Ecker, G
1999-01-01
Broken chiral symmetry has become the basis for a unified treatment of hadronic interactions at low energies. After reviewing mechanisms for spontaneous chiral symmetry breaking, I outline the construction of the low--energy effective field theory of the Standard Model called chiral perturbation theory. The loop expansion and the renormalization procedure for this nonrenormalizable quantum field theory are developed. Evidence for the standard scenario with a large quark condensate is presented, in particular from high--statistics lattice calculations of the meson mass spectrum. Elastic pion--pion scattering is discussed as an example of a complete calculation to O(p^6) in the low--energy expansion. The meson--baryon system is the subject of the last lecture. After a short summary of heavy baryon chiral perturbation theory, a recent analysis of pion--nucleon scattering to O(p^3) is reviewed. Finally, I describe some very recent progress in the chiral approach to the nucleon--nucleon interaction.
Chiral symmetry and chiral-symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Liu, Keh-Fei
2016-01-01
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Applications of chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.
Quarks, baryons and chiral symmetry
Hosaka, Atsushi
2001-01-01
This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w
International Nuclear Information System (INIS)
The suggestion by Jaffe that if σ is a light q2q-bar2 state 0++ then even the fundamental chiral transformation properties of the σ becomes unclear, has stimulated much interest. Adler pointed out that in fact the seminal work on chiral symmetry via PCAC consistency, is really quite consistent with the σ being predominantly q2q-bar2. This interpretation was actually backed by subsequent work on effective Lagrangian methods for linear and non linear realizations. More recent work of Achasov suggests that intermediate four-quark states determine amplitudes involving other scalars a0(980) and f0(980) below 1 GeV, and the report by Ning Wu that study on σ meson in J/ψ → ωπ+π- continue to support a non qq-bar σ with mass as low as 390 MeV. It is also noted that more recent re-analysis of πK scattering by S. Ishida et al. together with the work of the E791 Collaboration, support the existence of the scalar κ particle with comparatively light mass as well
Dileptons and Chiral Symmetry Restoration
Hohler, P M
2015-01-01
We report on recent work relating the medium effects observed in dilepton spectra in heavy-ion collisions to potential signals of chiral symmetry restoration. The key connection remains the approach to spectral function degeneracy between the vector-isovector channel with its chiral partner, the axialvector-isovector channel. Several approaches are discussed to elaborate this connection, namely QCD and Weinberg sum rules with input for chiral order parameters from lattice QCD, and chiral hadronic theory to directly evaluate the medium effects of the axialvector channel and the pertinent pion decay constant as function of temperature. A pattern emerges where the chiral mass splitting between rho and a_1 burns off and is accompanied by a strong broadening of the spectral distributions.
Chiral symmetry on the lattice
International Nuclear Information System (INIS)
The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model
Chiral symmetry in rotating systems
Malik, Sham S.
2015-08-01
The triaxial rotating system at critical angular momentum I ≥Iband exhibits two enatiomeric (the left- and right-handed) forms. These enatiomers are related to each other through dynamical chiral symmetry. The chiral symmetry in rotating system is defined by an operator χ ˆ =Rˆy (π) T ˆ, which involves the product of two distinct symmetries, namely, continuous and discrete. Therefore, new guidelines are required for testing its commutation with the system Hamiltonian. One of the primary objectives of this study is to lay down these guidelines. Further, the possible impact of chiral symmetry on the geometrical arrangement of angular momentum vectors and investigation of observables unique to nuclear chiral-twins is carried out. In our model, the angular momentum components (J1, J2, J3) occupy three mutually perpendicular axes of triaxial shape and represent a non-planar configuration. At certain threshold energy, the equation of motion in angular momentum develops a second order phase transition and as a result two distinct frames (i.e., the left- and right-handed) are formed. These left- and right-handed states correspond to a double well system and are related to each other through chiral operator. At this critical angular momentum, the centrifugal and Coriolis interactions lower the barrier in the double well system. The tunneling through the double well starts, which subsequently lifts the degeneracy among the rotational states. A detailed analysis of the behavior of rotational energies, spin-staggering, and the electromagnetic transition probabilities of the resulting twin-rotational bands is presented. The ensuing model results exhibit similarities with many observed features of the chiral-twins. An advantage of our formalism is that it is quite simple and it allows us to pinpoint the understanding of physical phenomenon which lead to chiral-twins in rotating systems.
Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential
Braguta, V V
2016-01-01
In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.
Chiral symmetry breaking and monopoles
Di Giacomo, Adriano; Pucci, Fabrizio
2015-01-01
To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...
Implications of Local Chiral Symmetry Breaking
La, H S
2003-01-01
The spontaneous symmetry breaking of a local chiral symmetry to its diagonal vector symmetry naturally realizes a complete geometrical structure more general than that of Yang-Mills (YM) theory, rather similar to that of gravity. A good example is the Quantum Chromodynamics (QCD) with respect to the Chiral Color model. Also, a new anomaly-free particle content for a Chiral Color model is introduced: the Chiral Color can be realized without introducing whole new generations of quarks and leptons, but by simply enlarging each generation with new exotic fermions.
Infinite Chiral Symmetry in Four Dimensions
Beem, Christopher; Liendo, Pedro; Peelaers, Wolfger; Rastelli, Leonardo; van Rees, Balt C
2015-01-01
We describe a new correspondence between four-dimensional conformal field theories with extended supersymmetry and two-dimensional chiral algebras. The meromorphic correlators of the chiral algebra compute correlators in a protected sector of the four-dimensional theory. Infinite chiral symmetry has far-reaching consequences for the spectral data, correlation functions, and central charges of any four-dimensional theory with ${\\mathcal N}=2$ superconformal symmetry.
Chlorophylls, Symmetry, Chirality, and Photosynthesis
Directory of Open Access Journals (Sweden)
Mathias O. Senge
2014-09-01
Full Text Available Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecular structures such as the reaction centers and light-harvesting complexes of photobiology. The biochemical function of these structures depends on the controlled interplay of structural and functional principles of the apoprotein and pigment cofactors. Chlorophylls and bacteriochlorophylls are optically active molecules with several chiral centers, which are necessary for their natural biological function and the assembly of their supramolecular complexes. However, in many cases the exact role of chromophore stereochemistry in the biological context is unknown. This review gives an overview of chlorophyll research in terms of basic function, biosynthesis and their functional and structural role in photosynthesis. It highlights aspects of chirality and symmetry of chlorophylls to elicit further interest in their role in nature.
Chiral symmetry in hadron physics methods and ideas of chiral symmetry
International Nuclear Information System (INIS)
Methods and ideas of chiral symmetry is presented based on a lecture note to help the future researches in hadron dynamics along with the chiral symmetry. The chiral symmetry was originally developed as the symmetry between currents before the discovery of QCD. It has come to be understood in principle by now that the symmetry is spontaneously broken and only the part of flavor symmetry remains explicitly. In QCD, however, the chiral symmetry has come to be regarded as the base of the symmetry of the global flavor space of quarks. One of the recent topics of the lattice gauge theory is how the hadron properties will change when the broken symmetry is going to be restored. Since the chiral symmetry is global, it is different from gauge symmetry which is local. It explains the degeneracy of hadron masses and relations between the elements of S-matrix in which same number of particles are included. In practice, however, the symmetry of the axial part is spontaneously broken and pions which behave like gauge particles come to play. Chiral symmetry is defined as the (internal) flavor symmetry for the two independent chirality states of quarks. It discriminates two different fundamental quarks defined for the Lorentz groups O(4) - SL(2, C). The symmetry transformation itself is, however, different from the chirality. They should not be confused. In this lecture note, fundamental properties of pions are described on the basis of the interaction with nucleons at first. General properties of the chiral symmetry and some of the low energy theorems on current algebra are introduced. Then, linear sigma model and nonlinear sigma model are introduced. Then the Skyrme-model, which provides an idea as important as quarks, is explained. One of the interesting topics at present is to restore the broken axial symmetry experimentally to investigate the mechanism of symmetry breaking. (S. Funahashi)
Personal recollections on chiral symmetry breaking
Kobayashi, Makoto
2016-07-01
The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.
Spontaneous chiral symmetry breaking in metamaterials
Liu, Mingkai; Powell, David A.; Shadrivov, Ilya V.; Lapine, Mikhail; Kivshar, Yuri S.
2014-07-01
Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.
Chiral symmetry and lattice fermions
Creutz, Michael
2013-01-01
Lattice gauge theory and chiral perturbation theory are among the primary tools for understanding non-perturbative aspects of QCD. I review several subtle and sometimes controversial issues that arise when combining these techniques. Among these are one failure of partially quenched chiral perturbation theory when the valence quarks become lighter than the average sea quark mass and a potential ambiguity in comparisons of perturbative and lattice properties of non-degenerate quarks.
Spontaneous Planar Chiral Symmetry Breaking in Cells
Hadidjojo, Jeremy; Lubensky, David
Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.
Chiral Symmetry Breaking from Center Vortices
Höllwieser, Roman; Schweigler, Thomas; Heller, Urs M
2014-01-01
We analyze the creation of near-zero modes from would-be zero modes of various topological charge contributions from classical center vortices in SU(2) lattice gauge theory. We show that colorful spherical vortex and instanton configurations have very similar Dirac eigenmodes and also vortex intersections are able to give rise to a finite density of near-zero modes, leading to chiral symmetry breaking via the Banks-Casher formula. We discuss the influence of the magnetic vortex fluxes on quarks and how center vortices may break chiral symmetry.
Magnetic rotation and chiral symmetry breaking
Indian Academy of Sciences (India)
Ashok Kumar Jain; Amita
2001-08-01
The deformed mean ﬁeld of nuclei exhibits various geometrical and dynamical symmetries which manifest themselves as various types of rotational and decay patterns. Most of the symmetry operations considered so far have been deﬁned for a situation wherein the angular momentum coincides with one of the principal axes and the principal axis cranking may be invoked. New possibilities arise with the observation of rotational features in weakly deformed nuclei and now interpreted as magnetic rotational bands. More than 120 MR bands have now been identiﬁed by ﬁltering the existing data. We present a brief overview of these bands. The total angular momentum vector in such bands is tilted away from the principal axes. Such a situation gives rise to several new possibilities including breaking of chiral symmetry as discussed recently by Frauendorf. We present the outcome of such symmetries and their possible experimental veriﬁcation. Some possible examples of chiral bands are presented.
A strict QCD inequality and mechanisms for chiral symmetry breaking
International Nuclear Information System (INIS)
A strict QCD inequality allows one to discuss mechanisms proposed for breaking the chiral symmetry in QCD. ''Order parameters'' are identified such that if sufficiently many gauge field configurations contribute to them, spontaneous chiral symmetry breaking follows. As an application the role of instantons is discussed in chiral symmetry breaking in QCD. (orig.)
Role of Chiral symmetry in nuclear physics
International Nuclear Information System (INIS)
Spurred by some recent experiments in electron scattering, we reassess the role that chiral symmetry plays in nuclear structure. Though difficult to formulate precisely, some of the ideas put forward many years ago, combined with the recent revival of the Skyrmion picture of the nucleon, are seen to be move relevant now than ever
Chiral symmetry and functional integral
Energy Technology Data Exchange (ETDEWEB)
Gamboa Saravi, R.E.; Muschietti, M.A.; Schaposnik, F.A.; Solomin, J.E.
1984-10-15
The change in the fermionic functional integral measure under chiral rotations is analyzed. Using the zeta-function method, the evaluation of chiral Jacobians to theories including non-hermitian Dirac operators D, can be extended in a natural way. (This being of interest, for example, in connection with the Weinberg-Salam model or with the relativistic string theory). Results are compared with those obtained following other approaches, the possible discrepancies are analyzed and the equivalence of the different methods under certain conditions on D is proved. Also shown is how to compute the Jacobian for the case of a finite chiral transformation and this result is used to develop a sort of path-integral version of bosonization in d = 2 space-time dimensions. This result is used to solve in a very simple and economical way relevant d = 2 fermionic models. Furthermore, some interesting features in connection with the theta-vacuum in d = 2,4 gauge theories are discussed.
Rotating optical microcavities with broken chiral symmetry
Sarma, Raktim; Wiersig, Jan; Cao, Hui
2014-01-01
We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.
Chiral Perturbation in the Hidden Local Symmetry and Vector Manifestation of Chiral Symmetry
Harada, Masayasu
2001-01-01
In this talk I summarize our recent works on the chiral phase transition in the large flavor QCD studied by the hidden local symmetry (HLS). Bare parameters in the HLS are determined by matching the HLS with the underlying QCD at the matching scale through the Wilsonian matching. This leads to the vector manifestation of the Wigner realization of the chiral symmetry in which the symmetry is restored by the massless degenerate pion (and its flavor partners) and rho meson (and its flavor partne...
Chiral symmetry and strangeness at SIS energies
International Nuclear Information System (INIS)
In this talk we review the consequences of the chiral SU(3) symmetry for strangeness propagation in nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. Results for antikaon and hyperon-resonance spectral functions in cold nuclear matter are presented and discussed. The importance of the Σ(1385) resonance for the subthreshold antikaon production in heavy-ion reaction at SIS is pointed out. The in-medium properties of the latter together with an antikaon spectral function based on chiral SU(3) dynamics suggest a significant enhancement of the π Λ → anti Κ N reaction in nuclear matter. (orig.)
Random Matrices and Chiral Symmetry in QCD
Janik, R A; Papp, G; Zahed, I; Janik, Romuald A.; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail
1998-01-01
In this talk we review some recent results from random matrix models as applied to some non-perturbative issues in QCD. All of the issues we will discuss touched upon the important phenomenon related to the spontaneous breaking of chiral symmetry. The afore mentioned insights are: 1. Spontaneous breakdown of chiral symmetry and disorder. 2. Universal microscopic properties of the eigenvalues of the Dirac operator in the vacuum. 3. Universal microscopic properties of the eigenvalues of the Dirac operator in matter. 4. Structural changes of the Dirac spectrum - finite temperature. 5. Structural changes of the Dirac spectrum - finite baryonic density - ``phony vacua'' 6. Structural changes of the Dirac spectrum - finite baryonic density - ``true vacua'' . 7. Phase diagram. 8. Critical parameters. 9. Critical exponents. 10. $U(1)_A$ problem. 11. Screening of the pseudoscalar susceptibility. 12. Strong CP violation (finite $\\theta$).
On chiral symmetry breaking, topology and confinement
Energy Technology Data Exchange (ETDEWEB)
Shuryak, Edward
2014-08-15
We start with the relation between the chiral symmetry breaking and gauge field topology. New lattice results further enhance the notion of Zero Mode Zone, a very narrow strip of states with quasizero Dirac eigenvalues. Then we move to the issue of “origin of mass” and Brown–Rho scaling: a number of empirical facts contradicts to the idea that masses of quarks and such hadrons as ρ,N decrease near T{sub c}. We argue that while at T=0 the main contribution to the effective quark mass is chirally odd m{sub χ/}, near T{sub c} it rotates to chirally-even component m{sub χ}, because “infinite clusters” of topological solitons gets split into finite ones. Recent progress in understanding of topology require introduction of nonzero holonomy 〈A{sub 0}〉≠0, which splits instantons into N{sub c} (anti)selfdual “instanton–dyons”. Qualitative progress, as well as first numerical studies of the dyon ensemble are reported. New connections between chiral symmetry breaking and confinement are recently understood, since instanton–dyons generate holonomy potential with a minimum at confining value, if the ensemble is dense enough.
Chiral symmetry and parametrization of scalar resonances
Arantes, L O
2005-01-01
The linear $\\s$-model is used to study the effects of chiral symmetry in unitarized amplitudes incorporating scalar resonances. When just a single resonance is present, we show that the iteration of a chiral tree amplitude by means of regularized two-pion loops preserves the smallness of $\\p\\p$ interaction at low energies and estimate the importance of pion off-shell contributions. The inclusion of a second resonance is performed by means of a chiral extension of the linear $\\s$-model lagrangian. The new $\\p\\p$ ampitude at tree level complies with low-energy theorems, depends on a mixing angle and has a zero for a given energy between the resonance masses. The unitarization of this amplitude by means of two-pion loops preserves both its chiral low energy behavior and the position of this zero confirming, in a lagrangian framework, conclusions drawn previously by T\\"ornqvist. Finally, we approximate and generalize our results and give a friendly expression that can be used in the parametrization of $N$ coupled...
From enemies to friends chiral symmetry on the lattice
Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent
2002-01-01
The physics of strong interactions is invariant under the exchange of left-handed and right-handed quarks, at least in the massless limit. This invariance is reflected in the chiral symmetry of quantum chromodynamics. Surprisingly, it has become clear only recently how to implement this important symmetry in lattice formulations of quantum field theories. We will discuss realizations of exact lattice chiral symmetry and give an example of the computation of a physical observable in quantum chromodynamics where chiral symmetry is important. This calculation is performed by relying on finite size scaling methods as predicted by chiral perturbation theory.
Need for spontaneous breakdown of chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Salomone, A.; Schechter, J.; Tudron, T.
1981-07-15
The question of whether the chiral symmetry of the theory of strong interactions (with massless quarks) is required to be spontaneously broken is examined in the framework of a previously discussed effective Lagrangian for quantum chromodynamics. The assumption that physical masses of the theory be finite leads in a very direct way to the necessity of spontaneous breakdown. This result holds for all N/sub F/> or =2, where N/sub F/ is the number of different flavors of light quarks. The atypical cases N/sub F/ = 1,2 are discussed separately.
Which Chiral Symmetry is Restored in High Temperature QCD?
Bernard, C W; DeTar, C E; Gottlieb, S; Heller, U M; Hetrick, J E; Rummukainen, K; Sugar, R; Toussaint, D; Wingate, M; Bernard, Claude; Blum, Tom; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Hetrick, James E.; Wingate, Matthew
1996-01-01
Sigma models for the high temperature phase transition in quantum chromodynamics (QCD) suggest that at high temperature the SU(N_f) x SU(N_f) chiral symmetry becomes exact, but the anomalous axial U(1) symmetry need not be restored. In numerical lattice simulations, traditional methods for detecting symmetry restoration have sought multiplets in the screening mass spectrum. However, these methods were imprecise and the results, so far, incomplete. With improved statistics and methodology, we are now able to offer evidence for a restoration of the SU(2) x SU(2) chiral symmetry just above the crossover, but not of the axial U(1) chiral symmetry.
Chiral symmetry breaking in QCD Lite
Engel, Georg P; Lottini, Stefano; Sommer, Rainer
2014-01-01
A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of (Mpi^2 Fpi^2)/2 with respect to the quark mass m in the chiral limit, where Mpi and Fpi are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use CLS lattices at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensat...
Hadron physics and dynamical chiral symmetry breaking
Chang, Lei; Wilson, David J
2012-01-01
Physics is an experimental science; and a constructive feedback between theory and extant and forthcoming experiments is necessary if an understanding of nonperturbative QCD is to be achieved. The Dyson-Schwinger equations connect confinement with dynamical chiral symmetry breaking, both with the observable properties of hadrons, and hence can plausibly provide a means of elucidating the empirical content of strong QCD. We illustrate these points via comments on: in-hadron condensates; dressed-quark anomalous chromo- and electro-magnetic moments; the self-limiting magnitudes of such moments and pion-loop contributions to the gap equation; deep inelastic scattering; the spectra of mesons and baryons; the critical role played by hadron-hadron interactions in producing these spectra; and nucleon elastic and transition form factors.
Mapping chiral symmetry breaking in the excited baryon spectrum
Bicudo, Pedro; Llanes-Estrada, Felipe J; Van Cauteren, Tim
2016-01-01
We study the conjectured "Insensitivity to Chiral Symmetry Breaking" in the highly excited light baryon spectrum. While the experimental spectrum is being measured at JLab and CBELSA/TAPS, this insensitivity remains to be computed theoretically in detail. As the only existing option to have both confinement, highly excited states and chiral symmetry, we adopt the truncated Coulomb gauge formulation of QCD, considering a linearly confining Coulomb term. Adopting a systematic and numerically intensive variational treatment up to 12 harmonic oscillator shells we are able to access several angular and radial excitations. We compute both the excited spectra of $I=1/2$ and $I=3/2$ baryons, up to large spin $J=13/2$, and study in detail the proposed chiral multiplets. While the static-light and light-light spectra clearly show chiral symmetry restoration high in the spectrum, the realization of chiral symmetry is more complicated in the baryon spectrum than earlier expected.
Inhomogeneous chiral symmetry breaking in dense neutron-star matter
Buballa, Michael
2015-01-01
An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color-superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking...
Packing of Helices: Is Chirality the Highest Crystallographic Symmetry?
Directory of Open Access Journals (Sweden)
Romain Gautier
2016-08-01
Full Text Available Chiral structures resulting from the packing of helices are common in biological and synthetic materials. Herein, we analyze the noncentrosymmetry (NCS in such systems using crystallographic considerations. A comparison of the chiral structures built from helices shows that the chirality can be expected for specific building units such as 31/32 or 61/65 helices which, in hexagonal arrangement, will more likely lead to a chiral resolution. In these two systems, we show that the highest crystallographic symmetry (i.e., the symmetry which can describe the crystal structure from the smallest assymetric unit is chiral. As an illustration, we present the synthesis of two materials ([Zn(2,2’-bpy3](NbF62 and [Zn(2,2’-bpy3](TaF62 in which the 3n helices pack into a chiral structure.
Instantons and chiral symmetry in string theory
Jensen, Steuard B.
The study of non-perturbative effects has played an important role in many recent developments in physics. String theory has proven to be an especially fertile ground for such studies: not only is its own non-perturbative structure interesting, but it has emerged as a framework in which to study the strongly coupled behavior of a variety of models in quantum field theory as well. In this thesis, I present results demonstrating the use of string theory in both these ways. First, I discuss non-perturbative corrections to the Kaluza-Klein monopole in string theory. As usually described, this object has an isometry around a compact circle and is related by T-duality to a "smeared" NS5-brane which retains that isometry. The true NS5-brane solution is localized at a point on the circle, so duality implies that the Kaluza-Klein monopole should show some corresponding behavior. By expressing the Kaluza-Klein monopole as a gauged linear sigma model in two dimensions, I show that worldsheet instantons give corrections to its geometry. These corrections can be understood as a localization in "winding space" which could be probed by strings with winding charge around the circle. Second, I discuss a configuration of D-branes in string theory whose low energy physics corresponds to a 3+1-dimensional quantum field theory with dynamically broken chiral symmetry. In a weakly coupled region of parameter space, this theory is a non-local generalization of the Nambu-Jona-Lasinio model. Indications are given that this model dynamically breaks chiral symmetry at arbitrarily weak 't Hooft coupling. At strong coupling this field theory is no longer solvable directly, but an alternate weakly coupled description can be found from the string theory model: the dynamics is determined by replacing a stack of D-branes by their near-horizon geometry and studying the low energy theory on probe D-branes in that background. In yet another region of parameter space, this D-brane configuration gives
Effective Chiral Symmetry Restoration for Heavy-Light Mesons
Sazonov, V K; Wagenbrunn, R F
2014-01-01
We study the spectrum of heavy-light mesons within a model with linear instantaneous confining potential. The single-quark Green function and spontaneous breaking of chiral symmetry are obtained from the Schwinger-Dyson (gap) equation. For the meson spectrum we derive a Bethe-Salpeter equation (BSE). We solve thiss equation numerically in the heavy-light limit and obtain effective restoration of chiral and $U(1)_A$ symmetries at large spins.
Edge states protected by chiral symmetry in disordered photonic graphene
Zeuner, Julia M; Nolte, Stefan; Szameit, Alexander
2013-01-01
We experimentally investigate the impact of uncorrelated composite and structural disorder in photonic graphene. We find that in case of structural disorder not only chiral symmetry, but also the vanishing of the density of states at zero energy is preserved. This is in contrast to composite disorder, where chiral symmetry as well as the vanishing of the density of states are destroyed. Our observations are experimentally proven by exciting edge states at the bearded edge in disordered photonic graphene.
Partial quenching and chiral symmetry breaking
Creutz, Michael
2014-01-01
Partially quenched chiral perturbation theory assumes that valence quarks propagating on gauge configurations prepared with sea quarks of different masses will form a chiral condensate as the valence quark mass goes to zero. I present a counterexample involving non-degenerate sea quarks where the valence condensate does not form.
Chiral symmetry and scalar meson in hadron and nuclear physics
Kunihiro, T
1995-01-01
After giving a short introduction to the Nambu-Jona-Lasinio model with an anomaly term, we show the importance of the scalar-scalar correlation in the low-energy hadron dynamics, which correlation may be summarized by a scalar-isoscalar meson, the sigma meson. The discussion is based on the chiral quark model with the sigma-meson degrees of freedom. Possible experiments are proposed to produce the elusive meson in a nucleus and detect it. In relation to a precursory soft mode for the chiral transition, the reason is clarified why the dynamic properties of the superconductor may be described by the diffusive time-dependent Ginzburg-Landau (TDGL) equation. We indicate the chiral symmetry plays a significant role also in nuclei; one may say that the stability of nuclei is due to the chiral symmetry of QCD.
Baryon and chiral symmetry breaking in holographic QCD
Gorsky, Alexander; Krikun, Alexander
2015-01-01
We study the relationship between chiral symmetry breaking and baryons in holographic QCD. We construct a soliton with unit baryon charge in the presence of a nonzero mean value of the scalar bifundamental field, which is dual to the chiral condensate. We obtain a relation between the chiral condensate and the mass of the baryon and find in a clear-cut way that at large values of the condensate the holographic soliton is no longer located on the IR wall. Instead it is split into two halves, which are symmetrically located on the left and right flavor branes. On the other hand we find that the local value of the quark condensate is suppressed in the core of the soliton, which is evidence for a partial chiral symmetry restoration inside the baryon.
Domain Walls and Vortices in Chiral Symmetry Breaking
Eto, Minoru; Nitta, Muneto
2013-01-01
We study domain walls and vortices in chiral symmetry breaking in QCD with N flavors in the chiral limit. If the axial anomaly was absent, there exist stable Abelian axial vortices winding around the spontaneously broken U(1)_A symmetry and non-Abelian axial vortices winding around both the U(1)_A and non-Abelian SU(N) chiral symmetries. In the presence of the axial anomaly term, metastable domain walls are present and Abelian axial vortices must be attached by N domain walls, forming domain wall junctions. We show that a domain wall junction decays into N non-Abelian vortices attached by domain walls, implying its metastability. We also show that domain walls decay through the quantum tunneling by creating a hole bounded by a closed non-Abelian vortex.
Chiral Symmetry in algebraic and analytic approaches
Vereshagin, V.; Dillig, M.; Vereshagin, A.
1996-01-01
We compare among themselves two different methods for the derivation of results following from the requirement of polynomial boundedness of tree-level chiral amplitudes. It is shown that the results of the algebraic approach are valid also in the framework of the analytical one. This means that the system of Sum Rules and Bootstrap equations previously obtained with the help of the latter approach can be analyzed in terms of reducible representations of the unbroken Chiral group with the know...
Examining a possible cascade effect in chiral symmetry breaking
Fariborz, Amir H
2016-01-01
We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.
Electronic Localization Length of Carbon Nanotubes with Different Chiral Symmetries
Institute of Scientific and Technical Information of China (English)
杨化通; 董锦明; 邢定钰
2001-01-01
The electronic localization lengths λ of metallic carbon nanotubes with different chiral symmetries have been calculated by one parameter scaling method. It is found that λ is independent of the nanotube chirality, but depends linearly on the diameter. The dependence of λ on the disorder strength W has also been studied, and a power-law relation between λ and W is also found to be independent of the tube chirality. Our numerical results are in good agreement with recent experimental observations and other theoretical results for only the "armchair"nanotubes.
Thermal and Nonthermal Pion Enhancements with Chiral Symmetry Restoration
Zhuang, P
2001-01-01
The pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated in the framework of the Nambu-Jona-Lasinio model. The decay rate for the process sigma -> 2pion to the lowest order in a 1/N_c expansion is calculated as a function of temperature T and chemical potential mu. The thermal and nonthermal enhancements of pions generated by the decay before and after the freeze-out present only in the crossover region of the chiral symmetry transition. The strongest nonthermal enhancement is located in the vicinity of the endpoint of the first-order transition.
Chiral Lagrangian with Heavy Quark-Diquark Symmetry
Energy Technology Data Exchange (ETDEWEB)
Jie Hu; Thomas Mehen
2005-11-29
We construct a chiral Lagrangian for doubly heavy baryons and heavy mesons that is invariant under heavy quark-diquark symmetry at leading order and includes the leading O(1/m{sub Q}) symmetry violating operators. The theory is used to predict the electromagnetic decay width of the J=3/2 member of the ground state doubly heavy baryon doublet. Numerical estimates are provided for doubly charm baryons. We also calculate chiral corrections to doubly heavy baryon masses and strong decay widths of low lying excited doubly heavy baryons.
SU(3) Chiral Symmetry in Non-Relativistic Field Theory
Ouellette, S M
2001-01-01
Applications imposing SU(3) chiral symmetry on non-relativistic field theory are considered. The first example is a calculation of the self-energy shifts of the spin-3/2 decuplet baryons in nuclear matter, from the chiral effective Lagrangian coupling octet and decuplet baryon fields. Special attention is paid to the self-energy of the delta baryon near the saturation density of nuclear matter. We find contributions to the mass shifts from contact terms in the effective Lagrangian with coefficients of unknown value. As a second application, we formulate an effecive field theory with manifest SU(2) chiral symmetry for the interactions of K and eta mesons with pions at low energy. SU(3) chiral symmetry is imposed on the effective field theory by a matching calculation onto three-flavor chiral perturbation theory. The effective Lagrangian for the pi-K and pi-eta sectors is worked out to order Q^4; the effective Lagrangian for the K-K sector is worked out to order Q^2 with contact interactions to order Q^4. As an...
Inhomogeneous chiral symmetry breaking in dense neutron-star matter
International Nuclear Information System (INIS)
An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)
Inhomogeneous chiral symmetry breaking in dense neutron-star matter
Energy Technology Data Exchange (ETDEWEB)
Buballa, Michael; Carignano, Stefano [Technische Universitaet Darmstadt, Theoriezentrum, Institut fuer Kernphysik, Darmstadt (Germany)
2016-03-15
An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)
Exploration of Chiral Aminophenols and Aminonaphthols with C2-Symmetry
Institute of Scientific and Technical Information of China (English)
Yan SUN; Zhi Min LI; Xiu Min SHEN; Feng Nian MA; Cong ZHANG
2005-01-01
The exploration of C2-symmetric chiral aminophenols and aminonaphthols is described.Seven new ligands have been successfully synthesized using Mannich reaction as a key step.Four of them have C2-symmetry and their structure has been fully characterized by means of NMR and X-ray crystallography.
Chiral symmetry breaking with the Curtis-Pennington vertex
Atkinson, D.; Gusynin, V. P.; Maris, P.
1992-01-01
Published in: Phys. Lett. B 303 (1993) 157-162 citations recorded in [Science Citation Index] Abstract: We study chiral symmetry breaking in quenched QED$_4$, using a vertex Ansatz recently proposed by Curtis and Pennington. Bifurcation analysis is employed to establish the existence of a critical c
Magnetic catalysis of chiral symmetry breaking and the Pauli problem
Ng, Y. Jack
1998-01-01
The non-perturbative Schwinger-Dyson equation is used to show that chiral symmetry is dynamically broken in QED at weak gauge couplings when an external uniform magnetic field is present. A complete analysis of this phenomenon may shed light on the Pauli problem, namely, why $\\alpha$ = 1/137.
Projective symmetry group classification of chiral spin liquids
Bieri, Samuel; Lhuillier, Claire; Messio, Laura
2016-03-01
We present a general review of the projective symmetry group classification of fermionic quantum spin liquids for lattice models of spin S =1 /2 . We then introduce a systematic generalization of the approach for symmetric Z2 quantum spin liquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral Z2 states, we study the subset of U(1) phases variationally in the antiferromagnetic J1-J2-Jd Heisenberg model on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of these phases.
Testing Lorentz Symmetry using Chiral Perturbation Theory
Noordmans, J P
2016-01-01
We consider the low-energy effects of a selected set of Lorentz- and CPT-violating quark and gluon operators by deriving the corresponding chiral effective lagrangian. Using this effective lagrangian, low-energy hadronic observables can be calculated. We apply this to magnetometer experiments and derive the best bounds on some of the Lorentz-violating coefficients. We point out that progress can be made by studying the nucleon-nucleon potential, and by considering storage-ring experiments for deuterons and other light nuclei.
Possible chiral symmetry in $^{138}$Nd
Raduta, A A; Petrache, C M
2015-01-01
The pheomenological Generalized Coherent State Model Hamiltonian is amended with a many body term describing a set of nucleons moving in a shell model mean-field and interacting among themselves with paring, as well as with a particle-core interaction involving a quadrupole-quadrupole and a hexadecapole-hexdecapole force and a spin-spin interaction. The model Hamiltonian is treated in a restricted space consisting of the core projected states associated to the bands ground, $\\beta, \\gamma,\\widetilde{\\gamma}, 1^+$ and $\\widetilde{1^+}$ and two proton aligned quasiparticles coupled to the states of the ground band. The chirally transformed particle-core states are also included. The Hamiltonian contains two terms which are not invariant to the chiral transformations relating the right handed trihedral $({\\bf J_F}, {\\bf J_p}, {\\bf J_n})$ and the left handed ones $(-{\\bf J_F}, {\\bf J_p}, {\\bf J_n})$, $({\\bf J_F}, -{\\bf J_p}, {\\bf J_n})$, $({\\bf J_F}, {\\bf J_p}, -{\\bf J_n})$ where ${\\bf J_F}, {\\bf J_p}, {\\bf J_n}$...
Chiral symmetry breaking and chiral polarization: Tests for finite temperature and many flavors
Directory of Open Access Journals (Sweden)
Andrei Alexandru
2015-02-01
Full Text Available It was recently conjectured that, in SU(3 gauge theories with fundamental quarks, valence spontaneous chiral symmetry breaking is equivalent to condensation of local dynamical chirality and appearance of chiral polarization scale Λch. Here we consider more general association involving the low-energy layer of chirally polarized modes which, in addition to its width (Λch, is also characterized by volume density of participating modes (Ω and the volume density of total chirality (Ωch. Few possible forms of the correspondence are discussed, paying particular attention to singular cases where Ω emerges as the most versatile characteristic. The notion of finite-volume “order parameter”, capturing the nature of these connections, is proposed. We study the effects of temperature (in Nf=0 QCD and light quarks (in Nf=12, both in the regime of possible symmetry restoration, and find agreement with these ideas. In Nf=0 QCD, results from several volumes indicate that, at the lattice cutoff studied, the deconfinement temperature Tc is strictly smaller than the overlap–valence chiral transition temperature Tch in real Polyakov line vacuum. Somewhat similar intermediate phase (in quark mass is also seen in Nf=12. It is suggested that deconfinement in Nf=0 is related to indefinite convexity of absolute X-distributions.
