contrast between the geometric and operational usages is discussed in detail
Chiral symmetry and nucleon structure
Energy Technology Data Exchange (ETDEWEB)
Holstein, B.R. (Massachusetts Univ., Amherst, MA (United States). Dept. of Physics and Astromony Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory)
1992-01-01
Recently it has been realized that significant tests of the validity of QCD are available in low energy experiments (E < 500 MeV) by exploiting the property of (broken) chiral symmetry. This technique has been highly developed in The Goldstone boson sector by the work of Gasser and Leutwyler. Application to the nucleon system is much more difficult and is now being carefully developed.
Electric-field–induced assembly and propulsion of chiral colloidal clusters
Ma, Fuduo; Wang, Sijia; Wu, David T.; Wu, Ning
2015-01-01
Chiral molecules with opposite handedness exhibit distinct physical, chemical, or biological properties. They pose challenges as well as opportunities in understanding the phase behavior of soft matter, designing enantioselective catalysts, and manufacturing single-handed pharmaceuticals. Microscopic particles, arranged in a chiral configuration, could also exhibit unusual optical, electric, or magnetic responses. Here we report a simple method to assemble achiral building blocks, i.e., the asymmetric colloidal dimers, into a family of chiral clusters. Under alternating current electric fields, two to four lying dimers associate closely with a central standing dimer and form both right- and left-handed clusters on a conducting substrate. The cluster configuration is primarily determined by the induced dipolar interactions between constituent dimers. Our theoretical model reveals that in-plane dipolar repulsion between petals in the cluster favors the achiral configuration, whereas out-of-plane attraction between the central dimer and surrounding petals favors a chiral arrangement. It is the competition between these two interactions that dictates the final configuration. The theoretical chirality phase diagram is found to be in excellent agreement with experimental observations. We further demonstrate that the broken symmetry in chiral clusters induces an unbalanced electrohydrodynamic flow surrounding them. As a result, they rotate in opposite directions according to their handedness. Both the assembly and propulsion mechanisms revealed here can be potentially applied to other types of asymmetric particles. Such kinds of chiral colloids will be useful for fabricating metamaterials, making model systems for both chiral molecules and active matter, or building propellers for microscale transport. PMID:25941383
A gauge-invariant chiral unitary framework for kaon photo- and electroproduction on the proton
International Nuclear Information System (INIS)
Borasoy, B.; Bruns, P.C.; Nissler, R.; Meissner, U.G.
2007-01-01
We present a gauge-invariant approach to photoproduction of mesons on nucleons within a chiral unitary framework. The interaction kernel for meson-baryon scattering is derived from the chiral effective Lagrangian and iterated in a Bethe-Salpeter equation. Within the leading-order approximation to the interaction kernel, data on kaon photoproduction from SAPHIR, CLAS and CBELSA/TAPS are analyzed in the threshold region. The importance of gauge invariance and the precision of various approximations in the interaction kernel utilized in earlier works are discussed. (orig.)
Laser Writing of Multiscale Chiral Polymer Metamaterials
Directory of Open Access Journals (Sweden)
E. P. Furlani
2012-01-01
Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.
Kahle, Kimberly A; Foley, Joe P
2007-06-01
The first simultaneous use of a chiral surfactant and a chiral oil for microemulsion EKC (MEEKC) is reported. Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and dibutyl tartrate (D, L, or racemic, 1.23% v/v) were examined as chiral pseudostationary phases (PSPs) for the separation of six pairs of pharmaceutical enantiomers: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Subtle differences were observed for three chromatographic figures of merit (alpha(enant), alpha(meth), k) among the chiral microemulsions; a moderate difference was observed for efficiency (N) and elution range. Dual-chirality microemulsions provided both the largest and smallest enantioselectivities, due to small positive and negative synergies between the chiral microemulsion components. For the ephedrine family of compounds, dual-chiral microemulsions with surfactant and oil in opposite stereochemical configurations provided higher enantioselectivities than the single-chiral component microemulsion (RXX), whereas dual-chiral microemulsions with surfactant and oil in the same stereochemical configurations provided lower enantioselectivities than RXX. Slight to moderate enantioselective synergies were confirmed using a thermodynamic model. Efficiencies observed with microemulsions comprised of racemic dibutyl tartrate or dibutyl-D-tartrate were significantly higher than those obtained with dibutyl-L-tartrate, with an average difference in plate count of about 25 000. Finally, one two-chiral-component microemulsion (RXS) provided significantly better resolution than the remaining one- and two-chiral-component microemulsions for the ephedrine-based compounds, but only slightly better or equivalent resolution for non-ephedrine compounds.
Energy Technology Data Exchange (ETDEWEB)
Knippschild, Bastian
2012-03-05
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m{sub ud}{sup MS}(2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point
International Nuclear Information System (INIS)
Knippschild, Bastian
2012-01-01
Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises whether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m ud MS (2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point. In
Chiral pion dynamics for spherical nucleon bags
International Nuclear Information System (INIS)
Vento, V.; Rho, M.; Nyman, E.M.; Jun, J.H.; Brown, G.E.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette
1980-01-01
A chirally symmetric quark-bag model for the nucleon is obtained by introducing an explicit, classical, pion field exterior to the bag. The coupling at the bag surface is determined by the requirement of a conserved axial-vector current. The pion field satisfies equations of motion corresponding to the non-linear sigma-model. We study on this paper the simplified case where the bag and the pion field are spherically symmetric. Corrections due to gluon exchange between the quarks are ignored along with other interactions which split the N- and Δ-masses. The equations of motion for the pion field are solved and we find a substantial pion pressure at the bag surface, along with an attractive contribution to the nucleon self-energy. The total energy of the system, bag plus meson cloud, turns out to be approximately Msub(n)c 2 for a wide range of bag radii, from 1.5 fm down to about 0.5 fm. Introduction of a form factor for the pion would extend the range of possible radii to even smaller values. We propose that the bag with the smallest allowed radius be identified with the 'little bag' discussed before. One surprising result of the paper is that as long as one restricts to spherically symmetric bags, restoring chiral symmetry to the bag model makes the axial-vector current coupling constant gsub(A) to be always too large compared with the experimental value for any bag radius, suggesting a deviation from spherical symmetry for the intrinsic bag wave functions of the 'ground-state' hadrons. (orig.)
Li, Shao-Yong; Xu, Yao-Wei; Liu, Jun-Min; Su, Cheng-Yong
2011-01-17
Inherently chiral calixarenes, whose chirality is based on the absence of a planar symmetry or an inversion center in the molecules as a whole through the asymmetric array of several achiral groups upon the three-dimensional calix-skeletons, are challenging and attractive chiral molecules, because of their potential in supramolecular chemistry. The synthesis and optical resolution of all varieties of inherently chiral calixarenes are systematically discussed and classified, and their applications in chiral recognition and asymmetric catalysis are thoroughly illustrated in this review.
Scaling behaviour of the effective chiral action and stability of the chiral soliton
International Nuclear Information System (INIS)
Reinhardt, H.
1986-12-01
The effective chiral action is evaluated within a novel improved heat-kernel expansion, which includes gradients of the chiral field in a non-perturbative way. The exact scaling behaviour of the effective action of a localized chiral field with respect to changing its spatial size is found. From this it is proved that the radiatively induced derivative terms cannot absolutely stabilize the chiral soliton against collapsing. The collapsing of the soliton is, however, accompanied by a vanishing of the baryon charge. It is argued that the effective chiral action constrained to a fixed baryon number may still admit stable soliton configurations. (orig.)
Spin flexoelectricity and chiral spin structures in magnetic films
International Nuclear Information System (INIS)
Pyatakov, A.P.; Sergeev, A.S.; Mikailzade, F.A.; Zvezdin, A.K.
2015-01-01
In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism are discussed. The phenomenological arguments based on the geometrical idea of curvature-induced effects are supported by analysis of the microscopic mechanisms of spin flexoelectricity based on three-site ion indirect exchange and twisted RKKY interaction models. - Highlights: • Magnetic structure formation in thin films is analogous to flexoelectric phenomena in crystals. • The microscopic mechanism of spin flexoelectricity is the antisymmetric exchange. • Spin cycloid in thin film of metals can be the result of Rashba interaction in 2DEG. • The chirality-dependent Néel-type magnetic domain wall motion is observed in electric field
Spin flexoelectricity and chiral spin structures in magnetic films
Energy Technology Data Exchange (ETDEWEB)
Pyatakov, A.P., E-mail: pyatakov@physics.msu.ru [M.V. Lomonosov Moscow State University, Leninskie gori, Moscow 119991 (Russian Federation); Sergeev, A.S. [M.V. Lomonosov Moscow State University, Leninskie gori, Moscow 119991 (Russian Federation); Mikailzade, F.A. [Department of Physics, Gebze Technical University, Gebze, 41400 Kocaeli (Turkey); Zvezdin, A.K. [A.M. Prokhorov General Physics Institute, Vavilova St., 38, Moscow 119991 (Russian Federation)
2015-06-01
In this short review a broad range of chiral phenomena observed in magnetic films (spin cycloid and skyrmion structures formation as well as chirality dependent domain wall motion) is considered under the perspective of spin flexoelectricity, i.e. the relation between bending of magnetization pattern and electric polarization. The similarity and the difference between the spin flexoelectricity and the newly emerged notion of spin flexomagnetism are discussed. The phenomenological arguments based on the geometrical idea of curvature-induced effects are supported by analysis of the microscopic mechanisms of spin flexoelectricity based on three-site ion indirect exchange and twisted RKKY interaction models. - Highlights: • Magnetic structure formation in thin films is analogous to flexoelectric phenomena in crystals. • The microscopic mechanism of spin flexoelectricity is the antisymmetric exchange. • Spin cycloid in thin film of metals can be the result of Rashba interaction in 2DEG. • The chirality-dependent Néel-type magnetic domain wall motion is observed in electric field.
Neutral pion electroproduction off light nuclei in chiral perturbation theory
International Nuclear Information System (INIS)
Lenkewitz, Mark
2013-01-01
Threshold pion electroproduction on tri-nucleon systems is investigated in the framework of baryon Chiral Perturbation Theory (ChPT) at next-to-leading one-loop order O(q 4 ) in the chiral expansion. To this order in small momenta, the production operator is a sum of one- and two-nucleon terms. While the one-nucleon terms resemble the impulse approximation, the two-nucleon contributions represent corrections due to the relevant nuclear interactions, e.g. pion-exchange interactions, which prove to be dominant, and due to recoil effects of the participating nucleons, which appear to be negligible. We calculate the expectation value of the production operator using chiral wave functions in a three-dimensional approach without partial wave expansion. The resulting integrals are evaluated using adaptive Monte Carlo integration, the VEGAS algorithm of Lepage. We obtain results for the threshold production multipoles E 0+ and L 0+ on 3 He and 3 H and comment on the sensitivity to the fundamental neutron amplitude E 0+ π 0 n . 3 He appears to be a particularly promising target to extract information about the neutron amplitude. This idea is usually invoked for spin-dependent quantities since the 3 He wave function is strongly dominated by the principal S-state component which suggests that its spin is largely driven by the one of the neutron.
Parafermionic wires at the interface of chiral topological states
Santos, Luiz; Hughes, Taylor
We discuss a scenario where local interactions form one-dimensional gapped interfaces between a pair of distinct chiral two-dimensional topological states such that each gapped region terminates at a domain wall separating the chiral gapless edge states of these phases. We show that this type of T-junction supports point-like fractionalized excitations obeying parafermion statistics, thus implying that the one-dimensional gapped interface forms an effective topological parafermionic wire possessing a non-trivial ground state degeneracy. The physical properties of the anyon condensate that gives rise to the gapped interface are investigated. Remarkably, this condensate causes the gapped interface to behave as a type of anyon ``Andreev reflector'' in the bulk, whereby anyons from one phase, upon hitting the interface, can be transformed into a combination of reflected anyons and outgoing anyons from the other phase. Thus, we conclude that while different topological orders can be connected via gapped interfaces, the interfaces are themselves topological.
Thermoelectric figure of merit of chiral carbon nanotube
International Nuclear Information System (INIS)
Mensah, N.G.; Nkrumah-Buandoh, G.K.; Mensah, S.Y.; Allotey, F.K.A.; Twum, A.K.
2005-09-01
We have investigated the thermoelectrical properties of chiral carbon nanotube and numerically evaluated the figure of merit. We observed that the properties are highly anisotropic and depend on the geometric chiral angle (GCA) θ h , temperature and the overlapping integrals (exchange energy) for the jumps along the tubular axis Δ z and the base helix Δ s . The thermopower α exhibited giant values with the peak occurring between 100 K and 150 K. The electron thermal conductivity showed unusually high value with the peaks shifting towards high temperature. We attribute the high peak values to electron-phonon interactions. Finally we noted that by changing the Δ s and Δ z it is possible to get a figure of merit greater than 1. (author)
arXiv Chiral Effective Theory of Dark Matter Direct Detection
Bishara, Fady
2017-02-03
We present the effective field theory for dark matter interactions with the visible sector that is valid at scales of O(1 GeV). Starting with an effective theory describing the interactions of fermionic and scalar dark matter with quarks, gluons and photons via higher dimension operators that would arise from dimension-five and dimension-six operators above electroweak scale, we perform a nonperturbative matching onto a heavy baryon chiral perturbation theory that describes dark matter interactions with light mesons and nucleons. This is then used to obtain the coefficients of the nuclear response functions using a chiral effective theory description of nuclear forces. Our results consistently keep the leading contributions in chiral counting for each of the initial Wilson coefficients.
The fruitful introduction of chirality and control of absolute configurations in molecular magnets.
Train, Cyrille; Gruselle, Michel; Verdaguer, Michel
2011-06-01
In this critical review, it is shown how the introduction of chirality and the control of the absolute configurations of chiral elements in molecular magnets allow obtaining enantiopure chiral magnets (ECM), an archetype of multifunctional materials. This task has been recognised as a major challenge for both chemists and physicists of molecular magnetism. To reach this goal, the former have combined the rational approaches towards molecular-based magnets and of enantiopure metal-organic frameworks. They have used enantiopure stable radicals, ligands from the chiral pool, enantiopure coligands associated with achiral connectors or enantioselective self-assembly to successfully reach their synthetic targets. They were motivated by the will to obtain suitable systems for the experimental demonstration of the influence of enantiomeric purity on the physico-chemical properties. This influence can be found in the magnetic properties themselves but, most interestingly, in the coexistence and interaction between the properties arising from controlled non-centrosymmetry. Thus the combination of natural circular dichroism, second harmonic generation or ferroelectricity with long-range magnetic ordering can give birth to new properties like magneto-chiral dichroism, magnetisation induced second harmonic generation or multiferroicity. The two former synergetic effects have already been demonstrated in enantiopure chiral magnets. The third one remains a challenging target that can be reached by adapting strategies developed towards enantiopure molecular ferroelectrics (119 references).
Yang, Sena; Jeon, Aram; Driver, Russell W; Kim, Yeonwoo; Jeon, Eun Hee; Kim, Sehun; Lee, Hee-Seung; Lee, Hangil
2016-05-25
We report the formation of both right- and left-handed chiral nanopores within a single domain during the self-assembly of an amino acid derivative on an inert Au(111) surface using STM. DFT calculations employed to rationalize this unusual result identified that intermolecular interactions between chiral, windmill-shaped tetramers are crucial for self-assembly.
Adsorption of lactic acid on chiral Pt surfaces—A density functional theory study
Franke, J.-H.; Kosov, D. S.
2013-02-01
The adsorption of the chiral molecule lactic acid on chiral Pt surfaces is studied by density functional theory calculations. First, we study the adsorption of L-lactic acid on the flat Pt(111) surface. Using the optimed PBE - van der Waals (oPBE-vdW) functional, which includes van der Waals forces on an ab initio level, it is shown that the molecule has two binding sites, a carboxyl and the hydroxyl oxygen atoms. Since real chiral surfaces are (i) known to undergo thermal roughening that alters the distribution of kinks and step edges but not the overall chirality and (ii) kink sites and edge sites are usually the energetically most favored adsorption sites, we focus on two surfaces that allow qualitative sampling of the most probable adsorption sites. We hereby consider chiral surfaces exhibiting (111) facets, in particular, Pt(321) and Pt(643). The binding sites are either both on kink sites—which is the case for Pt(321) or on one kink site—as on Pt(643). The binding energy of the molecule on the chiral surfaces is much higher than on the Pt(111) surface. We show that the carboxyl group interacts more strongly than the hydroxyl group with the kink sites. The results indicate the possible existence of very small chiral selectivities of the order of 20 meV for the Pt(321) and Pt(643) surfaces. L-lactic acid is more stable on Pt(321)S than D-lactic acid, while the chiral selectivity is inverted on Pt(643)S. The most stable adsorption configurations of L- and D-lactic acid are similar for Pt(321) but differ for Pt(643). We explore the impact of the different adsorption geometries on the work function, which is important for field ion microscopy.
DEVELOPMENT AND REGISTRATION OF CHIRAL DRUGS
WITTE, DT; ENSING, K; FRANKE, JP; DEZEEUW, RA
1993-01-01
In this review we describe the impact of chirality on drug development and registration in the United States, Japan and the European Community. Enantiomers may have differences in their pharmacological profiles, and, therefore, chiral drugs ask for special analytical and pharmacological attention
Helical chirality induction of expanded porphyrin analogues
Indian Academy of Sciences (India)
2,2 -Bipyridine was readily obtained from 6,6 - dibromo-2,2 -bipyridine and then used for synthesizing cyclotetrapyrroletetrapyridine O3.18. 3. Helical chirality induction. 3.1 Chirality sensing of carboxylic acids by O1. Facile methods for the determination of molecular chi- rality are of increasing interest in view of the role of.
On infinite regular and chiral maps
Arredondo, John A.; Valdez, Camilo Ramírez y Ferrán
2015-01-01
We prove that infinite regular and chiral maps take place on surfaces with at most one end. Moreover, we prove that an infinite regular or chiral map on an orientable surface with genus can only be realized on the Loch Ness monster, that is, the topological surface of infinite genus with one end.
Insights on some chiral smectic phases
Indian Academy of Sciences (India)
Insights on some chiral smectic phases. B PANSU. Laboratoire de Physique des Solides, Bt 510, UMR 8502, Universit Paris-Sud, 91405 Orsay Cedex,. France. Abstract. Combining layered positional order as smectic order and chirality can generate complex architectures since twist parallel to the layers is not allowed.
Chiral Block Copolymer Structures for Metamaterial Applications
2015-01-27
elt @rice.edu Institution : Rice University Mailing Address : Department of...information from the molecular level to the micro and macrodomain levels. This joint work3 was published in the Journal of the American Chemical...Chirality from Molecule to Phase in Self‐Assembled Chiral Block Copolymers,” Journal of the American Chemical Society, 134 (26), 10974 – 10986, (2012).
Cofactor-Controlled Chirality of Tropoisomeric Ligand
Théveau, L.; Bellini, R.; Dydio, P.; Szabo, Z.; van der Werf, A.; Sander, R.A.; Reek, J.N.H.; Moberg, C.
2016-01-01
A new tropos ligand with an integrated anion receptor receptor site has been prepared. Chiral carboxylate and phosphate anions that bind in the anion receptor unit proved capable of stabilizing chiral conformations of the achiral flexible bidentate biaryl phosphite ligand, as shown by variable
CHIRALITY IN NONLINEAR OPTICS AND OPTICAL SWITCHING
Meijer, E.W.; Feringa, B.L.
1993-01-01
Chirality in molecular opto-electronics is limited sofar to the use of optically active liquid crystals and a number of optical phenomena are related to the helical macroscopic structure obtained by using one enantiomer, only. In this paper, the use of chirality in nonlinear optics and optical
Chiral discrimination in biomimetic systems: Phenylalanine
Indian Academy of Sciences (India)
WINTEC
Chiral discrimination and recognition is important in peptide biosynthesis, amino acid syn- thesis and drug ... acid segments. In order to understand the chiral dis- crimination in this system, a detailed molecular under- standing of the conformational energy variation in ... and their mutual configuration shall also be the mini-.
Orientation-Dependent Handedness and Chiral Design
Directory of Open Access Journals (Sweden)
Efi Efrati
2014-01-01
Full Text Available Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems—a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial—and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles.
Pentaquarks in chiral color dielectric model
Indian Academy of Sciences (India)
Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV.
High harmonic generation from axial chiral molecules.
Wang, Dian; Zhu, Xiaosong; Liu, Xi; Li, Liang; Zhang, Xiaofan; Lan, Pengfei; Lu, Peixiang
2017-09-18
Axial chiral molecules, whose stereogenic element is an axis rather than a chiral center, have attracted widespread interest due to their important application, such as asymmetric synthesis and chirality transfer. We investigate high harmonic generation from axial chiral molecules with bichromatic counterrotating circularly polarized laser fields. High harmonic generation from three typical molecules: (Sa)-3-chloropropa-1,2-dien-1-ol, propadiene, and (Ra)-2,3-pentadiene is simulated with time-dependent density-functional theory and strong field approximation. We found that harmonic spectra for 3D oriented axial chiral molecules exhibit obvious circular dichroism. However, the circular dichroism of High harmonic generation from an achiral molecule is much trivial. Moreover, the dichroism of high harmonic generation still exists when axial chiral molecules are 1D oriented,such as (Sa) -3-chloropropa-1,2-dien-1-ol. For a special form of axial chiral molecules with the formula abC=C=Cab (a, b are different substituents), like (Ra)-2,3-pentadiene, the dichroism discriminations disappear when the molecules are only in 1D orientation. The circular dichroism of high harmonic generation from axial chiral molecules is well explained by the trajectory analysis based on the semiclassical three-step mechanism.
Chiral unitary theory: Application to nuclear problems
Indian Academy of Sciences (India)
Sept. 2001 physics pp. 417–431. Chiral unitary theory: Application to nuclear problems ... parameters which are adjusted to the data or alternatively derived in some models. Chiral perturbation theory up ..... consistent with a large broadening of the and more experimental studies are under way at GSI (HADES collaboration) ...
Chiralities of spiral waves and their transitions
Pan, Jun-ting; Cai, Mei-chun; Li, Bing-wei; Zhang, Hong
2013-06-01
The chiralities of spiral waves usually refer to their rotation directions (the turning orientations of the spiral temporal movements as time elapses) and their curl directions (the winding orientations of the spiral spatial geometrical structures themselves). Traditionally, they are the same as each other. Namely, they are both clockwise or both counterclockwise. Moreover, the chiralities are determined by the topological charges of spiral waves, and thus they are conserved quantities. After the inwardly propagating spirals were experimentally observed, the relationship between the chiralities and the one between the chiralities and the topological charges are no longer preserved. The chiralities thus become more complex than ever before. As a result, there is now a desire to further study them. In this paper, the chiralities and their transition properties for all kinds of spiral waves are systemically studied in the framework of the complex Ginzburg-Landau equation, and the general relationships both between the chiralities and between the chiralities and the topological charges are obtained. The investigation of some other models, such as the FitzHugh-Nagumo model, the nonuniform Oregonator model, the modified standard model, etc., is also discussed for comparison.
The Baryon Number Two System in the Chiral Soliton Model
International Nuclear Information System (INIS)
Mantovani-Sarti, V.; Drago, A.; Vento, V.; Park, B.-Y.
2013-01-01
We study the interaction between two B = 1 states in a chiral soliton model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the inter soliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications. (author)
Arefian, Mina; Mirzaei, Masoud; Eshtiagh-Hosseini, Hossein
2018-03-01
A new chiral inorganic-organic hybrid with the formula (L-His)2(H7CoMo6O24)·6H2O (1), based on natural amino acid and Anderson type polyoxomolybdate was synthesized through mild condition. The chiral L-histidine molecules induced chirality to the whole structure through various types of strong and unconventional hydrogen bond (HB) interactions (CH⋯O, NH⋯O and CH···π interactions), as well as bifurcated hydrogen bonds (BHBs) between L-histidine amino acid, hexamer water cluster molecules, and H7CoMo6O24·xH2O. Following, important non-covalent CH⋯O interactions is investigated in another chiral inorganic-organic hybrid structure, (L-Pro)3(PMo12O40).4.5H2O (2), in detail. The CH⋯O hydrogen bonds lead to a chiral network similar to the DNA strands affording a promising candidate to bio-inorganic studies.
Andrews, D. L.
2018-03-01
To properly represent the interplay and coupling of optical and material chirality at the photon-molecule or photon-nanoparticle level invites a recognition of quantum facets in the fundamental aspects and mechanisms of light–matter interaction. It is therefore appropriate to cast theory in a general quantum form, one that is applicable to both linear and nonlinear optics as well as various forms of chiroptical interaction including chiral optomechanics. Such a framework, fully accounting for both radiation and matter in quantum terms, facilitates the scrutiny and identification of key issues concerning spatial and temporal parity, scale, dissipation and measurement. Furthermore it fully provides for describing the interactions of structured or twisted light beams with a vortex character, and it leads to the complete identification of symmetry conditions for materials to provide for chiral discrimination. Quantum considerations also lend a distinctive perspective to the very different senses in which other aspects of chirality are recognized in metamaterials. Duly attending to the symmetry principles governing allowed or disallowed forms of chiral discrimination supports an objective appraisal of the experimental possibilities and developing applications.
