WorldWideScience

Sample records for chiral symmetry transitions

  1. Chiral symmetry

    CERN Document Server

    Ecker, G

    1999-01-01

    Broken chiral symmetry has become the basis for a unified treatment of hadronic interactions at low energies. After reviewing mechanisms for spontaneous chiral symmetry breaking, I outline the construction of the low--energy effective field theory of the Standard Model called chiral perturbation theory. The loop expansion and the renormalization procedure for this nonrenormalizable quantum field theory are developed. Evidence for the standard scenario with a large quark condensate is presented, in particular from high--statistics lattice calculations of the meson mass spectrum. Elastic pion--pion scattering is discussed as an example of a complete calculation to O(p^6) in the low--energy expansion. The meson--baryon system is the subject of the last lecture. After a short summary of heavy baryon chiral perturbation theory, a recent analysis of pion--nucleon scattering to O(p^3) is reviewed. Finally, I describe some very recent progress in the chiral approach to the nucleon--nucleon interaction.

  2. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  3. Chiral phase transition in a lattice fermion-gauge-scalar model with U(1) gauge symmetry

    International Nuclear Information System (INIS)

    The chiral phase transition induced by a charged scalar field is investigated numerically in a lattice fermion-gauge-scalar model with U(1) gauge symmetry, proposed recently as a model for dynamical fermion mass generation. For very strong gauge coupling the transition is of second order and its scaling properties are very similar to those of the Nambu-Jona-Lasinio model. However, in the vicinity of the tricritical point at somewhat weaker coupling, where the transition changes the order, the scaling behavior is different. Therefore it is worthwhile to investigate the continuum limit of the model at this point. (orig.)

  4. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  5. \\pi N transition distribution amplitudes: their symmetries and constraints from chiral dynamics

    CERN Document Server

    Pire, Bernard; Szymanowski, Lech

    2011-01-01

    Baryon to meson Transition Distribution Amplitudes (TDAs) extend the concept of generalized parton distributions. Baryon to meson TDAs appear as building blocks in the colinear factorized description of amplitudes for a class of hard exclusive reactions, prominent examples of which being hard exclusive meson electroproduction off a nucleon in the backward region and baryon-antibaryon annihilation into a meson and a lepton pair. We study general properties of these objects following from the underlying symmetries of QCD. In particular, the Lorentz symmetry results in the polynomiality property of the Mellin moments in longitudinal momentum fractions. We present a detailed account of isotopic and permutation symmetry properties of nucleon to pion (\\pi N) TDAs. This restricts the number of independent leading twist \\pi N TDAs to eight functions providing description of all isotopic channels. Using chiral symmetry and the crossing relation between \\pi N TDAs and \\pi N generalized distribution amplitudes we establ...

  6. The QCD chiral transition, $\\ua$ symmetry and the Dirac spectrum using domain wall fermions

    CERN Document Server

    Buchoff, Michael I; Christ, Norman H; Ding, H -T; Jung, Chulwoo; Karsch, F; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Vranas, P M; Yin, Hantao; Lin, Zhongjie

    2013-01-01

    We report on a study of the finite-temperature QCD transition region for temperatures between 139 and 196 MeV, with a pion mass of 200 MeV and two space-time volumes: $24^3\\times8$ and $32^3\\times8$, where the larger volume varies in linear size between 5.6 fm (at T=139 MeV) and 4.0 fm (at T=195 MeV). These results are compared with the results of an earlier calculation using the same action and quark masses but a smaller, $16^3\\times8$ volume. The chiral domain wall fermion formulation with a combined Iwasaki and dislocation suppressing determinant ratio gauge action are used. This lattice action accurately reproduces the $\\sua$ and $\\ua$ symmetries of the continuum. Results are reported for the chiral condensates, connected and disconnected susceptibilities and the Dirac eigenvalue spectrum. We find a pseudo-critical temperature, $T_c$, of approximately 165 MeV consistent with previous results and strong finite volume dependence below $T_c$. Clear evidence is seen for $\\ua$ symmetry breaking above $T_c$ whi...

  7. Applications of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  8. Chiral symmetry in rotating systems

    Science.gov (United States)

    Malik, Sham S.

    2015-08-01

    The triaxial rotating system at critical angular momentum I ≥Iband exhibits two enatiomeric (the left- and right-handed) forms. These enatiomers are related to each other through dynamical chiral symmetry. The chiral symmetry in rotating system is defined by an operator χ ˆ =Rˆy (π) T ˆ, which involves the product of two distinct symmetries, namely, continuous and discrete. Therefore, new guidelines are required for testing its commutation with the system Hamiltonian. One of the primary objectives of this study is to lay down these guidelines. Further, the possible impact of chiral symmetry on the geometrical arrangement of angular momentum vectors and investigation of observables unique to nuclear chiral-twins is carried out. In our model, the angular momentum components (J1, J2, J3) occupy three mutually perpendicular axes of triaxial shape and represent a non-planar configuration. At certain threshold energy, the equation of motion in angular momentum develops a second order phase transition and as a result two distinct frames (i.e., the left- and right-handed) are formed. These left- and right-handed states correspond to a double well system and are related to each other through chiral operator. At this critical angular momentum, the centrifugal and Coriolis interactions lower the barrier in the double well system. The tunneling through the double well starts, which subsequently lifts the degeneracy among the rotational states. A detailed analysis of the behavior of rotational energies, spin-staggering, and the electromagnetic transition probabilities of the resulting twin-rotational bands is presented. The ensuing model results exhibit similarities with many observed features of the chiral-twins. An advantage of our formalism is that it is quite simple and it allows us to pinpoint the understanding of physical phenomenon which lead to chiral-twins in rotating systems.

  9. Global Currents, Phase Transitions, and Chiral Symmetry Breaking in Large N_c Gauge Theory

    CERN Document Server

    Albash, T; Johnson, C V; Kundu, A; Albash, Tameem; Filev, Veselin; Johnson, Clifford V.; Kundu, Arnab

    2006-01-01

    We study the finite temperature dynamics of SU(N_c) gauge theory for large N_c, with fundamental quark flavours in a quenched approximation, in the presence of a fixed charge under a global current. We observe several notable phenomena. There is a first order phase transition where the quark condensate jumps discontinuously at finite quark mass, generalizing similar transitions seen at zero charge. We find a non-zero condensate at zero quark mass above a critical value of the charge, corresponding to an analogue of spontaneous chiral symmetry breaking at finite number density. We find that the spectrum of mesons contains the expected associated Goldstone (``pion'') degrees of freedom with a mass dependence on the quark mass that is consistent with the Gell-Mann-Oakes-Renner relation. Our tool in these studies is holography, the string dual of the gauge theory being the geometry of $N_c$ spinning D3-branes at finite temperature, probed by a D7-brane.

  10. The phi-meson and Chiral-mass-meson production in heavy-ion collisions as potential probes of quark-gluon-plasma and Chiral symmetry transitions

    Science.gov (United States)

    Takahashi, Y.; Eby, P. B.

    1985-01-01

    Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.

  11. The chiral transition and U(1)_A symmetry restoration from lattice QCD using Domain Wall Fermions

    CERN Document Server

    Bazavov, A; Buchoff, Michael I; Cheng, Michael; Christ, N H; Ding, H -T; Gupta, Rajan; Hegde, Prasad; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Soltz, R A; Vranas, P M; Yin, Hantao

    2012-01-01

    We present results on both the restoration of the spontaneously broken chiral symmetry and the effective restoration of the anomalously broken U(1)_A symmetry in finite temperature QCD at zero chemical potential using lattice QCD. We employ domain wall fermions on lattices with fixed temporal extent N_\\tau = 8 and spatial extent N_\\sigma = 16 in a temperature range of T = 139 - 195 MeV, corresponding to lattice spacings of a \\approx 0.12 - 0.18 fm. In these calculations, we include two degenerate light quarks and a strange quark at fixed pion mass m_\\pi = 200 MeV. The strange quark mass is set near its physical value. We also present results from a second set of finite temperature gauge configurations at the same volume and temporal extent with slightly heavier pion mass. To study chiral symmetry restoration, we calculate the chiral condensate, the disconnected chiral susceptibility, and susceptibilities in several meson channels of different quantum numbers. To study U(1)_A restoration, we calculate spatial ...

  12. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome.

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G

    2016-06-17

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.

  13. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G.

    2016-06-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.

  14. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    CERN Document Server

    Zhang, Bin

    2015-01-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pair-wise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain (TAD) formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking which is limited by the TAD interaction strength.

  15. Quarks, baryons and chiral symmetry

    CERN Document Server

    Hosaka, Atsushi

    2001-01-01

    This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w

  16. Chiral symmetry and scalars

    International Nuclear Information System (INIS)

    The suggestion by Jaffe that if σ is a light q2q-bar2 state 0++ then even the fundamental chiral transformation properties of the σ becomes unclear, has stimulated much interest. Adler pointed out that in fact the seminal work on chiral symmetry via PCAC consistency, is really quite consistent with the σ being predominantly q2q-bar2. This interpretation was actually backed by subsequent work on effective Lagrangian methods for linear and non linear realizations. More recent work of Achasov suggests that intermediate four-quark states determine amplitudes involving other scalars a0(980) and f0(980) below 1 GeV, and the report by Ning Wu that study on σ meson in J/ψ → ωπ+π- continue to support a non qq-bar σ with mass as low as 390 MeV. It is also noted that more recent re-analysis of πK scattering by S. Ishida et al. together with the work of the E791 Collaboration, support the existence of the scalar κ particle with comparatively light mass as well

  17. Spontaneous chiral symmetry breaking in metamaterials

    Science.gov (United States)

    Liu, Mingkai; Powell, David A.; Shadrivov, Ilya V.; Lapine, Mikhail; Kivshar, Yuri S.

    2014-07-01

    Spontaneous chiral symmetry breaking underpins a variety of areas such as subatomic physics and biochemistry, and leads to an impressive range of fundamental phenomena. Here we show that this prominent effect is now available in artificial electromagnetic systems, enabled by the advent of magnetoelastic metamaterials where a mechanical degree of freedom leads to a rich variety of strong nonlinear effects such as bistability and self-oscillations. We report spontaneous symmetry breaking in torsional chiral magnetoelastic structures where two or more meta-molecules with opposite handedness are electromagnetically coupled, modifying the system stability. Importantly, we show that chiral symmetry breaking can be found in the stationary response of the system, and the effect is successfully demonstrated in a microwave pump-probe experiment. Such symmetry breaking can lead to a giant nonlinear polarization change, energy localization and mode splitting, which provides a new possibility for creating an artificial phase transition in metamaterials, analogous to that in ferrimagnetic domains.

  18. Spontaneous Planar Chiral Symmetry Breaking in Cells

    Science.gov (United States)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  19. Dileptons and Chiral Symmetry Restoration

    CERN Document Server

    Hohler, P M

    2015-01-01

    We report on recent work relating the medium effects observed in dilepton spectra in heavy-ion collisions to potential signals of chiral symmetry restoration. The key connection remains the approach to spectral function degeneracy between the vector-isovector channel with its chiral partner, the axialvector-isovector channel. Several approaches are discussed to elaborate this connection, namely QCD and Weinberg sum rules with input for chiral order parameters from lattice QCD, and chiral hadronic theory to directly evaluate the medium effects of the axialvector channel and the pertinent pion decay constant as function of temperature. A pattern emerges where the chiral mass splitting between rho and a_1 burns off and is accompanied by a strong broadening of the spectral distributions.

  20. Chiral symmetry on the lattice

    International Nuclear Information System (INIS)

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model

  1. Chiral Perturbation in the Hidden Local Symmetry and Vector Manifestation of Chiral Symmetry

    OpenAIRE

    Harada, Masayasu

    2001-01-01

    In this talk I summarize our recent works on the chiral phase transition in the large flavor QCD studied by the hidden local symmetry (HLS). Bare parameters in the HLS are determined by matching the HLS with the underlying QCD at the matching scale through the Wilsonian matching. This leads to the vector manifestation of the Wigner realization of the chiral symmetry in which the symmetry is restored by the massless degenerate pion (and its flavor partners) and rho meson (and its flavor partne...

  2. Which Chiral Symmetry is Restored in High Temperature QCD?

    CERN Document Server

    Bernard, C W; DeTar, C E; Gottlieb, S; Heller, U M; Hetrick, J E; Rummukainen, K; Sugar, R; Toussaint, D; Wingate, M; Bernard, Claude; Blum, Tom; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Hetrick, James E.; Wingate, Matthew

    1996-01-01

    Sigma models for the high temperature phase transition in quantum chromodynamics (QCD) suggest that at high temperature the SU(N_f) x SU(N_f) chiral symmetry becomes exact, but the anomalous axial U(1) symmetry need not be restored. In numerical lattice simulations, traditional methods for detecting symmetry restoration have sought multiplets in the screening mass spectrum. However, these methods were imprecise and the results, so far, incomplete. With improved statistics and methodology, we are now able to offer evidence for a restoration of the SU(2) x SU(2) chiral symmetry just above the crossover, but not of the axial U(1) chiral symmetry.

  3. Neutrino Oscillation Induced by Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei

    2009-01-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  4. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  5. Chiral symmetry breaking and monopoles

    CERN Document Server

    Di Giacomo, Adriano; Pucci, Fabrizio

    2015-01-01

    To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...

  6. Symmetry structure and phase transitions

    Indian Academy of Sciences (India)

    Ashok Goyal; Meenu Dahiya; Deepak Chandra

    2003-05-01

    We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.

  7. Implications of Local Chiral Symmetry Breaking

    CERN Document Server

    La, H S

    2003-01-01

    The spontaneous symmetry breaking of a local chiral symmetry to its diagonal vector symmetry naturally realizes a complete geometrical structure more general than that of Yang-Mills (YM) theory, rather similar to that of gravity. A good example is the Quantum Chromodynamics (QCD) with respect to the Chiral Color model. Also, a new anomaly-free particle content for a Chiral Color model is introduced: the Chiral Color can be realized without introducing whole new generations of quarks and leptons, but by simply enlarging each generation with new exotic fermions.

  8. Infinite Chiral Symmetry in Four Dimensions

    CERN Document Server

    Beem, Christopher; Liendo, Pedro; Peelaers, Wolfger; Rastelli, Leonardo; van Rees, Balt C

    2015-01-01

    We describe a new correspondence between four-dimensional conformal field theories with extended supersymmetry and two-dimensional chiral algebras. The meromorphic correlators of the chiral algebra compute correlators in a protected sector of the four-dimensional theory. Infinite chiral symmetry has far-reaching consequences for the spectral data, correlation functions, and central charges of any four-dimensional theory with ${\\mathcal N}=2$ superconformal symmetry.

  9. Chlorophylls, Symmetry, Chirality, and Photosynthesis

    Directory of Open Access Journals (Sweden)

    Mathias O. Senge

    2014-09-01

    Full Text Available Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecular structures such as the reaction centers and light-harvesting complexes of photobiology. The biochemical function of these structures depends on the controlled interplay of structural and functional principles of the apoprotein and pigment cofactors. Chlorophylls and bacteriochlorophylls are optically active molecules with several chiral centers, which are necessary for their natural biological function and the assembly of their supramolecular complexes. However, in many cases the exact role of chromophore stereochemistry in the biological context is unknown. This review gives an overview of chlorophyll research in terms of basic function, biosynthesis and their functional and structural role in photosynthesis. It highlights aspects of chirality and symmetry of chlorophylls to elicit further interest in their role in nature.

  10. Chiral symmetry in hadron physics methods and ideas of chiral symmetry

    International Nuclear Information System (INIS)

    Methods and ideas of chiral symmetry is presented based on a lecture note to help the future researches in hadron dynamics along with the chiral symmetry. The chiral symmetry was originally developed as the symmetry between currents before the discovery of QCD. It has come to be understood in principle by now that the symmetry is spontaneously broken and only the part of flavor symmetry remains explicitly. In QCD, however, the chiral symmetry has come to be regarded as the base of the symmetry of the global flavor space of quarks. One of the recent topics of the lattice gauge theory is how the hadron properties will change when the broken symmetry is going to be restored. Since the chiral symmetry is global, it is different from gauge symmetry which is local. It explains the degeneracy of hadron masses and relations between the elements of S-matrix in which same number of particles are included. In practice, however, the symmetry of the axial part is spontaneously broken and pions which behave like gauge particles come to play. Chiral symmetry is defined as the (internal) flavor symmetry for the two independent chirality states of quarks. It discriminates two different fundamental quarks defined for the Lorentz groups O(4) - SL(2, C). The symmetry transformation itself is, however, different from the chirality. They should not be confused. In this lecture note, fundamental properties of pions are described on the basis of the interaction with nucleons at first. General properties of the chiral symmetry and some of the low energy theorems on current algebra are introduced. Then, linear sigma model and nonlinear sigma model are introduced. Then the Skyrme-model, which provides an idea as important as quarks, is explained. One of the interesting topics at present is to restore the broken axial symmetry experimentally to investigate the mechanism of symmetry breaking. (S. Funahashi)

  11. Examining a possible cascade effect in chiral symmetry breaking

    CERN Document Server

    Fariborz, Amir H

    2016-01-01

    We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.

  12. Personal recollections on chiral symmetry breaking

    Science.gov (United States)

    Kobayashi, Makoto

    2016-07-01

    The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.

  13. Thermal and Nonthermal Pion Enhancements with Chiral Symmetry Restoration

    CERN Document Server

    Zhuang, P

    2001-01-01

    The pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated in the framework of the Nambu-Jona-Lasinio model. The decay rate for the process sigma -> 2pion to the lowest order in a 1/N_c expansion is calculated as a function of temperature T and chemical potential mu. The thermal and nonthermal enhancements of pions generated by the decay before and after the freeze-out present only in the crossover region of the chiral symmetry transition. The strongest nonthermal enhancement is located in the vicinity of the endpoint of the first-order transition.

  14. Hadron physics and dynamical chiral symmetry breaking

    CERN Document Server

    Chang, Lei; Wilson, David J

    2012-01-01

    Physics is an experimental science; and a constructive feedback between theory and extant and forthcoming experiments is necessary if an understanding of nonperturbative QCD is to be achieved. The Dyson-Schwinger equations connect confinement with dynamical chiral symmetry breaking, both with the observable properties of hadrons, and hence can plausibly provide a means of elucidating the empirical content of strong QCD. We illustrate these points via comments on: in-hadron condensates; dressed-quark anomalous chromo- and electro-magnetic moments; the self-limiting magnitudes of such moments and pion-loop contributions to the gap equation; deep inelastic scattering; the spectra of mesons and baryons; the critical role played by hadron-hadron interactions in producing these spectra; and nucleon elastic and transition form factors.

  15. Chiral symmetry and scalar meson in hadron and nuclear physics

    CERN Document Server

    Kunihiro, T

    1995-01-01

    After giving a short introduction to the Nambu-Jona-Lasinio model with an anomaly term, we show the importance of the scalar-scalar correlation in the low-energy hadron dynamics, which correlation may be summarized by a scalar-isoscalar meson, the sigma meson. The discussion is based on the chiral quark model with the sigma-meson degrees of freedom. Possible experiments are proposed to produce the elusive meson in a nucleus and detect it. In relation to a precursory soft mode for the chiral transition, the reason is clarified why the dynamic properties of the superconductor may be described by the diffusive time-dependent Ginzburg-Landau (TDGL) equation. We indicate the chiral symmetry plays a significant role also in nuclei; one may say that the stability of nuclei is due to the chiral symmetry of QCD.

  16. Chiral symmetry and lattice fermions

    CERN Document Server

    Creutz, Michael

    2013-01-01

    Lattice gauge theory and chiral perturbation theory are among the primary tools for understanding non-perturbative aspects of QCD. I review several subtle and sometimes controversial issues that arise when combining these techniques. Among these are one failure of partially quenched chiral perturbation theory when the valence quarks become lighter than the average sea quark mass and a potential ambiguity in comparisons of perturbative and lattice properties of non-degenerate quarks.

  17. Chiral Symmetry Breaking from Center Vortices

    CERN Document Server

    Höllwieser, Roman; Schweigler, Thomas; Heller, Urs M

    2014-01-01

    We analyze the creation of near-zero modes from would-be zero modes of various topological charge contributions from classical center vortices in SU(2) lattice gauge theory. We show that colorful spherical vortex and instanton configurations have very similar Dirac eigenmodes and also vortex intersections are able to give rise to a finite density of near-zero modes, leading to chiral symmetry breaking via the Banks-Casher formula. We discuss the influence of the magnetic vortex fluxes on quarks and how center vortices may break chiral symmetry.

  18. Interplay between chiral and deconfinement phase transitions

    Directory of Open Access Journals (Sweden)

    Mukherjee T.K.

    2011-04-01

    Full Text Available By using the dressed Polyakov loop or dual chiral condensate as an equivalent order parameter of the deconfinement phase transition, we investigate the relation between the chiral and deconfinement phase transitions at finite temperature and density in the framework of three-flavor Nambu-Jona-Lasinio (NJL model. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole (T,µ plane. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent. For each flavor, the transition temperature for chiral restoration $T^{mathcal{X}}_c$ is smaller than that of the dressed Polyakov loop $T^{mathcal{D}}_c$ in the low baryon density region where the transition is a crossover, and, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. Therefore, there are two critical end points, i.e, $T^{u,d}_{CEP}$ and $T^{s}_{CEP}$ at finite density. We also explain the feature of $T^{mathcal{X}}_c$ = $T^{mathcal{D}}_c$ in the case of 1st and 2nd order phase transitions, and $T^{mathcal{X}}_c$ < $T^{mathcal{D}}_c$ in the case of crossover, and expect this feature is general and can be extended to full QCD theory.

  19. Magnetic rotation and chiral symmetry breaking

    Indian Academy of Sciences (India)

    Ashok Kumar Jain; Amita

    2001-08-01

    The deformed mean field of nuclei exhibits various geometrical and dynamical symmetries which manifest themselves as various types of rotational and decay patterns. Most of the symmetry operations considered so far have been defined for a situation wherein the angular momentum coincides with one of the principal axes and the principal axis cranking may be invoked. New possibilities arise with the observation of rotational features in weakly deformed nuclei and now interpreted as magnetic rotational bands. More than 120 MR bands have now been identified by filtering the existing data. We present a brief overview of these bands. The total angular momentum vector in such bands is tilted away from the principal axes. Such a situation gives rise to several new possibilities including breaking of chiral symmetry as discussed recently by Frauendorf. We present the outcome of such symmetries and their possible experimental verification. Some possible examples of chiral bands are presented.

  20. Interplay between chiral and deconfinement phase transitions

    CERN Document Server

    Xu, Fukun; Chen, Huan; Huang, Mei

    2011-01-01

    By using the dressed Polyakov loop or dual chiral condensate as an equivalent order parameter of the deconfinement phase transition, we investigate the relation between the chiral and deconfinement phase transitions at finite temperature and density in the framework of three-flavor Nambu--Jona-Lasinio (NJL) model. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole $(T,\\mu)$ plane. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent. For each flavor, the transition temperature for chiral restoration $T_c^{\\chi}$ is smaller than that of the dressed Polyakov loop $T_c^{{\\cal D}}$ in the low baryon density region where the transition is a crossover, and, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. Therefore, there are two critical end points, i.e, $T_{CEP}^{u,d}$ and $T_{CEP}^{s}$ a...

  1. Chiral Magnetic Effect and Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    FU Wei-Jie; LIU Yu-Xin; WU Yue-Liang

    2011-01-01

    We study the influence of the chiral phase transition on the chiral magnetic effect.The azimuthal chargeparticle correlations as functions of the temperature are calculated.It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition.It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value.We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.

  2. A strict QCD inequality and mechanisms for chiral symmetry breaking

    International Nuclear Information System (INIS)

    A strict QCD inequality allows one to discuss mechanisms proposed for breaking the chiral symmetry in QCD. ''Order parameters'' are identified such that if sufficiently many gauge field configurations contribute to them, spontaneous chiral symmetry breaking follows. As an application the role of instantons is discussed in chiral symmetry breaking in QCD. (orig.)

  3. Role of Chiral symmetry in nuclear physics

    International Nuclear Information System (INIS)

    Spurred by some recent experiments in electron scattering, we reassess the role that chiral symmetry plays in nuclear structure. Though difficult to formulate precisely, some of the ideas put forward many years ago, combined with the recent revival of the Skyrmion picture of the nucleon, are seen to be move relevant now than ever

  4. Chiral symmetry and functional integral

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa Saravi, R.E.; Muschietti, M.A.; Schaposnik, F.A.; Solomin, J.E.

    1984-10-15

    The change in the fermionic functional integral measure under chiral rotations is analyzed. Using the zeta-function method, the evaluation of chiral Jacobians to theories including non-hermitian Dirac operators D, can be extended in a natural way. (This being of interest, for example, in connection with the Weinberg-Salam model or with the relativistic string theory). Results are compared with those obtained following other approaches, the possible discrepancies are analyzed and the equivalence of the different methods under certain conditions on D is proved. Also shown is how to compute the Jacobian for the case of a finite chiral transformation and this result is used to develop a sort of path-integral version of bosonization in d = 2 space-time dimensions. This result is used to solve in a very simple and economical way relevant d = 2 fermionic models. Furthermore, some interesting features in connection with the theta-vacuum in d = 2,4 gauge theories are discussed.

  5. Chiral transition with magnetic fields

    CERN Document Server

    Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian

    2014-01-01

    We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...

  6. Rotating optical microcavities with broken chiral symmetry

    CERN Document Server

    Sarma, Raktim; Wiersig, Jan; Cao, Hui

    2014-01-01

    We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.

  7. Chiral symmetry and strangeness at SIS energies

    International Nuclear Information System (INIS)

    In this talk we review the consequences of the chiral SU(3) symmetry for strangeness propagation in nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. Results for antikaon and hyperon-resonance spectral functions in cold nuclear matter are presented and discussed. The importance of the Σ(1385) resonance for the subthreshold antikaon production in heavy-ion reaction at SIS is pointed out. The in-medium properties of the latter together with an antikaon spectral function based on chiral SU(3) dynamics suggest a significant enhancement of the π Λ → anti Κ N reaction in nuclear matter. (orig.)

  8. Random Matrices and Chiral Symmetry in QCD

    CERN Document Server

    Janik, R A; Papp, G; Zahed, I; Janik, Romuald A.; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail

    1998-01-01

    In this talk we review some recent results from random matrix models as applied to some non-perturbative issues in QCD. All of the issues we will discuss touched upon the important phenomenon related to the spontaneous breaking of chiral symmetry. The afore mentioned insights are: 1. Spontaneous breakdown of chiral symmetry and disorder. 2. Universal microscopic properties of the eigenvalues of the Dirac operator in the vacuum. 3. Universal microscopic properties of the eigenvalues of the Dirac operator in matter. 4. Structural changes of the Dirac spectrum - finite temperature. 5. Structural changes of the Dirac spectrum - finite baryonic density - ``phony vacua'' 6. Structural changes of the Dirac spectrum - finite baryonic density - ``true vacua'' . 7. Phase diagram. 8. Critical parameters. 9. Critical exponents. 10. $U(1)_A$ problem. 11. Screening of the pseudoscalar susceptibility. 12. Strong CP violation (finite $\\theta$).

  9. On chiral symmetry breaking, topology and confinement

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, Edward

    2014-08-15

    We start with the relation between the chiral symmetry breaking and gauge field topology. New lattice results further enhance the notion of Zero Mode Zone, a very narrow strip of states with quasizero Dirac eigenvalues. Then we move to the issue of “origin of mass” and Brown–Rho scaling: a number of empirical facts contradicts to the idea that masses of quarks and such hadrons as ρ,N decrease near T{sub c}. We argue that while at T=0 the main contribution to the effective quark mass is chirally odd m{sub χ/}, near T{sub c} it rotates to chirally-even component m{sub χ}, because “infinite clusters” of topological solitons gets split into finite ones. Recent progress in understanding of topology require introduction of nonzero holonomy 〈A{sub 0}〉≠0, which splits instantons into N{sub c} (anti)selfdual “instanton–dyons”. Qualitative progress, as well as first numerical studies of the dyon ensemble are reported. New connections between chiral symmetry breaking and confinement are recently understood, since instanton–dyons generate holonomy potential with a minimum at confining value, if the ensemble is dense enough.

  10. Chiral symmetry breaking and chiral polarization: Tests for finite temperature and many flavors

    Directory of Open Access Journals (Sweden)

    Andrei Alexandru

    2015-02-01

    Full Text Available It was recently conjectured that, in SU(3 gauge theories with fundamental quarks, valence spontaneous chiral symmetry breaking is equivalent to condensation of local dynamical chirality and appearance of chiral polarization scale Λch. Here we consider more general association involving the low-energy layer of chirally polarized modes which, in addition to its width (Λch, is also characterized by volume density of participating modes (Ω and the volume density of total chirality (Ωch. Few possible forms of the correspondence are discussed, paying particular attention to singular cases where Ω emerges as the most versatile characteristic. The notion of finite-volume “order parameter”, capturing the nature of these connections, is proposed. We study the effects of temperature (in Nf=0 QCD and light quarks (in Nf=12, both in the regime of possible symmetry restoration, and find agreement with these ideas. In Nf=0 QCD, results from several volumes indicate that, at the lattice cutoff studied, the deconfinement temperature Tc is strictly smaller than the overlap–valence chiral transition temperature Tch in real Polyakov line vacuum. Somewhat similar intermediate phase (in quark mass is also seen in Nf=12. It is suggested that deconfinement in Nf=0 is related to indefinite convexity of absolute X-distributions.

  11. Chiral symmetry and parametrization of scalar resonances

    CERN Document Server

    Arantes, L O

    2005-01-01

    The linear $\\s$-model is used to study the effects of chiral symmetry in unitarized amplitudes incorporating scalar resonances. When just a single resonance is present, we show that the iteration of a chiral tree amplitude by means of regularized two-pion loops preserves the smallness of $\\p\\p$ interaction at low energies and estimate the importance of pion off-shell contributions. The inclusion of a second resonance is performed by means of a chiral extension of the linear $\\s$-model lagrangian. The new $\\p\\p$ ampitude at tree level complies with low-energy theorems, depends on a mixing angle and has a zero for a given energy between the resonance masses. The unitarization of this amplitude by means of two-pion loops preserves both its chiral low energy behavior and the position of this zero confirming, in a lagrangian framework, conclusions drawn previously by T\\"ornqvist. Finally, we approximate and generalize our results and give a friendly expression that can be used in the parametrization of $N$ coupled...

  12. From enemies to friends chiral symmetry on the lattice

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent

    2002-01-01

    The physics of strong interactions is invariant under the exchange of left-handed and right-handed quarks, at least in the massless limit. This invariance is reflected in the chiral symmetry of quantum chromodynamics. Surprisingly, it has become clear only recently how to implement this important symmetry in lattice formulations of quantum field theories. We will discuss realizations of exact lattice chiral symmetry and give an example of the computation of a physical observable in quantum chromodynamics where chiral symmetry is important. This calculation is performed by relying on finite size scaling methods as predicted by chiral perturbation theory.

  13. Need for spontaneous breakdown of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Salomone, A.; Schechter, J.; Tudron, T.

    1981-07-15

    The question of whether the chiral symmetry of the theory of strong interactions (with massless quarks) is required to be spontaneously broken is examined in the framework of a previously discussed effective Lagrangian for quantum chromodynamics. The assumption that physical masses of the theory be finite leads in a very direct way to the necessity of spontaneous breakdown. This result holds for all N/sub F/> or =2, where N/sub F/ is the number of different flavors of light quarks. The atypical cases N/sub F/ = 1,2 are discussed separately.

  14. Chiral symmetry breaking in QCD Lite

    CERN Document Server

    Engel, Georg P; Lottini, Stefano; Sommer, Rainer

    2014-01-01

    A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of (Mpi^2 Fpi^2)/2 with respect to the quark mass m in the chiral limit, where Mpi and Fpi are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use CLS lattices at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensat...

  15. Mapping chiral symmetry breaking in the excited baryon spectrum

    CERN Document Server

    Bicudo, Pedro; Llanes-Estrada, Felipe J; Van Cauteren, Tim

    2016-01-01

    We study the conjectured "Insensitivity to Chiral Symmetry Breaking" in the highly excited light baryon spectrum. While the experimental spectrum is being measured at JLab and CBELSA/TAPS, this insensitivity remains to be computed theoretically in detail. As the only existing option to have both confinement, highly excited states and chiral symmetry, we adopt the truncated Coulomb gauge formulation of QCD, considering a linearly confining Coulomb term. Adopting a systematic and numerically intensive variational treatment up to 12 harmonic oscillator shells we are able to access several angular and radial excitations. We compute both the excited spectra of $I=1/2$ and $I=3/2$ baryons, up to large spin $J=13/2$, and study in detail the proposed chiral multiplets. While the static-light and light-light spectra clearly show chiral symmetry restoration high in the spectrum, the realization of chiral symmetry is more complicated in the baryon spectrum than earlier expected.

  16. Nucleon Properties and Restoration of Chiral Symmetry at Finite\

    CERN Document Server

    Christov, C V; Göke, K; Christov, Chr.V.

    1993-01-01

    Modifications of baryon properties due to the restoration of the chiral symmetry in an external hot and dense baryon medium are investigated in an effective chiral quark-meson theory. The nucleon arises as a soliton of the Gell-Mann - L\\'evi $\\zs$-model, the parameters of which are chosen to be the medium-modified meson values evaluated within the Nambu - Jona-Lasinio model. The nucleon properties are obtained by means of variational projection techniques. The nucleon form factors as well as the nucleon delta transition form factors are evaluated for various densities and temperatures of the medium. Similar to the chiral phase transition line the critical curve in the $T-\\zr$ plane for delocalization of the nucleon is non-monotonic and this feature is reflected in all nucleon properties. At medium densities of about $(2-3) \\rnm$ the baryonic phase exists only at intermediate temperatures. For finite temperature and densities the nucleon form factors get strongly reduced at finite transfer momenta.

  17. Chiral phase transition from string theory.

    Science.gov (United States)

    Parnachev, Andrei; Sahakyan, David A

    2006-09-15

    The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.

  18. Inhomogeneous chiral symmetry breaking in dense neutron-star matter

    CERN Document Server

    Buballa, Michael

    2015-01-01

    An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color-superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking...

  19. Packing of Helices: Is Chirality the Highest Crystallographic Symmetry?

    Directory of Open Access Journals (Sweden)

    Romain Gautier

    2016-08-01

    Full Text Available Chiral structures resulting from the packing of helices are common in biological and synthetic materials. Herein, we analyze the noncentrosymmetry (NCS in such systems using crystallographic considerations. A comparison of the chiral structures built from helices shows that the chirality can be expected for specific building units such as 31/32 or 61/65 helices which, in hexagonal arrangement, will more likely lead to a chiral resolution. In these two systems, we show that the highest crystallographic symmetry (i.e., the symmetry which can describe the crystal structure from the smallest assymetric unit is chiral. As an illustration, we present the synthesis of two materials ([Zn(2,2’-bpy3](NbF62 and [Zn(2,2’-bpy3](TaF62 in which the 3n helices pack into a chiral structure.

  20. Instantons and chiral symmetry in string theory

    Science.gov (United States)

    Jensen, Steuard B.