Chiral Symmetry and the Nucleon-Nucleon Interaction
Directory of Open Access Journals (Sweden)
Ruprecht Machleidt
2016-04-01
Full Text Available We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD via chiral effective field theory (EFT. During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (N N interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the N N potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. The final result allows for a full assessment of the validity of the chiral EFT approach to the N N interaction.
Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.
Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R
2016-05-13
The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations. PMID:27232041
Chiral symmetry and finite temperature effects in quantum theories
International Nuclear Information System (INIS)
A computer simulation of the harmonic oscillator at finite temperature has been carried out, using the Monte Carlo Metropolis algorithm. Accurate results for the energy and fluctuations have been obtained, with special attention to the manifestation of the temperature effects. Varying the degree of symmetry breaking, the finite temperature behaviour of the asymmetric linear model in a linearized mean field approximation has been studied. In a study of the effects of chiral symmetry on baryon mass splittings, reasonable agreement with experiment has been obtained in a non-relativistic harmonic oscillator model
Intrinsic transverse momentum and dynamical chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Christian Weiss, Peter Schweitzer, Mark Strikman
2013-01-01
We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.
Chiral symmetry and its partial restoration in nuclei
International Nuclear Information System (INIS)
The Nambu-Jona-Lasinio (NJL) model is used to discuss the partial restoration of chiral symmetry in nuclear media at zero and finite temperatures. Effects considered are (a) the proton-neutron mass difference and the Nolen-Schiffer anomaly, (b) quasi-elastic electron scattering, and (c) the nuclear response function. Finally, the likely effects of confinement for the NJL model are examined. 8 refs., 14 figs
Lectures on Chiral Symmetries and Soft Pion Processes
Nambu, Y.
1966-08-01
At the Istanbul Summer School in 1962 I gave lectures on "Chiral Symmetries in Weak and Strong Interactions." It is only recently, however, that the basic ideas that were started several years ago have begun to bear fruit. We will cover in the present lectures more or less the same general field, but certainly there will be a lot more results to be discussed now than four years ago.
Probing Emergent Scale-Chiral Symmetry in Nuclear Interactions
Paeng, Won-Gi
2016-01-01
In effective field theory for baryonic matter in which broken scale symmetry and hidden local symmetry are incorporated, both scale invariance and local gauge invariance, invisible or perhaps even absent in the QCD vacuum, could arise at high density as emergent symmetries, with a dilaton figuring as a scalar Nambu-Goldstone boson and the $\\rho$ and $a_1$ mesons as gauge fields, the former at the "dialton-limit (DL) fixed point" and the latter at the "vector manifestation (VM) fixed point." A novel phenomenon observed in a simplified model is that the dilaton condensate in nuclear medium "walks" as density increases beyond $n_{1/2}\\sim (2-3)n_0$ and induces the in-medium hidden gauge symmetry coupling, un-scaling up to density $n_{1/2}$, to start dropping rapidly towards the VM fixed point $n_{VM} >n_{1/2} $ at which the vector meson mass vanishes, coinciding, most likely, with chiral symmetry restoration. We discuss how to probe both VM and DL properties by means of the nuclear symmetry energy and the sound ...
Peripheral Nucleon-Nucleon Phase Shifts and Chiral Symmetry
Kaiser, N; Weise, W
1997-01-01
Within the one-loop approximation of baryon chiral perturbation theory we calculate all one-pion and two-pion exchange contributions to the nucleon-nucleon interaction. In fact we construct the elastic NN-scattering amplitude up to and including third order in small momenta. The phase shifts with orbital angular momentum $L\\geq2 $ and the mixing angles with $J\\geq2$ are given parameterfree and thus allow for a detailed test of chiral symmetry in the two-nucleon system. We find that for the D-waves the $2\\pi$-exchange corrections are too large as compared with empirical phase shifts, signaling the increasing importance of shorter range effects in lower partial waves. For higher partial waves, especially for G-waves, the model independent $2\\pi$-exchange corrections bring the chiral prediction close to empirical NN phase shifts. We propose to use the chiral NN phase shifts with $L\\geq 3$ as input in a future phase shift analysis. Furthermore, we compute the irreducible two-pion exchange NN-potentials in coordin...
Deconfinement and Chiral Symmetry Restoration in a Strong Magnetic Background
Gatto, Raoul
2010-01-01
We perform a model study of deconfinement and chiral symmetry restoration in a strong magnetic background. We use a Nambu-Jona Lasinio model with the Polyakov loop, taking into account a possible dependence of the coupling on the Polyakov loop expectation value, as suggested by the recent literature. Our main result is that, within this model, the deconfinement and chiral crossovers of QCD in strong magnetic field are entangled even at the largest value of $eB$ considered here, namely $eB=30 m_\\pi^2$ (that is, $B \\approx 6\\times 10^{15}$ Tesla). The amount of split that we measure is, at this value of $eB$, of the order of 2%. We also study briefly the role of the 8-quark term on the entanglement of the two crossovers. We then compare the phase diagram of this model with previous results, as well as with available Lattice data.
Chiral symmetry breaking in lattice QED model with fermion brane
Shintani, E
2012-01-01
We propose a novel approach of spontaneous chiral symmetry breaking at near zero temperature in 4 dimensional QED model with 3+1 dimensional fermion brane using Hybrid Monte Carlo simulation. We consider an anisotropic QED coupling in non-compact QED action with the manifest gauge invariant interaction and fermi-velocity which is less than speed of light. This model allows for the scaling study at low temperature and strong coupling region with reduced computational cost. We compute the chiral condensate and its susceptibility with different coupling constant, velocity parameter and flavor number, and therefore obtain a compatible behavior with gap equation in broken phase. We also discuss about the comparison of Graphene model.
Deconfinement and chiral symmetry restoration in a strong magnetic background
International Nuclear Information System (INIS)
We perform a model study of deconfinement and chiral symmetry restoration in a strong magnetic background. We use a Nambu-Jona-Lasinio model with the Polyakov loop, taking into account a possible dependence of the coupling on the Polyakov-loop expectation value, as suggested by the recent literature. Our main result is that, within this model, the deconfinement and chiral crossovers of QCD in strong magnetic field are entangled even at the largest value of eB considered here, namely eB=30mπ2 (that is, B≅6x1015 T). The amount of split that we measure is, at this value of eB, of the order of 2%. We also study briefly the role of the 8-quark term on the entanglement of the two crossovers. We then compare the phase diagram of this model with previous results, as well as with available lattice data.
Topological protection of defect states from semi-chiral symmetry
Poli, Charles; Bellec, Matthieu; Kuhl, Ulrich; Mortessagne, Fabrice
2015-01-01
Bipartite quantum systems from the chiral universality classes admit topologically protected zero modes at point defects. However, these states are difficult to separate from compacton-like localized states that arise from flat bands, formed if the two sublattices support a different number of sites within a unit cell. Here we identify a natural reduction of chiral symmetry, obtained by coupling sites on the majority sublattice, which gives rise to spectrally isolated point-defect states, topologically characterized as zero modes supported by the complementary minority sublattice. We observe these states in a microwave realization of a dimerized Lieb lattice with next-nearest neighbour coupling, and also demonstrate topological mode selection via sublattice-staggered absorption.
Instabilities of Hexagonal Patterns with Broken Chiral Symmetry
Echebarria, B; Echebarria, Blas; Riecke, Hermann
1999-01-01
Three coupled Ginzburg-Landau equations for hexagonal patterns with broken chiral symmetry are investigated. They are relevant for the dynamics close to onset of rotating non-Boussinesq or surface-tension-driven convection. Steady and oscillatory, long- and short-wave instabilities of the hexagons are found. For the long-wave behavior coupled phase equations are derived. Numerical simulations of the Ginzburg-Landau equations indicate bistability between spatio-temporally chaotic patterns and stable steady hexagons. The chaotic state can, however, not be described properly with the Ginzburg-Landau equations.
Chiral symmetry and nuclear matter equation of state
Indian Academy of Sciences (India)
A B Santra
2001-08-01
We investigate the effect on the nuclear matter equation of state (EOS) due to modiﬁcation of meson and nucleon parameters in nuclear medium as a consequence of partial restoration of chiral symmetry. To get the EOS, we have used Brueckner–Bethe–Golstone formalism with Bonn- potential as two-body interaction and QCD sum rule and Brown–Rho scaling prescriptions for modiﬁcation of hadron parameters. We ﬁnd that EOS is very much sensitive to the meson parameters. We can ﬁt, with two body interaction alone, both the saturation density and the binding energy per nucleon.
Nucleon Properties and Restoration of Chiral Symmetry at Finite\
Christov, C V; Göke, K; Christov, Chr.V.
1993-01-01
Modifications of baryon properties due to the restoration of the chiral symmetry in an external hot and dense baryon medium are investigated in an effective chiral quark-meson theory. The nucleon arises as a soliton of the Gell-Mann - L\\'evi $\\zs$-model, the parameters of which are chosen to be the medium-modified meson values evaluated within the Nambu - Jona-Lasinio model. The nucleon properties are obtained by means of variational projection techniques. The nucleon form factors as well as the nucleon delta transition form factors are evaluated for various densities and temperatures of the medium. Similar to the chiral phase transition line the critical curve in the $T-\\zr$ plane for delocalization of the nucleon is non-monotonic and this feature is reflected in all nucleon properties. At medium densities of about $(2-3) \\rnm$ the baryonic phase exists only at intermediate temperatures. For finite temperature and densities the nucleon form factors get strongly reduced at finite transfer momenta.
Chiral symmetry of heavy-light scalar mesons with UA(1) symmetry breaking
Dmitrašinović, V.
2012-07-01
In a previous paper, based on a calculation in the nonrelativistic quark model, we advanced the hypothesis that the Ds(2317), D0(2308) mesons are predominantly four-quark states lowered in mass by the flavor-dependent Kobayashi-Kubo-Maskawa ’t Hooft UA(1) symmetry breaking effective interaction. Here we show similar results and conclusions in a relativistic effective chiral model calculation, based on three-light-quark (i.e., two q plus one q¯) local interpolators. To this end we classify the four-quark (three light plus one heavy quark) local interpolators according to their chiral transformation properties and then construct chiral invariant interactions. We evaluate the diagonal matrix elements of the Kobayashi-Kubo-Maskawa ’t Hooft interaction between different interpolating fields and show that the lowest-lying one is always the (antisymmetric) SU(3)F antitriplet belonging to the chiral (3, 3) multiplet. We predict bottom-strange Bs0 and the bottom-nonstrange B0 scalar mesons with equal masses at 5720 MeV, the strange meson being some 100 MeV lower than in most of the quark potential models. We also predict the JP=1+ bottom-nonstrange B1 and the bottom-strange Bs1 meson masses as 5732 MeV and 5765 MeV, respectively, using the Bardeen-Hill-Nowak-Rho-Zahed scalar-vector mass relation.
Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.
Meyrand, Romain; Galtier, Sébastien
2012-11-01
Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed.
Chiral-symmetry breaking and confinement in Minkowski space
International Nuclear Information System (INIS)
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab
Chiral-symmetry breaking and confinement in Minkowski space
Biernat, Elmar P; Ribeiro, J E; Stadler, Alfred; Gross, Franz
2014-01-01
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Chiral-symmetry breaking and confinement in Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmar P. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Peña, M. T. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Departamento de Física, Instituto Superior Técnico (IST), Universidadede Lisboa, 1049-001 Lisboa (Portugal); Ribeiro, J. E. [Centro de Física das Interações Fundamentais (CFIF), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Gross, Franz [Thomas Jefferson National Accelerator Facility (JLab), Newport News, Virginia 23606 (United States)
2016-01-22
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.
Meyrand, Romain; Galtier, Sébastien
2012-11-01
Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed. PMID:23215387
Chiral-symmetry breaking and confinement in Minkowski space
Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz
2016-01-01
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Imaging chiral symmetry breaking from Kekulé bond order in graphene
Gutiérrez, Christopher; Kim, Cheol-Joo; Brown, Lola; Schiros, Theanne; Nordlund, Dennis; Lochocki, Edward B.; Shen, Kyle M.; Park, Jiwoong; Pasupathy, Abhay N.
2016-10-01
Chirality--or `handedness’--is a symmetry property crucial to fields as diverse as biology, chemistry and high-energy physics. In graphene, chiral symmetry emerges naturally as a consequence of the carbon honeycomb lattice. This symmetry can be broken by interactions that couple electrons with opposite momenta in graphene. Here we directly visualize the formation of Kekulé bond order, one such phase of broken chiral symmetry, in an ultraflat graphene sheet grown epitaxially on a copper substrate. We show that its origin lies in the interactions between individual vacancies in the copper substrate that are mediated electronically by the graphene. We show that this interaction causes the bonds in graphene to distort, creating a phase with broken chiral symmetry. The Kekulé ordering is robust at ambient temperature and atmospheric conditions, indicating that intercalated atoms may be harnessed to drive graphene and other two-dimensional materials towards electronically desirable and exotic collective phases.
Hebeler, K.; Schwenk, A.
2014-01-01
We discuss neutron matter calculations based on chiral effective field theory interactions and their predictions for the symmetry energy, the neutron skin of 208 Pb, and for the radius of neutron stars.
Dynamical symmetry breaking in chiral gauge theories with direct-product gauge groups
Shi, Yan-Liang; Shrock, Robert
2016-09-01
We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups G . If the gauge coupling for a factor group Gi⊂G becomes sufficiently strong, it can produce bilinear fermion condensates that break the Gi symmetry itself and/or break other gauge symmetries Gj⊂G . Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of G and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.
Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups
Shi, Yan-Liang
2016-01-01
We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.
Optically probed symmetry breaking in the chiral magnet Cu2OSeO3
Versteeg, R. B.; Vergara, I.; Schaefer, S. D.; Bischoff, D.; Aqeel, A.; Palstra, T. T. M.; Grueninger, M.; van Loosdrecht, P. H. M.
2016-01-01
We report on the linear optical properties of the chiral magnet Cu2OSeO3, specifically associated with the absence of inversion symmetry, the chiral crystallographic structure, and magnetic order. Through spectroscopic ellipsometry, we observe local crystal-field excitations below the charge-transfe
Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields
Gitman, D M
1996-01-01
The phase structure of d=3 Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the 1/N-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the gravitational field.
Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields
Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.
1996-01-01
The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...
Sea quark transverse momentum distributions and dynamical chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Schweitzer, Peter [Univ. of Connecticut, Storrs, CT (United States); Strikman, Mark [Penn State Univ., State College, PA (United States); Weiss, Christian [JLAB Newport News, VA (United States)
2014-01-01
Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.
How is chiral symmetry restored at finite density?
Tatsumi, T.; Nakano, E.
2005-01-01
Taking into account pseudoscalar as well as scalar condensates, we reexamine the chiral restoration path on the chiral manifold. We shall see both condensates coherently produce a density wave at a certain density, which delays chiral restoration as density or temperature is increased.
Explicit chiral symmetry breaking in Gross-Neveu type models
Energy Technology Data Exchange (ETDEWEB)
Boehmer, Christian
2011-07-25
This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well
Cutoff effects of Wilson fermions in the absence of spontaneous chiral symmetry breaking
Della Morte, M; Luz, Magdalena; Morte, Michele Della
2006-01-01
We simulate two dimensional QED with two degenerate Wilson fermions and plaquette gauge action. As a consequence of the Mermin-Wagner theorem, in the continuum limit chiral symmetry is realized a la Wigner. This property affects also the size of the cutoff effects. That can be understood in view of the fact that the leading lattice artifacts are described, in the continuum Symanzik effective theory, by chirality breaking terms. In particular, vacuum expectation values of non-chirality-breaking operators are expected to be O(a) improved in the chiral limit. We provide a numerical confirmation of this expectation by performing a scaling test.
Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks
Institute of Scientific and Technical Information of China (English)
2007-01-01
One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.
Tschierske, Carsten; Ungar, Goran
2016-01-01
Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. PMID:26416335
Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter
Holt, Jeremy W; Weise, Wolfram
2014-01-01
Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.
Master formula approach to broken chiral U(3)xU(3) symmetry
Energy Technology Data Exchange (ETDEWEB)
Hiroyuki Kamano
2010-04-01
The master formula approach to chiral symmetry breaking proposed by Yamagishi and Zahed is extended to the U_R(3)xU_L(3) group, in which effects of the U_A(1) anomaly and the flavor symmetry breaking m_u \
International Nuclear Information System (INIS)
Claims that spontaneous chiral symmetry breaking in Q.C.D. is mediated by the U(1) axial anomaly are examined from the viewpoint of effective chiral lagrangians. The proofs are seen to arise from a use of effective chiral lagrangians in which the U(1) axial symmetry is explicitly broken by effects of the anomaly. A U(1) axial invariant chiral lagrangian (to be presented) offers no such proof. (author)
On the Manifestation of Chiral Symmetry in Nuclei and Dense Nuclear Matter
Brown, G E; Rho, Mannque
2002-01-01
This article reviews our view on how chiral symmetry, its pattern of breaking and restoration under extreme conditions manifest themselves in the nucleon, nuclei, nuclear matter and dense hadronic matter. Topics treated are nucleon structure in terms of chiral symmetry, "first-principle" (QCD) calculations of the properties of finite nuclei effectuated by embedding the ``standard nuclear physics approach" into the framework of effective field theories of nuclei with predictions for certain astrophysical processes, a reinterpretation of the Brown-Rho (BR) scaling that implements chiral symmetry property of baryon-rich medium \\`a la "vector manifestation" of hidden local symmetry, evidences for BR scaling in nuclear processes at normal nuclear matter density and at higher density, the notion of "broadband equilibration" in heavy-ion processes, and the role of strangeness in the formation of compact stars and their collapse into black-holes. We revisit the "Cheshire-Cat phenomenon" recently revived in the form o...
Chiral symmetry breaking and vacuum polarization in a bag
Yasui, S
2006-01-01
We study the effects of a finite quark mass in the hedgehog configuration in the two phase chiral bag model. We discuss the chiral properties, such as the fractional baryon number and the chiral Casimir energy, by using the Debye expansion for the analytical calculation and the Strutinsky's smearing method for the numerical computation. It is shown that the fractional baryon number carried by massive quarks in the vacuum is canceled by that in the meson sector. A finite term of the chiral Casimir energy is obtained with subtraction of the logarithmic divergence term.
Chiral and U(1) axial symmetry restoration in linear sigma models with two quark flavors
Michalski, S
2006-01-01
We study the restoration of chiral symmetry in linear sigma models with two quark flavors. The models taken into consideration have a U(2) x U(2) and an O(N) internal symmetry. The physical mesons of these models are sigma, pion, \\eta and a_0 where the latter two are not present in the O(N) model. Including two-loop contributions through sunset graphs we calculate the temperature behavior of the order parameter and the masses for explicit chiral symmetry breaking with and without a U(1) axial anomaly. Decay threshold effects introduced by the sunset graphs alter the temperature dependence of the condensate and consequently that of the masses as well. Chiral symmetry tends to be restored at higher temperatures in the two-loop approximation than in the Hartree-Fock approximation. To model a dynamical restoration of the U(1) axial symmetry we imply a temperature-dependent anomaly parameter that sharply drops at about 175 MeV. This triggers the restoration of chiral symmetry before the full symmetry is restored a...
Chiral symmetry breaking from Ginsparg-Wilson fermions
Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent
2000-01-01
We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter \\Sigma, up to a multiplicative renormalization.
Charge symmetry breaking from a chiral extrapolation of moments of quark distribution functions
Shanahan, P. E.; Thomas, A. W.; Young, R.D.(ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia)
2013-01-01
We present a determination, from lattice QCD, of charge symmetry violation in the spin- independent and spin-dependent parton distribution functions of the nucleon. This is done by chirally extrapolating recent QCDSF/UKQCD Collaboration lattice simulations of the first several Mellin moments of the parton distribution functions of octet baryons to the physical point. We find small chiral corrections for the polarized moments, while the corrections are quantitatively significant in the unpolar...
Lattice QCD study of partial restoration of chiral symmetry in the flux-tube
Iritani, Takumi; Hashimoto, Shoji
2014-01-01
Using the overlap-Dirac eigenmodes, we study the spatial distribution of the chiral condensate around static color sources in lattice QCD. Between the color sources, there appears a color-flux tube, which leads a linear confining potential. By measuring a local value of the chiral condensate, we show that the magnitude of the condensate is reduced inside the flux-tube for both quark-antiquark and three-quark systems. These results suggest that chiral symmetry is partially restored in the flux-tube. The reduction of the condensate is estimated to be about 20 $\\sim$ 30% at the center of the flux.
Aoki, Ken-Ichi; Sato, Daisuke
2016-01-01
We analyze the dynamical chiral symmetry breaking in gauge theory with the nonperturbative renormalization group equation (NPRGE), which is a first order nonlinear partial differential equation (PDE). In case that the spontaneous chiral symmetry breaking occurs, the NPRGE encounters some non-analytic singularities at the finite critical scale even though the initial function is continuous and smooth. Therefore there is no usual solution of the PDE beyond the critical scale. In this paper, we newly introduce the notion of a weak solution which is the global solution of the weak NPRGE. We show how to evaluate the physical quantities with the weak solution.
Chiral symmetry, constituent quarks and quasi-elastic electron-nucleus scattering
Henley, E. M.; Krein, G.
1989-11-01
The effects of chiral symmetry breaking are examined for quasi-elastic electron scattering on nuclei. Nucleons are assumed to be composed of constituent quarks with masses that depend on density. This density dependence is determined on the basis of the Nambu-Jona-Lasinio model. It is found that the effects of chiral symmetry breaking are in the right direction and the right order of magnitude to explain the discrepancies between theory and experiment. On leave from Departamento de Fisica, Universidade Federal de Santa Maria, 97100 Santa Maria, R.S., Brazil.
Chiral doubling of heavy-light hadrons and the vector manifestation of hidden local symmetry
International Nuclear Information System (INIS)
Starting with a hidden local symmetry Lagrangian at the vector manifestation (VM) fixed point that incorporates heavy-quark symmetry and matching the bare theory to QCD, we calculate the splitting of chiral doublers of heavy-light mesons proposed by Nowak, Rho, and Zahed [M. A. Nowak, M. Rho, and I. Zahed, Phys. Rev. D 48, 4370 (1993).] and Bardeen and Hill [W. A. Bardeen and C. T. Hill, Phys. Rev. D 49, 409 (1994).]. We show, in the three-flavor chiral limit, that the splitting is directly proportional to the light-quark condensate and comes out to be ∼(1/3)mN where mN is the nucleon mass, implying that the splitting vanishes in the chiral limit at the chiral restoration point--temperature Tc, density nc, or number of flavors Nfc. The result turns out to be surprisingly simple with the vector (ρ) meson playing the crucial role in quantum corrections, pointing to the relevance of the VM to QCD in the way chiral symmetry is manifested in hadronic matter. We also make predictions on the hadronic decay processes of the excited heavy- (charm) light mesons D
New method for dynamical fermions and chiral-symmetry breaking
International Nuclear Information System (INIS)
The reasons for the feasibility of the Microcanonical Fermionic Average (M F A) approach to lattice gauge theory with dynamical fermions are discussed. We then present a new exact algorithm, which is free from systematic errors and convergent even in the chiral limit. (orig.)
Explicit versus Dynamical Chiral Symmetry Breaking and Mass Matrix of Quarks and Leptons
Handa, O.; Ishida, S.; Sekiguchi, M.
1992-02-01
By recourse to an analogy between strong and weak interactions, quark mass-matrices consisting of the two parts are proposed, which represent, respectively, dynamical chiral symmetry breaking and explicit one due to small preon mass. The sum rules among quark masses and mixing-matrix elements derived from it seem consistent with present experiments.
Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model
Institute of Scientific and Technical Information of China (English)
宗红石; 吴小华; 侯丰尧; 赵恩广
2004-01-01
A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.
Comments on the Chiral Symmetry Breaking in Soft Wall Holographic QCD
DEFF Research Database (Denmark)
Bechi, Jacopo
2009-01-01
In this paper we describe qualitatively some aspects of the holographic QCD. Inspired by a successfull 4D description, we try to separate the Confinement and the Chiral Symmetry Breaking dynamics. We also discuss the realization of the baryons as skyrmions in Soft Wall Holographic QCD, and the...
Dynamical quarks effects on the gluon propagation and chiral symmetry restoration
Bashir, A; Rodríguez-Quintero, J
2014-01-01
We exploit the recent lattice results for the infrared gluon propagator with light dynamical quarks and solve the gap equation for the quark propagator. Chiral symmetry breaking and confinement (intimately tied with the analytic properties of QCD Schwinger functions) order parameters are then studied.
Quantum solitons of the nonlinear sigma-model with broken chiral symmetry
Kostyuk, A P; Chepilko, N M; Okazaki, T
1995-01-01
It is proved that the quantum-mechanical consideration of global breathing of a hedgehog-like field configuration leads to the dynamically stable soliton solutions in the nonlinear sigma-model without the Skyrme term. Such solutions exist only when chiral symmetry of the model is broken.
Minimally doubled chiral fermions with C, P and T symmetry on the staggered lattice
Haegeman, Jutho
2008-01-01
Recently, the interest in local lattice actions for chiral fermions has revived, with the proposition of new local actions in which only the minimal number of doublers appear. The trigger role of graphene having a minimally doubled, chirally invariant, Dirac-like excitation spectrum can not be neglected. The challenge is to construct an action which preserves enough symmetries to be useful in lattice gauge calculations. We present a new approach to obtain local lattice actions for fermions using a reinterpretation of the staggered lattice approach of Kogut and Susskind. This interpretation is based on the similarity with the staggered lattice approach in FDTD simulations of acoustics and electromagnetism. It allows us to construct a local action for chiral fermions which has all discrete symmetries and the minimal number of fermion flavors, but which is non-Hermitian in real space. However, we argue that this will not pose a threat to the usability of the theory.
Chirally Invariant Avatar in a Model of Neutrinos with Light Cone Reflection Symmetry
Chodos, Alan
2016-01-01
In previous work we developed a model of neutrinos based on a new symmetry, Light Cone Reflection (LCR), that interchanges spacelike and timelike intervals. In this paper we start with the four-dimensional model, and construct a two-dimensional avatar that obeys the same equations of motion, and preserves both the light-cone reflection symmetry and the chiral symmetry of the original theory. The avatar also contains the interaction that rendered the four-dimensional model gauge invariant. In an addendum, we make some remarks about how to determine the scalar field that enters into the definition of the LCR-covariant derivative.
Chiral Symmetry Restoration for the large-$N$ pion gas
Cortés, Santiago; Morales, John
2016-01-01
We analyze chiral restoration within the $O(N+1)/O(N)$ Non-Linear Sigma Model for large $N$ as an effective theory for low-energy QCD at finite temperature $T$. The free energy is constructed diagramatically to $O(M^3)$ in the pion mass, which allows to derive the quark condensate and the scalar susceptibility in the chiral limit. At this order, we do not have to deal with renormalization, neither from divergences from mass tadpoles nor from those of higher order loop contributions. Our results for the critical behaviour are consistent with expectations from lattice analysis and with previous works where the susceptibility is saturated by the thermal $f_0(500)$ pole.
Liquid Crystal Phases of Molecular Bananas: Polarity and Chirality as Broken Symmetries
Clark, Noel
2006-03-01
The study of the interplay of chirality and polarity has been a particularly rich theme of soft matter science since Meyer's seminal discovery that tilted smectics of chiral molecules are macroscopically polar. This event, and the subsequent realization of polar domains and high-speed electro-optic switching in chiral smectics, engaged the liquid crystal community in a worldwide pursuit of novel smectics for applications, featured by the synthesis of more than 50,000 new liquid crystal compounds, and by a consequent broad diversification of the palette of liquid crystal phases and possibilities for supermolecular ordering. A current important activity in this scenario is the study of polar order in synthetically achiral molecules, for example, in molecular bananas, which, as their shape suggests, might be expected to organize in a polar way. Indeed they do, but beyond this, almost everything learned about them has been surprising, including their persistent tendency to exhibit chirality as a spontaneously broken symmetry. I will discuss some of these new phases and phenomena, including the discovery of fluid conglomerates (Pasteur's experiment in a fluid), triclinic fluid order, chiral twist grain boundary phases of achiral molecules, chirality flipping and field-induced deracemization, ferroelectric and antiferroelectric phases with supermolecular- scale polarization modulation, and chiral thermotropic sponge phases.
Chirality and its spontaneous symmetry breaking in two liquid crystal systems
Kang, Louis
Chirality, or handedness, is a key concept spanning all fields of natural science, from biology to mathematics. Chiral structures can arise from achiral building blocks that lack a handedness if their assembly is unstable to chiral deformations, a phenomenon called spontaneous symmetry breaking. We theoretically study the role of chirality in two systems composed of liquid crystals dissolved or suspended in water, and our results match those obtained experimentally by our collaborators. In the first system, we study achiral liquid crystals whose Frank twist modulus is much lower than their splay and bend Frank moduli and which are confined in capillaries. Under homeotropic anchoring, their ground state configuration undergoes spontaneous chiral symmetry breaking when the twist modulus decreases enough relative to the splay and bend moduli. Under degenerate planar anchoring, a small twist-to-saddle-splay ratio of elastic moduli leads to degenerate twisted configurations even though an undeformed configuration is possible. Measuring the twist profile of an experimental system produces a value for the saddle-splay constant, which has been difficult to achieve previously. Under either boundary condition, domain walls and point defects, whose topological charges depend on chirality, separate domains with different degenerate configurations, and certain ones are energetically preferred over others. In the second system, we study filamentous viruses acting as colloidal liquid crystals under the influence of depletion, which promotes condensation of the viruses into 2D colloidal monolayers. These membranes have tunable chirality and show a rich array of emergent behaviors, including a transition from a circular shape to a striking starfish shape upon changing the chirality of constituent viruses, partial coalescence via domain walls through which the viruses twist by 180 degrees, and phase-separated rafts of a particular size when two virus species with different lengths
Chiral Symmetry and N*(1440) -> N pi pi Decay
Kamano, H; Arima, M
2004-01-01
The N*(1440) -> N pi pi decay is studied by making use of the chiral reduction formula. This formula suggests a scalar-isoscalar pion-baryon contact interaction which is absent in the recent study of Hern{\\'a}ndez et al. The contact interaction is introduced into their model, and is found to be necessary for the simultaneous description of g_{RN pi pi} and the pi-pi and pi-N invariant mass distributions.
Ruggieri, M
2016-01-01
In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows to introduce in the simplest way possible a Euclidean momentum, $p_E$, dependent quark mass function which decays (neglecting logarithms) as $1/p_E^2$ for large $p_E$ in agreement with asymptotic behaviour expected in presence of a nonperturbative quark condensate. We show that the momentum dependence of the quark mass function, which has been neglected in all of the previous model studies, drastically affects the dependence of the critical temperature versus $\\mu_5$. We explain this in terms of a natural removal of ultraviolet modes at $T>0$ in the gap equation, as well as of the natural addition of these modes at $T=0$ which help to catalyze chiral symmetry breaking. As a result we find that within this model the critical temperature increases with $\\mu_5$.
Alexandru, Andrei
2014-01-01
The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass-degenerate fundamental quark flavors. We find that the vSChSB-ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass $m_c$ such that for $m > m_c$ the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for $m_{ch} < m < m_c$ the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses $m < m_{ch}$, but this has not yet been seen by overlap valence probe, leaving the $m_{ch}=0$ possibility open. The latter option could place massless N$_f$=12 theory outside of conformal window. Anomalou...
Alexandru, Andrei; Horváth, Ivan
2016-01-01
The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass-degenerate fundamental quark flavors. We find that the vSChSB-ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass mc such that for m > mc the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for mch < m < mc the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses m < mch, but this has not yet been seen by overlap valence probe, leaving the mch = 0 possibility open. The latter option could place massless Nf=12 theory outside of conformal window. Anomalous behavior of overlap Dirac spectrum for mch < m < mc is qualitatively similar to one observed previously in zero and few-flavor theories as an effect of thermal agitation.
Structure of the vacuum in the color dielectric model: confinement and chiral symmetry
International Nuclear Information System (INIS)
Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied
Pleiner, Harald; Brand, Helmut R
2014-02-01
We discuss the symmetry properties as well as the dynamic behavior of various non-polar nematic liquid crystal phases with tetrahedral order. We concentrate on systems that show biaxial nematic order coexisting with octupolar (tetrahedral) order. Non-polar examples are phases with D2 and S4 symmetries, which can be characterized as biaxial nematics lacking inversion symmetry. It is this combination that allows for new features in the statics and dynamics of these phases. The D2-symmetric phase is chiral, even for achiral molecules, and shows ambidextrous chirality in all three preferred directions. The achiral S4-symmetric phase allows for ambidextrous helicity, similar to the higher-symmetric D2d-symmetric phase. Such phases are candidates for nematic phases made from banana-shaped molecules.
The chiral transition and U(1)_A symmetry restoration from lattice QCD using Domain Wall Fermions
Bazavov, A; Buchoff, Michael I; Cheng, Michael; Christ, N H; Ding, H -T; Gupta, Rajan; Hegde, Prasad; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Soltz, R A; Vranas, P M; Yin, Hantao
2012-01-01
We present results on both the restoration of the spontaneously broken chiral symmetry and the effective restoration of the anomalously broken U(1)_A symmetry in finite temperature QCD at zero chemical potential using lattice QCD. We employ domain wall fermions on lattices with fixed temporal extent N_\\tau = 8 and spatial extent N_\\sigma = 16 in a temperature range of T = 139 - 195 MeV, corresponding to lattice spacings of a \\approx 0.12 - 0.18 fm. In these calculations, we include two degenerate light quarks and a strange quark at fixed pion mass m_\\pi = 200 MeV. The strange quark mass is set near its physical value. We also present results from a second set of finite temperature gauge configurations at the same volume and temporal extent with slightly heavier pion mass. To study chiral symmetry restoration, we calculate the chiral condensate, the disconnected chiral susceptibility, and susceptibilities in several meson channels of different quantum numbers. To study U(1)_A restoration, we calculate spatial ...
Wigner–Souriau translations and Lorentz symmetry of chiral fermions
Directory of Open Access Journals (Sweden)
C. Duval
2015-03-01
Full Text Available Chiral fermions can be embedded into Souriau's massless spinning particle model by “enslaving” the spin, viewed as a gauge constraint. The latter is not invariant under Lorentz boosts; spin enslavement can be restored, however, by a Wigner–Souriau (WS translation, analogous to a compensating gauge transformation. The combined transformation is precisely the recently uncovered twisted boost, which we now extend to finite transformations. WS-translations are identified with the stability group of a motion acting on the right on the Poincaré group, whereas the natural Poincaré action corresponds to action on the left.