Hadron properties in chiral sigma model
International Nuclear Information System (INIS)
Shen Hong
2005-01-01
The modification of hadron masses in nuclear medium is studied by using the chiral sigma model, which is extended to generate the omega meson mass by the sigma condensation in the vacuum in the same way as the nucleon mass. The chiral sigma model provides proper equilibrium properties of nuclear matter. It is shown that the effective masses of both nucleons and omega mesons decrease in nuclear medium, while the effective mass of sigma mesons increases oat finite density in the chiral sigma model. The results obtained in the chiral sigma model are compared with those obtained in the Walecka model, which includes sigma and omega mesons in a non-chiral fashion. (author)
Chiral capillary electrophoresis-mass spectrometry.
Domínguez-Vega, Elena; Crego, Antonio L; Marina, Maria Luisa
2013-01-01
Capillary electrophoresis-mass spectrometry (CE-MS) is a powerful analytical tool, especially in the case of chiral separations, due to the fact that it combines the high efficiency, short analysis time, and versatility of the CE with the sensitivity, selectivity, and the capacity for the identification of unknown chiral compounds offered by MS detection. This chapter describes three methodologies enabling the chiral separation of cationic and anionic compounds using different strategies, illustrating the most employed approaches used in chiral CE-MS. The first methodology uses the partial filling technique for the enantioseparation of a cationic compound using a neutral cyclodextrin. Secondly, the enantioseparation of a cationic compound using low concentrations of a neutral cyclodextrin under acidic conditions is described. Finally, a methodology for the chiral separation of an anionic compound employing low concentrations of a native cyclodextrin under basic conditions is illustrated.
Genetically programmed chiral organoborane synthesis
Kan, S. B. Jennifer; Huang, Xiongyi; Gumulya, Yosephine; Chen, Kai; Arnold, Frances H.
2017-12-01
Recent advances in enzyme engineering and design have expanded nature’s catalytic repertoire to functions that are new to biology. However, only a subset of these engineered enzymes can function in living systems. Finding enzymatic pathways that form chemical bonds that are not found in biology is particularly difficult in the cellular environment, as this depends on the discovery not only of new enzyme activities, but also of reagents that are both sufficiently reactive for the desired transformation and stable in vivo. Here we report the discovery, evolution and generalization of a fully genetically encoded platform for producing chiral organoboranes in bacteria. Escherichia coli cells harbouring wild-type cytochrome c from Rhodothermus marinus (Rma cyt c) were found to form carbon-boron bonds in the presence of borane-Lewis base complexes, through carbene insertion into boron-hydrogen bonds. Directed evolution of Rma cyt c in the bacterial catalyst provided access to 16 novel chiral organoboranes. The catalyst is suitable for gram-scale biosynthesis, providing up to 15,300 turnovers, a turnover frequency of 6,100 h-1, a 99:1 enantiomeric ratio and 100% chemoselectivity. The enantiopreference of the biocatalyst could also be tuned to provide either enantiomer of the organoborane products. Evolved in the context of whole-cell catalysts, the proteins were more active in the whole-cell system than in purified forms. This study establishes a DNA-encoded and readily engineered bacterial platform for borylation; engineering can be accomplished at a pace that rivals the development of chemical synthetic methods, with the ability to achieve turnovers that are two orders of magnitude (over 400-fold) greater than those of known chiral catalysts for the same class of transformation. This tunable method for manipulating boron in cells could expand the scope of boron chemistry in living systems.
Principal chiral model on superspheres
Energy Technology Data Exchange (ETDEWEB)
Mitev, V.; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quella, T. [Amsterdam Univ. (Netherlands). Inst. for Theoretical Physics
2008-09-15
We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S{sup 3} {sup vertical} {sup stroke} {sup 2}, we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)
Principal chiral model on superspheres
International Nuclear Information System (INIS)
Mitev, V.; Schomerus, V.; Quella, T.
2008-09-01
We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S 3 vertical stroke 2 , we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)
Chiral quarks and proton decay
International Nuclear Information System (INIS)
Chadha, S.; Daniel, M.; Gounaris, G.J.; Murphy, A.J.
1984-04-01
The authors calculate the hadronic matrix elements of baryon decay operators using a chiral effective Lagrangian with quarks, gluons and Goldstone boson fields. The cases where the ΔB=1 operators arise from supersymmetric SU(5) GUT as well as the minimal SU(5) GUT model are studied. In each model the results depend on two parameters. In particular there is a range of values for the two parameters, where the dominant decay modes in the minimal SU(5) GUT are: p→etae + and n→π - e + . (author)
Axially chiral allenyl gold complexes.
Johnson, Alice; Laguna, Antonio; Gimeno, M Concepción
2014-09-17
Unprecedented allenyl gold complexes have been achieved starting from triphenylpropargylphosphonium bromide. Two different coordination modes of the allene isomer of triphenylphosphoniumpropargylide to gold have been found depending on the gold oxidation state. Bromo-, pentafluorophenyl-, and triphenylphosphine-gold(I) allenyl complexes were prepared in which the α carbon coordinates to the gold(I) center. A chiral pentafluorophenyl-gold(III) allenyl complex with the gold atoms coordinated to the γ carbon was also prepared. All the complexes have been structurally characterized by X-ray diffraction showing the characteristic distances for a C═C═C unit.
Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory
Energy Technology Data Exchange (ETDEWEB)
Petschauer, Stefan Karl
2016-02-12
In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.
Chiral discrimination in nuclear magnetic resonance spectroscopy
Lazzeretti, Paolo
2017-11-01
Chirality is a fundamental property of molecules whose spatial symmetry is characterized by the absence of improper rotations, making them not superimposable to their mirror image. Chiral molecules constitute the elementary building blocks of living species and one enantiomer is favoured in general (e.g. L-aminoacids and D-sugars pervade terrestrial homochiral biochemistry) because most chemical reactions producing natural substances are enantioselective. Since the effect of chiral chemicals and drugs on living beings can be markedly different between enantiomers, the quest for practical spectroscopical methods to scrutinize chirality is an issue of great importance and interest. Nuclear magnetic resonance (NMR) is a topmost analytical technique, but spectrometers currently used are ‘blind’ to chirality, i.e. unable to discriminate the two mirror-image forms of a chiral molecule, because, in the absence of a chiral solvent, the spectral parameters, chemical shifts and spin-spin coupling constants are identical for enantiomers. Therefore, the development of new procedures for routine chiral recognition would offer basic support to scientists. However, in the presence of magnetic fields, a distinction between true and false chirality is mandatory. The former epitomizes natural optical activity, which is rationalized by a time-even pseudoscalar, i.e. the trace of a second-rank tensor, the mixed electric dipole/magnetic dipole polarizability. The Faraday effect, magnetic circular dichroism and magnetic optical activity are instead related to a time-odd axial vector. The present review summarizes recent theoretical and experimental efforts to discriminate enantiomers via NMR spectroscopy, with the focus on the deep connection between chirality and symmetry properties under the combined set of fundamental discrete operations, namely charge conjugation, parity (space inversion) and time (motion) reversal.
Takahashi, Y.; Eby, P. B.
1985-01-01
Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.
Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS2 Nanostructures.
Purcell-Milton, Finn; McKenna, Robert; Brennan, Lorcan J; Cullen, Conor P; Guillemeney, Lilian; Tepliakov, Nikita V; Baimuratov, Anvar S; Rukhlenko, Ivan D; Perova, Tatiana S; Duesberg, Georg S; Baranov, Alexander V; Fedorov, Anatoly V; Gun'ko, Yurii K
2018-02-27
Two-dimensional (2D) nanomaterials have been intensively investigated due to their interesting properties and range of potential applications. Although most research has focused on graphene, atomic layered transition metal dichalcogenides (TMDs) and particularly MoS 2 have gathered much deserved attention recently. Here, we report the induction of chirality into 2D chiral nanomaterials by carrying out liquid exfoliation of MoS 2 in the presence of chiral ligands (cysteine and penicillamine) in water. This processing resulted in exfoliated chiral 2D MoS 2 nanosheets showing strong circular dichroism signals, which were far past the onset of the original chiral ligand signals. Using theoretical modeling, we demonstrated that the chiral nature of MoS 2 nanosheets is related to the presence of chiral ligands causing preferential folding of the MoS 2 sheets. There was an excellent match between the theoretically calculated and experimental spectra. We believe that, due to their high aspect ratio planar morphology, chiral 2D nanomaterials could offer great opportunities for the development of chiroptical sensors, materials, and devices for valleytronics and other potential applications. In addition, chirality plays a key role in many chemical and biological systems, with chiral molecules and materials critical for the further development of biopharmaceuticals and fine chemicals, and this research therefore should have a strong impact on relevant areas of science and technology such as nanobiotechnology, nanomedicine, and nanotoxicology.
Synthesis and characterization of mixed ligand chiral nanoclusters
Guven, Zekiye P.
2016-06-22
Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. While the chiral ligand led mostly to the formation of nanoparticles, the presence of the achiral ligand drastically increased the yield of nanoclusters with enhanced chiral properties. © 2016 The Royal Society of Chemistry.
Huang, Zhifeng
2015-09-01
Chirality does naturally exist, and the building blocks of life (e.g. DNA, proteins, peptides and sugars) are usually chiral. Chirality inherently imposes chemical/biological selectivity on functional molecules; hence the discrimination in molecular chirality from an enantiomer to the other mirror image (i.e. enantioselection) has fundamental and application significance. Enantiomers interact with left and right handed circularly polarized light in a different manner with respect to optical extinction; hence, electronic circular dichroism (ECD) has been widely used for enantioselection. However, enantiomers usually have remarkably low ECD intensity, mainly owing to the small electric transition dipole moment induced by molecular sizes compared to the ECD-active wavelength in the UV-visible-near IR region. To enhance ECD magnitude, recently it has being developed 3D chiral nanoplasmonic structures having a helical path, and the dimensions are comparable to the ECD wavelength. However, it is still ambiguous the origin of 3D chiroplasmonics, and there is a lack of studying the interaction of 3D chiroplasmoncs with enantiomers for the application of enantioselection. Herein, we will present a one-step fabrication of 3D silver nanospirals (AgNSs) via low-substrate-temperature glancing angle deposition. AgNSs can be deposited on a wide range of substrates (including transparent and flexible substrates), in an area on the order of cm2. A set of spiral dimensions (such as spiral pitches, number of turns and handedness) have been easily engineered to tune the chiroptic properties, leading to studying the chiroplasmonic principles together with finite element simulation and the LC model. At the end, it will be demonstrated that 3D chiroplasmonics can differentiate molecular chirality of enantiomers with dramatic enhancement in the anisotropy g factor. This study opens a door to sensitively discriminate enantiomer chirality.
Chirality-selected phase behavior in ionic polypeptide complexes
Tirrell, Matthew
2015-03-01
We demonstrate that chirality determines the phase state of polyelectrolyte complexes formed from mixing dilute solutions of oppositely charged polypeptides. In these systems, the physical state of the resultant complex is determined by the combination of electrostatic and hydrogen bonding interactions. The formation of fluid complexes occurs when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with a β-sheet structure on mixing. Analogous behavior occurs in micellar cores formed from polypeptide block copolymers with polyethylene oxide, where microphase separation into discrete, self-assembled aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in systems based on polyelectrolyte complexation. Its role in these systems gives insight into polyelectrolyte complex phase behavior more broadly. This work was supported by the U.S. Department of Energy Office of Science Program in Basic Energy Sciences, Materials Sciences and Engineering Division.
K- nuclear potentials from in-medium chirally motivated models
International Nuclear Information System (INIS)
Cieply, A.; Gazda, D.; Mares, J.; Friedman, E.; Gal, A.
2011-01-01
A self-consistent scheme for constructing K - nuclear optical potentials from subthreshold in-medium KN s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K - quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms potentials are characterized by a real part -Re V K - chiral =85±5 MeV at nuclear matter density, in contrast to half this depth obtained in some derivations based on in-medium KN threshold amplitudes. The moderate agreement with data is much improved by adding complex ρ- and ρ 2 -dependent phenomenological terms, found to be dominated by ρ 2 contributions that could represent KNN→YN absorption and dispersion, outside the scope of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave interactions are studied and found secondary to those of the dominant s-wave contributions. The in-medium dynamics of the coupled-channel model is discussed and systematic studies of K - quasibound nuclear states are presented.
Alternative method for determination of contaminated heparin using chiral recognition.
Szekely, J; Collins, M; Currie, C A
2014-05-15
Since 2008 a significant amount of work has focused on the development of methods to analyze contaminated heparin. This work focuses on utilizing heparin's ability to serve as a chiral selector as a means for determining contamination. Specifically, the effect of contamination on the separation of pheniramine and chloroquine enantiomers was explored. Separations were conducted using heparin contaminated with chondroitin sulfate at varying levels. For each pair of enantiomers, electrophoretic mobility and resolution were calculated. For pheniramine enantiomers, an increase in contamination leads to a decrease in the electrophoretic mobility and resolution. A linear relationship between contamination level and electrophoretic mobility of the pheniramine enantiomers was observed for the entire contamination range. A linear relationship was also found between contamination level and resolution of the enantiomers between 0 and 70 percent contamination. For the separation of chloroquine enantiomers, it was found that at low levels of contamination, the resolution of enantiomers was increased due to the secondary interaction between the chloroquine enantiomers and the chondroitin sulfate. Results of this study illustrate the potential of using chiral recognition as a means to determine heparin contamination as well as the improvement of the chiral resolution of chloroquine with the additional of low levels of chondroitin sulfate A. Copyright © 2014 Elsevier B.V. All rights reserved.
Big, strong, neutral, twisted, and chiral π acids.
Zhao, Yingjie; Huang, Guangxi; Besnard, Celine; Mareda, Jiri; Sakai, Naomi; Matile, Stefan
2015-04-13
General synthetic access to expanded π-acidic surfaces of variable size, topology, chirality, and π acidity is reported. The availability of π surfaces with these characteristics is essential to develop the functional relevance of anion-π interactions with regard to molecular recognition, translocation, and transformation. The problem is that, with expanded π surfaces, the impact of electron-withdrawing substituents decreases and the high π acidity needed for strong anion-π interactions can be more difficult to obtain. To overcome this problem, it is herein proposed to build large surfaces from smaller fragments and connect these fragments with bridges that are composed only of single atoms. Two central surfaces for powerful anion-π interactions, namely, perfluoroarenes and naphthalenediimides (NDIs), were selected as fragments and coupled with through sulfide bridges. Their oxidation to sulfoxides and sulfones, as well as fluorine substitution in the peripheral rings, provides access to the full chemical space of relevant π acidities. According to cyclic voltammetry, LUMO levels range from -3.96 to -4.72 eV. With sulfoxide bridges, stereogenic centers are introduced to further enrich the intrinsic planar chirality of the expanded surfaces. The stereoisomers were separated by chiral HPLC and characterized by X-ray crystallography. Their topologies range from chairs to π boats, and the latter are reminiscent of the cation-π boxes in operational neuronal receptors. With pentafluorophenyl acceptors, the π acidity of NDIs with two sulfoxide groups in the core reaches -4.45 eV, whereas two sulfone moieties give a value of -4.72 eV, which is as low as with four ethyl sulfone groups, that is, a π superacid near the limit of existence. Beyond anion-π interactions, these conceptually innovative π-acidic surfaces are also of interest as electron transporters in conductive materials. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Liquid crystal behavior induced assembling fabrication of conductive chiral MWCNTs@NCC nanopaper
Energy Technology Data Exchange (ETDEWEB)
Ren, Yumei; Wang, Tianjiao; Chen, Zhimin; Li, Jing; Tian, Qiuge; Yang, Hongxia; Xu, Qun, E-mail: qunxu@zzu.edu.cn
2016-11-01
Highlights: • In this study conductive chiral MWCNTs@NCC nanopapers were prepared. • The introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. • The multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. • The resulting nanopaper has an increased conductivity. - Abstract: The conductive chiral MWCNTs@NCC nanopapers obtained by the assembly of nanocrystalline cellulose liquid crystals (NCC LCs) host matrix along with one-dimensional (1-D) multi-walled carbon nanotubes (MWCNTs) have been studied in this work. Circular dichroism (CD) studies show strong signals stemming from the chiral nematic structure. Notably, the introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. Our experimental results indicate the multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. Moreover it also confirms the resulting nanopaper has an increased conductivity of 4.2 S/m at 1.96 wt% MWCNTs. So the co-assembly of the nanocomposite herein opens a gateway for preparing functional materials combining the photonic properties of the NCC LCs matrix with other building blocks that can supply other advantageous functions.
Generalized parton distributions for the nucleon in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics
2006-11-15
We complete the analysis of twist-two generalized parton distributions of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. Extending our previous study of the chiral-even isosinglet sector, we give results for chiral-even isotriplet distributions and for the chiral-odd sector. We also calculate the one-loop corrections for the chiral-odd generalized parton distributions of the pion. (orig.)
Generalized parton distributions for the nucleon in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchroton DESY, Theory Group, Hamburg (Germany); Manashov, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Sankt-Petersburg State University, Department of Theoretical Physics, St.-Petersburg (Russian Federation); Schaefer, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany)
2007-03-15
We complete the analysis of twist-two generalized parton distributions of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. Extending our previous study of the chiral-even isosinglet sector, we give results for chiral-even isotriplet distributions and for the chiral-odd sector. We also calculate the one-loop corrections for the chiral-odd generalized parton distributions of the pion. (orig.)
Enhancing circular dichroism by super chiral hot spots from a chiral metasurface with apexes
Wang, Zeng; Teh, Bing Hong; Wang, Yue; Adamo, Giorgio; Teng, Jinghua; Sun, Handong
2017-05-01
Manipulating light spin (or circular polarization) is an important research field and may find broad applications from sensors, display technology, to quantum computing and communication. To this end, planar metasurfaces with larger circular dichroism are strongly demanded. However, current planar chiral metasurface structures suffer from either fabrication challenge, especially from near-infrared to visible spectrum, or insufficient circular dichroism. Here, we report a chiral metasurface composed of achiral nanoholes which allow for precisely creating apexes in the designed structure. Our investigation indicates that the apexes act as super chiral hot spots and enable the highly concentrated near-field optical chirality leading to a remarkable enhancement of circular dichroism in the far-field. A 4-fold enhancement of the circular dichroism and a strong optical activity of ˜15 degrees have been experimentally achieved. Besides the enhanced chirality, our design genuinely overcomes the nanofabrication challenge faced in existing planar chiral metasurfaces.
Recent status of the chiral bag model
International Nuclear Information System (INIS)
Hosaka, Atsushi; Toki, Hiroshi.
1995-01-01
In this note, recent status of the chiral bag model is presented. As it combines the MIT quark bag model and the Skyrme model, the chiral bag model interpolates the two models smoothly as a function of the chiral bag radius R. The correct limit of R → ∞ is reproduced by including the higher order terms in the Ω expansion of the cranking method. It resolves the so-called small g A problem in a class of models where the semiclassical method is used. (author)
The paradigm of Pseudodual Chiral Models
International Nuclear Information System (INIS)
Zachos, C.K.; Curtright, T.L.
1994-01-01
This is a synopsis and extension of Phys. Rev. D49 5408 (1994). The Pseudodual Chiral Model illustrates 2-dimensional field theories which possess an infinite number of conservation laws but also allow particle production, at variance with naive expectations-a folk theorem of integrable models. We monitor the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the (very different) usual Chiral Model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model. We further find the canonical transformation which connects the usual chiral model to its fully equivalent dual model, thus contradistinguishing the pseudodual theory
Chiral Light Design and Detection Inspired by Optical Antenna Theory.
Poulikakos, Lisa V; Thureja, Prachi; Stollmann, Alexia; De Leo, Eva; Norris, David J
2018-03-23
Chiral metallic nanostructures can generate evanescent fields which are more highly twisted than circularly polarized light. However, it remains unclear how best to exploit this phenomenon, hindering the optimal utilization of chiral electromagnetic fields. Here, inspired by optical antenna theory, we address this challenge by introducing chiral antenna parameters: the chirality flux efficiency and the chiral antenna aperture. These quantities, which are based on chirality conservation, quantify the generation and dissipation of chiral light. We then present a label-free experimental technique, chirality flux spectroscopy, which measures the chirality flux efficiency, providing valuable information on chiral near fields in the far field. This principle is verified theoretically and experimentally with two-dimensionally chiral coupled nanorod antennas, for which we show that chiral near and far fields are linearly dependent on the magnetoelectric polarizability. This elementary system confirms our concept to quantify chiral electromagnetic fields and paves the way toward broadly tunable chiral optical applications including ultrasensitive detection of molecular chirality or optical information storage and transfer.
Axions from chiral family symmetry
International Nuclear Information System (INIS)
Chang, D.; Pal, P.B.; Maryland Univ., College Park; Senjanovic, G.
1985-01-01
We investigate the possibility that family symmetry, Gsub(F), is spontaneously broken chiral global symmetry. We classify the interesting cases when family symmetry can result in an automatic Peccei-Quinn symmetry U(1)sub(PQ) and thus provide a solution to the strong CP problem. The result disfavors having two or four families. For more than four families, U(1)sub(PQ) is in general automatic. In the case of three families, a unique Higgs sector allows U(1)sub(PQ) in the simplest case of Gsub(F)=[SU(3)] 3 . Cosmological consideration also puts strong constraint on the number of families. For Gsub(F)=[SU(N)] 3 cosmology singles out the three-family (N=3) case as a unique solution if there are three light neutrinos. Possible implication of decoupling theorem as applied to family symmetry breaking is also discussed. (orig.)
Biaxiality of chiral liquid crystals
International Nuclear Information System (INIS)
Longa, L.; Trebin, H.R.; Fink, W.
1993-10-01
Using extended deGennes-Ginzburg-Landau free energy expansion in terms of the anisotropic part of the dielectric tensor field Q αβ (χ) a connection between the phase biaxiality and the stability of various chiral liquid crystalline phases is studied. In particular the cholesteric phase, the cubic Blue Phases and the phases characterized by an icosahedral space group symmetry are analysed in detail. Also a general question concerning the applicability of the mean-field approximation in describing the chiral phases is addressed. By an extensive study of the model over a wide range of the parameters a new class of phenomena, not present in the original deGennes-Ginzburg-Landau model, has been found. These include: a) re-entrant phase transitions between the cholesteric and the cubic blue phases and b) the existence of distinct phases of the same symmetry but of different biaxialities. The phase biaxiality serves here as an extra scalar order parameter. Furthermore, it has been shown that due to the presence of the competing bulk terms in the free energy, the stable phases may acquire a large degree of biaxiality, also in liquid crystalline materials composed of effectively uniaxial molecules. A study of icosahedral space group symmetries gives a partial answer to the question as to whether an icosahedral quasicrystalline liquid could be stabilized in liquid crystals. Although, in general, the stability of icosahedral structures could be enhanced by the extra terms in the free energy no absolutely stable icosahedral phase has been found. (author). 16 refs, 3 figs, 1 tab
Traces of chiral symmetry on light planes
International Nuclear Information System (INIS)
Sazdjian, Hagop.
1975-01-01
The possibility of a description of the hadronic world by field theories defined on light planes and formulated in terms of three interacting quark field variables has been investigated. The framework of models where the chiral symmetry breaking is produced by the only mechanical masses of quarks has been considered. The hypothesis that the light plane charges generate in the real world approximate symmetries of one particle states has also been emitted. The projection of the algebraic structure of the observables in the space of physical states have yielded various relations in terms of the masses and couplings of the low lying mesons. They seem to be in agreement with experimental data, and suggest the consistency of the adopted model to describe symmetry breaking phenomena. The quark mechanical masses m(u) approximately 30MeV and m(s) approximately 200MeV have also been estimated. The smallness of these masses in respect to those of hadrons seems to indicate that they do not constitute the only mass scale of the hadronic world, but that there should exist another scale parameter, independent of the quark mechanical masses, and symmetric of SU(3) [fr
Chiral Gauge Dynamics and Dynamical Supersymmetry Breaking
Energy Technology Data Exchange (ETDEWEB)
Poppitz, Erich; /Toronto U.; Unsal, Mithat; /SLAC /Stanford U.
2009-05-07
We study the dynamics of a chiral SU(2) gauge theory with a Weyl fermion in the I = 3/2 representation and of its supersymmetric generalization. In the former, we find a new and exotic mechanism of confinement, induced by topological excitations that we refer to as magnetic quintets. The supersymmetric version was examined earlier in the context of dynamical supersymmetry breaking by Intriligator, Seiberg, and Shenker, who showed that if this gauge theory confines at the origin of moduli space, one may break supersymmetry by adding a tree level superpotential. We examine the dynamics by deforming the theory on S{sup 1} x R{sup 3}, and show that the infrared behavior of this theory is an interacting CFT at small S{sup 1}. We argue that this continues to hold at large S{sup 1}, and if so, that supersymmetry must remain unbroken. Our methods also provide the microscopic origin of various superpotentials in SQCD on S{sup 1} x R{sup 3}--which were previously obtained by using symmetry and holomorphy--and resolve a long standing interpretational puzzle concerning a flux operator discovered by Affleck, Harvey, and Witten. It is generated by a topological excitation, a 'magnetic bion', whose stability is due to fermion pair exchange between its constituents. We also briefly comment on composite monopole operators as leading effects in two dimensional antiferromagnets.
Chiral Pesticide Pharmacokinetics: A Range of Values
Approximately 30% of pesticides are chiral and used as mixtures of two or more stereoisomers. In biological systems, these stereoisomers can exhibit significantly different pharmacokinetics (absorption, distribution, metabolism, and elimination). In spite of these differences, th...