    The study of non-perturbative effects has played an important role in many recent developments in physics. String theory has proven to be an especially fertile ground for such studies: not only is its own non-perturbative structure interesting, but it has emerged as a framework in which to study the strongly coupled behavior of a variety of models in quantum field theory as well. In this thesis, I present results demonstrating the use of string theory in both these ways. First, I discuss non-perturbative corrections to the Kaluza-Klein monopole in string theory. As usually described, this object has an isometry around a compact circle and is related by T-duality to a "smeared" NS5-brane which retains that isometry. The true NS5-brane solution is localized at a point on the circle, so duality implies that the Kaluza-Klein monopole should show some corresponding behavior. By expressing the Kaluza-Klein monopole as a gauged linear sigma model in two dimensions, I show that worldsheet instantons give corrections to its geometry. These corrections can be understood as a localization in "winding space" which could be probed by strings with winding charge around the circle. Second, I discuss a configuration of D-branes in string theory whose low energy physics corresponds to a 3+1-dimensional quantum field theory with dynamically broken chiral symmetry. In a weakly coupled region of parameter space, this theory is a non-local generalization of the Nambu-Jona-Lasinio model. Indications are given that this model dynamically breaks chiral symmetry at arbitrarily weak 't Hooft coupling. At strong coupling this field theory is no longer solvable directly, but an alternate weakly coupled description can be found from the string theory model: the dynamics is determined by replacing a stack of D-branes by their near-horizon geometry and studying the low energy theory on probe D-branes in that background. In yet another region of parameter space, this D-brane configuration gives

  1. Effective Chiral Symmetry Restoration for Heavy-Light Mesons

    CERN Document Server

    Sazonov, V K; Wagenbrunn, R F

    2014-01-01

    We study the spectrum of heavy-light mesons within a model with linear instantaneous confining potential. The single-quark Green function and spontaneous breaking of chiral symmetry are obtained from the Schwinger-Dyson (gap) equation. For the meson spectrum we derive a Bethe-Salpeter equation (BSE). We solve thiss equation numerically in the heavy-light limit and obtain effective restoration of chiral and $U(1)_A$ symmetries at large spins.

  2. Edge states protected by chiral symmetry in disordered photonic graphene

    CERN Document Server

    Zeuner, Julia M; Nolte, Stefan; Szameit, Alexander

    2013-01-01

    We experimentally investigate the impact of uncorrelated composite and structural disorder in photonic graphene. We find that in case of structural disorder not only chiral symmetry, but also the vanishing of the density of states at zero energy is preserved. This is in contrast to composite disorder, where chiral symmetry as well as the vanishing of the density of states are destroyed. Our observations are experimentally proven by exciting edge states at the bearded edge in disordered photonic graphene.

  3. Chiral transition, eigenmode localisation and Anderson-like models

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2016-01-01

    We discuss chiral symmetry restoration and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We argue that the features of QCD relevant to both phenomena are the presence of order in the Polyakov line configuration, and the correlations that this induces between spatial links across time slices. This ties the fate of chiral symmetry and of localisation of the lowest Dirac eigenmodes to the confining properties of the theory. We then show numerical results obtained in a QCD-inspired Anderson-like toy model, derived by radically simplifying the QCD dynamics while keeping the important features mentioned above. The toy model reproduces all the important qualitative aspects of chiral symmetry breaking and localisation in QCD, thus supporting the central role played by the confinement/deconfinement transition in triggering both phenomena.

  4. Partial quenching and chiral symmetry breaking

    OpenAIRE

    Creutz, Michael

    2014-01-01

    Partially quenched chiral perturbation theory assumes that valence quarks propagating on gauge configurations prepared with sea quarks of different masses will form a chiral condensate as the valence quark mass goes to zero. I present a counterexample involving non-degenerate sea quarks where the valence condensate does not form.

  5. Baryon and chiral symmetry breaking in holographic QCD

    CERN Document Server

    Gorsky, Alexander; Krikun, Alexander

    2015-01-01

    We study the relationship between chiral symmetry breaking and baryons in holographic QCD. We construct a soliton with unit baryon charge in the presence of a nonzero mean value of the scalar bifundamental field, which is dual to the chiral condensate. We obtain a relation between the chiral condensate and the mass of the baryon and find in a clear-cut way that at large values of the condensate the holographic soliton is no longer located on the IR wall. Instead it is split into two halves, which are symmetrically located on the left and right flavor branes. On the other hand we find that the local value of the quark condensate is suppressed in the core of the soliton, which is evidence for a partial chiral symmetry restoration inside the baryon.

  6. Domain Walls and Vortices in Chiral Symmetry Breaking

    CERN Document Server

    Eto, Minoru; Nitta, Muneto

    2013-01-01

    We study domain walls and vortices in chiral symmetry breaking in QCD with N flavors in the chiral limit. If the axial anomaly was absent, there exist stable Abelian axial vortices winding around the spontaneously broken U(1)_A symmetry and non-Abelian axial vortices winding around both the U(1)_A and non-Abelian SU(N) chiral symmetries. In the presence of the axial anomaly term, metastable domain walls are present and Abelian axial vortices must be attached by N domain walls, forming domain wall junctions. We show that a domain wall junction decays into N non-Abelian vortices attached by domain walls, implying its metastability. We also show that domain walls decay through the quantum tunneling by creating a hole bounded by a closed non-Abelian vortex.

  7. Chiral Symmetry in algebraic and analytic approaches

    OpenAIRE

    Vereshagin, V.; Dillig, M.; Vereshagin, A.

    1996-01-01

    We compare among themselves two different methods for the derivation of results following from the requirement of polynomial boundedness of tree-level chiral amplitudes. It is shown that the results of the algebraic approach are valid also in the framework of the analytical one. This means that the system of Sum Rules and Bootstrap equations previously obtained with the help of the latter approach can be analyzed in terms of reducible representations of the unbroken Chiral group with the know...

  8. An Anderson-like model of the QCD chiral transition

    Science.gov (United States)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  9. Electronic Localization Length of Carbon Nanotubes with Different Chiral Symmetries

    Institute of Scientific and Technical Information of China (English)

    杨化通; 董锦明; 邢定钰

    2001-01-01

    The electronic localization lengths λ of metallic carbon nanotubes with different chiral symmetries have been calculated by one parameter scaling method. It is found that λ is independent of the nanotube chirality, but depends linearly on the diameter. The dependence of λ on the disorder strength W has also been studied, and a power-law relation between λ and W is also found to be independent of the tube chirality. Our numerical results are in good agreement with recent experimental observations and other theoretical results for only the "armchair"nanotubes.

  10. Chiral Lagrangian with Heavy Quark-Diquark Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Jie Hu; Thomas Mehen

    2005-11-29

    We construct a chiral Lagrangian for doubly heavy baryons and heavy mesons that is invariant under heavy quark-diquark symmetry at leading order and includes the leading O(1/m{sub Q}) symmetry violating operators. The theory is used to predict the electromagnetic decay width of the J=3/2 member of the ground state doubly heavy baryon doublet. Numerical estimates are provided for doubly charm baryons. We also calculate chiral corrections to doubly heavy baryon masses and strong decay widths of low lying excited doubly heavy baryons.

  11. SU(3) Chiral Symmetry in Non-Relativistic Field Theory

    CERN Document Server

    Ouellette, S M

    2001-01-01

    Applications imposing SU(3) chiral symmetry on non-relativistic field theory are considered. The first example is a calculation of the self-energy shifts of the spin-3/2 decuplet baryons in nuclear matter, from the chiral effective Lagrangian coupling octet and decuplet baryon fields. Special attention is paid to the self-energy of the delta baryon near the saturation density of nuclear matter. We find contributions to the mass shifts from contact terms in the effective Lagrangian with coefficients of unknown value. As a second application, we formulate an effecive field theory with manifest SU(2) chiral symmetry for the interactions of K and eta mesons with pions at low energy. SU(3) chiral symmetry is imposed on the effective field theory by a matching calculation onto three-flavor chiral perturbation theory. The effective Lagrangian for the pi-K and pi-eta sectors is worked out to order Q^4; the effective Lagrangian for the K-K sector is worked out to order Q^2 with contact interactions to order Q^4. As an...

  12. Inhomogeneous chiral symmetry breaking in dense neutron-star matter

    International Nuclear Information System (INIS)

    An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)

  13. Inhomogeneous chiral symmetry breaking in dense neutron-star matter

    Energy Technology Data Exchange (ETDEWEB)

    Buballa, Michael; Carignano, Stefano [Technische Universitaet Darmstadt, Theoriezentrum, Institut fuer Kernphysik, Darmstadt (Germany)

    2016-03-15

    An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)

  14. Exploration of Chiral Aminophenols and Aminonaphthols with C2-Symmetry

    Institute of Scientific and Technical Information of China (English)

    Yan SUN; Zhi Min LI; Xiu Min SHEN; Feng Nian MA; Cong ZHANG

    2005-01-01

    The exploration of C2-symmetric chiral aminophenols and aminonaphthols is described.Seven new ligands have been successfully synthesized using Mannich reaction as a key step.Four of them have C2-symmetry and their structure has been fully characterized by means of NMR and X-ray crystallography.

  15. Chiral symmetry breaking with the Curtis-Pennington vertex

    NARCIS (Netherlands)

    Atkinson, D.; Gusynin, V. P.; Maris, P.

    1992-01-01

    Published in: Phys. Lett. B 303 (1993) 157-162 citations recorded in [Science Citation Index] Abstract: We study chiral symmetry breaking in quenched QED$_4$, using a vertex Ansatz recently proposed by Curtis and Pennington. Bifurcation analysis is employed to establish the existence of a critical c

  16. Magnetic catalysis of chiral symmetry breaking and the Pauli problem

    OpenAIRE

    Ng, Y. Jack

    1998-01-01

    The non-perturbative Schwinger-Dyson equation is used to show that chiral symmetry is dynamically broken in QED at weak gauge couplings when an external uniform magnetic field is present. A complete analysis of this phenomenon may shed light on the Pauli problem, namely, why $\\alpha$ = 1/137.

  17. Projective symmetry group classification of chiral spin liquids

    Science.gov (United States)

    Bieri, Samuel; Lhuillier, Claire; Messio, Laura

    2016-03-01

    We present a general review of the projective symmetry group classification of fermionic quantum spin liquids for lattice models of spin S =1 /2 . We then introduce a systematic generalization of the approach for symmetric Z2 quantum spin liquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral Z2 states, we study the subset of U(1) phases variationally in the antiferromagnetic J1-J2-Jd Heisenberg model on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of these phases.

  18. Structure of the vacuum in the color dielectric model: confinement and chiral symmetry

    International Nuclear Information System (INIS)

    Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied

  19. Finite-temperature chiral transition in real-world QCD?

    International Nuclear Information System (INIS)

    I present and discuss the first physics results of a Langevin simulation of finite-temperature QCD with a realistic current quark spectrum. Up to several caveats which will need to be addressed by future studies, our present results suggest that there is a first-order chiral restoration phase transition in real-world QCD, that it is driven by the light condensate and that it should be accompanied by a partial restoration of U(1)A symmetry. (orig.)

  20. Testing Lorentz Symmetry using Chiral Perturbation Theory

    CERN Document Server

    Noordmans, J P

    2016-01-01

    We consider the low-energy effects of a selected set of Lorentz- and CPT-violating quark and gluon operators by deriving the corresponding chiral effective lagrangian. Using this effective lagrangian, low-energy hadronic observables can be calculated. We apply this to magnetometer experiments and derive the best bounds on some of the Lorentz-violating coefficients. We point out that progress can be made by studying the nucleon-nucleon potential, and by considering storage-ring experiments for deuterons and other light nuclei.

  1. Burgers-like equation for spontaneous breakdown of the chiral symmetry in QCD

    CERN Document Server

    Blaizot, Jean-Paul; Warchoł, Piotr

    2013-01-01

    We link the spontaneous breakdown of chiral symmetry in Euclidean QCD to the collision of spectral shock waves in the vicinity of zero eigenvalue of Dirac operator. The mechanism, originating from complex Burger's-like equation for viscid, pressureless, one-dimensional flow of eigenvalues, is similar to recently observed weak-strong coupling phase transition in large $N_c$ Yang-Mills theory. The spectral viscosity is proportional to the inverse of the size of the random matrix that replaces the Dirac operator in the universal (ergodic) regime. We obtain the exact scaling function and critical exponents of the chiral phase transition for the averaged characteristic polynomial for $N_c \\ge3$ QCD. We reinterpret our results in terms of known properties of chiral random matrix models and lattice data.

  2. Burgers-like equation for spontaneous breakdown of the chiral symmetry in QCD

    International Nuclear Information System (INIS)

    We link the spontaneous breakdown of chiral symmetry in Euclidean QCD to the collision of spectral shock waves in the vicinity of zero eigenvalue of the Dirac operator. The mechanism, originating from complex Burger's-like equation for viscid, pressureless, one-dimensional flows of eigenvalues, is similar to the recently observed weak-strong coupling phase transition in large Nc Yang–Mills theory. The spectral viscosity is proportional to the inverse size of the random matrix that replaces the Dirac operator in the universal (ergodic) regime. We obtain the exact scaling function and critical exponents of the chiral phase transition for the averaged characteristic polynomial for Nc⩾3 QCD. We reinterpret our results in terms of known properties of chiral random matrix models and lattice data

  3. Possible chiral symmetry in $^{138}$Nd

    CERN Document Server

    Raduta, A A; Petrache, C M

    2015-01-01

    The pheomenological Generalized Coherent State Model Hamiltonian is amended with a many body term describing a set of nucleons moving in a shell model mean-field and interacting among themselves with paring, as well as with a particle-core interaction involving a quadrupole-quadrupole and a hexadecapole-hexdecapole force and a spin-spin interaction. The model Hamiltonian is treated in a restricted space consisting of the core projected states associated to the bands ground, $\\beta, \\gamma,\\widetilde{\\gamma}, 1^+$ and $\\widetilde{1^+}$ and two proton aligned quasiparticles coupled to the states of the ground band. The chirally transformed particle-core states are also included. The Hamiltonian contains two terms which are not invariant to the chiral transformations relating the right handed trihedral $({\\bf J_F}, {\\bf J_p}, {\\bf J_n})$ and the left handed ones $(-{\\bf J_F}, {\\bf J_p}, {\\bf J_n})$, $({\\bf J_F}, -{\\bf J_p}, {\\bf J_n})$, $({\\bf J_F}, {\\bf J_p}, -{\\bf J_n})$ where ${\\bf J_F}, {\\bf J_p}, {\\bf J_n}$...

  4. Can sigma models describe finite temperature chiral transitions?

    CERN Document Server

    Kocic, Aleksandar; Aleksandar KOCIC; John KOGUT

    1995-01-01

    Large-N expansions and computer simulations indicate that the universality class of the finite temperature chiral symmetry restoration transition in the 3D Gross-Neveu model is mean field theory. This is a counterexample to the standard 'sigma model' scenario which predicts the 2D Ising model universality class. We trace the breakdown of the standard scenario (dimensional reduction and universality) to the absence of canonical scalar fields in the model. We point out that our results could be generic for theories with dynamical symmetry breaking, such as Quantum Chromodynamics.

  5. Burgers-like equation for spontaneous breakdown of the chiral symmetry in QCD

    OpenAIRE

    Blaizot, Jean-Paul; Nowak, Maciej A.; Warchoł, Piotr

    2013-01-01

    We link the spontaneous breakdown of chiral symmetry in Euclidean QCD to the collision of spectral shock waves in the vicinity of zero eigenvalue of Dirac operator. The mechanism, originating from complex Burger's-like equation for viscid, pressureless, one-dimensional flow of eigenvalues, is similar to recently observed weak-strong coupling phase transition in large $N_c$ Yang-Mills theory. The spectral viscosity is proportional to the inverse of the size of the random matrix that replaces t...

  6. Chiral Symmetry and the Nucleon-Nucleon Interaction

    Directory of Open Access Journals (Sweden)

    Ruprecht Machleidt

    2016-04-01

    Full Text Available We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD via chiral effective field theory (EFT. During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (N N interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the N N potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. The final result allows for a full assessment of the validity of the chiral EFT approach to the N N interaction.

  7. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.

    Science.gov (United States)

    Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R

    2016-05-13

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations. PMID:27232041

  8. Chiral symmetry and finite temperature effects in quantum theories

    International Nuclear Information System (INIS)

    A computer simulation of the harmonic oscillator at finite temperature has been carried out, using the Monte Carlo Metropolis algorithm. Accurate results for the energy and fluctuations have been obtained, with special attention to the manifestation of the temperature effects. Varying the degree of symmetry breaking, the finite temperature behaviour of the asymmetric linear model in a linearized mean field approximation has been studied. In a study of the effects of chiral symmetry on baryon mass splittings, reasonable agreement with experiment has been obtained in a non-relativistic harmonic oscillator model

  9. Intrinsic transverse momentum and dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Christian Weiss, Peter Schweitzer, Mark Strikman

    2013-01-01

    We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.

  10. Chiral symmetry and its partial restoration in nuclei

    International Nuclear Information System (INIS)

    The Nambu-Jona-Lasinio (NJL) model is used to discuss the partial restoration of chiral symmetry in nuclear media at zero and finite temperatures. Effects considered are (a) the proton-neutron mass difference and the Nolen-Schiffer anomaly, (b) quasi-elastic electron scattering, and (c) the nuclear response function. Finally, the likely effects of confinement for the NJL model are examined. 8 refs., 14 figs

  11. Lectures on Chiral Symmetries and Soft Pion Processes

    Science.gov (United States)

    Nambu, Y.

    1966-08-01

    At the Istanbul Summer School in 1962 I gave lectures on "Chiral Symmetries in Weak and Strong Interactions." It is only recently, however, that the basic ideas that were started several years ago have begun to bear fruit. We will cover in the present lectures more or less the same general field, but certainly there will be a lot more results to be discussed now than four years ago.

  12. Chirality and its spontaneous symmetry breaking in two liquid crystal systems

    Science.gov (United States)

    Kang, Louis

    Chirality, or handedness, is a key concept spanning all fields of natural science, from biology to mathematics. Chiral structures can arise from achiral building blocks that lack a handedness if their assembly is unstable to chiral deformations, a phenomenon called spontaneous symmetry breaking. We theoretically study the role of chirality in two systems composed of liquid crystals dissolved or suspended in water, and our results match those obtained experimentally by our collaborators. In the first system, we study achiral liquid crystals whose Frank twist modulus is much lower than their splay and bend Frank moduli and which are confined in capillaries. Under homeotropic anchoring, their ground state configuration undergoes spontaneous chiral symmetry breaking when the twist modulus decreases enough relative to the splay and bend moduli. Under degenerate planar anchoring, a small twist-to-saddle-splay ratio of elastic moduli leads to degenerate twisted configurations even though an undeformed configuration is possible. Measuring the twist profile of an experimental system produces a value for the saddle-splay constant, which has been difficult to achieve previously. Under either boundary condition, domain walls and point defects, whose topological charges depend on chirality, separate domains with different degenerate configurations, and certain ones are energetically preferred over others. In the second system, we study filamentous viruses acting as colloidal liquid crystals under the influence of depletion, which promotes condensation of the viruses into 2D colloidal monolayers. These membranes have tunable chirality and show a rich array of emergent behaviors, including a transition from a circular shape to a striking starfish shape upon changing the chirality of constituent viruses, partial coalescence via domain walls through which the viruses twist by 180 degrees, and phase-separated rafts of a particular size when two virus species with different lengths

  13. On SU(3) effective models and chiral phase-transition

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...

  14. An Anderson-like model of the QCD chiral transition

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...

  15. The chicken or the egg; or Who ordered the chiral phase transition?

    CERN Document Server

    Kogan, I I; Tekin, B; Kogan, Ian I.; Kovner, Alex; Tekin, Bayram

    2001-01-01

    We draw an analogy between the deconfining transition in the 2+1 dimensional Georgi-Glashow model and the chiral phase transition in 3+1 dimensional QCD. Based on the detailed analysis of the former (hep-th/0010201) we suggest that the chiral symmetry restoration in QCD at high temperature is driven by the thermal ensemble of baryons and antibaryons. The chiral symmetry is restored when roughly half of the volume is occupied by the baryons. Surprisingly enough, even though baryons are rather heavy, a crude estimate for the critical temperature gives $T_c=180$ Mev. In this scenario the binding of the instantons is not the cause but rather a consequence of the chiral symmetry restoration.

  16. Probing Emergent Scale-Chiral Symmetry in Nuclear Interactions

    CERN Document Server

    Paeng, Won-Gi

    2016-01-01

    In effective field theory for baryonic matter in which broken scale symmetry and hidden local symmetry are incorporated, both scale invariance and local gauge invariance, invisible or perhaps even absent in the QCD vacuum, could arise at high density as emergent symmetries, with a dilaton figuring as a scalar Nambu-Goldstone boson and the $\\rho$ and $a_1$ mesons as gauge fields, the former at the "dialton-limit (DL) fixed point" and the latter at the "vector manifestation (VM) fixed point." A novel phenomenon observed in a simplified model is that the dilaton condensate in nuclear medium "walks" as density increases beyond $n_{1/2}\\sim (2-3)n_0$ and induces the in-medium hidden gauge symmetry coupling, un-scaling up to density $n_{1/2}$, to start dropping rapidly towards the VM fixed point $n_{VM} >n_{1/2} $ at which the vector meson mass vanishes, coinciding, most likely, with chiral symmetry restoration. We discuss how to probe both VM and DL properties by means of the nuclear symmetry energy and the sound ...

  17. Recent progress in understanding deconfinement and chiral restoration phase transitions

    CERN Document Server

    Shuryak, Edward

    2016-01-01

    Paradigme shift in gauge topology, from instantons to their constituents -- instanton-dyons -- has recently lead to very significant advances. Like instantons, they have fermionic zero modes, and their collectivization at sufficiently high density explains the chiral symmetry breaking. Unlike instantons, these objects have electric and magnetic charges. Their back reaction on the mean value of the Polyakov line (holonomy) allows to explain the deconfinement transition. The talk summarizes recent works on the dyon ensemble, done in the mean field approximation (MFA), and also by direct numerical statistical simulation. Introduction of non-trivial quark periodicity conditions leads to drastic changes in both deconfinement and chiral transitions. In particulaly, in the so called Z(N_c)-QCD model the former gets much stronger, while the latter does not seem to occur at all.

  18. Peripheral Nucleon-Nucleon Phase Shifts and Chiral Symmetry

    CERN Document Server

    Kaiser, N; Weise, W

    1997-01-01

    Within the one-loop approximation of baryon chiral perturbation theory we calculate all one-pion and two-pion exchange contributions to the nucleon-nucleon interaction. In fact we construct the elastic NN-scattering amplitude up to and including third order in small momenta. The phase shifts with orbital angular momentum $L\\geq2 $ and the mixing angles with $J\\geq2$ are given parameterfree and thus allow for a detailed test of chiral symmetry in the two-nucleon system. We find that for the D-waves the $2\\pi$-exchange corrections are too large as compared with empirical phase shifts, signaling the increasing importance of shorter range effects in lower partial waves. For higher partial waves, especially for G-waves, the model independent $2\\pi$-exchange corrections bring the chiral prediction close to empirical NN phase shifts. We propose to use the chiral NN phase shifts with $L\\geq 3$ as input in a future phase shift analysis. Furthermore, we compute the irreducible two-pion exchange NN-potentials in coordin...

  19. Deconfinement and Chiral Symmetry Restoration in a Strong Magnetic Background

    CERN Document Server

    Gatto, Raoul

    2010-01-01

    We perform a model study of deconfinement and chiral symmetry restoration in a strong magnetic background. We use a Nambu-Jona Lasinio model with the Polyakov loop, taking into account a possible dependence of the coupling on the Polyakov loop expectation value, as suggested by the recent literature. Our main result is that, within this model, the deconfinement and chiral crossovers of QCD in strong magnetic field are entangled even at the largest value of $eB$ considered here, namely $eB=30 m_\\pi^2$ (that is, $B \\approx 6\\times 10^{15}$ Tesla). The amount of split that we measure is, at this value of $eB$, of the order of 2%. We also study briefly the role of the 8-quark term on the entanglement of the two crossovers. We then compare the phase diagram of this model with previous results, as well as with available Lattice data.

  20. Chiral symmetry breaking in lattice QED model with fermion brane

    CERN Document Server

    Shintani, E

    2012-01-01

    We propose a novel approach of spontaneous chiral symmetry breaking at near zero temperature in 4 dimensional QED model with 3+1 dimensional fermion brane using Hybrid Monte Carlo simulation. We consider an anisotropic QED coupling in non-compact QED action with the manifest gauge invariant interaction and fermi-velocity which is less than speed of light. This model allows for the scaling study at low temperature and strong coupling region with reduced computational cost. We compute the chiral condensate and its susceptibility with different coupling constant, velocity parameter and flavor number, and therefore obtain a compatible behavior with gap equation in broken phase. We also discuss about the comparison of Graphene model.

  1. Deconfinement and chiral symmetry restoration in a strong magnetic background

    International Nuclear Information System (INIS)

    We perform a model study of deconfinement and chiral symmetry restoration in a strong magnetic background. We use a Nambu-Jona-Lasinio model with the Polyakov loop, taking into account a possible dependence of the coupling on the Polyakov-loop expectation value, as suggested by the recent literature. Our main result is that, within this model, the deconfinement and chiral crossovers of QCD in strong magnetic field are entangled even at the largest value of eB considered here, namely eB=30mπ2 (that is, B≅6x1015 T). The amount of split that we measure is, at this value of eB, of the order of 2%. We also study briefly the role of the 8-quark term on the entanglement of the two crossovers. We then compare the phase diagram of this model with previous results, as well as with available lattice data.

  2. Topological protection of defect states from semi-chiral symmetry

    CERN Document Server

    Poli, Charles; Bellec, Matthieu; Kuhl, Ulrich; Mortessagne, Fabrice

    2015-01-01

    Bipartite quantum systems from the chiral universality classes admit topologically protected zero modes at point defects. However, these states are difficult to separate from compacton-like localized states that arise from flat bands, formed if the two sublattices support a different number of sites within a unit cell. Here we identify a natural reduction of chiral symmetry, obtained by coupling sites on the majority sublattice, which gives rise to spectrally isolated point-defect states, topologically characterized as zero modes supported by the complementary minority sublattice. We observe these states in a microwave realization of a dimerized Lieb lattice with next-nearest neighbour coupling, and also demonstrate topological mode selection via sublattice-staggered absorption.

  3. Effects of gauge boson mass on chiral and deconfinement phase transitions in QED$_{3}$

    CERN Document Server

    Yin, Pei-Lin; Feng, Hong-Tao; Zong, Hong-Shi

    2016-01-01

    Based on the experimental observation that there is a coexisting region between the antiferromagnetic (AF) and $\\textit{d}$-wave superconducting ($\\textit{d}$SC) phases, the influences of gauge boson mass $m_{a}$ on chiral symmetry restoration and deconfinement phase transitions in QED$_{3}$ are investigated simultaneously within a unified framework, i.e., Dyson-Schwinger equations. The results show that the chiral symmetry restoration phase transition in the presence of the gauge boson mass $m_{a}$ is a typical second-order phase transition; the chiral symmetry restoration and deconfinement phase transitions are coincident; the critical number of fermion flavors $N^{c}_{f}$ decreases as the gauge boson mass $m_{a}$ increases and there exists a boundary that separates the $N^{c}_{f}$-$m_{a}$ plane into chiral symmetry breaking/confinement region for ($N_{f}^{c}$, $m_{a}$) below the boundary and chiral symmetry restoration/deconfinement region for ($N_{f}^{c}$, $m_{a}$) above it.

  4. QCD phase transition with chiral quarks and physical quark masses.

    Science.gov (United States)

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  5. The QCD phase transition with physical-mass, chiral quarks

    CERN Document Server

    Bhattacharya, Tanmoy; Christ, Norman H; Ding, H -T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-01-01

    We report on the first lattice calculation of the QCD phase transition using chiral fermions at physical values of the quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm$)^3$ and (11 fm$)^3$ and temperatures between 139 and 196 MeV . Each temperature was calculated using a single lattice spacing corresponding to a temporal Euclidean extent of $N_t=8$. The disconnected chiral susceptibility, $\\chi_{\\rm disc}$ shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability in the region of the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD ``phase transition'' is not first order but a continuous cross-over for $m_\\pi=135$ MeV. The peak location determines a pseudo-critical temperature $T_c = 155(1)(8)$ MeV. Chiral $SU(2)_L\\times SU(2)_R$ symmetry is fully restored above 164 MeV, but anomalous $U(1)_A$ symmetry breaking is non-zero above $T...

  6. Instabilities of Hexagonal Patterns with Broken Chiral Symmetry

    CERN Document Server

    Echebarria, B; Echebarria, Blas; Riecke, Hermann

    1999-01-01

    Three coupled Ginzburg-Landau equations for hexagonal patterns with broken chiral symmetry are investigated. They are relevant for the dynamics close to onset of rotating non-Boussinesq or surface-tension-driven convection. Steady and oscillatory, long- and short-wave instabilities of the hexagons are found. For the long-wave behavior coupled phase equations are derived. Numerical simulations of the Ginzburg-Landau equations indicate bistability between spatio-temporally chaotic patterns and stable steady hexagons. The chaotic state can, however, not be described properly with the Ginzburg-Landau equations.

  7. Chiral symmetry and nuclear matter equation of state

    Indian Academy of Sciences (India)

    A B Santra

    2001-08-01

    We investigate the effect on the nuclear matter equation of state (EOS) due to modification of meson and nucleon parameters in nuclear medium as a consequence of partial restoration of chiral symmetry. To get the EOS, we have used Brueckner–Bethe–Golstone formalism with Bonn- potential as two-body interaction and QCD sum rule and Brown–Rho scaling prescriptions for modification of hadron parameters. We find that EOS is very much sensitive to the meson parameters. We can fit, with two body interaction alone, both the saturation density and the binding energy per nucleon.

  8. In Search of a Pristine Signal for (Scale-)Chiral Symmetry in Nuclei

    CERN Document Server

    Rho, Mannque

    2016-01-01

    I describe the long-standing search for a "smoking-gun" signal for the manifestation of (scale-)chiral symmetry in nuclear interactions. It is prompted by Gerry Brown's last unpublished note, reproduced verbatim below, on the preeminent role of pions and vector ($\\rho$,$\\omega$) mesons in providing a simple and elegant description of strongly correlated nuclear interactions. In this note written in tribute to Gerry Brown, I first describe a case of an unambiguous signal in axial-charge transitions in nuclei and then combine his ideas with the more recent development on the role of hidden symmetries in nuclear physics. What transpires is the surprising conclusion that the Landau-Migdal fixed point interaction $G_0^\\prime$, the nuclear tensor forces and Brown-Rho scaling, all encoded in scale-invariant hidden local symmetry, as Gerry put, "run the show and make all forces equal."

  9. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    Science.gov (United States)

    Cassing, W.; Palmese, A.; Moreau, P.; Bratkovskaya, E. L.

    2016-01-01

    We study the production of strange hadrons in nucleus-nucleus collisions from 4 to 160 A GeV within the parton-hadron-string dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. Especially the K+/π+ and the (Λ +Σ0) /π- ratios in central Au+Au collisions are found to provide information on the relative importance of both transitions. The modeling of chiral symmetry restoration is driven by the pion-nucleon Σ term in the computation of the quark scalar condensate that serves as an order parameter for CSR and also scales approximately with the effective quark masses ms and mq. Furthermore, the nucleon scalar density ρs, which also enters the computation of , is evaluated within the nonlinear σ -ω model which is constrained by Dirac-Brueckner calculations and low-energy heavy-ion reactions. The Schwinger mechanism (for string decay) fixes the ratio of strange to light quark production in the hadronic medium. We find that above ˜80 A GeV the reaction dynamics of heavy nuclei is dominantly driven by partonic degrees of freedom such that traces of the chiral symmetry restoration are hard to identify. Our studies support the conjecture of "quarkyonic matter" in heavy-ion collisions from about 5 to 40 A GeV and provide a microscopic explanation for the maximum in the K+/π+ ratio at about 30 A GeV, which only shows up if a transition to partonic degrees of freedom is incorporated in the reaction dynamics and is discarded in the traditional hadron-string models.

  10. Chiral symmetry of heavy-light scalar mesons with UA(1) symmetry breaking

    Science.gov (United States)

    Dmitrašinović, V.

    2012-07-01

    In a previous paper, based on a calculation in the nonrelativistic quark model, we advanced the hypothesis that the Ds(2317), D0(2308) mesons are predominantly four-quark states lowered in mass by the flavor-dependent Kobayashi-Kubo-Maskawa ’t Hooft UA(1) symmetry breaking effective interaction. Here we show similar results and conclusions in a relativistic effective chiral model calculation, based on three-light-quark (i.e., two q plus one q¯) local interpolators. To this end we classify the four-quark (three light plus one heavy quark) local interpolators according to their chiral transformation properties and then construct chiral invariant interactions. We evaluate the diagonal matrix elements of the Kobayashi-Kubo-Maskawa ’t Hooft interaction between different interpolating fields and show that the lowest-lying one is always the (antisymmetric) SU(3)F antitriplet belonging to the chiral (3, 3) multiplet. We predict bottom-strange Bs0 and the bottom-nonstrange B0 scalar mesons with equal masses at 5720 MeV, the strange meson being some 100 MeV lower than in most of the quark potential models. We also predict the JP=1+ bottom-nonstrange B1 and the bottom-strange Bs1 meson masses as 5732 MeV and 5765 MeV, respectively, using the Bardeen-Hill-Nowak-Rho-Zahed scalar-vector mass relation.

  11. Non-equilibrium physics at a holographic chiral phase transition

    International Nuclear Information System (INIS)

    The D3/D7 system holographically describes an N=2 gauge theory which spontaneously breaks a chiral symmetry by the formation of a quark condensate in the presence of a magnetic field. At finite temperature it displays a first order phase transition. We study out of equilibrium dynamics associated with this transition by placing probe D7 branes in a geometry describing a boost-invariant expanding or contracting plasma. We use an adiabatic approximation to track the evolution of the quark condensate in a heated system and reproduce the phase structure expected from equilibrium dynamics. We then study solutions of the full partial differential equation that describes the evolution of out of equilibrium configurations to provide a complete description of the phase transition including describing aspects of bubble formation. (orig.)

  12. Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.

    Science.gov (United States)

    Meyrand, Romain; Galtier, Sébastien

    2012-11-01

    Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed.

  13. Chiral-symmetry breaking and confinement in Minkowski space

    International Nuclear Information System (INIS)

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab

  14. Chiral-symmetry breaking and confinement in Minkowski space

    CERN Document Server

    Biernat, Elmar P; Ribeiro, J E; Stadler, Alfred; Gross, Franz

    2014-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  15. Chiral-symmetry breaking and confinement in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmar P. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Peña, M. T. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Departamento de Física, Instituto Superior Técnico (IST), Universidadede Lisboa, 1049-001 Lisboa (Portugal); Ribeiro, J. E. [Centro de Física das Interações Fundamentais (CFIF), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Gross, Franz [Thomas Jefferson National Accelerator Facility (JLab), Newport News, Virginia 23606 (United States)

    2016-01-22

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  16. Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.

    Science.gov (United States)

    Meyrand, Romain; Galtier, Sébastien

    2012-11-01

    Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed. PMID:23215387

  17. Chiral-symmetry breaking and confinement in Minkowski space

    Science.gov (United States)

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz

    2016-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  18. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    CERN Document Server

    Cassing, W; Moreau, P; Bratkovskaya, E L

    2015-01-01

    We study the production of strange hadrons in nucleus-nucleus collisions from 4 to 160 A GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. Especially the $K^+/\\pi^+$ and the $(\\Lambda+\\Sigma^0)/\\pi^-$ ratios in central Au+Au collisions are found to provide information on the relative importance of both transitions. The modelling of chiral symmetry restoration is driven by the pion-nucleon $\\Sigma$-term in the computation of the quark scalar condensate $$ that serves as an order parameter for CSR and also scales approximately with the effective quark masses $m_s$ and $m_q$. Furthermore, the nucleon scalar density $\\rho_s$, which also enters the computation of $$, is evaluated within the nonlinear $\\sigma-\\omega$ model which is constraint by Dirac-Brueckner calculations and low energy...