Anomalies, instantons and chiral symmetry breaking at a Lifshitz point
Bakas, Ioannis
2012-01-01
We give a new twist to an old-fashioned topic in quantum field theory describing violations of the chiral charge conservation of massless fermions through Adler-Bell-Jackiw anomalies in the background of instanton fields in the context of non-relativistic Lifshitz theories. The results we report here summarize in a nut-shell our earlier work on the subject found in arXiv:1103.5693 and arXiv:1110.1332. We present simple examples where index computations can be carried out explicitly focusing, in particular, to gravitational models of Lifshitz type and highlight their differences from ordinary gravity in four space-time dimensions.
Chiral and herringbone symmetry breaking in water-surface monolayers
DEFF Research Database (Denmark)
Peterson, I.R.; Kenn, R.M.; Goudot, A.;
1996-01-01
We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...
Tortora, Luana; Lavrentovich, Oleg D
2011-03-29
In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement.
$B_K$ from quenched QCD with exact chiral symmetry
Garron, N; Hölbling, C; Lellouch, L P; Rebbi, C; Garron, Nicolas; Giusti, Leonardo; Hoelbling, Christian; Lellouch, Laurent; Rebbi, Claudio
2004-01-01
We present a calculation of the standard model Delta S=2 matrix element relevant to indirect CP violation in K->pipi decays which uses Neuberger's chiral formulation of lattice fermions. The computation is performed in the quenched approximation on a 16^3x32 lattice that has a lattice spacing asim 0.1 fm. The resulting bare matrix element is renormalized non-perturbatively. Our main result is B_K^{RGI}=0.87(8)^{+2+14}_{-1-14}, where the first error is statistical, the second is systematic and the third is an estimate of the uncertainty associated with the quenched approximation and with the fact that our kaons are composed of degenerate s and d quarks with masses sim m_s/2.
Residual Chiral Symmetry Breaking in Domain-Wall Fermions
International Nuclear Information System (INIS)
We study the effective quark mass induced by the finite separation of the domain walls in the domain-wall formulation of chiral fermion as the function of the size of the fifth dimension (Ls), the gauge coupling (β) and the physical volume (V). We measure the mass by calculating the small eigenvalues of the hermitian domain-wall Dirac operator (HDWF(m0 = 1.8)) in the topologically-nontrivial quenched SU(3) gauge configurations. We find that the induced quark mass is nearly independent of the physical volume, decays exponentially as a function of Ls, and has a strong dependence on the size of quantum fluctuations controlled by β. The effect of the choice of the lattice gluon action is also studied
Residual Chiral Symmetry Breaking in Domain-Wall Fermions
International Nuclear Information System (INIS)
The authors study the effective quark mass induced by the finite separation of the domain walls in the domain-wall formulation of chiral fermion as the function of the size of the fifth dimension ($L-s$), the gauge coupling $beta$ and the physical volume $V$. They measure the mass by calculating the small eigenvalues of the hermitian domain-wall Dirac operator ($H-[rm DWF](m-0))$ in the topologically-nontrivial quenched SU(3) gauge configurations. The authors find that the induced quark mass is nearly independent of the physical volume, decays exponentially as a function of $L-s$, and has a strong dependence on the size of quantum fluctuations controlled by $beta$. The effect of the choice of the lattice gluon action is also studied
\\pi N transition distribution amplitudes: their symmetries and constraints from chiral dynamics
Pire, Bernard; Szymanowski, Lech
2011-01-01
Baryon to meson Transition Distribution Amplitudes (TDAs) extend the concept of generalized parton distributions. Baryon to meson TDAs appear as building blocks in the colinear factorized description of amplitudes for a class of hard exclusive reactions, prominent examples of which being hard exclusive meson electroproduction off a nucleon in the backward region and baryon-antibaryon annihilation into a meson and a lepton pair. We study general properties of these objects following from the underlying symmetries of QCD. In particular, the Lorentz symmetry results in the polynomiality property of the Mellin moments in longitudinal momentum fractions. We present a detailed account of isotopic and permutation symmetry properties of nucleon to pion (\\pi N) TDAs. This restricts the number of independent leading twist \\pi N TDAs to eight functions providing description of all isotopic channels. Using chiral symmetry and the crossing relation between \\pi N TDAs and \\pi N generalized distribution amplitudes we establ...
Burgers-like equation for spontaneous breakdown of the chiral symmetry in QCD
Blaizot, Jean-Paul; Warchoł, Piotr
2013-01-01
We link the spontaneous breakdown of chiral symmetry in Euclidean QCD to the collision of spectral shock waves in the vicinity of zero eigenvalue of Dirac operator. The mechanism, originating from complex Burger's-like equation for viscid, pressureless, one-dimensional flow of eigenvalues, is similar to recently observed weak-strong coupling phase transition in large $N_c$ Yang-Mills theory. The spectral viscosity is proportional to the inverse of the size of the random matrix that replaces the Dirac operator in the universal (ergodic) regime. We obtain the exact scaling function and critical exponents of the chiral phase transition for the averaged characteristic polynomial for $N_c \\ge3$ QCD. We reinterpret our results in terms of known properties of chiral random matrix models and lattice data.
Burgers-like equation for spontaneous breakdown of the chiral symmetry in QCD
International Nuclear Information System (INIS)
We link the spontaneous breakdown of chiral symmetry in Euclidean QCD to the collision of spectral shock waves in the vicinity of zero eigenvalue of the Dirac operator. The mechanism, originating from complex Burger's-like equation for viscid, pressureless, one-dimensional flows of eigenvalues, is similar to the recently observed weak-strong coupling phase transition in large Nc Yang–Mills theory. The spectral viscosity is proportional to the inverse size of the random matrix that replaces the Dirac operator in the universal (ergodic) regime. We obtain the exact scaling function and critical exponents of the chiral phase transition for the averaged characteristic polynomial for Nc⩾3 QCD. We reinterpret our results in terms of known properties of chiral random matrix models and lattice data
Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome.
Zhang, Bin; Wolynes, Peter G
2016-06-17
We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.
Weber, Norbert; Stefani, Frank; Weier, Tom
2015-01-01
The Tayler instability is a kink-type, current driven instability that plays an important role in plasma physics but might also be relevant in liquid metal applications with high electrical currents. In the framework of the Tayler-Spruit dynamo model of stellar magnetic field generation, the question of spontaneous helical (chiral) symmetry breaking during the saturation of the Tayler instability has received considerable interest. Focusing on fluids with low magnetic Prandtl numbers, for which the quasistatic approximation can be applied, we utilize an integro-differential equation approach in order to investigate the saturation mechanism of the Tayler instability. Both the exponential growth phase and the saturated phase are analyzed in terms of the action of the alpha and beta effects of mean-field magnetohydrodynamics. In the exponential growth phase we always find a spontaneous chiral symmetry breaking which, however, disappears in the saturated phase. For higher degrees of supercriticality, we observe h...
Chiral Symmetry Breaking on the Lattice a Study of the Strongly Coupled Lattice Schwinger Model
Berruto, F; Semenoff, Gordon W; Sodano, P
1998-01-01
We revisit the strong coupling limit of the Schwinger model on the lattice using staggered fermions and the hamiltonian approach to lattice gauge theories. Although staggered fermions have no continuous chiral symmetry, they posses a discrete axial invari ance which forbids fermion mass and which must be broken in order for the lattice Schwinger model to exhibit the features of the spectrum of the continuum theory. We show that this discrete symmetry is indeed broken spontaneously in the strong coupling li mit. Expanding around a gauge invariant ground state and carefully considering the normal ordering of the charge operator, we derive an improved strong coupling expansion and compute the masses of the low lying bosonic excitations as well as the chiral co ndensate of the model. We find very good agreement between our lattice calculations and known continuum values for these quantities already in the fourth order of strong coupling perturbation theory. We also find the exact ground state of the antiferromag ...
Chiral symmetry restoration in σ-meson production in hadronic processes
Directory of Open Access Journals (Sweden)
Kukulin V.I.
2014-06-01
Full Text Available Some puzzles about the nature and properties of the lightest scalar meson, σ or f0(500, are analyzed in the paper. We studied the σ-meson production both in N + N, N + d, etc., collisions and also in J/ψ, ψ(2S, ψ(3S, Υ(2S, etc., two-pion decays. The fundamental distinctions between the basic σ-meson parameters found in various hadronic processes can be explained most naturally by the chiral symmetry restoration in intermediate excited hadronic resonances. In the present paper we discuss some important aspects of chiral symmetry restoration in hadronic processes with interrelation to the basic features of QCD.
Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome
Zhang, Bin; Wolynes, Peter G.
2016-06-01
We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.
Chiral-Symmetry Breaking in Pseudo Quantum Electrodynamics at Finite Temperature
Nascimento, Leandro O; Peña, Francisco; Smith, C Morais; Marino, E C
2015-01-01
We use the Schwinger-Dyson equations in the presence of a thermal bath, in order to study chiral symmetry breaking in a system of massless Dirac fermions interacting through pseudo quantum electrodynamics (PQED3), in (2+1) dimensions. We show that there is a critical temperature $T_c$, below which chiral symmetry is broken, and a corresponding mass gap is dynamically generated, provided the coupling is above a certain, temperature dependent, critical value $\\alpha_c$. The ratio between the energy gap and the critical temperature for this model is estimated to be $2 \\pi$. These results are confirmed by analytical and numerical investigations of the Schwinger-Dyson equation for the electron. In addition, we calculate the first finite-temperature corrections to the static Coulomb interaction. The relevance of this result in the realm of condensed matter systems, like graphene, is briefly discussed.
Patterns of chiral symmetry breaking and a candidate for a C-theorem in four dimensions
Levinsen, J
2002-01-01
We test a candidate for a four-dimensional C-function. This is done by considering all asymptotically free, vectorlike gauge theories with N_f flavors and fermions in arbitrary representations of any simple Lie group. Assuming spontaneous breaking of chiral symmetry in the infrared limit and that the value of the C-function in this limit is determined by the number of Goldstone bosons, we find that only in the case of a theory with two colors and fermions in one single pseudo-real representation of SU(2) the C-theorem seems to be violated. Conversely, this might also be a sign of new constraints, restricting the number of flavors consistent with spontaneous chiral symmetry breaking. For all other groups and representations we find that this candidate C-function decreases along the renormalization group flow.
Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome
Zhang, Bin
2015-01-01
We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pair-wise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain (TAD) formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking which is limited by the TAD interaction strength.
Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics
International Nuclear Information System (INIS)
By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3)F symmetry breaking effects are estimated and, if possible, confronted with experiment. ((orig.))
Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking
Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi
2016-01-01
The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new "positive/negative symmetry" in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.
Kac-Moody and Borcherds Symmetries of Six-Dimensional Chiral Supergravity
Henneaux, Marc
2015-01-01
We investigate the conjectured infinite-dimensional hidden symmetries of six-dimensional chiral supergravity coupled to two vector multiplets and two tensor multiplets, which is known to possess the $F_{4,4}$ symmetry upon dimensional reduction to three spacetime dimensions. Two things are done. (i) First, we analyze the geodesic equations on the coset space $F_{4,4}^{++}/K(F_{4,4}^{++})$ using the level decomposition associated with the subalgebra $\\mathfrak{gl}(5)\\oplus \\mathfrak{sl}(2)$ of $F_{4,4}^{++}$ and show their equivalence with the bosonic equations of motion of six-dimensional chiral supergravity up to the level where the dual graviton appears. In particular, the self-duality condition on the chiral $2$-form is automatically implemented in the sense that no dual potential appears for that $2$-form, in contradistinction with what occurs for the non chiral $p$-forms. (ii) Second, we describe the $p$-form hierarchy of the model in terms of its $V$-duality Borcherds superalgebra, of which we compute t...
Burgers-like equation for spontaneous breakdown of the chiral symmetry in QCD
Blaizot, Jean-Paul; Nowak, Maciej A.; Warchoł, Piotr
2013-01-01
We link the spontaneous breakdown of chiral symmetry in Euclidean QCD to the collision of spectral shock waves in the vicinity of zero eigenvalue of Dirac operator. The mechanism, originating from complex Burger's-like equation for viscid, pressureless, one-dimensional flow of eigenvalues, is similar to recently observed weak-strong coupling phase transition in large $N_c$ Yang-Mills theory. The spectral viscosity is proportional to the inverse of the size of the random matrix that replaces t...
International Nuclear Information System (INIS)
Within the framework of this thesis, the interrelation between the two characteristic phenomena of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement, is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method to artificially restore the dynamically broken chiral symmetry. The low-mode part of the Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the Banks--Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we construct valence quark propagators that exclude a variable sized part of the low-mode Dirac spectrum, with the aim of using these as an input for meson and baryon interpolating fields. Subsequently, we explore the behavior of ground and excited states of the low-mode truncated hadrons using the variational analysis method. We look for the existence of confined hadron states and extract effective masses where applicable. Moreover, we explore the evolution of the quark wavefunction renormalization function and the renormalization point invariant mass function of the quark propagator under Dirac low-mode truncation in a gauge fixed setting. Motivated by the necessity of fixing the gauge in the aforementioned study of the quark propagator, we also developed a flexible high performance code for lattice gauge fixing, accelerated by graphic processing units (GPUs) using NVIDIA CUDA (Compute Unified Device Architecture). Lastly, more related but unpublished work on the topic is presented. This includes a study of the locality violation of low-mode truncated Dirac operators, a discussion of the possible extension of the low-mode truncation method to the sea quark sector based on a reweighting scheme, as well as the presentation of an alternative way to restore the dynamically broken chiral symmetry. (author)
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmer P. [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de FÃsica, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de FÃsica, Universidade de Ãvora, 7000-671 Ãvora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
Directory of Open Access Journals (Sweden)
Biernat Elmar P.
2016-01-01
Full Text Available We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
Biernat, Elmar P; Ribeiro, J E; Stadler, A; Gross, F
2015-01-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, A.; Gross, F.
2016-03-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.
Four-Fermion Theories with Exact Chiral Symmetry in Three Dimensions
Schmidt, Daniel; Wipf, Andreas
2016-01-01
We investigate a class of four-fermion theories which includes well-known models like the Gross-Neveu model and the Thirring model. In three spacetime dimensions, they are used to model interesting solid state systems like high temperature superconductors and graphene. Additionally, they serve as toy models to study chiral symmetry breaking (CSB). For any number of fermion flavours the Gross-Neveu model has a broken and a symmetric phase, while the existence of a broken phase in the Thirring model depends on the number of flavours. The critical number of fermion flavours beyond which there exists no CSB is still subject of ongoing discussions. Using SLAC fermions we simulate the Thirring model with exact chiral symmetry. To obtain a chiral condensate one can introduce a symmetry-breaking mass term and carefully study the limits of infinite lattice and zero-mass. So far, we did not see CSB within this approach for the Thirring model with 2 or more (reducible) flavours. The talk presents alternative approaches ...
Spontaneous chiral symmetry breaking in QCD:a finite-size scaling study on the lattice
Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia
2007-01-01
Spontaneous chiral symmetry breaking in QCD with massless quarks at infinite volume can be seen in a finite box by studying, for instance, the dependence of the chiral condensate from the volume and the quark mass. We perform a feasibility study of this program by computing the quark condensate on the lattice in the quenched approximation of QCD at small quark masses. We carry out simulations in various topological sectors of the theory at several volumes, quark masses and lattice spacings by employing fermions with an exact chiral symmetry, and we focus on observables which are infrared stable and free from mass-dependent ultraviolet divergences. The numerical calculation is carried out with an exact variance-reduction technique, which is designed to be particularly efficient when spontaneous symmetry breaking is at work in generating a few very small low-lying eigenvalues of the Dirac operator. The finite-size scaling behaviour of the condensate in the topological sectors considered agrees, within our stati...
Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model
Alam, M Sohaib; Kundu, Arnab
2012-01-01
A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually p...
A new Perspective on the Scalar meson Puzzle, from Spontaneous Chiral Symmetry Breaking Beyond BCS
Bicudo, P J A
1998-01-01
We introduce coupled channels of Bethe-Salpeter mesons both in the mass gap equation for chiral symmetry breaking and in the boundstate equation for mesons. Consistency is insured by the Ward Identities for axial currents, which preserve the Goldstone boson nature of the pion. We find that the coupling of channels yields the widths of resonances and contributes to mass splittings, but it does not shift globally the hadron spectrum. We find that coupled channels reduce the breaking of chiral symmetry. This reduction is constrained by the coupling of a scalar meson to a pair of pseudoscalar mesons. The light and wide $\\sigma-f_0(600)$, the narrow $f_0(980)$ and the relatively heavy $f_0(1370)$ are studied in order to comply with the spontaneous breaking of chiral symmetry. Exact calculations are performed in a particular model. In this model we find that the $f_0(980)$ is the best candidate for the groundstate quark antiquark meson . In particular its width is naturally small. In this case the coupled channels ...
Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry
Aoki, S; Feng, X; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T
2015-01-01
We study the chiral behavior of the electromagnetic (EM) form factors of pion and kaon in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between M_pi \\simeq 290 MeV and 540 MeV and with a strange quark mass m_s close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on m_s and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy...
Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry
Aoki, S.; Cossu, G.; Feng, X.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.
2016-02-01
We study the chiral behavior of the electromagnetic (EM) form factors of pions and kaons in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between Mπ≃290 MeV and 540 MeV and with a strange quark mass ms close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on ms and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii, and find reasonable agreement with phenomenological and experimental results.
Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking
International Nuclear Information System (INIS)
The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero
Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Doi, Takahiro M.; Suganuma, Hideo [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake, Sakyo, Kyoto 606-8502 (Japan); Iritani, Takumi [Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502 (Japan)
2016-01-22
The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.
In Search of a Pristine Signal for (Scale-)Chiral Symmetry in Nuclei
Rho, Mannque
2016-01-01
I describe the long-standing search for a "smoking-gun" signal for the manifestation of (scale-)chiral symmetry in nuclear interactions. It is prompted by Gerry Brown's last unpublished note, reproduced verbatim below, on the preeminent role of pions and vector ($\\rho$,$\\omega$) mesons in providing a simple and elegant description of strongly correlated nuclear interactions. In this note written in tribute to Gerry Brown, I first describe a case of an unambiguous signal in axial-charge transitions in nuclei and then combine his ideas with the more recent development on the role of hidden symmetries in nuclear physics. What transpires is the surprising conclusion that the Landau-Migdal fixed point interaction $G_0^\\prime$, the nuclear tensor forces and Brown-Rho scaling, all encoded in scale-invariant hidden local symmetry, as Gerry put, "run the show and make all forces equal."
Chiral symmetry breaking with a confining propagator and dynamically massive gluons
Natale, A A; Machado, F A
2011-01-01
Chiral symmetry breaking in QCD is studied introducing a confining effective propagator, as proposed recently by Cornwall, and considering the effect of dynamically massive gluons. The effective confining propagator has the form $1/(k^2+m^2)^2$ and we study the bifurcation equation finding limits on the parameter $m$ below which a satisfactory fermion mass solution is generated. Since the coupling constant and gluon propagator are damped in the infrared, due to the presence of a dynamical gluon mass, the major part of the chiral breaking is only due to the confining propagator and related to the low momentum region of the gap equation. We study the asymptotic behavior of the gap equation containing this confinement effect and massive gluon exchange, and find that the symmetry breaking can be approximated by an effective four-fermion interaction generated by the confining propagator. We compute some QCD chiral parameters as a function of $m$, finding values compatible with the experimental data. We find a simp...
Augmented Superfield Approach to Nilpotent Symmetries in Self-Dual Chiral Bosonic Field Theory
Srinivas, N; Malik, R P
2015-01-01
We exploit the beauty and strength of the symmetry invariant restrictions on the superfields to derive the Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and (anti-) co-BRST symmetry transformations in the case of a two (1+1)-dimensional (2D) self-dual chiral bosonic field theory within the framework of augmented superfield formalism. Our 2D ordinary theory is generalized onto a (2, 2)-dimensional supermanifold which is parameterized by the superspace variable $Z^M = (x^\\mu, \\theta, \\bar\\theta)$ where $x^\\mu$ (with $\\mu = 0, 1$) are the ordinary 2D bosonic coordinates and ($\\theta,\\, \\bar\\theta$) are a pair of Grassmannian variables with their standard relationships: $\\theta^2 = {\\bar\\theta}^2 =0, \\theta\\,\\bar\\theta + \\bar\\theta\\theta = 0$. We impose the (anti-)BRST and (anti-)co-BRST invariant restrictions on the superfields, defined on the (anti-)chiral (2, 1)-dimensional super-submanifolds of the above {\\it general} (2, 2)-dimensional supermanifold, to derive the above nilpotent symmetries. We do not exploit ...
Chiral symmetry and pi-pi scattering in the Covariant Spectator Theory
Biernat, Elmar P; Ribeiro, J E; Stadler, Alfred; Gross, Franz
2014-01-01
The pi-pi scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward-Takahashi identity to the CST pi-pi scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. The Adler self-consistency zero for pi-pi scattering in the chiral limit emerges as the result for this sum.
Chiral symmetry and π -π scattering in the covariant spectator theory
Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz
2014-11-01
The π -π scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the covariant spectator theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similar to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward-Takahashi identity to the CST π -π scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. The Adler self-consistency zero for π -π scattering in the chiral limit emerges as the result for this sum.
Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density
Cassing, W.; Palmese, A.; Moreau, P.; Bratkovskaya, E. L.
2016-01-01
We study the production of strange hadrons in nucleus-nucleus collisions from 4 to 160 A GeV within the parton-hadron-string dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. Especially the K+/π+ and the (Λ +Σ0) /π- ratios in central Au+Au collisions are found to provide information on the relative importance of both transitions. The modeling of chiral symmetry restoration is driven by the pion-nucleon Σ term in the computation of the quark scalar condensate that serves as an order parameter for CSR and also scales approximately with the effective quark masses ms and mq. Furthermore, the nucleon scalar density ρs, which also enters the computation of , is evaluated within the nonlinear σ -ω model which is constrained by Dirac-Brueckner calculations and low-energy heavy-ion reactions. The Schwinger mechanism (for string decay) fixes the ratio of strange to light quark production in the hadronic medium. We find that above ˜80 A GeV the reaction dynamics of heavy nuclei is dominantly driven by partonic degrees of freedom such that traces of the chiral symmetry restoration are hard to identify. Our studies support the conjecture of "quarkyonic matter" in heavy-ion collisions from about 5 to 40 A GeV and provide a microscopic explanation for the maximum in the K+/π+ ratio at about 30 A GeV, which only shows up if a transition to partonic degrees of freedom is incorporated in the reaction dynamics and is discarded in the traditional hadron-string models.
Imaging dynamical chiral symmetry breaking: pion wave function on the light front
Chang, Lei; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C
2013-01-01
We project onto the light-front the pion's Poincare'-covariant Bethe-Salpeter wave-function, obtained using two different approximations to the kernels of QCD's Dyson-Schwinger equations. At an hadronic scale both computed results are concave and significantly broader than the asymptotic distribution amplitude, \\phi_\\pi^{asy}(x)=6 x(1-x); e.g., the integral of \\phi_\\pi(x)/\\phi_\\pi^{asy}(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral symmetry breaking is responsible for hardening the amplitude.
Chiral phase transition in a lattice fermion-gauge-scalar model with U(1) gauge symmetry
International Nuclear Information System (INIS)
The chiral phase transition induced by a charged scalar field is investigated numerically in a lattice fermion-gauge-scalar model with U(1) gauge symmetry, proposed recently as a model for dynamical fermion mass generation. For very strong gauge coupling the transition is of second order and its scaling properties are very similar to those of the Nambu-Jona-Lasinio model. However, in the vicinity of the tricritical point at somewhat weaker coupling, where the transition changes the order, the scaling behavior is different. Therefore it is worthwhile to investigate the continuum limit of the model at this point. (orig.)
Imaging dynamical chiral-symmetry breaking: pion wave function on the light front.
Chang, Lei; Cloët, I C; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C
2013-03-29
We project onto the light front the pion's Poincaré-covariant Bethe-Salpeter wave function obtained using two different approximations to the kernels of quantum chromodynamics' Dyson-Schwinger equations. At an hadronic scale, both computed results are concave and significantly broader than the asymptotic distribution amplitude, φ(π)(asy)(x)=6x(1-x); e.g., the integral of φ(π)(x)/φ(π)(asy)(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral-symmetry breaking is responsible for hardening the amplitude.
Chiral symmetry and pi-pi scattering in the Covariant Spectator Theory
Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz
2014-01-01
The pi-pi scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similar to what happens within the Bethe-Salpeter formalism, applica...
Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation
Herbut, Igor F
2016-01-01
Spontaneous chiral symmetry breaking in three dimensional ($d=3$) quantum electrodynamics is understood as annihilation of an infrared-stable fixed point that describes the large-N conformal phase by another unstable fixed point at a critical number of fermions $N=N_c$. We discuss the root of universality of $N_c$ in this picture, together with some features of the phase boundary in the $(d,N)$ plane. In particular, it is shown that as $d\\rightarrow 4$, $N_c\\rightarrow 0$ with a constant slope, our best estimate of which suggests that $N_c = 2.89$ in $d=3$.
Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation
Herbut, Igor F.
2016-07-01
Spontaneous chiral symmetry breaking in three-dimensional (d =3 ) quantum electrodynamics is understood as annihilation of an infrared-stable fixed point that describes the large-N conformal phase by another unstable fixed point at a critical number of fermions N =Nc. We discuss the root of universality of Nc in this picture, together with some features of the phase boundary in the (d ,N ) plane. In particular, it is shown that as d →4 , Nc→0 with a constant slope, our best estimate of which suggests that Nc=2.89 in d =3 .
Probing the Source of Proton Mass by"Unbreaking" Scale-Chiral Symmetry
Rho, Mannque
2016-01-01
I describe a possible scenario for the origin of proton mass in terms of Cheshire Cat, half-skyrmions, topology change and interplay between hidden chiral-scale symmetry and induced local symmetry. This differs from the standard constituent-quark scenario. As the baryonic matter density is increased toward the vector manifestation (VM) fixed-point at which the $\\rho$ mass is to vanish, the effective in-medium mass ratio $m^*_\\rho/m^*_N$ is to tend to zero proportionally to $g^*_\\rho$ where $g^*_\\rho$ is the in-medium hidden gauge coupling constant. I develop the thesis that the intricacy involved in the mass generation could be decoded from experiments at RIB accelerators and massive compact stars.
Kagome Chiral Spin Liquid as a Gauged U (1 ) Symmetry Protected Topological Phase
He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank; Moessner, R.
2015-12-01
While the existence of a chiral spin liquid (CSL) on a class of spin-1 /2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U (1 ) symmetry protected topological (SPT) phase, which upon promoting its U (1 ) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.
Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries
Juchtmans, Roeland; Verbeeck, Jo
2015-10-01
In this work we present an alternative way to look at electron diffraction in a transmission electron microscope. Instead of writing the scattering amplitude in Fourier space as a set of plane waves, we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating, e.g., rotation and screw-axis symmetries. For the latter we find selection rules on the OAM coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample, nor the exact crystal structure. We propose an experimental setup to measure the OAM components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform multislice simulations on α quartz to demonstrate how the method indeed reveals the chirality. The experimental feasibility of the technique is discussed together with its main advantages with respect to chirality determination of screw axes. The method shows how the use of a spiral phase plate can be extended from a simple phase imaging technique to a tool to measure the local OAM decomposition of an electron wave, widening the field of interest well beyond chiral space group determination.
Chiral Separation by Flows: The Role of Flow Symmetry and Dimensionality
Ro, Sunghan; Yi, Juyeon; Kim, Yong Woon
2016-01-01
Separation of enantiomers by flows is a promising chiral resolution method using cost-effective microfluidics. Notwithstanding a number of experimental and numerical studies, a fundamental understanding still remains elusive, and an important question as to whether it is possible to specify common physical properties of flows that induce separation has not been addressed. Here, we study the separation of rigid chiral objects of an arbitrary shape induced by a linear flow field at low Reynolds numbers. Based on a symmetry property under parity inversion, we show that the rate-of-strain field is essential to drift the objects in opposite directions according to chirality. From eigenmode analysis, we also derive an analytic expression for the separation conditions which shows that the flow field should be quasi-two-dimensional for the precise and efficient resolutions of microscopic enantiomers. We demonstrate this prediction by Langevin dynamics simulations with hydrodynamic interactions fully implemented. Finally, we discuss the practical feasibility of the linear flow analysis, considering separations by a vortex flow or an extensional flow under a confining potential. PMID:27739430
The QCD chiral transition, $\\ua$ symmetry and the Dirac spectrum using domain wall fermions
Buchoff, Michael I; Christ, Norman H; Ding, H -T; Jung, Chulwoo; Karsch, F; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Vranas, P M; Yin, Hantao; Lin, Zhongjie
2013-01-01
We report on a study of the finite-temperature QCD transition region for temperatures between 139 and 196 MeV, with a pion mass of 200 MeV and two space-time volumes: $24^3\\times8$ and $32^3\\times8$, where the larger volume varies in linear size between 5.6 fm (at T=139 MeV) and 4.0 fm (at T=195 MeV). These results are compared with the results of an earlier calculation using the same action and quark masses but a smaller, $16^3\\times8$ volume. The chiral domain wall fermion formulation with a combined Iwasaki and dislocation suppressing determinant ratio gauge action are used. This lattice action accurately reproduces the $\\sua$ and $\\ua$ symmetries of the continuum. Results are reported for the chiral condensates, connected and disconnected susceptibilities and the Dirac eigenvalue spectrum. We find a pseudo-critical temperature, $T_c$, of approximately 165 MeV consistent with previous results and strong finite volume dependence below $T_c$. Clear evidence is seen for $\\ua$ symmetry breaking above $T_c$ whi...
Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density
Cassing, W; Moreau, P; Bratkovskaya, E L
2015-01-01
We study the production of strange hadrons in nucleus-nucleus collisions from 4 to 160 A GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. Especially the $K^+/\\pi^+$ and the $(\\Lambda+\\Sigma^0)/\\pi^-$ ratios in central Au+Au collisions are found to provide information on the relative importance of both transitions. The modelling of chiral symmetry restoration is driven by the pion-nucleon $\\Sigma$-term in the computation of the quark scalar condensate $$ that serves as an order parameter for CSR and also scales approximately with the effective quark masses $m_s$ and $m_q$. Furthermore, the nucleon scalar density $\\rho_s$, which also enters the computation of $$, is evaluated within the nonlinear $\\sigma-\\omega$ model which is constraint by Dirac-Brueckner calculations and low energy...
Takahashi, Y.; Eby, P. B.
1985-01-01
Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.
Chiral symmetry restoration in heavy-ion collisions at intermediate energies
Palmese, A; Seifert, E; Steinert, T; Moreau, P; Bratkovskaya, E L
2016-01-01
We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range $\\sqrt{s_{NN}}$=3-20 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear $\\sigma-\\omega$ model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations.
A method of eta' decay product selection to study partial chiral symmetry restoration
Csanad, Mate
2011-01-01
In case of chiral U_A(1) symmetry restoration the mass of the eta' boson (the ninth, would-be Goldstone boson) is decreased, thus its production cross section is heavily enhanced. The eta' decays (through one of its decay channels) into five pions. These pions will not be correlated in terms of Bose-Einsten correlations, thus the production enhancement changes the strength of two-pion correlation functions at low momentum. Preliminary results strongly support the mass decrease of the eta' boson. In this paper we propose a method to select pions coming from eta' decays. We investigate the efficiency of the proposed kinematical cut in several collision systems and energies with several simulators. We prove that our method can be used in all investigeted collision systems.
Fischer, Tobias; Hempel, Matthias
2016-01-01
The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Kl\\"ahn and Fischer (2015) (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D$\\chi$SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.
Localization and chiral symmetry in 2+1 flavor domain wall QCD
Energy Technology Data Exchange (ETDEWEB)
David J. Antonio; Kenneth C. Bowler; Peter A. Boyle; Norman H. Christ; Michael A. Clark; Saul D. Cohen; Chris Dawson; Alistair Hart; Balint Joó; Chulwoo Jung; Richard D. Kenway; Shu Li; Meifeng Lin; Robert D. Mawhinney; Christopher M. Maynard; Shigemi Ohta; Robert J. Tweedie; Azusa Yamaguchi
2008-01-01
We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3\\times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} \\ge 1.6$ GeV.
Stefani, F; Giesecke, A; Weber, N; Weier, T
2016-01-01
The current-driven, kink-type Tayler instability (TI) is a key ingredient of the Tayler-Spruit dynamo model for the generation of stellar magnetic fields, but is also discussed as a mechanism that might hamper the up-scaling of liquid metal batteries. Under some circumstances, the TI involves a helical flow pattern which goes along with some alpha effect. Here we focus on the chiral symmetry breaking and the related impact on the alpha effect that would be needed to close the dynamo loop in the Tayler-Spruit model. For low magnetic Prandtl numbers, we observe intrinsic oscillations of the alpha effect. These oscillations serve then as the basis for a synchronized Tayler-Spruit dynamo model, which could possibly link the periodic tidal forces of planets with the oscillation periods of stellar dynamos.
Mass limits for the chiral color symmetry G‧-boson from LHC dijet data
Frolov, I. V.; Smirnov, A. D.
2016-07-01
The contributions of G‧-boson predicted by the chiral color symmetry of quarks to the differential dijet cross-sections in pp-collisions at the large hadron collider (LHC) are calculated and analyzed in dependence on two free parameters of the model, the G‧ mass mG‧ and mixing angle 𝜃G. The exclusion and consistency mG‧- 𝜃G regions imposed by the ATLAS and CMS data on dijet cross-sections are found. Using the CT10 (MSTW2008) parton distribution function (PDF) set we show that the G‧-boson for 𝜃G = 45∘, i.e. the axigluon, with the masses mG‧ probability level of 95% by the ATLAS and CMS dijet data, respectively. For the other values of 𝜃G the exclusion limits are more stringent. The mG‧- 𝜃G regions consistent with these data at CL = 68% and CL = 90% are also found.
Localization and chiral symmetry in 2+1 flavor domain wall QCD
International Nuclear Information System (INIS)
We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a 163 x 32 space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings a-1 (ge) 1.6 GeV
Institute of Scientific and Technical Information of China (English)
CHEN Wan-Chun; CHEN Xiao-Long
2007-01-01
@@ We investigate the influence of dc electric field on chiral symmetry breaking during the growing process of NaClO3 crystal. Nucleation and growth of NaClO3 are completed from an aqueous solution by a fast cooling temperature technology. A pair of polarization microscopes are used to identify a distribution of chiral crystals. Experimental results indicate that the dc electric field has an effect on distribution of chirality, but the direction of the dc electric field is not sensitive to the chiral autocatalysis and selectivity, i.e. the nature convection driving by the gravity does not play an important role on a thin layer of NaClO3 solution. The experimental phenomena may be elucidated by the ECSN mechanism.