Symmetry properties of chiral carbon nanotubes
International Nuclear Information System (INIS)
Jishi, R.A.; Venkataraman, L.; Dresselhaus, M.S.; Dresselhaus, G.
1995-01-01
The method of zone folding is applied to the calculation of the phonon mode frequencies in carbon nanotubules. The Raman and infrared-active mode frequencies are determined for nanotubules of different diameters and chiralities
Organometallic chemistry of chiral diphosphazane ligands ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 114; Issue 4. Organometallic chemistry of chiral diphosphazane ligands: Synthesis and structural characterisation. Kannan Raghuraman Swadhin K Mandal T S Venkatakrishnan Setharampattu S Krishnamurthy Munirathinam Nethaji. Volume 114 Issue 4 August 2002 ...
Unified Chiral models of mesons and baryons
International Nuclear Information System (INIS)
Mendez-Galain, R.; Ripka, G.
1990-01-01
Unified Chiral models of mesons and baryons are presented. Emphasis is placed on the underlying quark structure of hadrons including the Skyrmion. The Nambu Jona-Lasinio model with vector mesons is discussed
Odd viscosity in chiral active fluids.
Banerjee, Debarghya; Souslov, Anton; Abanov, Alexander G; Vitelli, Vincenzo
2017-11-17
We study the hydrodynamics of fluids composed of self-spinning objects such as chiral grains or colloidal particles subject to torques. These chiral active fluids break both parity and time-reversal symmetries in their non-equilibrium steady states. As a result, the constitutive relations of chiral active media display a dissipationless linear-response coefficient called odd (or equivalently, Hall) viscosity. This odd viscosity does not lead to energy dissipation, but gives rise to a flow perpendicular to applied pressure. We show how odd viscosity arises from non-linear equations of hydrodynamics with rotational degrees of freedom, once linearized around a non-equilibrium steady state characterized by large spinning speeds. Next, we explore odd viscosity in compressible fluids and suggest how our findings can be tested in the context of shock propagation experiments. Finally, we show how odd viscosity in weakly compressible chiral active fluids can lead to density and pressure excess within vortex cores.
Vector meson decays in the chiral bag model
International Nuclear Information System (INIS)
Maxwell, O.V.; Jennings, B.K.
1985-01-01
Vector meson decays are examined in a model where a confined quark and antiquark annihilate, producing a pair of elementary pseudoscalar mesons. Two versions of the pseudoscalar meson-quark interaction are employed, one where the coupling is restricted to the bag surface and one where it extends throughout the bag volume. Energy conservation is ensured in the model through insertion of exponential factors containing the bag energy at each interaction vertex. To guarantee momentum conservation, a wave-packet description is utilized in which the decay widths are normalized by a factor involving the overlap of the initial bag state with the confined qanti q state of zero momentum. With either interaction, the model yields a value for the p-width that exceeds the empirical width by a factor two. For the Ksup(*) and PHI mesons, the computed widths depend strongly on the interaction employed. Implications of these results for chiral bag models are discussed. (orig.)
Hybrid stars within a covariant, nonlocal chiral quark model
International Nuclear Information System (INIS)
Blaschke, D. B.; Dumm, D. Gomez; Grunfeld, A. G.; Klaehn, T.; Scoccola, N. N.
2007-01-01
We present a hybrid equation of state (EoS) for dense matter in which a nuclear matter phase is described within the Dirac-Brueckner-Hartree-Fock (DBHF) approach and a two-flavor quark matter phase is modelled according to a recently developed covariant, nonlocal chiral quark model. We show that modern observational constraints for compact star masses (M∼2M · ) can be satisfied when a small vector-like four quark interaction is taken into account. The corresponding isospin symmetric EoS is consistent with flow data analyses of heavy ion collisions and points to a deconfinement transition at about 0.55 fm -3
Pion-nucleon scattering in the chiral bag model
International Nuclear Information System (INIS)
Israilov, Z.Z.; Musakhanov, M.M.
1981-01-01
Pion-nucleon scattering in the (3.3) resonance region in the framework of chiral bag model(CBM) is considered. The effective Hamiltonian of πNΔ-system in the framework of the CBM contains πNN, πNΔ, πΔΔ interaction terms with the formfactor which is essentially dependent on the size and shape of the quark bag. The iteration of the Born graphs of this model provides successful description of the (3.3) and (3.1) scattering where the values of the parameters agree with CBM [ru
Chiral Topological Orders in an Optical Raman Lattice (Open Source)
2016-03-01
system. In otherwords, the topology is not changed under the C4ˆ transformation in position and (pseudo)spin space R, e 2 , 144 4 1 4 i 4 4 z...PAPER • OPEN ACCESS Chiral topological orders in an optical Raman lattice To cite this article: Xiong-Jun Liu et al 2016 New J. Phys. 18...P Öhberg et al. - Physics of higher orbital bands in optical lattices: a review Xiaopeng Li and W Vincent Liu - Interaction-driven topological and
Radiative decays of vector mesons in the chiral bag model
International Nuclear Information System (INIS)
Tabachenko, A.N.
1988-01-01
A new model of radiative π-meson decays of vector mesons in the chiral bag model is proposed. The quark-π-meson interaction has the form of a pseudoscalar coupling and is located on the bag surface. The vector meson decay width depends on the quark masses, the π-meson decay constant, the radius of the bag, and the free parameter Z 2 , which specifies the disappearance of the bag during the decay. The obtained results for the omega- and p-decay widths are in satisfactory agreement with the experiment
Pion-nucleon scattering in the Chiral bag model
International Nuclear Information System (INIS)
Israilov, Z.Z.; Musakhanov, M.M.
1981-01-01
The effective hamiltonian of the πNΔ-system in the framework of the Chiral Bag Model (CBM) contains πNN-, πNΔ-, πΔΔ-interaction terms with a form factor which is esstentially dependent on the size and shape of the quark bag. The interation of the Born graphs of this model provides successful description of the (3,3) and (3,1) phase shifts [in the (3,3) resonance region] where the values of the paramters agree with the CBM. (orig.)
Hierarchically assembled DNA origami tubules with reconfigurable chirality
International Nuclear Information System (INIS)
Chen, Haorong; Cha, Tae-Gon; Pan, Jing; Choi, Jong Hyun
2013-01-01
The dynamic reconfiguration of a hierarchically assembled tubular structure is demonstrated using the DNA origami technique. Short cylindrical DNA origami monomers are synthesized and linked into elongated tubules, which can then be disassembled via toehold-mediated strand displacement. The disassembled subunits are subsequently linked into tubules of a different chirality. The reconfiguration is performed with the subunits carrying dumbbell hairpin DNA oligonucleotides or gold nanoparticles (AuNPs). The reconfiguration of higher order origami structures presented here is useful for constructing dynamic nanostructures that exceed the size limit of single DNA origami and may facilitate the study of molecular or particle interactions by tuning their relative distance and organization. (paper)
Lattice quantum chromodynamics with approximately chiral fermions
Energy Technology Data Exchange (ETDEWEB)
Hierl, Dieter
2008-05-15
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Lattice quantum chromodynamics with approximately chiral fermions
International Nuclear Information System (INIS)
Hierl, Dieter
2008-05-01
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ + pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Biocatalytic Synthesis of Chiral Pharmaceutical Intermediates
Directory of Open Access Journals (Sweden)
Ramesh N. Patel
2004-01-01
Full Text Available The production of single enantiomers of drug intermediates has become increasingly important in the pharmaceutical industry. Chiral intermediates and fine chemicals are in high demand from both the pharmaceutical and agrochemical industries for the preparation of bulk drug substances and agricultural products. The enormous potential of microorganisms and enzymes for the transformation of synthetic chemicals with high chemo-, regio- and enantioselectivities has been demonstrated. In this article, biocatalytic processes are described for the synthesis of chiral pharmaceutical intermediates.
Quantum chromodynamics, chiral symmetry and bag models
International Nuclear Information System (INIS)
Soyeur, M.
1983-08-01
This course deals with the following subjects: quarks; quantum chromodynamics (the classical Lagrangian of QCD, quark masses, the classical equations of motion of QCD, general properties, lattices); chiral symmetry (massless free Dirac theory, realizations, the σ-model); the M.I.T. bag model (basic assumptions and equations of motion, spherical cavity approximation, properties of hadrons); the chiral bag models (basic assumptions, the cloudy bag model, the little bag model); non-topological soliton bag models
Chiral bags, skyrmions and quarks in nuclei
International Nuclear Information System (INIS)
Rho, M.
1984-09-01
Recent developments on an intriguing connection between the quark-bag description of the baryons (nucleons in particular) and the Skyrmion model are discussed in terms of the constraints coming from chiral anomalies. Topics treated are the leaking baryon charge, axial charge and energy density; the role of chiral anomalies; the role of Skyrme's quartic term and the connection to the meson degrees of freedom; and finally some qualitative implications in nuclei. The presentation is purposely descriptive and intuitive instead of mathematically precise
Bag model with broken chiral symmetry
International Nuclear Information System (INIS)
Efrosinin, V.P.; Zaikin, D.A.
1986-01-01
A variant of the bag model in which chiral symmetry is broken and which provides a description of all the experimental data on the light hadrons, including the pion, is discussed. The pion and kaon decay constants are calculated in this model. The problem of taking into account the center-of-mass motion in bag models and the boundary conditions in the bag model with broken chiral symmetry are also discussed
Organocatalyzed Asymmetric Synthesis of Axially, Planar, and Helical Chiral Compounds.
Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho
2016-02-04
Axially, planar, and helical chiral compounds are indispensable building blocks in modern organic synthesis. A wide variety of chiral ligands and catalysts were designed based on these chiral scaffolds, and these chiral ligands and catalysts were used for various catalytic asymmetric transformations to produce important chiral compounds in an optically enriched form. Furthermore, these chiral skeletons are found in the structure of biologically active natural products. Thus, the development of efficient enantioselective methods for the synthesis of these chiral compounds is an important task in the field of organic chemistry. In the last few years, organocatalyzed approaches, which are one of the most reliable catalytic asymmetric methods, became a hot topic. This Focus Review summarizes asymmetric organocatalytic methods for the synthesis of axially, planar, and helical chiral compounds as useful chiral building blocks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nuclear structure with unitarily transformed two-body plus phenomenological three-body interactions
Energy Technology Data Exchange (ETDEWEB)
Guenther, Anneke
2011-02-02
The importance of three-nucleon forces for a variety of nuclear structure phenomena is apparent in various investigations. This thesis provides a first step towards the inclusion of realistic three-nucleon forces by studying simple phenomenological threebody interactions. The Unitary Correlation Operator Method (UCOM) and the Similarity Renormalization Group (SRG) provide two different approaches to derive soft phase-shift equivalent nucleon-nucleon (NN) interactions via unitary transformations. Although their motivations are quite different the NN interactions obtained with the two methods exhibit some similarities. The application of the UCOM- or SRG-transformed Argonne V18 potential in the Hartree-Fock (HF) approximation and including the second-order energy corrections emerging from many-body perturbation theory (MBPT) reveals that the systematics of experimental ground-state energies can be reproduced by some of the interactions considering a series of closed-shell nuclei across the whole nuclear chart. However, charge radii are systematically underestimated, especially for intermediate and heavy nuclei. This discrepancy to experimental data is expected to result from neglected three-nucleon interactions. As first ansatz for a three-nucleon force, we consider a finite-range three-body interaction of Gaussian shape. Its influence on ground-state energies and charge radii is discussed in detail on the basis of HF plus MBPT calculations and shows a significant improvement in the description of experimental data. As the handling of the Gaussian three-body interaction is time-extensive, we show that it can be replaced by a regularized three-body contact interaction exhibiting a very similar behavior. An extensive study characterizes its properties in detail and confirms the improvements with respect to nuclear properties. To take into account information of an exact numerical solution of the nuclear eigenvalue problem, the No-Core Shell Model is applied to
Current-induced rotational torques in the skyrmion lattice phase of chiral magnets
Everschor, K.; Garst, M.; Duine, R.A.|info:eu-repo/dai/nl/304830127; Rosch, A.
2011-01-01
In chiral magnets without inversion symmetry, the magnetic structure can form a lattice of magnetic whirl lines, a two-dimensional skyrmion lattice, stabilized by spin-orbit interactions in a small range of temperatures and magnetic fields. The twist of the magnetization within this phase gives rise
Minimal Extended Flavor Groups, Matter Fields Chiral Representations, and the Flavor Question
Doff, A.; Pisano, F.
We show the specific unusual features on chiral gauge anomalies cancellation in the minimal, necessarily 3-3-1, and the largest 3-4-1 weak isospin chiral gauge semisimple group leptoquark-bilepton extensions of the 3-2-1 conventional standard model of nuclear and electromagnetic interactions. In such models a natural answer for the fundamental question of fermion generation replication arises directly from the self-consistency of a local gauge quantum field theory, which constrains the number of the QFD fermion families to the QCD color charges.
Chiral metal-organic frameworks bearing free carboxylic acids for organocatalyst encapsulation.
Liu, Yan; Xi, Xiaobing; Ye, Chengcheng; Gong, Tengfei; Yang, Zhiwei; Cui, Yong
2014-12-08
Two chiral carboxylic acid functionalized micro- and mesoporous metal-organic frameworks (MOFs) are constructed by the stepwise assembly of triple-stranded heptametallic helicates with six carboxylic acid groups. The mesoporous MOF with permanent porosity functions as a host for encapsulation of an enantiopure organic amine catalyst by combining carboxylic acids and chiral amines in situ through acid-base interactions. The organocatalyst-loaded framework is shown to be an efficient and recyclable heterogeneous catalyst for the asymmetric direct aldol reactions with significantly enhanced stereoselectivity in relative to the homogeneous organocatalyst. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Nucleon parton distributions in chiral perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Moiseeva, Alena
2013-11-19
Properties of the chiral expansion of nucleon light-cone operators have been studied. In the framework of the chiral perturbation theory we have demonstrated that convergency of the chiral expansion of nucleon parton distributions strongly depends on the value of the variable x. Three regions in x with essentially different analytical properties of the resulting chiral expansion for parton distributions were found. For each of the regions we have elaborated special power counting rules corresponding to the partial resummation of the chiral series. The nonlocal effective operators for the vector and the axial nucleon parton distributions have been constructed at the zeroth and the first chiral order. Using the derived nonlocal operators and the derived power counting rules we have obtained the second order expressions for the nucleon GPDs H(x,ξ,Δ{sup 2}), H(x,ξ,Δ{sup 2}),E(x,ξ,Δ{sup 2}) valid in the region x>or similar a{sup 2}{sub χ}.
Relativistic chiral SU(3) symmetry, large Nc sum rules and meson-baryon scattering
International Nuclear Information System (INIS)
Lutz, M.F.M.; Kolomeitsev, E.E.
2001-05-01
The relativistic chiral SU(3) Lagrangian is used to describe kaon-nucleon scattering imposing constraints from the pion-nucleon sector and the axial-vector coupling constants of the baryon octet states. We solve the covariant coupled-channel Bethe-Salpeter equation with the interaction kernel truncated at chiral order Q 3 where we include only those terms which are leading in the large N c limit of QCD. The baryon decuplet states are an important explicit ingredient in our scheme, because together with the baryon octet states they form the large N c baryon ground states of QCD. Part of our technical developments is a minimal chiral subtraction scheme within dimensional regularization, which leads to a manifest realization of the covariant chiral counting rules. All SU(3) symmetry-breaking effects are well controlled by the combined chiral and large N c expansion, but still found to play a crucial role in understanding the empirical data. We achieve an excellent description of the data set typically up to laboratory momenta of p lab ≅ 500 MeV. (orig.)
Independent control of the vortex chirality and polarity in a pair of magnetic nanodots
Energy Technology Data Exchange (ETDEWEB)
Li, Junqin; Wang, Yong, E-mail: wangyong@sinap.ac.cn; Cao, Jiefeng; Meng, Xiangyu; Zhu, Fangyuan; Wu, Yanqing; Tai, Renzhong
2017-08-01
Independent control of the vortex chirality and polarity is realized by changing the in-plane magnetic field direction in nanodot pair through Object Oriented Micromagnetic Framework (OOMMF) simulation. The two magnetic circles are close to each other and have magnetic interaction. The two circles always have the same polarity and opposite chirality at every remanent state. There are totally four predictable magnetic states in the nanodot pair which can be obtained in the remanent state relaxed from the saturation state along all possible directions. An explanation on the formation of vortex states is given by vortex dynamics. The vortex states are stable in large out-of-plane magnetic field which is in a direction opposite to the vortex polarity. The geometry of the nanodot pair gives a way to easily realize a vortex state with specific polarity and chirality.
Electroweak chiral Lagrangian from a natural topcolor-assisted technicolor model
International Nuclear Information System (INIS)
Lang Junyi; Jiang Shaozhou; Wang Qing
2009-01-01
Based on previous studies on computing coefficients of the electroweak chiral Lagrangian from C. T. Hill's schematic topcolor-assisted technicolor model, we generalize the calculation to K. Lane's prototype natural topcolor-assisted technicolor model. We find that typical features of the model are qualitatively similar to those of Hill's, but Lane's model prefers a smaller technicolor group and the Z ' mass must be smaller than 400 GeV. Furthermore, the S parameter is around the order of +1, mainly due to the existence of three doublets of techniquarks. We obtain the values for all coefficients of the electroweak chiral Lagrangian up to the order p 4 . Apart from large negative four-fermion coupling values, the extended technicolor impacts on the electroweak chiral Lagrangian coefficients are small, since the techniquark self energy, which determines these coefficients, in general receives almost no influence from the extended technicolor induced four-fermion interactions except for its large momentum tail.
Stereoselective synthesis of cyclopropanes based on a 1,2-chirality transfer.
Muehling, Olaf; Wessig, Pablo
2008-01-01
A stereoselective route to enantiomerically enriched bicyclic cyclopropane derivatives 13 is described which is based on a conceptually novel 1,2-chirality transfer approach. The hyperconjugative interaction of an electronically excited carbonyl group with the sigma* orbital of an adjacent C--X bond in the transition state of a hydrogen abstraction causes the preference of a certain conformation and consequently the differentiation between two diastereotopic methylene groups. The 1,2-chirality transfer is completed by a subsequent HX elimination which destroys the only stereogenic center in the reactants 12. Furthermore, it was found that contrary enthalpic and entropic influences result in the existence of an inversion temperature T 0. Upon crossing T 0 the stereoselectivity is reversed. Considering this temperature dependency, chirality transfer efficiencies of up to 83 % could be achieved. The absolute configuration of most products could be unambiguously determined by VCD spectroscopy combined with DFT calculations.
Liquid crystal behavior induced assembling fabrication of conductive chiral MWCNTs@NCC nanopaper
Ren, Yumei; Wang, Tianjiao; Chen, Zhimin; Li, Jing; Tian, Qiuge; Yang, Hongxia; Xu, Qun
2016-11-01
The conductive chiral MWCNTs@NCC nanopapers obtained by the assembly of nanocrystalline cellulose liquid crystals (NCC LCs) host matrix along with one-dimensional (1-D) multi-walled carbon nanotubes (MWCNTs) have been studied in this work. Circular dichroism (CD) studies show strong signals stemming from the chiral nematic structure. Notably, the introduction of the MWCNTs has a pronounced effect on the chiral structure of the as-prepared nanopaper. Our experimental results indicate the multiple weak molecular interactions existing between MWCNTs and NCC are responsible for the effective dispersion and stabilization of MWCNTs. Moreover it also confirms the resulting nanopaper has an increased conductivity of 4.2 S/m at 1.96 wt% MWCNTs. So the co-assembly of the nanocomposite herein opens a gateway for preparing functional materials combining the photonic properties of the NCC LCs matrix with other building blocks that can supply other advantageous functions.
Lichosyt, Dawid; Wasiłek, Sylwia; Jurczak, Janusz
2016-09-02
Two urea-based receptors containing a glucosamine derivative were synthesized and investigated in terms of their ability to recognize chiral and achiral anions. Both receptors demonstrated a high affinity toward carboxylates in very competitive DMSO/water mixtures. The chiral recognition properties of these compounds were studied using structurally differentiated guests derived from mandelic acid and α-amino acids. We found that receptor 1 exhibits significantly higher enantioselectivities than compound 2 for all anions investigated, with a KS/KR ratio of up to 2. This low enantiodiscrimination in the case of receptor 2 is attributed to a lack of interactions between its sugar moieties and the side chain of chiral anions, due to their inadequate spatial arrangement.
Low-energy hadronic interactions beyond the current algebra approach
International Nuclear Information System (INIS)
Ivanov, A.N.; Troitskaya, N.I.; Nagy, M.
1993-06-01
The new low-energy AP 3 -interaction, which is produced by convergent box-constituent-quark-loop diagrams, is obtained within chiral perturbation theory at the quark level (CHPT) q with linear realization of chiral U(3) x U(3) symmetry. Its contributions to processes of low-energy interactions of low-lying mesons are investigated. The new interaction goes beyond the framework of the low-energy current algebra approach and of the effective chiral Lagrangians with linear realization of chiral symmetry, constructed at the hadronic level. (author). 17 refs, 3 figs
Energy Technology Data Exchange (ETDEWEB)
Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)
2010-04-23
Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.
Chiral polymerization in open systems from chiral-selective reaction rates.
Gleiser, Marcelo; Nelson, Bradley J; Walker, Sara Imari
2012-08-01
We investigate the possibility that prebiotic homochirality can be achieved exclusively through chiral-selective reaction rate parameters without any other explicit mechanism for chiral bias. Specifically, we examine an open network of polymerization reactions, where the reaction rates can have chiral-selective values. The reactions are neither autocatalytic nor do they contain explicit enantiomeric cross-inhibition terms. We are thus investigating how rare a set of chiral-selective reaction rates needs to be in order to generate a reasonable amount of chiral bias. We quantify our results adopting a statistical approach: varying both the mean value and the rms dispersion of the relevant reaction rates, we show that moderate to high levels of chiral excess can be achieved with fairly small chiral bias, below 10%. Considering the various unknowns related to prebiotic chemical networks in early Earth and the dependence of reaction rates to environmental properties such as temperature and pressure variations, we argue that homochirality could have been achieved from moderate amounts of chiral selectivity in the reaction rates.
Yang, Sijie; Wang, Bing; Cui, Dawei; Kerwood, Deborah; Wilkens, Stephan; Han, Junjie; Luk, Yan-Yeung
2013-06-13
Unlike conventional thermotropic and lyotropic liquid crystals, nonamphiphilic lyotropic liquid crystals consist of hydrated assemblies of nonamphiphilic molecules that are aligned with a separation of about 6 nm between assemblies in an aqueous environment. This separation raises the question of how chirality, either from chiral mesogens or chiral dopants, would impact the phase as the assemblies that need to interact with each other are about 6 nm apart. Here, we report the synthesis of three stereoisomers of disodium chromonyl carboxylate, 5'DSCG-diviol, and the correlation between the molecular structure, bulk assembly, and liquid crystal formation. We observed that the chiral isomers (enantiomers 5'DSCG-(R,R)-diviol and 5'DSCG-(S,S)-diviol) formed liquid crystals while the achiral isomer 5'DSCG-meso-diviol did not. Circular dichroism indicated a chiral conformation with bisignate cotton effect. The nuclear Overhauser effect in proton NMR spectroscopy revealed conformations that are responsible for liquid crystal formation. Cryogenic transmission electron microscopy showed that chiral 5'DSCG-diviols form assemblies with crossings. Interestingly, only planar alignment of the chiral nematic phase was observed in liquid crystal cells with thin spacers. The homeotropic alignment that permitted a fingerprint texture was obtained only when the thickness of the liquid crystal cell was increase to above ~500 μm. These studies suggest that hydrated assemblies of chiral 5'DSCG-diviol can interact with each other across a 6 nm separation in an aqueous environment by having a twist angle of about 0.22° throughout the sample between the neighboring assemblies.
Chiral twist drives raft formation and organization in membranes composed of rod-like particles.
Kang, Louis; Lubensky, Tom C
2017-01-03
Lipid rafts are hypothesized to facilitate protein interaction, tension regulation, and trafficking in biological membranes, but the mechanisms responsible for their formation and maintenance are not clear. Insights into many other condensed matter phenomena have come from colloidal systems, whose micron-scale particles mimic basic properties of atoms and molecules but permit dynamic visualization with single-particle resolution. Recently, experiments showed that bidisperse mixtures of filamentous viruses can self-assemble into colloidal monolayers with thermodynamically stable rafts exhibiting chiral structure and repulsive interactions. We quantitatively explain these observations by modeling the membrane particles as chiral liquid crystals. Chiral twist promotes the formation of finite-sized rafts and mediates a repulsion that distributes them evenly throughout the membrane. Although this system is composed of filamentous viruses whose aggregation is entropically driven by dextran depletants instead of phospholipids and cholesterol with prominent electrostatic interactions, colloidal and biological membranes share many of the same physical symmetries. Chiral twist can contribute to the behavior of both systems and may account for certain stereospecific effects observed in molecular membranes.
International Nuclear Information System (INIS)
Timar, J.; Nyako, B.M.; Berek, G.; Gal, J.; Kalinka, G.; Krasznahorkay, A.; Molnar, J.; Zolnai, L.