  19. Imaging chiral symmetry breaking from Kekulé bond order in graphene

    Science.gov (United States)

    Gutiérrez, Christopher; Kim, Cheol-Joo; Brown, Lola; Schiros, Theanne; Nordlund, Dennis; Lochocki, Edward B.; Shen, Kyle M.; Park, Jiwoong; Pasupathy, Abhay N.

    2016-10-01

    Chirality--or `handedness’--is a symmetry property crucial to fields as diverse as biology, chemistry and high-energy physics. In graphene, chiral symmetry emerges naturally as a consequence of the carbon honeycomb lattice. This symmetry can be broken by interactions that couple electrons with opposite momenta in graphene. Here we directly visualize the formation of Kekulé bond order, one such phase of broken chiral symmetry, in an ultraflat graphene sheet grown epitaxially on a copper substrate. We show that its origin lies in the interactions between individual vacancies in the copper substrate that are mediated electronically by the graphene. We show that this interaction causes the bonds in graphene to distort, creating a phase with broken chiral symmetry. The Kekulé ordering is robust at ambient temperature and atmospheric conditions, indicating that intercalated atoms may be harnessed to drive graphene and other two-dimensional materials towards electronically desirable and exotic collective phases.

  20. Novel Lifshitz point for chiral transition in the magnetic field

    Directory of Open Access Journals (Sweden)

    Toshitaka Tatsumi

    2015-04-01

    Full Text Available Based on the generalized Ginzburg–Landau theory, chiral phase transition is discussed in the presence of magnetic field. Considering the chiral density wave we show that chiral anomaly gives rise to an inhomogeneous chiral phase for nonzero quark-number chemical potential. Novel Lifshitz point appears on the vanishing chemical potential line, which may be directly explored by the lattice QCD simulation.

  1. Symmetry energy, neutron skin, and neutron star radius from chiral effective field theory interactions

    OpenAIRE

    Hebeler, K.; Schwenk, A.

    2014-01-01

    We discuss neutron matter calculations based on chiral effective field theory interactions and their predictions for the symmetry energy, the neutron skin of 208 Pb, and for the radius of neutron stars.

  2. Dynamical symmetry breaking in chiral gauge theories with direct-product gauge groups

    Science.gov (United States)

    Shi, Yan-Liang; Shrock, Robert

    2016-09-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups G . If the gauge coupling for a factor group Gi⊂G becomes sufficiently strong, it can produce bilinear fermion condensates that break the Gi symmetry itself and/or break other gauge symmetries Gj⊂G . Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of G and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  3. Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups

    CERN Document Server

    Shi, Yan-Liang

    2016-01-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  4. Optically probed symmetry breaking in the chiral magnet Cu2OSeO3

    NARCIS (Netherlands)

    Versteeg, R. B.; Vergara, I.; Schaefer, S. D.; Bischoff, D.; Aqeel, A.; Palstra, T. T. M.; Grueninger, M.; van Loosdrecht, P. H. M.

    2016-01-01

    We report on the linear optical properties of the chiral magnet Cu2OSeO3, specifically associated with the absence of inversion symmetry, the chiral crystallographic structure, and magnetic order. Through spectroscopic ellipsometry, we observe local crystal-field excitations below the charge-transfe

  5. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    CERN Document Server

    Gitman, D M

    1996-01-01

    The phase structure of d=3 Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the 1/N-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the gravitational field.

  6. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    OpenAIRE

    Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.

    1996-01-01

    The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...

  7. Sea quark transverse momentum distributions and dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Peter [Univ. of Connecticut, Storrs, CT (United States); Strikman, Mark [Penn State Univ., State College, PA (United States); Weiss, Christian [JLAB Newport News, VA (United States)

    2014-01-01

    Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.

  8. How is chiral symmetry restored at finite density?

    OpenAIRE

    Tatsumi, T.; Nakano, E.

    2005-01-01

    Taking into account pseudoscalar as well as scalar condensates, we reexamine the chiral restoration path on the chiral manifold. We shall see both condensates coherently produce a density wave at a certain density, which delays chiral restoration as density or temperature is increased.

  9. Explicit chiral symmetry breaking in Gross-Neveu type models

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Christian

    2011-07-25

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well

  10. Cutoff effects of Wilson fermions in the absence of spontaneous chiral symmetry breaking

    CERN Document Server

    Della Morte, M; Luz, Magdalena; Morte, Michele Della

    2006-01-01

    We simulate two dimensional QED with two degenerate Wilson fermions and plaquette gauge action. As a consequence of the Mermin-Wagner theorem, in the continuum limit chiral symmetry is realized a la Wigner. This property affects also the size of the cutoff effects. That can be understood in view of the fact that the leading lattice artifacts are described, in the continuum Symanzik effective theory, by chirality breaking terms. In particular, vacuum expectation values of non-chirality-breaking operators are expected to be O(a) improved in the chiral limit. We provide a numerical confirmation of this expectation by performing a scaling test.

  11. Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.

  12. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    Science.gov (United States)

    Tschierske, Carsten; Ungar, Goran

    2016-01-01

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems. PMID:26416335

  13. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    CERN Document Server

    Holt, Jeremy W; Weise, Wolfram

    2014-01-01

    Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  14. Master formula approach to broken chiral U(3)xU(3) symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki Kamano

    2010-04-01

    The master formula approach to chiral symmetry breaking proposed by Yamagishi and Zahed is extended to the U_R(3)xU_L(3) group, in which effects of the U_A(1) anomaly and the flavor symmetry breaking m_u \

  15. Concerning the proofs of spontaneous chiral symmetry breaking in Q.C.D. from the effective lagrangian point of view

    International Nuclear Information System (INIS)

    Claims that spontaneous chiral symmetry breaking in Q.C.D. is mediated by the U(1) axial anomaly are examined from the viewpoint of effective chiral lagrangians. The proofs are seen to arise from a use of effective chiral lagrangians in which the U(1) axial symmetry is explicitly broken by effects of the anomaly. A U(1) axial invariant chiral lagrangian (to be presented) offers no such proof. (author)

  16. Chiral phase transition and Schwinger mechanism in a pure electric field

    CERN Document Server

    Cao, Gaoqing

    2016-01-01

    We systematically study the chiral symmetry breaking and restoration in the presence of a pure electric field in the Nambu--Jona-Lasinio (NJL) model at finite temperature and baryon chemical potential. In addition, we also study the effect of the chiral phase transition on the charged pair production due to the Schwinger mechanism. For these purposes, a general formalism for parallel electric and magnetic fields is developed at finite temperature and chemical potential for the first time. In the pure electric field limit $B\\rightarrow0$, we compute the order parameter, the transverse-to-longitudinal ratio of the Goldstone mode velocities, and the Schwinger pair production rate as functions of the electric field. The inverse catalysis effect of the electric field to chiral symmetry breaking is recovered. And the Goldstone mode is find to disperse anisotropically such that the transverse velocity is always smaller than the longitudinal one, especially at nonzero temperature and baryon chemical potential. As exp...

  17. Chiral symmetry restoration in heavy-ion collisions at intermediate energies

    CERN Document Server

    Palmese, A; Seifert, E; Steinert, T; Moreau, P; Bratkovskaya, E L

    2016-01-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range $\\sqrt{s_{NN}}$=3-20 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear $\\sigma-\\omega$ model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations.

  18. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    CERN Document Server

    Fischer, Tobias; Hempel, Matthias

    2016-01-01

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Kl\\"ahn and Fischer (2015) (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D$\\chi$SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.

  19. On the Manifestation of Chiral Symmetry in Nuclei and Dense Nuclear Matter

    CERN Document Server

    Brown, G E; Rho, Mannque

    2002-01-01

    This article reviews our view on how chiral symmetry, its pattern of breaking and restoration under extreme conditions manifest themselves in the nucleon, nuclei, nuclear matter and dense hadronic matter. Topics treated are nucleon structure in terms of chiral symmetry, "first-principle" (QCD) calculations of the properties of finite nuclei effectuated by embedding the ``standard nuclear physics approach" into the framework of effective field theories of nuclei with predictions for certain astrophysical processes, a reinterpretation of the Brown-Rho (BR) scaling that implements chiral symmetry property of baryon-rich medium \\`a la "vector manifestation" of hidden local symmetry, evidences for BR scaling in nuclear processes at normal nuclear matter density and at higher density, the notion of "broadband equilibration" in heavy-ion processes, and the role of strangeness in the formation of compact stars and their collapse into black-holes. We revisit the "Cheshire-Cat phenomenon" recently revived in the form o...

  20. Chiral symmetry breaking and vacuum polarization in a bag

    CERN Document Server

    Yasui, S

    2006-01-01

    We study the effects of a finite quark mass in the hedgehog configuration in the two phase chiral bag model. We discuss the chiral properties, such as the fractional baryon number and the chiral Casimir energy, by using the Debye expansion for the analytical calculation and the Strutinsky's smearing method for the numerical computation. It is shown that the fractional baryon number carried by massive quarks in the vacuum is canceled by that in the meson sector. A finite term of the chiral Casimir energy is obtained with subtraction of the logarithmic divergence term.

  1. Detecting the chirality for coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com

    2008-04-21

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.

  2. Chiral Phase Transition in the Soft-Wall Model of AdS/QCD

    CERN Document Server

    Chelabi, Kaddour; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2015-01-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t'Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realize...

  3. Chiral and U(1) axial symmetry restoration in linear sigma models with two quark flavors

    CERN Document Server

    Michalski, S

    2006-01-01

    We study the restoration of chiral symmetry in linear sigma models with two quark flavors. The models taken into consideration have a U(2) x U(2) and an O(N) internal symmetry. The physical mesons of these models are sigma, pion, \\eta and a_0 where the latter two are not present in the O(N) model. Including two-loop contributions through sunset graphs we calculate the temperature behavior of the order parameter and the masses for explicit chiral symmetry breaking with and without a U(1) axial anomaly. Decay threshold effects introduced by the sunset graphs alter the temperature dependence of the condensate and consequently that of the masses as well. Chiral symmetry tends to be restored at higher temperatures in the two-loop approximation than in the Hartree-Fock approximation. To model a dynamical restoration of the U(1) axial symmetry we imply a temperature-dependent anomaly parameter that sharply drops at about 175 MeV. This triggers the restoration of chiral symmetry before the full symmetry is restored a...

  4. Chiral Phase Transition and Meson Melting from AdS/QCD

    CERN Document Server

    Bartz, Sean P

    2016-01-01

    We investigate the in-medium behavior of mesons at finite temperature and baryon chemical potential within a soft-wall model of AdS/QCD. We use a quartic scalar potential to obtain the correct form of chiral symmetry breaking. At zero quark mass the chiral phase transition is second-order, becoming a crossover at physical quark mass. At zero baryon chemical potential, we find a chiral transition temperature of 155 MeV in the chiral limit and a pseudo-transition temperature of 151 MeV at physical quark mass, consistent with lattice results. In the low-temperature limit, the second-order transition occurs at a baryon chemical potential of 566 MeV while the rapid crossover occurs at 559 MeV. A new parameterization of the dilaton profile results in improved meson spectra. Meson melting occurs at a lower temperature and chemical potential than the chiral phase transition, so the vector-axial vector mass splitting remains constant until the bound states melt.

  5. Chiral symmetry breaking from Ginsparg-Wilson fermions

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent

    2000-01-01

    We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter \\Sigma, up to a multiplicative renormalization.

  6. Electromagnetic transitions in multiple chiral doublet bands

    CERN Document Server

    Jia, Hui; Wang, Shou-Yu; Wang, Shuo; Liu, Chen

    2016-01-01

    Multiple chiral doublet bands (M$\\chi$D) in the $80$, 130 and $190$ mass regions are studied by the model of $\\gamma$=90$^{\\circ}$ triaxial rotor coupled with identical symmetric proton-neutron configurations. By selecting the suitable basis, the calculated wave functions are explicitly exhibited to be symmetric under the operator $\\hat{A}$, which is defined as rotation by $90^{\\circ}$ about 3-axis with the exchange of valance proton and neutron. We found that both $M1$ and $E2$ transitions are allowed between the levels with different values of $A$, while are forbidden between the levels with same values of $A$. Such a selection rule holds true for M$\\chi$D in different mass regions.

  7. Chirality effects on 2D phase transitions

    DEFF Research Database (Denmark)

    Scalas, E.; Brezesinski, G.; Möhwald, H.;

    1996-01-01

    investigated pressures. However, at both temperatures, there is a sharp phase transition from a low-pressure phase, in which the molecules are tilted towards nearest neighbours (NN) and the distortion azimuth also points towards NN, to a high-pressure phase, in which the molecules are tilted towards next......Monolayers of the racemate and pure enantiomers of 1-hexadecyl-glycerol were investigated by grazing incidence X-ray diffraction (GID) at 5 and 20 degrees C on compression from 0 mN m(-1) to pressures greater than 30 mN m(-1). The racemate Lattice is centred-rectangular for both temperatures at all......-nearest neighbours (NNN) and an NNN-distorted lattice is observed. At 5 degrees C, the transition pressure is 15 mN m(-1), whereas at 20 degrees C it is 18 mN m(-1). Chirality destroys this transition: the pure enantiomer always exhibits an oblique lattice with tilted molecules, and the azimuths of tilt...

  8. Charge symmetry breaking from a chiral extrapolation of moments of quark distribution functions

    OpenAIRE

    Shanahan, P. E.; Thomas, A. W.; Young, R.D.(ARC Centre of Excellence for Particle Physics at the Terascale and CSSM, School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005, Australia)

    2013-01-01

    We present a determination, from lattice QCD, of charge symmetry violation in the spin- independent and spin-dependent parton distribution functions of the nucleon. This is done by chirally extrapolating recent QCDSF/UKQCD Collaboration lattice simulations of the first several Mellin moments of the parton distribution functions of octet baryons to the physical point. We find small chiral corrections for the polarized moments, while the corrections are quantitatively significant in the unpolar...

  9. Nucleon-to-Delta axial transition form factors in relativistic baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We report a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism in which the $\\Delta$ couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino bubble chamber data and in quark models.

  10. Lattice QCD study of partial restoration of chiral symmetry in the flux-tube

    CERN Document Server

    Iritani, Takumi; Hashimoto, Shoji

    2014-01-01

    Using the overlap-Dirac eigenmodes, we study the spatial distribution of the chiral condensate around static color sources in lattice QCD. Between the color sources, there appears a color-flux tube, which leads a linear confining potential. By measuring a local value of the chiral condensate, we show that the magnitude of the condensate is reduced inside the flux-tube for both quark-antiquark and three-quark systems. These results suggest that chiral symmetry is partially restored in the flux-tube. The reduction of the condensate is estimated to be about 20 $\\sim$ 30% at the center of the flux.

  11. Dynamical chiral symmetry breaking and weak nonperturbative renormalization group equation in gauge theory

    CERN Document Server

    Aoki, Ken-Ichi; Sato, Daisuke

    2016-01-01

    We analyze the dynamical chiral symmetry breaking in gauge theory with the nonperturbative renormalization group equation (NPRGE), which is a first order nonlinear partial differential equation (PDE). In case that the spontaneous chiral symmetry breaking occurs, the NPRGE encounters some non-analytic singularities at the finite critical scale even though the initial function is continuous and smooth. Therefore there is no usual solution of the PDE beyond the critical scale. In this paper, we newly introduce the notion of a weak solution which is the global solution of the weak NPRGE. We show how to evaluate the physical quantities with the weak solution.

  12. Chiral symmetry, constituent quarks and quasi-elastic electron-nucleus scattering

    Science.gov (United States)

    Henley, E. M.; Krein, G.

    1989-11-01

    The effects of chiral symmetry breaking are examined for quasi-elastic electron scattering on nuclei. Nucleons are assumed to be composed of constituent quarks with masses that depend on density. This density dependence is determined on the basis of the Nambu-Jona-Lasinio model. It is found that the effects of chiral symmetry breaking are in the right direction and the right order of magnitude to explain the discrepancies between theory and experiment. On leave from Departamento de Fisica, Universidade Federal de Santa Maria, 97100 Santa Maria, R.S., Brazil.

  13. The $N_f= 2$ chiral phase transition from imaginary chemical potential with Wilson Fermions

    CERN Document Server

    Philipsen, Owe

    2015-01-01

    The order of the thermal transition in the chiral limit of QCD with two dynamical flavours of quarks is a long-standing issue. Still, it is not definitely known whether the transition is of first or second order in the continuum limit. Which of the two scenarios is realized has important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. Settling this issue by simulating at successively decreased pion mass was not conclusive yet. Recently, an alternative approach was proposed, extrapolating the first order phase transition found at imaginary chemical potential to zero chemical potential with known exponents, which are induced by the Roberge-Weiss symmetry. For staggered fermions on $N_t=4$ lattices, this results in a first order transition in the chiral limit. Here we report of $N_t=4$ simulations with Wilson fermions, where the first order region is found to be large.

  14. Finite-temperature phase transition of $N_{f}=3$ QCD with exact center symmetry

    CERN Document Server

    Misumi, Tatsuhiro; Itou, Etsuko

    2015-01-01

    For the $Z_{3}$-symmetric lattice QCD-like theory ($Z_3$-QCD), in which $SU(3)$ gauge theory is coupled with three fundamental Wilson quarks with flavor-dependent twisted boundary conditions, we calculate the expectation values of Polyakov loop and chiral condensate as functions of temperature on $16^3 \\times4$ and $20^3 \\times 4$ lattices with $m_{PS}/m_{V}=0.70$ fixed. We find the first-order phase transition with respect to the $Z_{3}$ center symmetry, where the Polyakov loop exhibits a hysteresis depending on the initial condition of thermalization process. We also show that the crossover behavior of chiral condensate around the critical temperature of the center transition and the manifestation of flavor symmetry breaking in the high-temperature phase.

  15. The chiral transition on a 243 x 10 lattice with Nf = 2 clover sea quarks studied by overlap valence quarks

    International Nuclear Information System (INIS)

    Overlap fermions are particularly well suited to study the finite temperature dynamics of the chiral symmetry restoration transition of QCD, which might be just an analytic crossover. Using gauge field configurations on a 243 x 10 lattice with Nf=2 flavours of dynamical Wilson-clover quarks generated by the DIK collaboration, we compute the lowest 50 eigenmodes of the overlap Dirac operator and try to locate the transition by fermionic means. We analyse the spectral density, local chirality and localisation properties of the low-lying modes and illustrate the changing topological and (anti-) selfdual structure of the underlying gauge fields across the transition. (orig.)

  16. Chiral doubling of heavy-light hadrons and the vector manifestation of hidden local symmetry

    International Nuclear Information System (INIS)

    Starting with a hidden local symmetry Lagrangian at the vector manifestation (VM) fixed point that incorporates heavy-quark symmetry and matching the bare theory to QCD, we calculate the splitting of chiral doublers of heavy-light mesons proposed by Nowak, Rho, and Zahed [M. A. Nowak, M. Rho, and I. Zahed, Phys. Rev. D 48, 4370 (1993).] and Bardeen and Hill [W. A. Bardeen and C. T. Hill, Phys. Rev. D 49, 409 (1994).]. We show, in the three-flavor chiral limit, that the splitting is directly proportional to the light-quark condensate and comes out to be ∼(1/3)mN where mN is the nucleon mass, implying that the splitting vanishes in the chiral limit at the chiral restoration point--temperature Tc, density nc, or number of flavors Nfc. The result turns out to be surprisingly simple with the vector (ρ) meson playing the crucial role in quantum corrections, pointing to the relevance of the VM to QCD in the way chiral symmetry is manifested in hadronic matter. We also make predictions on the hadronic decay processes of the excited heavy- (charm) light mesons D

  17. New method for dynamical fermions and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    The reasons for the feasibility of the Microcanonical Fermionic Average (M F A) approach to lattice gauge theory with dynamical fermions are discussed. We then present a new exact algorithm, which is free from systematic errors and convergent even in the chiral limit. (orig.)

  18. Explicit versus Dynamical Chiral Symmetry Breaking and Mass Matrix of Quarks and Leptons

    Science.gov (United States)

    Handa, O.; Ishida, S.; Sekiguchi, M.

    1992-02-01

    By recourse to an analogy between strong and weak interactions, quark mass-matrices consisting of the two parts are proposed, which represent, respectively, dynamical chiral symmetry breaking and explicit one due to small preon mass. The sum rules among quark masses and mixing-matrix elements derived from it seem consistent with present experiments.

  19. Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model

    Institute of Scientific and Technical Information of China (English)

    宗红石; 吴小华; 侯丰尧; 赵恩广

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.

  20. Comments on the Chiral Symmetry Breaking in Soft Wall Holographic QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    In this paper we describe qualitatively some aspects of the holographic QCD. Inspired by a successfull 4D description, we try to separate the Confinement and the Chiral Symmetry Breaking dynamics. We also discuss the realization of the baryons as skyrmions in Soft Wall Holographic QCD, and the...

  1. Dynamical quarks effects on the gluon propagation and chiral symmetry restoration

    CERN Document Server

    Bashir, A; Rodríguez-Quintero, J

    2014-01-01

    We exploit the recent lattice results for the infrared gluon propagator with light dynamical quarks and solve the gap equation for the quark propagator. Chiral symmetry breaking and confinement (intimately tied with the analytic properties of QCD Schwinger functions) order parameters are then studied.

  2. Quantum solitons of the nonlinear sigma-model with broken chiral symmetry

    CERN Document Server

    Kostyuk, A P; Chepilko, N M; Okazaki, T

    1995-01-01

    It is proved that the quantum-mechanical consideration of global breathing of a hedgehog-like field configuration leads to the dynamically stable soliton solutions in the nonlinear sigma-model without the Skyrme term. Such solutions exist only when chiral symmetry of the model is broken.

  3. Minimally doubled chiral fermions with C, P and T symmetry on the staggered lattice

    CERN Document Server

    Haegeman, Jutho

    2008-01-01

    Recently, the interest in local lattice actions for chiral fermions has revived, with the proposition of new local actions in which only the minimal number of doublers appear. The trigger role of graphene having a minimally doubled, chirally invariant, Dirac-like excitation spectrum can not be neglected. The challenge is to construct an action which preserves enough symmetries to be useful in lattice gauge calculations. We present a new approach to obtain local lattice actions for fermions using a reinterpretation of the staggered lattice approach of Kogut and Susskind. This interpretation is based on the similarity with the staggered lattice approach in FDTD simulations of acoustics and electromagnetism. It allows us to construct a local action for chiral fermions which has all discrete symmetries and the minimal number of fermion flavors, but which is non-Hermitian in real space. However, we argue that this will not pose a threat to the usability of the theory.

  4. Chirally Invariant Avatar in a Model of Neutrinos with Light Cone Reflection Symmetry

    CERN Document Server

    Chodos, Alan

    2016-01-01

    In previous work we developed a model of neutrinos based on a new symmetry, Light Cone Reflection (LCR), that interchanges spacelike and timelike intervals. In this paper we start with the four-dimensional model, and construct a two-dimensional avatar that obeys the same equations of motion, and preserves both the light-cone reflection symmetry and the chiral symmetry of the original theory. The avatar also contains the interaction that rendered the four-dimensional model gauge invariant. In an addendum, we make some remarks about how to determine the scalar field that enters into the definition of the LCR-covariant derivative.

  5. Chiral Symmetry Restoration for the large-$N$ pion gas

    CERN Document Server

    Cortés, Santiago; Morales, John

    2016-01-01

    We analyze chiral restoration within the $O(N+1)/O(N)$ Non-Linear Sigma Model for large $N$ as an effective theory for low-energy QCD at finite temperature $T$. The free energy is constructed diagramatically to $O(M^3)$ in the pion mass, which allows to derive the quark condensate and the scalar susceptibility in the chiral limit. At this order, we do not have to deal with renormalization, neither from divergences from mass tadpoles nor from those of higher order loop contributions. Our results for the critical behaviour are consistent with expectations from lattice analysis and with previous works where the susceptibility is saturated by the thermal $f_0(500)$ pole.

  6. Liquid Crystal Phases of Molecular Bananas: Polarity and Chirality as Broken Symmetries

    Science.gov (United States)

    Clark, Noel

    2006-03-01

    The study of the interplay of chirality and polarity has been a particularly rich theme of soft matter science since Meyer's seminal discovery that tilted smectics of chiral molecules are macroscopically polar. This event, and the subsequent realization of polar domains and high-speed electro-optic switching in chiral smectics, engaged the liquid crystal community in a worldwide pursuit of novel smectics for applications, featured by the synthesis of more than 50,000 new liquid crystal compounds, and by a consequent broad diversification of the palette of liquid crystal phases and possibilities for supermolecular ordering. A current important activity in this scenario is the study of polar order in synthetically achiral molecules, for example, in molecular bananas, which, as their shape suggests, might be expected to organize in a polar way. Indeed they do, but beyond this, almost everything learned about them has been surprising, including their persistent tendency to exhibit chirality as a spontaneously broken symmetry. I will discuss some of these new phases and phenomena, including the discovery of fluid conglomerates (Pasteur's experiment in a fluid), triclinic fluid order, chiral twist grain boundary phases of achiral molecules, chirality flipping and field-induced deracemization, ferroelectric and antiferroelectric phases with supermolecular- scale polarization modulation, and chiral thermotropic sponge phases.

  7. Chiral Symmetry and N*(1440) -> N pi pi Decay

    CERN Document Server

    Kamano, H; Arima, M

    2004-01-01

    The N*(1440) -> N pi pi decay is studied by making use of the chiral reduction formula. This formula suggests a scalar-isoscalar pion-baryon contact interaction which is absent in the recent study of Hern{\\'a}ndez et al. The contact interaction is introduced into their model, and is found to be necessary for the simultaneous description of g_{RN pi pi} and the pi-pi and pi-N invariant mass distributions.

  8. Chiral Symmetry Restoration with a Chiral Chemical Potential: the Role of Momentum Dependent Quark Self-energy

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows to introduce in the simplest way possible a Euclidean momentum, $p_E$, dependent quark mass function which decays (neglecting logarithms) as $1/p_E^2$ for large $p_E$ in agreement with asymptotic behaviour expected in presence of a nonperturbative quark condensate. We show that the momentum dependence of the quark mass function, which has been neglected in all of the previous model studies, drastically affects the dependence of the critical temperature versus $\\mu_5$. We explain this in terms of a natural removal of ultraviolet modes at $T>0$ in the gap equation, as well as of the natural addition of these modes at $T=0$ which help to catalyze chiral symmetry breaking. As a result we find that within this model the critical temperature increases with $\\mu_5$.

  9. Broken Valence Chiral Symmetry and Chiral Polarization of Dirac Spectrum in N$_f$=12 QCD at Small Quark Mass

    CERN Document Server

    Alexandru, Andrei

    2014-01-01

    The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass-degenerate fundamental quark flavors. We find that the vSChSB-ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass $m_c$ such that for $m > m_c$ the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for $m_{ch} < m < m_c$ the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses $m < m_{ch}$, but this has not yet been seen by overlap valence probe, leaving the $m_{ch}=0$ possibility open. The latter option could place massless N$_f$=12 theory outside of conformal window. Anomalou...

  10. Broken valence chiral symmetry and chiral polarization of Dirac spectrum in Nf=12 QCD at small quark mass

    Science.gov (United States)

    Alexandru, Andrei; Horváth, Ivan

    2016-01-01

    The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass-degenerate fundamental quark flavors. We find that the vSChSB-ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass mc such that for m > mc the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for mch < m < mc the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses m < mch, but this has not yet been seen by overlap valence probe, leaving the mch = 0 possibility open. The latter option could place massless Nf=12 theory outside of conformal window. Anomalous behavior of overlap Dirac spectrum for mch < m < mc is qualitatively similar to one observed previously in zero and few-flavor theories as an effect of thermal agitation.

  11. Low symmetry tetrahedral nematic liquid crystal phases: Ambidextrous chirality and ambidextrous helicity.

    Science.gov (United States)

    Pleiner, Harald; Brand, Helmut R

    2014-02-01

    We discuss the symmetry properties as well as the dynamic behavior of various non-polar nematic liquid crystal phases with tetrahedral order. We concentrate on systems that show biaxial nematic order coexisting with octupolar (tetrahedral) order. Non-polar examples are phases with D2 and S4 symmetries, which can be characterized as biaxial nematics lacking inversion symmetry. It is this combination that allows for new features in the statics and dynamics of these phases. The D2-symmetric phase is chiral, even for achiral molecules, and shows ambidextrous chirality in all three preferred directions. The achiral S4-symmetric phase allows for ambidextrous helicity, similar to the higher-symmetric D2d-symmetric phase. Such phases are candidates for nematic phases made from banana-shaped molecules.

  12. Meson phenomenology and phase transitions in nonlocal chiral quark models

    Science.gov (United States)

    Carlomagno, J. P.; Gomez Dumm, D.; Pagura, V.; Scoccola, N. N.

    2015-07-01

    We study the features of nonlocal chiral quark models that include wave function renormalization. Model parameters are determined from meson phenomenology, considering different nonlocal form factor shapes. In this context we analyze the characteristics of the deconfinement and chiral restoration transitions at finite temperature and chemical potential, introducing the couplings of fermions to the Polyakov loop for different Polyakov potentials. The results for various thermodynamical quantities are compared with data obtained from lattice QCD calculations.

  13. Chiral and Deconfining Phase Transitions from Holographic QCD Study

    CERN Document Server

    Fang, Zhen; Li, Danning

    2015-01-01

    A first attempt to accommodate the chiral and deconfining phase transitions of QCD in the bottom-up holographic framework is given. We constrain the relation between dilaton field $\\phi$ and metric warp factor $A_e$ and get several reasonable models in the Einstein-Dilaton system. Using the potential reconstruction approach, we solve the corresponding gravity background. Then we fit the background-related parameters by comparing the equation of state with the two-flavor lattice QCD results. After that we study the temperature dependent behavior of Polyakov loop and chiral condensate under those background solutions. We find that the results are in good agreement with the two-flavor lattice results. All the studies about the equation of state, the Polyakov loop and the chiral condensate signal crossover behavior of the phase transitions, which is consistent with the current understanding on the QCD phase transitions with physical quark mass. Furthermore, the extracted transition temperatures are comparable wit...

  14. Wigner–Souriau translations and Lorentz symmetry of chiral fermions

    Directory of Open Access Journals (Sweden)

    C. Duval

    2015-03-01

    Full Text Available Chiral fermions can be embedded into Souriau's massless spinning particle model by “enslaving” the spin, viewed as a gauge constraint. The latter is not invariant under Lorentz boosts; spin enslavement can be restored, however, by a Wigner–Souriau (WS translation, analogous to a compensating gauge transformation. The combined transformation is precisely the recently uncovered twisted boost, which we now extend to finite transformations. WS-translations are identified with the stability group of a motion acting on the right on the Poincaré group, whereas the natural Poincaré action corresponds to action on the left.

  15. Anomalies, instantons and chiral symmetry breaking at a Lifshitz point

    CERN Document Server

    Bakas, Ioannis

    2012-01-01

    We give a new twist to an old-fashioned topic in quantum field theory describing violations of the chiral charge conservation of massless fermions through Adler-Bell-Jackiw anomalies in the background of instanton fields in the context of non-relativistic Lifshitz theories. The results we report here summarize in a nut-shell our earlier work on the subject found in arXiv:1103.5693 and arXiv:1110.1332. We present simple examples where index computations can be carried out explicitly focusing, in particular, to gravitational models of Lifshitz type and highlight their differences from ordinary gravity in four space-time dimensions.

  16. Chiral and herringbone symmetry breaking in water-surface monolayers

    DEFF Research Database (Denmark)

    Peterson, I.R.; Kenn, R.M.; Goudot, A.;

    1996-01-01

    We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...

  17. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals.

    Science.gov (United States)

    Tortora, Luana; Lavrentovich, Oleg D

    2011-03-29

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement.

  18. $B_K$ from quenched QCD with exact chiral symmetry

    CERN Document Server

    Garron, N; Hölbling, C; Lellouch, L P; Rebbi, C; Garron, Nicolas; Giusti, Leonardo; Hoelbling, Christian; Lellouch, Laurent; Rebbi, Claudio

    2004-01-01

    We present a calculation of the standard model Delta S=2 matrix element relevant to indirect CP violation in K->pipi decays which uses Neuberger's chiral formulation of lattice fermions. The computation is performed in the quenched approximation on a 16^3x32 lattice that has a lattice spacing asim 0.1 fm. The resulting bare matrix element is renormalized non-perturbatively. Our main result is B_K^{RGI}=0.87(8)^{+2+14}_{-1-14}, where the first error is statistical, the second is systematic and the third is an estimate of the uncertainty associated with the quenched approximation and with the fact that our kaons are composed of degenerate s and d quarks with masses sim m_s/2.

  19. Residual Chiral Symmetry Breaking in Domain-Wall Fermions

    International Nuclear Information System (INIS)

    We study the effective quark mass induced by the finite separation of the domain walls in the domain-wall formulation of chiral fermion as the function of the size of the fifth dimension (Ls), the gauge coupling (β) and the physical volume (V). We measure the mass by calculating the small eigenvalues of the hermitian domain-wall Dirac operator (HDWF(m0 = 1.8)) in the topologically-nontrivial quenched SU(3) gauge configurations. We find that the induced quark mass is nearly independent of the physical volume, decays exponentially as a function of Ls, and has a strong dependence on the size of quantum fluctuations controlled by β. The effect of the choice of the lattice gluon action is also studied

  20. Residual Chiral Symmetry Breaking in Domain-Wall Fermions

    International Nuclear Information System (INIS)

    The authors study the effective quark mass induced by the finite separation of the domain walls in the domain-wall formulation of chiral fermion as the function of the size of the fifth dimension ($L-s$), the gauge coupling $beta$ and the physical volume $V$. They measure the mass by calculating the small eigenvalues of the hermitian domain-wall Dirac operator ($H-[rm DWF](m-0))$ in the topologically-nontrivial quenched SU(3) gauge configurations. The authors find that the induced quark mass is nearly independent of the physical volume, decays exponentially as a function of $L-s$, and has a strong dependence on the size of quantum fluctuations controlled by $beta$. The effect of the choice of the lattice gluon action is also studied

  1. Chiral phase transition in QED$_3$ at finite temperature

    CERN Document Server

    Wei, Wei; Zong, Hong-Shi

    2016-01-01

    Chiral phase transition in (2+1)-dimensional quantum electrodynamics (QED$_3$) at finite temperature is investigated in the framework of truncated Dyson-Schwinger equations (DSEs). We go beyond the widely used instantaneous approximation and adopt a method that retains the full frequency dependence of the fermion self-energy. We also take further step to include the effects of wave-function renormalizations and introduce a minimal dressing of the bare vertex. Finally, with the more complete solutions of the truncated DSEs, we revisit the study of chiral phase transition in finite-temperature QED$_3$.

  2. Empirical Example of Nucleus with Transitional Dynamical Symmetry X(5)

    Institute of Scientific and Technical Information of China (English)

    张大立; 赵惠英

    2002-01-01

    By analysing the energy spectrum, E2 transition rates and branching ratios, it is shown explicitly that the nucleus 150Nd provides an empirical example with X(5) symmetry at the critical point of the transition from U(5) to SU(3) symmetry.