Chiral Symmetry Restoration, Naturalness and the Absence of Fine-Tuning I: Global Theories
Lynn, Bryan W
2013-01-01
The Standard Model (SM), and the scalar sector of its zero-gauge-coupling limit -- the chiral-symmetric limit of the Gell Mann-Levy Model (GML) -- have been shown not to suffer from a Higgs Fine-Tuning (FT) problem. All ultraviolet quadratic divergences (UVQD) are absorbed into the mass-squared of pseudo Nambu-Goldstone (pNGB) bosons, in GML. Since chiral SU(2)_{L-R} symmetry is restored as the pNGB mass-squared or as the Higgs vacuum expectation value (VEV) are taken to 0, small values of these quantities and of the Higgs mass are natural, and therefore not Fine-Tuned. In this letter, we extend our results on the absence of FT to a wide class of high-mass-scale (M_{Heavy}>>m_{Higgs}) extensions to a simplified SO(2) version of GML. We explicitly demonstrate naturalness and no-FT for two examples of heavy physics, both SO(2) singlets: a heavy (M_S >> m_{Higgs}) real scalar field (with or without a VEV); and a right-handed Type 1 See-Saw Majorana neutrino with M_R >> m_{Higgs}. We prove that for |q^2| <<...
Topology in the SU(Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology
Azcoiti, Vicente
2016-01-01
We investigate the topological properties of unquenched QCD on the basis of numerical results of simulations at fixed topological charge, recently reported by Borsanyi et al., and analytical predictions of the dilute instanton gas approximation. We demonstrate that the mean value of the chiral condensate at fixed topological charge is, in both cases, inconsistent with the analytical prediction of the large volume expansion around the saddle point, and argue that the most plausible explanation for the failure of the saddle point expansion is a vacuum energy density theta-independent at high temperatures, but surprisingly not too high (T\\sim 2T_c), a result which would imply a vanishing topological susceptibility, and the absence of all physical effects of the U(1) axial anomaly at these temperatures. We also show that under a general assumption concerning the high temperature phase of QCD, where the SU(Nf)_A symmetry is restored, the analytical prediction for the chiral condensate at fixed topological charge i...
Vanderheyden, B J; Vanderheyden, Benoit
2000-01-01
We consider a random matrix model which describes the competition between chiral symmetry breaking and the formation of quark Cooper pairs in QCD at finite density. We study the evolution of the phase structure in temperature and chemical potential with variations of the strength of the interaction in the quark-quark channel and demonstrate that the phase diagram can realize a total of six different topologies. A vector interaction representing single-gluon exchange reproduces a topology commonly encountered in previous QCD models, in which a low-density chiral broken phase is separated from a high-density diquark phase by a first-order line. The other five topologies either do not possess a diquark phase or display a new phase and new critical points. Since these five cases require large variations of the coupling constants away from the values expected for a vector interaction, we conclude that the phase diagram of finite density QCD has the topology suggested by single-gluon exchange and that this topology...
Cluster expansions and chiral symmetry at large density in 2-color QCD
Tomboulis, E T
2015-01-01
$SU(N_c)$ lattice gauge theories with $N_f$ flavors of massless staggered fermions are considered at high quark chemical potential $\\mu$ and any temperature $T$. In the strong coupling regime (sufficiently small $\\beta$) they have been shown to possess a chiral phase of intact global $U(N_f)\\times U(N_f)$ symmetry. The proof is by cluster expansions which converge in the infinite volume limit. Extension to weaker coupling does not appear feasible in the presence of complex fermion determinant. For theories with real determinant, however, such as 2-color QCD with fundamental fermions, or any $N_c$ with even $N_f$ and adjoint fermions, such large $\\mu$ cluster expansions can be used to show chiral behavior of fermionic lattice observables at any gauge coupling. Unfortunately, this absence of color superfluidity/superconductivity at high $\\mu$ appears to be a lattice artifact due to lattice saturation, a serious problem plaguing the standard finite density formalism on the lattice. Some possible ways of circumve...
Energy Technology Data Exchange (ETDEWEB)
Alexandru, Andrei [George Washington University, Washington, DC (United States); Horváth, Ivan [University of Kentucky, Lexington, KY, USA (the speaker) (United States)
2016-01-22
The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass–degenerate fundamental quark flavors. We find that the vSChSB–ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass m{sub c} such that for m > m{sub c} the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for m{sub ch} < m < m{sub c} the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses m < m{sub ch}, but this has not yet been seen by overlap valence probe, leaving the m{sub ch} = 0 possibility open. The latter option could place massless N{sub f}=12 theory outside of conformal window. Anomalous behavior of overlap Dirac spectrum for m{sub ch} < m < m{sub c} is qualitatively similar to one observed previously in zero and few–flavor theories as an effect of thermal agitation.
Timofeev, Ivan V
2016-01-01
A new optical state is described both analytically and numerically at the boundary of a chiral medium with continuous helical symmetry of the dielectric tensor. The tangential wave number is assumed to be zero. The state appears to be localized near the boundary. It does not transfer energy along this boundary and falls off exponentially with the distance from the boundary. The field penetration into chiral medium is blocked at wavelengths close to the helical pitch and corresponding to the photonic band gap. The polarization of light near the boundary has the same sign of chirality as the helical medium. It is shown that the homogeneous environment, or the substrate must exhibit the anisotropic metallic reflection. Spectral manifestation of the state is determined by the angle between the optical axes at the interface. A realistic example is considered at the boundary of a cholesteric liquid crystal and a metal-dielectric anisotropic nanocomposite.
Chiral symmetry breaking from two-loop effective potential of the holographic non-local NJL model
International Nuclear Information System (INIS)
We calculate the two-loop effective potential of the non-local Nambu–Jona–Lasinio (NJL) model derived from the Sakai–Sugimoto model in string theory. In contrast to the conventional NJL with 4-fermion contact interaction, the chiral symmetry was previously found to be dynamically broken for an arbitrary weak coupling at the one-loop level. As a confirmation, the approximate numerical solutions to the gap equation at the one-loop level are explicitly demonstrated for weak couplings. We then calculate the one- and two-loop contributions to the effective potential of the non-local NJL model and found that the two-loop contribution is negative. The two-loop potential for the chiral-symmetric vacuum is also negative but larger than the combined effective potential of the chiral broken vacuum at the two-loop level. The chiral symmetry breaking thus persists for the arbitrary weak coupling at the two-loop level. (paper)
Ebert, D; Klimenko, K G
2016-01-01
In this paper we investigate the phase structure of a (1+1)-dimensional schematic quark model with four-quark interaction and in the presence of baryon ($\\mu_B$), isospin ($\\mu_I$) and chiral isospin ($\\mu_{I5}$) chemical potentials. It is established that in the large-$N_c$ limit ($N_c$ is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation (PC) one. The role and influence of this property on the phase structure of the model are studied. Moreover, it is shown that the chemical potential $\\mu_{I5}$ promotes the appearance of the charged PC phase with nonzero baryon density.
Global Currents, Phase Transitions, and Chiral Symmetry Breaking in Large N_c Gauge Theory
Albash, T; Johnson, C V; Kundu, A; Albash, Tameem; Filev, Veselin; Johnson, Clifford V.; Kundu, Arnab
2006-01-01
We study the finite temperature dynamics of SU(N_c) gauge theory for large N_c, with fundamental quark flavours in a quenched approximation, in the presence of a fixed charge under a global current. We observe several notable phenomena. There is a first order phase transition where the quark condensate jumps discontinuously at finite quark mass, generalizing similar transitions seen at zero charge. We find a non-zero condensate at zero quark mass above a critical value of the charge, corresponding to an analogue of spontaneous chiral symmetry breaking at finite number density. We find that the spectrum of mesons contains the expected associated Goldstone (``pion'') degrees of freedom with a mass dependence on the quark mass that is consistent with the Gell-Mann-Oakes-Renner relation. Our tool in these studies is holography, the string dual of the gauge theory being the geometry of $N_c$ spinning D3-branes at finite temperature, probed by a D7-brane.
Mass limits for the chiral color symmetry $G'$-boson from LHC dijet data
Frolov, I V
2016-01-01
The contributions of $G'$-boson predicted by the chiral color symmetry of quarks to the differential dijet cross-sections in $pp$-collisions at the LHC are calculated and analysed in dependence on two free parameters of the model, the $G'$ mass $m_{G'}$ and mixing angle $\\theta_G$. The exclusion and consistency $m_{G'}-\\theta_G$ regions imposed by the ATLAS and CMS data on dijet cross-sections are found. Using the CT10 (MSTW~2008) PDF set we show that the $G'$-boson for $\\theta_G=45^{\\circ}$, i.e. the axigluon, with the masses $m_{G'} < 2.3 \\,\\, (2.6) \\,\\, \\mbox{TeV}$ and $m_{G'} < 3.35 \\,\\, (3.25) \\,\\, \\mbox{TeV}$ is excluded at the probability level of $95\\%$ by the ATLAS and CMS dijet data respectively. For the other values of $\\theta_G$ the exclusion limits are more stringent. The $m_{G'}-\\theta_G$ regions consistent with these data at $CL=68\\%$ and $CL=90\\%$ are also found.
International Nuclear Information System (INIS)
We show that in certain limits the (1+1)-dimensional massive Thirring model at finite temperature T is equivalent to a one-dimensional Coulomb gas of charged particles at the same T. This equivalence is then used to explore the phase structure of the massive Thirring model. For strong coupling and T >>m (the fermion mass), the system is shown to behave as a free gas of 'molecules' (charge pairs in the Coulomb gas terminology) made of pairs of chiral condensates. This binding of chiral condensates is responsible for the restoration of chiral symmetry as T→∞. In addition, when a fermion chemical potential μ≠0 is included, the analogy with a Coulomb gas still holds with μ playing the role of a purely imaginary external electric field. For small T and μ we find a typical massive Fermi gas behaviour for the fermion density, whereas for large μ it shows chiral restoration by means of a vanishing effective fermion mass. Some similarities with the chiral properties of low-energy QCD at finite T and baryon chemical potential are discussed
Extended partially conserved axial-vector current hypothesis and chiral-symmetry breaking
International Nuclear Information System (INIS)
An extended partially conserved axial-vector current (PCAC) hypothesis that incorporates a family of heavy bosons in a model-independent way is proposed. This is motivated by the impossibility of accounting for the corrections to Goldberger-Treiman relations, both in SU(2) x SU(2) and SU(3) x SU(3), by means of ordinary dynamical mechanisms (many-particle intermediate states). This new hypothesis coupled with an assumption on the strong-coupling constants of the heavy bosons leads to the following results: (i) A universality among the corrections to Goldberger-Treiman relations for ΔS = 0 decays, Δ/sub π/, on the one hand and for ΔS not-equal 0 decays, Δ/sub K/, on the other. (ii) From this universality there follow two sets of sum rules involving masses and strong and weak coupling constants. These sum rules become identities in the chiral as well as in the SU(3) limit and although a definite check has to await for the advent of accurate hyperon data, there are indications that they might be saturated. (iii) By studying the Dashen-Weinstein sum rules, new sets of sum rules involving only strong coupling constants are predicted as well as an expression for Δ/sub π//Δ/sub K/ in good agreement with present data. (iv) It is found that Δ/sub π/ and Δ/sub K/, which are a measure of chiral-symmetry breaking, determine completely the on-mass-shell corrections to soft-meson theorems. Since both Δ/sub π/ and Δ/sub K/ are known experimentally, a calculation is made of the on-mass-shell amplitudes for π0 → γγ, eta → γγ, eta → ππγ, γ → πππ,and γγ → πππ starting from the zero-mass limits implied by anomalous Ward identities. In particular, it is found that the results for the radiative eta decays are in agreement with present experimental data without the need for invoking eta-eta' mixing
International Nuclear Information System (INIS)
In this thesis we consider two main subjects, both of them utilizing lattice QCD. This is a rigorously defined approach to quantum field theory and allows for both, for a theoretical analysis and subsequent numerical studies. All techniques and quantities, which need to be introduced, are shortly discussed in the first chapter, in order to fix the notation. Two of the key features of QCD, which are still challenging questions, are chiral symmetry breaking and confinement. For the spontaneous breaking of chiral symmetry the situation is clearer. The main part of this work focuses on gluonic quantities, like the Polyakov loop or the potential of two static color charged particles. They are all either order parameters or give a clear distinguishable signal as one crosses the phase transition from the confined to the deconfined phase. It will be shown that we can reconstruct these quantities out of Dirac spectra in a mathematically exact way. An essential part of the spectral representation is the use of various fermionic boundary conditions for the compactified time direction. When varying the boundary conditions the spectrum undergoes a shift and out of these shifts we can reconstruct our gluonic quantities. As a first observable we consider the thin Polyakov loop P, which signals the deconfinement transition, and analyse its spectral representation in full and quenched QCD. For SU(3) gauge theory the spectral representation of P is made from three Dirac spectra, each one for a different boundary condition in the temporal direction. We examine several aspects of the spectral representation of P, such as eigenvalue distributions, shifts due to varying boundary conditions, individual and accumulated contributions from particular eigenmodes. It turns out that the thin Polyakov loop P is, in both phases, strongly dominated from the ultraviolet part of the spectrum. Furthermore we observe a suppressed sensitivity of the spectrum to varying boundary conditions in the
Symmetry Breaking in Chiral Ionic Liquids Evidenced by Vibrational Optical Activity.
Oulevey, Patric; Luber, Sandra; Varnholt, Birte; Bürgi, Thomas
2016-09-19
Ionic liquids (ILs) are receiving increasing interest for their use in synthetic laboratories and industry. Being composed of charged entities, they show a complex and widely unexplored dynamic behavior. Chiral ionic liquids (CILs) have a high potential as solvents for use in asymmetric synthesis. Chiroptical methods, owing to their sensitivity towards molecular conformation, offer unique possibilities to study the structure of these chiral ionic liquids. Raman optical activity proved particularly useful to study ionic liquids composed of amino acids and the achiral 1-ethyl-3-methylimidazolium counterion. We could substantiate, supported by selected theoretical methods, that the achiral counterion adopts an overall chiral conformation in the presence of chiral amino acid ions. These findings suggest that in the design of chiral ionic liquids for asymmetric synthesis, the structure of the achiral counter ion also has to be carefully considered.
Mishra, H
2001-01-01
We discuss in this note simultaneous existence of chiral symmetry breaking and color superconductivity at finite temperature and density in a Nambu-Jona-Lasinio type model. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. There exist nontrivial solutions to the gap equations at finite densities with both quark-antiquark as well as diquark condensates for the 'ground' state. However, such a phase is thermodynamically unstable with the pressure being negative in this region. We also compute the equation of state, and obtain the structure of the phase diagram in the model.
Specific features and symmetries for magnetic and chiral bands in nuclei
Raduta, A. A.
2016-09-01
Magnetic and chiral bands have been a hot subject for more than twenty years. Therefore, quite large volumes of experimental data as well as theoretical descriptions have been accumulated. Although some of the formalisms are not so easy to handle, the results agree impressively well with the data. The objective of this paper is to review the actual status of both experimental and theoretical investigations. Aiming at making this material accessible to a large variety of readers, including young students and researchers, I gave some details on the schematic models which are able to unveil the main features of chirality in nuclei. Also, since most formalisms use a rigid triaxial rotor for the nuclear system's core, I devoted some space to the semi-classical description of the rigid triaxial as well as of the tilted triaxial rotor. In order to answer the question whether the chiral phenomenon is spread over the whole nuclear chart and whether it is specific only to a certain type of nuclei, odd-odd, odd-even or even-even, the current results in the mass regions of A ∼ 60 , 80 , 100 , 130 , 180 , 200 are briefly described for all kinds of odd/even-odd/even systems. The chiral geometry is a sufficient condition for a system of proton-particle, neutron-hole and a triaxial rotor to have the electromagnetic properties of chiral bands. In order to prove that such geometry is not unique for generating magnetic bands with chiral features, I presented a mechanism for a new type of chiral bands. One tries to underline the fact that this rapidly developing field is very successful in pushing forward nuclear structure studies.
Chiral symmetry breaking and confinement in Minkowski space QED2+1
International Nuclear Information System (INIS)
Without any analytical assumption we solve the ladder QED2+1 in Minkowski space. Obtained complex fermion propagator exhibits confinement in the sense that it has no pole. Further, we transform Greens functions to the Temporal Euclidean space, wherein we show that in the special case of ladder QED2+1 the solution is fully equivalent to the Minkowski one. Obvious invalidity of Wick rotation is briefly discussed. The infrared value of the dynamical mass is compared with other known approaches, e. g. with the standard Euclidean calculation. We have presented for the first analysis of the electron gap equation in Minkowski and Temporal Euclidean space. The dynamical generation of imaginary part of the fermion mass leads to the absence of Khallen-Lehmann representation, providing thus confining solution for all value of m. Apart very small κ the real pole in the propagator is absent as well. Similarly to Euclidean QED3 Minkowski QED2+1 exhibits spontaneous chiral symmetry breaking the mass function has nontrivial solution in the limit m = 0, however the mass is complex function. Furthermore, we compare with QED solved in similar approximation in spacelike Euclidean and Temporal Euclidean space. As a interesting results, although based on the simple ladder approximation, is the proof of the exact equivalence between the theories defined in Minkowski 2+1 and 3D Temporal Euclidean space. We expect large quantitative changes when the polarization effect is taken account, especially the existence of critical number of flavors can be different when compared to the known Euclidean space estimates. Opposite to naive belief we showed and explained that the Wick rotation -the well known calculational trick in quantum theory- provides continuation of Schwinger function of the Euclidean theory which do not correspond with the Greens function calculated directly in the original Minkowski space. We can note our finding has a little to do with the know usefulness of various
Lorentz symmetry violation in the fermion number anomaly with the chiral overlap operator
Makino, Hiroki
2016-01-01
Recently, Grabowska and Kaplan proposed a 4-dimensional lattice formulation of chiral gauge theories on the basis of a chiral overlap operator. We compute the classical continuum limit of the fermion number anomaly in this formulation. Unexpectedly, we find that the anomaly contains a term which is not Lorentz invariant. The term is however proportional to the gauge anomaly coefficient and thus the fermion number anomaly in this lattice formulation automatically restores the Lorentz invariant form when and only when the anomaly cancellation condition is met.
Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light
Noorduin, Wim L.; Bode, Arno A.C.; Meijden, Maarten van der; Meekes, Hugo; Etteger, Albert F. van; Enckevort, Willem J.P. van; Christianen, Peter C.M.; Kaptein, Bernard; Kellogg, Richard M.; Rasing, Theo; Vlieg, Elias
2009-01-01
Circularly polarized light (CPL) emitted from star-forming regions is an attractive candidate as a cause of single chirality in nature. It has remained difficult, however, to translate the relatively small chemical effects observed on irradiation of molecular systems with CPL into high enantiomeric
Energy Technology Data Exchange (ETDEWEB)
Hilger, Thomas Uwe
2012-04-11
The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes D{sub s} and D{sup *}{sub 0} mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.
International Nuclear Information System (INIS)
The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes Ds and D*0 mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.
Samart, Daris; Nualchimplee, Chakrit; Yan, Yupeng
2016-06-01
In this work we construct a chiral SU(3) Lagrangian with D mesons of spin JP=0- and JP=1- and charmed baryons of spin JP=1 /2+ and JP=3 /2+. There are 42 leading two-body counterterms involving two charmed baryon fields and two D meson fields in the constructed Lagrangian. The heavy-quark spin symmetry leads to 35 sum rules, while the large-Nc operator analysis predicts 29 at the next-to leading order of the 1 /Nc expansion. The combination of the sum rules from both the heavy-quark symmetry and the large-Nc analysis results in 38 independent sum rules, which reduces the number of free parameters in the chiral Lagrangian to only four. This is a remarkable result demonstrating the consistency of the heavy-quark symmetry and large-Nc operator analysis.
Samart, Daris; Yan, Yupeng
2016-01-01
We construct, in the work, chiral $SU(3)$ Lagrangian with $D$ mesons of spin $J^P=0^-$ and $J^P=1^-$ and charmed baryons of spin $J^P=1/2^+$ and $J^P=3/2^+$. There are 42 leading two-body counter-terms involving two charmed baryon fields and two $D$ meson fields in the constructed Lagrangian. The heavy-quark spin symmetry leads to 35 sum rules while the large-$N_c$ operator analysis predicts 29 ones at the next-to leading order of $1/N_c$ expansion. The combination of the sum rules from both the heavy-quark symmetry and the large-$N_c$ analysis results in 38 independent sum rules which reduces the number of free parameters in the chiral Lagrangian down to 4 only. This is a remarkable result demonstrating the consistency of the heavy-quark symmetry and large-$N_c$ operator analysis.
Katanin, A.
2016-01-01
In this paper, we consider the possibility of chiral (charge or spin density wave) symmetry breaking in graphene due to long-range Coulomb interaction by comparing the results of the Bethe-Salpeter and functional renormalization-group approaches. The former approach performs a summation of ladder diagrams in the particle-hole channel and reproduces the results of the Schwinger-Dyson approach for the critical interaction strength of the quantum phase transition. The renormalization-group approach combines the effect of different channels and allows to study the role of vertex corrections. The critical interaction strength, which is necessary to induce the symmetry breaking in the latter approach, is found in the static approximation to be αc=e2/(ɛ vF) ≈1.05 without considering the Fermi velocity renormalization, and αc=3.7 with accounting the renormailzation of the Fermi velocity. The latter value is expected to be, however, reduced, when the dynamic screening effects are taken into account, yielding the critical interaction, which may be comparable to the one in freely suspended graphene. We show that the vertex corrections are crucially important to obtain the mentioned values of critical interactions.
On the role of dynamical quark mass generation in chiral symmetry breaking in QCD
Sazdjian, H
2015-01-01
The phenomenon of dynamical quark mass generation is studied in QCD within the framework of a gauge invariant formalism. An exact relationship is established between the equation satisfied by the scalar part of the two-point gauge invariant quark Green's function and the quark-antiquark bound state equation in the chiral limit. A possible nontrivial solution of the former yields a massless pseudoscalar solution of the bound state equation with vanishing total momentum. The result is also corroborated by the corresponding Ward-Takahashi identity. The problem is explicitly solved in two-dimensional QCD in the large-$N_c$ limit.
Triplets, Static SU(6), and Spontaneously Broken Chiral SU(3) Symmetry
Nambu, Y.
1966-01-01
I would like to present here my view of the current problems of elementary particle theory. It is largely inspired by the recent successes of SU(3) and SU(6) symmetries, and more or less summarizes what I have been pursuing lately. For the details of individual problems I must refer to the original papers. However, what is emphasized here is not the details, but a coherent overall picture plus some speculations which cannot yet be formulated precisely.
Blanco, Celia; Ribó, Josep M; Hochberg, David
2015-02-01
We derive the class of population balance equations (PBE), recently applied to model the Viedma deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes erases the microreversible nature of the molecular interactions in the population growth rate functions and limits the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the ideal racemic composition up to observable enantiometric excess levels.
Sheikh, J A; Dar, W A; Jehangir, S; Ganai, P A
2015-01-01
A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of $\\gamma$-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, $\\gamma$-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering $\\gamma$-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the $\\gamma$-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of $\\gamma$-bands observed up to the highest spin in Dysposium, Hafnium, Mercury and Uranium isotopes. Furthermore, several measurements related to chira...
Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries
Juchtmans, Roeland
2015-01-01
In this work we present an alternative way to look at electron diffraction in a transmission electron microscope. In stead of writing the scattering amplitude in Fourier space as a set of plane waves, we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating e.g. rotation and screw axis symmetries. For the latter we find selection rules on the OAM-coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM-coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample nor the exact crystal structure. We propose an experimental setup to measure the OAM-components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform mulsti-slice simulations on $\\alpha$-q...
What the Gribov copy tells on the confinment and the theory of dynamical chiral symmetry breaking
Furui, S; Furui, Sadataka; Nakajima, Hideo
2004-01-01
We performed lattice Landau gauge QCD simulation on $\\beta=6.0, 16^4, 24^4, 32^4$ and $\\beta=6.4, 32^4, 48^4$ and $56^4$ by adopting the gauge fixing that minimizes the norm of the gauge field, and measured the running coupling by using the gluon propagator and the ghost propagator. It has a maximum $\\alpha_s(q)\\simeq 1.1$ at around $q=0.5$ GeV and decreases as $q$ approaches 0. The infrared exponent of the ghost propagator is $\\kappa=0.2$ in the gauge fixing, but there is an exceptional configuration $\\kappa=0.27$, and the running coupling using this configuration is consistent with the Dyson-Schwinger approach with infrared fixed point $\\alpha_0=1.5$. The features of the exceptional configuration are investigated by measuring one-dimensional Fourier transform(1-d FT) of the gluon propagator transverse to 4 lattice axes. We observe that the rotational symmetry of the exceptional configuration is broken and the 1-d FT along a specific axis violates reflection positivity and the average of the Cartan subalgebr...
The Effect of Retardation on the Spontaneous Breaking of Chiral Symmetry in GCM
Institute of Scientific and Technical Information of China (English)
YANG Sheng-Dong; ZHAI Chen-Yang; ZHOU Zhi-Ning; YANG Ze-Sen
2001-01-01
An effective Hamiltonian including current-current coupling from the global color symmetry model is -R2 2derived.Retardation effects are introduced by the factor ( R/ ) e ,instead of δ (r) in the correlation kernel,from which the retardation gap equation with α-α coupling in the 3po vacuum is obtained,qq condensations of different retardation parameters R with or without the α-α term are calculated.The results show the effects of retardation,and indicate that the typical value of R is about 2 fm-1 at reasonable value of qq condensation.And while taking typical value 1 fm-1 of R,the condensation 1/3 is about 13% larger than that with no retardation effect.With the α-αterms,the condensation (qq) 1/3 is about 17%o larger than that without it for all values of the parameter R.This shows that the retardation effects and the α-α terms are important for further studying in the Iow-energy region.``
Van Hooydonk, G
2000-11-01
Following recent work in search for a universal function (Van Hooydonk, Eur. J. Inorg. Chem., (1999), 1617), we test four symmetric +/- a(n)Rn potentials for reproducing molecular potential energy curves (PECs). Classical gauge symmetry for 1/R-potentials results in generic left right asymmetric PECs. A pair of symmetric perturbed Coulomb potentials is quantitatively in accordance with observed PECs. For a bond, a four-particle system, charge inversion (a parity effect, atom chirality) is the key to explain this shape generically. A parity adapted Hamiltonian reduces from ten to two terms and to a soluble Bohr-like formula, a Kratzer (1 - Re/R)2 potential. The result is similar to the combined action of spin and wave function symmetry upon the Hamiltonian in Heitler-London theory. Analytical perturbed Coulomb functions varying with (1 - Re/R) scale attractive and repulsive branches of PECs for 13 bonds H2, HF, LiH, KH, AuH, Li2, LiF, KLi, NaCs, Rb2, RbCs, Cs2 and I2 in a single straight line. The 400 turning points for 13 bonds are reproduced with a deviation of 0.007 A at both branches. For 230 points at the repulsive side, the deviation is 0.003 A. The perturbed electrostatic Coulomb law is a universal molecular function. Ab initio zero molecular parameter functions give PECs of acceptable quality, just using atomic ionisation energies. The function can be used as a model potential for inverting levels and gives a first principle's comparison of short- and long-range interactions, important for the study of cold atoms. Wave-packet dynamics, femto-chemistry applied to the crossing of covalent and ionic curves, can provide evidence for this theory. We anticipate this scale/shape invariant scheme applies to smaller scales in nuclear and high-energy particle physics. For larger gravitational scales (Newton 1/R potentials), problems with super-unification are discussed. Reactions between hydrogen and antihydrogen, feasible in the near future, will probably produce
Ribó, Josep M; El-Hachemi, Zoubir; Moyano, Albert; Blanco, Celia; Hochberg, David; 10.1089/ast.2012.0904
2013-01-01
The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution nor in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continous internal flow. In such conditions the system can evolve, for certain reaction and system parameters, towards a chiral stationary state, i.e., the system is able to reach a bifurcation point leading to SMSB. Numerical simulations using reasonable ch...
Kondratyuk, S; Myhrer, F; Scholten, O
2004-01-01
The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: 1) by evaluating of the scattering amplitude at the corresponding low-energy kinematics and 2) by evaluating the sum-rule integrals with the calculated total cross section. The discrepancy between the results of the two methods provides a measure of the breaking of analyticity and chiral symmetry in the model. The contribution of the $\\Delta$ resonance, including its dressing with meson loops, is discussed in some detail and found to be small.
Detecting the chirality for coupled quantum dots
Energy Technology Data Exchange (ETDEWEB)
Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com
2008-04-21
We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.
Sengupta, Parijat; Bellotti, Enrico
2016-01-01
Polarization-sensitive devices rely on meta-materials to exhibit varying degrees of absorption of light of a given handedness. The chiral surface states of a topological insulator selectively absorb right- and left-circularly polarized light in the vicinity of the Dirac cone reaching its maximum of unity at the Γ point. In this letter, we show that a band gap open topological insulator with C2v symmetry, which is represented through a combination of Rashba and Dresselhaus Hamiltonians, alters the preferential absorption of left- and right-circularly polarized light allowing a smooth variation of the circular dichroism. This variation in circular dichroism, in a range of positive and negative values, is shown to be a function of the Rashba and Dresselhaus coupling parameters.
Energy Technology Data Exchange (ETDEWEB)
D. J. Antonio; T. Blum; K. C. Bowler; P. A. Boyle; N. H. Christ; S. D. Cohen; M. A. Clark; C. Dawson; A. Hart; K. Hashimoto; T. Izubuchi; B. Joó; C. Jung; A. D. Kennedy; R. D. Kenway; S. Li; H. W. Lin; M.F. Lin; R. D. Mawhinney; C.M. Maynard; J. Noaki; S. Ohta; S. Sasaki; A. Soni; R. J. Tweedie; A. Yamaguchi
2007-06-01
We present results for the static interquark potential, light meson and baryon masses, and light pseudoscalar meson decay constants obtained from simulations of domain wall QCD with one dynamical flavour approximating the $s$ quark, and two degenerate dynamical flavours with input bare masses ranging from $m_s$ to $m_s/4$ approximating the $u$ and $d$ quarks. We compare these quantities obtained using the Iwasaki and DBW2 improved gauge actions, and actions with larger rectangle coefficients, on $16^3\\times32$ lattices. We seek parameter values at which both the chiral symmetry breaking residual mass due to the finite lattice extent in the fifth dimension and the Monte Carlo time history for topological charge are acceptable for this set of quark masses at lattice spacings above 0.1 fm. We find that the Iwasaki gauge action is best, demonstrating the feasibility of using QCDOC to generate ensembles which are good representations of the QCD path integral on lattices of up to 3 fm in spatial extent with lattice spacings in the range 0.09-0.13 fm. Despite large residual masses and a limited number of sea quark mass values with which to perform chiral extrapolations, our results for light hadronic physics scale and agree with experimental measurements within our statistical uncertainties.
Chiral Gravitational Waves from Chiral Fermions
Anber, Mohamed M
2016-01-01
We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.
Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari
2008-12-01
Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.
Gleiser, Marcelo; Walker, Sara Imari
2008-01-01
Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.
Spiral Galaxies as Chiral Objects?
Capozziello, S; Capozziello, Salvatore; Lattanzi, Alessandra
2005-01-01
Spiral galaxies show axial symmetry and an intrinsic 2D-chirality. Environmental effects can influence the chirality of originally isolated stellar systems and a progressive loss of chirality can be recognised in the Hubble sequence. We point out a preferential modality for genetic galaxies as in microscopic systems like aminoacids, sugars or neutrinos. This feature could be the remnant of a primordial symmetry breaking characterizing systems at all scales.
Energy Technology Data Exchange (ETDEWEB)
Araujo, Vanilse da Silva
1997-12-31
In this work we study the effects of chiral symmetry in the pion-nucleon coupling constant in the context of the linear {sigma}- model. First, we introduce the linear {sigma}-model and we discuss the phenomenological hypothesis of CVC and PCAC. Next, we calculate the coupling constant g+{pi}{sub NN}(q{sup 2}) and the nucleon pionic mean square radius considering the contribution of all the diagrams up to one-loop in the framework of the linear {sigma}-model for different values of the mass of the sigma meson and we compare them with the phenomenological form factors. Finally we make an extension of the linear {sigma}-model that consists of taking into account the mass differences of ions and nucleons into the Lagrangian of the model, to study the change dependence of g{sub {pi}nn} (q{sup 2}) and of the mean square radius. (author) 21 refs., 17 figs., 4 tabs.
International Nuclear Information System (INIS)
An essential distinction in the relaization of the PCAC dynamics in asymptotically free and non-asymptotically free (with a non-trivial ultraviolet-stable fixed point) gauge theories is revealed. For the latter theories an analytical expressions for the condensate is obtained in the two-loop approximation and arguments of support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed. Besides, the mass relations for pseudoscalar mesons in arbitrary Θ-sector are obtained in the first order in fermion bare masses and the impossibility for spontaneous P and CP-symmetries breaking in vector-like gauge theories at Θ=0 is shown
Haupert, Levi M.; Simpson, Garth J.
2009-05-01
The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.
Scaling laws in chiral hydrodynamic turbulence
Yamamoto, Naoki
2016-01-01
We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.
Scaling laws in chiral hydrodynamic turbulence
Yamamoto, Naoki
2016-06-01
We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry, only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.
Chiral Structure of Baryon and Scalar Tetraquark Currents
Directory of Open Access Journals (Sweden)
Chen Hua-Xing
2014-03-01
Full Text Available We investigate chiral properties of local fields of baryons consisting of three quarks with flavor SU(3 symmetry. We construct explicitly independent local threequark fields belonging to definite Lorentz and flavor representations. We discuss some implications of the allowed chiral symmetry representations on physical quantities such as axial coupling constants and chiral invariant Lagrangians. We also systematically investigate chiral properties of local scalar tetraquark currents, and study their chiral transformation properties.
Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong
2016-06-01
Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.
Neutrino Oscillation Induced by Chiral Phase Transition
Institute of Scientific and Technical Information of China (English)
MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei
2009-01-01
Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.
Chiral forces and molecular dissymmetry
International Nuclear Information System (INIS)
Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected
Chiral phases of fundamental and adjoint quarks
Energy Technology Data Exchange (ETDEWEB)
Natale, A. A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC 09210-170, Santo André, SP (Brazil); Instituto de Física Teórica - UNESP Rua Dr. Bento T. Ferraz, 271, Bl.II - 01140-070, São Paulo, SP (Brazil)
2016-01-22
We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.
Symmetries, Symmetry Breaking, Gauge Symmetries
Strocchi, Franco
2015-01-01
The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...
Chiral gap effect in curved space
Flachi, Antonino
2014-01-01
We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.