2007-01-01
Complete text of publication follows. The existence of nuclear chirality is one of the most intriguing questions of contemporary high-spin nuclear structure studies. Rotational doublet-band candidates for chiral structures have been observed mostly in two regions of the nuclear chart: around 134 Pr, and around 104 Rh. In this second region chirality in the Rh isotopes are rather well studied, chiral doubling have also been observed in 100 Tc, however, results obtained for chirality in the studied Ag nuclei ( 105 Ag and 106 Ag) look rather contradictory. Thus, it is interesting to study these doublet bands in the nearby higher-mass Ag nuclei. In order to search for a chiral-candidate partner band to the yrast πg 9/2 v(h 11/2 ) 2 band in 109 Ag, high-spin states of this nucleus have been studied using the 96 Zr( 18 O,p4n) reaction. The experiment was performed at iThemba LABS using 8 Clover detectors of the AFRODITE array and the DIAMANT charged-particle array to detect the γ-rays and the charged particles, respectively. Altogether ∼140 million γγ-coincidence events were collected. Approximately 10 million events of them correspond to the reaction channel producing 109 Ag. No chiral candidate partner band has been found to the πg 9/2 v(h 11/2 ) 2 band with this statistics, however, the level scheme could be extended by several new levels and γ-transitions. A preliminary level scheme of 109 Ag obtained from the ongoing data analysis is shown in Fig. 1
Chiral dynamics and peripheral transverse densities
Energy Technology Data Exchange (ETDEWEB)
Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)
2014-01-01
In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.
Directory of Open Access Journals (Sweden)
Juliana C Barreiro
Full Text Available This paper reports the investigation of the chiral interaction between 3,4-methylenedioxy-methamphetamine (MDMA enantiomers and an immobilized polysaccharide-based chiral phase. For that, suspended-state high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (1H HR-MAS NMR was used. 1H HR-MAS longitudinal relaxation time and Saturation Transfer Difference (STD NMR titration experiments were carried out yielding information at the molecular level of the transient diastereoisomeric complexes of MDMA enantiomers and the chiral stationary phase. The interaction of the enantiomers takes place through the aromatic moiety of MDMA and the aromatic group of the chiral selector by π-π stacking for both enantiomers; however, a stronger interaction was observed for the (R-enantiomer, which is the second one to elute at the chromatographic conditions.
Halbach Effect at the Nanoscale from Chiral Spin Textures.
Marioni, Miguel A; Penedo, Marcos; Baćani, Mirko; Schwenk, Johannes; Hug, Hans J
2018-04-11
Mallinson's idea that some spin textures in planar magnetic structures could produce an enhancement of the magnetic flux on one side of the plane at the expense of the other gave rise to permanent magnet configurations known as Halbach magnet arrays. Applications range from wiggler magnets in particle accelerators and free electron lasers to motors and magnetic levitation trains, but exploiting Halbach arrays in micro- or nanoscale spintronics devices requires solving the problem of fabrication and field metrology below a 100 μm size. In this work, we show that a Halbach configuration of moments can be obtained over areas as small as 1 μm × 1 μm in sputtered thin films with Néel-type domain walls of unique domain wall chirality, and we measure their stray field at a controlled probe-sample distance of 12.0 ± 0.5 nm. Because here chirality is determined by the interfacial Dyzaloshinkii-Moriya interaction, the field attenuation and amplification is an intrinsic property of this film, allowing for flexibility of design based on an appropriate definition of magnetic domains. Skyrmions (magnetic fields and mapping of the spin structure shows they funnel the field toward one specific side of the film given by the sign of the Dyzaloshinkii-Moriya interaction parameter D.
Finite-Temperature Properties of Three-Dimensional Chiral Helimagnets
Shinozaki, Misako; Hoshino, Shintaro; Masaki, Yusuke; Kishine, Jun-ichiro; Kato, Yusuke
2016-07-01
We study a three-dimensional (3d) classical chiral helimagnet at finite temperatures through analysis of a spin Hamiltonian, which is defined on a simple cubic lattice and consists of the Heisenberg exchange, monoaxial Dzyaloshinskii-Moriya interactions, and the Zeeman energy due to a magnetic field applied in the plane perpendicular to the helical axis. We take account of the quasi-two-dimensionality of the known monoaxial chiral helimagnet CrNb3S6 and we adopt three methods: (i) a conventional mean-field (MF) analysis, which we call the 3dMF method, (ii) a hybrid method called the 2dMC-1dMF method, which is composed of a classical Monte Carlo (MC) simulation and a MF approximation applied respectively to the intra- and interlayer interactions, and (iii) a simple-MC simulation (3dMC) at zero field. The temperature dependence of the magnetization calculated by the 3dMF method shows a cusp-like structure similar to that observed in experiments. In the absence of a magnetic field, both 2dMC-1dMF and 3dMC yield similar values of the transition temperature. The 2dMC-1dMF method provides a quantitative description of the thermodynamic properties, even under an external field, at an accessible numerical cost.
Detection of amyloid fibrils in Parkinson's disease using plasmonic chirality.
Kumar, Jatish; Eraña, Hasier; López-Martínez, Elena; Claes, Nathalie; Martín, Víctor F; Solís, Diego M; Bals, Sara; Cortajarena, Aitziber L; Castilla, Joaquín; Liz-Marzán, Luis M
2018-03-27
Amyloid fibrils, which are closely associated with various neurodegenerative diseases, are the final products in many protein aggregation pathways. The identification of fibrils at low concentration is, therefore, pivotal in disease diagnosis and development of therapeutic strategies. We report a methodology for the specific identification of amyloid fibrils using chiroptical effects in plasmonic nanoparticles. The formation of amyloid fibrils based on α-synuclein was probed using gold nanorods, which showed no apparent interaction with monomeric proteins but effective adsorption onto fibril structures via noncovalent interactions. The amyloid structure drives a helical nanorod arrangement, resulting in intense optical activity at the surface plasmon resonance wavelengths. This sensing technique was successfully applied to human brain homogenates of patients affected by Parkinson's disease, wherein protein fibrils related to the disease were identified through chiral signals from Au nanorods in the visible and near IR, whereas healthy brain samples did not exhibit any meaningful optical activity. The technique was additionally extended to the specific detection of infectious amyloids formed by prion proteins, thereby confirming the wide potential of the technique. The intense chiral response driven by strong dipolar coupling in helical Au nanorod arrangements allowed us to detect amyloid fibrils down to nanomolar concentrations.
About chiral models of dense matter and its magnetic properties
International Nuclear Information System (INIS)
Kutschera, M.
1990-12-01
The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)
The extended chiral quark model confronts QCD
International Nuclear Information System (INIS)
Andrianov, A.A.; Espriu, D.; Tarrach, R.
2000-01-01
We discuss the truncation of low energy effective action of QCD below the chiral symmetry breaking (CSB) scale, including all operators of dimensionality less or equal to 6 which can be built with quark and chiral fields. We perform its bosonization in the scalar, pseudoscalar, vector and axial-vector channels in the large-Nc and leading-log approximation. Constraints on the coefficients of the effective lagrangian are derived from the requirement of Chiral Symmetry Restoration (CSR) at energies above the CSB scale in the scalar-pseudoscalar and vector-axial-vector channels, from matching to QCD at intermediate scales, and by fitting some hadronic observables. In this truncation two types of pseudoscalar states (massless pions and massive Π-mesons), as well as a scalar, vector and axial-vector one arise as a consequence of dynamical chiral symmetry breaking. Their masses and coupling constants as well as a number of chiral structural constants are derived. A reasonable fit of all parameters supports a relatively heavy scalar meson (quarkonium) with the mass ∼ 1 GeV and a small value of axial pion-quark coupling constant gA ≅= 0.55
Optical chirality in gyrotropic media: symmetry approach
International Nuclear Information System (INIS)
Proskurin, Igor; Ovchinnikov, Alexander S; Nosov, Pavel; Kishine, Jun-ichiro
2017-01-01
We discuss optical chirality in different types of gyrotropic media. Our analysis is based on the formalism of nongeometric symmetries of Maxwell’s equations in vacuum generalized to material media with given constituent relations. This approach enables us to directly derive conservation laws related to nongeometric symmetries. For isotropic chiral media, we demonstrate that like a free electromagnetic field, both duality and helicity generators belong to the basis set of nongeometric symmetries that guarantees the conservation of optical chirality. In gyrotropic crystals, which exhibit natural optical activity, the situation is quite different from the case of isotropic media. For light propagating along a certain crystallographic direction, there arises two distinct cases: (1) the duality is broken but the helicity is preserved, or (2) only the duality symmetry survives. We show that the existence of one of these symmetries (duality or helicity) is enough to define optical chirality. In addition, we present examples of low-symmetry media, where optical chirality cannot be defined. (paper)
Kahle, Kimberly A; Foley, Joe P
2007-08-01
Novel microemulsion formulations containing all chiral components are described for the enantioseparation of six pairs of pharmaceutical enantiomers (atenolol, ephedrine, metoprolol, N-methyl ephedrine, pseudoephedrine, and synephrine). The chiral surfactant dodecoxycarbonylvaline (DDCV, R- and S-), the chiral cosurfactant S-2-hexanol, and the chiral oil diethyl tartrate (R- and S-) were combined to create four different chiral microemulsions, three of which were stable. Results obtained for enantioselectivity, efficiency, and resolution were compared for the triple-chirality systems and the single-chirality system that contained chiral surfactant only. Improvements in enantioselectivity and resolution were achieved by simultaneously incorporating three chiral components into the aggregate. The one-chiral-component microemulsion provided better efficiencies. Enantioselective synergies were identified for the three-chiral-component nanodroplets using a thermodynamic model. Additionally, two types of dual-chirality systems, chiral surfactant/chiral cosurfactant and chiral surfactant/chiral oil, were examined in terms of chromatographic figures of merit, with the former providing much better resolution. The two varieties of two-chiral-component microemulsions gave similar values for enantioselectivity and efficiency. Lastly, the microemulsion formulations were divided into categories based on the number of chiral microemulsion reagents and the average results for each pair of enantiomers were analyzed for trends. In general, enantioselectivity and resolution were enhanced while efficiency was decreased as more chiral components were used to create the pseudostationary phase (PSP).
Planar chiral meta-materials for optical applications
Potts, A.; Papakostas, A.; Bagnall, D. M.; Zheludev, N. I.
2004-01-01
Room temperature nanoimprint lithography has successfully been applied to the fabrication of planar chiral photonic meta-materials. For dielectric chiral structures a single layer of thick HSQ was used while for metallic chiral structures a bi-layer technique using PMMA/hydrogen silsequioxane (HSQ) was applied. The polarization conversion capabilities of planar chiral structures imprinted in dielectric materials have experimentally been observed. This indicates that the developed processes in...
Chirality - The forthcoming 160th Anniversary of Pasteur's Discovery
Molčanov, K.; Kojić-Prodić., B.
2007-01-01
The presented review on chirality is dedicated to the centennial birth anniversary of Nobel laureate Vladimir Prelog and 160 years of Pasteur's discovery of chirality on tartrates. Chirality has been recognized in nature by artists and architects, who have used it for decorations and basic constructions, as shown in the Introduction. The progress of science through history has enabled the gathering of knowledge on chirality and its many ways of application. The key historical discoveries abou...
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmer P. [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de FÃsica, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de FÃsica, Universidade de Ãvora, 7000-671 Ãvora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.
Weak ωNN coupling in the non-linear chiral model
International Nuclear Information System (INIS)
Shmatikov, M.
1988-01-01
In the non-linear chiral model with the soliton solution stabilized by the ω-meson field the weak ωNN coupling constants are calculated. Applying the vector dominance model for the isoscalar current the constant of the isoscalar P-odd ωNN interaction h ω (0) =0 is obtained while the constant of the isovector (of the Lagrangian of the ωNN interaction proves to be h ω (1) ≅ 1.0x10 -7
Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis.
Oromí-Farrús, Mireia; Torres, Mercè; Canela, Ramon
2012-01-01
The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α = 3.00) and 2-hexyl acetates (α = 1.95). This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC.
Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis
Directory of Open Access Journals (Sweden)
Mireia Oromí-Farrús
2012-01-01
Full Text Available The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α=3.00 and 2-hexyl acetates (α=1.95. This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC.
Acylation of Chiral Alcohols: A Simple Procedure for Chiral GC Analysis
Oromí-Farrús, Mireia; Torres, Mercè; Canela, Ramon
2012-01-01
The use of iodine as a catalyst and either acetic or trifluoroacetic acid as a derivatizing reagent for determining the enantiomeric composition of acyclic and cyclic aliphatic chiral alcohols was investigated. Optimal conditions were selected according to the molar ratio of alcohol to acid, the reaction time, and the reaction temperature. Afterwards, chiral stability of chiral carbons was studied. Although no isomerization was observed when acetic acid was used, partial isomerization was detected with the trifluoroacetic acid. A series of chiral alcohols of a widely varying structural type were then derivatized with acetic acid using the optimal conditions. The resolution of the enantiomeric esters and the free chiral alcohols was measured using a capillary gas chromatograph equipped with a CP Chirasil-DEX CB column. The best resolutions were obtained with 2-pentyl acetates (α = 3.00) and 2-hexyl acetates (α = 1.95). This method provides a very simple and efficient experimental workup procedure for analyzing chiral alcohols by chiral-phase GC. PMID:22649749
The chiral bosonization in non-Abelian gauge theories
International Nuclear Information System (INIS)
Andrianov, A.A.; Novozhilov, Y.
1985-01-01
The chiral bosonization in non-Abelian gauge theories is described starting directly from the QCD functional. For a given mass scale Λ, the QCD may be equivalently represented by colour chiral fields, gauge fields and high energy fermions. The effective action for colour chiral fields may admit the existence of a colour Skyrmion-boson with the baryon number 2/3. (author)
Chiral copper(II) complex based on natural product rosin derivative as promising antitumour agent.
Fei, Bao-Li; Huang, Zhi-Xiang; Xu, Wu-Shuang; Li, Dong-Dong; Lu, Yang; Gao, Wei-Lin; Zhao, Yue; Zhang, Yu; Liu, Qing-Bo
2016-07-01
To evaluate the biological preference of chiral drug candidates for molecular target DNA, the synthesis and characterization of a chiral copper(II) complex (2) of a chiral ligand N,N'-(pyridin-2-ylmethylene) dehydroabietylamine (1) was carried out. The interactions of 1 and 2 with salmon sperm DNA were investigated by viscosity measurements, UV, fluorescence and circular dichroism (CD) spectroscopic techniques. Absorption spectral, emission spectral and viscosity analysis reveal that 1 and 2 interacted with DNA through intercalation and 2 exhibited a higher DNA binding ability. In the absence/presence of ascorbic acid, 1 and 2 cleaved supercoiled pBR322 DNA by single-strand and 2 displayed stronger DNA cleavage ability. In addition, in vitro cytotoxicity of 1 and 2 against HeLa, SiHa, HepG-2 and A431 cancer cell lines study show that they exhibited effective cytotoxicity against the tested cell lines, notably, 2 showed a superior cytotoxicity than the widely used drug cisplatin under identical conditions, indicating it has the potential to act as effective anticancer drug. Flow cytometry analysis indicates 2 produced death of HeLa cancer cells through an apoptotic pathway. Cell cycle analysis demonstrates that 2 mainly arrested HeLa cells at the S phase. The study represents the first step towards understanding the mode of the promising chiral rosin-derivative based copper complexes as chemotherapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.
Synthesis of chiral dopants based on carbohydrates.
Tsuruta, Toru; Koyama, Tetsuo; Yasutake, Mikio; Hatano, Ken; Matsuoka, Koji
2014-07-01
Chiral dopants based on carbohydrates for nematic liquid crystals were synthesized from D-glucose, and their helical twisting power (HTP) values were evaluated. The chiral dopants induced helices in the host nematic liquid crystals. An acetyl derivative having an ether-type glycosidic linkage between carbohydrate and a mesogenic moiety showed the highest HTP value of 10.4 μm(-1), while an acetyl derivative having an anomeric ester-type linkage did not show any HTP. It was surprising that this molecule had no HTP despite the presence of chirality in the molecule. A relationship between HTP and specific rotation was not observed in this study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Magnetic test of chiral dynamics in QCD
Energy Technology Data Exchange (ETDEWEB)
Simonov, Yu.A. [Institute of Theoretical and Experimental Physics,117118, Moscow, B. Cheremushkinskaya 25 (Russian Federation)
2014-01-22
Strong magnetic fields in the range eB≫m{sub π}{sup 2} effectively probe internal quark structure of chiral mesons and test basic parameters of the chiral theory, such as 〈q-barq〉,f{sub π}. We argue on general grounds that 〈q-barq〉 should grow linearly with eB when charged quark degrees of freedom come into play. To make explicit estimates we extend the previously formulated chiral theory, including quark degrees of freedom, to the case of strong magnetic fields and show that the quark condensate |〈q-barq〉|{sub u,d} grows quadratically with eB for eB<0.2 GeV{sup 2} and linearly for higher field values. These results agree quantitatively with recent lattice data and differ from χPT predictions.
Chiral battery, scaling laws and magnetic fields
International Nuclear Information System (INIS)
Anand, Sampurn; Bhatt, Jitesh R.; Pandey, Arun Kumar
2017-01-01
We study the generation and evolution of magnetic field in the presence of chiral imbalance and gravitational anomaly which gives an additional contribution to the vortical current. The contribution due to gravitational anomaly is proportional to T "2 which can generate seed magnetic field irrespective of plasma being chirally charged or neutral. We estimate the order of magnitude of the magnetic field to be 10"3"0 G at T ∼ 10"9 GeV, with a typical length scale of the order of 10"−"1"8 cm, which is much smaller than the Hubble radius at that temperature (10"−"8 cm). Moreover, such a system possess scaling symmetry. We show that the T "2 term in the vorticity current along with scaling symmetry leads to more power transfer from lower to higher length scale as compared to only chiral anomaly without scaling symmetry.
Chiral Liquid Crystals: Structures, Phases, Effects
Directory of Open Access Journals (Sweden)
Ingo Dierking
2014-06-01
Full Text Available The introduction of chirality, i.e., the lack of mirror symmetry, has a profound effect on liquid crystals, not only on the molecular scale but also on the supermolecular scale and phase. I review these effects, which are related to the formation of supermolecular helicity, the occurrence of novel thermodynamic phases, as well as electro-optic effects which can only be observed in chiral liquid crystalline materials. In particular, I will discuss the formation of helical superstructures in cholesteric, Twist Grain Boundary and ferroelectric phases. As examples for the occurrence of novel phases the Blue Phases and Twist Grain Boundary phases are introduced. Chirality related effects are demonstrated through the occurrence of ferroelectricity in both thermotropic as well as lyotropic liquid crystals. Lack of mirror symmetry is also discussed briefly for some biopolymers such as cellulose and DNA, together with its influence on liquid crystalline behavior.
Magnetic test of chiral dynamics in QCD
International Nuclear Information System (INIS)
Simonov, Yu.A.
2014-01-01
Strong magnetic fields in the range eB≫m π 2 effectively probe internal quark structure of chiral mesons and test basic parameters of the chiral theory, such as 〈q-barq〉,f π . We argue on general grounds that 〈q-barq〉 should grow linearly with eB when charged quark degrees of freedom come into play. To make explicit estimates we extend the previously formulated chiral theory, including quark degrees of freedom, to the case of strong magnetic fields and show that the quark condensate |〈q-barq〉| u,d grows quadratically with eB for eB<0.2 GeV 2 and linearly for higher field values. These results agree quantitatively with recent lattice data and differ from χPT predictions
On chiral-odd Generalized Parton Distributions
Energy Technology Data Exchange (ETDEWEB)
Wallon, Samuel [Laboratoire de Physique Theorique d' Orsay - LPT, Bat. 210, Univ. Paris-Sud 11, 91405 Orsay Cedex (France); UPMC Univ. Paris 6, Paris (France); Pire, Bernard [Centre de Physique Theorique - CPHT, UMR 7644, Ecole Polytechnique, Bat. 6, RDC, F91128 Palaiseau Cedex (France); Szymanowski, Lech [Soltan Institute for Nuclear Studies, Hoza 69, 00691, Warsaw (Poland)
2010-07-01
The chiral-odd transversity generalized parton distributions of the nucleon can be accessed experimentally through the exclusive photoproduction process {gamma} + N {yields} {pi} + {rho} + N', in the kinematics where the meson pair has a large invariant mass and the final nucleon has a small transverse momentum, provided the vector meson is produced in a transversally polarized state. Estimated counting rates show that the experiment is feasible with real or quasi real photon beams expected at JLab at 12 GeV and in the COMPASS experiment. (Phys Letters B688,154,2010) In addition, a consistent classification of the chiral-odd pion GPDs beyond the leading twist 2 is presented. Based on QCD equations of motion and on the invariance under rotation on the light-cone of any scattering amplitude involving such GPDs, we reduce the basis of these chiral-odd GPDs to a minimal set. (author)
Analysis of chiral symmetry breaking mechanism
Energy Technology Data Exchange (ETDEWEB)
Xin-Heng, Guo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Tao, Huang [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics; Chuang, Wang
1997-07-01
The renormalization group invariant quark condensate {mu} is determinate both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like {delta} (q) which is associated with the gluon condensate. The solutions of {mu} in these two equations are consistent. We also obtain the critical strong coupling constant {alpha}c above which chiral symmetry breaks in two approaches. The nonperturbative kernel of the SD equation makes {alpha}c smaller and {mu} bigger. An intuitive picture of the condensation above {alpha}c is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity we derive the equations for the nonperturbative quark propagator from SD equation in the presence of the intermediate-range force is also responsible for dynamical chiral symmetry breaking. (author) 32 refs., 2 figs.
Sheshenev, Andrey E; Boltukhina, Ekaterina V; Grishina, Anastasiya A; Cisařova, Ivana; Lyapkalo, Ilya M; Hii, King Kuok Mimi
2013-06-17
A family of new chiral zwitterionic phosphorus-containing heterocycles (zPHC) have been derived from methylene-bridged bis(imidazolines). These structures were unambiguously determined, including single-crystal XRD analysis for two compounds. The stability, acid/base and electronic properties of these dipolar phosphorus heterocycles were subsequently investigated. zPHCs can be successfully employed as a new class of chiral solvating agents for the enantiodifferentiation of chiral carboxylic and sulfonic acids by NMR spectroscopy. The stoichiometry and binding constants for the donor-acceptor complexes formed were established by NMR titration methods. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
International Nuclear Information System (INIS)
Stoks, V.G.J.
1997-01-01
We present a chiral-invariant meson-baryon Lagrangian which describes the interactions of the baryon octet with the lowest-mass meson nonets. The nonlinear realization of the chiral symmetry generates pair-meson interaction vertices. The corresponding pair-meson coupling constants can all be expressed in terms of the meson-nucleon-nucleon pseudovector, scalar, and vector coupling constants, and their corresponding F/(F+D) ratios, and for which empirical estimates are given. We show that it is possible to construct an NN potential of reasonable quality satisfying these theoretical and empirical constraints. (orig.)
Chiral-symmetry breaking and confinement in Minkowski space
International Nuclear Information System (INIS)
Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz
2016-01-01
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab
Chiral-symmetry breaking and confinement in Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmar P. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Peña, M. T. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Departamento de Física, Instituto Superior Técnico (IST), Universidadede Lisboa, 1049-001 Lisboa (Portugal); Ribeiro, J. E. [Centro de Física das Interações Fundamentais (CFIF), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Gross, Franz [Thomas Jefferson National Accelerator Facility (JLab), Newport News, Virginia 23606 (United States)
2016-01-22
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Chiral-symmetry breaking and confinement in Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmer P. [Unibersidade de Lisboa, 104-001, Lisboa, Portugal; Pena, M. T. [Universidade de Lisboa, 1049-001, Lisboa, Portugal; Ribiero, J. E. [Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Universidade de Ãvora, 7000-671 Ãvora, Portugal; Universidade de Lisboa, 1049-001 Lisboa, Portugal; Gross, Franz [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-01-01
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Domain wall network as QCD vacuum: confinement, chiral symmetry, hadronization
Directory of Open Access Journals (Sweden)
Nedelko Sergei N.
2017-01-01
Full Text Available An approach to QCD vacuum as a medium describable in terms of statistical ensemble of almost everywhere homogeneous Abelian (anti-self-dual gluon fields is reviewed. These fields play the role of the confining medium for color charged fields as well as underline the mechanism of realization of chiral SUL(Nf × SUR(Nf and UA(1 symmetries. Hadronization formalism based on this ensemble leads to manifestly defined quantum effective meson action. Strong, electromagnetic and weak interactions of mesons are represented in the action in terms of nonlocal n-point interaction vertices given by the quark-gluon loops averaged over the background ensemble. Systematic results for the mass spectrum and decay constants of radially excited light, heavy-light mesons and heavy quarkonia are presented. Relationship of this approach to the results of functional renormalization group and Dyson-Schwinger equations, and the picture of harmonic confinement is briefly outlined.
Chiral pesticides: Identification, description, and environmental implications
Ulrich, Elin M.; Morrison, Candice N.; Goldsmith, Michael R.; Foreman, William T.
2012-01-01
Anthropogenic chemicals, including pesticides, are a major source of contamination and pollution in the environment. Pesticides have many positive uses: increased food production, decreased damage to crops and structures, reduced disease vector populations, and more. Nevertheless, pesticide exposure can pose risks to humans and the environment, so various mitigation strategies are exercised to make them safer, minimize their use, and reduce their unintended environment effects. One strategy that may help achieve these goals relies on the unique properties of chirality or molecular asymmetry. Some common terms related to chirality are defined in Table 1.