  3. The Tayler instability at low magnetic Prandtl numbers: between chiral symmetry breaking and helicity oscillations

    CERN Document Server

    Weber, Norbert; Stefani, Frank; Weier, Tom

    2015-01-01

    The Tayler instability is a kink-type, current driven instability that plays an important role in plasma physics but might also be relevant in liquid metal applications with high electrical currents. In the framework of the Tayler-Spruit dynamo model of stellar magnetic field generation, the question of spontaneous helical (chiral) symmetry breaking during the saturation of the Tayler instability has received considerable interest. Focusing on fluids with low magnetic Prandtl numbers, for which the quasistatic approximation can be applied, we utilize an integro-differential equation approach in order to investigate the saturation mechanism of the Tayler instability. Both the exponential growth phase and the saturated phase are analyzed in terms of the action of the alpha and beta effects of mean-field magnetohydrodynamics. In the exponential growth phase we always find a spontaneous chiral symmetry breaking which, however, disappears in the saturated phase. For higher degrees of supercriticality, we observe h...

  4. Chiral Symmetry Breaking on the Lattice a Study of the Strongly Coupled Lattice Schwinger Model

    CERN Document Server

    Berruto, F; Semenoff, Gordon W; Sodano, P

    1998-01-01

    We revisit the strong coupling limit of the Schwinger model on the lattice using staggered fermions and the hamiltonian approach to lattice gauge theories. Although staggered fermions have no continuous chiral symmetry, they posses a discrete axial invari ance which forbids fermion mass and which must be broken in order for the lattice Schwinger model to exhibit the features of the spectrum of the continuum theory. We show that this discrete symmetry is indeed broken spontaneously in the strong coupling li mit. Expanding around a gauge invariant ground state and carefully considering the normal ordering of the charge operator, we derive an improved strong coupling expansion and compute the masses of the low lying bosonic excitations as well as the chiral co ndensate of the model. We find very good agreement between our lattice calculations and known continuum values for these quantities already in the fourth order of strong coupling perturbation theory. We also find the exact ground state of the antiferromag ...

  5. Chiral symmetry restoration in σ-meson production in hadronic processes

    Directory of Open Access Journals (Sweden)

    Kukulin V.I.

    2014-06-01

    Full Text Available Some puzzles about the nature and properties of the lightest scalar meson, σ or f0(500, are analyzed in the paper. We studied the σ-meson production both in N + N, N + d, etc., collisions and also in J/ψ, ψ(2S, ψ(3S, Υ(2S, etc., two-pion decays. The fundamental distinctions between the basic σ-meson parameters found in various hadronic processes can be explained most naturally by the chiral symmetry restoration in intermediate excited hadronic resonances. In the present paper we discuss some important aspects of chiral symmetry restoration in hadronic processes with interrelation to the basic features of QCD.

  6. Chiral-Symmetry Breaking in Pseudo Quantum Electrodynamics at Finite Temperature

    CERN Document Server

    Nascimento, Leandro O; Peña, Francisco; Smith, C Morais; Marino, E C

    2015-01-01

    We use the Schwinger-Dyson equations in the presence of a thermal bath, in order to study chiral symmetry breaking in a system of massless Dirac fermions interacting through pseudo quantum electrodynamics (PQED3), in (2+1) dimensions. We show that there is a critical temperature $T_c$, below which chiral symmetry is broken, and a corresponding mass gap is dynamically generated, provided the coupling is above a certain, temperature dependent, critical value $\\alpha_c$. The ratio between the energy gap and the critical temperature for this model is estimated to be $2 \\pi$. These results are confirmed by analytical and numerical investigations of the Schwinger-Dyson equation for the electron. In addition, we calculate the first finite-temperature corrections to the static Coulomb interaction. The relevance of this result in the realm of condensed matter systems, like graphene, is briefly discussed.

  7. Patterns of chiral symmetry breaking and a candidate for a C-theorem in four dimensions

    CERN Document Server

    Levinsen, J

    2002-01-01

    We test a candidate for a four-dimensional C-function. This is done by considering all asymptotically free, vectorlike gauge theories with N_f flavors and fermions in arbitrary representations of any simple Lie group. Assuming spontaneous breaking of chiral symmetry in the infrared limit and that the value of the C-function in this limit is determined by the number of Goldstone bosons, we find that only in the case of a theory with two colors and fermions in one single pseudo-real representation of SU(2) the C-theorem seems to be violated. Conversely, this might also be a sign of new constraints, restricting the number of flavors consistent with spontaneous chiral symmetry breaking. For all other groups and representations we find that this candidate C-function decreases along the renormalization group flow.

  8. Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics

    International Nuclear Information System (INIS)

    By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3)F symmetry breaking effects are estimated and, if possible, confronted with experiment. ((orig.))

  9. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    Science.gov (United States)

    Doi, Takahiro M.; Suganuma, Hideo; Iritani, Takumi

    2016-01-01

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new "positive/negative symmetry" in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.

  10. Kac-Moody and Borcherds Symmetries of Six-Dimensional Chiral Supergravity

    CERN Document Server

    Henneaux, Marc

    2015-01-01

    We investigate the conjectured infinite-dimensional hidden symmetries of six-dimensional chiral supergravity coupled to two vector multiplets and two tensor multiplets, which is known to possess the $F_{4,4}$ symmetry upon dimensional reduction to three spacetime dimensions. Two things are done. (i) First, we analyze the geodesic equations on the coset space $F_{4,4}^{++}/K(F_{4,4}^{++})$ using the level decomposition associated with the subalgebra $\\mathfrak{gl}(5)\\oplus \\mathfrak{sl}(2)$ of $F_{4,4}^{++}$ and show their equivalence with the bosonic equations of motion of six-dimensional chiral supergravity up to the level where the dual graviton appears. In particular, the self-duality condition on the chiral $2$-form is automatically implemented in the sense that no dual potential appears for that $2$-form, in contradistinction with what occurs for the non chiral $p$-forms. (ii) Second, we describe the $p$-form hierarchy of the model in terms of its $V$-duality Borcherds superalgebra, of which we compute t...

  11. Dynamical chiral symmetry breaking and confinement : its interrelation and effects on the hadron mass spectrum

    International Nuclear Information System (INIS)

    Within the framework of this thesis, the interrelation between the two characteristic phenomena of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement, is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method to artificially restore the dynamically broken chiral symmetry. The low-mode part of the Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the Banks--Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we construct valence quark propagators that exclude a variable sized part of the low-mode Dirac spectrum, with the aim of using these as an input for meson and baryon interpolating fields. Subsequently, we explore the behavior of ground and excited states of the low-mode truncated hadrons using the variational analysis method. We look for the existence of confined hadron states and extract effective masses where applicable. Moreover, we explore the evolution of the quark wavefunction renormalization function and the renormalization point invariant mass function of the quark propagator under Dirac low-mode truncation in a gauge fixed setting. Motivated by the necessity of fixing the gauge in the aforementioned study of the quark propagator, we also developed a flexible high performance code for lattice gauge fixing, accelerated by graphic processing units (GPUs) using NVIDIA CUDA (Compute Unified Device Architecture). Lastly, more related but unpublished work on the topic is presented. This includes a study of the locality violation of low-mode truncated Dirac operators, a discussion of the possible extension of the low-mode truncation method to the sea quark sector based on a reweighting scheme, as well as the presentation of an alternative way to restore the dynamically broken chiral symmetry. (author)

  12. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  13. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Directory of Open Access Journals (Sweden)

    Biernat Elmar P.

    2016-01-01

    Full Text Available We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.

  14. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    CERN Document Server

    Biernat, Elmar P; Ribeiro, J E; Stadler, A; Gross, F

    2015-01-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  15. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Science.gov (United States)

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, A.; Gross, F.

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.

  16. Four-Fermion Theories with Exact Chiral Symmetry in Three Dimensions

    CERN Document Server

    Schmidt, Daniel; Wipf, Andreas

    2016-01-01

    We investigate a class of four-fermion theories which includes well-known models like the Gross-Neveu model and the Thirring model. In three spacetime dimensions, they are used to model interesting solid state systems like high temperature superconductors and graphene. Additionally, they serve as toy models to study chiral symmetry breaking (CSB). For any number of fermion flavours the Gross-Neveu model has a broken and a symmetric phase, while the existence of a broken phase in the Thirring model depends on the number of flavours. The critical number of fermion flavours beyond which there exists no CSB is still subject of ongoing discussions. Using SLAC fermions we simulate the Thirring model with exact chiral symmetry. To obtain a chiral condensate one can introduce a symmetry-breaking mass term and carefully study the limits of infinite lattice and zero-mass. So far, we did not see CSB within this approach for the Thirring model with 2 or more (reducible) flavours. The talk presents alternative approaches ...

  17. Spontaneous chiral symmetry breaking in QCD:a finite-size scaling study on the lattice

    CERN Document Server

    Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia

    2007-01-01

    Spontaneous chiral symmetry breaking in QCD with massless quarks at infinite volume can be seen in a finite box by studying, for instance, the dependence of the chiral condensate from the volume and the quark mass. We perform a feasibility study of this program by computing the quark condensate on the lattice in the quenched approximation of QCD at small quark masses. We carry out simulations in various topological sectors of the theory at several volumes, quark masses and lattice spacings by employing fermions with an exact chiral symmetry, and we focus on observables which are infrared stable and free from mass-dependent ultraviolet divergences. The numerical calculation is carried out with an exact variance-reduction technique, which is designed to be particularly efficient when spontaneous symmetry breaking is at work in generating a few very small low-lying eigenvalues of the Dirac operator. The finite-size scaling behaviour of the condensate in the topological sectors considered agrees, within our stati...

  18. Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model

    CERN Document Server

    Alam, M Sohaib; Kundu, Arnab

    2012-01-01

    A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually p...

  19. A new Perspective on the Scalar meson Puzzle, from Spontaneous Chiral Symmetry Breaking Beyond BCS

    CERN Document Server

    Bicudo, P J A

    1998-01-01

    We introduce coupled channels of Bethe-Salpeter mesons both in the mass gap equation for chiral symmetry breaking and in the boundstate equation for mesons. Consistency is insured by the Ward Identities for axial currents, which preserve the Goldstone boson nature of the pion. We find that the coupling of channels yields the widths of resonances and contributes to mass splittings, but it does not shift globally the hadron spectrum. We find that coupled channels reduce the breaking of chiral symmetry. This reduction is constrained by the coupling of a scalar meson to a pair of pseudoscalar mesons. The light and wide $\\sigma-f_0(600)$, the narrow $f_0(980)$ and the relatively heavy $f_0(1370)$ are studied in order to comply with the spontaneous breaking of chiral symmetry. Exact calculations are performed in a particular model. In this model we find that the $f_0(980)$ is the best candidate for the groundstate quark antiquark meson . In particular its width is naturally small. In this case the coupled channels ...

  20. On SU(3 Effective Models and Chiral Phase Transition

    Directory of Open Access Journals (Sweden)

    Abdel Nasser Tawfik

    2015-01-01

    Full Text Available Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL model and Polyakov linear sigma-model (PLSM has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM a gluonic sector is integrated into LSM. The hadron resonance gas (HRG model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.

  1. Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry

    CERN Document Server

    Aoki, S; Feng, X; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T

    2015-01-01

    We study the chiral behavior of the electromagnetic (EM) form factors of pion and kaon in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between M_pi \\simeq 290 MeV and 540 MeV and with a strange quark mass m_s close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on m_s and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy...

  2. Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry

    Science.gov (United States)

    Aoki, S.; Cossu, G.; Feng, X.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.

    2016-02-01

    We study the chiral behavior of the electromagnetic (EM) form factors of pions and kaons in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between Mπ≃290 MeV and 540 MeV and with a strange quark mass ms close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on ms and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii, and find reasonable agreement with phenomenological and experimental results.

  3. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    International Nuclear Information System (INIS)

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero

  4. Lattice QCD analysis for relation between quark confinement and chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Doi, Takahiro M.; Suganuma, Hideo [Department of Physics, Graduate School of Science, Kyoto University, Kitashirakawa-oiwake, Sakyo, Kyoto 606-8502 (Japan); Iritani, Takumi [Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto 606-8502 (Japan)

    2016-01-22

    The Polyakov loop and the Dirac modes are connected via a simple analytical relation on the temporally odd-number lattice, where the temporal lattice size is odd with the normal (nontwisted) periodic boundary condition. Using this relation, we investigate the relation between quark confinement and chiral symmetry breaking in QCD. In this paper, we discuss the properties of this analytical relation and numerically investigate each Dirac-mode contribution to the Polyakov loop in both confinement and deconfinement phases at the quenched level. This relation indicates that low-lying Dirac modes have little contribution to the Polyakov loop, and we numerically confirmed this fact. From our analysis, it is suggested that there is no direct one-to-one corresponding between quark confinement and chiral symmetry breaking in QCD. Also, in the confinement phase, we numerically find that there is a new “positive/negative symmetry” in the Dirac-mode matrix elements of link-variable operator which appear in the relation and the Polyakov loop becomes zero because of this symmetry. In the deconfinement phase, this symmetry is broken and the Polyakov loop is non-zero.

  5. Quark matter in a parallel electric and magnetic field background: Chiral phase transition and equilibration of chiral density

    Science.gov (United States)

    Ruggieri, M.; Peng, G. X.

    2016-05-01

    In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.

  6. The Chirality Of Life: From Phase Transitions To Astrobiology

    CERN Document Server

    Gleiser, Marcelo

    2008-01-01

    The search for life elsewhere in the universe is a pivotal question in modern science. However, to address whether life is common in the universe we must first understand the likelihood of abiogenesis by studying the origin of life on Earth. A key missing piece is the origin of biomolecular homochirality: permeating almost every life-form on Earth is the presence of exclusively levorotary amino acids and dextrorotary sugars. In this work we discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events in a mechanism referred to as punctuated chirality. Applying these arguments to other potentially life-bearing platforms has significant implications for the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic on average.

  7. Roberge-Weiss phase transitions and extended Z3 symmetry

    OpenAIRE

    Kouno, H.; Sakai, Y.; Kashiwa, K; Matsuzaki, M.; Yahiro, M.

    2008-01-01

    Using the Polyakov extended Nambu-Jona-Lasinio (PNJL) model with imaginary chemical potential, the relation between the Roberge-Weiss (RW) phase transition and the extended Z3 symmetry is studied. At low temperature, there is approximate continuous symmetry under the phase transformation of the Polyakov loop with the shift of the imaginary chemical potential. Due to this continuous symmetry, the Polyakov loop can oscillate smoothly as the imaginary chemical potential increases. At high temper...

  8. Chiral symmetry breaking with a confining propagator and dynamically massive gluons

    CERN Document Server

    Natale, A A; Machado, F A

    2011-01-01

    Chiral symmetry breaking in QCD is studied introducing a confining effective propagator, as proposed recently by Cornwall, and considering the effect of dynamically massive gluons. The effective confining propagator has the form $1/(k^2+m^2)^2$ and we study the bifurcation equation finding limits on the parameter $m$ below which a satisfactory fermion mass solution is generated. Since the coupling constant and gluon propagator are damped in the infrared, due to the presence of a dynamical gluon mass, the major part of the chiral breaking is only due to the confining propagator and related to the low momentum region of the gap equation. We study the asymptotic behavior of the gap equation containing this confinement effect and massive gluon exchange, and find that the symmetry breaking can be approximated by an effective four-fermion interaction generated by the confining propagator. We compute some QCD chiral parameters as a function of $m$, finding values compatible with the experimental data. We find a simp...

  9. Chiral Phase Transition at Finite Isospin Density in Linear Sigma Model

    Institute of Scientific and Technical Information of China (English)

    SHU Song; LI Jia-Rong

    2005-01-01

    Using the linear sigma model, we have introduced the pion isospin chemical potential. The chiral phase transition is studied at finite temperatures and finite isospin densities. We have studied the μ - T phase diagram for the chiral phase transition and found the transition cannot happen below a certain low temperature because of the BoseEinstein condensation in this system. Above that temperature, the chiral phase transition is studied by the isotherms of pressure versus density. We indicate that the transition, in the chiral limit, is a first-order transition from a low-density phase to a high-density phase like a gas-liquid phase transition.

  10. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  11. Signatures of confinement and chiral symmetry breaking in spectral quantities of lattice dirac operators

    International Nuclear Information System (INIS)

    In this thesis we consider two main subjects, both of them utilizing lattice QCD. This is a rigorously defined approach to quantum field theory and allows for both, for a theoretical analysis and subsequent numerical studies. All techniques and quantities, which need to be introduced, are shortly discussed in the first chapter, in order to fix the notation. Two of the key features of QCD, which are still challenging questions, are chiral symmetry breaking and confinement. For the spontaneous breaking of chiral symmetry the situation is clearer. The main part of this work focuses on gluonic quantities, like the Polyakov loop or the potential of two static color charged particles. They are all either order parameters or give a clear distinguishable signal as one crosses the phase transition from the confined to the deconfined phase. It will be shown that we can reconstruct these quantities out of Dirac spectra in a mathematically exact way. An essential part of the spectral representation is the use of various fermionic boundary conditions for the compactified time direction. When varying the boundary conditions the spectrum undergoes a shift and out of these shifts we can reconstruct our gluonic quantities. As a first observable we consider the thin Polyakov loop P, which signals the deconfinement transition, and analyse its spectral representation in full and quenched QCD. For SU(3) gauge theory the spectral representation of P is made from three Dirac spectra, each one for a different boundary condition in the temporal direction. We examine several aspects of the spectral representation of P, such as eigenvalue distributions, shifts due to varying boundary conditions, individual and accumulated contributions from particular eigenmodes. It turns out that the thin Polyakov loop P is, in both phases, strongly dominated from the ultraviolet part of the spectrum. Furthermore we observe a suppressed sensitivity of the spectrum to varying boundary conditions in the

  12. Augmented Superfield Approach to Nilpotent Symmetries in Self-Dual Chiral Bosonic Field Theory

    CERN Document Server

    Srinivas, N; Malik, R P

    2015-01-01

    We exploit the beauty and strength of the symmetry invariant restrictions on the superfields to derive the Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and (anti-) co-BRST symmetry transformations in the case of a two (1+1)-dimensional (2D) self-dual chiral bosonic field theory within the framework of augmented superfield formalism. Our 2D ordinary theory is generalized onto a (2, 2)-dimensional supermanifold which is parameterized by the superspace variable $Z^M = (x^\\mu, \\theta, \\bar\\theta)$ where $x^\\mu$ (with $\\mu = 0, 1$) are the ordinary 2D bosonic coordinates and ($\\theta,\\, \\bar\\theta$) are a pair of Grassmannian variables with their standard relationships: $\\theta^2 = {\\bar\\theta}^2 =0, \\theta\\,\\bar\\theta + \\bar\\theta\\theta = 0$. We impose the (anti-)BRST and (anti-)co-BRST invariant restrictions on the superfields, defined on the (anti-)chiral (2, 1)-dimensional super-submanifolds of the above {\\it general} (2, 2)-dimensional supermanifold, to derive the above nilpotent symmetries. We do not exploit ...

  13. Chiral symmetry and pi-pi scattering in the Covariant Spectator Theory

    CERN Document Server

    Biernat, Elmar P; Ribeiro, J E; Stadler, Alfred; Gross, Franz

    2014-01-01

    The pi-pi scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward-Takahashi identity to the CST pi-pi scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. The Adler self-consistency zero for pi-pi scattering in the chiral limit emerges as the result for this sum.

  14. Chiral symmetry and π -π scattering in the covariant spectator theory

    Science.gov (United States)

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz

    2014-11-01

    The π -π scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the covariant spectator theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similar to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward-Takahashi identity to the CST π -π scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. The Adler self-consistency zero for π -π scattering in the chiral limit emerges as the result for this sum.

  15. Chiral and deconfining phase transitions from holographic QCD study

    Science.gov (United States)

    Fang, Zhen; He, Song; Li, Danning

    2016-06-01

    A preliminary quantitative study to match the lattice QCD simulation on the chiral and deconfining phase transitions of QCD in the bottom-up holographic framework is given. We constrain the relation between dilaton field ϕ and metric warp factor Ae and get several reasonable models in the Einstein-Dilaton system. Using the potential reconstruction approach, we solve the corresponding gravity background. Then we fit the background-related parameters by comparing the equation of state with the two-flavor lattice QCD results. After that we study the temperature dependent behavior of Polyakov loop and chiral condensate under those background solutions. We find that the results are in good agreement with the two-flavor lattice results. All the studies about the equation of state, the Polyakov loop and the chiral condensate signal crossover behavior of the phase transitions, which are consistent with the current understanding on the QCD phase transitions with physical quark mass. Furthermore, the extracted transition temperatures are comparable with the two-flavor lattice QCD results.

  16. Quark Matter in a Parallel Electric and Magnetic Field Background: Equilibrated Chiral Density Effect on Chiral Phase Transition

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...

  17. Effect of symmetry breaking on transition strength distributions

    International Nuclear Information System (INIS)

    The quantum numbers of over 100 states in 30P have been determined from the ground state to 8 MeV. Previous measurements had provided complete spectroscopy in 26Al. For these N=Z=odd nuclei, states of isospin T=0 and T=1 coexist at all energies. These spectra provide a unique opportunity to test the effect of symmetry breaking (of the approximate symmetry isospin) on the level statistics and on the transition strength distributions. The level statistics are strongly affected by the small symmetry breaking and the transition strength distributions differ from the Porter-Thomas distribution

  18. Imaging dynamical chiral symmetry breaking: pion wave function on the light front

    CERN Document Server

    Chang, Lei; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C

    2013-01-01

    We project onto the light-front the pion's Poincare'-covariant Bethe-Salpeter wave-function, obtained using two different approximations to the kernels of QCD's Dyson-Schwinger equations. At an hadronic scale both computed results are concave and significantly broader than the asymptotic distribution amplitude, \\phi_\\pi^{asy}(x)=6 x(1-x); e.g., the integral of \\phi_\\pi(x)/\\phi_\\pi^{asy}(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral symmetry breaking is responsible for hardening the amplitude.

  19. Imaging dynamical chiral-symmetry breaking: pion wave function on the light front.

    Science.gov (United States)

    Chang, Lei; Cloët, I C; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C

    2013-03-29

    We project onto the light front the pion's Poincaré-covariant Bethe-Salpeter wave function obtained using two different approximations to the kernels of quantum chromodynamics' Dyson-Schwinger equations. At an hadronic scale, both computed results are concave and significantly broader than the asymptotic distribution amplitude, φ(π)(asy)(x)=6x(1-x); e.g., the integral of φ(π)(x)/φ(π)(asy)(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral-symmetry breaking is responsible for hardening the amplitude.

  20. Chiral symmetry and pi-pi scattering in the Covariant Spectator Theory

    OpenAIRE

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, Alfred; Gross, Franz

    2014-01-01

    The pi-pi scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similar to what happens within the Bethe-Salpeter formalism, applica...

  1. Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation

    CERN Document Server

    Herbut, Igor F

    2016-01-01

    Spontaneous chiral symmetry breaking in three dimensional ($d=3$) quantum electrodynamics is understood as annihilation of an infrared-stable fixed point that describes the large-N conformal phase by another unstable fixed point at a critical number of fermions $N=N_c$. We discuss the root of universality of $N_c$ in this picture, together with some features of the phase boundary in the $(d,N)$ plane. In particular, it is shown that as $d\\rightarrow 4$, $N_c\\rightarrow 0$ with a constant slope, our best estimate of which suggests that $N_c = 2.89$ in $d=3$.

  2. Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation

    Science.gov (United States)

    Herbut, Igor F.

    2016-07-01

    Spontaneous chiral symmetry breaking in three-dimensional (d =3 ) quantum electrodynamics is understood as annihilation of an infrared-stable fixed point that describes the large-N conformal phase by another unstable fixed point at a critical number of fermions N =Nc. We discuss the root of universality of Nc in this picture, together with some features of the phase boundary in the (d ,N ) plane. In particular, it is shown that as d →4 , Nc→0 with a constant slope, our best estimate of which suggests that Nc=2.89 in d =3 .

  3. Net baryon number probability distribution near the chiral phase transition

    OpenAIRE

    Morita, Kenji; Skokov, Vladimir; Friman, Bengt; Redlich, Krzysztof

    2014-01-01

    We discuss the properties of the net baryon number probability distribution near the chiral phase transition to explore the effect of critical fluctuations. Our studies are performed within Landau theory, where the coefficients of the polynomial potential are parametrized, so as to reproduce the mean-field (MF), the Z(2) , and the O(4) scaling behaviors of the cumulants of the net baryon number. We show that in the critical region the structure of the probability distribution changes, dependi...

  4. Probing the Source of Proton Mass by"Unbreaking" Scale-Chiral Symmetry

    CERN Document Server

    Rho, Mannque

    2016-01-01

    I describe a possible scenario for the origin of proton mass in terms of Cheshire Cat, half-skyrmions, topology change and interplay between hidden chiral-scale symmetry and induced local symmetry. This differs from the standard constituent-quark scenario. As the baryonic matter density is increased toward the vector manifestation (VM) fixed-point at which the $\\rho$ mass is to vanish, the effective in-medium mass ratio $m^*_\\rho/m^*_N$ is to tend to zero proportionally to $g^*_\\rho$ where $g^*_\\rho$ is the in-medium hidden gauge coupling constant. I develop the thesis that the intricacy involved in the mass generation could be decoded from experiments at RIB accelerators and massive compact stars.

  5. Kagome Chiral Spin Liquid as a Gauged U (1 ) Symmetry Protected Topological Phase

    Science.gov (United States)

    He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank; Moessner, R.

    2015-12-01

    While the existence of a chiral spin liquid (CSL) on a class of spin-1 /2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U (1 ) symmetry protected topological (SPT) phase, which upon promoting its U (1 ) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.

  6. The effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes

    CERN Document Server

    Yu, Lang; Huang, Mei

    2015-01-01

    We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.

  7. Meson loop effect on high density chiral phase transition

    CERN Document Server

    Sakaguchi, T; Kouno, H; Yahiro, M; Sakaguchi, Tomohiko; Matsuzaki, Masayuki; Kouno, Hiroaki; Yahiro, Masanobu

    2006-01-01

    We test the stability of the mean-field solution in the Nambu--Jona-Lasinio model. For stable solutions with respect to both the \\sigma and \\pi directions, we investigate effects of the mesonic loop corrections of 1/N_c, which correspond to the next-to-leading order in the 1/N_c expansion, on the high density chiral phase transition. The corrections weaken the first order phase transition and shift the critical chemical potential to a lower value. At N_c=3, however, instability of the mean field effective potential prevents us from determining the minimum of the corrected one.

  8. Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries

    Science.gov (United States)

    Juchtmans, Roeland; Verbeeck, Jo

    2015-10-01

    In this work we present an alternative way to look at electron diffraction in a transmission electron microscope. Instead of writing the scattering amplitude in Fourier space as a set of plane waves, we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating, e.g., rotation and screw-axis symmetries. For the latter we find selection rules on the OAM coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample, nor the exact crystal structure. We propose an experimental setup to measure the OAM components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform multislice simulations on α quartz to demonstrate how the method indeed reveals the chirality. The experimental feasibility of the technique is discussed together with its main advantages with respect to chirality determination of screw axes. The method shows how the use of a spiral phase plate can be extended from a simple phase imaging technique to a tool to measure the local OAM decomposition of an electron wave, widening the field of interest well beyond chiral space group determination.

  9. Chiral Separation by Flows: The Role of Flow Symmetry and Dimensionality

    Science.gov (United States)

    Ro, Sunghan; Yi, Juyeon; Kim, Yong Woon

    2016-01-01

    Separation of enantiomers by flows is a promising chiral resolution method using cost-effective microfluidics. Notwithstanding a number of experimental and numerical studies, a fundamental understanding still remains elusive, and an important question as to whether it is possible to specify common physical properties of flows that induce separation has not been addressed. Here, we study the separation of rigid chiral objects of an arbitrary shape induced by a linear flow field at low Reynolds numbers. Based on a symmetry property under parity inversion, we show that the rate-of-strain field is essential to drift the objects in opposite directions according to chirality. From eigenmode analysis, we also derive an analytic expression for the separation conditions which shows that the flow field should be quasi-two-dimensional for the precise and efficient resolutions of microscopic enantiomers. We demonstrate this prediction by Langevin dynamics simulations with hydrodynamic interactions fully implemented. Finally, we discuss the practical feasibility of the linear flow analysis, considering separations by a vortex flow or an extensional flow under a confining potential. PMID:27739430

  10. Critical Behavior at the Chiral Phase Transition

    CERN Document Server

    Bernard, C W; DeTar, C E; Gottlieb, S; Heller, U M; Hetrick, J E; Jegerlehner, B; Rummukainen, K; Sugar, R L; Toussaint, D; Wingate, M; Jegerlehner, Beat

    1998-01-01

    Quantum chromodynamics with two zero mass flavors is expected to exhibit a phase transition with O(4) critical behavior. Fixing the universality class is important for phenomenology and for facilitating the extrapolation of simulation data to physical quark mass values. At Lattice '96 the Tsukuba and Bielefeld groups reported results from new simulations with dynamical staggered quarks at $N_t = 4$, which suggested a departure from the expected critical behavior. We report observations of similar deviations and discuss efforts in progress to understand this phenomenon.

  11. Effect of vertex corrections on the possibility of chiral symmetry breaking induced by long-range Coulomb repulsion in graphene

    Science.gov (United States)

    Katanin, A.

    2016-01-01

    In this paper, we consider the possibility of chiral (charge or spin density wave) symmetry breaking in graphene due to long-range Coulomb interaction by comparing the results of the Bethe-Salpeter and functional renormalization-group approaches. The former approach performs a summation of ladder diagrams in the particle-hole channel and reproduces the results of the Schwinger-Dyson approach for the critical interaction strength of the quantum phase transition. The renormalization-group approach combines the effect of different channels and allows to study the role of vertex corrections. The critical interaction strength, which is necessary to induce the symmetry breaking in the latter approach, is found in the static approximation to be αc=e2/(ɛ vF) ≈1.05 without considering the Fermi velocity renormalization, and αc=3.7 with accounting the renormailzation of the Fermi velocity. The latter value is expected to be, however, reduced, when the dynamic screening effects are taken into account, yielding the critical interaction, which may be comparable to the one in freely suspended graphene. We show that the vertex corrections are crucially important to obtain the mentioned values of critical interactions.

  12. Fluctuations and the Phase Transition in a Chiral Model with Polyakov Loops

    OpenAIRE

    Sasaki, C.; Friman, B.; Redlich, K.

    2007-01-01

    We explore the NJL model with Polyakov loops for a system of three colors and two flavors within the mean-field approximation, where both chiral symmetry and confinement are taken into account. We focus on the phase structure of the model and study the chiral and Polyakov loop susceptibilities.

  13. Chiral phases of fundamental and adjoint quarks

    Energy Technology Data Exchange (ETDEWEB)

    Natale, A. A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC 09210-170, Santo André, SP (Brazil); Instituto de Física Teórica - UNESP Rua Dr. Bento T. Ferraz, 271, Bl.II - 01140-070, São Paulo, SP (Brazil)

    2016-01-22

    We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.

  14. Dynamical symmetries and causality in non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte

    2015-01-01

    Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant $n$-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  15. Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions

    Directory of Open Access Journals (Sweden)

    Malte Henkel

    2015-11-01

    Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  16. A method of eta' decay product selection to study partial chiral symmetry restoration

    CERN Document Server

    Csanad, Mate

    2011-01-01

    In case of chiral U_A(1) symmetry restoration the mass of the eta' boson (the ninth, would-be Goldstone boson) is decreased, thus its production cross section is heavily enhanced. The eta' decays (through one of its decay channels) into five pions. These pions will not be correlated in terms of Bose-Einsten correlations, thus the production enhancement changes the strength of two-pion correlation functions at low momentum. Preliminary results strongly support the mass decrease of the eta' boson. In this paper we propose a method to select pions coming from eta' decays. We investigate the efficiency of the proposed kinematical cut in several collision systems and energies with several simulators. We prove that our method can be used in all investigeted collision systems.

  17. Localization and chiral symmetry in 2+1 flavor domain wall QCD

    Energy Technology Data Exchange (ETDEWEB)

    David J. Antonio; Kenneth C. Bowler; Peter A. Boyle; Norman H. Christ; Michael A. Clark; Saul D. Cohen; Chris Dawson; Alistair Hart; Balint Joó; Chulwoo Jung; Richard D. Kenway; Shu Li; Meifeng Lin; Robert D. Mawhinney; Christopher M. Maynard; Shigemi Ohta; Robert J. Tweedie; Azusa Yamaguchi

    2008-01-01

    We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3\\times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} \\ge 1.6$ GeV.

  18. The Tayler instability at low magnetic Prandtl numbers: Chiral symmetry breaking and synchronizable helicity oscillations

    CERN Document Server

    Stefani, F; Giesecke, A; Weber, N; Weier, T

    2016-01-01

    The current-driven, kink-type Tayler instability (TI) is a key ingredient of the Tayler-Spruit dynamo model for the generation of stellar magnetic fields, but is also discussed as a mechanism that might hamper the up-scaling of liquid metal batteries. Under some circumstances, the TI involves a helical flow pattern which goes along with some alpha effect. Here we focus on the chiral symmetry breaking and the related impact on the alpha effect that would be needed to close the dynamo loop in the Tayler-Spruit model. For low magnetic Prandtl numbers, we observe intrinsic oscillations of the alpha effect. These oscillations serve then as the basis for a synchronized Tayler-Spruit dynamo model, which could possibly link the periodic tidal forces of planets with the oscillation periods of stellar dynamos.

  19. Mass limits for the chiral color symmetry G‧-boson from LHC dijet data

    Science.gov (United States)

    Frolov, I. V.; Smirnov, A. D.

    2016-07-01

    The contributions of G‧-boson predicted by the chiral color symmetry of quarks to the differential dijet cross-sections in pp-collisions at the large hadron collider (LHC) are calculated and analyzed in dependence on two free parameters of the model, the G‧ mass mG‧ and mixing angle 𝜃G. The exclusion and consistency mG‧- 𝜃G regions imposed by the ATLAS and CMS data on dijet cross-sections are found. Using the CT10 (MSTW2008) parton distribution function (PDF) set we show that the G‧-boson for 𝜃G = 45∘, i.e. the axigluon, with the masses mG‧ probability level of 95% by the ATLAS and CMS dijet data, respectively. For the other values of 𝜃G the exclusion limits are more stringent. The mG‧- 𝜃G regions consistent with these data at CL = 68% and CL = 90% are also found.

  20. Localization and chiral symmetry in 2+1 flavor domain wall QCD

    International Nuclear Information System (INIS)

    We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a 163 x 32 space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings a-1 (ge) 1.6 GeV

  1. Chiral Symmetry Breaking During Growing Process of NaClO3 Crystal under Direct-Current Electric Field

    Institute of Scientific and Technical Information of China (English)

    CHEN Wan-Chun; CHEN Xiao-Long

    2007-01-01

    @@ We investigate the influence of dc electric field on chiral symmetry breaking during the growing process of NaClO3 crystal. Nucleation and growth of NaClO3 are completed from an aqueous solution by a fast cooling temperature technology. A pair of polarization microscopes are used to identify a distribution of chiral crystals. Experimental results indicate that the dc electric field has an effect on distribution of chirality, but the direction of the dc electric field is not sensitive to the chiral autocatalysis and selectivity, i.e. the nature convection driving by the gravity does not play an important role on a thin layer of NaClO3 solution. The experimental phenomena may be elucidated by the ECSN mechanism.