Quark structure of chiral solitons
Diakonov, D
2004-01-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
Cortes, Santiago; Morales, John
2016-01-01
In this work, we review how the mass and the width of the $f_{0}(500)$ pole behave in a regime where temperature is below the critical chiral transition value. This is attained by considering a large-$N$ $O(N + 1)/O(N)$ invariant Non-Linear Sigma Model (NLSM) such that we can study the dynamical generation of a $f_{0}(500)$ resonance. Introducing thermal effects via the imaginary time formalism allows us to study the behavior of the pole and relate it to chiral restoration.
The chiral symplectic universality class
Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi
2003-01-01
We report a numerical investigation of localization in the SU(2) model without diagonal disorder. At the band center, chiral symmetry plays an important role. Our results indicate that states at the band center are critical. States away from the band center but not too close to the edge of the spectrum are metallic as expected for Hamiltonians with symplectic symmetry.
Barron, Laurence D.
2008-03-01
Chirality, meaning handedness, pervades much of modern science, from the physics of elementary particles to the chemistry of life. The amino acids and sugars from which the central molecules of life—proteins and nucleic acids—are constructed exhibit homochirality, which is expected to be a key biosignature in astrobiology. This article provides a brief review of molecular chirality and its significance for the detection of extant or extinct life on other worlds. Fundamental symmetry aspects are emphasized since these bring intrinsic physical properties of the universe to bear on the problem of the origin and role of homochirality in the living world.
Chiral magnetic effect in the PNJL model
Fukushima, Kenji; Gatto, Raoul
2010-01-01
We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential $\\mu_5$ which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of $\\mu_5$ on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.
Energy Technology Data Exchange (ETDEWEB)
Bonner, W.A. [Department of Chemistry Stanford University, Stanford, California 94305 (United States)
1996-07-01
The indispensable role played by homochirality and chiral homogeneity in the self-replication of crucial biomolecules is stressed, with the conclusion that life could neither exist nor originate without these chiral molecular attributes. Hypotheses historically proposed for the origin of chiral molecules on Earth are reviewed, including biogenic theories as well as abiotic theories embracing both indeterminate and determinate mechanisms. Indeterminate mechanisms, including autocatalytic symmetry breaking, asymmetric adsorption on quartz and clay minerals, and asymmetric syntheses in chiral crystals, are discussed and evaluated in the context of the prebiotic environment. Abiotic determinate mechanisms based on electric, magnetic and gravitational fields, on circularly polarized light (CPL), and on parity violation effects are summarized, with the emphasis that only CPL has proved practicable experimentally, but that it would be implausible on the primitive Earth. Mechanisms for the amplification of small, indigenous enantiomeric excesses are discussed, with one involving the partial polymerization of amino acids and the partial hydrolysis of polypeptides suggested as potentially viable prebiotically. Aspects of the turbulent, chirality-destructive primeval environment are described, with the conclusion that all of the above mechanisms for the {ital terrestrial} prebiotic origin of chirality would be non-viable, and that an alternative extraterrestrial source for the accumulation of chiral molecules on primitive Earth must have been operative. A scenario for this is outlined, in which we postulate that asymmetric photolysis of the organic mantles on interstellar grains in molecular clouds by circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae produces chiral molecules in the grain mantles. (Abstract Truncated)
International Nuclear Information System (INIS)
Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs
Relativistic dissipative hydrodynamics with spontaneous symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Pujol, C.; Davesne, D. [IPN - Lyon, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France)
2002-07-01
In this paper we consider dissipative hydrodynamic equations for systems with continuous broken symmetries. We first present the case of superfluidity, in which the symmetry U(1) is broken and then generalize to the chiral symmetry SU(2){sub L} x SU(2){sub R}. New transport coefficients are introduced and the consequences of their existence are discussed. (authors)
Relativistic dissipative hydrodynamics with spontaneous symmetry breaking
Pujol, C
2003-01-01
In this paper we consider dissipative hydrodynamic equations for systems with continuous broken symmetries. We first present the case of superfluidity, in which the symmetry U(1) is broken and then generalize to the chiral symmetry $SU(2)_L \\times SU(2)_R$. New transport coefficients are introduced and the consequences of their existence are discussed.
Holographic Chiral Magnetic Spiral
International Nuclear Information System (INIS)
We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)
Gómez-Rocha, María
2012-01-01
In this article we point out that the unitary transformation that relates the chiral basis $\\{R; I J^{PC}\\}$ and the $\\{I; ^{2S+1}L_J \\}$ basis, which was already derived for canonical spin in instant form, is also applicable in light-cone representations. From the most general expression for the Clebsch-Gordan coefficients of the Poincar\\'e group one can see that the chiral limit brings the angular momentum coupling into a simple form that permits a clear relation in terms of SU(2) Clebsch-Gordan coefficients. It provides a tool of measurement of chiral symmetry in relativistic composite systems.
A new approach for calculating nuclear symmetry energy
Xia, Yong-Hui; Zong, Hong-Shi
2016-01-01
By using the functional path integral method, we obtain a model-independent formula for nuclear symmetry energy, which explicitly shows the relation between nuclear symmetry energy and isospin susceptibility. The latter one is found to be a probe to the QCD chiral phase transition. We further found that, the nuclear symmetry energy has an abrupt change at the critical nuclear density where the chiral symmetry restores partially, which could be detected from the experiments.
DSAM lifetime measurements for the chiral pair in 194Tl
International Nuclear Information System (INIS)
Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of 194Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario. (orig.)
Dynamical chiral symmetry breaking in QED3%三维 QED中的动力学手征对称破缺
Institute of Scientific and Technical Information of China (English)
周雨青
2014-01-01
In order to examine how a propagator behaves in non-perturbative theories and how its behavior is influenced by the choice of a covariant gauge a truncated Dyson-Schwinger equation is used to numerically investigate the properties of fermions and bosons in 3D quantum electrodynamics QED and a series of self-consistent solutions for the fermion propagator in the Nambu and Wigner phases are obtained. These numerical solutions show that the propagator behaves very differently in the Landau gauge domain and in the infrared energy region outside it.By using the propagators in the Nambu and Wigner phases under various gauges it is further investigated how the fermion equivalent pressure difference and fermion condensation change with the gauge parameters.These results indicate that the phase transition described by the CJT equivalent potential and the chiral phase transition described by the chiral condensation are not completely identical.%为了研究非微扰理论中的传播子行为，以及协变规范对其行为的影响，以常用的截断方案下的Dyson－Schwinger方程为基础，采用数值联立求解的方法研究了三维量子电动力学（ QED）中的费米子和玻色子的行为，并获得了一系列不同规范下费米传播子在Nambu和Wigner相中的自洽解。对这些数值解的分析表明，远离Landau规范的红外区处，传播子行为明显不同于Landau规范中的行为。基于Nambu和Wigner相中的不同规范下的传播子，进一步对等效压力差和费米凝聚随规范参数的变化做了比较，结果表明，采用CJT等效势描述的相变与手征凝聚描述的手征相变两者之间不完全自洽。
Symmetries and Symmetry Breaking
Van Oers, W T H
2003-01-01
In understanding the world of matter, the introduction of symmetry principles following experimentation or using the predictive power of symmetry principles to guide experimentation is most profound. The conservation of energy, linear momentum, angular momentum, charge, and CPT involve fundamental symmetries. All other conservation laws are valid within a restricted subspace of the four interactions: the strong, the electromagnetic, the weak, and the gravitational interaction. In this paper comments are made regarding parity violation in hadronic systems, charge symmetry breaking in two nucleon and few nucleon systems, and time-reversal-invariance in hadronic systems.
Two-color QCD with chiral chemical potential
Braguta, V. V.; Goy, V. A.; Ilgenfritz, E.-M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.; Schreiber, A.
2016-01-01
The phase diagram of two-color QCD with a chiral chemical potential is studied on the lattice. The focus is on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulations are carried out with dynamical staggered fermions without rooting. The dependence of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented.
Chiral susceptibility and the scalar Ward identity.
Energy Technology Data Exchange (ETDEWEB)
Chang, L.; Liu, Y.-X.; Roberts, C. D.; Shi, Y.-M.; Sun, W.-M.; Zong, H.-S.; Physics; Inst. of Applied Physics and Computational Mathematics; Peking Univ.; National Lab. of Heavy Ion Accelerator; Univ. of New South Wales; Nanjing Univ.; Joint Center for Particle, Nuclear Physics and Cosmology
2009-03-01
The chiral susceptibility is given by the scalar vacuum polarization at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularization procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansaetze. For the two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking.
International Nuclear Information System (INIS)
Chirality has recently been proposed as a novel feature of rotating nuclei [1]. Because the chiral symmetry is dichotomic, its spontaneous breaking by the axial angular momentum vector leads to doublets of closely lying rotational bands of the same parity. To investigate nuclear chirality, next to establish the existence of almost degenerate rotational bands, it is necessary to measure also other observables and compare them to the model predictions. The crucial test for the suggested nuclei as candidates to express chirality is based on precise lifetime measurements. Two lifetime experiments and theoretical approaches for the description of the experimental results will be presented. Lifetimes of exited states in 134Pr were measured [2,3] by means of the recoil distance Doppler-shift and Doppler-shift attenuation techniques. The branching ratios and the electric or magnetic character of the transitions were also investigated [3]. The experiments were performed at IReS, Strasbourg, using the EUROBALL IV spectrometer, in conjunction with the inner bismuth germanate ball and the Cologne coincidence plunger apparatus. Exited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F, 4n)134Pr. The possible chiral interpretation of twin bands was investigated in the two-quasiparticle triaxial rotor [1] and interacting boson-fermion-fermion models [4]. Both theoretical approaches can describe the level-scheme of 134Pr. The analysis of the wave functions has shown that the possibility for the angular momenta of the proton, neutron, and core to find themselves in the favorable, almost orthogonal geometry, is present but is far from being dominant [3,5]. The structure is characterized by large β and γ fluctuations. The existence of doublets of bands in 134Pr can be attributed to weak chirality dominated by shape fluctuations. In a second experiment branching ratios and lifetimes in 136Pm were measured by means of the recoil distance Doppler-shift and
Kharzeev, Dmitri E.; Yee, Ho-Ung
2012-01-01
We consider the properties of electric circuits involving Weyl semimetals. The existence of the anomaly-induced chiral magnetic current in a Weyl semimetal subjected to magnetic field causes an interesting and unusual behavior of such circuits. We consider two explicit examples: i) a circuit involving the "chiral battery" and ii) a circuit that can be used as a "quantum amplifier" of magnetic field. The unique properties of these circuits stem from the chiral anomaly and may be utilized for c...
Inoue, Yoshihisa
2004-01-01
Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S
Chiral Dynamics With Wilson Fermions
Splittorff, K
2012-01-01
Close to the continuum the lattice spacing affects the smallest eigenvalues of the Wilson Dirac operator in a very specific manner determined by the way in which the discretization breaks chiral symmetry. These effects can be computed analytically by means of Wilson chiral perturbation theory and Wilson random matrix theory. A number of insights on chiral Dynamics with Wilson fermions can be obtained from the computation of the microscopic spectrum of the Wilson Dirac operator. For example, the unusual volume scaling of the smallest eigenvalues observed in lattice simulations has a natural explanation. The dynamics of the eigenvalues of the Wilson Dirac operator also allow us to determine the additional low energy constants of Wilson chiral perturbation theory and to understand why the Sharpe-Singleton scenario is only realized in unquenched simulations.
Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin
1999-01-01
We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.
Life's chirality from prebiotic environments
Gleiser, Marcelo; Walker, Sara Imari
2012-10-01
A key open question in the study of life is the origin of biomolecular homochirality: almost every life-form on Earth has exclusively levorotary amino acids and dextrorotary sugars. Will the same handedness be preferred if life is found elsewhere? We review some of the pertinent literature and discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events. In one scenario, autocatalytic prebiotic reactions undergo stochastic fluctuations due to environmental disturbances, in a mechanism reminiscent of evolutionary punctuated equilibrium: short-lived destructive events may lead to long-term enantiomeric excess. In another, chiral-selective polymerization reaction rates influenced by environmental effects lead to substantial chiral excess even in the absence of autocatalysis. Applying these arguments to other potentially life-bearing platforms has implications to the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic (chirally neutral) on average.
Redkov, V M
1999-01-01
The paper concerns a problem of the Dirac fermion doublet in the external monopole potential obtained by embedding the Abelian monopole solution in the non-Abelian scheme. In this case, the doublet-monopole Hamiltonian is invariant under operations consisting of a complex and one parametric Abelian subgroup in S0(3.C). This symmetry results in a certain freedom in choosing a discrete operator N(A) (A is a complex number) entering the complete set of quantum variables. The same complex number A represents an additional parameter at the basis functions. The generalized inversion like operator N(A) affords certain generalized N(A)-parity selection rules. All the different sets of basis functions Psi(A) determine the same Hilbert space. The functions Psi(A) decompose into linear combinations of Psi(A=0): Psi(A) = F(A) Psi(A=0). However, the bases considered turn out to be nonorthogonal ones when A is a complex number; the latter correlates with the non-self-conjugacy of the N(A) at complex A-s. The meaning of pos...
Symmetry structure and phase transitions
Indian Academy of Sciences (India)
Ashok Goyal; Meenu Dahiya; Deepak Chandra
2003-05-01
We study chiral symmetry structure at ﬁnite density and temperature in the presence of external magnetic ﬁeld and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.
Orientation-Dependent Handedness and Chiral Design
Efrati, Efi; Irvine, William T. M.
2014-01-01
Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems—a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial—and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles.
Energy Technology Data Exchange (ETDEWEB)
Floss, H.G. [Univ. of Washington, Seattle, WA (United States)
1994-12-01
This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.
Kallin, Catherine; Berlinsky, John
2015-01-01
Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a c...
A chiral route to pulling optical forces and left-handed optical torques
Canaguier-Durand, Antoine
2015-01-01
We analyze how chirality can generate pulling optical forces and left-handed torques by cross-coupling linear-to-angular momenta between the light field and the chiral object. In the dipolar regime, we reveal that such effects can emerge from a competition between non-chiral and chiral contributions to dissipative optical forces and torques, a competition balanced by the strength of chirality of the object. We extend the analysis to large chiral spheres where the interplay between chirality and multipolar resonances can give rise to a break of symmetry that flips the signs of both optical forces and torques.
Super Virasoro Algebras From Chiral Supergravity
Hyakutake, Yoshifumi
2015-01-01
In this note, we construct Noether charges for the chiral supergravity, which contains the Lorentz Chern-Simons term, by applying Wald's prescription to the vielbein formalism. We investigate the AdS3/CFT2 correspondence by using the vielbein formalism. The asymptotic symmetry group is carefully examined by taking into account the local Lorentz transformation, and we construct super Virasoro algebras with central extensions from the chiral supergravity.
Chiral interaction and biomolecular evolution
International Nuclear Information System (INIS)
Recent developments in the concept of chiral interaction open now new options and dynamical possibilities for biomolecules which have so far been overlooked. A few of these possibilities are mentioned, such as the control mechanism of enzymatic activity and the role played by non-ergodicity in evolutionary processes. It is shown that chiral interaction, being a surface phenomenon, does not obey Barron's symmetry constraints, which are suitable for force fields present in bulk interactions. In particular, the situation at the ocean-air surface in the prebiotic era is described, as well as the possible role played by chiral interaction in conjunction with the terrestrial magnetic field normal to the ocean surface, which could have lead to a process of deracernization at the ocean-air interface. (author)
Chiral solitons in a coupled double Peierls chain.
Cheon, Sangmo; Kim, Tae-Hwan; Lee, Sung-Hoon; Yeom, Han Woong
2015-10-01
Chiral edge states are the hallmark of two- and three-dimensional topological materials, but their one-dimensional (1D) analog has not yet been found. We report that the 1D topological edge states, solitons, of the charge density wave system of indium atomic wires self-assembled on a silicon surface have chirality. The system is described by a coupled double Peierls-dimerized atomic chain, where the interchain coupling induces dynamical sublattice symmetry breaking. This changes its topological symmetry from Z₂× Z₂to Z₄ and endows solitons with a chiral degree of freedom. Chiral solitons can produce quantized charge transport across the chain that is topologically protected and controllable by the soliton's chirality. Individual right- and left-chiral solitons in indium wires are directly identified by scanning tunneling microscopy. PMID:26450206
Loebbert, Florian
2016-08-01
In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.
Loebbert, Florian
2016-08-01
In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang–Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang–Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross–Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang–Mills theory in four dimensions.
Institute of Scientific and Technical Information of China (English)
刘成勇; 颜建新; 林以玑; 李丹; 方雪明; 章慧
2012-01-01
为了探究cis-[Ni(NCS)2tren] [tren:三(2-氨基乙基)胺]的手性来源,本文采用单晶X射线衍射、溶液紫外-可见-近红外(UV-Vis-NIR)光谱、固体紫外圆二色(CD)光谱和粉末X射线衍射(XRD)等对cis-[Ni(NCS )2tren]的一对手性晶体进行了表征.研究结果表明:该手性晶体由结晶过程中的镜面对称性破缺而形成;三角架型配体tren配位后的特殊手性构象(δδλ,λλδ)是cis-[Ni(NCS)2tren]的主要手性来源.络合物固体紫外CD谱所呈现的Cotton效应可能来自其螯环手性构象以及手性金属中心对NCS-配体的π-π*跃迁和荷移跃迁生色团的手性微扰.对20批次合成产物进行固体CD检测的统计结果表明:它们的对映体过量(ee)值在39％-100％之间.%In order to explore the chiral origin of c/s-[Ni(NCS)2tren] [tren: tris(2-aminoethyl) amine], a pair of chiral crystals of c;s-[Ni(NCS)jtren] was characterized by X-ray single crystal structural analysis, solution UV-Vis-near infrared (NIR) spectroscopy, solid state UV-circular dichiroism (CD), and powder X-ray diffraction (XRD) spectra. The results indicated that the chiral crystals of c/s-[Ni(NCS)2tren] were obtained by mirror symmetry-breaking crystallization, and the special chiral ring conformations (66A, AA6) of the coordinated tripod-type tren ligands are responsible for the chiral origin of c/s-[Ni(NCS)2tren]. The Cotton effects of Ni(ll) complexes in the solid-state UV-CD spectra are presumably attributed to the tt-tt* and charge-transfer chromophores of the NCS" ligands by the chiral perturbation of the helical ring conformations and metal-centered chirality. According to the statistical results of solid-state CD spectra of c/s-[Ni(NCS)2tren] for twenty batch syntheses, their enantiomeric excess (ee) values are between 39% and 100%.
Interplay between Deconfinement and Chiral Properties
Suganuma, Hideo; Redlich, Krzysztof; Sasaki, Chihiro
2016-01-01
We study interplay between confinement/deconfinement and chiral properties. We derive some analytical relations of the Dirac modes with the confinement quantities, such as the Polyakov loop, its susceptibility and the string tension. For the confinement quantities, the low-lying Dirac eigenmodes are found to give negligible contribution, while they are essential for chiral symmetry breaking. This indicates no direct, one-to-one correspondence between confinement/deconfinement and chiral properties in QCD. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain-wall fermion kernels, respectively.
Chiral condensates and QCD vacuum in two dimensions
Christiansen, H R
1997-01-01
We analyze the chiral symmetries of flavored quantum chromodynamics in two dimensions and show the existence of chiral condensates within the path-integral approach. The massless and massive cases are discussed as well, for arbitrary finite and infinite number of colors. Our results put forward the question of topological issues when matter is in the fundamental representation of the gauge group.
DSAM lifetime measurements for the chiral pair in {sup 194}Tl
Energy Technology Data Exchange (ETDEWEB)
Masiteng, P.L.; Bvumbi, S.P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); University of Johannesburg, PO Box 524, Auckland Park (South Africa); Pasternak, A.A. [A.F. Ioffe Physical-Technical Institute, St.-Petersburg (Russian Federation); Lawrie, E.A.; Shirinda, O.; Lawrie, J.J.; Bark, R.A.; Kheswa, N.Y.; Lieder, E.O.; Lieder, R.M.; Mullins, S.M.; Murray, S.H.T. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); Lindsay, R. [University of the Western Cape, Private Bag X17, Bellville (South Africa); Madiba, T.E.; Sharpey-Schafer, J.F. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); Ndayishimye, J.; Papka, P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Stellenbosch, Department of Physics, Private Bag X1, Matieland (South Africa); Ntshangase, S.S. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Cape Town, Department of Physics, Private Bag, Rondebosch (South Africa)
2016-02-15
Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of {sup 194}Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario. (orig.)
Chiral Nanoscience and Nanotechnology
Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao
2008-01-01
The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology describes the nanoscale appr...
Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials
Xiao, Meng; Lin, Qian; Fan, Shanhui
2016-07-01
We report the existence of Weyl points in a class of noncentral symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its nonlocal response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl points.
Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials.
Xiao, Meng; Lin, Qian; Fan, Shanhui
2016-07-29
We report the existence of Weyl points in a class of noncentral symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its nonlocal response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl points.
On Chiral Space Groups and Chiral Molecules
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.
The topological structures in strongly coupled QGP with chiral fermions on the lattice
Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato
2016-01-01
The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a system...
Bootstrap Dynamical Symmetry Breaking
Directory of Open Access Journals (Sweden)
Wei-Shu Hou
2013-01-01
Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700 GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.
Two-Color QCD with Non-zero Chiral Chemical Potential
Braguta, V V; Ilgenfritz, E -M; Kotov, A Yu; Molochkov, A V; Muller-Preussker, M; Petersson, B
2015-01-01
The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.
Two-color QCD with non-zero chiral chemical potential
Braguta, V. V.; Goy, V. A.; Ilgenfritz, E. M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.
2015-06-01
The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4
Staggered heavy baryon chiral perturbation theory
Bailey, Jon A.
2008-03-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.
Local topological and chiral properties of QCD
De Forcrand, Philippe; Laermann, E; Lagaë, J F; Pérez-Garcia, M; Stamatescu, I O; Forcrand, Ph. de
1999-01-01
To elucidate the role played by instantons in chiral symmetry breaking, we explore their properties in full QCD, around the critical temperature. We study in particular spatial correlations between low-lying Dirac eigenmodes and instantons. Our measurements are compared with the predictions of instanton-based models.
A new approach to chiral fermions on the lattice
International Nuclear Information System (INIS)
We wish to describe a method for formulating, on the lattice, field theories that contain Dirac particles with chiral couplings to gauge fields. As is well-known, the most straight-forward lattice transcription of the continuum action for a Dirac particle leads to the doubling problem: for every particle of a given chirality in the continuum theory, there appear on the lattice, in d dimensions, 2d particles, with equal numbers of particles of left- and right-handed chirality. No-go theorems, state that it is impossible to eliminate the doubling problem and still maintain an exact chiral gauge symmetry. Rather than follow an approach that attempts to circumvent the no-go theorems we, instead, explore the possibility of abandoning exact chiral symmetry
Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari
2008-01-01
Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high int...
Energy Technology Data Exchange (ETDEWEB)
Zou, Dandan; Cao, Xin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, Xinpei, E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Comonwealth Scientific and Industrial Research Organization, P.O. Box 218, Sydney, New South Wales 2070 (Australia)
2015-10-15
The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.
Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya Ken
2015-10-01
The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.
Staggered Heavy Baryon Chiral Perturbation Theory
Bailey, Jon A
2007-01-01
Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms the order of the cubed pion mass, which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms the order of the squared lattice spacing. The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in d...
Chiral Magnetic Effect in Heavy Ion Collisions
Liao, Jinfeng
2016-01-01
The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.
Nuclear Chiral EFT in the Precision Era
Epelbaum, Evgeny
2015-01-01
Chiral effective field theory has established itself as the method of choice to study nuclear forces and low-energy nuclear dynamics. I review the status and prospects of this approach and discuss ongoing efforts to advance the precision frontier for ab initio description of few-nucleon systems. Special emphasis is put on the precise determination of the two-nucleon force at fifth order in the chiral expansion, role of the chiral symmetry, the convergence pattern of the chiral expansion and the quantification of the theoretical uncertainties. The discussed topics are essential for ongoing studies towards elucidating the structure of the three-nucleon force which will be briefly addressed as well.
Mirror symmetry breaking at the molecular level.
Avetisov, V; Goldanskii, V.
1996-01-01
Reasoning from two basic principles of molecular physics, P invariance of electromagnetic interaction and the second law of thermodynamics, one would conclude that mirror symmetry retained in the world of chiral molecules. This inference is fully consistent with what is observed in inorganic nature. However, in the bioorganic world, the reverse is true. Mirror symmetry there is definitely broken. Is it possible to account for this phenomenon without going beyond conventional concepts of the k...
QCD and Symmetries related to nucleon structure and strongly interacting matter
International Nuclear Information System (INIS)
We discuss the impact of the symmetries of quantum chromodynamics (QCD) on the observed properties of hadrons and strongly interacting matter. We first introduce the fundamental color gauge symmetry insisting on its non perturbative aspect at low energy. Particular emphasis is put on the spontaneous breaking of chiral symmetry and its numerous consequences. Operational approaches, such as chiral perturbation theory or QCD sum rules, allowing to implement this crucial symmetry at the hadronic level are presented. We then explore the consequences of chiral restoration at finite baryonic density and/or temperature on the properties of in-medium hadrons in connection with experimental programs. Finally we give a short discussion of the phase structure of QCD in connection with chiral symmetry and the center symmetry associated with the confinement/deconfinement transition. This document includes the slides of the presentation. (author)
Chiral dynamics of baryons in the perturbative chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Pumsa-ard, K.
2006-07-01
In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints
Chiral geometry in multiple chiral doublet bands
Zhang, Hao
2015-01-01
The chiral geometry of the multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters $\\gamma$ in the particle rotor model with $\\pi h_{11/2}\\otimes \
Chiral medium produced by parallel electric and magnetic fields
Ruggieri, Marco; Chernodub, Maxim
2016-01-01
We compute (pseudo)critical temperature, $T_c$, of chiral symmetry restoration for quark matter in the background of parallel electric and magnetic fields. This field configuration leads to the production of a chiral medium on a time scale $\\tau$, characterized by a nonvanishing value of the chiral density that equilibrates due to microscopic processes in the thermal bath. We estimate the relaxation time $\\tau$ to be about $\\approx 0.1-1$ fm/c around the chiral crossover; then we compute the effect of the fields and of the chiral medium on~$T_c$. We find $T_c$ to be lowered by the external fields in the chiral medium.
Directory of Open Access Journals (Sweden)
Mikiji Miyata
2015-10-01
Full Text Available A multi-point approximation method clarifies supramolecular chirality of twofold rotational or helical assemblies as well as bundles of the one-dimensional (1D assemblies. While one-point approximation of materials claims no chirality generation of such assemblies, multi-point approximations do claim possible generation in the 1D assemblies of bars and plates. Such chirality derives from deformations toward three-axial directions around the helical axes. The chiral columns are bundled in chiral ways through symmetry operations. The preferable right- or left-handed columns are bundled together to yield chiral crystals with right- or left-handedness, respectively, indicating that twofold helix symmetry operations cause chiral crystals composed of achiral components via a three-stepwise and three-directional process.
Bootstrapping N=2 chiral correlators
Energy Technology Data Exchange (ETDEWEB)
Lemos, Madalena [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Liendo, Pedro [Humboldt-Univ. Berlin (Germany). IMIP
2015-12-15
We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.
Ruggieri, M; Peng, G X
2016-01-01
We study the influence of external electric, $E$, and magnetic, $B$, fields parallel to each other, and of a chiral chemical potential, $\\mu_5$, on the chiral phase transition of Quantum Chromodynamics. Our theoretical framework is a Nambu-Jona-Lasinio model with a contact interaction. Within this model we compute the critical temperature of chiral symmetry restoration, $T_c$, as a function of the chiral chemical potential and field strengths. We find that the fields inhibit and $\\mu_5$ enhances chiral symmetry breaking, in agreement with previous studies.
Li, Bing-Wei; Cai, Mei-Chun; Zhang, Hong; Panfilov, Alexander V.; Dierckx, Hans
2014-05-01
Chirality is one of the most fundamental properties of many physical, chemical, and biological systems. However, the mechanisms underlying the onset and control of chiral symmetry are largely understudied. We investigate possibility of chirality control in a chemical excitable system (the Belousov-Zhabotinsky reaction) by application of a chiral (rotating) electric field using the Oregonator model. We find that unlike previous findings, we can achieve the chirality control not only in the field rotation direction, but also opposite to it, depending on the field rotation frequency. To unravel the mechanism, we further develop a comprehensive theory of frequency synchronization based on the response function approach. We find that this problem can be described by the Adler equation and show phase-locking phenomena, known as the Arnold tongue. Our theoretical predictions are in good quantitative agreement with the numerical simulations and provide a solid basis for chirality control in excitable media.
Staggering of the B(M1) value as a fingerprint of specific chiral bands structure
Grodner, Ernest
2011-01-01
Nuclear chirality has been intensively studdied for the last several years in the context of experimental as well as theoretical approach. Characteristic gamma selection rules have been predicted for the strong chiral symmetry breaking limit that has been observed in Cs isotopes. The presented analysis shows that the gamma selection rules cannot be attributed only to chiral symmetry breaking. The selection rules relate to structural composition of the chiral rotational bands, i.e. to odd particle configuration and the deformation of the core.
Ruggieri, M.; Peng, G. X.
2016-05-01
In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.
Status of chiral meson physics
Energy Technology Data Exchange (ETDEWEB)
Bijnens, Johan [Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE 22362 Lund (Sweden)
2016-01-22
This talk includes a short introduction to Chiral Perturbation Theory in the meson sector concentrating on a number of recent developments. I discuss the latest fit of the low-energy constants. Finite volume corrections are discussed for the case with twisted boundary conditions for form-factors and first results at two-loops for three flavours for masses. The last part discusses the extension to other symmetry breaking patterns relevant for technicolour and related theories as well as the calculation of leading logarithms to high loop orders.
Bosonization and Mirror Symmetry
Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia
2016-01-01
We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an $O(2)$-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a chiral mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu
2016-06-21
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
Heavy-tailed chiral random matrix theory
Kanazawa, Takuya
2016-01-01
We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.
Häring, Reto Andreas
1993-01-01
The representations of the observable algebra of a low dimensional quantum field theory form the objects of a braided tensor category. The search for gauge symmetry in the theory amounts to finding an algebra which has the same representation category. In this paper we try to establish that every quantum field theory satisfying some basic axioms posseses a weak quasi Hopf algebra as gauge symmetry. The first step is to construct a functor from the representation category to the category of finite dimensional vector spaces. Given such a functor we can use a generalized reconstruction theorem to find the symmetry algebra. It is shown how this symmetry algebra is used to build a gauge covariant field algebra and we investigate the question why this generality is necessary.
Interplay between chiral and deconfinement phase transitions
Directory of Open Access Journals (Sweden)
Mukherjee T.K.
2011-04-01
Full Text Available By using the dressed Polyakov loop or dual chiral condensate as an equivalent order parameter of the deconfinement phase transition, we investigate the relation between the chiral and deconfinement phase transitions at finite temperature and density in the framework of three-flavor Nambu-Jona-Lasinio (NJL model. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole (T,µ plane. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent. For each flavor, the transition temperature for chiral restoration $T^{mathcal{X}}_c$ is smaller than that of the dressed Polyakov loop $T^{mathcal{D}}_c$ in the low baryon density region where the transition is a crossover, and, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. Therefore, there are two critical end points, i.e, $T^{u,d}_{CEP}$ and $T^{s}_{CEP}$ at finite density. We also explain the feature of $T^{mathcal{X}}_c$ = $T^{mathcal{D}}_c$ in the case of 1st and 2nd order phase transitions, and $T^{mathcal{X}}_c$ < $T^{mathcal{D}}_c$ in the case of crossover, and expect this feature is general and can be extended to full QCD theory.
Interplay between chiral and deconfinement phase transitions
Xu, Fukun; Chen, Huan; Huang, Mei
2011-01-01
By using the dressed Polyakov loop or dual chiral condensate as an equivalent order parameter of the deconfinement phase transition, we investigate the relation between the chiral and deconfinement phase transitions at finite temperature and density in the framework of three-flavor Nambu--Jona-Lasinio (NJL) model. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole $(T,\\mu)$ plane. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent. For each flavor, the transition temperature for chiral restoration $T_c^{\\chi}$ is smaller than that of the dressed Polyakov loop $T_c^{{\\cal D}}$ in the low baryon density region where the transition is a crossover, and, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. Therefore, there are two critical end points, i.e, $T_{CEP}^{u,d}$ and $T_{CEP}^{s}$ a...
Energy Technology Data Exchange (ETDEWEB)
Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)
2015-06-01
Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.
Polarization Control by Using Anisotropic 3D Chiral Structures
Chen, Menglin L N; Sha, Wei E I; Choy, Wallace C H; Itoh, Tatsuo
2016-01-01
Due to the mirror symmetry breaking, chiral structures show fantastic electromagnetic (EM) properties involving negative refraction, giant optical activity, and asymmetric transmission. Aligned electric and magnetic dipoles excited in chiral structures contribute to extraordinary properties. However, the chiral structures that exhibit n-fold rotational symmetry show limited tuning capability. In this paper, we proposed a compact, light, and highly tunable anisotropic chiral structure to overcome this limitation and realize a linear-to-circular polarization conversion. The anisotropy is due to simultaneous excitations of two different pairs of aligned electric and magnetic dipoles. The 3D omega-like structure, etched on two sides of one PCB board and connected by metallic vias, achieves 60% of linearto- circular conversion (transmission) efficiency at the operating frequency of 9.2 GHz. The desired 90-degree phase shift between the two orthogonal linear polarization components is not only from the finite-thick...
Experimental demonstration of spontaneous chirality in a nonlinear microresonator
Cao, Qi-Tao; Dong, Chun-Hua; Jing, Hui; Liu, Rui-Shan; Chen, Xi; Ge, Li; Gong, Qihuang; Xiao, Yun-Feng
2016-01-01
Chirality is an important concept that describes the asymmetry property of a system, which usually emerges spontaneously due to mirror symmetry breaking. Such spontaneous chirality manifests predominantly as parity breaking in modern physics, which has been studied extensively, for instance, in Higgs physics, double-well Bose-Einstein condensates, topological insulators and superconductors. In the optical domain, spontaneous chiral symmetry breaking has been elusive experimentally, especially for micro- and nano-photonics which demands multiple identical subsystems, such as photonic nanocavities, meta-molecules and other dual-core settings. Here, for the first time, we observe spontaneous emergence of a chiral field in a single ultrahigh-Q whispering- gallery microresonator. This counter-intuitive effect arises due to the inherent Kerr nonlinearity-modulated coupling between clockwise (CW) and counterclockwise (CCW) propagating waves. At an ultra-weak input threshold of a few hundred microwatts, the initial c...
One-loop Chiral Perturbation Theory with two fermion representations
DeGrand, Thomas; Neil, Ethan T; Shamir, Yigal
2016-01-01
We develop Chiral Perturbation Theory for chirally broken theories with fermions in two different representations of the gauge group. Any such theory has a non-anomalous singlet $U(1)_A$ symmetry, yielding an additional Nambu-Goldstone boson when spontaneously broken. We calculate the next-to-leading order corrections for the pseudoscalar masses and decay constants, which include the singlet Nambu-Goldstone boson, as well as for the two condensates. The results can be generalized to more than two representations.