Chiral algebras in Landau-Ginzburg models
Dedushenko, Mykola
2018-03-01
Chiral algebras in the cohomology of the {\\overline{Q}}+ supercharge of two-dimensional N=(0,2) theories on flat spacetime are discussed. Using the supercurrent multiplet, we show that the answer is renormalization group invariant for theories with an R-symmetry. For N=(0,2) Landau-Ginzburg models, the chiral algebra is determined by the operator equations of motion, which preserve their classical form, and quantum renormalization of composite operators. We study these theories and then specialize to the N=(2,2) models and consider some examples.
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu
2016-06-21
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
Generalized Bloch theorem and chiral transport phenomena
Yamamoto, Naoki
2015-10-01
Bloch theorem states the impossibility of persistent electric currents in the ground state of nonrelativistic fermion systems. We extend this theorem to generic systems based on the gauged particle number symmetry and study its consequences on the example of chiral transport phenomena. We show that the chiral magnetic effect can be understood as a generalization of the Bloch theorem to a nonequilibrium steady state, similarly to the integer quantum Hall effect. On the other hand, persistent axial currents are not prohibited by the Bloch theorem and they can be regarded as Pauli paramagnetism of relativistic matter. An application of the generalized Bloch theorem to quantum time crystals is also discussed.
Hidden charged dark matter and chiral dark radiation
Ko, P.; Nagata, Natsumi; Tang, Yong
2017-10-01
In the light of recent possible tensions in the Hubble constant H0 and the structure growth rate σ8 between the Planck and other measurements, we investigate a hidden-charged dark matter (DM) model where DM interacts with hidden chiral fermions, which are charged under the hidden SU(N) and U(1) gauge interactions. The symmetries in this model assure these fermions to be massless. The DM in this model, which is a Dirac fermion and singlet under the hidden SU(N), is also assumed to be charged under the U(1) gauge symmetry, through which it can interact with the chiral fermions. Below the confinement scale of SU(N), the hidden quark condensate spontaneously breaks the U(1) gauge symmetry such that there remains a discrete symmetry, which accounts for the stability of DM. This condensate also breaks a flavor symmetry in this model and Nambu-Goldstone bosons associated with this flavor symmetry appear below the confinement scale. The hidden U(1) gauge boson and hidden quarks/Nambu-Goldstone bosons are components of dark radiation (DR) above/below the confinement scale. These light fields increase the effective number of neutrinos by δNeff ≃ 0.59 above the confinement scale for N = 2, resolving the tension in the measurements of the Hubble constant by Planck and Hubble Space Telescope if the confinement scale is ≲1 eV. DM and DR continuously scatter with each other via the hidden U(1) gauge interaction, which suppresses the matter power spectrum and results in a smaller structure growth rate. The DM sector couples to the Standard Model sector through the exchange of a real singlet scalar mixing with the Higgs boson, which makes it possible to probe our model in DM direct detection experiments. Variants of this model are also discussed, which may offer alternative ways to investigate this scenario.
Micro-flock patterns and macro-clusters in chiral active Brownian disks
Levis, Demian; Liebchen, Benno
2018-02-01
Chiral active particles (or self-propelled circle swimmers) feature a rich collective behavior, comprising rotating macro-clusters and micro-flock patterns which consist of phase-synchronized rotating clusters with a characteristic self-limited size. These patterns emerge from the competition of alignment interactions and rotations suggesting that they might occur generically in many chiral active matter systems. However, although excluded volume interactions occur naturally among typical circle swimmers, it is not yet clear if macro-clusters and micro-flock patterns survive their presence. The present work shows that both types of pattern do survive but feature strongly enhance fluctuations regarding the size and shape of the individual clusters. Despite these fluctuations, we find that the average micro-flock size still follows the same characteristic scaling law as in the absence of excluded volume interactions, i.e. micro-flock sizes scale linearly with the single-swimmer radius.
Low-Energy Collisions of Protonated Enantiopure Amino Acids with Chiral Target Gases
Kulyk, K.; Rebrov, O.; Ryding, M.; Thomas, R. D.; Uggerud, E.; Larsson, M.
2017-12-01
Here we report on the gas-phase interactions between protonated enantiopure amino acids ( l- and d-enantiomers of Met, Phe, and Trp) and chiral target gases [( R)- and ( S)-2-butanol, and ( S)-1-phenylethanol] in 0.1-10.0 eV low-energy collisions. Two major processes are seen to occur over this collision energy regime, collision-induced dissociation and ion-molecule complex formation. Both processes were found to be independent of the stereo-chemical composition of the interacting ions and targets. These data shed light on the currently debated mechanisms of gas-phase chiral selectivity by demonstrating the inapplicability of the three-point model to these interactions, at least under single collision conditions. [Figure not available: see fulltext.
Chiral transfer in coordination complexes: towards molecular materials.
Crassous, Jeanne
2009-03-01
In this critical review we present examples of coordination complexes with efficient chiral transfer determining stereochemistry at the metal centre and throughout the overall molecular assembly. The general features controlling the transmission of chirality are presented. The transfer of chirality are considered here with the special purpose of obtaining a molecular material displaying a particular property or function. Coordination complexes in fields as diverse as chiral luminescent materials, homochiral MOFs, chiral liquid crystals, enantioselective sensors, chiroptical switches, and magnetochiral compounds are presented (162 references).
HPLC SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES
High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) were obtained on polysaccharide chiral HPLC columns using an alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, dyfonate, fenamiphos, ...
Unified theory of magnetoelastic effects in B20 chiral magnets
Hu, Yangfan; Wang, Biao
2017-12-01
A magnetic skyrmion is a spin whirl with topological protection and high mobility to electric current. Intrinsic magnetoelastic coupling in chiral magnets permits the manipulation of magnetic skyrmions and their lattice using mechanical loads, which is essential for developing future spintronics devices. It is found in experiments that the stability and deformation of skyrmions are sensitive to stresses, while the appearance of magnetic skyrmions in turn has a significant effect on the mechanical properties of the underlying material. However, a theory which explains these related phenomena within a unified framework is not seen. Here, we construct a thermodynamic model for B20 helimagnets incorporating a magnetoelastic functional with necessary higher-order interactions derived by group theory. Within the model, we establish the methodology to calculate the phase diagram and equilibrium properties of helimagnets under a coupled temperature-magnetoelastic field. Applying the model to bulk MnSi, we calculate the temperature-magnetic field phase diagram under stress-free condition and its variation when uniaxial compression is applied. We also calculate the variation of all the elastic constants with the magnetic field. The results obtained agree quantitatively with corresponding experiments. Our model provides a reliable basis for further theoretical studies concerning any magnetoelastic related phenomena in chiral magnets.
Chiral symmetry breaking and the pion quark structure
International Nuclear Information System (INIS)
Bernard, V.
1986-01-01
The mechanism of dynamical breaking of chiral symmetry in hadronic matter is first studied in the framework of the Nambu and Jona-Lasinio model on one hand and its generalisation to finite hadron size on the other hand. The analysis uses a variational procedure modelled after the BCS superconductor. Our study indicates for example, a great sensitivity of various quantities characterizing the breaking of symmetry to the shape of the interaction. Also the mechanism of breaking of chiral symmetry is essentially related to the mechanism of confinement. When a symmetry is spontaneously broken, there exists a Goldstone particle of zero mass. This is true in our model. This particle, the pion, is obtained as solution of a Bethe Salpeter equation for a qantiq bound state. This enables us to establish a connection between the pion as a Goldstone boson related to spontaneous symmetry breaking and the quark-antiquark structure of the pion. The finite mass of the physical pion is obtained with non zero current quark mass. Various properties of this particle are then studied in the RPA formalism. One important point of our model is the highly collective character of the pion. 85 refs [fr
Snegur, Lubov V; Borisov, Yurii A; Kuzmenko, Yuliya V; Davankov, Vadim A; Ilyin, Mikhail M; Ilyin, Mikhail M; Arhipov, Dmitry E; Korlyukov, Alexander A; Kiselev, Sergey S; Simenel, Alexander A
2017-08-25
Enantiomeric-enriched ferrocene-modified pyrazoles were synthesized via the reaction of the ferrocene alcohol, ( S )-FcCH(OH)CH₃ (Fc = ferrocenyl), with various pyrazoles in acidic conditions at room temperature within several minutes. X-ray structural data for racemic ( R , S )-1 N -(3,5-dimethyl pyrazolyl)ethyl ferrocene ( 1 ) and its ( S )-enantiomer ( S )- 1 were determined. A series of racemic pyrazolylalkyl ferrocenes was separated into enantiomers by analytical HPLC on β- and γ-cyclodextrins (CD) chiral stationary phases. The quantum chemical calculations of interaction energies of β-CD were carried out for both ( R )- and ( S )-enantiomers. A high correlation between experimental HPLC data and calculated interaction energies values was obtained.
Chiral spiral induced by a strong magnetic field
Directory of Open Access Journals (Sweden)
Abuki Hiroaki
2016-01-01
Full Text Available We study the modification of the chiral phase structure of QCD due to an external magnetic field. We first demonstrate how the effect of magnetic field can systematically be incorporated into a generalized Ginzburg-Landau framework. We then analyze the phase structure in the vicinity of the chiral critical point. In the chiral limit, the effect is found to be so drastic that it brings a “continent” of chiral spiral in the phase diagram, by which the chiral tricritical point is totally washed out. This is the case no matter how small the intensity of magnetic field is. On the other hand, the current quark mass protects the chiral critical point from a weak magnetic field. However, the critical point will eventually be covered by the chiral spiral phase as the magnetic field grows.
Synthesis of Chiral Building Blocks for Use in Drug Discovery
Directory of Open Access Journals (Sweden)
Rustum S. Boyce
2004-05-01
Full Text Available In the past decade there has been a significant growth in the sales of pharmaceutical drugs worldwide, but more importantly there has been a dramatic growth in the sales of single enantiomer drugs. The pharmaceutical industry has a rising demand for chiral intermediates and research reagents because of the continuing imperative to improve drug efficacy. This in turn impacts on researchers involved in preclinical discovery work. Besides traditional chiral pool and resolution of racemates as sources of chiral building blocks, many new synthetic methods including a great variety of catalytic reactions have been developed which facilitate the production of complex chiral drug candidates for clinical trials. The most ambitious technique is to synthesise homochiral compounds from non-chiral starting materials using chiral metal catalysts and related chemistry. Examples of the synthesis of chiral building blocks from achiral materials utilizing asymmetric hydrogenation and asymmetric epoxidation are presented.
Chiral anomaly, Berry phase, and chiral kinetic theory from worldlines in quantum field theory
Mueller, Niklas; Venugopalan, Raju
2018-03-01
In previous work, we outlined a worldline framework that can be used for systematic computations of the chiral magnetic effect (CME) in ultrarelativistic heavy-ion collisions. Towards this end, we first expressed the real part of the fermion determinant in the QCD effective action as a supersymmetric worldline action of spinning, colored, Grassmanian point particles in background gauge fields, with equations of motion that are covariant generalizations of the Bargmann-Michel-Telegdi and Wong equations. The chiral anomaly, in contrast, arises from the phase of the fermion determinant. Remarkably, the latter too can be expressed as a point particle worldline path integral, which can be employed to derive the anomalous axial vector current. We will show here how Berry's phase can be obtained in a consistent nonrelativistic adiabatic limit of the real part of the fermion determinant. Our work provides a general first principles demonstration that the topology of Berry's phase is distinct from that of the chiral anomaly confirming prior arguments by Fujikawa in specific contexts. This suggests that chiral kinetic treatments of the CME in heavy-ion collisions that include Berry's phase alone are incomplete. We outline the elements of a worldline covariant relativistic chiral kinetic theory that captures the physics of how the chiral current is modified by many-body scattering and topological fluctuations.
Chiral High-Speed Counter-Current Chromatography: Future Strategies for Chiral Selector Development
Ma, Ying; Ito, Yoichiro
2014-01-01
In conventional high-performance liquid chromatography, chiral separations are performed by chiral column with a chiral selector (CS) chemically boned to the solid support. In contrast, high-speed counter-current chromatography (HSCCC) performs chiral separations by dissolving CS in the liquid stationary phase. During the past two decades, several CSs were developed to successfully carry out chiral HSCCC which include N-dodecanoyl-L-proline-3,5-dimethylanilide, β-cyclodextrin derivatives, vancomycin, cinchona alkaloid derivatives, cellulose and amylose derivatives, tartaric acid derivatives, etc. Compared to HPLC which uses over hundred different kinds of CSs, the number of CSs effectively used in HSCCC is limited to several compounds. This may be due to the violent molecular movement of CS dissolved in the liquid stationary phase which reduces chiral selectivity based on steric affinity. Future development strategy of CS for HSCC proposed here is to suppress the molecular movement of the CS in the liquid stationary phase by the following three ways: 1) using viscous stationary phase such as aqueous-aqueous polymer phase system; 2) attaching a long hydrophobic chain to the asymmetric carbon, or 3) chemically bonding CS onto hydrophobic small particles such as carbon nanotubes, gold colloidal particles, and submicron silica particles. PMID:24611132
Ajitha, Manjaly John
2015-09-15
The mechanism of a chiral phosphoric acid catalyzed thiocarboxylysis of meso-epoxide was investigated by density functional theory (DFT) calculations (M06-2X). The nucleophilic ring opening of epoxide by thiobenzoic acid was found to proceed via a concerted termolecular transition state with a simultaneous dual proton transfer to yield the β-hydroxy thioester product. Electrostatic interactions together with the steric environment inside the chiral catalyst play an important role in determining the enantioselectivity of the reaction.
Optimization of enantioselective production of chiral epichlorohydrin ...
African Journals Online (AJOL)
Optimization of enantioselective production of chiral epichlorohydrin catalyzed by a novel epoxide hydrolase from domestic duck liver by response surface methodology. ... Enantiopure epichlorohydrin is a valuable epoxide intermediate for preparing optically active pharmaceuticals. In the present study, a novel epoxide ...
Pentaquarks in chiral color dielectric model
Indian Academy of Sciences (India)
12], computation of quark matter equation of state [13] etc. It may be noted here that, because of the chiral invariance which is incorporated in the model, one can generate the coupling between Θ baryon and NK system in a natural way and one.
Dirac quantization of the chiral superfield
Energy Technology Data Exchange (ETDEWEB)
Barcelos-Neto, J.; Das, A.; Scherer, W.
1986-08-15
We extend the method of Dirac quantization in superspace to the case of chiral superfields. We obtain quantization conditions in superspace which are consistent with the conditions for the component fields. Furthermore, we show that with these modified Dirac brackets and the modified Hamiltonian the correct Heisenberg equations of motion are obtained.
Chiral bosons with Green-Schwarz supersymmetry
Energy Technology Data Exchange (ETDEWEB)
Barcelos-Neto, J. (Universidade Federal do Rio de Janeiro, RJ (Brazil). Inst. de Fisica); Srivastava, P.P. (Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro (Brazil))
1991-05-02
The supersymmetric extension of the formulation of Floreanini and Jackiw for the chiral boson is constructed adapting the Green-Schwarz procedure as applied to the strong theory. Dirac brackets which implement the two-second class constraints are also constructed. (orig.).
From Ostwald Ripening to Single Chirality
Noorduin, Wim L.; Vlieg, Elias; Kellogg, Richard M.; Kaptein, Bernard
2009-01-01
A century ago Wilhelm Ostwald received the Nobel Prize for Chemistry. Although Ostwald was never significantly involved with the phenomenon of chirality, one of his discoveries, Ostwald ripening, is thought to be involved in a recently discovered method in which grinding-induced attrition is used to
Chiral unitary theory: Application to nuclear problems
Indian Academy of Sciences (India)
PRAMANA c Indian Academy of Sciences. Vol. 57, Nos 2 & 3. — journal of. Aug. & Sept. 2001 physics pp. 417–431. Chiral unitary theory: Application to nuclear problems. E OSET ... Institute of High Energy Physics, Academia Sinica, Beijing, China. 3. Departamento ...... [57] D B Kaplan and A E Nelson, Phys. Lett. B175, 57 ...
Viscoelastic modes in chiral liquid crystals
Indian Academy of Sciences (India)
Viscoelastic properties of liquid crystals are very important for applications like display technology. However, there are not many direct techniques to study them. In this review, we describe our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic modes ...
ISOSPIN BREAKING AND THE CHIRAL CONDENSATE.
Energy Technology Data Exchange (ETDEWEB)
CREUTZ, M.
2005-07-25
With two degenerate quarks, the chiral condensate exhibits a jump as the quark masses pass through zero. I discuss how this single transition splits into two Ising like transitions when the quarks are made non-degenerate. The order parameter is the expectation of the neutral pion field. The transitions represent long distance coherent phenomena occurring without the Dirac operator having vanishingly small eigenvalues.
Quantization of massive chiral electrodynamics reexamined
Energy Technology Data Exchange (ETDEWEB)
Fosco, C.; Montemayor, R. (Centro Atomico Bariloche, Comision Nacional de Energia Atomica and Instituto Balseiro, Universidad Nacional de Cuyo, 8400 San Carlos de Bariloche, Rio Negro (Argentina))
1993-05-15
We show that the models considered by Andrianov [ital et] [ital al]. [Phys. Rev. Lett. 63, 1554 (1989); and Phys. Rev. D 44, 2602 (1991)] are equivalent to other models where it is easily proved that the anomaly decouples and consequently the value of the chiral triangles amplitude is irrelvant for the unitarity of the [ital S] matrix.
Optimization of enantioselective production of chiral epichlorohydrin ...
African Journals Online (AJOL)
STORAGESEVER
2009-10-19
Oct 19, 2009 ... Shimizu S, Kataoka M (1999). Production of chiral C3- and C4-units by microbial enzymes. Adv. Biochem. Eng. Biotechnol. 63: 109-123. Spelberg JHL, Tang LX, Kellogg RM, Janssen DB (2004). Enzymatic dynamic kinetic resolution of epihalohydrins. Tetrahedron: Asymmetry, 15:1095-1102. Spelberg JHL ...
Chiral discrimination in biomimetic systems: Phenylalanine
Indian Academy of Sciences (India)
Chiral discrimination and recognition is important in peptide biosynthesis, amino acid synthesis and drug designing. Detailed structural information is available about the peptide synthesis in ribosome. However, no detailed study is available about the discrimination in peptide synthesis. We study the conformational energy ...
Insights on some chiral smectic phases
Indian Academy of Sciences (India)
2015-11-27
Nov 27, 2015 ... Keywords. Liquid crystals; smectics; chirality; frustrated phases; twist grain boundary phases. ... This paper will review some new experimental results on different phases resulting from the competition between smectic positional order and twist orientational order. It concerns the TGBA and the NL*, that is ...
Viscoelastic modes in chiral liquid crystals
Indian Academy of Sciences (India)
2015-11-27
Nov 27, 2015 ... Viscoelastic properties of liquid crystals are very important for applications like display technology. However, there are not many direct techniques to study them. In this review, we describe our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss ...
Dihyperons in chiral color dielectric model
Indian Academy of Sciences (India)
The mass of the dibaryon having spin, parity =0+, isospin = 0 and strangeness -2 is computed using chiral color dielectric model. ... Color magnetic energy due to gluon exchange, meson self energy and energy correction due to center of mass motion are computed. ... Institute of Physics, Bhubaneswar 751 005, India ...
Current algebra for chiral gauge theories
Energy Technology Data Exchange (ETDEWEB)
Manias, M.V.; von Reichenbach, M.C.; Schaposnik, F.A.; Trobo, M.
1987-07-01
Chiral gauge theories are studied with a special emphasis on the treatment of gauge degrees of freedom so as to obtain a gauge-invariant effective action from which current commutators can be evaluated. It is explicitly shown in a simple example that these commutators are those to be expected in a gauge-invariant theory.
Three-dimensional chiral photonic superlattices.
Thiel, M; Fischer, H; von Freymann, G; Wegener, M
2010-01-15
We investigate three-dimensional photonic superlattices composed of polymeric helices in various spatial checkerboard-like arrangements. Depending on the relative phase shift and handedness of the chiral building blocks, different circular-dichroism resonances appear or are suppressed. Samples corresponding to four different configurations are fabricated by direct laser writing. The measured optical transmittance spectra are in good agreement with numerical calculations.
Organometallic chemistry of chiral diphosphazane ligands ...
Indian Academy of Sciences (India)
Unknown
organometallic chemistry of diphosphazane ligands with almost every transition metal in the periodic table is well documented1–3. A very attractive feature of diphosphazane ligands is that 'chirality' can be incorporated at the phosphorus centres as well as at the substituents attached to the nitrogen and the two phosphorus ...
Chiral symmetry breaking in finite quantum electrodynamics
International Nuclear Information System (INIS)
Montero, J.C.; Pleitez, V.
1987-01-01
The dynamical breakdown of chiral symmetry in a finite Abelian gauge theory using a variational approach for the effective potential for composite operators is discussed. It is shown that, at least in a variational approach, the fermion either remains massless or gets a dynamical mass for every non-zero coupling constant. (Author) [pt
Thermodynamic properties of chiral fenchones in some solutions at T = 298.15 K
Energy Technology Data Exchange (ETDEWEB)
Liu Hongli [Department of Chemistry, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); School of Chemical and Chemistry, Central South University, Hunan 410083 (China); Kido, Satoko; Kamiyama, Tadashi; Fujisawa, Masao [Department of Chemistry, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan); Kimura, Takayoshi, E-mail: kimura@chem.kindai.ac.j [Department of Chemistry, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502 (Japan)
2011-04-15
Research highlights: Polar chiral compounds of S-fenchone and R-fenchone with solvents have been measured even enthalpy changes were very small. Excess enthalpies for binary mixtures (S-fenchone + ethanol / benzene / cyclohexane / carbon tetrachloride) were measured over the whole concentration at 298.15 K. The experimental results were compared with theoretical values obtained from the UNIFAC, COSMO-RS and regular solution. Excess enthalpies of binary mixtures of (R + S)-fenchone and (R + S)-fenchone in ethanol, benzene and cyclohexane solution at different specified molar fractions of fenchone have been measured even under the same conditions. The excess enthalpies of mixing of chiral orientated solutions increased and became close to zero. Results were compared with those of non-polar chiral limonene in ethanol solution. Pair interaction energies by ab initio quantum chemical calculation were also investigated. - Abstract: Excess enthalpies for binary mixtures (S-fenchone + ethanol/benzene/cyclohexane/carbon tetrachloride) were measured over the whole concentration at T = 298.15 K. The experimental results were compared with the values obtained from the UNIFAC, COSMO-RS and regular solution theory. Excess enthalpies of binary mixtures of R-fenchone and S-fenchone in ethanol, benzene, and cyclohexane solution at different specified mole fractions of fenchone have been measured under the same conditions. With the decreasing of the specified mole fraction of fenchone in different solutions, the excess enthalpies of mixing of chiral orientated solutions increased and became close to zero. Results were compared with those of chiral limonene in ethanol solution. Pair interaction energies were also investigated.
Quenched QED in the chiral limit
International Nuclear Information System (INIS)
Vandermark, S.W.
1993-01-01
The main goal in this project has been to understand, through analytical methods, whether there could be a continuum limit for QED. This possibility is motivated by recent lattice simulations on quenched QED which apparently exhibit a chiral phase transition at strong coupling in the chiral limit. Another goal is to develop a novel perturbation expansion which may also be usefully applied to other theories. The author begins with the general expression for the chiral order parameter, (bar ψψ), in the quenched limit of euclidean QED, where the number of fermion flavors goes to zero, using the path integral formulation. A cutoff scale, Λ, is introduced into the photon propagator and a new expansion, the open-quotes wormhole expansion,close quotes in powers of Λ 2 /m 2 , where m is the fermion mass, is derived. Graphical rules for the wormhole expansion of left-angle bar ψψ right-angle are described in detail. The author then devises algorithms to generate recursively the graphs at each successive order and to perform the loop momentum integral and γ matrix trace involved in the evaluation of each graph. These algorithms are implemented in Mathmatica and the left-angle bar ψψ right-angle expansion is carried out to order (Λ 2 / m 2 ) 6 . The author employs pade techniques to extrapolate this expansion to the chiral limit (Λ 2 /m 2 → ∞) and looks for a singularity at strong coupling to signal a phase transition. Indications have been found that there may be a phase transition but apparently there are not enough terms in the wormhole expansion to attain stability in our pade analysis. The author therefore cannot conclude that there is a chiral phase transition, although the results are consistent with the existence of one
Chemical synthesis of chiral conducting polymers
Wang, Hsing-Lin [Los Alamos, NM; Li, Wenguang [Los Alamos, NM
2009-01-13
An process of forming a chiral conducting polymer, e.g., polyaniline, is provided including reacting a monomer, e.g., an aniline monomer, in the presence of a chiral dopant acid to produce a first reaction mixture by addition of a solution including a first portion of an oxidizing agent, the first portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and further reacting the first reaction mixture in the presence of the chiral dopant acid by addition of a solution including a second portion of the oxidizing agent, the second portion of oxidizing agent characterized as insufficient to allow complete reaction of the monomer, and repeating the reaction by addition of further portions of the oxidizing agent until the monomer reaction is complete to produce a chiral conducting polymer, e.g., polyaniline. A preferred process includes addition of a catalyst during the reaction, the catalyst selected from among the group consisting of phenylene diamine, aniline oligomers and amino-capped aniline oligomers and metal salts.The processes of the present invention further provide a resultant polyaniline product having a chirality level defined by a molar ellipticity of from about 40.times.10.sup.3 degree-cm.sup.2/decimole to about 700.times.10.sup.3 degree-cm.sup.2/decimole. The processes of the present invention further provide a resultant polyaniline product having a nanofiber structure with a diameter of from about 30 nanometers to about 120 nanometers and from about 1 micron to about 5 microns in length.