  2. Chiral Symmetry Restoration, Naturalness and the Absence of Fine-Tuning I: Global Theories

    CERN Document Server

    Lynn, Bryan W

    2013-01-01

    The Standard Model (SM), and the scalar sector of its zero-gauge-coupling limit -- the chiral-symmetric limit of the Gell Mann-Levy Model (GML) -- have been shown not to suffer from a Higgs Fine-Tuning (FT) problem. All ultraviolet quadratic divergences (UVQD) are absorbed into the mass-squared of pseudo Nambu-Goldstone (pNGB) bosons, in GML. Since chiral SU(2)_{L-R} symmetry is restored as the pNGB mass-squared or as the Higgs vacuum expectation value (VEV) are taken to 0, small values of these quantities and of the Higgs mass are natural, and therefore not Fine-Tuned. In this letter, we extend our results on the absence of FT to a wide class of high-mass-scale (M_{Heavy}>>m_{Higgs}) extensions to a simplified SO(2) version of GML. We explicitly demonstrate naturalness and no-FT for two examples of heavy physics, both SO(2) singlets: a heavy (M_S >> m_{Higgs}) real scalar field (with or without a VEV); and a right-handed Type 1 See-Saw Majorana neutrino with M_R >> m_{Higgs}. We prove that for |q^2| <<...

  3. Topology in the SU(Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology

    CERN Document Server

    Azcoiti, Vicente

    2016-01-01

    We investigate the topological properties of unquenched QCD on the basis of numerical results of simulations at fixed topological charge, recently reported by Borsanyi et al., and analytical predictions of the dilute instanton gas approximation. We demonstrate that the mean value of the chiral condensate at fixed topological charge is, in both cases, inconsistent with the analytical prediction of the large volume expansion around the saddle point, and argue that the most plausible explanation for the failure of the saddle point expansion is a vacuum energy density theta-independent at high temperatures, but surprisingly not too high (T\\sim 2T_c), a result which would imply a vanishing topological susceptibility, and the absence of all physical effects of the U(1) axial anomaly at these temperatures. We also show that under a general assumption concerning the high temperature phase of QCD, where the SU(Nf)_A symmetry is restored, the analytical prediction for the chiral condensate at fixed topological charge i...

  4. Random matrix model for chiral symmetry breaking and color superconductivity in QCD at finite density

    CERN Document Server

    Vanderheyden, B J; Vanderheyden, Benoit

    2000-01-01

    We consider a random matrix model which describes the competition between chiral symmetry breaking and the formation of quark Cooper pairs in QCD at finite density. We study the evolution of the phase structure in temperature and chemical potential with variations of the strength of the interaction in the quark-quark channel and demonstrate that the phase diagram can realize a total of six different topologies. A vector interaction representing single-gluon exchange reproduces a topology commonly encountered in previous QCD models, in which a low-density chiral broken phase is separated from a high-density diquark phase by a first-order line. The other five topologies either do not possess a diquark phase or display a new phase and new critical points. Since these five cases require large variations of the coupling constants away from the values expected for a vector interaction, we conclude that the phase diagram of finite density QCD has the topology suggested by single-gluon exchange and that this topology...

  5. Cluster expansions and chiral symmetry at large density in 2-color QCD

    CERN Document Server

    Tomboulis, E T

    2015-01-01

    $SU(N_c)$ lattice gauge theories with $N_f$ flavors of massless staggered fermions are considered at high quark chemical potential $\\mu$ and any temperature $T$. In the strong coupling regime (sufficiently small $\\beta$) they have been shown to possess a chiral phase of intact global $U(N_f)\\times U(N_f)$ symmetry. The proof is by cluster expansions which converge in the infinite volume limit. Extension to weaker coupling does not appear feasible in the presence of complex fermion determinant. For theories with real determinant, however, such as 2-color QCD with fundamental fermions, or any $N_c$ with even $N_f$ and adjoint fermions, such large $\\mu$ cluster expansions can be used to show chiral behavior of fermionic lattice observables at any gauge coupling. Unfortunately, this absence of color superfluidity/superconductivity at high $\\mu$ appears to be a lattice artifact due to lattice saturation, a serious problem plaguing the standard finite density formalism on the lattice. Some possible ways of circumve...

  6. Topological String in Quantum-Chromodynamical Chiral Phase Transitions

    Institute of Scientific and Technical Information of China (English)

    LI Yun-De

    2005-01-01

    @@ It is pointed out that if in heavy ion collision processes, the quark-gluon plasma SU(2) chiral phase transition really takes place and the phase transition is a second order. Then the topological string, i.e., the π string, will be formed. The main effect of this phenomenon is that there will be a number of pions produced by decay of the π string in the final state. The pions from the decay of the π string lead to the same effect of decreasing the Hanbury-Brown-Twiss peak in two-pion spectra which is just as that of the long-lived hadronic resonances.At relativistic heavy-ion collision and large hadron collision energies, it is expected that the factors are about α~ 0.7 - 0.9 and α~ 0.6 - 0.85, respectively.

  7. Chiral gap effect in curved space

    CERN Document Server

    Flachi, Antonino

    2014-01-01

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  8. Chiral symmetry breaking and confinement in Minkowski space QED2+1

    International Nuclear Information System (INIS)

    Without any analytical assumption we solve the ladder QED2+1 in Minkowski space. Obtained complex fermion propagator exhibits confinement in the sense that it has no pole. Further, we transform Greens functions to the Temporal Euclidean space, wherein we show that in the special case of ladder QED2+1 the solution is fully equivalent to the Minkowski one. Obvious invalidity of Wick rotation is briefly discussed. The infrared value of the dynamical mass is compared with other known approaches, e. g. with the standard Euclidean calculation. We have presented for the first analysis of the electron gap equation in Minkowski and Temporal Euclidean space. The dynamical generation of imaginary part of the fermion mass leads to the absence of Khallen-Lehmann representation, providing thus confining solution for all value of m. Apart very small κ the real pole in the propagator is absent as well. Similarly to Euclidean QED3 Minkowski QED2+1 exhibits spontaneous chiral symmetry breaking the mass function has nontrivial solution in the limit m = 0, however the mass is complex function. Furthermore, we compare with QED solved in similar approximation in spacelike Euclidean and Temporal Euclidean space. As a interesting results, although based on the simple ladder approximation, is the proof of the exact equivalence between the theories defined in Minkowski 2+1 and 3D Temporal Euclidean space. We expect large quantitative changes when the polarization effect is taken account, especially the existence of critical number of flavors can be different when compared to the known Euclidean space estimates. Opposite to naive belief we showed and explained that the Wick rotation -the well known calculational trick in quantum theory- provides continuation of Schwinger function of the Euclidean theory which do not correspond with the Greens function calculated directly in the original Minkowski space. We can note our finding has a little to do with the know usefulness of various

  9. Quantum phase transitions with parity-symmetry breaking and hysteresis

    Science.gov (United States)

    Trenkwalder, A.; Spagnolli, G.; Semeghini, G.; Coop, S.; Landini, M.; Castilho, P.; Pezzè, L.; Modugno, G.; Inguscio, M.; Smerzi, A.; Fattori, M.

    2016-09-01

    Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report, for the first time, the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system consists of an ultracold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature, the investigation of macroscopic quantum tunnelling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points.

  10. Broken valence chiral symmetry and chiral polarization of Dirac spectrum in N{sub f}=12 QCD at small quark mass

    Energy Technology Data Exchange (ETDEWEB)

    Alexandru, Andrei [George Washington University, Washington, DC (United States); Horváth, Ivan [University of Kentucky, Lexington, KY, USA (the speaker) (United States)

    2016-01-22

    The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass–degenerate fundamental quark flavors. We find that the vSChSB–ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass m{sub c} such that for m > m{sub c} the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for m{sub ch} < m < m{sub c} the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses m < m{sub ch}, but this has not yet been seen by overlap valence probe, leaving the m{sub ch} = 0 possibility open. The latter option could place massless N{sub f}=12 theory outside of conformal window. Anomalous behavior of overlap Dirac spectrum for m{sub ch} < m < m{sub c} is qualitatively similar to one observed previously in zero and few–flavor theories as an effect of thermal agitation.

  11. Chiral optical Tamm states at the boundary of the medium with helical symmetry of the dielectric tensor

    CERN Document Server

    Timofeev, Ivan V

    2016-01-01

    A new optical state is described both analytically and numerically at the boundary of a chiral medium with continuous helical symmetry of the dielectric tensor. The tangential wave number is assumed to be zero. The state appears to be localized near the boundary. It does not transfer energy along this boundary and falls off exponentially with the distance from the boundary. The field penetration into chiral medium is blocked at wavelengths close to the helical pitch and corresponding to the photonic band gap. The polarization of light near the boundary has the same sign of chirality as the helical medium. It is shown that the homogeneous environment, or the substrate must exhibit the anisotropic metallic reflection. Spectral manifestation of the state is determined by the angle between the optical axes at the interface. A realistic example is considered at the boundary of a cholesteric liquid crystal and a metal-dielectric anisotropic nanocomposite.

  12. Isospin Symmetry of Transitions Probed by Weak and Strong Interactions

    CERN Multimedia

    Roeckl, E

    2002-01-01

    Under the assumption that isospin is a good quantum number, isospin symmetry is expected for the transitions from the ground states of the pair of T = 1, T$_{z}$ = $\\pm$ 1 nuclei to excited states of the T = 0 nucleus situated in between the pair. In order to study the isospin symmetry of these transitions, we propose to perform an accurate comparison of Gamow-Teller (GT) transitions for the A = 58 system. This system is the heaviest for which such a comparison is possible. The $^{58}$Ni(T$_{z}$ = 1 ) $\\rightarrow^{58}$Cu(T$_{z}$ = 0 ) GT transitions are presently studied by using high-resolution charge exchange reaction at RNCP Osaka, while those of $^{58}$Zn(T$_{z}$ = -1) $\\rightarrow^{58}$Cu will be investigated in the $\\beta$-decay study at ISOLDE. Due to the large $Q\\scriptstyle_\\textrm{EC}$-value of $^{58}$Zn, GT transitions can be observed up to high excitation energies in $^{58}$Cu. In order to reach this goal, it is proposed to measure $\\beta$-delayed protons and $\\gamma$-rays by using a dedicated de...

  13. Chiral symmetry breaking from two-loop effective potential of the holographic non-local NJL model

    International Nuclear Information System (INIS)

    We calculate the two-loop effective potential of the non-local Nambu–Jona–Lasinio (NJL) model derived from the Sakai–Sugimoto model in string theory. In contrast to the conventional NJL with 4-fermion contact interaction, the chiral symmetry was previously found to be dynamically broken for an arbitrary weak coupling at the one-loop level. As a confirmation, the approximate numerical solutions to the gap equation at the one-loop level are explicitly demonstrated for weak couplings. We then calculate the one- and two-loop contributions to the effective potential of the non-local NJL model and found that the two-loop contribution is negative. The two-loop potential for the chiral-symmetric vacuum is also negative but larger than the combined effective potential of the chiral broken vacuum at the two-loop level. The chiral symmetry breaking thus persists for the arbitrary weak coupling at the two-loop level. (paper)

  14. Duality between chiral symmetry breaking and charged pion condensation at large $N_c$: Consideration of an NJL$_2$ model with baryon-, isospin- and chiral isospin chemical potentials

    CERN Document Server

    Ebert, D; Klimenko, K G

    2016-01-01

    In this paper we investigate the phase structure of a (1+1)-dimensional schematic quark model with four-quark interaction and in the presence of baryon ($\\mu_B$), isospin ($\\mu_I$) and chiral isospin ($\\mu_{I5}$) chemical potentials. It is established that in the large-$N_c$ limit ($N_c$ is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation (PC) one. The role and influence of this property on the phase structure of the model are studied. Moreover, it is shown that the chemical potential $\\mu_{I5}$ promotes the appearance of the charged PC phase with nonzero baryon density.

  15. Mass limits for the chiral color symmetry $G'$-boson from LHC dijet data

    CERN Document Server

    Frolov, I V

    2016-01-01

    The contributions of $G'$-boson predicted by the chiral color symmetry of quarks to the differential dijet cross-sections in $pp$-collisions at the LHC are calculated and analysed in dependence on two free parameters of the model, the $G'$ mass $m_{G'}$ and mixing angle $\\theta_G$. The exclusion and consistency $m_{G'}-\\theta_G$ regions imposed by the ATLAS and CMS data on dijet cross-sections are found. Using the CT10 (MSTW~2008) PDF set we show that the $G'$-boson for $\\theta_G=45^{\\circ}$, i.e. the axigluon, with the masses $m_{G'} < 2.3 \\,\\, (2.6) \\,\\, \\mbox{TeV}$ and $m_{G'} < 3.35 \\,\\, (3.25) \\,\\, \\mbox{TeV}$ is excluded at the probability level of $95\\%$ by the ATLAS and CMS dijet data respectively. For the other values of $\\theta_G$ the exclusion limits are more stringent. The $m_{G'}-\\theta_G$ regions consistent with these data at $CL=68\\%$ and $CL=90\\%$ are also found.

  16. Chiral symmetry restoration in the massive Thirring model at finite T and μ: dimensional reduction and the Coulomb gas

    International Nuclear Information System (INIS)

    We show that in certain limits the (1+1)-dimensional massive Thirring model at finite temperature T is equivalent to a one-dimensional Coulomb gas of charged particles at the same T. This equivalence is then used to explore the phase structure of the massive Thirring model. For strong coupling and T >>m (the fermion mass), the system is shown to behave as a free gas of 'molecules' (charge pairs in the Coulomb gas terminology) made of pairs of chiral condensates. This binding of chiral condensates is responsible for the restoration of chiral symmetry as T→∞. In addition, when a fermion chemical potential μ≠0 is included, the analogy with a Coulomb gas still holds with μ playing the role of a purely imaginary external electric field. For small T and μ we find a typical massive Fermi gas behaviour for the fermion density, whereas for large μ it shows chiral restoration by means of a vanishing effective fermion mass. Some similarities with the chiral properties of low-energy QCD at finite T and baryon chemical potential are discussed

  17. A new approach for calculating nuclear symmetry energy

    CERN Document Server

    Xia, Yong-Hui; Zong, Hong-Shi

    2016-01-01

    By using the functional path integral method, we obtain a model-independent formula for nuclear symmetry energy, which explicitly shows the relation between nuclear symmetry energy and isospin susceptibility. The latter one is found to be a probe to the QCD chiral phase transition. We further found that, the nuclear symmetry energy has an abrupt change at the critical nuclear density where the chiral symmetry restores partially, which could be detected from the experiments.

  18. Electrical Neutrality and Symmetry Restoring Phase Transitions at High Density in a Two-Flavor Nambu-Jona-Lasinio Model

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-Ming; ZHOU Bang-Rong

    2007-01-01

    A general research on chiral symmetry restoring phase transitions at zero temperature and finite chemical potentials under electrical neutrality condition has been conducted in a Nambu-Jona-Lasinio model to describe twoflavor normal quark matter. Depending on whether mo/A, the ratio of dynamical quark mass in vacuum and the 3D momentum cutoff in the loop integrals, is less or greater than 0.413, the phase transition will be of the second or first order. A complete phase diagram of u quark chemical potential versus mo is given. With the electrical neutrality constraint, the region where the second order phase transition happens will be wider than the one without electrical neutrality limitation. The results also show that, for the value of m0/∧ from QCD phenomenology, the phase transition must be of the first order.

  19. Network-complement transitions, symmetries, and cluster synchronization

    Science.gov (United States)

    Nishikawa, Takashi; Motter, Adilson E.

    2016-09-01

    Synchronization in networks of coupled oscillators is known to be largely determined by the spectral and symmetry properties of the interaction network. Here, we leverage this relation to study a class of networks for which the threshold coupling strength for global synchronization is the lowest among all networks with the same number of nodes and links. These networks, defined as being uniform, complete, and multi-partite (UCM), appear at each of an infinite sequence of network-complement transitions in a larger class of networks characterized by having near-optimal thresholds for global synchronization. We show that the distinct symmetry structure of the UCM networks, which by design are optimized for global synchronizability, often leads to formation of clusters of synchronous oscillators, and that such states can coexist with the state of global synchronization.

  20. UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, Wojciech H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Campo, Adolfo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-13

    In the course of a non-equilibrium continuous phase transition, the dynamics ceases to be adiabatic in the vicinity of the critical point as a result of the critical slowing down (the divergence of the relaxation time in the neighborhood of the critical point). This enforces a local choice of the broken symmetry and can lead to the formation of topological defects. The Kibble-Zurek mechanism (KZM) was developed to describe the associated nonequilibrium dynamics and to estimate the density of defects as a function of the quench rate through the transition. During recent years, several new experiments investigating formation of defects in phase transitions induced by a quench both in classical and quantum mechanical systems were carried out. At the same time, some established results were called into question. We review and analyze the Kibble-Zurek mechanism focusing in particular on this surge of activity, and suggest possible directions for further progress.

  1. Extended partially conserved axial-vector current hypothesis and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    An extended partially conserved axial-vector current (PCAC) hypothesis that incorporates a family of heavy bosons in a model-independent way is proposed. This is motivated by the impossibility of accounting for the corrections to Goldberger-Treiman relations, both in SU(2) x SU(2) and SU(3) x SU(3), by means of ordinary dynamical mechanisms (many-particle intermediate states). This new hypothesis coupled with an assumption on the strong-coupling constants of the heavy bosons leads to the following results: (i) A universality among the corrections to Goldberger-Treiman relations for ΔS = 0 decays, Δ/sub π/, on the one hand and for ΔS not-equal 0 decays, Δ/sub K/, on the other. (ii) From this universality there follow two sets of sum rules involving masses and strong and weak coupling constants. These sum rules become identities in the chiral as well as in the SU(3) limit and although a definite check has to await for the advent of accurate hyperon data, there are indications that they might be saturated. (iii) By studying the Dashen-Weinstein sum rules, new sets of sum rules involving only strong coupling constants are predicted as well as an expression for Δ/sub π//Δ/sub K/ in good agreement with present data. (iv) It is found that Δ/sub π/ and Δ/sub K/, which are a measure of chiral-symmetry breaking, determine completely the on-mass-shell corrections to soft-meson theorems. Since both Δ/sub π/ and Δ/sub K/ are known experimentally, a calculation is made of the on-mass-shell amplitudes for π0 → γγ, eta → γγ, eta → ππγ, γ → πππ,and γγ → πππ starting from the zero-mass limits implied by anomalous Ward identities. In particular, it is found that the results for the radiative eta decays are in agreement with present experimental data without the need for invoking eta-eta' mixing

  2. Symmetry-breaking transitions in networks of nonlinear circuit elements

    Energy Technology Data Exchange (ETDEWEB)

    Heinrich, Martin; Dahms, Thomas; Flunkert, Valentin; Schoell, Eckehard [Institut fuer Theoretische Physik, Technische Universitaet Berlin, 10623 Berlin (Germany); Teitsworth, Stephen W, E-mail: schoell@physik.tu-berlin.d [Department of Physics, Duke University, PO Box 90305, Durham, NC 27708-0305 (United States)

    2010-11-15

    We investigate a nonlinear circuit consisting of N tunnel diodes in series, which shows close similarities to a semiconductor superlattice or to a neural network. Each tunnel diode is modeled by a three-variable FitzHugh-Nagumo-like system. The tunnel diodes are coupled globally through a load resistor. We find complex bifurcation scenarios with symmetry-breaking transitions that generate multiple fixed points off the synchronization manifold. We show that multiply degenerate zero-eigenvalue bifurcations occur, which lead to multistable current branches, and that these bifurcations are also degenerate with a Hopf bifurcation. These predicted scenarios of multiple branches and degenerate bifurcations are also found experimentally.

  3. Probing the chiral phase transition of Nf=2 clover fermions with valence overlap fermions

    International Nuclear Information System (INIS)

    Overlap fermions are a powerful tool for investigating the chiral and topological structure of the vacuum and the thermal states of QCD. We study various chiral and topological aspects of the finite temperature phase transition of Nf=2 flavours of O(a) improved Wilson fermions, using valence overlap fermions as a probe. Particular emphasis is placed upon the analysis of the spectral density and the localisation properties of the eigenmodes as well as on the local structure of topological charge fluctuations in the vicinity of the chiral phase transition. The calculations are done on 163 x 8 lattices generated by the DIK collaboration. (orig.)

  4. Chiral and deconfinement phase transition in the Hamiltonian approach to QCD in Coulomb gauge

    CERN Document Server

    Reinhardt, H

    2016-01-01

    The chiral and deconfinement phase transitions are investigated within the variational Hamiltonian approach to QCD in Coulomb gauge. The temperature $\\beta^{-1}$ is introduced by compactifying a spatial dimension. Thereby the whole temperature dependence is encoded in the vacuum state on the spatial manifold $\\mathbb{R}^2 \\times S^1(\\beta)$. The chiral quark condensate and the dual quark condensate (dressed Polyakov loop) are calculated as function of the temperature. From their inflection points the pseudo-critical temperatures for the chiral and deconfinement crossover transitions are determined. Using the zero-temperature quark and gluon propagators obtained within the variational approach as input, we find 226 MeV and 262 MeV, respectively, for the chiral and deconfinement transition.

  5. DSAM lifetime measurements for the chiral pair in 194Tl

    International Nuclear Information System (INIS)

    Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of 194Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario. (orig.)

  6. Two-color QCD with chiral chemical potential

    Science.gov (United States)

    Braguta, V. V.; Goy, V. A.; Ilgenfritz, E.-M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.; Schreiber, A.

    2016-01-01

    The phase diagram of two-color QCD with a chiral chemical potential is studied on the lattice. The focus is on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulations are carried out with dynamical staggered fermions without rooting. The dependence of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented.

  7. Chiral magnetic effect in the PNJL model

    CERN Document Server

    Fukushima, Kenji; Gatto, Raoul

    2010-01-01

    We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential $\\mu_5$ which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of $\\mu_5$ on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.

  8. Symmetry Breaking in Chiral Ionic Liquids Evidenced by Vibrational Optical Activity.

    Science.gov (United States)

    Oulevey, Patric; Luber, Sandra; Varnholt, Birte; Bürgi, Thomas

    2016-09-19

    Ionic liquids (ILs) are receiving increasing interest for their use in synthetic laboratories and industry. Being composed of charged entities, they show a complex and widely unexplored dynamic behavior. Chiral ionic liquids (CILs) have a high potential as solvents for use in asymmetric synthesis. Chiroptical methods, owing to their sensitivity towards molecular conformation, offer unique possibilities to study the structure of these chiral ionic liquids. Raman optical activity proved particularly useful to study ionic liquids composed of amino acids and the achiral 1-ethyl-3-methylimidazolium counterion. We could substantiate, supported by selected theoretical methods, that the achiral counterion adopts an overall chiral conformation in the presence of chiral amino acid ions. These findings suggest that in the design of chiral ionic liquids for asymmetric synthesis, the structure of the achiral counter ion also has to be carefully considered.

  9. Chiral symmetry breaking, color superconductivity and quark matter phase diagram: a variational approach 12.38.Gc

    CERN Document Server

    Mishra, H

    2001-01-01

    We discuss in this note simultaneous existence of chiral symmetry breaking and color superconductivity at finite temperature and density in a Nambu-Jona-Lasinio type model. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. There exist nontrivial solutions to the gap equations at finite densities with both quark-antiquark as well as diquark condensates for the 'ground' state. However, such a phase is thermodynamically unstable with the pressure being negative in this region. We also compute the equation of state, and obtain the structure of the phase diagram in the model.

  10. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  11. Chiral two-body currents in nuclei: Gamow-Teller transitions and neutrinoless double-beta decay

    OpenAIRE

    Menéndez, J.; Gazit, D.; Schwenk, A.

    2011-01-01

    We show that chiral effective field theory (EFT) two-body currents provide important contributions to the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the momentum-transfer dependence that is probed in neutrinoless double-beta decay. We then calculate for the first time the neutrinoless double-beta decay operator based on chiral EFT currents and study the nuclear matrix elements at successive orders. The contributions from chiral two-body currents...

  12. Amplification of Quantum Meson Modes in the Late Time of the Chiral Phase Transition

    CERN Document Server

    Watanabe, K

    2007-01-01

    We investigate the time evolution of the quantum meson modes in the late time of chiral phase transition. In particular, it is shown that there exists a possible solution to the equation of motion for the quantum meson modes, which reveals a parametric resonance and/or resonance through forced oscillation induced by the small oscillation of the chiral condensate. After that, we demonstrate the unstable regions for the quantum meson modes in both the cases of a uniform and spatially expanding system.

  13. Symmetry induced semimetal-semiconductor transition in doped graphene

    Science.gov (United States)

    Sirikumara, Hansika I.; Putz, Erika; Al-Abboodi, Mohammed; Jayasekera, Thushari

    2016-01-01

    Substitutional chemical doping is one way of introducing an electronic bandgap in otherwise semimetallic graphene. A small change in dopant arrangement can convert graphene from a semiconducting to a semimetallic state. Based on ab initio Density Functional Theory calculations, we discuss the electron structure of BN-doped graphene with Bravais and non-Bravais lattice-type defect patterns, identifying semiconducting/semimetallic configurations. Semimetallic behavior of graphene with non-Bravais lattice-type defect patterns can be explained by a phase cancellation in the scattering amplitude. Our investigation reveals for the first time that the symmetry of defect islands and the periodicity of defect modulation limit the phase cancellation which controls the semimetal-semiconductor transition in doped graphene. PMID:26781061

  14. On the strength of the $U_A(1)$ anomaly at the chiral phase transition in $N_f=2$ QCD

    CERN Document Server

    Brandt, Bastian B; Meyer, Harvey B; Philipsen, Owe; Robaina, Daniel; Wittig, Hartmut

    2016-01-01

    We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the splitting between isovector scalar and pseudoscalar screening masses around the chiral phase transition by at least a factor of three compared to its value at zero temperature. In fact, the splitting is consistent with zero within our uncertainties. This disfavours a chiral phase transition in the $O(4)$ universality class.

  15. Specific features and symmetries for magnetic and chiral bands in nuclei

    Science.gov (United States)

    Raduta, A. A.

    2016-09-01

    Magnetic and chiral bands have been a hot subject for more than twenty years. Therefore, quite large volumes of experimental data as well as theoretical descriptions have been accumulated. Although some of the formalisms are not so easy to handle, the results agree impressively well with the data. The objective of this paper is to review the actual status of both experimental and theoretical investigations. Aiming at making this material accessible to a large variety of readers, including young students and researchers, I gave some details on the schematic models which are able to unveil the main features of chirality in nuclei. Also, since most formalisms use a rigid triaxial rotor for the nuclear system's core, I devoted some space to the semi-classical description of the rigid triaxial as well as of the tilted triaxial rotor. In order to answer the question whether the chiral phenomenon is spread over the whole nuclear chart and whether it is specific only to a certain type of nuclei, odd-odd, odd-even or even-even, the current results in the mass regions of A ∼ 60 , 80 , 100 , 130 , 180 , 200 are briefly described for all kinds of odd/even-odd/even systems. The chiral geometry is a sufficient condition for a system of proton-particle, neutron-hole and a triaxial rotor to have the electromagnetic properties of chiral bands. In order to prove that such geometry is not unique for generating magnetic bands with chiral features, I presented a mechanism for a new type of chiral bands. One tries to underline the fact that this rapidly developing field is very successful in pushing forward nuclear structure studies.

  16. Partial Dynamical Symmetry at Critical-Points of Quantum Phase Transitions

    CERN Document Server

    Leviatan, A

    2007-01-01

    We show that partial dynamical symmetries (PDS) can occur at critical-points of quantum phase transitions, in which case, underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of PDS are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape-phases in nuclei.

  17. UA(1) breaking and phase transition in chiral random matrix model

    CERN Document Server

    Sano, T; Ohtani, M

    2009-01-01

    We propose a chiral random matrix model which properly incorporates the flavor-number dependence of the phase transition owing to the \\UA(1) anomaly term. At finite temperature, the model shows the second-order phase transition with mean-field critical exponents for two massless flavors, while in the case of three massless flavors the transition turns out to be of the first order. The topological susceptibility satisfies the anomalous \\UA(1) Ward identity and decreases gradually with the temperature increased.

  18. Lorentz symmetry violation in the fermion number anomaly with the chiral overlap operator

    CERN Document Server

    Makino, Hiroki

    2016-01-01

    Recently, Grabowska and Kaplan proposed a 4-dimensional lattice formulation of chiral gauge theories on the basis of a chiral overlap operator. We compute the classical continuum limit of the fermion number anomaly in this formulation. Unexpectedly, we find that the anomaly contains a term which is not Lorentz invariant. The term is however proportional to the gauge anomaly coefficient and thus the fermion number anomaly in this lattice formulation automatically restores the Lorentz invariant form when and only when the anomaly cancellation condition is met.

  19. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light

    NARCIS (Netherlands)

    Noorduin, Wim L.; Bode, Arno A.C.; Meijden, Maarten van der; Meekes, Hugo; Etteger, Albert F. van; Enckevort, Willem J.P. van; Christianen, Peter C.M.; Kaptein, Bernard; Kellogg, Richard M.; Rasing, Theo; Vlieg, Elias

    2009-01-01

    Circularly polarized light (CPL) emitted from star-forming regions is an attractive candidate as a cause of single chirality in nature. It has remained difficult, however, to translate the relatively small chemical effects observed on irradiation of molecular systems with CPL into high enantiomeric

  20. Inequality of Chances as a Symmetry Phase Transition

    Directory of Open Access Journals (Sweden)

    Jorge Rosenblatt

    2013-05-01

    Full Text Available We propose a model for Lorenz curves. It provides two-parameter fits to data on incomes, electric consumption, life expectation and rate of survival after cancer. Graphs result from the condition of maximum entropy and from the symmetry of statistical distributions. Differences in populations composing a binary system (poor and rich, young and old, etc. bring about chance inequality. Symmetrical distributions insure equality of chances, generate Gini coefficients Gi £ ⅓, and imply that nobody gets more than twice the per capita benefit. Graphs generated by different symmetric distributions, but having the same Gini coefficient, intersect an even number of times. The change toward asymmetric distributions follows the pattern set by second-order phase transitions in physics, in particular universality: Lorenz plots reduce to a single universal curve after normalisation and scaling. The order parameter is the difference between cumulated benefit fractions for equal and unequal chances. The model also introduces new parameters: a cohesion range describing the extent of apparent equality in an unequal society, a poor-rich asymmetry parameter, and a new Gini-like indicator that measures unequal-chance inequality and admits a theoretical expression in closed form.

  1. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    CERN Document Server

    Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2016-01-01

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a system...

  2. Chiral and deconfinement phase transitions in N{sub f}=2 and N{sub f}=2+1 quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Luecker, Jan

    2013-07-15

    In this thesis, we investigate the phase structure of quantum chromodynamics (QCD) in the framework of Dyson-Schwinger equations (DSEs). The aim is to study the chiral and deconfinement phase transitions at finite chemical potential. To this end, we employ and test a novel truncation scheme for the quark and gluon Dyson-Schwinger equations. We develop our truncation in three steps. To begin with, we use a quenched gluon propagator from lattice Yang-Mills theory. To account for unquenching, we then add the quark loop in the gluon DSE, firstly with bare quarks and in the final version of our truncation with fully dressed quarks. In the last step it is also possible to take into account the coupling of light and strange quarks. In effective models, fermionic fluctuations have been shown to move the critical end-point to large densities. We confirm this finding within our truncation for the unquenched gluon. However, this effect is suppressed once the full non-perturbative quark in the quark loop is taken into account. For the confinement/deconfinement transition we investigate three order parameters that are accessible from the quark and gluon propagators. These are the dressed Polyakov loop, the Polyakov-loop potential and positivity violations in the quark propagator. From both Polyakov-loop related order parameters, we find that the deconfinement transition can always be found in vicinity of the chiral transition. Especially at the critical end-point the phase transitions coincide. We also find that signals of positivity violations in the quark propagator vanish at the chiral transition for the two-flavour case. However, with 2+1 flavours, we find a region at large density where chiral symmetry is restored but positivity is violated. This requires further investigations. Finally, we improve our truncation by considering the back-reaction of pions in a model that has been developed in previous work. Within this model we find only a small impact on the phase

  3. Symmetry origin of the phase transitions and phase separation in manganites at low doping

    OpenAIRE

    Wang, ZD; Zhong, F

    1999-01-01

    We analyze the symmetry changes of paramagnetic to A-type antiferromagnetic and to ferromagnetic phase transitions in undoped and moderately doped LaMnO 3, respectively. We show that in orthorhombic-distorted perovskite manganites the phase separation at low doping is associated with the noncollinear nature of the magnetic orders permitted by symmetry. A simple model for the competition between the two phase transitions is put forward within the framework of the Landau theory of phase transit...

  4. Medium modifications of mesons. Chiral symmetry restoration, in-medium QCD sum rules for D and ρ mesons, and Bethe-Salpeter equations

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, Thomas Uwe

    2012-04-11

    The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes D{sub s} and D{sup *}{sub 0} mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.

  5. Medium modifications of mesons. Chiral symmetry restoration, in-medium QCD sum rules for D and ρ mesons, and Bethe-Salpeter equations

    International Nuclear Information System (INIS)

    The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes Ds and D*0 mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.

  6. Chiral perturbation theory study of the axial $N\\to\\Delta(1232)$ transition

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We have performed a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in covariant baryon chiral perturbation theory within a formalism in which the unphysical spin-1/2 components of the $\\Delta$ fields are decoupled.

  7. Combined heavy-quark symmetry and large-Nc operator analysis for 2-body counterterms in the chiral Lagrangian with D mesons and charmed baryons

    Science.gov (United States)

    Samart, Daris; Nualchimplee, Chakrit; Yan, Yupeng

    2016-06-01

    In this work we construct a chiral SU(3) Lagrangian with D mesons of spin JP=0- and JP=1- and charmed baryons of spin JP=1 /2+ and JP=3 /2+. There are 42 leading two-body counterterms involving two charmed baryon fields and two D meson fields in the constructed Lagrangian. The heavy-quark spin symmetry leads to 35 sum rules, while the large-Nc operator analysis predicts 29 at the next-to leading order of the 1 /Nc expansion. The combination of the sum rules from both the heavy-quark symmetry and the large-Nc analysis results in 38 independent sum rules, which reduces the number of free parameters in the chiral Lagrangian to only four. This is a remarkable result demonstrating the consistency of the heavy-quark symmetry and large-Nc operator analysis.

  8. Combined heavy-quark symmetry and large-$N_c$ operator analysis for 2-body counterterms in the chiral Lagrangian with $D$ mesons and charmed baryons

    CERN Document Server

    Samart, Daris; Yan, Yupeng

    2016-01-01

    We construct, in the work, chiral $SU(3)$ Lagrangian with $D$ mesons of spin $J^P=0^-$ and $J^P=1^-$ and charmed baryons of spin $J^P=1/2^+$ and $J^P=3/2^+$. There are 42 leading two-body counter-terms involving two charmed baryon fields and two $D$ meson fields in the constructed Lagrangian. The heavy-quark spin symmetry leads to 35 sum rules while the large-$N_c$ operator analysis predicts 29 ones at the next-to leading order of $1/N_c$ expansion. The combination of the sum rules from both the heavy-quark symmetry and the large-$N_c$ analysis results in 38 independent sum rules which reduces the number of free parameters in the chiral Lagrangian down to 4 only. This is a remarkable result demonstrating the consistency of the heavy-quark symmetry and large-$N_c$ operator analysis.