Extending Chiral Perturbation Theory with an Isosinglet Scalar
Hansen, Martin; Sannino, Francesco
2016-01-01
We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology and lattice investigations. By construction our results encompass several interesting limits, ranging from the dilaton to the linear sigma model.
Circular dichroism induced by Fano resonances in planar chiral oligomers
Hopkins, Ben; Miroshnichenko, Andrey E; Kivshar, Yuri S
2016-01-01
We present a general theory of circular dichroism induced in planar chiral nanostructures with rotational symmetry. It is demonstrated, analytically, that the handedness of the incident field's polarization can control whether a nanostructure induces either absorption or scattering losses, even when the total loss (extinction) is polarization-independent. We then show that this effect is a consequence of modal interference so that strong circular dichroism in absorption and scattering can be engineered by combining Fano resonances with chiral nanoparticle clusters.
Extended chiral transformations including diquark fields as parameters
Novozhilov, V Yu; Vasilevich, D V; Novozhilov, Yuri; Pronko, Andrei; Vassilevich, Dmitri
1994-01-01
We introduce extended chiral transformation, which depends both on pseudoscalar and diquark fields as parameters and determine its group structure. Assuming soft symmetry breaking in diquark sector, bosonisation of a quasi-Goldstone ud-diquark is performed. In the chiral limit the ud-diquark mass is defined by the gluon condensate, m_{ud}\\approx 300 MeV. The diquark charge radius is \\langle r^2_{ud}\\rangle^{1/2}\\approx 0.5 fm.
Chiral transition, eigenmode localisation and Anderson-like models
Giordano, Matteo; Pittler, Ferenc
2016-01-01
We discuss chiral symmetry restoration and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We argue that the features of QCD relevant to both phenomena are the presence of order in the Polyakov line configuration, and the correlations that this induces between spatial links across time slices. This ties the fate of chiral symmetry and of localisation of the lowest Dirac eigenmodes to the confining properties of the theory. We then show numerical results obtained in a QCD-inspired Anderson-like toy model, derived by radically simplifying the QCD dynamics while keeping the important features mentioned above. The toy model reproduces all the important qualitative aspects of chiral symmetry breaking and localisation in QCD, thus supporting the central role played by the confinement/deconfinement transition in triggering both phenomena.
Chiral primaries in strange metals
Energy Technology Data Exchange (ETDEWEB)
Isachenkov, Mikhail, E-mail: mikhail.isachenkov@desy.de; Kirsch, Ingo, E-mail: ingo.kirsch@desy.de; Schomerus, Volker, E-mail: volker.schomerus@desy.de
2014-08-15
It was suggested recently that the study of 1-dimensional QCD with fermions in the adjoint representation could lead to an interesting toy model for strange metals and their holographic formulation. In the high density regime, the infrared physics of this theory is described by a constrained free fermion theory with an emergent N=(2,2) superconformal symmetry. In order to narrow the choice of potential holographic duals, we initiate a systematic search for chiral primaries in this model. We argue that the bosonic part of the superconformal algebra can be extended to a coset chiral algebra of the form W{sub N}=SO(2N{sup 2}−2){sub 1}/SU(N){sub 2N}. In terms of this algebra the spectrum of the low energy theory decomposes into a finite number of sectors which are parametrized by special necklaces. We compute the corresponding characters and partition functions and determine the set of chiral primaries for N≤5.
Chiral primaries in strange metals
Energy Technology Data Exchange (ETDEWEB)
Isachenkov, Mikhail; Kirsch, Ingo; Schomerus, Volker [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany). Theory Group
2014-03-15
It was suggested recently that the study of 1-dimensional QCD with fermions in the adjoint representation could lead to an interesting toy model for strange metals and their holographic formulation. In the high density regime, the infrared physics of this theory is described by a constrained free fermion theory with an emergent N=(2,2) superconformal symmetry. In order to narrow the choice of potential holographic duals, we initiate a systematic search for chiral primaries in this model. We argue that the bosonic part of the superconformal algebra can be extended to a coset chiral algebra of the form W{sub N}=SO(2N{sup 2}-2){sub 1}/SU(N){sub 2N}. In terms of this algebra the spectrum of the low energy theory decomposes into a finite number of sectors which are parametrized by special necklaces. We compute the corresponding characters and partition functions and determine the set of chiral primaries for N≤5.
Chiral light by symmetric optical antennas
Mekonnen, Addis; Zubritskaya, Irina; Jönsson, Gustav Edman; Dmitriev, Alexandre
2014-01-01
Chirality is at the origin of life and is ubiquitous in nature. An object is deemed chiral if it is non-superimposable with its own mirror image. This relates to how circularly polarized light interacts with such object, a circular dichroism, the differential absorption of right and left circularly polarized light. According to the common understanding in biology, chemistry and physics, the circular dichroism results from an internal chiral structure or external symmetry breaking by illumination. We show that circular dichroism is possible with simple symmetric optical nanoantennas at symmetric illumination. We experimentally and theoretically demonstrate that two electromagnetic dipole-like modes with a phase lag, in principle, suffice to produce circular dichroism in achiral structure. Examples of the latter are all visible spectrum optical nanoantennas, symmetric nanoellipses and nanodimers. The simplicity and generality of this finding reveal a whole new significance of the electromagnetic design at a nan...
Dynamics and properties of chiral cosmic strings in Minkowski space
Davis, A C; Pickles, M; Steer, D A
2000-01-01
Chiral cosmic strings are produced naturally at the end of inflation in supersymmetric models where the symmetry is broken via a D-term. Consequently in such theories, where both inflation and cosmic strings contribute to the density and CMBR (microwave background) perturbations, it is necessary to understand the evolution of chiral cosmic string networks. We study the dynamics of chiral cosmic strings in Minkowski space and comment on a number of differences with those of Nambu-Goto strings. To do this we follow the work of Carter and Peter who showed that the equations of motion for chiral cosmic strings reduce to a wave equation and two constraints, only one of which is different from the familiar Nambu-Goto constraints. We study chiral string loop solutions consisting of many harmonics and determine their self-intersection probabilities, and comment on the possible cosmological significance of these results.
Chiral fermions in asymptotically safe quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Meibohm, J. [Gothenburg University, Department of Physics, Goeteborg (Sweden); Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); Pawlowski, J.M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung mbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany)
2016-05-15
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions. (orig.)
Chiral fermions in asymptotically safe quantum gravity
Meibohm, J.; Pawlowski, J. M.
2016-05-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Chiral fermions in asymptotically safe quantum gravity
Meibohm, Jan
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck-scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works \\cite{Christiansen:2015rva, Meibohm:2015twa}, concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models, regardless of the number of fermion flavours. This suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Anomalous transport effects and possible environmental symmetry violation in heavy-ion collisions
International Nuclear Information System (INIS)
The heavy-ion collision provides a unique many-body environment where local domains of strongly interacting chiral medium may occur and in a sense allow environmental symmetry 'violation' phenomena. For example, certain anomalous transport processes, forbidden in usual medium, become possible in such domains. We briefly review recent progress in both the theoretical understanding and experimental search of various anomalous transport effects (such as the chiral magnetic effect, chiral separation effect, chiral electric separation effect, chiral electric/magnetic waves, etc.) in the hot QCD fluid formed by such collisions. (author)
Anomalous transport effects and possible environmental symmetry 'violation' in heavy-ion collisions
Indian Academy of Sciences (India)
Jinfeng Liao
2015-05-01
The heavy-ion collision provides a unique many-body environment where local domains of strongly interacting chiral medium may occur and in a sense allow environmental symmetry 'violation' phenomena. For example, certain anomalous transport processes, forbidden in usual medium, become possible in such domains. We briefly review recent progress in both the theoretical understanding and experimental search of various anomalous transport effects (such as the chiral magnetic effect, chiral separation effect, chiral electric separation effect, chiral electric/magnetic waves, etc.) in the hot QCD fluid formed by such collisions.
Chiral gold nanowires with boerdijk-coxeter-bernal structure
Zhu, Yihan
2014-09-10
A Boerdijk-Coxeter-Bernal (BCB) helix is made of linearly stacked regular tetrahedra (tetrahelix). As such, it is chiral without nontrivial translational or rotational symmetries. We demonstrate here an example of the chiral BCB structure made of totally symmetrical gold atoms, created in nanowires by direct chemical synthesis. Detailed study by high-resolution electron microscopy illustrates their elegant chiral structure and the unique one-dimensional "pseudo-periodicity". The BCB-type atomic packing mode is proposed to be a result of the competition and compromise between the lattice and surface energy.
Anomalous properties of spin-extended chiral fermions
Elbistan, M
2015-01-01
The spin-extended semiclassical chiral fermion (we call the S-model), which had been used to derive the twisted Lorentz symmetry of the "spin-enslaved" chiral chiral fermion (we call the c-model) is equivalent to the latter in the free case, however coupling to an external electromagnetic field yields inequivalent systems. The difference is highlighted by the inconsistency of spin enslavement within the spin-extended framework. The S-model exhibits nevertheless similar though slightly different anomalous properties as the usual c-model does.
Extremal chiral $\\mathcal N=4$ SCFT with $c=24$
Harrison, Sarah M
2016-01-01
We construct an extremal chiral $\\mathcal N=4$ superconformal field theory with central charge 24 from a $\\mathbb Z_2$ orbifold of the chiral bosonic theory with target $\\mathbb R^{24}/\\Lambda$, where $\\Lambda$ is the Niemeier lattice with root system $A_2^{12}$. This construction is analogous to constructions of extremal chiral $\\mathcal N=1$ and $\\mathcal N=2$ CFTs with $c=24$, where $\\Lambda = \\Lambda_{Leech}$ and the Niemeier lattice with root system $A_1^{24}$, respectively. The theory has a discrete symmetry group related to the sporadic group $M_{11}$.
Hyperbolic Weyl point in reciprocal chiral metamaterial
Xiao, Meng; Fan, Shanhui
2016-01-01
We report the existence of Weyl points in a class of non-central symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its non-local response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helixes which exhibits type-II Weyl points.
Ruggieri, M
2016-01-01
In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...
A hidden classical symmetry of QCD
Glozman, L Ya
2016-01-01
The classical part of the QCD partition function (the integrand) has, ignoring irrelevant exact zero modes of the Dirac operator, a local SU(2N_F) \\supset SU(N_F)_L \\times SU(N_F)_R \\times U(1)_A symmetry which is absent at the Lagrangian level. This symmetry is broken anomalously and spontaneously. Effects of spontaneous breaking of chiral symmetry are contained in the near-zero modes of the Dirac operator. If physics of anomaly is also encoded in the same near-zero modes, then their truncation on the lattice should recover a hidden classical SU(2N_F) symmetry in correlators and spectra. This naturally explains observation on the lattice of a large degeneracy of hadrons, that is higher than the SU(N_F)_L \\times SU(N_F)_R \\times U(1)_A chiral symmetry, upon elimination by hands of the lowest-lying modes of the Dirac operator. We also discuss an implication of this symmetry for the high temperature QCD.
Sum-Frequency Generation from Chiral Media and Interfaces
International Nuclear Information System (INIS)
Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers
Sum-Frequency Generation from Chiral Media and Interfaces
Energy Technology Data Exchange (ETDEWEB)
Ji, Na
2006-02-13
Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers.
Landau Theory and the Emergence of Chirality in Viral Capsids
Dharmavaram, Sanjay; Klug, William; Rudnick, Joseph; Bruinsma, Robijn
2016-01-01
We present a generalized Landau-Brazovskii theory for the solidification of chiral molecules on a spherical surface. With increasing sphere radius one encounters first intervals where robust achiral density modulations appear with icosahedral symmetry via first-order transitions. Next, one en- counters intervals where fragile but stable icosahedral structures still can be constructed but only by superposition of multiple irreducible representations. Chiral icoshedral structures appear via continuous or very weakly first-order transitions. Outside these parameter intervals, icosahedral symmetry is broken along a three-fold axis or a five-fold axis. The predictions of the theory are compared with recent numerical simulations.
Regularized path integrals and anomalies -- U(1) chiral gauge theory
Kopper, Christoph; Lévêque, Benjamin
2011-01-01
We analyse the origin of the Adler anomaly of chiral U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [1]. Here we analyse U(1) chiral gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-p...
Chiral damping of magnetic domain walls
Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2016-03-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).
Chiral damping of magnetic domain walls
Jué, Emilie
2015-12-21
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Chiral damping of magnetic domain walls.
Jué, Emilie; Safeer, C K; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2016-03-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ). PMID:26689141
Topics on heavy baryon chiral perturbation theory in the large N_c limit
Flores-Mendieta, R
2002-01-01
We compute nonanalytical pion-loop corrections to baryon masses in a combined expansion in chiral symmetry breaking and 1/N_c, where N_c is the number of colors. Specifically, we compute flavor-27 baryon mass splittings at leading order in chiral perturbation theory. Our results, at the physical value N_c=3, are compared with the expressions obtained in heavy baryon chiral perturbation theory with no 1/N_c expansion.
Pion electroproduction, PCAC, chiral Ward identities, and the axial form factor revisited
Fuchs, T.(Department of Physics, TU Dortmund University, 44221, Dortmund, Germany); Scherer, S.
2003-01-01
We re-investigate Adler's PCAC relation in the presence of an external electromagnetic field within the framework of QCD coupled to external fields. We discuss pion electroproduction within a tree-level approximation to chiral perturbation theory and explicitly verify a chiral Ward identity referred to as the Adler-Gilman relation. We critically examine soft-momentum techniques and point out how inadmissable approximations may lead to results incompatible with chiral symmetry. As a result we ...
Chiral fermions in asymptotically safe quantum gravity
Meibohm, Jan; Pawlowski, Jan M.
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck-scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works \\cite{Christia...
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, C. A.; Miron, I. M.; Gaudin, G.; Manchon, A.
2015-01-01
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry breaking. We show that the magnetic damping tensor adopts a general form that accounts for a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which spin pumping in the presence of anomalous Hall effect and an effective "$s$-$d$" Dzyaloshinsk...
Anomalous Chiral Superfluidity
Lublinsky, Michael(Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel); Zahed, Ismail
2009-01-01
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavour anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is ...
C3-Symmetric Molecules with Axial Chirality and Handed Arrangement of Dipole Fields
Institute of Scientific and Technical Information of China (English)
XU Wei; JIN Lan; ZHOU Hui; LU Yin-xiang; LAN Bi-jian; ZOU Zhen-guang
2007-01-01
@@ Introduction Chirality is defined as the absence of inversion symmetry, however, it is actually a pseudo-scalar of objects or figures, and does not depend for its definition on any connection to the physical world[1-5]. Logically, chiral molecules may possess other inherent physical quantity that guarantees the connection to the physical world[6,7].
Fluctuations and the Phase Transition in a Chiral Model with Polyakov Loops
Sasaki, C.; Friman, B.; Redlich, K.
2007-01-01
We explore the NJL model with Polyakov loops for a system of three colors and two flavors within the mean-field approximation, where both chiral symmetry and confinement are taken into account. We focus on the phase structure of the model and study the chiral and Polyakov loop susceptibilities.
Type II chiral affine Lie algebras and string actions in doubled space
Hatsuda, Machiko; Siegel, Warren
2015-01-01
We present affine Lie algebras generated by the supercovariant derivatives and the supersymmetry generators for the left and right moving modes in the doubled space. Chirality is manifest in our doubled space as well as the T-duality symmetry. We present gauge invariant bosonic and superstring actions preserving the two-dimensional diffeomorphism invariance and the kappa-symmetry where doubled spacetime coordinates are chiral fields. The doubled space becomes the usual space by dimensional reduction constraints.
Chiral anomaly, Charge Density Waves, and Axion Strings from Weyl Semimetals
Wang, Zhong; Zhang, Shou-Cheng
2012-01-01
We study dynamical instability and chiral symmetry breaking in three dimensional Weyl semimetals, which turns Weyl semimetals into "axion insulators". Charge density waves (CDW) is found to be the natural consequence of the chiral symmetry breaking. The phase mode of this charge density wave state is identified as the axion, which couples to electromagnetic field in the topological $\\theta{\\bf E}\\cdot{\\bf B}$ term. One of our main results is that the "axion strings" can be realized as the (sc...
Chiral Topological Insulators, Superconductors and other competing orders in three dimensions
Hosur, Pavan; Ryu, Shinsei; Vishwanath, Ashvin
2009-01-01
We discuss the proximate phases of a three-dimensional system with Dirac-like dispersion. Using the cubic lattice with plaquette $\\pi$-flux as a model, we find, among others phases, a chiral topological insulator and singlet topological superconductor. While the former requires a special "chiral" symmetry, the latter is stable as long as time reversal and SU(2) spin rotation symmetry are present. These phases are characterized by stable surface Dirac fermion modes, and by an integer topologic...
Attanucci, Frank J.; Losse, John
2008-01-01
In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…
Huang, Da
2011-01-01
By applying the closed-time-path Green function formalism to the chiral dynamical model based on an effective Lagrangian of chiral quarks with the nonlinear-realized meson fields as bosonized auxiliary fields, we then arrive at a chiral thermodynamic model for the meson fields with finite temperature. Particular attention is paid to the spontaneous chiral symmetry breaking and restoration from the dynamically generated effective composite Higgs potential of meson fields at finite temperature. It is shown that the minimal condition of the effective composite Higgs potential of meson fields leads to the thermodynamic gap equation at finite temperature, which enables us to investigate the critical behavior of the effective chiral thermodynamical model and to explore the QCD phase transition. After fixing the free parameters in the effective chiral Lagrangian at low energies with zero temperature, we determine the critical temperature of the chiral symmetry restoration and present a consistent prediction for the ...
Chiral density wave in nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Heinz, Achim [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Giacosa, Francesco [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany); Institute of Physics, Jan Kochanowski University, 25-406 Kielce (Poland); Rischke, Dirk H. [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Str. 1, D-60438 Frankfurt am Main (Germany)
2015-01-15
Inspired by recent work on inhomogeneous chiral condensation in cold, dense quark matter within models featuring quark degrees of freedom, we investigate the chiral density-wave solution in nuclear matter at zero temperature and nonvanishing baryon number density in the framework of the so-called extended linear sigma model (eLSM). The eLSM is an effective model for the strong interaction based on the global chiral symmetry of quantum chromodynamics (QCD). It contains scalar, pseudoscalar, vector, and axial-vector mesons as well as baryons. In the latter sector, the nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The eLSM simultaneously provides a good description of hadrons in vacuum as well as nuclear matter ground-state properties. We find that an inhomogeneous phase in the form of a chiral density wave is realized, but only for densities larger than 2.4ρ{sub 0}, where ρ{sub 0} is the nuclear matter ground-state density.
Symmetry, Symmetry Breaking and Topology
Directory of Open Access Journals (Sweden)
Siddhartha Sen
2010-07-01
Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.
LIE SYMMETRIES AND NOETHER SYMMETRIES
Directory of Open Access Journals (Sweden)
PGL Leach
2012-10-01
Full Text Available We demonstrate that so-called nonnoetherian symmetries with which a known first integral is associated of a differential equation derived from a Lagrangian are in fact noetherian. The source of the misunderstanding lies in the nonuniqueness of the Lagrangian.
Cutoff regulators in chiral nuclear effective field theory
Long, Bingwei; Mei, Ying
2016-04-01
Three-dimensional cutoff regulators are frequently employed in multinucleon calculations, but they violate chiral symmetry and Lorentz invariance. A cutoff regularization scheme is proposed to compensate systematically at subleading orders for these symmetry violations caused by regulator artifacts. This is especially helpful when a soft momentum cutoff has to be used for technical reasons. It is also shown that dimensional regularization can still be used for some Feynman (sub)diagrams while cutoff regulators are used for the rest.
Cutoff regulators in chiral nuclear effective field theory
Long, Bingwei
2016-01-01
Three-dimensional cutoff regulators are frequently employed in multi-nucleon calculations, but they violate chiral symmetry and Lorentz invariance. A cutoff regularization scheme is proposed to compensate systematically at subleading orders for these symmetry violations caused by regulator artifacts. This is especially helpful when a soft momentum cutoff has to be used for technical reasons. It is also shown that dimensional regularization can still be used for some Feynman (sub)diagrams while cutoff regulators are used for the rest.
An Exact Chiral Spin Liquid with Non-Abelian Anyons
Energy Technology Data Exchange (ETDEWEB)
Yao, Hong
2010-04-06
We establish the existence of a chiral spin liquid (CSL) as the exact ground state of the Kitaev model on a decorated honeycomb lattice, which is obtained by replacing each site in the familiar honeycomb lattice with a triangle. The CSL state spontaneously breaks time reversal symmetry but preserves other symmetries. There are two topologically distinct CSLs separated by a quantum critical point. Interestingly, vortex excitations in the topologically nontrivial (Chern number {+-}1) CSL obey non-Abelian statistics.
Generalized Symmetries of Massless Free Fields on Minkowski Space
Directory of Open Access Journals (Sweden)
Stephen C. Anco
2008-01-01
Full Text Available A complete and explicit classification of generalized, or local, symmetries of massless free fields of spin s ≥ 1/2 is carried out. Up to equivalence, these are found to consists of the conformal symmetries and their duals, new chiral symmetries of order 2s, and their higher-order extensions obtained by Lie differentiation with respect to conformal Killing vectors. In particular, the results yield a complete classification of generalized symmetries of the Dirac-Weyl neutrino equation, Maxwell's equations, and the linearized gravity equations.
Chiral Rotational Spectroscopy
Cameron, Robert P; Barnett, Stephen M
2015-01-01
We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.
International Nuclear Information System (INIS)
The sky uniformity can be noticed in studying the repartition of objects far enough. The sky isotropy description uses space rotations. The group theory elements will allow to give a meaning at the same time precise and general to the word a ''symmetry''. Universe models are reviewed, which must have both of the following qualities: - conformity with the physic known laws; - rigorous symmetry following one of the permitted groups. Each of the models foresees that universe evolution obeys an evolution equation. Expansion and big-bang theory are recalled. Is universe an open or closed space. Universe is also electrically neutral. That leads to a work hypothesis: the existing matter is not given data of universe but it appeared by evolution from nothing. Problem of matter and antimatter is then raised up together with its place in universe
Long Range Chiral Imprinting of Cu(110) by Tartaric Acid
Energy Technology Data Exchange (ETDEWEB)
Lawton, T J; Pushkarev, V; Wei, D; Lucci, F R; Sholl, D S; Gellman, A J; Sykes, E C. H.
2013-10-31
Restructuring of metals by chiral molecules represents an important route to inducing and controlling enantioselective surface chemistry. Tartaric acid adsorption on Cu(110) has served as a useful system for understanding many aspects of chiral molecule adsorption and ordering on a metal surface, and a number of chiral and achiral unit cells have been reported. Herein, we show that given the appropriate annealing treatment, singly deprotonated tartaric acid monolayers can restructure the Cu metal itself, and that the resulting structure is both highly ordered and chiral. Molecular resolution scanning tunneling microscopy reveals that singly deprotonated tartaric acid extracts Cu atoms from the Cu(110) surface layer and incorporates them into highly ordered, chiral adatom arrays capped by a continuous molecular layer. Further evidence for surface restructuring comes from images of atom-deep trenches formed in the Cu(110) surface during the process. These trenches also run in low symmetry directions and are themselves chiral. Simulated scanning tunneling microscopy images are consistent with the appearance of the added atom rows and etched trenches. The chiral imprinting results in a long-range, highly ordered unit cell covering the whole surface as confirmed by low energy electron diffraction. Details of the restructuring mechanism were further investigated via time-lapse imaging at elevated temperature. This work reveals the stages of nanoscale surface restructuring and offers an interesting method for chiral modification of an achiral metal surface.
On chiral and non chiral 1D supermultiplets
Energy Technology Data Exchange (ETDEWEB)
Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica
2011-07-01
In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)
Spin Polarized versus Chiral Condensate in Quark Matter at Finite Temperature and Density
Matsuoka, H; da Providencia, J; Providencia, C; Yamamura, M; Bohr, H
2016-01-01
It is shown that the spin polarized condensate appears in quark matter at high baryon density and low temperature due to the tensor-type four-point interaction in the Nambu-Jona-Lasinio-type model as a low energy effective theory of quantum chromodynamics. It is indicated within this low energy effective model that the chiral symmetry is broken again by the spin polarized condensate as increasing the quark number density, while the chiral symmetry restoration occurs in which the chiral condensate disappears at a certain density.
Effective chiral restoration in the hadronic spectrum and QCD
Energy Technology Data Exchange (ETDEWEB)
Cohen, Thomas D. [Department of Physics, University of Maryland, College Park, MD 20742-4111 (United States)]. E-mail: cohen@physics.umd.edu
2006-08-21
Effective chiral restoration in the hadronic spectrum has been conjectured as an explanation of nearly degenerate multiplets seen in highly excited hadrons. The conjecture depends on the states being insensitive to the dynamics of spontaneous chiral symmetry breaking. A key question is whether this concept is well defined in QCD. This paper shows that it is by means of an explicit formal construction. This construction allows one to characterize this sensitivity for any observable calculable in QCD in Euclidean space via a functional integral. The construction depends on a generalization of the Banks-Casher theorem. It exploits the fact that all dynamics sensitive to spontaneous chiral symmetry breaking observables in correlation functions arise from fermion modes of zero virtuality (in the infinite volume limit), while such modes make no contribution to any of the dynamics which preserves chiral symmetry. In principle this construction can be implemented in lattice QCD. The prospect of a practical lattice implementation yielding a direct numerical test of the concept of effective chiral restoration is discussed.
Understanding complex chiral plasmonics
Duan, Xiaoyang; Yue, Song; Liu, Na
2015-10-01
Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant
An Anderson-like model of the QCD chiral transition
Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc
2016-06-01
We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.
Phases of N=1 Supersymmetric Chiral Gauge Theories
Energy Technology Data Exchange (ETDEWEB)
Craig, Nathaniel; /Princeton, Inst. Advanced Study /Rutgers U., Piscataway; Essig, Rouven; /Princeton, Inst. Advanced Study /YITP, Stony Brook /SLAC /Stanford U., Phys. Dept.; Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.
2012-02-17
We analyze the phases of supersymmetric chiral gauge theories with an antisymmetric tensor and (anti)fundamental flavors, in the presence of a classically marginal superpotential deformation. Varying the number of flavors that appear in the superpotential reveals rich infrared chiral dynamics and novel dualities. The dualities are characterized by an infinite family of magnetic duals with arbitrarily large gauge groups describing the same fixed point, correlated with arbitrarily large classical global symmetries that are truncated nonperturbatively. At the origin of moduli space, these theories exhibit a phase with confinement and chiral symmetry breaking, an interacting nonabelian Coulomb phase, and phases where an interacting sector coexists with a sector that either s-confines or is in a free magnetic phase. Properties of these intriguing 'mixed phases' are studied in detail using duality and a-maximization, and the presence of superpotential interactions provides further insights into their formation.
Disoriented Chiral Condensates in High-Energy Nuclear Collisions
Energy Technology Data Exchange (ETDEWEB)
Randrup, Jorgen
2000-10-18
This brief lecture series discusses how our current understanding of chiral symmetry may be tested more globally in high-energy nuclear collisions by suitable extraction of pionic observables. After briefly recalling the general features of chiral symmetry, we focus on the SU(2) linear sigma model and show how a semi-classical mean-field treatment makes it possible to calculate its statistical properties, including the chiral phase diagram. Subsequently, we consider scenarios of relevance to high-energy collisions and discuss the features of the ensuing non-equilibrium dynamics and the associated characteristic signals. Finally, we illustrate how the presence of vacuum fluctuations or the inclusion of strangeness may affect the results quantitatively.
Chiral Determinant Formulae and Subsingular Vectors for the N=2 Superconformal Algebras
Gato-Rivera, Beatriz; Gato-Rivera, Beatriz; Rosado, Jose Ignacio
1997-01-01
We derive conjectures for the N=2 "chiral" determinant formulae of the Topological algebra, the Antiperiodic NS algebra, and the Periodic R algebra, corresponding to incomplete Verma modules built on chiral topological primaries, chiral and antichiral NS primaries, and Ramond ground states, respectively. Our method is based on the analysis of the singular vectors in chiral Verma modules and their spectral flow symmetries, together with some computer exploration and some consistency checks. In addition, and as a consequence, we uncover the existence of subsingular vectors in these algebras, giving examples (subsingular vectors are non-highest-weight null vectors which are not descendants of any highest-weight singular vectors).
The solution to the strong CP problem at the BCS level of chiral rotations
Bicudo, P.; Ribeiro, J
1996-01-01
We briefly review the cases of forced and spontaneous chiral symmetry breaking. In particular the chiral condensate of q anti-q pairs is parametrized with two angles, phi which measures the chiral condensation, and theta which measures the chiral rotation. The strong CP problem arises when it is assumed that the current quark masses of the Standard Model, have a theta phase that differs from the phase induced by the instanton term wich is originated in the QCD sector of the Standard Model. We...
Screw split ring resonator as building block of three-dimensional chiral metamaterials
Energy Technology Data Exchange (ETDEWEB)
Liao, Yong, E-mail: liaoy@cqu.edu.cn [Key Laboratory of Aerocraft Tracking Telemetering and Command and Communication, Ministry of Education, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Integrated Services Networks, Xidian University, Xian 710071 (China); Yang, Shizhong [Key Laboratory of Aerocraft Tracking Telemetering and Command and Communication, Ministry of Education, Chongqing University, Chongqing 400044 (China); Shi, Lina [Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)
2014-01-17
We proposed and numerically investigated the influence of spatial topology on the infrared frequency region response of chiral metamaterials based on discrete deformed split ring resonators. Compared with the well studied continuous helix, the proposed metamaterials with discrete topology exhibit broad band chiral electromagnetic response. It is shown that the conversion between left and right circular polarization waves for our model is much broader than the continuous helix model. The observed cross-coupling between electric and magnetic fields results from the chiral electric currents on the resonators due to the broken mirror symmetry. The findings are useful for the design of future real three-dimensional chiral metamaterials with tunable optical response.
Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry
Directory of Open Access Journals (Sweden)
Michiya Fujiki
2014-08-01
Full Text Available Controlled mirror symmetry breaking arising from chemical and physical origin is currently one of the hottest issues in the field of supramolecular chirality. The dynamic twisting abilities of solvent molecules are often ignored and unknown, although the targeted molecules and polymers in a fluid solution are surrounded by solvent molecules. We should pay more attention to the facts that mostly all of the chemical and physical properties of these molecules and polymers in the ground and photoexcited states are significantly influenced by the surrounding solvent molecules with much conformational freedom through non-covalent supramolecular interactions between these substances and solvent molecules. This review highlights a series of studies that include: (i historical background, covering chiral NaClO3 crystallization in the presence of d-sugars in the late 19th century; (ii early solvent chirality effects for optically inactive chromophores/fluorophores in the 1960s–1980s; and (iii the recent development of mirror symmetry breaking from the corresponding achiral or optically inactive molecules and polymers with the help of molecular chirality as the solvent use quantity.
Finite nuclei in relativistic models with a light chiral scalar meson
Furnstahl, R. J.; Serot, Brian D.
1993-05-01
Relativistic chiral models with a light scalar meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. The scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.
Nucleus as a chiral filter: the role of the Δ(1232)
International Nuclear Information System (INIS)
We describe how two different modes of chiral symmetry can be seen in nuclei. In particular, it is shown that the nuclear axial charge or more precisely the O+O-, ΔT=1 transition at zero momentum transfer probe the nuclear configuration wherein the axial charge gsub(A) is effectively enhanced in nuclear medium due to soft pions, symptomatic of the Goldstone realization of chiral symmetry in the medium while the Gamow-Teller resonances probe the configuration wherein soft pions are no longer operative, suggesting an approach toward the Wigner realization of chiral symmetry. Using the celebrated Adler-Weisberger relation, it is argued that the observed approximately 50% quenching of the Gamow-Teller strength reflects the possibility that the Gamow-Teller operator sees the quarks inside the bag, blind to the Goldstone vacuum outside. Some implications on chiral phase transitions are also discussed
The chicken or the egg; or Who ordered the chiral phase transition?
Kogan, I I; Tekin, B; Kogan, Ian I.; Kovner, Alex; Tekin, Bayram
2001-01-01
We draw an analogy between the deconfining transition in the 2+1 dimensional Georgi-Glashow model and the chiral phase transition in 3+1 dimensional QCD. Based on the detailed analysis of the former (hep-th/0010201) we suggest that the chiral symmetry restoration in QCD at high temperature is driven by the thermal ensemble of baryons and antibaryons. The chiral symmetry is restored when roughly half of the volume is occupied by the baryons. Surprisingly enough, even though baryons are rather heavy, a crude estimate for the critical temperature gives $T_c=180$ Mev. In this scenario the binding of the instantons is not the cause but rather a consequence of the chiral symmetry restoration.
Binary mixtures of chiral gases
Presilla, Carlo
2015-01-01
A possible solution of the well known paradox of chiral molecules is based on the idea of spontaneous symmetry breaking. At low pressure the molecules are delocalized between the two minima of a given molecular potential while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a phase transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. In particular, at pressure greater than a critical value no inversion line is observed. These data are well accounted for by a model previously developed and recently extended to mixtures. In the present paper, we discuss the variation of the critical pressure in binary mixtures as a function of the fractions of the constituents.
Kalaydzhyan, Tigran
2014-01-01
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.
Mechanical separation of chiral dipoles by chiral light
Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W
2013-01-01
Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.
New Chiral Fermions, a New Gauge Interaction, Dirac Neutrinos, and Dark Matter
de Gouvea, André
2015-01-01
We propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, $U(1)_{\
Peters, Kirstin
2010-01-01
A well-known result by Palamidessi tells us that {\\pi}mix (the {\\pi}-calculus with mixed choice) is more expressive than {\\pi}sep (its subset with only separate choice). The proof of this result argues with their different expressive power concerning leader election in symmetric networks. Later on, Gorla of- fered an arguably simpler proof that, instead of leader election in symmetric networks, employed the reducibility of "incestual" processes (mixed choices that include both enabled senders and receivers for the same channel) when running two copies in parallel. In both proofs, the role of breaking (ini- tial) symmetries is more or less apparent. In this paper, we shed more light on this role by re-proving the above result-based on a proper formalization of what it means to break symmetries-without referring to another layer of the distinguishing problem domain of leader election. Both Palamidessi and Gorla rephrased their results by stating that there is no uniform and reason- able encoding from {\\pi}mix i...
Chiral transition with magnetic fields
Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian
2014-01-01
We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...