Energy Technology Data Exchange (ETDEWEB)
Li, Xiu-Hua, E-mail: xhli.univ@gmail.com [College of Chemistry and Chemical Engineering, Fujian Normal University, Fuzhou, 350117 Fujian (China); Zhang, Qi [School of Life Science, Changchun Normal University, Changchun, 130032 Jilin (China); Hu, Ping [Southampton Management School, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom)
2014-10-15
A multifunctional homochiral coordination polymer, [Co(H{sub 2}O)(BDC)(4,4′-BPY)]∙3H{sub 2}O (1) (H{sub 2}BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions.
Chiral Molecule-Enhanced Extinction Ratios of Quantum Dots Coupled to Random Plasmonic Structures.
Bezen, Lior; Yochelis, Shira; Jayarathna, Dilhara; Bhunia, Dinesh; Achim, Catalina; Paltiel, Yossi
2018-03-06
Devices based on self-assembled hybrid colloidal quantum dots (CQDs) coupled with specific organic linker molecules are a promising way to simply realize room-temperature, spectrally tunable light detectors. Nevertheless, this type of devices usually has low quantum efficiency. Plasmonics has been shown as an efficient tool in guiding and confining light at nanoscale dimensions. As plasmonic modes exhibit highly confined fields, they locally increase light-matter interactions and consequently enhance the performance of CQD-based photodetectors. Recent publications presented experimental results of large extinction enhancement from a monolayer of CQDs coupled to random gold nanoislands using a monolayer of organic alkyl linkers. We report here that a twofold larger extinction enhancement in the visible spectrum is observed when a monolayer of helical chiral molecules connects the CQDs to the gold structure instead of a monolayer of achiral linkers. We also show that this effect provides insight into the chirality of the molecules within the monolayer. In future work, we plan to evaluate the potential of these results to be used in the construction of a more efficient and sensitive photon detector based on surface QDs, as well as to supply a simple way to map the chirality of a single chiral monolayer.
Analysis of K → 3π decays in chiral perturbation theory
International Nuclear Information System (INIS)
Cheng Haiyang; Cheung, C.Y.; Yeung Waibong
1989-01-01
Using the recently proposed higher-order chiral Lagrangians determined from the integration of nontopological chiral anomalies, we calculate corrections to the current-algebra analysis of K→3π decay amplitudes expanded in powers of the Dalitz variables. Effects of quartic-derivative weak chiral Lagrangians are determined through the use of short-distance effective weak Hamiltonian and the factorization method. We find that (1) the constant and linear terms in the amplitude for ΔI=1/2 K→3π are in excellent agreement with experiment; the previous discrepancy of (20-35)% between current algebra and data is thus accounted for by the higher-order effective Lagrangians, (2) the penguin interaction does not play an essential role in the ΔI=1/2 rule, for otherwise it will lead to a large disagreement for the constant and linear terms, (3) one of the two quadratic terms in the ΔI=1/2 process, which arise from the quartic chiral Lagrangians, is in accord with data within experimental errors, while the other is off by four standard deviations, (4) the linear term in the ΔI=3/2 transitions is in good agreement with experiment and contributions from quadratic terms are sizable. (orig.)
Thermoresponsive PEG-Coated Nanotubes as Chiral Selectors of Amino Acids and Peptides.
Kameta, Naohiro; Dong, Jiuchao; Yui, Hiroharu
2018-04-01
A series of nanotubes with a dense layer of short poly(ethylene glycol) (PEG) chains on the inner surface are prepared by means of a coassembly process using glycolipids and PEG derivatives. Dehydration of the PEG chains by heating increases the hydrophobicity of the nanotube channel and fluorescent-dye-labeled amino acids are extracted from bulk solution. Rehydration of the PEG chains by cooling results in back-extraction of the amino acids into the bulk solution. Because of the supramolecular chirality of the nanotubes, amino acid enantiomers can be separated in the back-extraction procedure, which is detectable with the naked eye as a change in fluorescence as the amino acids are released from the nanotubes. The efficiency and selectivity of the chiral separation are enhanced by tuning the chemical features and inner diameter of the nanotube channels. For example, compared with wide nanotube channels (8 nm), narrow nanotube channels (4 nm) provide more effective electrostatic attraction and hydrogen bond interaction environments for the transporting amino acids. Introduction of branched alkyl chains to the inner surface of the nanotubes enables chiral separation of peptides containing hydrophobic amino acids. The system described here provides a simple, quick, and on-site chiral separation in biological and medical fields. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mori, Taizo; Sharma, Anshul; Hegmann, Torsten
2016-01-26
Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle
Directory of Open Access Journals (Sweden)
Yifeng Chai
2012-01-01
Full Text Available Chiral separations of five β-adrenergic antagonists (propranolol, esmolol, atenolol, metoprolol, and bisoprolol were studied by capillary electrophoresis using six cyclodextrins (CDs as the chiral selectors. Carboxymethylated-β-cyclodextrin (CM-β-CD exhibited a higher enantioselectivity power compared to the other tested CDs. The influences of the concentration of CM-β-CD, buffer pH, buffer concentration, temperature, and applied voltage were investigated. The good chiral separation of five β-adrenergic antagonists was achieved using 50 mM Tris buffer at pH 4.0 containing 8 mM CM-β-CD with an applied voltage of 24 kV at 20 °C. In order to understand possible chiral recognition mechanisms of these racemates with CM-β-CD, host-guest binding procedures of CM-β-CD and these racemates were studied using the molecular docking software Autodock. The binding free energy was calculated using the Autodock semi-empirical binding free energy function. The results showed that the phenyl or naphthyl ring inserted in the hydrophobic cavity of CM-β-CD and the side chain was found to point out of the cyclodextrin rim. Hydrogen bonding between CM-β-CD and these racemates played an important role in the process of enantionseparation and a model of the hydrogen bonding interaction positions was constructed. The difference in hydrogen bonding formed with the –OH next to the chiral center of the analytes may help to increase chiral discrimination and gave rise to a bigger separation factor. In addition, the longer side chain in the hydrophobic phenyl ring of the enantiomer was not beneficial for enantioseparation and the chiral selectivity factor was found to correspond to the difference in binding free energy.
One-loop perturbative coupling of A and A⊙ through the chiral overlap operator
Makino, Hiroki; Morikawa, Okuto; Suzuki, Hiroshi
2017-06-01
We study the one-loop effective action defined by the chiral overlap operator in the four-dimensional lattice formulation of chiral gauge theories by Grabowska and Kaplan. In the tree-level continuum limit, the left-handed component of the fermion is coupled only to the original gauge field A, while the right-handed one is coupled only to A_\\star, which is given by the gradient flow of A with infinite flow time. In this paper, we show that the continuum limit of the one-loop effective action contains local interaction terms between A and A_\\star, which do not generally vanish even if the gauge representation of the fermion is anomaly free. We argue that the presence of such interaction terms can be regarded as undesired gauge symmetry-breaking effects in the formulation.
Directory of Open Access Journals (Sweden)
Nisha Shukla
2015-01-01
Full Text Available R- and S-propylene oxide (PO have been shown to interact enantiospecifically with the chiral surfaces of Au nanopar‐ ticles (NPs modified with D- or L-cysteine (cys. This enantiospecific interaction has been detected using optical polarimetry measurements made on solutions of the D- or L-cys modified Au (cys/Au NPs during addition of racemic PO. The selective adsorption of one enantiomer of the PO onto the cys/Au NP surfaces results in a net rotation of light during addition of the racemic PO to the solution. In order to optimize the conditions used for making these measurements and to quantify enantiospecific adsorption onto chiral NPs, this work has measured the effect of temperature, wavelength and Au NP size on optical rotation by solutions containing D- or L-cys/Au NPs and racemic PO. Increasing temperature, decreasing wave‐ length and decreasing NP size result in larger optical rotations.
The role of weak hydrogen bonds in chiral recognition.
Scuderi, Debora; Le Barbu-Debus, Katia; Zehnacker, A
2011-10-28
Chiral recognition has been studied in neutral or ionic weakly bound complexes isolated in the gas phase by combining laser spectroscopy and quantum chemical calculations. Neutral complexes of the two enantiomers of lactic ester derivatives with chiral chromophores have been formed in a supersonic expansion. Their structure has been elucidated by means of IR-UV double resonance spectroscopy in the 3 μm region. In both systems described here, the main interaction ensuring the cohesion of the complex is a strong hydrogen bond between the chromophore and methyl-lactate. However, an additional hydrogen bond of much weaker strength plays a discriminative role between the two enantiomers. For example, the 1:1 heterochiral complex between R-(+)-2-naphthyl-ethanol and S-(+) methyl-lactate is observed, in contrast with the 1:1 homochiral complex which lacks this additional hydrogen bond. On the other hand, the same kind of insertion structures is formed for the complex between S-(±)-cis-1-amino-indan-2-ol and the two enantiomers of methyl-lactate, but an additional addition complex is formed for R-methyl-lactate only. This selectivity rests on the formation of a weak CHπ interaction which is not possible for the other enantiomer. The protonated dimers of Cinchona alkaloids, namely quinine, quinidine, cinchonine and cinchonidine, have been isolated in an ion trap and studied by IRMPD spectroscopy in the region of the ν(OH) and ν(NH) stretch modes. The protonation site is located on the alkaloid nitrogen which acts as a strong hydrogen bond donor in all the dimers studied. While the nature of the intermolecular hydrogen bond is similar in the homochiral and heterochiral complexes, the heterochiral complex displays an additional weak CHO hydrogen bond located on its neutral part, which results in slightly different spectroscopic fingerprints in the ν(OH) stretch region. This first spectroscopic evidence of chiral recognition in protonated dimers opens the way to the
The role of chirality in the origin of life
International Nuclear Information System (INIS)
Salam, A.
1990-09-01
We reemphasize the role of chirality in the theories which determine the origin of life - in particular the fact that almost all amino acids, utilized in living systems, are of L-type. Starting from Z 0 -interactions, we speculate on an explanation of the above fact in terms of quantum mechanical cooperative and condensation phenomena (possibly in terms of an e-n condensate where the e-n system has the same status as Cooper-pairing) which could give rise to second order phase transitions (including D to L transformations) below a critical temperature T c . As a general rule, T c is a low temperature. From this, it is conceivable that the earth provided too small a location for the production of L-amino acids. We suggest laboratory testing of these ideas by looking for the appropriate phase transitions. (author). 33 refs
QCD diffraction: a critical phenomenon reflecting both confinement and chiral-symmetry breaking
International Nuclear Information System (INIS)
White, A.R.
1982-07-01
Arguments are presented for studying soft diffractive physics at anti p-p colliders in terms of Critical Pomeron Reggeon Field Theory. It is emphasized that both confinement and chiral-symmetry breaking play a vital role in the occurrence of the Critical Pomeron in QCD. SU(3) is the unique strong-interaction gauge group giving the Critical Pomeron and the maximum number of quarks allowed by asymptotic freedom is required for criticality
Relaxation of the chiral imbalance in dense matter of a neutron star
Directory of Open Access Journals (Sweden)
Dvornikov Maxim
2016-01-01
Full Text Available Using the quantum field theory methods, we calculate the helicity flip of an electron scattering off protons in dense matter of a neutron star. The influence of the electroweak interaction between electrons and background nucleons on the helicity flip is examined. We also derive the kinetic equation for the chiral imbalance. The derived kinetic equation is compared with the results obtained by other authors.
Frustration and chiral orderings in correlated electron systems
Batista, Cristian D.; Lin, Shi-Zeng; Hayami, Satoru; Kamiya, Yoshitomo
2016-08-01
The term frustration refers to lattice systems whose ground state cannot simultaneously satisfy all the interactions. Frustration is an important property of correlated electron systems, which stems from the sign of loop products (similar to Wilson products) of interactions on a lattice. It was early recognized that geometric frustration can produce rather exotic physical behaviors, such as macroscopic ground state degeneracy and helimagnetism. The interest in frustrated systems was renewed two decades later in the context of spin glasses and the emergence of magnetic superstructures. In particular, Phil Anderson’s proposal of a quantum spin liquid ground state for a two-dimensional lattice S = 1/2 Heisenberg magnet generated a very active line of research that still continues. As a result of these early discoveries and conjectures, the study of frustrated models and materials exploded over the last two decades. Besides the large efforts triggered by the search of quantum spin liquids, it was also recognized that frustration plays a crucial role in a vast spectrum of physical phenomena arising from correlated electron materials. Here we review some of these phenomena with particular emphasis on the stabilization of chiral liquids and non-coplanar magnetic orderings. In particular, we focus on the ubiquitous interplay between magnetic and charge degrees of freedom in frustrated correlated electron systems and on the role of anisotropy. We demonstrate that these basic ingredients lead to exotic phenomena, such as, charge effects in Mott insulators, the stabilization of single magnetic vortices, as well as vortex and skyrmion crystals, and the emergence of different types of chiral liquids. In particular, these orderings appear more naturally in itinerant magnets with the potential of inducing a very large anomalous Hall effect.
On the pole content of coupled channels chiral approaches used for the (K)over-barN system
Czech Academy of Sciences Publication Activity Database
Cieplý, Aleš; Mai, M.; Meissner, Ulf-G.; Smejkal, J.
2016-01-01
Roč. 954, OCT (2016), s. 17-40 ISSN 0375-9474 R&D Projects: GA ČR(CZ) GA15-04301S Institutional support: RVO:61389005 Keywords : chiral dynamics * antikaon-nucleon interaction * bayron resonances Subject RIV: BE - Theoretical Physics Impact factor: 1.916, year: 2016
Molecular-Level Design of Heterogeneous Chiral Catalysis
International Nuclear Information System (INIS)
Zaera, Francisco
2012-01-01
The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration
Molecular-Level Design of Heterogeneous Chiral Catalysis
Energy Technology Data Exchange (ETDEWEB)
Francisco Zaera
2012-03-21
The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration
Huang, Chien-Yueh; Petschek, R. G.
1998-03-01
We investigate the possible mesophases in emulsions of chiral nematic liquid crystals with immiscible isotropic fluids and surfactants. The interactions between the orientational fields of the chiral nematics and the surfactant membranes together with the topological constraints affect stability of micellar geometries and produce a new phase diagram. We compare the free energies of various candidate phases. Appropriate, likely realizable conditions on the surfactant and the pitch of the liquid crystal result in thermodynamically stable blue-phase like phases for a relatively wide range of parameters. Processing such emulsions may result in materials with photonic band gaps.
Marom, Hili; Pogodin, Sergey; Agranat, Israel
2014-04-01
Chiral distinction in the proton pump inhibitor drugs omeprazole and in its chiral-switch esomeprazole magnesium was studied employing the Density Functional Theory (DFT) method. At B3LYP/6-311G(d,p), the 6-methoxy∙∙∙6-methoxy and 5-methoxy∙∙∙5-methoxy homochiral and heterochiral dimers were calculated. The chiral distinction free energies (ΔΔG(298,(RS-SS))) between the cyclic C2-(S,S)- and Ci-(R,S)-dimers with two intermolecular hydrogen bonds are 3.8, 1.9 (with BSSE counterpoise correction), and -6.9 (with D3 dispersion and BSSE counterpoise corrections) kJ/mol. Adding water as an implicit solvent (polarized continuum model [PCM] model) resulted in a chiral distinction energy of -3.3 kJ/mol, indicating a reversal of the order of the relative stabilities of C2-(S,S)- and Ci-(R,S)-dimers. The chiral distinction free energies between the corresponding (less stable) C1-dimers with one intermolecular hydrogen bond are -9.3, -5.8 (with BSSE CC), 17.6 (D3 + BSSE CC), and -3.2 (H2O) kJ/mol. The results highlight the contention that omeprazole is not just a superposition of its enantiomer constituents. They are consistent with the pharmacological evidence of enantiomer-enantiomer interactions in omeprazole versus esomeprazole and the differences between the drugs omeprazole and esomeprazole magnesium and support the lodged application for regulatory supplementary protection certificate (SPC) exclusivity for the esomeprazole-related combination drug Vimovo. Copyright © 2014 Wiley Periodicals, Inc.
Directory of Open Access Journals (Sweden)
Gabriel Hancu
2015-03-01
Full Text Available Purpose: Amlodipine is a long acting, dihydropyridine type calcium channel blocker frequently used in the treatment of hypertension and coronary insufficiency. The calcium channel blocking activity resides primarily in the S-amlodipine enantiomer, while R-amlodipine is a potent inhibitor of smooth muscle cell migration. Methods: In this study capillary electrophoresis was applied for the enantiomeric separation of amlodipine using different native and derivatized; neutral and charged cyclodextrines as chiral selectors. The effects of pH and composition of the background electrolyte, concentration and type of chiral selector, capillary temperature, running voltage and injection parameters have been investigated. Results: Stereoselective interactions were observed when using α-CD, β-CD, HP-β-CD, RAMEB, CM-β-CD and SBE-β-CD. Optimized separation conditions consisted on a 50 mM phosphate buffer, pH – 3.0, 20 mM RAMEB as chiral selector, + 25 kV applied voltage, 15°C temperature and UV detection at 238 nm. Using the optimized electrophoretic conditions we succeeded the chiral separation of amlodipine enantiomers in approximately 6 minute, the order of migration being R-amlodipine followed by S-amlodipine. The method was successfully applied for the determination of amlodipine enantiomers from commercially available pharmaceuticals. The linearity range, limits of detection and quantification, precision and accuracy were determined and the results obtained confirmed that the method was suitable for this purpose. Conclusion: It can be concluded that the proposed capillary electrophoresis methods can be useful for routine pharmaceutical applications with benefits of its effectivity, simplicity, short analysis time and low consumption of analytes, solvents and chiral selectors.
Fernandes, Carla; Tiritan, Maria Elizabeth; Cass, Quezia; Kairys, Visvaldas; Fernandes, Miguel Xavier; Pinto, Madalena
2012-06-08
A chiral HPLC method using four macrocyclic antibiotic chiral stationary phases (CSPs) has been investigated for determination of the enantiomeric purity of fourteen new chiral derivatives of xanthones (CDXs). The separations were performed with the CSPs Chirobiotic T, Chirobiotic TAG, Chirobiotic V and Chirobiotic R under multimodal elution conditions (normal-phase, reversed-phase and polar ionic mode). The analyses were performed at room temperature in isocratic mode and UV and CD detection at a wavelength of 254 nm. The best enantioselectivity and resolution were achieved on Chirobiotic R and Chirobiotic T CSPs, under normal elution conditions, with R(S) ranging from 1.25 to 2.50 and from 0.78 to 2.06, respectively. The optimized chromatographic conditions allowed the determination of the enantiomeric ratio of eight CDXs, always higher than 99%. In order to better understand the chromatographic behavior at a molecular level, and the structural features associated with the chiral recognition mechanism, computational studies by molecular docking were carried out using VDock. These studies shed light on the mechanisms involved in the enantioseparation for this important class of chiral compounds. Copyright © 2012 Elsevier B.V. All rights reserved.
Effects of copper ions on DNA binding and cytotoxic activity of a chiral salicylidene Schiff base.
Fei, Bao-Li; Xu, Wu-Shuang; Tao, Hui-Wen; Li, Wen; Zhang, Yu; Long, Jian-Ying; Liu, Qing-Bo; Xia, Bing; Sun, Wei-Yin
2014-03-05
A chiral Schiff base HL N-(5-bromo-salicylaldehyde)dehydroabietylamine (1) and its chiral dinuclear copper complex [Cu2L4]·4DMF (2) have been synthesized and fully characterized. The interactions of 1 and 2 with salmon sperm DNA have been investigated by viscosity measurements, UV, fluorescence and circular dichroism (CD) spectroscopic techniques. Absorption spectral (Kb=3.30 × 10(5)M(-)(1) (1), 6.63 × 10(5)M(-)(1)(2)), emission spectral (Ksv=7.58 × 10(3)M(-)(1) (1), 1.52 × 10(4)M(-)(1) (2)), and viscosity measurements reveal that 1 and 2 interact with DNA through intercalation and 2 exhibits a higher DNA binding ability. In addition, CD study indicates 2 cause a more evident perturbation on the base stacking and helicity of B-DNA upon binding to it. In fluorimetric studies, the enthalpy (ΔH>0) and entropy (ΔS>0) changes of the reactions between the compounds with DNA demonstrate hydrophobic interactions. 1 and 2 were also screened for their cytotoxic ability and 2 demonstrates higher growth inhibition of the selected cancer cells at concentration of 50 μM, this result is identical with their DNA binding ability order. All the experimental results show that the involvement of Cu (II) centers has some interesting effect on DNA binding ability and cytotoxicity of the chiral Schiff base. Copyright © 2014 Elsevier B.V. All rights reserved.
Critical Behavior and Macroscopic Phase Diagram of the Monoaxial Chiral Helimagnet Cr1/3NbS2.
Clements, Eleanor M; Das, Raja; Li, Ling; Lampen-Kelley, Paula J; Phan, Manh-Huong; Keppens, Veerle; Mandrus, David; Srikanth, Hariharan
2017-07-26
Cr 1/3 NbS 2 is a unique example of a hexagonal chiral helimagnet with high crystalline anisotropy, and has generated growing interest for a possible magnetic field control of the incommensurate spin spiral. Here, we construct a comprehensive phase diagram based on detailed magnetization measurements of a high quality single crystal of Cr 1/3 NbS 2 over three magnetic field regions. An analysis of the critical properties in the forced ferromagnetic region yields 3D Heisenberg exponents β = 0.3460 ± 0.040, γ = 1.344 ± 0.002, and T C = 130.78 K ± 0.044, which are consistent with the localized nature the of Cr 3+ moments and suggest short-range ferromagnetic interactions. We exploit the temperature and magnetic field dependence of magnetic entropy change (ΔS M ) to accurately map the nonlinear crossover to the chiral soliton lattice regime from the chiral helimagnetic phase. Our observations in the low field region are consistent with the existence of chiral ordering in a temperature range above the Curie temperature, T C < T < T*, where a first-order transition has been previously predicted. An analysis of the universal behavior of ΔS M (T,H) experimentally demonstrates for the first time the first-order nature of the onset of chiral ordering.
Chirally motivated K(-) nuclear potentials
Czech Academy of Sciences Publication Activity Database
Cieplý, Aleš; Friedman, E.; Gal, A.; Gazda, Daniel; Mareš, Jiří
2011-01-01
Roč. 702, č. 5 (2011), s. 402-407 ISSN 0370-2693 R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : Kaon-baryon interactions * Mesic nuclei * Mesonic atoms Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.955, year: 2011
Chiral symmetry breaking in superfluid 3He-A.
Ikegami, H; Tsutsumi, Y; Kono, K
2013-07-05
Spontaneous symmetry breaking is an important concept in many branches of physics. In helium-3 ((3)He), the breaking of symmetry leads to the orbital chirality in the superfluid phase known as (3)He-A. Chirality is a fundamental property of (3)He-A, but its direct detection has been challenging. We report direct detection of chirality by transport measurements of electrons trapped below a free surface of (3)He-A. In particular, we observed the so-called intrinsic Magnus force experienced by a moving electron; the direction of the force directly reflected the chirality. We further showed that, at the superfluid transition, the system selected either right- or left-handed chirality. The observation of such selection directly demonstrates chiral symmetry breaking.
Off-Center Rotation of CuPc Molecular Rotor on a Bi(111) Surface and the Chiral Feature.
Sun, Kai; Tao, Min-Long; Tu, Yu-Bing; Wang, Jun-Zhong
2017-05-04
Molecular rotors with an off-center axis and the chiral feature of achiral CuPc molecules on a semi-metallic Bi(111) surface have been investigated by means of a scanning tunneling microscopy (STM) at liquid nitrogen (LN₂) temperature. The rotation axis of each CuPc molecular rotor is located at the end of a phthalocyanine group. As molecular coverage increases, the CuPc molecules are self-assembled into various nanoclusters and finally into two-dimensional (2D) domains, in which each CuPc molecule exhibits an apparent chiral feature. Such chiral features of the CuPc molecules can be attributed to the combined effect of asymmetric charge transfer between the CuPc and Bi(111) substrate, and the intermolecular van der Waals interactions.
Directory of Open Access Journals (Sweden)
Nozomi Saito
2018-01-01
Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.
Chirality of Modern Antidepressants: An Overview
Directory of Open Access Journals (Sweden)
Monica Budău
2017-12-01
Full Text Available The majority of modern antidepressants (selective serotonin reuptake inhibitors and selective serotonin and norepinephrine reuptake inhibitors have one or two centers of asymmetry in their structure; resulting in the formation of enantiomers which may exhibit different pharmacodynamic and pharmacokinetic properties. Recent developments in drug stereochemistry has led to understanding the role of chirality in modern therapy correlated with increased knowledge regarding the molecular structure of specific drug targets and towards the possible advantages of using pure enantiomers instead of racemic mixtures. The current review deals with chiral antidepressant drugs; presenting examples of stereoselectivity in the pharmacological actions of certain antidepressants and their metabolites and emphasizing the differences between pharmacological actions of the racemates and pure enantiomers.