  9. DSAM lifetime measurements for the chiral pair in {sup 194}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Masiteng, P.L.; Bvumbi, S.P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); University of Johannesburg, PO Box 524, Auckland Park (South Africa); Pasternak, A.A. [A.F. Ioffe Physical-Technical Institute, St.-Petersburg (Russian Federation); Lawrie, E.A.; Shirinda, O.; Lawrie, J.J.; Bark, R.A.; Kheswa, N.Y.; Lieder, E.O.; Lieder, R.M.; Mullins, S.M.; Murray, S.H.T. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); Lindsay, R. [University of the Western Cape, Private Bag X17, Bellville (South Africa); Madiba, T.E.; Sharpey-Schafer, J.F. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); Ndayishimye, J.; Papka, P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Stellenbosch, Department of Physics, Private Bag X1, Matieland (South Africa); Ntshangase, S.S. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Cape Town, Department of Physics, Private Bag, Rondebosch (South Africa)

    2016-02-15

    Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of {sup 194}Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario. (orig.)

  10. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.

    Science.gov (United States)

    Sunoj, Raghavan B

    2016-05-17

    In asymmetric catalysis, a chiral catalyst bearing chiral center(s) is employed to impart chirality to developing stereogenic center(s). A rich and diverse set of chiral catalysts is now available in the repertoire of synthetic organic chemistry. The most recent trends point to the emergence of axially chiral catalysts based on binaphthyl motifs, in particular, BINOL-derived phosphoric acids and phosphoramidites. More fascinating ideas took shape in the form of cooperative multicatalysis wherein organo- and transition-metal catalysts are made to work in concert. At the heart of all such manifestations of asymmetric catalysis, classical or contemporary, is the stereodetermining transition state, which holds a perennial control over the stereochemical outcome of the catalytic process. Delving one step deeper, one would find that the origin of the stereoselectivity is delicately dependent on the relative stabilization of one transition state, responsible for the formation of the predominant stereoisomer, over the other transition state for the minor stereoisomer. The most frequently used working hypothesis to rationalize the experimentally observed stereoselectivity places an undue emphasis on steric factors and tends to regard the same as the origin of facial discrimination between the prochiral faces of the reacting partners. In light of the increasing number of asymmetric catalysts that rely on hydrogen bonding as well as other weak non-covalent interactions, it is important to take cognizance of the involvement of such interactions in the sterocontrolling transition states. Modern density functional theories offer a pragmatic and effective way to capture non-covalent interactions in transition states. Aided by the availability of such improved computational tools, it is quite timely that the molecular origin of stereoselectivity is subjected to more intelligible analysis. In this Account, we describe interesting molecular insights into the stereocontrolling

  11. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.

    Science.gov (United States)

    Sunoj, Raghavan B

    2016-05-17

    In asymmetric catalysis, a chiral catalyst bearing chiral center(s) is employed to impart chirality to developing stereogenic center(s). A rich and diverse set of chiral catalysts is now available in the repertoire of synthetic organic chemistry. The most recent trends point to the emergence of axially chiral catalysts based on binaphthyl motifs, in particular, BINOL-derived phosphoric acids and phosphoramidites. More fascinating ideas took shape in the form of cooperative multicatalysis wherein organo- and transition-metal catalysts are made to work in concert. At the heart of all such manifestations of asymmetric catalysis, classical or contemporary, is the stereodetermining transition state, which holds a perennial control over the stereochemical outcome of the catalytic process. Delving one step deeper, one would find that the origin of the stereoselectivity is delicately dependent on the relative stabilization of one transition state, responsible for the formation of the predominant stereoisomer, over the other transition state for the minor stereoisomer. The most frequently used working hypothesis to rationalize the experimentally observed stereoselectivity places an undue emphasis on steric factors and tends to regard the same as the origin of facial discrimination between the prochiral faces of the reacting partners. In light of the increasing number of asymmetric catalysts that rely on hydrogen bonding as well as other weak non-covalent interactions, it is important to take cognizance of the involvement of such interactions in the sterocontrolling transition states. Modern density functional theories offer a pragmatic and effective way to capture non-covalent interactions in transition states. Aided by the availability of such improved computational tools, it is quite timely that the molecular origin of stereoselectivity is subjected to more intelligible analysis. In this Account, we describe interesting molecular insights into the stereocontrolling

  12. Chiral and deconfinement transitions in a magnetic background using the functional renormalization group with the Polyakov loop

    OpenAIRE

    Jens O. Andersen; William R. Naylor(Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim, Norway); Anders Tranberg(Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway)

    2014-01-01

    We use the Polyakov loop coupled quark-meson model to approximate low energy QCD and present results for the chiral and deconfinement transitions in the presence of a constant magnetic background $B$ at finite temperature $T$ and baryon chemical potential $\\mu_B$. We investigate effects of various gluoni potentials on the deconfinement transition with and without a fermionic backreaction at finite $B$. Additionally we investigate the effect of the Polyakov loop on the chiral phase transition,...

  13. Influence of the Polyakov loop on the chiral phase transition in the two flavor chiral quark model

    Science.gov (United States)

    Markó, G.; Szép, Zs.

    2010-09-01

    The SU(2)L×SU(2)R chiral quark model consisting of the (σ,π→) meson multiplet and the constituent quarks propagating on the homogeneous background of a temporal gauge field is solved at finite temperature and quark baryon chemical potential μq using an expansion in the number of flavors Nf, both in the chiral limit and for the physical value of the pion mass. Keeping the fermion propagator at its tree level, several approximations to the pion propagator are investigated. These approximations correspond to different partial resummations of the perturbative series. Comparing their solution with a diagrammatically formulated resummation relying on a strict large-Nf expansion of the perturbative series, one concludes that only when the local part of the approximated pion propagator resums infinitely many orders in 1/Nf of fermionic contributions a sufficiently rapid crossover transition at μq=0 is achieved allowing for the existence of a tricritical point or a critical end point in the μq-T phase diagram. The renormalization and the possibility of determining the counterterms in the resummation provided by a strict large-Nf expansion are investigated.

  14. On the role of dynamical quark mass generation in chiral symmetry breaking in QCD

    CERN Document Server

    Sazdjian, H

    2015-01-01

    The phenomenon of dynamical quark mass generation is studied in QCD within the framework of a gauge invariant formalism. An exact relationship is established between the equation satisfied by the scalar part of the two-point gauge invariant quark Green's function and the quark-antiquark bound state equation in the chiral limit. A possible nontrivial solution of the former yields a massless pseudoscalar solution of the bound state equation with vanishing total momentum. The result is also corroborated by the corresponding Ward-Takahashi identity. The problem is explicitly solved in two-dimensional QCD in the large-$N_c$ limit.

  15. Observation of a transition from a topologically ordered to a spontaneously broken symmetry phase

    OpenAIRE

    Samkharadze, N.; Schreiber, K. A.; Gardner, G. C.; Manfra, M.J.; Fradkin, E.; Csáthy, G. A.

    2015-01-01

    Until the late 1980s, phases of matter were understood in terms of Landau's symmetry breaking theory. Following the discovery of the quantum Hall effect the introduction of a second class of phases, those with topological order, was necessary. Phase transitions within the first class of phases involve a change in symmetry, whereas those between topological phases require a change in topological order. However, in rare cases transitions may occur between the two classes in which the vanishing ...

  16. Chiral two-body currents in nuclei: Gamow-Teller transitions and neutrinoless double-beta decay.

    Science.gov (United States)

    Menéndez, J; Gazit, D; Schwenk, A

    2011-08-01

    We show that chiral effective field theory (EFT) two-body currents provide important contributions to the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the momentum-transfer dependence that is probed in neutrinoless double-beta (0νββ) decay. We then calculate for the first time the 0νββ decay operator based on chiral EFT currents and study the nuclear matrix elements at successive orders. The contributions from chiral two-body currents are significant and should be included in all calculations. PMID:21902315

  17. First-order chiral to non-chiral transition in the angular dependence of the upper critical induction of the Scharnberg–Klemm p-wave pair state

    International Nuclear Information System (INIS)

    We calculate the temperature T and angular (θ, ϕ) dependencies of the upper critical induction Bc2(θ, ϕ, T) for parallel-spin superconductors with an axially symmetric p-wave pairing interaction pinned to the lattice and a dominant ellipsoidal Fermi surface (FS). For all FS anisotropies, the chiral Scharnberg–Klemm (SK) state Bc2(θ, ϕ, T) exceeds that of the chiral Anderson–Brinkman–Morel (ABM) state and exhibits a kink at θ = θ*(T, ϕ), indicative of a first-order transition from its chiral, nodal-direction behavior to its non-chiral, antinodal-direction behavior. Applicabilities to Sr2RuO4, UCoGe and the candidate topological superconductor CuxBi2Se3 are discussed. (fast track communication)

  18. Exploring the nature of chiral phase transition in two-flavor QCD using extra heavy quarks

    CERN Document Server

    Ejiri, Shinji; Yamada, Norikazu

    2015-01-01

    Chiral phase transition of two flavor QCD at finite quark masses is known to be crossover except near the chiral limit, but it can turn to a first order transition when adding many extra flavors. This property is used to explore the nature of the phase transition of massless two flavor QCD using lattice numerical simulations. The extra heavy flavors being incorporated in the form of the hopping parameter expansion through the reweighting, the number of the extra flavors and their masses appear only in a single parameter, defined by $h$. We determine the critical value of the parameter, at which the first order and the crossover regions are separated, and examine its dependence on the two flavor mass. The lattice calculations are carried out at $N_t$=4, and show that the critical value does not depend on the two flavor mass in the range we have studied ($0.46 \\le m_\\pi/m_\\rho \\le 0.66$) and appears to remain finite and positive in the chiral limit, suggesting that the phase transition of massless two flavor QC...

  19. Nf=2 QCD chiral phase transition with Wilson fermions at zero and imaginary chemical potential

    Science.gov (United States)

    Philipsen, Owe; Pinke, Christopher

    2016-06-01

    The order of the thermal phase transition in the chiral limit of quantum chromodynamics (QCD) with two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit. Whether the transition is first or second order has important implications for the QCD phase diagram and the existence of a critical end point at finite densities. We follow a recently proposed approach to explicitly determine the region of first order chiral transitions at imaginary chemical potential, where it is large enough to be simulated, and extrapolate it to zero chemical potential with known critical exponents. Using unimproved Wilson fermions on coarse Nt=4 lattices, the first order region turns out to be so large that no extrapolation is necessary. The critical pion mass mπc≈560 MeV is by nearly a factor 10 larger than the corresponding one using staggered fermions. Our results are in line with investigations of three-flavor QCD using improved Wilson fermions and indicate that the systematic error on the two-flavor chiral transition is still of order 100%.

  20. Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain

    Science.gov (United States)

    Azimi, M.; Sekania, M.; Mishra, S. K.; Chotorlishvili, L.; Toklikishvili, Z.; Berakdar, J.

    2016-08-01

    Quantum dynamics of magnetic order in a chiral multiferroic chain is studied. We consider two different scenarios: ultrashort terahertz excitations or a sudden electric field quench. Performing analytical and numerical exact diagonalization calculations, we trace the pulse induced spin dynamics and extract quantities that are relevant to quantum information processing. In particular, we analyze the dynamics of the system chirality, the von Neumann entropy, and the pairwise and many-body entanglement. If the characteristic frequencies of the generated states are noncommensurate, then a partial loss of pair concurrence occurs. Increasing the system size, this effect becomes even more pronounced. Many-particle entanglement and chirality are robust and persist in the incommensurate phase. To analyze the dynamical quantum transitions for the quenched and pulsed dynamics we combined the Weierstrass factorization technique for entire functions and the Lanczos exact diagonalization method. For a small system we obtained analytical results including the rate function of the Loschmidt echo. Exact numerical calculations for a system up to 40 spins confirm phase transition. Quench-induced dynamical transitions have been extensively studied recently. Here we show that related dynamical transitions can be achieved and controlled by appropriate electric field pulses.

  1. Quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be with meson-exchange currents derived from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, S. [University of South Carolina; Wiringa, Robert B. [ANL; Pieper, Steven C. [ANL; Schiavilla, Rocco [Old Dominion U., JLAB

    2014-08-01

    We report quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be. The realistic Argonne $v_{18}$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.

  2. Two-Color QCD with Non-zero Chiral Chemical Potential

    CERN Document Server

    Braguta, V V; Ilgenfritz, E -M; Kotov, A Yu; Molochkov, A V; Muller-Preussker, M; Petersson, B

    2015-01-01

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  3. Two-color QCD with non-zero chiral chemical potential

    Science.gov (United States)

    Braguta, V. V.; Goy, V. A.; Ilgenfritz, E. M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.

    2015-06-01

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  4. Triplets, Static SU(6), and Spontaneously Broken Chiral SU(3) Symmetry

    Science.gov (United States)

    Nambu, Y.

    1966-01-01

    I would like to present here my view of the current problems of elementary particle theory. It is largely inspired by the recent successes of SU(3) and SU(6) symmetries, and more or less summarizes what I have been pursuing lately. For the details of individual problems I must refer to the original papers. However, what is emphasized here is not the details, but a coherent overall picture plus some speculations which cannot yet be formulated precisely.

  5. Modeling spontaneous chiral symmetry breaking and deracemization phenomena: discrete versus continuum approaches.

    Science.gov (United States)

    Blanco, Celia; Ribó, Josep M; Hochberg, David

    2015-02-01

    We derive the class of population balance equations (PBE), recently applied to model the Viedma deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes erases the microreversible nature of the molecular interactions in the population growth rate functions and limits the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the ideal racemic composition up to observable enantiometric excess levels.

  6. A large N phase transition in the continuum two dimensional SU(N) X SU(N) principal chiral model

    OpenAIRE

    R. Narayanan; Neuberger, H.; Vicari, E.

    2008-01-01

    It is established by numerical means that the continuum large N principal chiral model in two dimensions has a phase transition in a smoothed two point function at a critical distance of the order of the correlation length.

  7. The chiral phase transition in QCD critical phenomena and long wavelength pion oscillations

    CERN Document Server

    Rajagopal, K

    1995-01-01

    In QCD with two massless quarks, the chiral phase transition is plausibly in the same universality class as the classical O(4) magnet. To test this hypothesis, critical exponents characterizing the behaviour of universal quantities near the 2nd order critical point can be calculated and compared to results from lattice simulations. Present simulations already allow many qualitative tests; quantitative tests await future simulations with longer correlation lengths. In a heavy ion collision, a long correlation length would lead to large fluctuations in the number ratio of neutral to charged pions. Unfortunately, no equilibrium correlation length gets long enough for this to occur. Modelling the dynamics of the chiral order parameter in a far from equilibrium transition by quenching in the linear sigma model suggests that long wavelength modes of the pion field can be amplified. This could have dramatic phenomenological consequences. Theoretical advances include attempts to relax the quench approximation and to ...

  8. The influence of chiral chemical potential, parallel electric and magnetic fields on the critical temperature of QCD

    CERN Document Server

    Ruggieri, M; Peng, G X

    2016-01-01

    We study the influence of external electric, $E$, and magnetic, $B$, fields parallel to each other, and of a chiral chemical potential, $\\mu_5$, on the chiral phase transition of Quantum Chromodynamics. Our theoretical framework is a Nambu-Jona-Lasinio model with a contact interaction. Within this model we compute the critical temperature of chiral symmetry restoration, $T_c$, as a function of the chiral chemical potential and field strengths. We find that the fields inhibit and $\\mu_5$ enhances chiral symmetry breaking, in agreement with previous studies.

  9. From Quarks and Gluons to Hadrons: Chiral Symmetry Breaking in Dynamical QCD

    OpenAIRE

    Braun, Jens; Fister, Leonard; Pawlowski, Jan M; Rennecke, Fabian

    2016-01-01

    We present an analysis of the dynamics of two-flavour QCD in the vacuum. Special attention is payed to the transition from the high energy quark-gluon regime to the low energy regime governed by hadron dynamics. This is done within a functional renormalisation group approach to QCD amended by dynamical hadronisation techniques. The latter allow us to describe conveniently the transition from the perturbative high-energy regime to the nonperturbative low-energy limit without suffering from a f...

  10. Provable forst-order transitions for liquid crystal and lattice gauge models with continuous symmetries

    CERN Document Server

    Van Enter, A C D

    2003-01-01

    We consider various sufficiently nonlinear sigma models for nematic ordering of RP^{N-1} type and of lattice gauge type with continous symmetries. We rigorously show that they exhibit a first-order transition in the temperature. The result holds in dimension 2 or more for the RP{N-1} models and in dimension 3 or more for the lattice gauge models. In the two-dimensional case our results clarify and solve a recent controversy about the possibilty of such transitions. For lattice gauge models our methods provide the first prof of a first-order transition in a model with a continous gauge symmetry.

  11. Many flavor approach to study the nature of chiral phase transition of two-flavor QCD

    CERN Document Server

    Yamada, Norikazu; Iwami, Ryo

    2016-01-01

    We perform lattice numerical simulations to study the phase transition of QCD at finite temperature to clarify the nature of the transition of massless two flavor QCD. We investigate QCD with two light and Nf heavy quarks instead of two-flavor QCD, and focus on the light quark mass dependence of the critical heavy mass, below which the transition is of first order. The heavy quarks are incorporated into two flavor configurations in the form of the hopping parameter expansion through the reweighting technique. The nature of the transition is identified by the shape of the constraint effective potential at the critical temperature. Our result indicates that the critical heavy mass remains finite in the chiral limit of the two flavors, suggesting the phase transition of massless two-flavor QCD is of second order.

  12. Microscopic nuclear structure models and methods : Chiral symmetry, Wobbling motion and $\\gamma-$bands

    CERN Document Server

    Sheikh, J A; Dar, W A; Jehangir, S; Ganai, P A

    2015-01-01

    A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of $\\gamma$-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, $\\gamma$-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering $\\gamma$-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the $\\gamma$-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of $\\gamma$-bands observed up to the highest spin in Dysposium, Hafnium, Mercury and Uranium isotopes. Furthermore, several measurements related to chira...

  13. The Anderson transition: time reversal symmetry and universality

    OpenAIRE

    Slevin, Keith; Ohtsuki, Tomi

    1997-01-01

    We report a finite size scaling study of the Anderson transition. Different scaling functions and different values for the critical exponent have been found, consistent with the existence of the orthogonal and unitary universality classes which occur in the field theory description of the transition. The critical conductance distribution at the Anderson transition has also been investigated and different distributions for the orthogonal and unitary classes obtained.

  14. Floquet topological phase transitions and chiral edge states in a kagome lattice

    Energy Technology Data Exchange (ETDEWEB)

    He, Chaocheng; Zhang, Zhiyong, E-mail: zyzhang@nju.edu.cn

    2014-09-05

    The Floquet topological phases and chiral edge states in a kagome lattice under a circularly-polarized driving field are studied. In the off-resonant case, the system exhibits the similar character as the kagome lattice model with staggered magnetic fluxes, but the total band width is damped in oscillation. In the on-resonant case, the degeneracy splitting at the Γ point does not always result in a gap. The positions of the other two gaps are influenced by the flat band. With the field intensity increased, these two gaps undergo closing-then-reopening processes, accompanied with the changing of the winding numbers. - Highlights: • A kagome lattice under a circularly-polarized driving field is studied. • The band structures and chiral edge states are studied via exact Floquet method. • Various modifications of the Floquet band structure are found. • Floquet topological phase transitions appear in both off- and on-resonant cases.

  15. Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries

    CERN Document Server

    Juchtmans, Roeland

    2015-01-01

    In this work we present an alternative way to look at electron diffraction in a transmission electron microscope. In stead of writing the scattering amplitude in Fourier space as a set of plane waves, we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating e.g. rotation and screw axis symmetries. For the latter we find selection rules on the OAM-coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM-coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample nor the exact crystal structure. We propose an experimental setup to measure the OAM-components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform mulsti-slice simulations on $\\alpha$-q...

  16. What the Gribov copy tells on the confinment and the theory of dynamical chiral symmetry breaking

    CERN Document Server

    Furui, S; Furui, Sadataka; Nakajima, Hideo

    2004-01-01

    We performed lattice Landau gauge QCD simulation on $\\beta=6.0, 16^4, 24^4, 32^4$ and $\\beta=6.4, 32^4, 48^4$ and $56^4$ by adopting the gauge fixing that minimizes the norm of the gauge field, and measured the running coupling by using the gluon propagator and the ghost propagator. It has a maximum $\\alpha_s(q)\\simeq 1.1$ at around $q=0.5$ GeV and decreases as $q$ approaches 0. The infrared exponent of the ghost propagator is $\\kappa=0.2$ in the gauge fixing, but there is an exceptional configuration $\\kappa=0.27$, and the running coupling using this configuration is consistent with the Dyson-Schwinger approach with infrared fixed point $\\alpha_0=1.5$. The features of the exceptional configuration are investigated by measuring one-dimensional Fourier transform(1-d FT) of the gluon propagator transverse to 4 lattice axes. We observe that the rotational symmetry of the exceptional configuration is broken and the 1-d FT along a specific axis violates reflection positivity and the average of the Cartan subalgebr...

  17. The Effect of Retardation on the Spontaneous Breaking of Chiral Symmetry in GCM

    Institute of Scientific and Technical Information of China (English)

    YANG Sheng-Dong; ZHAI Chen-Yang; ZHOU Zhi-Ning; YANG Ze-Sen

    2001-01-01

    An effective Hamiltonian including current-current coupling from the global color symmetry model is -R2 2derived.Retardation effects are introduced by the factor ( R/ ) e ,instead of δ (r) in the correlation kernel,from which the retardation gap equation with α-α coupling in the 3po vacuum is obtained,qq condensations of different retardation parameters R with or without the α-α term are calculated.The results show the effects of retardation,and indicate that the typical value of R is about 2 fm-1 at reasonable value of qq condensation.And while taking typical value 1 fm-1 of R,the condensation 1/3 is about 13% larger than that with no retardation effect.With the α-αterms,the condensation (qq) 1/3 is about 17%o larger than that without it for all values of the parameter R.This shows that the retardation effects and the α-α terms are important for further studying in the Iow-energy region.``

  18. From quarks and gluons to hadrons: Chiral symmetry breaking in dynamical QCD

    Science.gov (United States)

    Braun, Jens; Fister, Leonard; Pawlowski, Jan M.; Rennecke, Fabian

    2016-08-01

    We present an analysis of the dynamics of two-flavor QCD in the vacuum. Special attention is paid to the transition from the high-energy quark-gluon regime to the low-energy regime governed by hadron dynamics. This is done within a functional renormalization group approach to QCD amended by dynamical hadronization techniques. These techniques allow us to describe conveniently the transition from the perturbative high-energy regime to the nonperturbative low-energy limit without suffering from a fine-tuning of model parameters. In the present work, we apply these techniques to two-flavor QCD with physical quark masses and show how the dynamics of the dominant low-energy degrees of freedom emerge from the underlying quark-gluon dynamics.

  19. Phase transition from the symmetry breaking of charged Klein–Gordon fields

    Energy Technology Data Exchange (ETDEWEB)

    Matos, T.; Castellanos, E. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F. (Mexico)

    2014-01-14

    We analyze the phase transition associated with the U(1) symmetry breaking of the complex Klein–Gordon (KG) equation with a Mexican–hat scalar field potential up to one loop in perturbations immersed in a thermal bath. We show that the KG equation reduces to a Gross–Pitaevskii like–equation (GP), which also contains the entire information of the phase transition. Indeed, the thermal bath contributions, together with the corresponding U(1) local symmetry, allow us to interpret the resulting GP equation as a charged and finite temperature version of the system. Finally, we obtain the hydrodynamics and consequently, the corresponding thermodynamics, and show that breakdown of the U(1) local symmetry of the KG field into the new version of the GP equation corresponds, under certain circumstances, to a phase transition of the gas into a condensate, superfluid, and/or superconductor.

  20. Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms

    CERN Document Server

    Li, Jiaming; Liu, Ji; de Melo, Leonardo; Joglekar, Yogesh N; Luo, Le

    2016-01-01

    Open physical systems with balanced loss and gain exhibit a transition, absent in their solitary counterparts, which engenders modes that exponentially decay or grow with time and thus spontaneously breaks the parity-time PT symmetry. This PT-symmetry breaking is induced by modulating the strength or the temporal profile of the loss and gain, but also occurs in a pure dissipative system without gain. It has been observed that, in classical systems with mechanical, electrical, and electromagnetic setups with static loss and gain, the PT-symmetry breaking transition leads to extraordinary behavior and functionalities. However, its observation in a quantum system is yet to be realized. Here we report on the first quantum simulation of PT-symmetry breaking transitions using ultracold Li-6 atoms. We simulate static and Floquet dissipative Hamiltonians by generating state-dependent atom loss in a noninteracting Fermi gas, and observe the PT-symmetry breaking transitions by tracking the atom number for each state. W...

  1. QCD and Symmetries related to nucleon structure and strongly interacting matter

    International Nuclear Information System (INIS)

    We discuss the impact of the symmetries of quantum chromodynamics (QCD) on the observed properties of hadrons and strongly interacting matter. We first introduce the fundamental color gauge symmetry insisting on its non perturbative aspect at low energy. Particular emphasis is put on the spontaneous breaking of chiral symmetry and its numerous consequences. Operational approaches, such as chiral perturbation theory or QCD sum rules, allowing to implement this crucial symmetry at the hadronic level are presented. We then explore the consequences of chiral restoration at finite baryonic density and/or temperature on the properties of in-medium hadrons in connection with experimental programs. Finally we give a short discussion of the phase structure of QCD in connection with chiral symmetry and the center symmetry associated with the confinement/deconfinement transition. This document includes the slides of the presentation. (author)

  2. Phase Transitions in QCD

    OpenAIRE

    H. Satz(University of Bielefeld)

    2000-01-01

    At high temperatures or densities, hadronic matter shows different forms of critical behaviour: colour deconfinement, chiral symmetry restoration, and diquark condensation. I first discuss the conceptual basis of these phenomena and then consider the description of colour deconfinement in terms of symmetry breaking, through colour screening and as percolation transition.

  3. Intensity of d-d symmetry-forbidden electronic transition in Cr(CO)6.

    Science.gov (United States)

    Rocha, Alexandre B

    2007-05-31

    Absolute absorption intensities (oscillator strengths) are calculated for the d-d symmetry-forbidden transition in hexacarbonyl chromium. The vibronic coupling mechanism is taken into account in a way that represents an alternative to the traditional perturbative approach of Herzberg and Teller. In the so-called direct method, the electronic transition moment is directly expanded in a power series of the vibrational normal coordinates of suitable symmetry. In the present case, i.e., d-d ligand field transitions, or more specifically (1)A(1g) --> (1)T(1g) and (1)A(1g) --> (1)T(2g) transitions, the dipole selection rule is broken by vibronic interaction induced by normal modes that transform like T(1u) and T(2u) representations of the O(h) group. An analysis of the relative importance of normal modes in promoting electronic transitions is carried out.

  4. Gauge symmetry, chirality and parity effects in four-particle systems: Coulomb's law as a universal function for diatomic molecules.

    Science.gov (United States)

    Van Hooydonk, G

    2000-11-01

    Following recent work in search for a universal function (Van Hooydonk, Eur. J. Inorg. Chem., (1999), 1617), we test four symmetric +/- a(n)Rn potentials for reproducing molecular potential energy curves (PECs). Classical gauge symmetry for 1/R-potentials results in generic left right asymmetric PECs. A pair of symmetric perturbed Coulomb potentials is quantitatively in accordance with observed PECs. For a bond, a four-particle system, charge inversion (a parity effect, atom chirality) is the key to explain this shape generically. A parity adapted Hamiltonian reduces from ten to two terms and to a soluble Bohr-like formula, a Kratzer (1 - Re/R)2 potential. The result is similar to the combined action of spin and wave function symmetry upon the Hamiltonian in Heitler-London theory. Analytical perturbed Coulomb functions varying with (1 - Re/R) scale attractive and repulsive branches of PECs for 13 bonds H2, HF, LiH, KH, AuH, Li2, LiF, KLi, NaCs, Rb2, RbCs, Cs2 and I2 in a single straight line. The 400 turning points for 13 bonds are reproduced with a deviation of 0.007 A at both branches. For 230 points at the repulsive side, the deviation is 0.003 A. The perturbed electrostatic Coulomb law is a universal molecular function. Ab initio zero molecular parameter functions give PECs of acceptable quality, just using atomic ionisation energies. The function can be used as a model potential for inverting levels and gives a first principle's comparison of short- and long-range interactions, important for the study of cold atoms. Wave-packet dynamics, femto-chemistry applied to the crossing of covalent and ionic curves, can provide evidence for this theory. We anticipate this scale/shape invariant scheme applies to smaller scales in nuclear and high-energy particle physics. For larger gravitational scales (Newton 1/R potentials), problems with super-unification are discussed. Reactions between hydrogen and antihydrogen, feasible in the near future, will probably produce

  5. Chiral phase transition scenarios from the vector meson extended Polyakov quark meson model

    CERN Document Server

    Kovács, Péter

    2015-01-01

    Chiral phase transition is investigated in an $SU(3)_L \\times SU(3)_R$ symmetric vector meson extended linear sigma model with additional constituent quarks and Polyakov loops (extended Polyakov quark meson model). The parameterization of the Lagrangian is done at zero temperature in a hybrid approach, where the mesons are treated at tree-level, while the constituent quarks at 1-loop level. The temperature and baryochemical potential dependence of the two assumed scalar condensates are calculated from the hybrid 1-loop level equations of states. The order of the phase transition along the $T=0$ and $\\mu_B=0$ axes are determined for various parameterization scenarios. We find that in order to have a first order phase transition at $T=0$ as a function of $\\mu_B$ a light isoscalar particle is needed.

  6. Large-$N$ Pion Scattering, Finite-Temperature Effects and the Relationship of the $f_{0}(500)$ with Chiral Symmetry Restoration

    CERN Document Server

    Cortes, Santiago; Morales, John

    2016-01-01

    In this work, we review how the mass and the width of the $f_{0}(500)$ pole behave in a regime where temperature is below the critical chiral transition value. This is attained by considering a large-$N$ $O(N + 1)/O(N)$ invariant Non-Linear Sigma Model (NLSM) such that we can study the dynamical generation of a $f_{0}(500)$ resonance. Introducing thermal effects via the imaginary time formalism allows us to study the behavior of the pole and relate it to chiral restoration.

  7. Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD

    International Nuclear Information System (INIS)

    The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial–vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson–Schwinger equations

  8. Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD

    CERN Document Server

    Cui, Zhu-Fang; Shi, Yuan-Mei; Wang, Yong-Long; Zong, Hong-Shi

    2015-01-01

    The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial-vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson-Schwinger equations.

  9. Chiral phase transition in an extended linear sigma model: initial results

    CERN Document Server

    Wolf, Gy; Szép, Zs

    2014-01-01

    We investigate the scalar meson mass dependence on the chiral phase transition in the framework of an SU(3), (axial)vector meson extended linear sigma model with additional constituent quarks and Polyakov loops. We determine the parameters of the Lagrangian at zero temperature in a hybrid approach, where we treat the mesons at tree-level, while the constituent quarks at 1-loop level. We assume two nonzero scalar condensates and together with the Polyakov-loop variables we determine their temperature dependence according to the 1-loop level field equations.

  10. Effects of (axialvector mesons on the chiral phase transition: initial results

    Directory of Open Access Journals (Sweden)

    Kovács P.

    2014-01-01

    Full Text Available We investigate the effects of (axialvector mesons on the chiral phase transition in the framework of an SU(3, (axialvector meson extended linear sigma model with additional constituent quarks and Polyakov loops. We determine the parameters of the Lagrangian at zero temperature in a hybrid approach, where we treat the mesons at tree-level, while the constituent quarks at 1-loop level. We assume two nonzero scalar condensates and together with the Polyakov-loop variables we determine their temperature dependence according to the 1-loop level field equations.

  11. Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition

    CERN Document Server

    Clark, Logan W; Chin, Cheng

    2016-01-01

    The dynamics of many-body systems spanning condensed matter, cosmology, and beyond is hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics is expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop anti-ferromagnetic spatial correlations resulting from sub-Poisson generation of topological defects. The characteristic times and lengths scale as power-laws of the crossing rate, yielding the temporal exponent 0.50(2) and the spatial exponent 0.26(2), consistent with theory. Furthermore, the fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum crit...

  12. Spontaneous Mirror Symmetry Breaking in the Limited Enantioselective Autocatalysis Model: Abyssal Hydrothermal Vents as Scenario for the Emergence of Chirality in Prebiotic Chemistry

    CERN Document Server

    Ribó, Josep M; El-Hachemi, Zoubir; Moyano, Albert; Blanco, Celia; Hochberg, David; 10.1089/ast.2012.0904

    2013-01-01

    The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution nor in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continous internal flow. In such conditions the system can evolve, for certain reaction and system parameters, towards a chiral stationary state, i.e., the system is able to reach a bifurcation point leading to SMSB. Numerical simulations using reasonable ch...

  13. Provable first-order transitions for nonlinear vector and gauge models with continuous symmetries

    NARCIS (Netherlands)

    Enter, Aernout C.D. van; Shlosman, Senya B.

    2005-01-01

    We consider various sufficiently nonlinear vector models of ferromagnets, of nematic liquid crystals and of nonlinear lattice gauge theories with continuous symmetries. We show, employing the method of Reflection Positivity and Chessboard Estimates, that they all exhibit first-order transitions in t

  14. Symmetry and Transitive Properties of Monohedral f-triangulations of the Riemannian Sphere

    Institute of Scientific and Technical Information of China (English)

    Ana M. BREDA; J. M. SIGARRETA

    2009-01-01

    Here we give the complete description of the symmetry group and transitive properties of the set of all of monohedral triangulations of the Riemannian sphere by f-tilings. We shall also show that each monohedral f-tiling of the Riemannian sphere can be seen, up to a spherical isometry, as the singular set of a spherical isometric folding.

  15. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  16. The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules as probes of constraints from analyticity and chiral symmetry in dynamical models for pion-nucleon scattering

    CERN Document Server

    Kondratyuk, S; Myhrer, F; Scholten, O

    2004-01-01

    The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: 1) by evaluating of the scattering amplitude at the corresponding low-energy kinematics and 2) by evaluating the sum-rule integrals with the calculated total cross section. The discrepancy between the results of the two methods provides a measure of the breaking of analyticity and chiral symmetry in the model. The contribution of the $\\Delta$ resonance, including its dressing with meson loops, is discussed in some detail and found to be small.

  17. Chiral phase transition at finite temperature and conformal dynamics in large Nf QCD

    CERN Document Server

    Miura, Kohtaroh

    2011-01-01

    We investigate the chiral phase transition at finite temperature (T) in colour SU(Nc=3) Quantum Chromodynamics (QCD) with six species of fermions (Nf=6) in the fundamental representation by using lattice QCD with improved staggered fermions. By considering lattices with several temporal extensions Nt, we observe asymptotic scaling for Nt > 4. We then extract the dimensionless ratio Tc/Lambda_L (Lambda_L = Lattice Lambda-parameter) for Nf = 6 and Nf = 8, the latter relying on our earlier results. Further, we collect the critical couplings beta^c for the chiral phase transition at Nf = 0 (quenched), and Nf = 4 at a fixed Nt = 6. The results are consistent with enhanced fermionic screening at larger Nf. The Tc/Lambda_L depends very mildly on Nf in the Nf = 0 - 4 region, starts increasing at Nf = 6, and becomes significantly larger at Nf = 8, close to the edge of the conformal window. We discuss interpretations of these results as well as their possible interrelation with preconformal dynamics in the light of a f...