Invariant regularization of anomaly-free chiral theories
Chang, L N; Chang, Lay Nam; Soo, Chopin
1997-01-01
We present a generalization of the Frolov-Slavnov invariant regularization scheme for chiral fermion theories in curved spacetimes. The Lagrangian level regularization is explicitly invariant under all the local gauge symmetries of the theory, including local Lorentz invariance. The perturbative scheme works for {\\it arbitrary} representations which satisfy the chiral gauge anomaly and mixed Lorentz-gauge anomaly cancellation conditions. Anomalous theories on the other hand manifest themselves by having divergent fermion loops which remain unregularized by the scheme. Since the invariant scheme is promoted to also include local Lorentz invariance, spectator fields which do not couple to gravity cannot be, and are not, introduced. Furthermore, the scheme is truly Weyl(chiral) in that {\\it all} fields, including the regulators, are left-handed; and {\\it only the left-handed spin connection} is needed. The scheme is therefore well-suited for the perturbative study of all four known forces in a completely chiral ...
Sensing and tuning microfiber chirality with nematic chirogyral effect
Čopar, Simon; Seč, David; Aguirre, Luis E.; Almeida, Pedro L.; Dazza, Mallory; Ravnik, Miha; Godinho, Maria H.; Pieranski, Pawel; Žumer, Slobodan
2016-03-01
Microfibers with their elongated shape and translation symmetry can act as important components in various soft materials, notably for their mechanics on the microscopic level. Here we demonstrate the mechanical response of a micro-object to imposed chirality, in this case, the tilt of disclination rings in an achiral nematic medium caused by the chiral surface anchoring on an immersed microfiber. This coupling between chirality and mechanical response, used to demonstrate sensing of chirality of electrospun cellulose microfibers, is revealed in the optical micrographs due to anisotropy in the elastic response of the host medium. We provide an analytical explanation of the chirogyral effect supported with numerical simulations and perform an experiment to test the effect of the cell confinement and fiber size. We controllably twist the microfibers and demonstrate the response of the nematic medium. More generally the demonstrated study provides means for experimental discrimination of surface properties and allows mechanical control over the shape of disclination rings.
The properties of isolated chiral skyrmions in thin magnetic films
Leonov, A. O.; Monchesky, T. L.; Romming, N.; Kubetzka, A.; Bogdanov, A. N.; Wiesendanger, R.
2016-06-01
Axisymmetric solitonic states (chiral skyrmions) were first predicted theoretically more than two decades ago. However, until recently they have been observed in a form of skyrmionic condensates (hexagonal lattices and other mesophases). In this paper we report experimental and theoretical investigations of isolated chiral skyrmions discovered in PdFe/Ir(111) bilayers two years ago by Romming et al (2013 Science 341 636). The results of spin-polarized scanning tunneling microscopy analyzed within the continuum and discrete models provide a consistent description of isolated skyrmions in thin layers. The existence region of chiral skyrmions is restricted by strip-out instabilities at low fields and a collapse at high fields. We demonstrate that the same equations describe axisymmetric localized states in all condensed matter systems with broken mirror symmetry, and thus our findings establish basic properties of isolated skyrmions common for chiral liquid crystals, different classes of noncentrosymmetric magnets, ferroelectrics, and multiferroics.
Anomalous chiral superfluidity
Energy Technology Data Exchange (ETDEWEB)
Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)
2010-02-08
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.
Sen, Srimoyee
2016-01-01
We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.
Doped Chiral Polymer Metamaterials Project
National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...
On the nature of an emergent symmetry in QCD
Cohen, Thomas D
2015-01-01
Remarkable symmetry properties appear to arise in lattice calculations of correlation functions in which the lowest-lying eigenmodes of the Dirac operator in quark propagators are removed by hand. The Banks-Casher relation ties the chiral condensate to the density of low lying modes; thus, it is plausible that removal of such modes could lead to a regime where spontaneous chiral symmetry breaking does not occur. Surprising, a pattern of identical correlation functions was observed that is larger than can be explained by a restoration of chiral symmetry. This suggests that a larger symmetry---one that is not present in the QCD lagrangian---emerges when these modes are removed. Previously it was argued that this emergent symmetry was SU(4). However, when the low-lying modes are removed, the correlation functions of sources in the SU(4) 15-plet of spin-1 mesons appear to coincide with the correlation function of the SU(4) singlet. A natural explanation for this is an emergent symmetry larger than SU(4). In this ...
Chiral pumping effect induced by rotating electric fields
Ebihara, Shu; Fukushima, Kenji; Oka, Takashi
2016-04-01
We propose an experimental setup using 3D Dirac semimetals to access a novel phenomenon induced by the chiral anomaly. We show that the combination of a magnetic field and a circularly polarized laser induces a finite charge density with an accompanying axial current. This is because the circularly polarized laser breaks time-reversal symmetry and the Dirac point splits into two Weyl points, which results in an axial-vector field. We elucidate the appearance of the axial-vector field with the help of the Floquet theory by deriving an effective Hamiltonian for high-frequency electric fields. This anomalous charge density, i.e., the chiral pumping effect, is a phenomenon reminiscent of the chiral magnetic effect with a chiral chemical potential. We explicitly compute the pumped density and the axial-current expectation value. We also take account of coupling to the chiral magnetic effect to calculate a balanced distribution of charge and chirality in a material that behaves as a chiral battery.
Chiral Sensitivity in the Dissociative Electron Attachment of Halocamphor Molecules
Dreiling, Joan
2016-05-01
We have demonstrated chirally-dependent molecular destruction when incident longitudinally-spin-polarized (chiral) electrons break bonds in chiral molecules. This chiral sensitivity was observed through an asymmetry in the dissociative electron attachment (DEA) reaction rate with chiral 3-bromocamphor (C10 H15 BrO). Such an observation provides an unambiguous demonstration of the idea underlying the Vester-Ulbricht hypothesis, which attempts to explain the origins of the homochirality that is observed in many biological systems. While the lack of inversion symmetry in these reactions allows the effects we observe to occur, their dynamic causes are poorly understood. We have further studied the asymmetries in the DEA rates for two additional halocamphor molecules, 3-iodocamphor (C10 H15 IO) and 10-iodocamphor, in a systematic effort to illuminate the mechanisms responsible for the chiral sensitivity. The DEA signal depends on the sign of the incident electron helicity for a given target handedness in all molecules, and it varies with both the atomic number and the location of the heaviest atom in the molecule. Surprisingly, the DEA asymmetries for 10-iodocamphor, in which the heaviest atom is farther from a chiral center than for the other molecules, produced the largest asymmetries. This work was performed at the University of Nebraska-Lincoln. This project was funded by NSF Grant PHY-1206067.
Disordered cold atoms in different symmetry classes
Pinheiro, Fernanda; Larson, Jonas
2015-08-01
We consider an experimentally realizable model of noninteracting but randomly coupled atoms in a two-dimensional optical lattice. By choosing appropriate real or complex-valued random fields and species-dependent energy offsets, this system can be used to analyze effects of disorder in four different symmetry classes: the chiral BDI and AIII and the nonchiral A and AI. These chiral classes are known to support a metallic phase at zero energy, which here, due to the inevitable finite size of the system, should also persist in a neighborhood of nonzero energies. As we discuss, this is of particular interest for experiments involving quenches. Away from the center of the spectrum, we find that excitations appear as domain walls in the cases with time-reversal symmetry or as vortices in the cases where time-reversal symmetry is absent. Therefore, a quench in a system with uniform density would lead to the formation of either vortices or domain walls depending on the symmetry class. For the nonchiral models in classes A and AI, a population imbalance between the two atomic species naturally occurs. In these cases, one of the two species is seen to favor a more uniform density. We also study the onset of localization as the disorder strength is increased for the different classes, and by deriving an effective model for the nonchiral cases we show how their eigenstates remain extended for larger values of the coupling with the disorder when compared to the nonchiral ones.
Chiral geometry in multiple chiral doublet bands
Zhang, Hao; Chen, Qibo
2016-02-01
The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)
Axionic domain wall number related to U(1)$_{\\rm anom}$ global symmetry
Kim, Jihn E
2016-01-01
The QCD axion with $f_a$ at an intermediate scale, 10**9-10**12 GeV, seems in conflict with the gravity spoil of global symmetries and may face the axionic domain wall problem. We point out that the string compactifications with an anomalous U(1) gauge symmetry, allowing desirable chiral matter spectra, circumvent these two problems simultaneously.
Axionic domain wall number related to U(1)anom global symmetry
Kim, Jihn E.
2016-08-01
The QCD axion with fa at an intermediate scale, 109 GeV ∼1012 GeV, seems in conflict with the gravity spoil of global symmetries and may face the axionic domain wall problem. We point out that the string compactifications with an anomalous U(1) gauge symmetry, allowing desirable chiral matter spectra, circumvent these two problems simultaneously.
International Nuclear Information System (INIS)
In this paper, Lorentzian wormholes with a phantom field and chiral matter fields have been obtained. In addition, it is shown that for different values of the gravitational coupling of the chiral fields, the wormhole geometry changes. Finally, the stability of the corresponding wormholes is studied and it is shown that are unstable (eg. Ellis's wormhole instability)
Spectral signatures of chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast to t...
A primer for chiral perturbation theory
Scherer, Stefan
2012-01-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.
A primer for Chiral Perturbative Theory
International Nuclear Information System (INIS)
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)
A primer for Chiral Perturbative Theory
Energy Technology Data Exchange (ETDEWEB)
Scherer, Stefan [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schindler, Matthias R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics; George Washington Univ., Washington, DC (United States). Dept. of Physics
2012-07-01
Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)
Chiral Magnetic "Superfluidity"
Sadofyev, Andrey V
2015-01-01
We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will {\\it not} contribute to the drag experienced by an impurity. We argue on very general basis that those systems with a strong magnetic field would exhibit the behavior of 'superfluidity" -- the motion of the heavy impurity is frictionless, in analog to the case of a superfluid. However, this "superfluidity" exists even for chiral media at finite temperature and only in the directional longitudinal with the magnetic field, in contrast to the ordinary superfluid. We will call this novel phenomenon as the Chiral Magnetic "Superfluidity". We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion ...
CP and other Symmetries of Symmetries
Trautner, Andreas
2016-01-01
Outer automorphisms of symmetries ("symmetries of symmetries") in relativistic quantum field theories are studied, including charge conjugation (C), space-reflection (P) , and time-reversal (T) transformations. The group theory of outer automorphisms is pedagogically introduced and it is shown that CP transformations are special outer automorphisms of the global, local, and space-time symmetries of a theory. It is shown that certain discrete groups allow for a group theoretical prediction of parameter independent CP violating complex phases with fixed geometrical values. The remainder of this thesis pioneers the study of outer automorphisms which are not related to C, P, or T. It is shown how outer automorphisms, in general, relate symmetry invariants and, in theories with spontaneous symmetry breaking, imply relations between different vacuum expectation values. Thereby, outer automorphisms can give rise to emergent symmetries. An example model with a discrete symmetry and three copies of the Standard Model ...
Chiral Magnetic Effect and Chiral Phase Transition
Institute of Scientific and Technical Information of China (English)
FU Wei-Jie; LIU Yu-Xin; WU Yue-Liang
2011-01-01
We study the influence of the chiral phase transition on the chiral magnetic effect.The azimuthal chargeparticle correlations as functions of the temperature are calculated.It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition.It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value.We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.
Chiral Lagrangian from Duality and Monopole Operators in Compactified QCD
Cherman, Aleksey; Schäfer, Thomas; Ünsal, Mithat
2016-08-01
We show that there exists a special compactification of QCD on R3×S1 in which the theory has a domain where continuous chiral symmetry breaking is analytically calculable. We give a microscopic derivation of the chiral Lagrangian, the chiral condensate, and the Gell-Mann-Oakes-Renner relation mπ2fπ2=-mq⟨q ¯ q ⟩ . Abelian duality, monopole operators, and flavor-twisted boundary conditions play the main roles. The flavor twisting leads to the new effect of fractional jumping of fermion zero modes among monopole instantons. Chiral symmetry breaking is induced by monopole-instanton operators, and the Nambu-Goldstone pions arise by color-flavor transmutation from gapless "dual photons." We also give a microscopic picture of the "constituent quark" masses. Our results are consistent with expectations from chiral perturbation theory at large S1, and yield strong support for adiabatic continuity between the small-S1 and large-S1 regimes. We also find concrete microscopic connections between N =1 and N =2 supersymmetric gauge theory dynamics and nonsupersymmetric QCD dynamics.
Chiral Lagrangian from Duality and Monopole Operators in Compactified QCD
Cherman, Aleksey; Unsal, Mithat
2016-01-01
We show that there exists a special compactification of QCD on $\\mathbb{R}^3 \\times S^1$ in which the theory has a domain where continuous chiral symmetry breaking is analytically calculable. We give a microscopic derivation of the chiral lagrangian, the chiral condensate, and the Gell-Mann-Oakes-Renner relation $m_{\\pi}^2 f_{\\pi}^2 = m_q \\langle \\bar{q} q \\rangle$. Abelian duality, monopole operators, and flavor-twisted boundary conditions, or a background flavor holonomy, play the main roles. The flavor twisting leads to the new effect of fractional jumping of fermion zero modes among monopole-instantons. Chiral symmetry breaking is induced by monopole-instanton operators, and the Nambu-Goldstone pions arise by color-flavor transmutation from gapless "dual photons". We also give a microscopic picture of the "constituent quark" masses. Our results are consistent with expectations from chiral perturbation theory at large $S^1$, and yield strong support for adiabatic continuity between the small-$S^1$ and larg...
International Nuclear Information System (INIS)
Internal and space-time symmetries are discussed in this group of lectures. The first of the lectures deals with an internal symmetry, or rather two related symmetries called charge independence and charge symmetry. The next two discuss space-time symmetries which also hold approximately, but are broken only by the weak forces; that is, these symmetries hold for both the hadronic and electromagnetic forces
Chiral properties of dynamical Wilson fermions
International Nuclear Information System (INIS)
Quantum Chromodynamics with two light quark flavors is considered in the lattice regularization with improved Wilson fermions. In this formulation chiral symmetry is explicitly broken by cutoff effects linear in the lattice spacing a. As a consequence the isovector axial currents require improvement (in the Symanzik sense) as well as a finite renormalization if they are to satisfy the continuum Ward-Takahashi identities associated with the isovector chiral symmetries up to small lattice corrections of O(a2). In exploratory numerical simulations of the lattice theory algorithmic difficulties were encountered at coarse lattice spacings. There the hybrid Monte Carlo algorithm used suffers from a distorted Dirac spectrum in the form of unphysically small eigenvalues. This is shown to be a cutoff effect, which disappears rapidly as the lattice spacing is decreased. An alternative algorithm, the polynomial hybrid Monte Carlo algorithm, is found to perform significantly better in the presence of exceptionally small eigenvalues. Extending previously used methods both the improvement and the renormalization of the axial current are implemented non-perturbatively in terms of correlation functions formulated in the framework of the Schroedinger functional. In both cases this is achieved by enforcing continuum Ward identities at finite lattice spacing. Together, this restores the isovector chiral symmetry to quadratic order in the lattice spacing. With little additional effort the normalization factor of the local vector current is also obtained. The methods developed and implemented here can easily be applied to other actions formulated in the Schroedinger functional framework. This includes improved gauge actions as well as theories with more than two dynamical quark flavors. (orig.)
Criteria of backscattering in chiral one-way photonic crystals
Cheng, Pi-Ju; Chang, Shu-Wei
2016-03-01
Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.
The chiral anomaly from M theory
Gursoy, U; Portugues, R; Gursoy, Umut; Hartnoll, Sean A.; Portugues, Ruben
2003-01-01
We argue that the chiral anomaly of $\\Ncal = 1$ super Yang-Mills theory admits a dual description as spontaneous symmetry breaking in M theory on $G_2$ holonomy manifolds. We identify an angle of the $G_2$ background dual to the anomalous $U(1)_R$ current in field theory. This angle is not an isometry of the metric and we therefore develop a theory of ``massive isometry'' to describe fluctuations about such angles. Another example of a massive isometry occurs in the Atiyah-Hitchin metric.
Chiral phase transition from string theory.
Parnachev, Andrei; Sahakyan, David A
2006-09-15
The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.
Strange Hadronic Matter in a Chiral Model
Institute of Scientific and Technical Information of China (English)
ZHANG Li-Liang; SONG Hong-Qiu; WANG Ping; SU Ru-Keng
2000-01-01
The strange hadronic matter with nucleon, Λ-hyperon and E-hyperon is studied by using a chiral symmetry model in a mean-field approximation. The saturation properties and stabilities of the strange hadronic matter are discussed. The result indicates a quite large strangeness fraction (fs) region where the strange hadronic matter is stable against particle emission. In the large fs region, the component dominates, resulting in a deep minimum in the curve of the binding energy per baryon EB versus the strangeness fraction fs with (EB, fs) -～ (-26.0MeV, 1.23).
Effects of gauge boson mass on chiral and deconfinement phase transitions in QED$_{3}$
Yin, Pei-Lin; Feng, Hong-Tao; Zong, Hong-Shi
2016-01-01
Based on the experimental observation that there is a coexisting region between the antiferromagnetic (AF) and $\\textit{d}$-wave superconducting ($\\textit{d}$SC) phases, the influences of gauge boson mass $m_{a}$ on chiral symmetry restoration and deconfinement phase transitions in QED$_{3}$ are investigated simultaneously within a unified framework, i.e., Dyson-Schwinger equations. The results show that the chiral symmetry restoration phase transition in the presence of the gauge boson mass $m_{a}$ is a typical second-order phase transition; the chiral symmetry restoration and deconfinement phase transitions are coincident; the critical number of fermion flavors $N^{c}_{f}$ decreases as the gauge boson mass $m_{a}$ increases and there exists a boundary that separates the $N^{c}_{f}$-$m_{a}$ plane into chiral symmetry breaking/confinement region for ($N_{f}^{c}$, $m_{a}$) below the boundary and chiral symmetry restoration/deconfinement region for ($N_{f}^{c}$, $m_{a}$) above it.
Gapless chiral spin liquid in a kagome Heisenberg model
Bieri, Samuel; Messio, Laura; Bernu, Bernard; Lhuillier, Claire
2015-08-01
Motivated by recent experiments on the Heisenberg S =1 /2 quantum spin liquid candidate material kapellasite, we classify all possible chiral (time-reversal symmetry breaking) spin liquids with fermionic spinons on the kagome lattice. We obtain the phase diagram for the physically relevant extended Heisenberg model, comparing the energies of a wide range of microscopic variational wave functions. We propose that, at low temperature, kapellasite exhibits a gapless chiral spin liquid phase with spinon Fermi surfaces. This two-dimensional state inherits many properties of the nearby one-dimensional phase of decoupled antiferromagnetic spin chains, but also shows some remarkable differences. We discuss the spin structure factors and other physical properties.
The effective action approach applied to nuclear chiral sigma model
International Nuclear Information System (INIS)
The nuclear chiral sigma model of nuclear matter is considered by means of the Cornwall-Jackiw-tomboulis (CTJ) effective action. The method provides a very general framework for investigating many important problems: chiral symmetry in nuclear medium, energy density of nuclear ground state, nuclear Schwinger-Dyson (SD) equations, etc. It is shown that the SD equations for sigma-omega mixing are actually not present in this formalism. For numerical computation purposes the Hartree-Fock (HF) approximation for ground state energy density is also presented. (author). 26 refs
Orbital Angular Momentum in the Chiral Quark Model
Song, Xiaotong
1998-01-01
We developed a new and unified scheme for describing both quark spin and orbital angular momenta in symmetry-breaking chiral quark model. The loss of quark spin in the chiral splitting processes is compensated by the gain of the orbital angular momentum carried by quarks and antiquarks. The sum of both spin and orbital angular momenta carried by quarks and antiquarks is 1/2. The analytic and numerical results for the spin and orbital angular momenta carried by quarks and antiquarks in the nuc...
Bourget, Antoine; Troost, Jan
2016-03-01
We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N = (4 , 4) supersymmetry in two dimensions. For seed target spaces K3 and T 4, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.
Bourget, Antoine
2015-01-01
We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T4, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.
On SU(3) effective models and chiral phase-transition
Tawfik, Abdel Nasser
2015-01-01
The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...
Revisiting symmetries of lattice fermions via spin-flavor representation
Kimura, Taro; Misumi, Tatsuhiro; Noumi, Toshifumi; Torii, Shingo; Aoki, Sinya
2011-01-01
Employing the spin-flavor representation, we unveil the structures of the doubler-mixing symmetries and the mechanisms of their spontaneous breakdown in four types of lattice fermion formulation. We first revisit the naive fermion with the vanishing bare mass $m$, and identify the generators of the symmetries which form U(4)$\\times$U(4). The strong-coupling analysis shows that it is broken to U(4) by chiral condensation. We apply the same procedure to the Wilson fermion, which possesses only the U(1) vector symmetry for general values of $m$. For a special value of $m$, however, there emerges an additional U(1) symmetry to be broken by pion condensation. We also explore two types of minimally-doubled fermion, and discover a similar kind of symmetry enhancement and its spontaneous breakdown.
Kaon Condensates, Nuclear Symmetry Energy and Cooling of Neutron Stars
Kubis, S
2003-01-01
The cooling of neutron stars by URCA processes in the kaon-condensed neutron star matter for various forms of nuclear symmetry energy is investigated. The kaon-nucleon interactions are described by a chiral lagrangian. Nuclear matter energy is parametrized in terms of the isoscalar contribution and the nuclear symmetry energy in the isovector sector. High density behaviour of nuclear symmetry energy plays an essential role in determining the composition of the kaon-condensed neutron star matter which in turn affects the cooling properties. We find that the symmetry energy which decreases at higher densities makes the kaon-condensed neutron star matter fully protonized. This effect inhibits strongly direct URCA processes resulting in slower cooling of neutron stars as only kaon-induced URCA cycles are present. In contrast, for increasing symmetry energy direct URCA processes are allowed in the almost whole density range where the kaon condensation exists.
Deriving diffeomorphism symmetry
Kleppe, Astri
2014-01-01
In an earlier article, we have "derived" space, as a part of the Random Dynamics project. In order to get locality we need to obtain reparametrization symmetry, or equivalently, diffeomorphism symmetry. There we sketched a procedure for how to get locality by first obtaining reparametrization symmetry, or equivalently, diffeomorphism symmetry. This is the object of the present article.
Jaffé, Hans H
1977-01-01
This book, devoted exclusively to symmetry in chemistry and developed in an essentially nonmathematical way, is a must for students and researchers. Topics include symmetry elements and operations, multiple symmetry operations, multiplication tables and point groups, group theory applications, and crystal symmetry. Extensive appendices provide useful tables.
Novozhilov, V Yu; Novozhilov, Victor; Novozhilov, Yuri
2002-01-01
We discuss specific features of color chiral solitons (asymptotics, possibility of confainment, quantization) at example of isolated SU(2) color skyrmions, i.e. skyrmions in a background field which is the vacuum field forming the gluon condensate.
Partially conserved axial-vector current and model chiral field theories in nuclear physics
International Nuclear Information System (INIS)
We comment on the relation between the two standard approaches to chiral symmetry--namely, the current algebra/partially conserved axial-vector current approach and the chiral Lagrangian method--in a manner intended to clarify recent and probable future applications of this symmetry in nuclear physics. Specifically, we show that in explicit chiral field theories the canonical πN scattering amplitude does not have the famed ''Adler zero'' unless partial conservation of axial-vector current holds as an operator equation. This implies that there are a number of familiar chiral models in which the ''Adler self-consistency'' condition does not apply to the canonical pion field. Among the problems of current interest for which our remarks are relevant are the studies of the pion-nucleus optical potential, pion condensation, and the attempts to formulate a model field theory having both reasonable nuclear saturation and good low energy pion phenomenology
Directory of Open Access Journals (Sweden)
Goldstein Gary R.
2015-01-01
Full Text Available Nucleon spin structure, transversity and the tensor charge are of central importance to understanding the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the proton via twist 3 GPDs is shown. The “flexible parametrization” of chiral even GPDs is reviewed and its transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on π0 and η electroproduction.
Chiral separation in microflows
Kostur, Marcin; Schindler, Michael; Talkner, Peter; Hänggi, Peter
2005-01-01
Molecules that only differ by their chirality, so called enantiomers, often possess different properties with respect to their biological function. Therefore, the separation of enantiomers presents a prominent challenge in molecular biology and belongs to the ``Holy Grail'' of organic chemistry. We suggest a new separation technique for chiral molecules that is based on the transport properties in a microfluidic flow with spatially variable vorticity. Because of their size the thermal fluctua...
Van Isacker, P
2010-01-01
The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. General notions of symmetry and dynamical symmetry in quantum mechanics are introduced and illustrated with simple examples such as the SO(4) symmetry of the hydrogen atom and the isospin symmetry in nuclei. Two nuclear models, the shell model and the interacting boson model, are reviewed with particular emphasis on their use of group-theoretical techniques.
Muon number violating kaon decays and precocious chiral unification mass scale
International Nuclear Information System (INIS)
Limitations on mass scale of precocious chiral unification in the framework of models containing extended chiral colour symmetry SU(4) are foUnd from experimental limits on muon number violating kaon decays Ksub(L) 0 → . μ+-e+-, K+ → π+μ+-e+-. This mass scale is shown to exceed (1-1.7) 10 TeV irrespective of the unkown mixing angle
Weak magnetic field effects on chiral critical temperature in a nonlocal Nambu--Jona-Lasinio model
Loewe, M; Villavicencio, C; Zamora, R
2014-01-01
In this article we study the nonlocal Nambu--Jona-Lasinio model with a Gaussian regulator in the chiral limit. Finite temperature effects and the presence of a homogeneous magnetic field are considered. The magnetic evolution of the critical temperature for chiral symmetry restoration is then obtained. Here we restrict ourselves to the case of low magnetic field values, being this a complementary discussion to the exisiting analysis in nonlocal models in the strong magnetic field regime.
Chiral cavity ring down polarimetry: Chirality and magnetometry measurements using signal reversals
Energy Technology Data Exchange (ETDEWEB)
Bougas, Lykourgos; Sofikitis, Dimitris; Katsoprinakis, Georgios E.; Spiliotis, Alexandros K.; Rakitzis, T. Peter, E-mail: ptr@iesl.forth.gr [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion, Crete (Greece); Department of Physics, University of Crete, 71003 Heraklion, Crete (Greece); Tzallas, Paraskevas; Loppinet, Benoit [Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, 71110 Heraklion, Crete (Greece)
2015-09-14
We present the theory and experimental details for chiral-cavity-ring-down polarimetry and magnetometry, based on ring cavities supporting counterpropagating laser beams. The optical-rotation symmetry is broken by the presence of both chiral and Faraday birefringence, giving rise to signal reversals which allow rapid background subtractions. We present the measurement of the specific rotation at 800 nm of vapors of α-pinene, 2-butanol, and α-phellandrene, the measurement of optical rotation of sucrose solutions in a flow cell, the measurement of the Verdet constant of fused silica, and measurements and theoretical treatment of evanescent-wave optical rotation at a prism surface. Therefore, these signal-enhancing and signal-reversing methods open the way for ultrasensitive polarimetry measurements in gases, liquids and solids, and at surfaces.
Energetic molding of chiral magnetic bubbles
Lau, Derek; Sundar, Vignesh; Zhu, Jian-Gang; Sokalski, Vincent
2016-08-01
Topologically protected magnetic structures such as skyrmions and domain walls (DWs) have drawn a great deal of attention recently due to their thermal stability and potential for manipulation by spin current, which is the result of chiral magnetic configurations induced by the interfacial Dzyaloshinskii-Moriya interaction (DMI). Designing devices that incorporate DMI necessitates a thorough understanding of how the interaction presents and can be measured. One approach is to measure growth asymmetry of chiral bubble domains in perpendicularly magnetized thin films, which has been described elsewhere by thermally activated DW motion. Here, we demonstrate that the anisotropic angular dependence of DW energy originating from the DMI is critical to understanding this behavior. Domains in Co/Ni multilayers are observed to preferentially grow into nonelliptical teardrop shapes, which vary with the magnitude of an applied in-plane field. We model the domain profile using energetic calculations of equilibrium shape via the Wulff construction, which serves as a new paradigm for describing chiral domains that explains both the teardrop shape and the reversal of growth symmetry at large fields.
Chiral discrimination in optical trapping and manipulation
Bradshaw, David S.; Andrews, David L.
2014-10-01
When circularly polarized light interacts with chiral molecules or nanoscale particles powerful symmetry principles determine the possibility of achieving chiral discrimination, and the detailed form of electrodynamic mechanisms dictate the types of interaction that can be involved. The optical trapping of molecules and nanoscale particles can be described in terms of a forward-Rayleigh scattering mechanism, with trapping forces being dependent on the positioning within the commonly non-uniform intensity beam profile. In such a scheme, nanoparticles are commonly attracted to local potential energy minima, ordinarily towards the centre of the beam. For achiral particles the pertinent material response property usually entails an electronic polarizability involving transition electric dipole moments. However, in the case of chiral molecules, additional effects arise through the engagement of magnetic counterpart transition dipoles. It emerges that, when circularly polarized light is used for the trapping, a discriminatory response can be identified between left- and right-handed polarizations. Developing a quantum framework to accurately describe this phenomenon, with a tensor formulation to correctly represent the relevant molecular properties, the theory leads to exact analytical expressions for the associated energy landscape contributions. Specific results are identified for liquids and solutions, both for isotropic media and also where partial alignment arises due to a static electric field. The paper concludes with a pragmatic analysis of the scope for achieving enantiomer separation by such methods.
Magnetic moments of charm baryons in chiral perturbation theory
International Nuclear Information System (INIS)
Magnetic moments of the charm baryons of the sextet and of the 3*-plet are re-evaluated in the framework of Heavy Hadron Chiral Perturbation Theory (HHCPT). NRQM and broken SU(4) unitary symmetry model are used to obtain tree-level magnetic moments. Calculations of a unitary symmetry part of one-loop contributions to magnetic moments of the charm baryons are performed in detail in terms of the SU(4) couplings of charm baryons to Goldstone bosons. The relations between the magnetic moments of the sextet 1/2 baryons with the one-loop corrections are shown to coincide with the NRQM relations. The correspondence between HHCPT results and those of NRQM and unitary symmetry model is discussed. It is shown that one-loop corrections can effectively be absorbed into the tree-level formulae for the magnetic moments of the charm baryons in the broken SU(4) unitary symmetry model and partially in the NRQM. (author)
Natural electroweak symmetry breaking in generalised mirror matter models
Foot, R
2007-01-01
It has recently been pointed out that the mirror or twin Higgs model is more technically natural than the standard model, thus alleviating the ``little'' hierarchy problem. In this paper we generalise the analysis to models with an arbitrary number of isomorphic standard model sectors, and demonstrate that technical naturalness increases with the number of additional sectors. We consider two kinds of models. The first has $N$ standard model sectors symmetric under arbitrary permutations thereof. The second has $p$ left-chiral standard model sectors and $p$ right-chiral or mirror standard model sectors, with $p$-fold permutation symmetries within both and a discrete parity transformation interchanging left and right.
Chiral topological insulator on Nambu 3-algebraic geometry
Energy Technology Data Exchange (ETDEWEB)
Hasebe, Kazuki, E-mail: khasebe@stanford.edu
2014-09-15
Chiral topological insulator (AIII-class) with Landau levels is constructed based on the Nambu 3-algebraic geometry. We clarify the geometric origin of the chiral symmetry of the AIII-class topological insulator in the context of non-commutative geometry of 4D quantum Hall effect. The many-body groundstate wavefunction is explicitly derived as a (l,l,l−1) Laughlin–Halperin type wavefunction with unique K-matrix structure. Fundamental excitation is identified with anyonic string-like object with fractional charge 1/(2(l−1){sup 2}+1). The Hall effect of the chiral topological insulators turns out be a color version of Hall effect, which exhibits a dual property of the Hall and spin-Hall effects.
Accidental Symmetries and the Conformal Bootstrap
Chester, Shai M; Iliesiu, Luca V; Klebanov, Igor R; Pufu, Silviu S; Yacoby, Ran
2015-01-01
We study an ${\\cal N} = 2$ supersymmetric generalization of the three-dimensional critical $O(N)$ vector model that is described by $N+1$ chiral superfields with superpotential $W = g_1 X \\sum_i Z_i^2 + g_2 X^3$. By combining the tools of the conformal bootstrap with results obtained through supersymmetric localization, we argue that this model exhibits a symmetry enhancement at the infrared superconformal fixed point due to $g_2$ flowing to zero. This example is special in that the existence of an infrared fixed point with $g_1,g_2\
Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection
Banzer, Peter; Mick, Uwe; De Leon, Israel; Boyd, Robert W
2016-01-01
Chirality is an intriguing property of certain molecules, materials or artificial nanostructures, which allows them to interact with the spin angular momentum of the impinging light field. Due to their chiral geometry, they can distinguish between left- and right-hand circular polarization states or convert them into each other. Here, we introduce a novel approach towards optical chirality, which is observed in individual two-dimensional and geometrically mirror-symmetric nanostructures. In this scheme, the chiral optical response is induced by the chosen heterogeneous material composition of a particle assembly and the corresponding resonance behavior of the constituents it is built from, which breaks the symmetry of the system. As a proof of principle, we investigate such a structure composed of individual silicon and gold nanoparticles both experimentally as well as numerically. Our proposed concept constitutes a novel approach for designing two-dimensional chiral media tailored at the nanoscale.
Dynamically induced robust phonon transport and chiral cooling in an optomechanical system
Kim, Seunghwi; Taylor, Jacob M; Bahl, Gaurav
2016-01-01
The transport of sound and heat, in the form of phonons, has a fundamental material limit: disorder-induced scattering. In electronic and optical settings, introduction of chiral transport - in which carrier propagation exhibits broken parity symmetry - provides robustness against such disorder by preventing elastic backscattering. Here we experimentally demonstrate a path for achieving robust phonon transport even in the presence of material disorder, by dynamically inducing chirality through traveling-wave optomechanical coupling. Using this approach, we demonstrate dramatic optically-induced chiral transport for clockwise and counterclockwise phonons in a symmetric resonator. This induced chirality also enhances isolation from the thermal bath and leads to gain-free reduction of the intrinsic damping of the phonons. Surprisingly, this passive mechanism is also accompanied by a chiral reduction in heat load leading to a novel optical cooling of the mechanics. This technique has the potential to improve upon...
pi-pi and pi-K scatterings in three-flavour resummed chiral perturbation theory
Descotes-Genon, S
2008-01-01
The (light but not-so-light) strange quark may play a special role in the low-energy dynamics of QCD. The presence of strange quark pairs in the sea may have a significant impact of the pattern of chiral symmetry breaking : in particular large differences can occur between the chiral limits of two and three massless flavours (i.e., whether m_s is kept at its physical value or sent to zero). This may induce problems of convergence in three-flavour chiral expansions. To cope with such difficulties, we introduce a new framework, called Resummed Chiral Perturbation Theory. We exploit it to analyse pi-pi and pi-K scatterings and match them with dispersive results in a frequentist framework. Constraints on three-flavour chiral order parameters are derived.