Active control of chirality in nonlinear metamaterials
International Nuclear Information System (INIS)
Zhu, Yu; Chai, Zhen; Yang, Hong; Hu, Xiaoyong; Gong, Qihuang
2015-01-01
An all-optical tunabe chirality is realized in a photonic metamaterial, the metamolecule of which consists of a nonlinear nano-Au:polycrystalline indium-tin oxide layer sandwiched between two L-shaped gold nano-antennas twisted 90° with each other. The maximum circular dichroism reached 30%. Under excitation of a 40 kW/cm 2 weak pump light, the peak in the circular dichroism shifts 45 nm in the short-wavelength direction. An ultrafast response time of 35 ps is maintained. This work not only opens up the possibility for the realization of ultralow-power and ultrafast all-optical tunable chirality but also offers a way to construct ultrahigh-speed on-chip biochemical sensors
The formation mechanism of chiral carbon nanotubes
Liu, Jing; Liu, Liren; Lu, Junzhe; Zhu, Hengjiang
2018-02-01
The nuclei and the formation mechanism of chiral carbon nanotubes, namely, single-, double-, and triple-walled carbon nanotubes are simulated by the first principle density functional theory. The formation mechanism from nuclei to corresponding infinitely long carbon nanotubes occurs spirally and via absorbing carbon atoms layer by layer. Carbon atoms at the open end are metastable state compared with ones in the tube wall or the closed end, which indicate the growth point of chiral carbon nanotubes is located at the open end. Growth of outer layer tubular clusters takes precedence over the inner layer in the process of forming multi-walled nuclear structures. Because of the ratio of carbon atoms at the open end to all carbon atoms decreases, the stability of the tubular clusters increases with their length. The infinitely long carbon nanotubes are obtained by executing periodic boundary conditions depend on corresponding nuclear structures.
Chiral symmetries associated with angular momentum
International Nuclear Information System (INIS)
Bhattacharya, M; Kleinert, M
2014-01-01
In quantum mechanics courses, symmetries of a physical system are usually introduced as operators which commute with the Hamiltonian. In this paper we will consider chiral symmetries which anticommute with the Hamiltonian. Typically, introductory courses at the (under)graduate level do not discuss these simple, useful and beautiful symmetries at all. The first time a student encounters them is when the Dirac equation is discussed in a course on relativistic quantum mechanics, or when particle–hole symmetry is studied in the context of superconductivity. In this paper, we will show how chiral symmetries can be simply elucidated using the theory of angular momentum, which is taught in virtually all introductory quantum mechanics courses. (paper)
Chiral Response of Twisted Bilayer Graphene
Stauber, T.; Low, T.; Gómez-Santos, G.
2018-01-01
We present an effective (minimal) theory for chiral two-dimensional materials. These materials possess an electromagnetic coupling without exhibiting a topological gap. As an example, we study the response of doped twisted bilayers, unveiling unusual phenomena in the zero frequency limit. An in-plane magnetic field induces a huge paramagnetic response at the neutrality point and, upon doping, also gives rise to a substantial longitudinal Hall response. The system also accommodates nontrivial longitudinal plasmonic modes that are associated with a longitudinal magnetic moment, thus endowing them with a chiral character. Finally, we note that the optical activity can be considerably enhanced upon doping and our general approach would enable systematic exploration of 2D material heterostructures with optical activity.
Chiral Drug Analysis in Forensic Chemistry: An Overview
Cláudia Ribeiro; Cristiana Santos; Valter Gonçalves; Ana Ramos; Carlos Afonso; Maria Elizabeth Tiritan
2018-01-01
Many substances of forensic interest are chiral and available either as racemates or pure enantiomers. Application of chiral analysis in biological samples can be useful for the determination of legal or illicit drugs consumption or interpretation of unexpected toxicological effects. Chiral substances can also be found in environmental samples and revealed to be useful for determination of community drug usage (sewage epidemiology), identification of illicit drug manufacturing locations, ille...
Observation of asymmetric electromagnetic field profiles in chiral metamaterials
Hisamoto, Nobuyuki; Ueda, Tetsuya; Sawada, Kei; Tomita, Satoshi
2018-02-01
We experimentally observe asymmetric electromagnetic field profiles along two-dimensional chiral metamaterials. The asymmetric field profiles depending on the chirality and the operation frequency have been reproduced well by the numerical simulation. Around a chiral meta-atom, distribution of a Poynting vector is found to be shifted asymmetrically. These results are explained in terms of an analogy with the side-jump mechanism in the electronic anomalous Hall systems.
Lipase-Catalyzed Kinetic Resolution of Aryltrimethylsilyl Chiral Alcohols
Directory of Open Access Journals (Sweden)
Leandro H. Andrade
2011-11-01
Full Text Available Lipase-catalyzed kinetic resolution of aryltrimethylsilyl chiral alcohols through a transesterification reaction was studied. The optimal conditions found for the kinetic resolution of m- and p-aryltrimethylsilyl chiral alcohols, led to excellent results, high conversions (c = 50%, high enantiomeric ratios (E > 200 and enantiomeric excesses for the remaining (S-alcohol and (R-acetylated product (>99%. However, kinetic resolution of o-aryltrimethylsilyl chiral alcohols did not occur under the same conditions applied to the other isomers.
Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals
Spivak, B. Z.; Andreev, A. V.
2016-02-01
We present a theory of magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. We show that conductivity, thermal conductivity, thermoelectric, and the sound absorption coefficients exhibit strong and anisotropic magnetic field dependencies. We also discuss properties of magnetoplasmons and magnetopolaritons, whose existences are entirely determined by the chiral anomaly. Finally, we discuss the conditions of applicability of the quasiclassical description of electron transport phenomena related to the chiral anomaly.
Controlling vortex chirality and polarity by geometry in magnetic nanodots
Agramunt Puig, Sebastià
2014-01-01
The independent control of both vortex chirality and polarity is a significant challenge in magnetic devices based on nano-sized magnetic vortex structures. By micromagnetic simulations here, we show that in soft ferromagnetic nanodots with an adequate modulated thickness, the desired combination of chirality and polarity can be achieved just by changing the direction of the in-plane applied magnetic field. Despite the complex behavior, the vortex chirality and polarity control can be summari...
Chiral perturbation theory for nucleon generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik
2006-08-15
We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)
Chiral perturbation theory for nucleon generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchroton DESY, Theory Group, Hamburg (Germany); Manashov, A. [Universitaet Regensburg, Institut fuer Theoretische Physik, Regensburg (Germany); Schaefer, A. [Sankt-Petersburg State University, Department of Theoretical Physics, St.-Petersburg (Russian Federation)
2006-09-15
We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)
Wave propagation retrieval method for chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Malureanu, Radu; Lavrinenko, Andrei
2010-01-01
In this paper we present the wave propagation method for the retrieving of effective properties of media with circularly polarized eigenwaves, in particularly for chiral metamaterials. The method is applied for thick slabs and provides bulk effective parameters. Its strong sides are the absence...... of artificial branches of the refractive index and simplicity in implementation. We prove the validity of the method on three case studies of homogeneous magnetized plasma, bi-cross and U-shaped metamaterials....
Conoscopy of chiral smectic liquid crystal cells
VIJ, JAGDISH; SONG, JANG-KUN
2008-01-01
PUBLISHED The conoscopic method for investigating the optical properties of a liquid crystal cell is studied with the aim of determining the effects of the approximations used in the calculation on the results. We confirm that the chiral liquid crystal cell forming a helical structure can be regarded as a single biaxial plate for analyzing the conoscopic image only if the helical pitch is less than several multiples of the wavelength of light. This approximation implies that the square of ...
Circular Intensity Differential Scattering of chiral molecules
Energy Technology Data Exchange (ETDEWEB)
Bustamante, C.J.
1980-12-01
In this thesis a theory of the Circular Intensity Differential Scattering (CIDS) of chiral molecules as modelled by a helix oriented with respect to the direction of incidence of light is presented. It is shown that a necessary condition for the existence of CIDS is the presence of an asymmetric polarizability in the scatterer. The polarizability of the scatterer is assumed generally complex, so that both refractive and absorptive phenomena are taken into account.
The effective action for chiral fermions
International Nuclear Information System (INIS)
Alvarez-Gaume, L.
1985-01-01
This paper reports on recent work which given an exact characterization of the imaginary part of the effective action for chiral fermions in 2n dimensions in terms of the spectral asymmetry of a suitable (2n+1)-dimensional operator. In order to keep the discussion as simple as possible, the author concentrates on four dimensional fermions with arbitrary external gauge fields. This approach can be extended without difficulty to higher dimensions and also to include external gravitational fields
Gluonic contributions in the chiral hyperbag
International Nuclear Information System (INIS)
Park, B.Y.; Vento, V.; Valencia Univ./CSIC, Valencia
1990-01-01
We incorporate into a non-perturbative chiral bag model scheme the gluons and the η' in a perturbative fashion. We analyze in this context the proton matrix element for the flavor singlet axial current, where due account is taken of the anomaly, and the delta-nucleon mass difference. Our results show that the contribution due to the gluons is significant for large bag radii and that they are crucial in order to establish the Cheshire cat principle. (orig.)
Baryons as non-topological chiral solitons
Christov, Chr. V.; Blotz, A.; Kim, H.-C.; Pobylitsa, P.; Watabe, T.; Meissner, Th.; Ruiz Arriola, E.; Goeke, K.
The present review gives a survey of recent developments and applications of the Nambu-Jona-Lasinio model with Nf = 2 and Nf = 3 quark flavors for the structure of baryons. The model is an effective chiral quark theory which incorporates the SU(N f) L⊗SU(N f) R⊗U(1) V approximate symmetry of Quantum chromodynamics. The approach describes the spontaneous chiral symmetry breaking and dynamical quark mass generation. Mesons appear as quark-antiquark excitations and baryons arise as non-topological solitons with three valence quarks and a polarized Dirac sea. For the evaluation of the baryon properties the present review concentrates on the non-linear Nambu-Jona-Lasinio model with quark and Goldstone degrees of freedom which is identical to the Chiral quark soliton model obtained from the instanton liquid model of the QCD vacuum. In this non-linear model, a wide variety of observables of baryons of the octet and decuplet is considered. These include, in particular, electromagnetic, axial, pseudoscalar and pion nucleon form factors and the related static properties like magnetic moments, radii and coupling constants of the nucleon as well as the mass splittings and electromagnetic form factors of hyperons. Predictions are given for the strange form factors, the scalar form factor and the tensor charge of the nucleon.
Characterization of chiral mesoporous materials by transmission electron microscopy.
Ohsuna, Tetsu; Liu, Zheng; Che, Shunai; Terasaki, Osamu
2005-02-01
By using transmission electron microscopy (TEM), the chirality of novel mesoporous materials has been studied. In addition, a computer simulation that uses a simple structural model was employed. The existence of chiral channels inside a tubelike material was confirmed by the observation of fringes along the length of the tubes. The chiral pitch of the channels was measured from the intermittent period, the chirality (right- or left-handed) was determined from the tilt direction of a tube compared with the direction of incident electrons and the curvature direction of the curved intermitted fringes as viewed in the TEM images.
Heavy–light mesons in chiral AdS/QCD
Energy Technology Data Exchange (ETDEWEB)
Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu; Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu
2017-06-10
We discuss a minimal holographic model for the description of heavy–light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang–Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy–light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy–light mesons.
Chiral nucleon-nucleon forces in nuclear structure calculations
Directory of Open Access Journals (Sweden)
Coraggio L.
2016-01-01
Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.
Mueller matrix spectroscopic ellipsometry study of chiral nanocrystalline cellulose films
Mendoza-Galván, Arturo; Muñoz-Pineda, Eloy; Ribeiro, Sidney J. L.; Santos, Moliria V.; Järrendahl, Kenneth; Arwin, Hans
2018-02-01
Chiral nanocrystalline cellulose (NCC) free-standing films were prepared through slow evaporation of aqueous suspensions of cellulose nanocrystals in a nematic chiral liquid crystal phase. Mueller matrix (MM) spectroscopic ellipsometry is used to study the polarization and depolarization properties of the chiral films. In the reflection mode, the MM is similar to the matrices reported for the cuticle of some beetles reflecting near circular left-handed polarized light in the visible range. The polarization properties of light transmitted at normal incidence for different polarization states of incident light are discussed. By using a differential decomposition of the MM, the structural circular birefringence and dichroism of a NCC chiral film are evaluated.
International Nuclear Information System (INIS)
He Rong; Song Huihua; Wei Zhen; Zhang Jianjun; Gao Yuanzhe
2010-01-01
Four new polymers, namely [Ni(-tsgluO)(2,4'-bipy) 2 (H 2 O) 2 ] n .5nH 2 O (1), [Co(-tsgluO)(2,4'-bipy) 2 (H 2 O) 2 ] n .5nH 2 O (2), [Ni(-tsgluO)(4,4'-bipy)] n .0.5nH 2 O (3), and [Co(-tsgluO)(4,4'-bipy)] n .0.5nH 2 O (4), where tsgluO 2- =(+)-N-p-tolylsulfonyl-L-glutamate dianion, 2,4'-bipy=2,4'-bipyridine, and 4,4'-bipy=4,4'-bipyridine, have been prepared and structurally characterized. Compounds 1 and 2 are isostructural and mononuclear, and crystallize in the acentric monoclinic space group Cc, forming 1D chain structures. Compound 3 is also mononuclear, but crystallizes in the chiral space group P2 1 , forming a homochiral 2D architecture. In contrast to the other complexes, compound 4 crystallizes in the space group P-1 and is composed of binuclear [Co 2 O 6 N 2 ] n 4- units, which give rise to a 2D bilayer framework. Moreover, compounds 1, 2, and 4 self-assemble to form 3D supramolecular structures through π-π stacking and hydrogen-bonding interactions, while compound 3 is further hydrogen-bonded to form 3D frameworks. We have demonstrated the influence of the central metal and bipyridine ligands on the framework chirality of the coordination complexes. - Graphical abstract: Four novel polymers based on a chiral ligand were prepared and structurally characterized; it represents the first series of investigations about the effect of central metals and bipyridine ligands on framework chirality.
Nuclear Matter from Effective Quark-Quark Interaction
Baldo, M.; Fukukawa, K.
2014-12-01
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.
Nuclear matter from effective quark-quark interaction.
Baldo, M; Fukukawa, K
2014-12-12
We study neutron matter and symmetric nuclear matter with the quark-meson model for the two-nucleon interaction. The Bethe-Bruckner-Goldstone many-body theory is used to describe the correlations up to the three hole-line approximation with no extra parameters. At variance with other nonrelativistic realistic interactions, the three hole-line contribution turns out to be non-negligible and to have a substantial saturation effect. The saturation point of nuclear matter, the compressibility, the symmetry energy, and its slope are within the phenomenological constraints. Since the interaction also reproduces fairly well the properties of the three-nucleon system, these results indicate that the explicit introduction of the quark degrees of freedom within the considered constituent quark model is expected to reduce the role of three-body forces.
Weight, Braden; Gifford, Brendan; Kilina, Svetlana
Carbon nanotubes (CNTs) play an important role in nanotechnology, including electronics, chemical sensors, and solar cells. Their electronic and optical properties depend on the size and geometry (chirality) of the nanotube. However, one main concern regarding nanotube application in optoelectronic devices is the difficulty of separating them based upon chirality after synthesis, as all known synthesis methods produce more than one chirality simultaneously. To get around this, one method is the functionalization of the CNTs via non-covalent bonding of co-polymers by wrapping them around the tube. We use force field simulations to explore the effects of various structural manipulations to the co-polymer 9,9-dialkylfluorenyl-2,7-diyl bipyridine (PFO-BPY) to find the preferential mechanisms of selective interactions between the PFO-BPY and CNTs of various chiralities. In particular, we focus on the effect of the branching in alkyl side-groups of PFO-BPY on their binding to the CNT surface. We have observed correlations between the side-group structures and their wrapping morphology on the CNT-Polymer interactions. Our calculations demonstrate that the branching in the position closest to the conjugated backboned results in the strongest interaction with all CNT. This research was supported by the National Science Foundation (CHE 1413614) and the Center for Computationally-Assisted Science and Technology at NDSU.
Nucleon described by the chiral soliton in the chiral quark soliton model
Watabe, T.; Goeke, K.
1998-02-01
We give a survey of recent development and applications of the chiral quark soliton model (also called the Nambu-Jona-Lasinio soliton model) with N f=2 and N f=3 quark flavors for the structure of baryons. The model is an effective chiral quark model obtained from the instanton liquid model of the quantum chromodynamics. Mesons appear as quark-antiquark excitations and baryons arise as non-topological solitons with three valence quarks and a polarized Dirac sea. In this model, a wide variety of observables of baryons is considered.
Nucleon described by the chiral soliton in the chiral quark soliton model
Energy Technology Data Exchange (ETDEWEB)
Watabe, T.; Goeke, K. [Ruhr-Univ., Bochum (Germany). Inst. fur Theor. Phys. II
1998-02-02
We give a survey of recent development and applications of the chiral quark soliton model (also called the Nambu-Jona-Lasinio soliton model) with N{sub f} = 2 and N{sub f} = 3 quark flavors for the structure of baryons. The model is an effective chiral quark model obtained from the instanton liquid model of the quantum chromodynamics. Mesons appear as quark-antiquark excitations and baryons arise as non-topological solitons with three valence quarks and a polarized Dirac sea. In this model, a wide variety of observables of baryons is considered. (orig.). 12 refs.
Mori, Taizo; Sharma, Anshul; Nemati, Ahlam; Bergquist, Leah; Hegmann, Torsten
2017-08-01
Studies of chiroptical effects of chiral ligand-capped gold nanoparticles (Au NPs) are a fascinating and rapidly evolving field in nanomaterial research with promising applications of such chiral metal NPs in catalysis and metamaterials as well as chiral sensing and separation. The aim of our studies was to seek out a system that not only allows the detection and understanding of Au NP chirality but also permits visualization and ranking — considering size, shape and nature as well as density of the ligand shell — of the extent of chirality transfer to a surrounding medium. Nematic liquid crystal (N-LC) phases are an ideal platform to examine these effects, exhibiting characteristic defect textures upon doping with a chiral additive. To test this, we synthesized series of Au NPs capped with two structurally different chiral ligands and studied well-dispersed mixtures in two nematic liquid crystal hosts. Induced circular dichroism (ICD) spectropolarimetry and polarized light optical microscopy (POM) confirmed that all Au NPs induce chiral nematic (N*-LC) phases, and measurements of the helical pitch as well as calculation of the helical twisting power (HTP) in various cell geometries allowed for an insightful ranking of the efficiency of chirality transfer of all Au NPs as well as their free ligands.
International Nuclear Information System (INIS)
Barron, L.D.
1996-01-01
The concept of chirality is extended to cover systems that exhibit enantiomorphism on account of motion. This is achieved by applying time reversal in addition to space inversion and leads to a more precise definition of a chiral system. Although spatial enantiomorphism is sufficient to guarantee chirality in a stationary system such as a finite helix, enantiomorphous systems are not necessarily chiral when motion is involved, which leads to the concept of true and false chirality associated with time-invariant and time-noninvariant enantiomorphism, respectively. Only a truly chiral influence can induce an enantiomeric excess in a reaction that has reached true thermodynamic equilibrium (i.e., when all possible interconversion pathways have equilibrated); however, false chirality can suffice in a reaction under kinetic control due to a breakdown of microscopic reversibility analogous to that observed in particle-antiparticle processes involving the neutral K-meason as a result of CP violation, with the apparently contradictory kinetic and thermodynamic aspects being reconciled by an appeal to unitarity. This reveals that CP violation is analogous to chemical catalysis since it affects the rates of certain particle-antiparticle interconversion pathways without affecting the initial and final particle energies and hence the equilibrium thermodynamics. Consideration of falsely chiral influences, including the open-quote ratchet effect close-quote arising from the associated breakdown in microscopic reversibility, greatly enlarges the range of possible chiral advantage factors in prebiotic chemical processes if far from equilibrium. copyright 1996 American Institute of Physics
Popa, Tatiana; Ting, Elvis C. M.; Paci, Irina
2014-11-01
A combined classical/quantum methodology is used to examine chiral effects upon adsorption of three sulfur-containing amino acids on the Au(111) surface: cysteine, homocysteine and methionine. Parallel tempering Monte Carlo simulations were employed to broadly examine the configurational space of monomers, dimers and trimers of the molecules on the gold surface. Density functional theory was applied to promising structural targets in order to incorporate higher order electronic structure effects in a study of relative stabilities of the various molecular states upon adsorption. As the precursors of chiral structure formation, like and unlike dimers were investigated at some length, with consideration given to the mode of sorption (chemisorption of physisorption) and the existence of zwitterionic states. We found that neutral (non-zwitterionic) molecules adsorbed weakly on the highly-coordinated Au(111) surfaces. As a consequence, pair configurations in dimers were insufficiently constrained to lead to differential stabilities of homochiral and heterochiral dimers. Whereas neutral molecule interactions were non-discriminating, strong chiral discrimination was found in zwitterionic amino acids. The zwitterionic forms of the larger molecules equilibrated closer to the surface, and the stronger molecule-molecule and molecule-surface interactions were such that homochiral dimers were stable whereas heterochiral dimers were not.
The half-skyrmion phase in a chiral-quark model
International Nuclear Information System (INIS)
Mantovani Sarti, Valentina; Vento, Vicente
2014-01-01
The Chiral Dilaton Model, where baryons arise as non-topological solitons built from the interaction of quarks and chiral mesons, shows in the high density low temperature regime a two phase scenario in the nuclear matter phase diagram. Dense soliton matter described by the Wigner–Seitz approximation generates a periodic potential in terms of the sigma and pion fields that leads to the formation of a band structure. The analysis up to three times nuclear matter density shows that soliton matter undergoes two separate phase transitions: a delocalization of the baryon number density leading to B=1/2 structures, as in skyrmion matter, at moderate densities, and quark deconfinement at larger densities. This description fits well into the so-called quarkyonic phase where, before deconfinement, nuclear matter should undergo structural changes involving the restoration of fundamental symmetries of QCD
One-loop perturbative coupling of A and A? through the chiral overlap operator
Makino, Hiroki; Morikawa, Okuto; Suzuki, Hiroshi
2018-03-01
Recently, Grabowska and Kaplan constructed a four-dimensional lattice formulation of chiral gauge theories on the basis of the chiral overlap operator. At least in the tree-level approximation, the left-handed fermion is coupled only to the original gauge field A, while the right-handed one is coupled only to the gauge field A*, a deformation of A by the gradient flow with infinite flow time. In this paper, we study the fermion one-loop effective action in their formulation. We show that the continuum limit of this effective action contains local interaction terms between A and A*, even if the anomaly cancellation condition is met. These non-vanishing terms would lead an undesired perturbative spectrum in the formulation.
One-loop perturbative coupling of A and A? through the chiral overlap operator
Directory of Open Access Journals (Sweden)
Makino Hiroki
2018-01-01
Full Text Available Recently, Grabowska and Kaplan constructed a four-dimensional lattice formulation of chiral gauge theories on the basis of the chiral overlap operator. At least in the tree-level approximation, the left-handed fermion is coupled only to the original gauge field A, while the right-handed one is coupled only to the gauge field A*, a deformation of A by the gradient flow with infinite flow time. In this paper, we study the fermion one-loop effective action in their formulation. We show that the continuum limit of this effective action contains local interaction terms between A and A*, even if the anomaly cancellation condition is met. These non-vanishing terms would lead an undesired perturbative spectrum in the formulation.
DEFF Research Database (Denmark)
Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD
This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... including puppetry and dance. However, the aesthetics of these traditions vary across cultures and carry different associative and interpretive meanings. Puppetry offers a useful frame for understanding the relationship between abstract and imitative gestures and behavior, and instantiates the complex...... interaction between a human operator and an artificial actor or agent. We can apply insights from puppetry to develop culturally-aware robots. Here we describe the development of a robotic marionette theatre wherein robotic controllers assume the role of human puppeteers. The system has been built, tested...
DEFF Research Database (Denmark)
The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists such as ......The main theme of this anthology is the unique interaction between mathematics, physics and philosophy during the beginning of the 20th century. Seminal theories of modern physics and new fundamental mathematical structures were discovered or formed in this period. Significant physicists...... such as Lorentz and Einstein as well as mathematicians such as Poincare, Minkowski, Hilbert and Weyl contributed to this development. They created the new physical theories and the mathematical disciplines that play such paramount roles in their mathematical formulations. These physicists and mathematicians were...... also key figures in the philosophical discussions of nature and science - from philosophical tendencies like logical empiricism via critical rationalism to various neo-Kantian trends....
Directory of Open Access Journals (Sweden)
James Avery Sauls
2015-06-01
Full Text Available Recent theories of Sr2RuO4 based on the interplay of strong interactions, spin-orbit coupling and multi-band anisotropy predict chiral or helical ground states with strong anisotropy of the pairing states, with deep minima in the excitation gap, as well as strong phase anisotropy for the chiral ground state. We develop time-dependent mean field theory to calculate the Bosonic spectrum for the class of 2D chiral superconductors spanning 3He-A to chiral superconductors with strong anisotropy. Chiral superconductors support a pair of massive Bosonic excitations of the time-reversed pairs labeled by their parity under charge conjugation. These modes are degenerate for 2D 3He-A. Crystal field anisotropy lifts the degeneracy. Strong anisotropy also leads to low-lying Fermions, and thus to channels for the decay of the Bosonic modes. Selection rules and phase space considerations lead to large asymmetries in the lifetimes and hybridization of the Bosonic modes with the continuum of un-bound Fermion pairs. We also highlight results for the excitation of the Bosonic modes by microwave radiation that provide clear signatures of the Bosonic modes of an anisotropic chiral ground state.