  18. Empirical signatures of quantum phase transitions and universal properties of critical point descriptions and dynamical symmetries

    International Nuclear Information System (INIS)

    Recently, a new signature for quantum phase transitional regions has been discussed. This signature, based on degeneracies of yrast and intrinsic excitations, can distinguish first and second order phase transitions, and is valid not only at or near the analytic critical points described by X(5) and E(5), but along the phase transitional line connecting them as well. In addition, a study of a number of recent analytic solutions to the Bohr Hamiltonian and of the dynamical symmetries of the IBA Hamiltonian has revealed a set of extremely simple and general analytic formulas that describe the energies of 0+ states. For the case of flat-bottomed geometrical potentials, the formula depends solely on the number of relevant dimensions. For the IBA (large boson number limit) a single formula describes all three dynamical symmetries.

  19. Observation of a transition from a topologically ordered to a spontaneously broken symmetry phase

    Science.gov (United States)

    Samkharadze, N.; Schreiber, K. A.; Gardner, G. C.; Manfra, M. J.; Fradkin, E.; Csáthy, G. A.

    2016-02-01

    Until the late 1980s, phases of matter were understood in terms of Landau’s symmetry-breaking theory. Following the discovery of the quantum Hall effect, the introduction of a second class of phases, those with topological order, was necessary. Phase transitions within the first class of phases involve a change in symmetry, whereas those between topological phases require a change in topological order. However, in rare cases, transitions may occur between the two classes, in which the vanishing of the topological order is accompanied by the emergence of a broken symmetry. Here, we report the existence of such a transition in a two-dimensional electron gas hosted by a GaAs/AlGaAs crystal. When tuned by hydrostatic pressure, the ν = 5/2 fractional quantum Hall state, believed to be a prototypical non-Abelian topological phase, gives way to a quantum Hall nematic phase. Remarkably, this nematic phase develops spontaneously, in the absence of any externally applied symmetry-breaking fields.

  20. Shards of Broken Symmetry: Topological Defects as Traces of the Phase Transition Dynamics

    OpenAIRE

    Zurek, W.H.; Bettencourt, L. M. A.; Dziarmaga, J.; Antunes, N. D.

    2010-01-01

    We discuss the origin of topological defects in phase transitions and analyze their role as a "diagnostic tool" in the study of the non-equilibrium dynamics of symmetry breaking. Homogeneous second order phase transitions are the focus of our attention, but the same paradigm is applied to the cross-over and inhomogeneous transitions. The discrepancy between the experimental results in 3He and 4He is discussed in the light of recent numerical studies. The possible role of the Ginzburg regime i...

  1. Landau Theory and the Emergence of Chirality in Viral Capsids

    CERN Document Server

    Dharmavaram, Sanjay; Klug, William; Rudnick, Joseph; Bruinsma, Robijn

    2016-01-01

    We present a generalized Landau-Brazovskii theory for the solidification of chiral molecules on a spherical surface. With increasing sphere radius one encounters first intervals where robust achiral density modulations appear with icosahedral symmetry via first-order transitions. Next, one en- counters intervals where fragile but stable icosahedral structures still can be constructed but only by superposition of multiple irreducible representations. Chiral icoshedral structures appear via continuous or very weakly first-order transitions. Outside these parameter intervals, icosahedral symmetry is broken along a three-fold axis or a five-fold axis. The predictions of the theory are compared with recent numerical simulations.

  2. Phase transitions, interfacial fluctuations and hidden symmetries for fluids near structured walls

    Indian Academy of Sciences (India)

    A O Parry; J M Romero-Enrique

    2005-05-01

    Fluids adsorbed at micro-patterned and geometrically structured substrates can exhibit novel phase transitions and interfacial fluctuation effects distinct from those characteristic of wetting at planar, homogeneous walls. We review recent theoretical progress in this area paying particular attention to filling transitions pertinent to fluid adsorption near wedges, which have highlighted a deep connection between geometrical and contact angles. We show that filling transitions are not only characterized by large scale interfacial fluctuations leading to universal critical singularities but also reveal hidden symmetries with short-ranged critical wetting transitions and properties of dimensional reduction. We propose a non-local interfacial model which fulfills all these properties and throws light on long-standing problems regarding the order of the 3D short-range critical wetting transition.

  3. Chiral Thermodynamic Model of QCD and its Critical Behavior in the Closed-Time-Path Green Function Approach

    CERN Document Server

    Huang, Da

    2011-01-01

    By applying the closed-time-path Green function formalism to the chiral dynamical model based on an effective Lagrangian of chiral quarks with the nonlinear-realized meson fields as bosonized auxiliary fields, we then arrive at a chiral thermodynamic model for the meson fields with finite temperature. Particular attention is paid to the spontaneous chiral symmetry breaking and restoration from the dynamically generated effective composite Higgs potential of meson fields at finite temperature. It is shown that the minimal condition of the effective composite Higgs potential of meson fields leads to the thermodynamic gap equation at finite temperature, which enables us to investigate the critical behavior of the effective chiral thermodynamical model and to explore the QCD phase transition. After fixing the free parameters in the effective chiral Lagrangian at low energies with zero temperature, we determine the critical temperature of the chiral symmetry restoration and present a consistent prediction for the ...

  4. Can symmetry transitions of complex fields enable 3-d control of fluid vorticity?

    Energy Technology Data Exchange (ETDEWEB)

    Martin, James E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Solis, Kyle Jameson [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Methods of inducing vigorous noncontact fluid flow are important to technologies involving heat and mass transfer and fluid mixing, since they eliminate the need for moving parts, pipes and seals, all of which compromise system reliability. Unfortunately, traditional noncontact flow methods are few, and have limitations of their own. We have discovered two classes of fields that can induce fluid vorticity without requiring either gravity or a thermal gradient. The first class we call Symmetry-Breaking Rational Fields. These are triaxial fields comprised of three orthogonal components, two ac and one dc. The second class is Rational Triad Fields, which differ in that all three components are alternating. In this report we quantify the induced vorticity for a wide variety of fields and consider symmetry transitions between these field types. These transitions give rise to orbiting vorticity vectors, a technology for non-contact, non-stationary fluid mixing.

  5. Confinement/deconfinement transition from symmetry breaking in gauge/gravity duality

    CERN Document Server

    Čubrović, Mihailo

    2016-01-01

    We study the confinement/deconfinement transition in a strongly coupled system triggered by an independent symmetry-breaking quantum phase transition in gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS near-boundary behavior and soft wall interior at zero scalar condensate. We study the cases of neutral and charged condensate separately. In the former case the condensation breaks the discrete $\\mathbb{Z}_2$ symmetry while a charged condensate breaks the continuous $U(1)$ symmetry. After the condensation of the order parameter, the non-zero vacuum expectation value of the scalar couples to the dilaton, changing the soft wall geometry into a non-confining and anisotropically scale-invariant infrared metric. In other words, the formation of long-range order is immediately followed by the deconfinement transition and the two critical points coincide. The confined phase has a scale -- the confinement scale (energy gap) which vanishes in the deconfined case. Therefore, the break...

  6. B→A transitions in the light-cone QCD sum rules with the chiral current

    Institute of Scientific and Technical Information of China (English)

    SUN Yan-Jun; WANG Zhi-Gang; HUANG Tao

    2012-01-01

    In this article,we calculate the form-factors of the transitions B → a1(1260),b1(1235) in the leading-order approximation using the light-cone QCD sum rules.In calculations,we choose the chiral current to interpolate the B-meson,which has the outstanding advantage that the twist-3 light-cone distribution amplitudes of the axial-vector mesons make no contributions,and the resulting sum rules for the form-factors suffer from far fewer uncertainties.Then we study the semi-leptonic decays B → a1(1260)l(v1),b1(1235)l(v1) (l =e,μ,Τ),and make predictions for the differential decay widths and decay widths,which can be compared with the experimental data in the coming future.

  7. Chiral phase transition in the vector meson extended linear sigma model

    CERN Document Server

    Kovács, Péter; Wolf, György

    2015-01-01

    In the framework of an SU(3) (axial)vector meson extended linear sigma model with additional constituent quarks and Polyakov loops, we investigate the effects of (axial)vector mesons on the chiral phase transition. The parameters of the Lagrangian are set at zero temperature and we use a hybrid approach where in the effective potential the constituent quarks are treated at one-loop level and all the mesons at tree-level. We have four order parameters, two scalar condensates and two Polyakov loop variables and their temperature and baryochemical potential dependence are determined from the corresponding field equations. We also investigate the changes of the tree-level scalar meson masses in the hot and dense medium.

  8. Z(5): critical point symmetry for the prolate to oblate nuclear shape phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bonatsos, Dennis; Lenis, D.; Petrellis, D.; Terziev, P.A

    2004-05-27

    A critical point symmetry for the prolate to oblate shape phase transition is introduced, starting from the Bohr Hamiltonian and approximately separating variables for {gamma}=30 deg. Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are found to be in good agreement with experimental data for {sup 194}Pt, which is supposed to be located very close to the prolate to oblate critical point, as well as for its neighbours ({sup 192}Pt, {sup 196}Pt)

  9. Z(5): Critical point symmetry for the prolate to oblate nuclear shape phase transition

    CERN Document Server

    Bonatsos, D; Petrellis, D; Terziev, P A; Bonatsos, Dennis

    2004-01-01

    A critical point symmetry for the prolate to oblate shape phase transition is introduced, starting from the Bohr Hamiltonian and approximately separating variables for $\\gamma=30^{\\rm o}$. Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are found to be in good agreement with experimental data for 194-Pt, which is supposed to be located very close to the prolate to oblate critical point, as well as for its neighbours (192-Pt, 196-Pt).

  10. Net baryon number fluctuations across the chiral phase transition at finite density in the strong coupling lattice QCD

    CERN Document Server

    Ichihara, Terukazu; Ohnishi, Akira

    2015-01-01

    We investigate the net-baryon number fluctuations across the chiral phase transition at finite density in the strong coupling and chiral limit. Mesonic field fluctuations are taken into account by using the auxiliary field Monte-Carlo method. We find that the higher-order cumulant ratios, $S\\sigma$ and $\\kappa\\sigma^2$, show oscillatory behavior around the phase boundary at $\\mu/T\\gtrsim 0.2$, and there exists the region where the higher-order cumulant ratios are negative. The negative region of $\\kappa\\sigma^2$ is found to shrink with increasing lattice size. This behavior agrees with the expectations from the scaling analysis.

  11. Nucleus as a chiral filter: the role of the Δ(1232)

    International Nuclear Information System (INIS)

    We describe how two different modes of chiral symmetry can be seen in nuclei. In particular, it is shown that the nuclear axial charge or more precisely the O+O-, ΔT=1 transition at zero momentum transfer probe the nuclear configuration wherein the axial charge gsub(A) is effectively enhanced in nuclear medium due to soft pions, symptomatic of the Goldstone realization of chiral symmetry in the medium while the Gamow-Teller resonances probe the configuration wherein soft pions are no longer operative, suggesting an approach toward the Wigner realization of chiral symmetry. Using the celebrated Adler-Weisberger relation, it is argued that the observed approximately 50% quenching of the Gamow-Teller strength reflects the possibility that the Gamow-Teller operator sees the quarks inside the bag, blind to the Goldstone vacuum outside. Some implications on chiral phase transitions are also discussed

  12. Concentration-dependent structure and structural transition from chirality to nonchirality at the liquid-solid interface by coassembly

    Science.gov (United States)

    Xu, Li; Miao, Xinrui; Cui, Lihua; Liu, Pei; Chen, Xiaofeng; Deng, Wenli

    2015-07-01

    Understanding the formation and structural transition of the two-dimensional chirality of self-assembly is a subject which still gains significant interest in surface or interface chirality studies. Here, we present the solvent-induced chiral structural transition of a 2-hydroxy-7-pentadecyloxy-9-fluorenone (HPF) molecules' self-assembled adlayer through coassembly with achiral aliphatic solvents under different concentrations. Polymorphic chiral patterns are obtained at low concentrations of aliphatic solvents with different chain lengths. The HPF molecules form coassembled structures with these solvents through van der Waals interactions. At the same time, at high concentrations, HPF molecules uniformly form a nonchiral multimer structure without coadsorbed aliphatic solvent molecules. What is interesting is that these structures under different concentrations will finally change into a zigzag structure, which is the thermodynamically most stable configuration. Especially when using n-hexadecane as the solvent, the adlayer shows perfect steric matching due to the close chain length of HPF and n-hexadecane, which can maximize the molecule-solvent interactions. Thus, HPF molecules in n-hexadecane exhibit the most diversiform configuration. The distinct concentration-dependence has proven that the solvent molecules can act as a coadsorbed component through van der Waals interactions rather than simply a dispersant and further result in the probability and stability of chiral self-assembled monolayers by subtle tuning of the solvent-molecule and solvent-substrate interactions. This result provides a simple and alternative strategy to construct the 2D chiral assembled monolayer.Understanding the formation and structural transition of the two-dimensional chirality of self-assembly is a subject which still gains significant interest in surface or interface chirality studies. Here, we present the solvent-induced chiral structural transition of a 2-hydroxy-7-pentadecyloxy

  13. Review of critical point symmetries and shape phase transitions within algebraic and collective models

    International Nuclear Information System (INIS)

    Several aspect of shape phase transitions and critical point symmetries are reviewed in this contribution within the frameworks of the Interacting Boson Model (IBM) and the Interacting Boson Fermion Model (IBFM) for even and odd systems respectively and compared with collective geometric models. We discuss in particular the case of an odd j = 3/2 particle coupled to an even-even boson core that undergoes a transition from the spherical limit U(5) to the γ-unstable limit O(6). The spectrum and transition rates at the critical point are similar to those of the even core and they agree qualitatively with the E(5/4) boson-fermion symmetry. We discuss also the UBF (5) to SUBF (3) shape phase transition in which the allowed fermionic orbitals are j = 1/2; 3/2; 5/2. The formalism of the intrinsic or coherent states is used to describe in details the ground state as well as the excited β- and γ- bands. This formalism is also used to calculate the Potential Energy Surface of the cubic quadrupole operator that leads to triaxiality. (author)

  14. Role of Symmetry Breaking on the Optical Transitions in Lead-Salt Quantum Dots

    KAUST Repository

    Nootz, Gero

    2010-09-08

    The influence of quantum confinement on the one- and two-photon absorption spectra (1PA and 2PA) of PbS and PbSe semiconductor quantum dots (QDs) is investigated. The results show 2PA peaks at energies where only 1PA transitions are predicted and 1PA peaks where only 2PA transitions are predicted by the often used isotropic k•p four-band envelope function formalism. The first experimentally identified two-photon absorption peak coincides with the energy of the first one photon allowed transition. This first two-photon peak cannot be explained by band anisotropy, verifying that the inversion symmetry of the wave functions is broken and relaxation of the parity selection rules has to be taken into account to explain optical transitions in lead-salt QDs. Thus, while the band anisotropy of the bulk semiconductor plays a role in the absorption spectra, especially for the more anisotropic PbSe QDs, a complete model of the absorption spectra, for both 1PA and 2PA, must also include symmetry breaking of the quantum confined wave functions. These studies clarify the controversy of the origin of spectral features in lead-salt QDs. © 2010 American Chemical Society.

  15. Dynamic Chirality in Nuclei

    International Nuclear Information System (INIS)

    Chirality has recently been proposed as a novel feature of rotating nuclei [1]. Because the chiral symmetry is dichotomic, its spontaneous breaking by the axial angular momentum vector leads to doublets of closely lying rotational bands of the same parity. To investigate nuclear chirality, next to establish the existence of almost degenerate rotational bands, it is necessary to measure also other observables and compare them to the model predictions. The crucial test for the suggested nuclei as candidates to express chirality is based on precise lifetime measurements. Two lifetime experiments and theoretical approaches for the description of the experimental results will be presented. Lifetimes of exited states in 134Pr were measured [2,3] by means of the recoil distance Doppler-shift and Doppler-shift attenuation techniques. The branching ratios and the electric or magnetic character of the transitions were also investigated [3]. The experiments were performed at IReS, Strasbourg, using the EUROBALL IV spectrometer, in conjunction with the inner bismuth germanate ball and the Cologne coincidence plunger apparatus. Exited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F, 4n)134Pr. The possible chiral interpretation of twin bands was investigated in the two-quasiparticle triaxial rotor [1] and interacting boson-fermion-fermion models [4]. Both theoretical approaches can describe the level-scheme of 134Pr. The analysis of the wave functions has shown that the possibility for the angular momenta of the proton, neutron, and core to find themselves in the favorable, almost orthogonal geometry, is present but is far from being dominant [3,5]. The structure is characterized by large β and γ fluctuations. The existence of doublets of bands in 134Pr can be attributed to weak chirality dominated by shape fluctuations. In a second experiment branching ratios and lifetimes in 136Pm were measured by means of the recoil distance Doppler-shift and

  16. Gravitational Waves from the Phase Transition of a Non-linearly Realised Electroweak Gauge Symmetry

    CERN Document Server

    Kobakhidze, Archil; Yue, Jason

    2016-01-01

    Within the Standard Model with non-linearly realised electroweak symmetry, the LHC Higgs boson may reside in a singlet representation of the gauge group. Several new interactions are then allowed, including anomalous Higgs self-couplings, which may drive the electroweak phase transition to be strongly first-order. In this paper we investigate the cosmological electroweak phase transition in a simplified model with an anomalous Higgs cubic self- coupling. We look at the feasibility of detecting gravitational waves produced during such a transition in the early universe by future space-based experiments. We find that for the range of relatively large cubic couplings, $111~{\\rm GeV}~ \\lesssim |\\kappa| \\lesssim 118~{\\rm GeV}$, $\\sim $mHz frequency gravitational waves can be observed by eLISA, while BBO will potentially be able to detect waves in a wider frequency range, $0.1-10~$mHz.

  17. Tunable chirality and circular dichroism of a topological insulator with C2v symmetry as a function of Rashba and Dresselhaus parameters

    Science.gov (United States)

    Sengupta, Parijat; Bellotti, Enrico

    2016-01-01

    Polarization-sensitive devices rely on meta-materials to exhibit varying degrees of absorption of light of a given handedness. The chiral surface states of a topological insulator selectively absorb right- and left-circularly polarized light in the vicinity of the Dirac cone reaching its maximum of unity at the Γ point. In this letter, we show that a band gap open topological insulator with C2v symmetry, which is represented through a combination of Rashba and Dresselhaus Hamiltonians, alters the preferential absorption of left- and right-circularly polarized light allowing a smooth variation of the circular dichroism. This variation in circular dichroism, in a range of positive and negative values, is shown to be a function of the Rashba and Dresselhaus coupling parameters.

  18. First results from 2+1-Flavor Domain Wall QCD: Mass Spectrum, Topology Change and Chiral Symmetry with $L_s=8$

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Antonio; T. Blum; K. C. Bowler; P. A. Boyle; N. H. Christ; S. D. Cohen; M. A. Clark; C. Dawson; A. Hart; K. Hashimoto; T. Izubuchi; B. Joó; C. Jung; A. D. Kennedy; R. D. Kenway; S. Li; H. W. Lin; M.F. Lin; R. D. Mawhinney; C.M. Maynard; J. Noaki; S. Ohta; S. Sasaki; A. Soni; R. J. Tweedie; A. Yamaguchi

    2007-06-01

    We present results for the static interquark potential, light meson and baryon masses, and light pseudoscalar meson decay constants obtained from simulations of domain wall QCD with one dynamical flavour approximating the $s$ quark, and two degenerate dynamical flavours with input bare masses ranging from $m_s$ to $m_s/4$ approximating the $u$ and $d$ quarks. We compare these quantities obtained using the Iwasaki and DBW2 improved gauge actions, and actions with larger rectangle coefficients, on $16^3\\times32$ lattices. We seek parameter values at which both the chiral symmetry breaking residual mass due to the finite lattice extent in the fifth dimension and the Monte Carlo time history for topological charge are acceptable for this set of quark masses at lattice spacings above 0.1 fm. We find that the Iwasaki gauge action is best, demonstrating the feasibility of using QCDOC to generate ensembles which are good representations of the QCD path integral on lattices of up to 3 fm in spatial extent with lattice spacings in the range 0.09-0.13 fm. Despite large residual masses and a limited number of sea quark mass values with which to perform chiral extrapolations, our results for light hadronic physics scale and agree with experimental measurements within our statistical uncertainties.

  19. Order, Chaos and Quasi Symmetries in a First-Order Quantum Phase Transition

    CERN Document Server

    Leviatan, A

    2014-01-01

    We study the competing order and chaos in a first-order quantum phase transition with a high barrier. The boson model Hamiltonian employed, interpolates between its U(5) (spherical) and SU(3) (deformed) limits. A classical analysis reveals regular (chaotic) dynamics at low (higher) energy in the spherical region, coexisting with a robustly regular dynamics in the deformed region. A quantum analysis discloses, amidst a complicated environment, persisting regular multiplets of states associated with partial U(5) and quasi SU(3) dynamical symmetries.

  20. Chiral anomaly and the BaBar and Belle measurements of the γγ*-->π0 transition form factor

    Science.gov (United States)

    Pham, T. N.

    2012-10-01

    The recent BaBar measurements of the γγ*→π0 transition form factor show spectacular deviation from perturbative QCD prediction for large space-like Q2 up to 34GeV2. In this talk, I would like to discuss a recent work on the chiral anomaly effects in the γγ*→π0 transition form factor F(Q2) at large momentum squared Q2. Using PCAC and the Adler-Bell-Jackiw chiral anomaly triangle graph, we find that, F(Q2) at large Q2 behaves as (m2/Q2)×(ln(Q2/m2))2 and is in striking agreement with the BaBar data with m = 135MeV which also reproduces very well the CLEO data at lower Q2. The new Belle measurements could also be fitted with m = 120MeV.

  1. The Anderson transition due to random spin-orbit coupling in two-dimension

    OpenAIRE

    Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi

    2003-01-01

    We report an analysis of the Anderson transition in an SU(2) model with chiral symmetry. Clear single parameter scaling behaviour is observed. We estimate the critical exponent for the divergence of the localization length to be $\

  2. Vector transition form factors of the $N K^*\\to\\Theta^+ $ and $N \\bar{K}^*\\to \\Sigma_{\\bar{10}}^{*-}$ in the SU(3) chiral quark-soliton model

    CERN Document Server

    Ledwig, Tim; Goeke, Klaus

    2008-01-01

    We investigate the vector transition form factors of the nucleon and vector meson $K^*$ to the pentaquark baryon $\\Theta^+$ within the framework of the SU(3) chiral quark-soliton model. We take into account the rotational $1/N_c$ and linear $m_{\\rm s}$ corrections, assuming isospin symmetry and employing the symmetry-conserving quantization. It turns out that the leading-order contributions to the form factors are almost cancelled by the rotational corrections. Because of this, the flavor SU(3) symmetry-breaking terms yield sizeable effects on the transition form factors. In particular, the main contribution to the electric transition form factor comes from the wave-function corrections, which is a consequence of the generalized Ademollo-Gatto theorem derived in the present work. We estimate with the help of the vector meson dominance the $K^*$ vector and tensor coupling constants for the $\\Theta^+$: $g_{K^{*}N\\Theta}=0.74 - 0.87$ and $f_{K^{*}N\\Theta}=0.53 - 1.16$. We argue that the outcome of the present wo...

  3. Chiral Gravitational Waves from Chiral Fermions

    CERN Document Server

    Anber, Mohamed M

    2016-01-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  4. Impact of the symmetry energy on nuclear pasta phases and crust-core transition in neutron stars

    CERN Document Server

    Bao, S S

    2015-01-01

    We study the impact of the symmetry energy on properties of nuclear pasta phases and crust-core transition in neutron stars. We perform a self-consistent Thomas--Fermi calculation employing the relativistic mean-field model. The properties of pasta phases presented in the inner crust of neutron stars are investigated and the crust-core transition is examined. It is found that the slope of the symmetry energy plays an important role in determining the pasta phase structure and the crust-core transition. The correlation between the symmetry energy slope and the crust-core transition density obtained in the Thomas--Fermi approximation is consistent with that predicted by the liquid-drop model.

  5. Chiral phase transitions in the linear sigma model in the Tsallis nonextensive statistics

    CERN Document Server

    Ishihara, Masamichi

    2016-01-01

    We studied chiral phase transitions in the Tsallis nonextensive statistics which has two parameters, the temperature $T$ and entropic parameter $q$. The linear sigma model was used in this study. The critical temperature, condensate, masses, and energy density were calculated under the massless free particle approximation. The critical temperature decreases as $q$ increases. The condensate at $q>1$ is smaller than that at $q=1$. The sigma mass at $q>1$ is heavier than the mass at $q=1$ at high temperature, while the sigma mass at $q>1$ is lighter than the mass at $q=1$ at low temperature. The pion mass at $q>1$ is heavier than the mass at $q=1$. The energy density increases remarkably as $q$ increases. The $q$ dependence in the case of the $q$-expectation value is weaker than that in the case of the conventional expectation value with a Tsallis distribution. The parameter $q$ should be smaller than $4/3$ from energetic point of view. The validity of the Tsallis statistics can be determined by the difference i...

  6. Punctuated Chirality

    Science.gov (United States)

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-12-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  7. Punctuated Chirality

    CERN Document Server

    Gleiser, Marcelo; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  8. Exploring the QCD phase transition in core collapse supernova simulations in spherical symmetry

    CERN Document Server

    Fischery, T; Hempelz, M; Pagliaraz, G; Schaffner-Bielichz, J; Mezzacappa, A; Thielemanny, F -K; Liebendorfer, M

    2010-01-01

    For finite chemical potential effective models of QCD predict a first order phase transition. In favour for the search of such a phase transition in nature, we construct an equation of state for strange quark matter based on the MIT bag model. We apply this equation of state to highly asymmetric core collapse supernova matter with finite temperatures and large baryon densities. The phase transition is constructed using the general Gibbs conditions, which results in an extended coexistence region between the pure hadronic and pure quark phases in the phase diagram, i.e. the mixed phase. The supernovae are simulated via general relativistic radiation hydrodynamics based on three flavor Boltzmann neutrino transport in spherical symmetry. During the dynamical evolution temperatures above 10 MeV, baryon densities above nuclear saturation density and a proton-to-baryon ratio below 0.2 are obtained. At these conditions the phase transition is triggered which leads to a significant softening of the EoS for matter in ...

  9. Anomalous dimension, chiral phase transition and inverse magnetic catalysis in soft-wall AdS/QCD

    Science.gov (United States)

    Fang, Zhen

    2016-07-01

    A modified soft-wall AdS/QCD model with a z-dependent bulk scalar mass is proposed. We argue for the necessity of a modified bulk scalar mass from the quark mass anomalous dimension and carefully constrain the form of bulk mass by the corresponding UV and IR asymptotics. After fixing the form of bulk scalar mass, we calculate the mass spectra of (axial-)vector and pseudoscalar mesons, which have a good agreement with the experimental data. The behavior of chiral phase transition is also investigated, and the results are consistent with the standard scenario and lattice simulations. Finally, the issue of chiral magnetic effects is addressed. We find that the inverse magnetic catalysis emerges naturally from the modified soft-wall model, which is consistent with the recent lattice simulations.

  10. Fluctuations and the Phase Transition in a Chiral Model with Polyakov Loops%引入Polyakov环路的手征模型中的涨落与相变

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We explore the NJL model with Polyakov loops for a system of three colors and two flavors within the mean-field approximation, where both chiral symmetry and confinement are taken into account. We focus on the phase structure of the model and study the chiral and Polyakov loop susceptibilities.

  11. First-order quantum phase transitions: test ground for emergent chaoticity, regularity and persisting symmetries

    CERN Document Server

    Macek, M

    2014-01-01

    We present a comprehensive analysis of the emerging order and chaos and enduring symmetries, accompanying a generic (high-barrier) first-order quantum phase transition (QPT). The interacting boson model Hamiltonian employed, describes a QPT between spherical and deformed shapes, associated with its U(5) and SU(3) dynamical symmetry limits. A~classical analysis of the intrinsic dynamics reveals a rich but simply-divided phase space structure with a H\\'enon-Heiles type of chaotic dynamics ascribed to the spherical minimum and a robustly regular dynamics ascribed to the deformed minimum. The simple pattern of mixed but well-separated dynamics persists in the coexistence region and traces the crossing of the two minima in the Landau potential. A quantum analysis discloses a number of regular low-energy U(5)-like multiplets in the spherical region, and regular SU(3)-like rotational bands extending to high energies and angular momenta, in the deformed region. These two kinds of regular subsets of states retain thei...

  12. Shards of Broken Symmetry: Topological Defects as Traces of the Phase Transition Dynamics

    International Nuclear Information System (INIS)

    We discuss the origin of topological defects in phase transitions and analyze their role as a ''diagnostic tool'' in the study of the non-equilibrium dynamics of symmetry breaking. Homogeneous second order phase transitions are the focus of our attention, but the same paradigm is applied to the cross-over and inhomogeneous transitions. The discrepancy between the experimental results in 3He and 4He is discussed in the light of recent numerical studies. The possible role of the Ginzburg regime in determining the vortex line density for the case of a quench in 4He is raised and tentatively dismissed. The difference in the anticipated origin of the dominant signal in the two (3He and 4He) cases is pointed out and the resulting consequences for the subsequent decay of vorticity are noted. The possibility of a significant discrepancy between the effective field theory and (quantum) kinetic theory descriptions of the order parameter is briefly touched upon, using atomic Bose--Einstein condensates as an example. (author)

  13. Spiral Galaxies as Chiral Objects?

    CERN Document Server

    Capozziello, S; Capozziello, Salvatore; Lattanzi, Alessandra

    2005-01-01

    Spiral galaxies show axial symmetry and an intrinsic 2D-chirality. Environmental effects can influence the chirality of originally isolated stellar systems and a progressive loss of chirality can be recognised in the Hubble sequence. We point out a preferential modality for genetic galaxies as in microscopic systems like aminoacids, sugars or neutrinos. This feature could be the remnant of a primordial symmetry breaking characterizing systems at all scales.

  14. A symmetry-breaking phase transition in a dynamical decision model

    Science.gov (United States)

    Lambert, Gaultier; Chevereau, Guillaume; Bertin, Eric

    2011-06-01

    We consider a simple decision model in which a set of agents randomly choose one of two competing shops selling the same perishable products (typically food). The satisfaction of agents with respect to a given store is related to the freshness of the previously bought products. Agents select with a higher probability the store that they are most satisfied with. Studying the model from a statistical physics perspective, both through numerical simulations and mean-field analytical methods, we find a rich behaviour with continuous and discontinuous phase transitions between a symmetric phase where both stores maintain the same level of activity, and a phase with broken symmetry where one of the two shops attracts more customers than the other.

  15. Chiral symmetry effect on the pion-nucleon coupling constant; O efeito da simetria quiral na constante de acoplamento pion-nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Vanilse da Silva

    1997-12-31

    In this work we study the effects of chiral symmetry in the pion-nucleon coupling constant in the context of the linear {sigma}- model. First, we introduce the linear {sigma}-model and we discuss the phenomenological hypothesis of CVC and PCAC. Next, we calculate the coupling constant g+{pi}{sub NN}(q{sup 2}) and the nucleon pionic mean square radius considering the contribution of all the diagrams up to one-loop in the framework of the linear {sigma}-model for different values of the mass of the sigma meson and we compare them with the phenomenological form factors. Finally we make an extension of the linear {sigma}-model that consists of taking into account the mass differences of ions and nucleons into the Lagrangian of the model, to study the change dependence of g{sub {pi}nn} (q{sup 2}) and of the mean square radius. (author) 21 refs., 17 figs., 4 tabs.

  16. Higher-order time-symmetry-breaking phase transition due to meeting of an exceptional point and a Fano resonance

    Science.gov (United States)

    Tanaka, Satoshi; Garmon, Savannah; Kanki, Kazuki; Petrosky, Tomio

    2016-08-01

    We have theoretically investigated the time-symmetry-breaking phase-transition process for two discrete states coupled with a one-dimensional continuum by solving the nonlinear eigenvalue problem for the effective Hamiltonian associated with the discrete spectrum. We obtain the effective Hamiltonian with use of the Feshbach-Brillouin-Wigner projection method. Strong energy dependence of the self-energy appearing in the effective Hamiltonian plays a key role in the time-symmetry-breaking phase transition: As a result of competition in the decay process between the Van Hove singularity and the Fano resonance, the phase transition becomes a higher-order transition when both the two discrete states are located near the continuum threshold.

  17. Effective action for composite operators and chiral symmetry breakdown in asymptotically free and non-asymptotically free gauge theories

    International Nuclear Information System (INIS)

    An essential distinction in the relaization of the PCAC dynamics in asymptotically free and non-asymptotically free (with a non-trivial ultraviolet-stable fixed point) gauge theories is revealed. For the latter theories an analytical expressions for the condensate is obtained in the two-loop approximation and arguments of support of a soft behaviour at small distances of composite operators are given. The problem of factorizing the low-energy region for the Wess-Zumino-Witten action is discussed. Besides, the mass relations for pseudoscalar mesons in arbitrary Θ-sector are obtained in the first order in fermion bare masses and the impossibility for spontaneous P and CP-symmetries breaking in vector-like gauge theories at Θ=0 is shown

  18. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  19. The bulk transition of QCD with twelve flavors and the role of improvement

    NARCIS (Netherlands)

    Deuzeman, Albert; Lombardo, Maria Paola; da Silva, Tiago Nunes; Pallante, Elisabetta

    2013-01-01

    We study the SU(3) gauge theory with N-f = 12 flavors in the fundamental representation by use of lattice simulations with staggered fermions. With a non-improved action we observe a chiral zero-temperature (bulk) transition separating a region at weak coupling, where chiral symmetry is realized, fr

  20. Chirality in Nonlinear Optics

    Science.gov (United States)

    Haupert, Levi M.; Simpson, Garth J.

    2009-05-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.

  1. The effect of the Polyakov loop on the chiral phase transition

    OpenAIRE

    Szép Zs.; Markó G.

    2010-01-01

    The Polyakov loop is included in the SU(2)_L x SU(2)_R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (sigma,pi) meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors N_f. Keeping the fermion propagator at i...

  2. Monte Carlo studies of chiral and spin ordering of the three-dimensional Heisenberg spin glass

    Science.gov (United States)

    Viet, Dao Xuan; Kawamura, Hikaru

    2009-08-01

    The nature of the ordering of the three-dimensional isotropic Heisenberg spin glass with nearest-neighbor random Gaussian coupling is studied by extensive Monte Carlo simulations. Several independent physical quantities are measured both for the spin and for the chirality, including the correlation-length ratio, the Binder ratio, the glass order parameter, the overlap distribution function, and the nonself-averageness parameter. By controlling the effect of the correction-to-scaling, we have obtained a numerical evidence for the occurrence of successive chiral-glass and spin-glass transitions at nonzero temperatures, TCG>TSG>0 . Hence, the spin and the chirality are decoupled in the ordering of the model. The chiral-glass exponents are estimated to be νCG=1.4±0.2 and ηCG=0.6±0.2 , indicating that the chiral-glass transition lies in a universality class different from that of the Ising spin glass. The possibility that the spin and chiral sectors undergo a simultaneous Kosterlitz-Thouless-type transition is ruled out. The chiral-glass state turns out to be nonself-averaging, possibly accompanying a one-step-like peculiar replica-symmetry breaking. Implications to the chirality scenario of experimental spin-glass transitions are discussed.

  3. Scaling laws in chiral hydrodynamic turbulence

    CERN Document Server

    Yamamoto, Naoki

    2016-01-01

    We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.

  4. Scaling laws in chiral hydrodynamic turbulence

    Science.gov (United States)

    Yamamoto, Naoki

    2016-06-01

    We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry, only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.