Song, Kun; Su, Zhaoxian; Ding, Changlin; Liu, Yahong; Luo, Chunrong; Zhao, Xiaopeng; Bhattarai, Khagendra; Zhou, Jiangfeng
2016-01-01
Because of the strong inherent resonances, the giant optical activity obtained via chiral metamaterials generally suffers from high dispersion, which has been a big stumbling block to broadband applications. In this paper, we propose a type of chiral metamaterial consisting of interconnected metal helix structures with four-fold symmetry, which exhibits nonresonant Drude-like response and can therefore avoid the highly dispersive optical activity resulting from resonances. It shows that the well-designed chiral metamaterial can achieve nondispersive and pure optical activity with high transmittance in a broadband frequency range. And the optical activity of multi-layer chiral metamaterials is proportional to the layer numbers of single-layer chiral metamaterial. Most remarkably, the broadband behaviors of nondispersive optical activity and high transmission are insensitive to the incident angles of electromagnetic waves and permittivity of dielectric substrate, thereby enabling more flexibility in polarizatio...
Necessary Condition for Emergent Symmetry from the Conformal Bootstrap
Nakayama, Yu; Ohtsuki, Tomoki
2016-09-01
We use the conformal bootstrap program to derive the necessary conditions for emergent symmetry enhancement from discrete symmetry (e.g., Zn ) to continuous symmetry [e.g., U (1 )] under the renormalization group flow. In three dimensions, in order for Z2 symmetry to be enhanced to U (1 ) symmetry, the conformal bootstrap program predicts that the scaling dimension of the order parameter field at the infrared conformal fixed point must satisfy Δ1>1.08 . We also obtain the similar necessary conditions for Z3 symmetry with Δ1>0.580 and Z4 symmetry with Δ1>0.504 from the simultaneous conformal bootstrap analysis of multiple four-point functions. As applications, we show that our necessary conditions impose severe constraints on the nature of the chiral phase transition in QCD, the deconfinement criticality in Néel valence bond solid transitions, and anisotropic deformations in critical O (n ) models. We prove that some fixed points proposed in the literature are unstable under the perturbation that cannot be forbidden by the discrete symmetry. In these situations, the second-order phase transition with enhanced symmetry cannot happen.
Regularized path integrals and anomalies: U(1) chiral gauge theory
International Nuclear Information System (INIS)
We analyze the origin of the Adler-Bell-Jackiw anomaly of chiral U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [Kopper, C. and Mueller, V. F., 'Renormalization of spontaneously broken SU(2) Yang-Mills theory with flow equations', Rev. Math. Phys. 21, 781 (2009)]. Here we analyze U(1) chiral gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-photon amplitude leads to a violation of the Slavnov-Taylor identities which cannot be restored on taking the UV limit in the renormalized theory. We point out that this fact is related to the nonanalyticity of this amplitude in the infrared region.
Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures
Perna, P.; Ajejas, F.; Maccariello, D.; Cuñado, J. L.; Guerrero, R.; Niño, M. A.; Muñoz, M.; Prieto, J. L.; Miranda, R.; Camarero, J.
2016-05-01
We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold) magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM)/ antiferromagnetic (AFM) bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR) response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.
Two-dimensional chiral asymmetry in unidirectional magnetic anisotropy structures
Directory of Open Access Journals (Sweden)
P. Perna
2016-05-01
Full Text Available We investigate the symmetry-breaking effects of magnetic nanostructures that present unidirectional (one-fold magnetic anisotropy. Angular and field dependent transport and magnetic properties have been studied in two different exchange-biased systems, i.e. ferromagnetic (FM/ antiferromagnetic (AFM bilayer and spin-valve structures. We experimentally show the direct relationships between the magnetoresistance (MR response and the magnetization reversal pathways for any field value and direction. We demonstrate that even though the MR signals are related to different transport phenomena, namely anisotropic magnetoresistance (AMR and giant magnetoresistance (GMR, chiral asymmetries are found around the magnetization hard-axis direction, in both cases originated from the one-fold symmetry of the interfacial exchange coupling. Our results indicate that the chiral asymmetry of transport and magnetic behaviors are intrinsic of systems with an unidirectional contribution.
Chiral Dynamics in Pion-Photon Reactions Habilitation
Friedrich, Jan Michael
As the lightest particle of the strong force, the pion plays a central role in the field of strong interactions, and understanding its properties is of prime relevance for understanding the strong interaction in general. The low-energy behaviour of pions is of particular interest. Although the quark-gluon substructure and their quantum chromodynamics is not apparent then, this specific inner structure causes the presence of approximate symmetries in pion-pion interactions and in pion decays, which gives rise to the systematic description of processes involving pions in terms of few low-energy constants. Specifically, the chiral symmetry and its spontaneous and explicit breaking, treated in chiral perturbation theory (ChPT), leads to firm predictions for low-energy properties of the pion. To those belong the electromagnetic polarisabilities of the pion, describing the leading-order structure effect in pion Compton scattering. The research presented in this work is concerned with the interaction of pions and ph...
An Anderson-like model of the QCD chiral transition
Giordano, Matteo; Pittler, Ferenc
2016-01-01
We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...
Discrete Gauge Symmetries in Discrete MSSM-like Orientifolds
Ibanez, L E; Uranga, A M
2012-01-01
Motivated by the necessity of discrete Z_N symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)xU(2)xU(1)xU(1) and U(3)xSp(2)xU(1)xU(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z_2 (R-parity) and Z_3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.
Discrete gauge symmetries in discrete MSSM-like orientifolds
Ibáñez, L. E.; Schellekens, A. N.; Uranga, A. M.
2012-12-01
Motivated by the necessity of discrete ZN symmetries in the MSSM to insure baryon stability, we study the origin of discrete gauge symmetries from open string sector U(1)'s in orientifolds based on rational conformal field theory. By means of an explicit construction, we find an integral basis for the couplings of axions and U(1) factors for all simple current MIPFs and orientifolds of all 168 Gepner models, a total of 32 990 distinct cases. We discuss how the presence of discrete symmetries surviving as a subgroup of broken U(1)'s can be derived using this basis. We apply this procedure to models with MSSM chiral spectrum, concretely to all known U(3)×U(2)×U(1)×U(1) and U(3)×Sp(2)×U(1)×U(1) configurations with chiral bi-fundamentals, but no chiral tensors, as well as some SU(5) GUT models. We find examples of models with Z2 (R-parity) and Z3 symmetries that forbid certain B and/or L violating MSSM couplings. Their presence is however relatively rare, at the level of a few percent of all cases.
Institute of Scientific and Technical Information of China (English)
应和平; 董绍静; 张剑波
2003-01-01
With an exact chiral symmetry, overlap fermions allow us to reach very light quark region. In the minimummps = 179 MeV, the quenched chiral logarithm diverge is examined. The chiral logarithm parameter δ is calculatedfrom both the pseudo-scalar meson mass mp2s diverge channel and the pseudo-scalar decay constant f p channel.In both the cases, we obtain δ = 0.25 ± 0.03. We also observe that the quenchedchiral logarithm diverge occursonly in the mps ≤400 MeV region.
Complementary chiral metasurface with strong broadband optical activity and enhanced transmission
Energy Technology Data Exchange (ETDEWEB)
Jia, Yan-Peng [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100190 (China); Zhang, Yong-Liang; Dong, Xian-Zi, E-mail: dongxianzi@mail.ipc.ac.cn, E-mail: xmduan@mail.ipc.ac.cn; Zheng, Mei-Ling; Li, Jing; Liu, Jie; Zhao, Zhen-Sheng [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190 (China); Duan, Xuan-Ming, E-mail: dongxianzi@mail.ipc.ac.cn, E-mail: xmduan@mail.ipc.ac.cn [Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Beijing 100190 (China); Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, No. 266 Fangzheng Ave, Shuitu Technology Development Zone, Beibei District, Chongqing 400714 (China)
2014-01-06
We present the design and realization of ultra-thin chiral metasurfaces with giant broadband optical activity in the infrared wavelength. The chiral metasurfaces consisting of periodic hole arrays of complementary asymmetric split ring resonators are fabricated by femtosecond laser two-photon polymerization. Enhanced transmission with strong polarization conversion up to 97% is observed owing to the chiral surface plasmons resulting from mirror symmetry broken. The dependence of optical activity on the degree of structural asymmetry is investigated. This simple planar metasurface is expected to be useful for designing ultra-thin active devices and tailoring the polarization behavior of complex metallic nanostructures.
Chiral magnetic effect and anomalous transport from real-time lattice simulations
Mueller, Niklas; Sharma, Sayantan
2016-01-01
We present a first-principle study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian $SU(N_c)$ and Abelian $U(1)$ gauge fields. Investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the Chiral magnetic (CME) and Chiral separation effect (CSE) lead to the formation of a propagating wave. We further analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark mass.
Coïsson, Marco; Barrera, Gabriele; Celegato, Federica; Manzin, Alessandra; Vinai, Franco; Tiberto, Paola
2016-01-01
Magnetic vortex chirality in patterned square dots has been investigated by means of a field-dependent magnetic force microscopy technique that allows to measure local hysteresis loops. The chirality affects the two loop branches independently, giving rise to curves that have different shapes and symmetries as a function of the details of the magnetisation reversal process in the square dot, that is studied both experimentally and through micromagnetic simulations. The tip-sample interaction is taken into account numerically, and exploited experimentally, to influence the side of the square where nucleation of the vortex preferably occurs, therefore providing a way to both measure and drive chirality with the present technique. PMID:27426442
Can sigma models describe finite temperature chiral transitions?
Kocic, Aleksandar; Aleksandar KOCIC; John KOGUT
1995-01-01
Large-N expansions and computer simulations indicate that the universality class of the finite temperature chiral symmetry restoration transition in the 3D Gross-Neveu model is mean field theory. This is a counterexample to the standard 'sigma model' scenario which predicts the 2D Ising model universality class. We trace the breakdown of the standard scenario (dimensional reduction and universality) to the absence of canonical scalar fields in the model. We point out that our results could be generic for theories with dynamical symmetry breaking, such as Quantum Chromodynamics.
Models for chiral amplification in spontaneous mirror symmetry breaking
Blanco de Torres, Celia
2014-01-01
Es un hecho empírico que hay un desequilibrio quiral absoluto (o ruptura de simetría especular) en todos los sistemas biológicos conocidos, dónde los procesos cruciales para la vida, como la replicación, implican estructuras supramoleculares que comparten el mismo signo quiral (homoquiralidad). Estas estructuras quirales son proteinas, compuestas de amino ácidos encontrados como L-enantiómeros; y polímeros de ADN y ARN y azúcares, compuestos de R-monocarbohidratos. Basándonos en el hecho de q...
The quark-meson coupling model and chiral symmetry
Saito, Koichi
2010-01-01
Comment: 6 pages, 1 figure, Contribution to the proceedings of "Achievements and New Directions in Subatomic Physics: Workshop in Honour of Tony Thomas' 60th Birthday," Special Centre for the Subatomic Structure of Matter, Adelaide, South Australia, February 15 - February 19, 2010.
Chiral symmetry, axial anomaly and the structure of hot QCD
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Tetsuo.
1991-10-01
This lecture is composed of three parts. (1) Heavy quark and gluon contents of light hadrons, (II) anomalous gluon content of the nucleon, and (III) hot and dense QCD. Non-valence structures of nucleon due to the OZI violation are extensively discussed in (I) and (II), and non-perturbative aspects of the quark-gluon plasma are reviewed in (III). 41 refs.
Chiral symmetry, axial anomaly and the structure of hot QCD
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Tetsuo
1991-10-01
This lecture is composed of three parts. [1] Heavy quark and gluon contents of light hadrons, [II] anomalous gluon content of the nucleon, and [III] hot and dense QCD. Non-valence structures of nucleon due to the OZI violation are extensively discussed in [I] and [II], and non-perturbative aspects of the quark-gluon plasma are reviewed in [III]. 41 refs.
Chiral anomalies and differential geometry
Energy Technology Data Exchange (ETDEWEB)
Zumino, B.
1983-10-01
Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)
Giant negative magnetoresistance induced by the chiral anomaly in individual Cd3As2 nanowires
Li, Cai-Zhen; Wang, Li-Xian; Liu, Haiwen; Wang, Jian; Liao, Zhi-Min; Yu, Da-Peng
2015-01-01
Cd3As2 is a newly booming Dirac semimetal with linear dispersion along all three momentum directions and can be viewed as 3D analog of graphene. As breaking of either time reversal symmetry or spatial inversion symmetry, the Dirac semimetal is believed to transform into Weyl semimetal with exotic chiral anomaly effect, while the experimental evidence of the chiral anomaly is still missing in Cd3As2. Here we report the magneto-transport properties of individual Cd3As2 nanowires. Large negative...
Quantum Monte Carlo calculations with chiral effective field theory interactions
Energy Technology Data Exchange (ETDEWEB)
Tews, Ingo
2015-10-12
The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By
Quantum Monte Carlo calculations with chiral effective field theory interactions
International Nuclear Information System (INIS)
The neutron-matter equation of state connects several physical systems over a wide density range, from cold atomic gases in the unitary limit at low densities, to neutron-rich nuclei at intermediate densities, up to neutron stars which reach supranuclear densities in their core. An accurate description of the neutron-matter equation of state is therefore crucial to describe these systems. To calculate the neutron-matter equation of state reliably, precise many-body methods in combination with a systematic theory for nuclear forces are needed. Chiral effective field theory (EFT) is such a theory. It provides a systematic framework for the description of low-energy hadronic interactions and enables calculations with controlled theoretical uncertainties. Chiral EFT makes use of a momentum-space expansion of nuclear forces based on the symmetries of Quantum Chromodynamics, which is the fundamental theory of strong interactions. In chiral EFT, the description of nuclear forces can be systematically improved by going to higher orders in the chiral expansion. On the other hand, continuum Quantum Monte Carlo (QMC) methods are among the most precise many-body methods available to study strongly interacting systems at finite densities. They treat the Schroedinger equation as a diffusion equation in imaginary time and project out the ground-state wave function of the system starting from a trial wave function by propagating the system in imaginary time. To perform this propagation, continuum QMC methods require as input local interactions. However, chiral EFT, which is naturally formulated in momentum space, contains several sources of nonlocality. In this Thesis, we show how to construct local chiral two-nucleon (NN) and three-nucleon (3N) interactions and discuss results of first QMC calculations for pure neutron systems. We have performed systematic auxiliary-field diffusion Monte Carlo (AFDMC) calculations for neutron matter using local chiral NN interactions. By
Geometric Phase and Chiral Anomaly in Path Integral Formulation
Fujikawa, Kazuo
2007-01-01
All the geometric phases, adiabatic and non-adiabatic, are formulated in a unified manner in the second quantized path integral formulation. The exact hidden local symmetry inherent in the Schr\\"{o}dinger equation defines the holonomy. All the geometric phases are shown to be topologically trivial. The geometric phases are briefly compared to the chiral anomaly which is naturally formulated in the path integral.
Proof of the equivalence theorem in the chiral lagrangian formalism
He, H J; Li, X; Hong-Jian He; He, Hong-Jian; Kuang, Yu-Ping; Li, Xiaoyuan; Xiaoyuan Li
1994-01-01
A general proof of the equivalence theorem in electroweak theories with the symmetry breaking sector described by the chiral Lagrangian is given in the $R_{\\xi}$ gauge by means of the Ward-Takahashi identities. The precise form of the theorem contains a modification factor $C_{mod}$ associated with each external Goldstone boson similar to that in the standard model. $C_{mod}$ is exactly unity in our previously proposed renormalization scheme, {\\it Scheme-II}.
A novel probe of chiral restoration in nuclear medium
Gubler, Philipp; Lee, Su Houng
2016-01-01
We propose measuring the mass shift and width broadening of the $f_1(1285)$ meson together with those of the $\\omega$ from a nuclear target as a direct means to experimentally verify the partial restoration of chiral symmetry inside the nuclear matter. A QCD sum rule analysis of the $f_1$ meson mass leads to about 100 MeV attraction in nuclear matter, which can be probed in future experiments.
Two-dimensional Chiral Anomaly in Differential Regularization
Chen, W F
1999-01-01
The two-dimensional chiral anomaly is calculated using differential regularization. It is shown that the anomaly emerges naturally in the vector and axial Ward identities on the same footing as the four-dimensional case. The vector gauge symmetry can be achieved by an appropriate choice of the mass scales without introducing the seagull term. The necessity of a short-distance expansion in the Fourier transform into momentum space is emphasized.
Dimension 2 condensates and Polyakov Chiral Quark Models
Megias, E.; Arriola, E. Ruiz; Salcedo, L. L.
2006-01-01
We address a possible relation between the expectation value of the Polyakov loop in pure gluodynamics and full QCD based on Polyakov Chiral Quark Models where constituent quarks and the Polyakov loop are coupled in a minimal way. To this end we use a center symmetry breaking Gaussian model for the Polyakov loop distribution which accurately reproduces gluodynamics data above the phase transition in terms of dimension 2 gluon condensate. The role played by the quantum and local nature of the ...
Finite-temperature chiral transition in real-world QCD?
International Nuclear Information System (INIS)
I present and discuss the first physics results of a Langevin simulation of finite-temperature QCD with a realistic current quark spectrum. Up to several caveats which will need to be addressed by future studies, our present results suggest that there is a first-order chiral restoration phase transition in real-world QCD, that it is driven by the light condensate and that it should be accompanied by a partial restoration of U(1)A symmetry. (orig.)
Test the chiral magnetic effect with isobaric collisions
Deng, Wei-Tian; Huang, Xu-Guang; Ma, Guo-Liang; Wang, Gang
2016-01-01
The quark-gluon matter produced in relativistic heavy-ion collisions may contain local domains in which P and CP symmetries are not preserved. When coupled with an external magnetic field, such P- and CP-odd domains will generate electric currents along the magnetic field --- a phenomenon called the chiral magnetic effect (CME). Recently, the STAR Collaboration at RHIC and the ALICE Collaboration at the LHC released data of charge-dependent azimuthal-angle correlators with features consistent...
Electroweak Interactions in a Chiral Effective Lagrangian for Nuclei
Serot, Brian D.; Zhang, Xilin(Department of Physics, University of Washington, Seattle, WA, USA)
2012-01-01
We have studied electroweak (EW) interactions in quantum hadrodynamics (QHD) effective field theory (EFT). The Lorentz-covariant EFT contains nucleon, pion, $\\Delta$, isoscalar scalar ($\\sigma$) and vector ($\\omega$) fields, and isovector vector ($\\rho$) fields. The lagrangian exhibits a nonlinear realization of (approximate) $SU(2)_L \\otimes SU(2)_R$ chiral symmetry and incorporates vector meson dominance. First, we discuss the EW interactions at the quark level. Then we include EW interacti...
Brading, Katherine; Castellani, Elena
2010-01-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
Dynamics of Symmetry Breaking and Tachyonic Preheating
Felder, G; Greene, P B; Kofman, L A; Linde, Andrei D; Tkachev, Igor I; Felder, Gary; Garcia-Bellido, Juan; Greene, Patrick B.; Kofman, Lev; Linde, Andrei; Tkachev, Igor
2001-01-01
We reconsider the old problem of the dynamics of spontaneous symmetry breaking using 3d lattice simulations, and develop a theory of tachyonic preheating, which occurs due to the spinodal instability of the scalar field. Tachyonic preheating is so efficient that symmetry breaking typically completes within a single oscillation of the field distribution as it rolls towards the minimum of its effective potential. As an application of this theory we consider preheating in the hybrid inflation scenario, including SUSY-motivated F-term and D-term inflationary models. We show that preheating in hybrid inflation is typically tachyonic and the stage of oscillations of a homogeneous component of the scalar fields driving inflation ends after a single oscillation. Our results may also be relevant for the theory of the formation of disoriented chiral condensates in heavy ion collisions.
Chiral Electroweak Currents in Nuclei
Riska, D O
2016-01-01
The development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown's role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.
Chiral Synthons in Pesticide Syntheses
Feringa, Bernard
1988-01-01
The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the implicatio
Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter
2016-01-01
At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...
Rasin, A
1994-01-01
We discuss the idea of approximate flavor symmetries. Relations between approximate flavor symmetries and natural flavor conservation and democracy models is explored. Implications for neutrino physics are also discussed.
Directory of Open Access Journals (Sweden)
Joe Rosen
2005-12-01
Full Text Available Abstract: The symmetry principle is described in this paper. The full details are given in the book: J. Rosen, Symmetry in Science: An Introduction to the General Theory (Springer-Verlag, New York, 1995.
Energy Technology Data Exchange (ETDEWEB)
Nilles, Hans Peter [Bonn Univ. (Germany). Bethe Center for Theoretical Physics; Bonn Univ. (Germany). Physikalisches Inst.; Ratz, Michael [Technische Univ. Muenchen, Garching (Germany). Physik-Department; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-04-15
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Nilles, H. P.; Ratz, M.; Vaudrevange, P. K. S.
2012-01-01
Discrete (family) symmetries might play an important role in models of elementary particle physics. We discuss the origin of such symmetries in the framework of consistent ultraviolet completions of the standard model in field and string theory. The symmetries can arise due to special geometrical properties of extra compact dimensions and the localization of fields in this geometrical landscape. We also comment on anomaly constraints for discrete symmetries.
Neutrinos and flavor symmetries
Tanimoto, Morimitsu
2015-07-01
We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ13 and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ13 is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.
Neutrinos and flavor symmetries
Energy Technology Data Exchange (ETDEWEB)
Tanimoto, Morimitsu
2015-07-15
We discuss the recent progress of flavor models with the non-Abelian discrete symmetry in the lepton sector focusing on the θ{sub 13} and CP violating phase. In both direct approach and indirect approach of the flavor symmetry, the non-vanishing θ{sub 13} is predictable. The flavor symmetry with the generalised CP symmetry can also predicts the CP violating phase. We show the phenomenological analyses of neutrino mixing for the typical flavor models.
Indian Academy of Sciences (India)
H Weigel
2003-11-01
In this talk I review studies of hadron properties in bosonized chiral quark models for the quark ﬂavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.
Chiral Heat Wave and wave mixing in chiral media
Chernodub, M N
2016-01-01
We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective excitation associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This excitation, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. We find that the coupled waves - which are coherent fluctuations of the vector, axial and energy currents - have generally different velocities compared to the velocities of the individual waves. We also demonstrate that rotating chiral systems subjected to external magnetic field possess non-propagating metastable thermal excitations, the Dense Hot Spots.
Polynomial Graphs and Symmetry
Goehle, Geoff; Kobayashi, Mitsuo
2013-01-01
Most quadratic functions are not even, but every parabola has symmetry with respect to some vertical line. Similarly, every cubic has rotational symmetry with respect to some point, though most cubics are not odd. We show that every polynomial has at most one point of symmetry and give conditions under which the polynomial has rotational or…
A Study of chiral property of field galaxies
Aryal, B; Saurer, W
2013-01-01
We present an analysis of the chiral property of 1,621 field galaxies having radial velocity 3,000 km/s to 5,000 km/s . A correlation between the chiral symmetry breaking and the preferred alignment of galaxies in the leading and trailing structural modes is studied using chi-square, auto-correlation and the Fourier tests. We noticed a good agreement between the random alignment of the position angle (PA) distribution and the existence of chirality in both the leading and trailing arm galaxies. Chirality is found stronger for the late-type spirals (Sc, Scd, Sd and Sm) than that of the early-types (Sa, Sab, Sb and Sbc). A significant dominance (17% $\\pm$ 8.5%) of trailing modes is noticed in the barred spirals. In addition, chirality of field galaxies is found to remain invariant under the global expansion. The PA-distribution of the total trailing arm galaxies is found to be random, whereas preferred alignment is noticed for the total leading arm galaxies. It is found that the rotation axes of leading arm gal...
Connections between chiral Lagrangians and QCD sum-rules
Fariborz, Amir H.; Pokraka, A.; Steele, T. G.
2016-01-01
In this paper, it is shown how a chiral Lagrangian framework can be used to derive relationships connecting quark-level QCD correlation functions to mesonic-level two-point functions. Crucial ingredients of this connection are scale factor matrices relating each distinct quark-level substructure (e.g. quark-antiquark, four-quark) to its mesonic counterpart. The scale factors and mixing angles are combined into a projection matrix to obtain the physical (hadronic) projection of the QCD correlation function matrix. Such relationships provide a powerful bridge between chiral Lagrangians and QCD sum-rules that are particularly effective in studies of the substructure of light scalar mesons with multiple complicated resonance shapes and substantial underlying mixings. The validity of these connections is demonstrated for the example of the isotriplet a0(980)-a0(1450) system, resulting in an unambiguous determination of the scale factors from the combined inputs of QCD sum-rules and chiral Lagrangians. These scale factors lead to a remarkable agreement between the quark condensates in QCD and the mesonic vacuum expectation values that induce spontaneous chiral symmetry breaking in chiral Lagrangians. This concrete example shows a clear sensitivity to the underlying a0-system mixing angle, illustrating the value of this methodology in extensions to more complicated mesonic systems.
SU(2N_F) symmetry of QCD at high temperature and its implications
Glozman, L Ya
2016-01-01
If above a critical temperature not only the SU(N_F)_L \\times SU(N_F)_R chiral symmetry of QCD but also the U(1)_A symmetry is restored, then the actual symmetry of the QCD correlation functions and observables is SU(2N_F). Such a symmetry prohibits existence of deconfined quarks and gluons. Hence QCD at high temperature is also in the confining regime and elementary objects are SU(2N_F) symmetric "hadrons" with not yet known properties.
Chiral p-wave order in Sr2RuO4
Kallin, Catherine
2012-04-01
Shortly after the discovery in 1994 of superconductivity in Sr2RuO4, it was proposed on theoretical grounds that the superconducting state may have chiral p-wave symmetry analogous to the A phase of superfluid 3He. Substantial experimental evidence has since accumulated in favor of this pairing symmetry, including several interesting recent results related to broken time-reversal symmetry (BTRS) and vortices with half of the usual superconducting flux quantum. Great interest surrounds the possibility of chiral p-wave order in Sr2RuO4, since this state may exhibit topological order analogous to that of a quantum Hall state, and can support such exotic physics as Majorana fermions and non-Abelian winding statistics, which have been proposed as one route to a quantum computer. However, serious discrepancies remain in trying to connect the experimental results to theoretical predictions for chiral p-wave order. In this paper, I review a broad range of experiments on Sr2RuO4 that are sensitive to p-wave pairing, triplet superconductivity and time-reversal symmetry breaking and compare these experiments to each other and to theoretical predictions. In this context, the evidence for triplet pairing is strong, although some puzzles remain. The ‘smoking gun’ experimental results for chiral p-wave order, those which directly look for evidence of BTRS in the superconducting state of Sr2RuO4, are most perplexing when the results are compared with each other and to theoretical predictions. Consequently, the case for chiral p-wave superconductivity in Sr2RuO4 remains unresolved, suggesting the need to consider either significant modifications to the standard chiral p-wave models or possible alternative pairing symmetries. Recent ideas along these lines are discussed.
Time-reversal asymmetry without local moments via directional scalar spin chirality
Hosur, Pavan
2015-01-01
Invariably, time-reversal symmetry (TRS) violation in a state of matter is identified with static magnetism in it. Here, a directional scalar spin chiral order (DSSCO) phase is introduced that disobeys this basic principle: it breaks TRS but has no density of static moments. It can be obtained by melting the spin moments in a magnetically ordered phase but retaining residual broken TRS. Orbital moments are then precluded by the spatial symmetries of the spin rotation symmetric state. It can e...
Blanco, Celia; Crusats, Joaquim; El-Hachemi, Zoubir; Moyano, Albert; Hochberg, David; 10.1039/C2CP43488A
2012-01-01
We analyze limited enantioselective (LES) autocatalysis in a temperature gradient and with internal flow/recycling of hot and cold material. Microreversibility forbids broken mirror symmetry for LES in the presence of a temperature gradient alone. This symmetry can be broken however when the auto-catalysis and limited enantioselective catalysis are each localized within the regions of low and high temperature, respectively. This scheme has been recently proposed as a plausible model for spontaneous emergence of chirality in abyssal hydrothermal vents. Regions in chemical parameter space are mapped out in which the racemic state is unstable and bifurcates to chiral solutions.
Test of fundamental symmetries via the Primakoff effect
Directory of Open Access Journals (Sweden)
Gan Liping
2014-06-01
Full Text Available The three neutral pseudoscalar mesons, π0, η and η′, represent one of the most interesting systems in strong interaction physics. A study of the electromagnetic properties of these mesons provides a sensitive probe of the symmetry structure of QCD at low energy. A comprehensive experimental program at Jefferson Laboratory (Jlab is aimed at gathering high precision measurements on the two-photon decay widths and transition form factors at low Q2 of π0, η and η′ via the Primakoff effect. The completed experiments on the π0 radiative decay width at Jlab 6 GeV, and other planned measurements at Jlab 12 GeV will provide a rich laboratory to test the chiral anomaly and to study the origin and dynamics of chiral symmetry breaking at the confinement scale of QCD.
Test of fundamental symmetries via the Primakoff effect
Energy Technology Data Exchange (ETDEWEB)
Gan, Liping [University of North Carolina at Wilmington
2014-06-01
The three neutral pseudoscalar mesons, pi^0, eta and eta', represent one of the most interesting systems in strong interaction physics. A study of the electromagnetic properties of these mesons provides a sensitive probe of the symmetry structure of QCD at low energy. A comprehensive experimental program at Jefferson Laboratory (Jlab) is aimed at gathering high precision measurements on the two-photon decay widths and transition form factors at low Q^2 of pi^0, eta and eta' via the Primakoff effect. The completed experiments on the pi^0 radiative decay width at Jlab 6 GeV, and other planned measurements at Jlab 12 GeV will provide a rich laboratory to test the chiral anomaly and to study the origin and dynamics of chiral symmetry breaking at the confinement scale of QCD.
Symmetries and groups in particle physics
International Nuclear Information System (INIS)
The aim of this book consists of a didactic introduction to the group-theoretical considerations and methods, which have led to an ever deeper understanding of the interactions of the elementary particles. The first three chapters deal primarily with the foundations of the representation theory of primarily finite groups, whereby many results are also transferable to compact Lie groups. In the third chapter we discuss the concept of Lie groups and their connection with Lie algebras. In the remaining chapter it is mainly about the application of group theory in physics. Chapter 4 deals with the groups SO(3) and SU(2), which occur in connection with the description of the angular momentum in quantum mechanics. We discuss the Wigner-Eckar theorem together with some applications. In chapter 5 we are employed to the composition properties of strongly interacting systems, so called hadrons, and discuss extensively the transformation properties of quarks with relation to the special unitary groups. The Noether theorem is generally treated in connection to the conservation laws belonging to the Galilei group and the Poincare group. We confine us in chapter 6 to internal symmetries, but explain for that extensively the application to quantum field theory. Especially an outlook on the effect of symmetries in form of so called Ward identities is granted. In chapter 7 we turn towards the gauge principle and discuss first the construction of quantum electrodynamics. In the following we generalize the gauge principle to non-Abelian groups (Yang-Mills theories) and formulate the quantum chromodynamics (QCD). Especially we take a view of ''random'' global symmetries of QCD, especially the chiral symmetry. In chapter 8 we illuminate the phenomenon of spontaneous symmetry breaking both for global and for local symmetries. In the final chapter we work out the group-theoretical structure of the Standard Model. Finally by means of the group SU(5) we take a view to
Monte Carlo studies of chiral and spin ordering of the three-dimensional Heisenberg spin glass
Viet, Dao Xuan; Kawamura, Hikaru
2009-08-01
The nature of the ordering of the three-dimensional isotropic Heisenberg spin glass with nearest-neighbor random Gaussian coupling is studied by extensive Monte Carlo simulations. Several independent physical quantities are measured both for the spin and for the chirality, including the correlation-length ratio, the Binder ratio, the glass order parameter, the overlap distribution function, and the nonself-averageness parameter. By controlling the effect of the correction-to-scaling, we have obtained a numerical evidence for the occurrence of successive chiral-glass and spin-glass transitions at nonzero temperatures, TCG>TSG>0 . Hence, the spin and the chirality are decoupled in the ordering of the model. The chiral-glass exponents are estimated to be νCG=1.4±0.2 and ηCG=0.6±0.2 , indicating that the chiral-glass transition lies in a universality class different from that of the Ising spin glass. The possibility that the spin and chiral sectors undergo a simultaneous Kosterlitz-Thouless-type transition is ruled out. The chiral-glass state turns out to be nonself-averaging, possibly accompanying a one-step-like peculiar replica-symmetry breaking. Implications to the chirality scenario of experimental spin-glass transitions are discussed.
Kojo, Toru; Fukushima, Kenji; McLerran, Larry; Pisarski, Robert D
2011-01-01
We elaborate how to construct the interweaving chiral spirals in (2+1) dimensions, that is defined as a superposition of differently oriented chiral spirals. We divide the two-dimensional Fermi sea into distinct wedges characterized by the opening angle 2 Theta and the depth Q \\simeq pF, where pF is the Fermi momentum. Each wedge earns an energy gain by forming a single chiral spiral. The optimal values for Theta and Q are chosen by the balance between this energy gain and the energy costs from the deformed Fermi surface (dominant at large Theta) and patch-patch interactions (dominant at small Theta). We estimate these energy gains and costs by means of the expansions in terms of 1/Nc, Lambda_QCD/Q, and Theta using a non-local four-Fermi interaction model: At small 1/Nc the mass gap (chiral condensate) is large enough and the interaction among quarks and the condensate is local in momentum space thanks to the form factor in our non-local model. The fact that patch-patch interactions lie only near the patch bo...
Symmetries in subatomic systems
International Nuclear Information System (INIS)
The underlying common themes of the EJC-2010 are symmetries and symmetry violation in relation to nucleon structure, nuclear geometry, isospin and reaction dynamics. The parity violation in electron scattering is the unique probe of strange quarks in nucleons and of neutron skin in heavy nuclei. The use of dynamical symmetries or spectrum generating algebras for the solution of the nuclear many-body problem is reviewed. We also discuss the impact of the symmetries of quantum chromodynamics on the observed properties of hadrons and strongly interacting matter. Mean field approaches are widely used to study nuclear structure properties and correlations between nucleons are treated by symmetry-violating mean field approaches and symmetry properties are currently treated with beyond mean field approaches by using projection techniques. A paper focuses on properties of giant resonances (GR) and particularly on the relationship between GR and isospin symmetry. This document gathers the papers and/or slides of 10 presentations. (A.C.)
Chiral magnetic effect without chirality source in asymmetric Weyl semimetals
Kharzeev, Dmitri; Meyer, Rene
2016-01-01
We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source generates a non-vanishing chiral chemical potential. This is due to the different capacities of the left- and right-handed (LH and RH) chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation f...