Deng, Jun; Wu, Sai; Yao, Mengyun; Gao, Changyou
2016-08-01
Chirality is one of the ubiquitous phenomena in biological systems. The left handed (L-) amino acids and right handed (D-) sugars are normally found in proteins, and in RNAs and DNAs, respectively. The effect of chiral surfaces at the nanoscale on cellular uptake has, however, not been explored. This study reveals for the first time the molecular chirality on gold nanoparticles (AuNPs) functions as a direct regulator for cellular uptake. Monolayers of 2-mercaptoacetyl-L(D)-valine (L(D)-MAV) and poly(acryloyl-L(D)-valine (L(D)-PAV) chiral molecules were formed on AuNPs surface, respectively. The internalized amount of PAV-AuNPs was several times larger than that of MAV-AuNPs by A549 and HepG2 cells, regardless of the chirality difference. However, the D-PAV-AuNPs were internalized with significantly larger amount than the L-PAV-AuNPs. This chirality-dependent uptake effect is likely attributed to the preferable interaction between the L-phospholipid-based cell membrane and the D-enantiomers.
Chiral liquid crystals: the vestigial chiral phases of T, O, I matter
Nissinen, Jaakko; Liu, Ke; Slager, Robert-Jan; Wu, Kai; Zaanen, Jan
We show how chiral order develops in vestigial isotropic phases of T , O and I liquid crystalline systems in three dimensions. The liquid crystal phases are realized in a lattice model of orientational degrees of freedom with point group symmetries G ⊂ O (3) , represented as O (3) -rotors coupled to G gauge fields. The model incorporates also disclinations via the gauge fields, features an ordered nematic phase with unbroken G rotations at low temperatures and a high temperature isotropic liquid phase. We observe an intermediate phase with spontaneous chirality but isotropic SO (3) symmetry (a liquid) for the gauge groups T, O, and I, the proper symmetry groups of the tetrahedron, cube and icosahedron, respectively. For the other subgroups of SO (3) , Cn <= ∞ and Dn <= ∞, there is generically only a single phase transition from the nematic phase to the isotropic liquid. We discuss the nature of the phase transitions and conditions under which the chiral phase is stabilized by the nematic order parameter fluctuations. The nature of the vestigial chiral phase is reminiscent of the so-called Ising nematic phase in iron based superconductors. Research supported by the Netherlands foundation for Fundamental Research of Matter (FOM).
Out-of-equilibrium chiral magnetic effect from chiral kinetic theory
Huang, Anping; Jiang, Yin; Shi, Shuzhe; Liao, Jinfeng; Zhuang, Pengfei
2018-02-01
Recently there has been significant interest in the macroscopic manifestation of chiral anomaly in many-body systems of chiral fermions. A notable example is the Chiral Magnetic Effect (CME). Enthusiastic efforts have been made to search for the CME in the quark-gluon plasma created in heavy ion collisions. A crucial challenge is that the extremely strong magnetic field in such collisions may last only for a brief moment and the CME current may have to occur at so early a stage that the quark-gluon matter is still far from thermal equilibrium. This thus requires modeling of the CME in an out-of-equilibrium setting. With the recently developed theoretical tool of chiral kinetic theory, we make a first phenomenological study of the CME-induced charge separation during the pre-thermal stage in heavy ion collisions. The effect is found to be very sensitive to the time dependence of the magnetic field and also influenced by the initial quark momentum spectrum as well as the relaxation time of the system evolution toward thermal equilibrium. Within the present approach, such pre-thermal charge separation is found to be modest.
Czech Academy of Sciences Publication Activity Database
Sheshenev, A. E.; Boltukhina, E. V.; Grishina, Anastasia; Císařová, I.; Lyapkalo, Ilya; Hii, K. K.
2013-01-01
Roč. 19, č. 25 (2013), s. 8136-8143 ISSN 0947-6539 Grant - others:7th European Community Framework Programme(XE) FP7-252247 Institutional support: RVO:61388963 Keywords : binding constants * chirality * enantioselectivity * NMR spectroscopy * phosphorus heterocycles * zwitterions Subject RIV: CC - Organic Chemistry Impact factor: 5.696, year: 2013
Cyclodextrin-Functionalized Monolithic Capillary Columns: Preparation and Chiral Applications.
Adly, Frady G; Antwi, Nana Yaa; Ghanem, Ashraf
2016-02-01
In this review, the recently reported approaches for the preparation of cyclodextrin-functionalized capillary monolithic columns are highlighted, with few applications in chiral separations using capillary liquid chromatography (CLC) and capillary electrochromatography (CEC). Chirality 28:97-109, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Chiral Boson Theory on the Light-Front
Energy Technology Data Exchange (ETDEWEB)
Srivastava, Prem P.
1999-09-16
The framework for describing the quantized theory of chiral boson is discussed. It avoids the conflict with the requirement of the principle of microcausality as is found in the conventional treatment. The discussion of the Floreanini-Jackiw model and its modified version for describing the chiral boson becomes very transparent on the light-front.
The possible mass region for shears bands and chiral doublets
Energy Technology Data Exchange (ETDEWEB)
Meng, J. [Institute of Physical and Chemical Research, Wako, Saitama (Japan); Frauendorf, S.
1998-03-01
The Tilted Axis Cranking (TAC) theory is reviewed. The recent progress of TAC for triaxial deformed nuclei is reported. More emphasis has been paid to the new discovered phenomena - chiral doublets and their explanation. The possible mass region for the shears bands and chiral doublets and their experimental signature are discussed. (author)
Coordination Chemistry and Asymmetric Catalysis with a Chiral Diphosphonite
Vlugt, Jarl Ivar; Paulusse, Jos Marie Johannes; Zijp, Eric J.; Tijmensen, Jason A.; Mills, Allison M.; Spek, Anthony L.; Claver, Carmen; Vogt, Dieter
2004-01-01
The improved synthesis of the chiral diphosphonite, XantBino (1), based on a xanthene backbone and bearing chiral binaphthyl groups on both P-atoms is described together with its PdII and RhI complexes. The 31P NMR spectra of both complexes point out that the two phosphorus atoms are chemically
Formation of disoriented chiral condensates in relativistic heavy-ion ...
Indian Academy of Sciences (India)
large DCC is unlikely in the collision of heavy nuclei, and ultra-high energy hadronic collisions may be better suited for this. ... In the chiral limit there is a second order phase transition with the critical tempera- ture М = ... the chiral symmetry breaking phase transition may produce DCC domains [4]. It is im- portant to ...
Chiral symmetry and nuclear matter equation of state
Indian Academy of Sciences (India)
to play a lesser role. The spontaneous breaking of the chiral symmetry is signaled by the non-vanishing values in physical vacuum of the quark and gluon condensates [4–6]. Cal- culations based on chiral perturbation theory and QCD sum rule (QSR) indicate that values of these condensates are reduced when the hadrons ...
Lorentz Invariant Spectrum of Minimal Chiral Schwinger Model
Kim, Yong-Wan; Kim, Seung-Kook; Kim, Won-Tae; Park, Young-Jai; Kim, Kee Yong; Kim, Yongduk
We study the Lorentz transformation of the minimal chiral Schwinger model in terms of the alternative action. We automatically obtain a chiral constraint, which is equivalent to the frame constraint introduced by McCabe, in order to solve the frame problem in phase space. As a result we obtain the Lorentz invariant spectrum in any moving frame by choosing a frame parameter.
Sardella, Roccaldo; Macchiarulo, Antonio; Urbinati, Fabrizio; Ianni, Federica; Carotti, Andrea; Kohout, Michal; Lindner, Wolfgang; Péter, Antal; Ilisz, István
2017-11-21
The enantiomers of trans-paroxetine (the selectand) were separated on four chiral stationary phases incorporating either quinine [ZWIX(+), ZWIX(+A)] or quinidine [ZWIX(-), ZWIX(-A)] and (R,R)-aminocyclohexanesulfonic acid [in ZWIX(-), and ZWIX(+A)] or (S,S)-aminocyclohexanesulfonic acid [in ZWIX(+), and ZWIX(-A)] chiral selectors. The zwitterion nature of the phases is due to the presence of either (R,R)- or (S,S)-aminocyclohexanesulfonic acid in the selector structure bearing the quinuclidine moiety. ZWIX(+) and ZWIX(-) phases are available on the market with the commercial names CHIRALPAK ZWIX(+) and CHIRALPAK ZWIX(-), respectively. With the aim of rationalizing the enantiomer elution order with the above chiral stationary phases, a molecular dynamic protocol was applied and two energetic parameters were initially measured: selectand conformational energy and selectand interaction energy. In the search for other descriptors allowing a better fitting with the experimental evidences, in the present work we consider an energetic parameter, defined as the selector conformational energy, which resulted to be relevant in the explanation of the experimental elution order in most of the cases. Very importantly, the computational data produced by the present study strongly support the outstanding role of the conformational energy of the chiral selector as it interacts with the analytes. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
$Z_b(10650)$ and $Z_b(10610)$ states in a chiral quark model
Li, M. T.; Wang, W. L.; Dong, Y. B.; Zhang, Z. Y.
2012-01-01
We perform a systematic study of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ systems by using effective interaction in our chiral quark model. Our results show that the interactions of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ states are attractive, which consequently result in $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ bound states. The recent observed exotic-like hadrons of $Z_b(10610)$ and $Z_b(10650)$ are, therefore in our approach,...
DEFF Research Database (Denmark)
Jochum, Elizabeth; Borggreen, Gunhild; Murphey, TD
This paper considers the impact of visual art and performance on robotics and human-computer interaction and outlines a research project that combines puppetry and live performance with robotics. Kinesics—communication through movement—is the foundation of many theatre and performance traditions...... including puppetry and dance. However, the aesthetics of these traditions vary across cultures and carry different associative and interpretive meanings. Puppetry offers a useful frame for understanding the relationship between abstract and imitative gestures and behavior, and instantiates the complex...
Some aspects of chirality: Fermion masses and chiral p-forms
International Nuclear Information System (INIS)
Kleppe, A.
1997-05-01
The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m 0 implies the existence of other Dirac fields where the corresponding quanta have masses Rm 0 , R 2 m 0 , .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way
Some aspects of chirality: Fermion masses and chiral p-forms
Energy Technology Data Exchange (ETDEWEB)
Kleppe, A.
1997-05-01
The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m{sub 0} implies the existence of other Dirac fields where the corresponding quanta have masses Rm{sub 0}, R{sup 2}m{sub 0}, .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way.
Chiral Drug Analysis in Forensic Chemistry: An Overview
Directory of Open Access Journals (Sweden)
Cláudia Ribeiro
2018-01-01
Full Text Available Many substances of forensic interest are chiral and available either as racemates or pure enantiomers. Application of chiral analysis in biological samples can be useful for the determination of legal or illicit drugs consumption or interpretation of unexpected toxicological effects. Chiral substances can also be found in environmental samples and revealed to be useful for determination of community drug usage (sewage epidemiology, identification of illicit drug manufacturing locations, illegal discharge of sewage and in environmental risk assessment. Thus, the purpose of this paper is to provide an overview of the application of chiral analysis in biological and environmental samples and their relevance in the forensic field. Most frequently analytical methods used to quantify the enantiomers are liquid and gas chromatography using both indirect, with enantiomerically pure derivatizing reagents, and direct methods recurring to chiral stationary phases.
A chiral q-bar q-bar qq nonet?
International Nuclear Information System (INIS)
Napsuciale, Mauro; Rodriguez, Simon
2004-01-01
We point out that meson spectrum indicates the existence of a degenerate chiral nonet in the energy region around 1.4 GeV with a slightly inverted spectrum with respect to a q-bar q nonet. Based on this observation and the approximately linear rising of the mass of a hadron with the number of constituent quarks we conjecture the existence of a tetraquark chiral nonet in this energy region with chiral symmetry implemented directly. We realize this idea in a chiral model and take into account the mixing of the tetraquark chiral nonet with a conventional q-bar q nonet. We find that the mass spectrum of mesons below 1.5 GeV is consistent with this picture. In general, pseudoscalar states arise as mainly q-bar q states but scalar states turn out to be strong admixtures of q-bar q and tetraquark states
Lateral shifting in one dimensional chiral photonic crystal
International Nuclear Information System (INIS)
You Yuan; Chen Changyuan
2012-01-01
We report the lateral shifts of the transmitted waves in a one dimensional chiral photonic crystal by using the stationary-phase approach. It is revealed that two kinds of lateral shifts are observed due to the existence of cross coupling in chiral materials, which is different from what has been observed in previous non-chiral photonic crystals. Unlike the chiral slab, the positions of lateral shift peaks are closely related to the band edges of band gap characteristics of periodic structure and lateral shifts can be positive as well as negative. Besides, the lateral shifts show a strong dependence on the chiral factor, which varies the lateral shift peaks in both magnitudes and positions. These features are desirable for future device applications.
Chiral Brønsted Acids for Asymmetric Organocatalysis
Kampen, Daniela; Reisinger, Corinna M.; List, Benjamin
Chiral Brønsted acid catalysis is an emerging area of organocatalysis. Since the pioneering studies of the groups of Akiyama and Terada in 2004 on the use of chiral BINOL phosphates as powerful Brønsted acid catalysts in asymmetric Mannich-type reactions, numerous catalytic asymmetric transformations involving imine activation have been realized by means of this catalyst class, including among others Friedel-Crafts, Pictet-Spengler, Strecker, cycloaddition reactions, transfer hydrogenations, and reductive aminations. More recently, chiral BINOL phosphates found application in multicomponent and cascade reactions as for example in an asymmetric version of the Biginelli reaction. With the introduction of chiral BINOL-derived N-triflyl phosphoramides in 2006, asymmetric Brønsted acid catalysis is no longer restricted to reactive substrates. Also certain carbonyl compounds can be activated through these stronger Brønsted acid catalysts. In dealing with sensitive substrate classes, chiral dicarboxylic acids proved of particular value.
Structure functions in the chiral bag model
Energy Technology Data Exchange (ETDEWEB)
Sanjose, V.; Vento, V.
1989-07-13
We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).
Chiral phase transition from string theory.
Parnachev, Andrei; Sahakyan, David A
2006-09-15
The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.
Conformation and chirality in liquid crystals
West, John L.; Zhao, Lei
2013-09-01
High helical twisting powerchiral additives are required for an expanding variety of liquid crystal displays and devices. Molecular conformation plays a critical role in determining the helical twisting power, HTP, of chiral additives. We studied additives based on an isosorbide benzoate ester core. Molecular modeling revealed two low energy states with very different conformations for this core The ultra-violet absorption and NMR spectra show two stable isosorbide conformers These spectra reveal how the relative populations of these two conformations change with temperature and how this is related to the helical twisting power. Conformation changes can explain many of the observed anomalous responses of HPT to temperature.
Chiral suppression of scalar-glueball decay.
Chanowitz, Michael S
2005-10-21
Since glueballs are SU(3)Flavor singlets, they should couple equally to u, d, and s quarks, so that equal coupling strengths to pi+ pi- and K+ K- are expected. However, we show that chiral symmetry implies the scalar-glueball amplitude for G0 --> qq is proportional to the quark mass, so that mixing with ss mesons is enhanced and decays to K+ K- are favored over pi+ pi-. Together with evidence from lattice calculations and experiment, this supports the hypothesis that f0(1710) is the ground state scalar glueball.
Anomalies in chiral W--gravity
International Nuclear Information System (INIS)
Carvalho, Marcelo; Vilar, Luiz Claudio Queiroz; Sorella, S.P.
1994-01-01
W-algebras are an extension of the Virasoro algebra. They describe the commutation relations between the components of the stress-energy tensor (T ++ ,T -- ) and the currents (W ++++... , W ----... ) of higher spin. Among the various W-algebras considered in the recent literature, the so-called W 3 -algebra plays a rather special role, due to the fact that it has a simple field theory realization. The corresponding field model, known as W 3 -gravity, yields a generalization of the usual bosonic string action. In this work, anomalies in chiral W--gravity are studied
Chiral symmetry constraints on resonant amplitudes
Bruns, Peter C.; Mai, Maxim
2018-03-01
We discuss the impact of chiral symmetry constraints on the quark-mass dependence of meson resonance pole positions, which are encoded in non-perturbative parametrizations of meson scattering amplitudes. Model-independent conditions on such parametrizations are derived, which are shown to guarantee the correct functional form of the leading quark-mass corrections to the resonance pole positions. Some model amplitudes for ππ scattering, widely used for the determination of ρ and σ resonance properties from results of lattice simulations, are tested explicitly with respect to these conditions.
Chiral transport of neutrinos in supernovae
Directory of Open Access Journals (Sweden)
Yamamoto Naoki
2017-01-01
Full Text Available The conventional neutrino transport theory for core-collapse supernovae misses one key property of neutrinos: the left-handedness. The chirality of neutrinos modifies the hydrodynamic behavior at the macroscopic scale and leads to topological transport phenomena. We argue that such transport phenomena should play important roles in the evolution of core-collapse supernovae, and, in particular, lead to a tendency toward the inverse energy cascade from small to larger scales, which may be relevant to the origin of the supernova explosion.
Enantioselective Bronsted Acid Catalysis with Chiral Pentacarboxycyclopentadienes
Gheewala, Chirag
This thesis details the design and development of pentacarboxycyclopentadienes (PCCPs) as a new platform for enantioselective Bronsted acid catalysis. Prior to this research, enantioselective Bronsted acid catalysis was limited to the BINOL (and variations thereof) framework. While this catalyst platform has paved the way for a myriad of novel asymmetric chemical transformations, the utility of this catalyst scaffold has suffered from its lengthy and expensive preparations. As an alternative, starting from readily available 1,2,3,4,5-pentacarbomethoxycyclopentadiene and various chiral alcohols and amines, the synthesis of a library of strongly acidic chiral catalysts is described. The utility of these novel acid catalysts is explored in various transformations. As a prelude to the heart of this work, Chapter 1 focuses on the advancements made in asymmetric Bronsted acid catalysis through BINOL-phosphate derived catalysts, focusing on the major accomplishments made by researchers since 2004. The provided review highlights the utility of these chiral acid catalysts but also reveals the need for a new scaffold that is more affordable and accessible. Chapter 2 discusses the background of PCCPs, including its initial discovery and subsequent applications. Our work in developing novel transesterified and amidated derivatives is discussed with accompanying crystal structures of achiral and chiral PCCPs. pKa measurements demonstrate the capacity of PCCPs to be used as strong Bronsted acid catalysts and are compared to literature values of known Bronsted acid catalysts. Chapter 3 focuses on the utility of PCCPs as enantioselective Bronsted acid catalysts in a variety of chemical transformations including the Mukaiyama-Mannich reaction, transfer hydrogenation, Pictet-Spengler reaction, diaryl alcohol substitution, Mukayaiama oxocarbenium aldol reaction, and [4+2]-cycloaddition. Catalyst loadings down to 0.01 mol% and reaction scale up to 25 grams in the Mukaiyama
Instanton induced compactification and fermion chirality
International Nuclear Information System (INIS)
Randjbar-Daemi, S.; Strathdee, J.
1983-07-01
The question of fermion chirality in Kaluza-Klein theories with coupling to Yang-Mills fields is discussed. The argument is illustrated in eight dimensions where an SU(2) Yang-Mills field assumes the 1-instanton form on the internal space. This serves not only to trigger spontaneous compactification of the internal space but will ensure the emergence of nsub(L)-nsub(R)=2/3t(t+1) (2t+1) zero modes in an irreducible 8-spinor belonging to the (2t+1)-dimensional representation of SU(2). (author)
Chiral magnetic effect in isobaric collisions
Huang, Xu-Guang; Deng, Wei-Tian; Ma, Guo-Liang; Wang, Gang
2017-11-01
We give a numerical simulation of the generation of the magnetic field and the charge-separation signal due to the chiral magnetic effect (CME) - the induction of an electric current by the magnetic field in a parity-odd matter - in the collisions of isobaric nuclei, 9644Ru + 9644Ru and 9640Zr + 9640Zr, at √{sNN} = 200 GeV. We show that such collisions provide an ideal tool to disentangle the CME signal from the possible elliptic-flow driven background effects. We also discuss some other effects that can be tested by using the isobaric collisions.
Energy Technology Data Exchange (ETDEWEB)
Park, Soohyun; Kim, Sang Jun; Hyun, Myung Ho [Pusan National Univ., Busan (Korea, Republic of)
2012-10-15
Optically active chiral amines are important as building blocks for pharmaceuticals and as scaffolds for chiral ligands and, consequently, many efforts have been devoted to the development of efficient methods for their preparation. For example, reduction of amine precursors with chiral catalysts, enzymatic kinetic resolution or dynamic kinetic resolution of racemic amines and the direct amination of ketones with transaminases have been developed as the efficient methods for the preparation of optically active chiral amines. During the process of developing or utilizing optically active chiral amines, the methods for the determination of their enantiomeric composition are essential. Among various methods, liquid chromatographic resolution of enantiomers on chiral stationary phases (CSPs) have been known to be one of the most accurate and economic means for the determination of the enantiomeric composition of optically active chiral compounds. Especially, CSPs based on chiral crown ethers have been successfully used for the resolution of racemic primary amines. For example, CSPs based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (CSP 1, Figure 1) or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 (CSP 2 and CSP 3, Figure 1) have been known to be quite effective for the resolution of cyclic and non-cyclic amines, various fluoroquinolone antibacterials containing a primary amino group, tocainide (antiarrhythmic agent) and its analogues, aryl-a-amino ketones and 3-amino-1,4-benzodiazepin-2-ones.
Hoffmann, Christian V; Pell, Reinhard; Lämmerhofer, Michael; Lindner, Wolfgang
2008-11-15
In an attempt to overcome the limited applicability scope of earlier proposed Cinchona alkaloid-based chiral weak anion exchangers (WAX) and recently reported aminosulfonic acid-based chiral strong cation exchangers (SCX), which are conceptionally restricted to oppositely charged solutes, their individual chiral selector (SO) subunits have been fused in a combinatorial synthesis approach into single, now zwitterionic, chiral SO motifs. The corresponding zwitterionic ion-exchange-type chiral stationary phases (CSPs) in fact combined the applicability spectra of the parent chiral ion exchangers allowing for enantioseparations of chiral acids and amine-type solutes in liquid chromatography using polar organic mode with largely rivaling separation factors as compared to the parent WAX and SCX CSPs. Furthermore, the application spectrum could be remarkably expanded to various zwitterionic analytes such as alpha- and beta-amino acids and peptides. A set of structurally related yet different CSPs consisting of either a quinine or quinidine alkaloid moiety as anion-exchange subunit and various chiral or achiral amino acids as cation-exchange subunits enabled us to derive structure-enantioselectivity relationships, which clearly provided strong unequivocal evidence for synergistic effects of the two oppositely charged ion-exchange subunits being involved in molecular recognition of zwitterionic analytes by zwitterionic SOs driven by double ionic coordination.
Enantiotopic discrimination in the NMR spectrum of prochiral solutes in chiral liquid crystals.
Lesot, Philippe; Aroulanda, Christie; Zimmermann, Herbert; Luz, Zeev
2015-04-21
The splitting of signals in the NMR spectra originating from enantiotopic sites in prochiral molecules when dissolved in chiral solvents is referred to as spectral enantiotopic discrimination. This phenomenon is particularly noticeable in chiral liquid crystals (CLCs) due to the combined effect of the anisotropic magnetic interactions and the ordering of the solute in the mesophase. The enantiorecognition mechanisms are different for rigid and flexible solutes. For the former, discrimination results from symmetry breaking and is restricted to solutes whose point groups belong to one of the following four ("allowed") symmetries, Cs, C2v, D2d and S4. The nature of the symmetry breaking for each one of these groups is discussed and experimental examples, using mainly (2)H 1D/2D-NMR in chiral polypeptide lyotropic mesophases, are presented and analyzed. When flexible optically active solutes undergo fast racemization (on the NMR timescale) their spectrum corresponds to that of an average prochiral molecule and may exhibit enantiotopic sites. In CLCs, such sites will become discriminated, irrespective of their average (improper) symmetry. This enantiodiscrimination results mainly from the different ordering of the interchanging enantiomers. Several examples of such flexible molecules, including solutes with average axial and planar symmetries, are commented. Dynamic processes in solution that are not accompanied by the modulation of magnetic interactions remain "NMR blind". This is sometimes the case for interconversion of enantiomers (racemization) or exchange of enantiotopic sites in isotropic solvents. The limitation can be lifted by using CLCs. In such solvents, non-equivalence between enantiomers or between enantiotopic sites is induced by the chiral environment, thus providing the necessary interactions to be modulated by the dynamic processes. Illustrative examples involving exchange of both, enantiotopic sites and enantiomers are examined. In this comprehensive
Directory of Open Access Journals (Sweden)
Marco Russo
2017-12-01
Full Text Available Polarimetry was used to investigate the binding abilities of a chiral calix[4]resorcinarene derivative, bearing L-proline subunits, towards a set of suitably selected organic guests. The simultaneous formation of 1:1 and 2:1 host–guest inclusion complexes was observed in several cases, depending on both the charge status of the host and the structure of the guest. Thus, the use of the polarimetric method was thoroughly revisited, in order to keep into account the occurrence of multiple equilibria. Our data indicate that the stability of the host–guest complexes is affected by an interplay between Coulomb interactions, π–π interactions, desolvation effects and entropy-unfavorable conformational dynamic restraints. Polarimetry is confirmed as a very useful and versatile tool for the investigation of supramolecular interactions with chiral hosts, even in complex systems involving multiple equilibria.