  5. Chiral symmetry breaking, duality in the $\\overline{Q}q$ channel and $b \\to \\overline{c}cs$ decays

    CERN Document Server

    Blok, B Yu; Uraltsev, N

    1997-01-01

    We address the issue of the quark-hadron duality in the spectral densities induced by the heavy-light quark currents anti-Q q. In the limit m_Q ->oo, m_q ->0 we observe an enhancement of the physical spectral density compared to the quark one in the scalar and axial channels, due to the Goldstone meson contributions. This may imply that the scale where duality sets in in these channels is higher than in the vector (pseudoscalar) case. Implications for the nonleptonic decays of B mesons (the b -> anti-c cs transition) are considered.

  6. Chiral magnetic effect and anomalous transport from real-time lattice simulations

    CERN Document Server

    Mueller, Niklas; Sharma, Sayantan

    2016-01-01

    We present a first-principle study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian $SU(N_c)$ and Abelian $U(1)$ gauge fields. Investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the Chiral magnetic (CME) and Chiral separation effect (CSE) lead to the formation of a propagating wave. We further analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark mass.

  7. Gluon Dynamics, Center Symmetry and the deconfinement phase transition in SU(3) pure Yang-Mills theory

    CERN Document Server

    Silva, P J

    2016-01-01

    The correlations between the modulus of the Polyakov loop, its phase $\\theta$ and the Landau gauge gluon propagator at finite temperature are investigated in connection with the center symmetry for pure Yang-Mills SU(3) theory. In the deconfined phase, where the center symmetry is spontaneously broken, the phase of the Polyakov loop per configuration is close to $\\theta = 0$, $\\pm \\, 2 \\pi /3$. We find that the gluon propagator form factors associated with $\\theta \\approx 0$ differs quantitatively and qualitatively from those associated to $\\theta \\approx \\pm \\, 2 \\pi /3$. This difference between the form factors is a property of the deconfined phase and a sign of the spontaneous breaking of the center symmetry. Furthermore, given that this difference vanishes in the confined phase, it can be used as an order parameter associated to the deconfinement transition. For simulations near the critical temperature $T_c$, the difference between the propagators associated to $\\theta \\approx 0$ and $\\theta \\approx \\pm ...

  8. Dynamical chiral symmetry breaking in QED3%三维 QED中的动力学手征对称破缺

    Institute of Scientific and Technical Information of China (English)

    周雨青

    2014-01-01

    In order to examine how a propagator behaves in non-perturbative theories and how its behavior is influenced by the choice of a covariant gauge a truncated Dyson-Schwinger equation is used to numerically investigate the properties of fermions and bosons in 3D quantum electrodynamics QED and a series of self-consistent solutions for the fermion propagator in the Nambu and Wigner phases are obtained. These numerical solutions show that the propagator behaves very differently in the Landau gauge domain and in the infrared energy region outside it.By using the propagators in the Nambu and Wigner phases under various gauges it is further investigated how the fermion equivalent pressure difference and fermion condensation change with the gauge parameters.These results indicate that the phase transition described by the CJT equivalent potential and the chiral phase transition described by the chiral condensation are not completely identical.%为了研究非微扰理论中的传播子行为,以及协变规范对其行为的影响,以常用的截断方案下的Dyson-Schwinger方程为基础,采用数值联立求解的方法研究了三维量子电动力学( QED)中的费米子和玻色子的行为,并获得了一系列不同规范下费米传播子在Nambu和Wigner相中的自洽解。对这些数值解的分析表明,远离Landau规范的红外区处,传播子行为明显不同于Landau规范中的行为。基于Nambu和Wigner相中的不同规范下的传播子,进一步对等效压力差和费米凝聚随规范参数的变化做了比较,结果表明,采用CJT等效势描述的相变与手征凝聚描述的手征相变两者之间不完全自洽。

  9. The effect of the Polyakov loop on the chiral phase transition

    Directory of Open Access Journals (Sweden)

    Szép Zs.

    2011-04-01

    Full Text Available The Polyakov loop is included in the S U(2L × S U(2R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq – T phase diagram is studied for various forms of the Polyakov loop potential.

  10. The effect of the Polyakov loop on the chiral phase transition

    Science.gov (United States)

    Markó, G.; Szép, Zs.

    2011-04-01

    The Polyakov loop is included in the S U(2)L × S U(2)R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π) meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf) represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq - T phase diagram is studied for various forms of the Polyakov loop potential.

  11. Abrupt symmetry decrease in the ThT{sub 2}Al{sub 20} alloys (T = 3d transition metal)

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, A.; Bram, A.I. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Venkert, A. [Nuclear Research Center-Negev, POB 9001, Beer-Sheva (Israel); Kiv, A.E.; Fuks, D. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Meshi, L., E-mail: louisa@bgu.ac.il [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel)

    2015-11-05

    Th-T-Al system, where T-3d transition metals, was studied at ThT{sub 2}Al{sub 20} stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT{sub 2}Al{sub 20} phase adopts CeCr{sub 2}Al{sub 20} structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT{sub 2}Al{sub 20} alloys. • It was found that cubic ThT{sub 2}Al{sub 20} phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT{sub 2}Al{sub 10} are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results.

  12. Necessary Condition for Emergent Symmetry from the Conformal Bootstrap

    Science.gov (United States)

    Nakayama, Yu; Ohtsuki, Tomoki

    2016-09-01

    We use the conformal bootstrap program to derive the necessary conditions for emergent symmetry enhancement from discrete symmetry (e.g., Zn ) to continuous symmetry [e.g., U (1 )] under the renormalization group flow. In three dimensions, in order for Z2 symmetry to be enhanced to U (1 ) symmetry, the conformal bootstrap program predicts that the scaling dimension of the order parameter field at the infrared conformal fixed point must satisfy Δ1>1.08 . We also obtain the similar necessary conditions for Z3 symmetry with Δ1>0.580 and Z4 symmetry with Δ1>0.504 from the simultaneous conformal bootstrap analysis of multiple four-point functions. As applications, we show that our necessary conditions impose severe constraints on the nature of the chiral phase transition in QCD, the deconfinement criticality in Néel valence bond solid transitions, and anisotropic deformations in critical O (n ) models. We prove that some fixed points proposed in the literature are unstable under the perturbation that cannot be forbidden by the discrete symmetry. In these situations, the second-order phase transition with enhanced symmetry cannot happen.

  13. Chiral Structure of Baryon and Scalar Tetraquark Currents

    Directory of Open Access Journals (Sweden)

    Chen Hua-Xing

    2014-03-01

    Full Text Available We investigate chiral properties of local fields of baryons consisting of three quarks with flavor SU(3 symmetry. We construct explicitly independent local threequark fields belonging to definite Lorentz and flavor representations. We discuss some implications of the allowed chiral symmetry representations on physical quantities such as axial coupling constants and chiral invariant Lagrangians. We also systematically investigate chiral properties of local scalar tetraquark currents, and study their chiral transformation properties.

  14. Effects of finite size and symmetry energy on the phase transition of stellar matter at subnuclear densities

    CERN Document Server

    Bao, S S

    2016-01-01

    We study the liquid-gas phase transition of stellar matter with the inclusion of the finite-size effect from surface and Coulomb energies. The equilibrium conditions for two coexisting phases are determined by minimizing the total free energy including the surface and Coulomb contributions, which are different from the Gibbs conditions used in the bulk calculations. The finite-size effect can significantly reduce the region of the liquid-gas mixed phase. The influence of the symmetry energy on the liquid-gas phase transition is investigated with the inclusion of finite-size effects. It is found that the slope of the symmetry energy plays an important role in determining the boundary and properties of the mixed phase.

  15. Non-locality and the flux line lattice square to hexagonal symmetry transition in the borocarbide superconductors

    DEFF Research Database (Denmark)

    Eskildsen, M.R.; Fisher, I.R.; Gammel, P.L.;

    2000-01-01

    2B2C. We find that the onset field of the symmetry transition can be shifted more than an order of magnitude due to changes in the range of the non-local electrodynamics. Comparing the results to transport measurements of the electronic mean free path and the superconducting coherence length we find...... that the transition onset follows a model by V. Kogan et nl., which includes non-local corrections to the London model due to the Fermi surface anisotropy of the borocarbides. (C) 2000 Elsevier Science B.V. All rights reserved....

  16. Dimension 2 condensates and Polyakov Chiral Quark Models

    OpenAIRE

    Megias, E.; Arriola, E. Ruiz; Salcedo, L. L.

    2006-01-01

    We address a possible relation between the expectation value of the Polyakov loop in pure gluodynamics and full QCD based on Polyakov Chiral Quark Models where constituent quarks and the Polyakov loop are coupled in a minimal way. To this end we use a center symmetry breaking Gaussian model for the Polyakov loop distribution which accurately reproduces gluodynamics data above the phase transition in terms of dimension 2 gluon condensate. The role played by the quantum and local nature of the ...

  17. Gamow-Teller transitions from Ni-58 to discrete states of Cu-51 - The study of isospin symmetry in atomic nuclei

    NARCIS (Netherlands)

    Fujita, Y; Fujita, H; Adachi, T; Berg, GPA; Caurier, E; Fujimura, H; Hara, K; Hatanaka, K; Janas, Z; Kamiya, J; Kawabata, T; Langanke, K; Martinez-Pinedo, G; Noro, T; Roeckl, E; Shimbara, Y; Shinada, T; van der Werf, SY; Yoshifuku, M; Yosoi, M; Zegers, RGT

    2002-01-01

    Under the assumption that isospin is a good quantum number, symmetry is expected for the transitions from the ground states of T = 1, T-z = +/-1 nuclei to the common excited states of the T-z = 0 nucleus situated between the two nuclei. The symmetry can be studied by comparing the strengths of Gamow

  18. First-order chiral to non-chiral transition in the angular dependence of the upper critical induction of the Scharnberg-Klemm $p$-wave pair state

    OpenAIRE

    Zhang, Jingchuan; Lörscher, Christopher; Gu, Qiang; Klemm, Richard A.

    2014-01-01

    We calculate the temperature $T$ and angular $(\\theta,\\phi)$ dependence of the upper critical induction $B_{c2}(\\theta,\\phi,T)$ for parallel-spin superconductors with an axially symmetric $p$-wave pairing interaction pinned to the lattice and a dominant ellipsoidal Fermi surface (FS). For all FS anisotropies, the chiral Scharnberg-Klemm state $B_{c2}(\\theta,\\phi,T)$ exceeds that of the chiral Anderson-Brinkman-Morel state, and exhibits a kink at $\\theta=\\theta^{*}(T,\\phi)$, indicative of a fi...

  19. Chiral forces and molecular dissymmetry

    International Nuclear Information System (INIS)

    Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected

  20. Oscillator strength of symmetry-forbidden d-d absorption of octahedral transition metal complex: theoretical evaluation.

    Science.gov (United States)

    Saito, Ken; Eishiro, Yoshinori; Nakao, Yoshihide; Sato, Hirofumi; Sakaki, Shigeyoshi

    2012-03-01

    The theoretical evaluation of the oscillator strength of a symmetry-forbidden d-d transition is not easy even nowadays. A new approximate method is proposed here and applied to octahedral complexes [Co(NH(3))(6)](3+) and [Rh(NH(3))(6)](3+) as an example. Our method incorporates the effects of geometry distortion induced by molecular vibration and the thermal distribution of such distorted geometries but does not need the Herzberg-Teller approximation. The calculated oscillator strengths of [Co(NH(3))(6)](3+) agree well with the experimental values in both (1)A(1g) → (1)T(1g) and (1)A(1g) → (1)T(2g) transitions. In the Rh analogue, though the calculated oscillator strengths are somewhat smaller than the experimental values, computational results reproduce well the experimental trends that the oscillator strengths of [Rh(NH(3))(6)](3+) are much larger than those of the Co analogue and the oscillator strength of the (1)A(1g) → (1)T(1g) transition is larger than that of the (1)A(1g) → (1)T(2g) transition. It is clearly shown that the oscillator strength is not negligibly small even at 0 K because the distorted geometry (or the uncertainty in geometry) by zero-point vibration contributes to the oscillator strength at 0 K. These results are discussed in terms of frequency of molecular vibration, extent of distortion induced by molecular vibration, and charge-transfer character involved in the d-d transition. The computational results clearly show that our method is useful in evaluating and discussing the oscillator strength of symmetry-forbidden d-d absorption of transition metal complex.

  1. Symmetries, Symmetry Breaking, Gauge Symmetries

    CERN Document Server

    Strocchi, Franco

    2015-01-01

    The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...

  2. Rotation Driven Shape-Phase Transition of the Yrast Nuclear States with O(6) Symmetry in the Interacting Boson Model

    Institute of Scientific and Technical Information of China (English)

    MU Liang-Zhu; LIU Yu-Xin

    2005-01-01

    @@ In a framework of the interacting boson model (usually referred to as IBM-1) with angular momentum projection on the coherent state, we obtain the energy surface functional of nuclei in terms of angular momentum and shape parameters. Analysing the rotation driven effect on the equilibrium shape shows that the yrast states of the nuclei with O(6) symmetry will experience a shape-phase transition from γ-soft deformed to triaxially deformed and then to spherical shape along the yrast line as the angular momentum increases.

  3. On the symmetry improved CJT formalism in the O(4) linear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Mao, Hong, E-mail: mao@hznu.edu.cn [Department of Physics, Hangzhou Normal University, Hangzhou 310036 (China); Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan)

    2014-05-15

    By using the symmetry improved CJT effective formalism developed by Pilaftsis and Teresi, the chiral phase transition is reconsidered in the framework of the O(4) linear sigma model in chiral limit. Our results confirm the restorations of the second-order phase transition and the Goldstone theorem in the Hartree approximation. Finally, we explicitly calculate the effective potentials via the order parameter for various temperatures and address advantages of the present method in comparison with the O(N) model in large-N approximation.

  4. Quark-hadron phase transition in massive gravity

    Science.gov (United States)

    Atazadeh, K.

    2016-11-01

    We study the quark-hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark-hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.

  5. Lattice study on QCD-like theory with exact center symmetry

    Science.gov (United States)

    Iritani, Takumi; Itou, Etsuko; Misumi, Tatsuhiro

    2015-11-01

    We investigate QCD-like theory with exact center symmetry, with emphasis on the finite-temperature phase transition concerning center and chiral symmetries. On the lattice, we formulate center symmetric SU(3) gauge theory with three fundamental Wilson quarks by twisting quark boundary conditions in a compact direction ( Z 3-QCD model). We calculate the expectation value of Polyakov loop and the chiral condensate as a function of temperature on 163 × 4 and 203 × 4 lattices along the line of constant physics realizing m PS / m V = 0.70. We find out the first-order center phase transition, where the hysteresis of the magnitude of Polyakov loop exists depending on thermalization processes. We show that chiral condensate decreases around the critical temperature in a similar way to that of the standard three-flavor QCD, as it has the hysteresis in the same range as that of Polyakov loop. We also show that the flavor symmetry breaking due to the twisted boundary condition gets qualitatively manifest in the high-temperature phase. These results are consistent with the predictions based on the chiral effective model in the literature. Our approach could provide novel insights to the nonperturbative connection between the center and chiral properties.

  6. Remarks on the U(1) axial symmetry in QCD at zero and non-zero temperature

    CERN Document Server

    Meggiolaro, E

    2002-01-01

    This paper is organized in two parts. The first part (Sections 2-5) is dedicated to the theory at T=0 and contains a pedagogical review of some fundamental aspects related with the chiral symmetries of QCD, the U(1) problem and its solution proposed by 'tHooft, Witten and Veneziano. In the second part (Sections 6-14) we discuss the role of the U(1) axial symmetry for the phase structure of QCD at finite temperature. One expects that, above a certain critical temperature, also the U(1) axial symmetry will be restored. We will try to see if this transition has (or has not) anything to do with the usual chiral transition: various possible scenarios are discussed. In particular, we analyse a scenario in which the U(1) axial symmetry is still broken above the chiral transition. We will show that this scenario can be consistently reproduced in the full respect of the relevant QCD Ward Identities and also using an effective Lagrangian model. A new order parameter is introduced for the U(1) axial symmetry.

  7. Gluon dynamics, center symmetry, and the deconfinement phase transition in SU(3) pure Yang-Mills theory

    Science.gov (United States)

    Silva, P. J.; Oliveira, O.

    2016-06-01

    The correlations between the modulus of the Polyakov loop, its phase θ , and the Landau gauge gluon propagator at finite temperature are investigated in connection with the center symmetry for pure Yang-Mills SU(3) theory. In the deconfined phase, where the center symmetry is spontaneously broken, the phase of the Polyakov loop per configuration is close to θ =0 , ±2 π /3 . We find that the gluon propagator form factors associated with θ ≈0 differ quantitatively and qualitatively from those associated to θ ≈±2 π /3 . This difference between the form factors is a property of the deconfined phase and a sign of the spontaneous breaking of the center symmetry. Furthermore, given that this difference vanishes in the confined phase, it can be used as an order parameter associated to the deconfinement transition. For simulations near the critical temperature Tc, the difference between the propagators associated to θ ≈0 and θ ≈±2 π /3 allows one to classify the configurations as belonging to the confined or deconfined phase. This establishes a selection procedure which has a measurable impact on the gluon form factors. Our results also show that the absence of the selection procedure can be erroneously interpreted as lattice artifacts.

  8. Quark structure of chiral solitons

    CERN Document Server

    Diakonov, D

    2004-01-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  9. The chiral symplectic universality class

    OpenAIRE

    Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi

    2003-01-01

    We report a numerical investigation of localization in the SU(2) model without diagonal disorder. At the band center, chiral symmetry plays an important role. Our results indicate that states at the band center are critical. States away from the band center but not too close to the edge of the spectrum are metallic as expected for Hamiltonians with symplectic symmetry.

  10. Chiral phase transitions in quantum chromodynamics at finite temperature: Hard-thermal-loop resummed Dyson–Schwinger equation in the real time formalism

    Indian Academy of Sciences (India)

    Hisao Nakkagawa; Hiroshi Yokota; Koji Yoshida; Yuko Fueki

    2003-05-01

    Chiral phase transition in thermal QCD is studied by using the Dyson–Schwinger (DS) equation in the real time hard thermal loop approximation. Our results on the critical temperature and the critical coupling are significantly different from those in the preceding analyses in the ladder DS equation, showing the importance of properly taking into account the essential thermal effects, namely the Landau damping and the unstable nature of thermal quasiparticles.

  11. Symmetry breaking phase transitions in the Aharony-Bergman-Jafferis-Maldacena theory with a finite U(1) chemical potential

    International Nuclear Information System (INIS)

    We consider the U(1) charged sector of ABJM theory at finite temperature, which corresponds to the Reissner-Nordstrom AdS black hole in the dual type IIA supergravity description. Including back-reaction to the bulk geometry, we show that phase transitions occur to a broken phase where SU(4) R-symmetry of the field theory is broken spontaneously by the condensation of dimension one or two operators. We construct the composite operators out of fields in ABJM theory and describe the phase transition with the dual gravity solutions. We show numerically and analytically that the relevant critical exponents for the dimension one operator agree precisely with those of mean field theory in the strongly coupled regime of the large N planar limit.

  12. Binary mixtures of chiral gases

    CERN Document Server

    Presilla, Carlo

    2015-01-01

    A possible solution of the well known paradox of chiral molecules is based on the idea of spontaneous symmetry breaking. At low pressure the molecules are delocalized between the two minima of a given molecular potential while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a phase transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. In particular, at pressure greater than a critical value no inversion line is observed. These data are well accounted for by a model previously developed and recently extended to mixtures. In the present paper, we discuss the variation of the critical pressure in binary mixtures as a function of the fractions of the constituents.

  13. Chiral structures and tunable magnetic moments in 3d transition metal doped Pt6 clusters

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiu-Rong; Yang Xing; Ding Xun-Lei

    2012-01-01

    The structural,electronic,and magnetic properties of transition metal doped platinum clusters MPt6 (M=Sc,Ti,V,Cr,Mn,Fe,Co,Ni,Cu,and Zn) are systematically studied by using the relativistic all-electron density functional theory with the generalized gradient approximation. Most of the doped clusters show larger binding energies than the pure Pt7 cluster,which indicates that the doping of the transition metal atom can stabilize the pure platinum cluster.The results of the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gaps suggest that the doped clusters can have higher chemical activities than the pure Pt7 cluster.The magnetism calculations demonstrate that the variation range of the magnetic moments of the MPt6 clusters is from 0 μB to 7 μB,revealing that the MPt6 clusters have potential utility in designing new spintronic nanomaterials with tunable magnetic properties.

  14. Symmetry-dependent carrier relaxation dynamics and charge–density–wave transition in DyTe3 probed by polarized femtosecond spectroscopy

    International Nuclear Information System (INIS)

    Photo-induced quasi-particle (QP) relaxation dynamics with different symmetries have been investigated for the multiple charge–density–wave (CDW) compound DyTe3 by using ultrafast polarized pump-probe spectroscopy. By performing symmetry analysis, the QP dynamics with isotropic A1g and anisotropic B2g symmetry were found to show unique anomalies at the first and second CDW transitions. Both the temperature dependence and pump fluence dependence indicate that the B2g response is very sensitive to the underlying lattice deformation, which provides critical insight into the multiple CDW formations. (paper)

  15. Test of fundamental symmetries via the Primakoff effect

    Directory of Open Access Journals (Sweden)

    Gan Liping

    2014-06-01

    Full Text Available The three neutral pseudoscalar mesons, π0, η and η′, represent one of the most interesting systems in strong interaction physics. A study of the electromagnetic properties of these mesons provides a sensitive probe of the symmetry structure of QCD at low energy. A comprehensive experimental program at Jefferson Laboratory (Jlab is aimed at gathering high precision measurements on the two-photon decay widths and transition form factors at low Q2 of π0, η and η′ via the Primakoff effect. The completed experiments on the π0 radiative decay width at Jlab 6 GeV, and other planned measurements at Jlab 12 GeV will provide a rich laboratory to test the chiral anomaly and to study the origin and dynamics of chiral symmetry breaking at the confinement scale of QCD.

  16. Test of fundamental symmetries via the Primakoff effect

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Liping [University of North Carolina at Wilmington

    2014-06-01

    The three neutral pseudoscalar mesons, pi^0, eta and eta', represent one of the most interesting systems in strong interaction physics. A study of the electromagnetic properties of these mesons provides a sensitive probe of the symmetry structure of QCD at low energy. A comprehensive experimental program at Jefferson Laboratory (Jlab) is aimed at gathering high precision measurements on the two-photon decay widths and transition form factors at low Q^2 of pi^0, eta and eta' via the Primakoff effect. The completed experiments on the pi^0 radiative decay width at Jlab 6 GeV, and other planned measurements at Jlab 12 GeV will provide a rich laboratory to test the chiral anomaly and to study the origin and dynamics of chiral symmetry breaking at the confinement scale of QCD.

  17. Simulation study on dynamics transition in neuronal activity during sleep cycle by using asynchronous and symmetry neural network model.

    Science.gov (United States)

    Nakao, M; Takahashi, T; Mizutani, Y; Yamamoto, M

    1990-01-01

    We have found that single neuronal activities in different regions in the brain commonly exhibit the distinct dynamics transition during sleep-waking cycle in cats. Especially, power spectral densities of single neuronal activities change their profiles from the white to the 1/f along with sleep cycle from slow wave sleep (SWS) to paradoxical sleep (PS). Each region has different neural network structure and physiological function. This suggests a globally working mechanism may be underlying the dynamics transition we concern. Pharmacological studies have shown that a change in a wide-spread serotonergic input to these regions possibly causes the neuronal dynamics transition during sleep cycle. In this paper, based on these experimental results, an asynchronous and symmetry neural network model including inhibitory input, which represents the role of the serotonergic system, is utilized to examine the reality of our idea that the inhibitory input level varying during sleep cycle induce that transition. Simulation results show that the globally applied inhibitory input can control the dynamics of single neuronal state evolution in the artificial neural network: 1/f-like power spectral density profiles result under weak inhibition, which possibly corresponds to PS, and white profiles under strong inhibition, which possibly corresponds to SWS. An asynchronous neural network is known to change its state according to its energy function. The geometrical structure of network energy function is thought to vary along with the change in inhibitory level, which is expected to cause the dynamics transition of neuronal state evolution in the network model. These simulation results support the possibility that the serotonergic system is essential for the dynamics transition of single neuronal activities during sleep cycle.

  18. Interacting N-vector order parameters with O(N) symmetry

    CERN Document Server

    Pelissetto, A; Pelissetto, Andrea; Vicari, Ettore

    2004-01-01

    We consider the critical behavior of the most general system of two N-vector order parameters that is O(N) invariant. We show that it may a have a multicritical transition with enlarged symmetry controlled by the chiral O(2)xO(N) fixed point. For N=2, 3, 4, if the system is also invariant under the exchange of the two order parameters and under independent parity transformations, one may observe a critical transition controlled by a fixed point belonging to the mn model. Also in this case there is a symmetry enlargement at the transition, the symmetry being [SO(N)+SO(N)]xC_2, where C_2 is the symmetry group of the square.

  19. Chiral discrimination in optical trapping and manipulation

    Science.gov (United States)

    Bradshaw, David S.; Andrews, David L.

    2014-10-01

    When circularly polarized light interacts with chiral molecules or nanoscale particles powerful symmetry principles determine the possibility of achieving chiral discrimination, and the detailed form of electrodynamic mechanisms dictate the types of interaction that can be involved. The optical trapping of molecules and nanoscale particles can be described in terms of a forward-Rayleigh scattering mechanism, with trapping forces being dependent on the positioning within the commonly non-uniform intensity beam profile. In such a scheme, nanoparticles are commonly attracted to local potential energy minima, ordinarily towards the centre of the beam. For achiral particles the pertinent material response property usually entails an electronic polarizability involving transition electric dipole moments. However, in the case of chiral molecules, additional effects arise through the engagement of magnetic counterpart transition dipoles. It emerges that, when circularly polarized light is used for the trapping, a discriminatory response can be identified between left- and right-handed polarizations. Developing a quantum framework to accurately describe this phenomenon, with a tensor formulation to correctly represent the relevant molecular properties, the theory leads to exact analytical expressions for the associated energy landscape contributions. Specific results are identified for liquids and solutions, both for isotropic media and also where partial alignment arises due to a static electric field. The paper concludes with a pragmatic analysis of the scope for achieving enantiomer separation by such methods.

  20. A nontrivial critical fixed point for replica-symmetry-breaking transitions

    CERN Document Server

    Charbonneau, Patrick

    2016-01-01

    The transformation of the free-energy landscape from smooth to fractal is the richest feature of mean-field disordered systems. A well-studied example is the de Almeida-Thouless transition for spin glasses in a magnetic field, and a similar phenomenon--the Gardner transition--has recently been predicted for structural glasses. However, the existence of these phase transitions has been called into question below the upper critical dimension d_u=6. Here, we obtain evidence for these transitions in dimensions d

  1. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  2. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors

    Science.gov (United States)

    Wang, Qisi; Park, J. T.; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J. W.; Ivanov, A.; Chi, Songxue; Matsuda, M.; Cao, Huibo; Birgeneau, R. J.; Efremov, D. V.; Zhao, Jun

    2016-05-01

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s -wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s± or d -wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in Tc in the S-doped iron selenide superconductors KxFe2 -y(Se1-zSz) 2 . We show that a rather sharp magnetic resonant mode well below the superconducting gap (2 Δ ) in the undoped sample (z =0 ) is replaced by a broad hump structure above 2 Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  3. Landau-Level Mixing and Particle-Hole Symmetry Breaking for Spin Transitions in the Fractional Quantum Hall Effect

    Science.gov (United States)

    Zhang, Yuhe; Wójs, A.; Jain, J. K.

    2016-09-01

    The spin transitions in the fractional quantum Hall effect provide a direct measure of the tiny energy differences between differently spin-polarized states and thereby serve as an extremely sensitive test of the quantitative accuracy of the theory of the fractional quantum Hall effect, and, in particular, of the role of Landau-level mixing in lifting the particle-hole symmetry. We report on an accurate quantitative study of this physics, evaluating the effect of Landau-level mixing in a nonperturbative manner using a fixed-phase diffusion Monte Carlo method. We find excellent agreement between our calculated critical Zeeman energies and the experimentally measured values. In particular, we find, as also do experiments, that the critical Zeeman energies for fractional quantum Hall states at filling factors ν =2 -n /(2 n ±1 ) are significantly higher than those for ν =n /(2 n ±1 ), a quantitative signature of the lifting of particle-hole symmetry due to Landau-level mixing.

  4. Chirality and Life

    Science.gov (United States)

    Barron, Laurence D.

    2008-03-01

    Chirality, meaning handedness, pervades much of modern science, from the physics of elementary particles to the chemistry of life. The amino acids and sugars from which the central molecules of life—proteins and nucleic acids—are constructed exhibit homochirality, which is expected to be a key biosignature in astrobiology. This article provides a brief review of molecular chirality and its significance for the detection of extant or extinct life on other worlds. Fundamental symmetry aspects are emphasized since these bring intrinsic physical properties of the universe to bear on the problem of the origin and role of homochirality in the living world.

  5. The quest for chirality

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, W.A. [Department of Chemistry Stanford University, Stanford, California 94305 (United States)

    1996-07-01

    The indispensable role played by homochirality and chiral homogeneity in the self-replication of crucial biomolecules is stressed, with the conclusion that life could neither exist nor originate without these chiral molecular attributes. Hypotheses historically proposed for the origin of chiral molecules on Earth are reviewed, including biogenic theories as well as abiotic theories embracing both indeterminate and determinate mechanisms. Indeterminate mechanisms, including autocatalytic symmetry breaking, asymmetric adsorption on quartz and clay minerals, and asymmetric syntheses in chiral crystals, are discussed and evaluated in the context of the prebiotic environment. Abiotic determinate mechanisms based on electric, magnetic and gravitational fields, on circularly polarized light (CPL), and on parity violation effects are summarized, with the emphasis that only CPL has proved practicable experimentally, but that it would be implausible on the primitive Earth. Mechanisms for the amplification of small, indigenous enantiomeric excesses are discussed, with one involving the partial polymerization of amino acids and the partial hydrolysis of polypeptides suggested as potentially viable prebiotically. Aspects of the turbulent, chirality-destructive primeval environment are described, with the conclusion that all of the above mechanisms for the {ital terrestrial} prebiotic origin of chirality would be non-viable, and that an alternative extraterrestrial source for the accumulation of chiral molecules on primitive Earth must have been operative. A scenario for this is outlined, in which we postulate that asymmetric photolysis of the organic mantles on interstellar grains in molecular clouds by circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae produces chiral molecules in the grain mantles. (Abstract Truncated)

  6. Symmetries in nature

    International Nuclear Information System (INIS)

    Symmetry, disymmetry, chirality etc. are well-known topics in chemistry. But they cannot only be found on the molecular level of matter. Atoms and elementary particles in physics are also characterized by particular symmetry groups. Even living organisms and populations on the macroscopic level have functional properties of symmetry. The whole physical, chemical, and biological evolution seems to be regulated by the emergence of new symmetries and the breaking down of old ones. One is reminded of Heisenberg's famous statement: 'Die letzte Wurzel der Erscheinungen ist also nicht die Materie, sondern das mathematische Gesetz, die Symmetrie, die mathematische Form' (Wandlungen in den Grundlagen der Naturwissenschaften, 1959). Historically the belief in symmetry and simplicity of nature has a long philosophical tradition from the Pythagoreans, Plato and Greek astronomers to Kepler and modern scientists. Today, 'symmetries in nature' is a common topic of mathematics, physics, chemistry, and biology. A lot of Nobel prizes were given in honour of inquiries concerning symmetries in nature. The fascination of symmetries is not only motivated by science, but by art and religion too. Therefore 'symmetris in nature' is an interdisciplinary topic which may help to overcome C.P. Snow's 'Two Cultures' of natural sciences and humanities. (author) 17 refs., 21 figs

  7. Relativistic dissipative hydrodynamics with spontaneous symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Pujol, C.; Davesne, D. [IPN - Lyon, 43 Bd du 11 Novembre 1918, F-69622 Villeurbanne Cedex (France)

    2002-07-01

    In this paper we consider dissipative hydrodynamic equations for systems with continuous broken symmetries. We first present the case of superfluidity, in which the symmetry U(1) is broken and then generalize to the chiral symmetry SU(2){sub L} x SU(2){sub R}. New transport coefficients are introduced and the consequences of their existence are discussed. (authors)

  8. Relativistic dissipative hydrodynamics with spontaneous symmetry breaking

    CERN Document Server

    Pujol, C

    2003-01-01

    In this paper we consider dissipative hydrodynamic equations for systems with continuous broken symmetries. We first present the case of superfluidity, in which the symmetry U(1) is broken and then generalize to the chiral symmetry $SU(2)_L \\times SU(2)_R$. New transport coefficients are introduced and the consequences of their existence are discussed.

  9. Square to hexagonal symmetry transition of the flux line lattice in YNi2B2C for different field orientations

    DEFF Research Database (Denmark)

    Eskildsen, M.R.; Gammel, P.L.; Barber, B.P.;

    1998-01-01

    Using small-angle neutron scattering we have studied the magnetic flux line lattice in YNi2B2C with the field rotated 30(:) away from the crystalline c-axis. Previously we have reported on a square to hexagonal symmetry transition of the fluc line lattice below 1 kOe for H parallel to c. We find ...

  10. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  11. NMR, symmetry elements, structure and phase transitions in the argyrodite family

    Science.gov (United States)

    Gaudin, E.; Taulelle, F.; Boucher, F.; Evain, M.

    1998-02-01

    Cu7PSe6 belongs to a family of structures known as the argyrodites. It undergoes two phases transitions. The high temperature phase has been determined by X-ray diffraction. It has a Foverline{4}3m space group. Medium temperature phases have been refined using a non-harmonic technique and the space group proposed is P213. The low temperature phase had an apparent space group of Foverline{4}3m also. Use of X-ray diffraction and NMR together has allowed to determine the space groups of all phases as being respectively Foverline{4}3m, P213 and Pmn21. Positioning of disordered coppers in the structure is therefore possible and the structure can be described by connex polyhedra of PSe3-4 and SeCux-2_x. The phase transitions can be understood by an ordered motion of SeCux-2x polyhedra. If these polyhedra set in motion independently two transitions are to be observed, if they are coupled only one is observed. Cu7PSe6 appartient à une famille de composés connus sous le nom d'argyrodites. Cu7PSe6 possède deux transitions de phase. La structure de haute température a été déterminée par diffraction des rayons X. Elle se décrit par le groupe d'espace Foverline{4}3m. La phase de moyenne température a été raffinée en utilisant une technique non-harmonique et le groupe d'espace proposé est P213. La phase de basse température possède également un groupe d'espace apparent Foverline{4}3m. En utilisant ensemble la diffraction des rayons X et la RMN, il a été possible de déterminer les groupes d'espace de toutes les phases comme étant respectivement Foverline{4}3m, P213 et Pmn21. Placer les atomes de cuivre, désordonnés, dans la structure devient alors possible et la structure peut se décrire comme un ensemble de polyèdres connexes de PSe3-4 et SeCux-2_x. Les transitions de phases se décrivent alors comme des mouvements ordonnés des polyèdres SeCux-2_x. Si ces polyèdres se mettent en mouvement indépendamment, deux transitions de phases sont attendues, si

  12. Near-field to far-field transition of photonic crystal fibers symmetries and interference phenomena

    CERN Document Server

    Mortensen, N A

    2002-01-01

    The transition from the near to the far field of the fundamental mode radiating out of a photonic crystal fiber is investigated experimentally and theoretically. It is observed that the hexagonal shape of the near field rotates two times by pi/6 when moving into the far field, and eventually six satellites form around a nearly gaussian far-field pattern. A semi-empirical model is proposed, based on describing the near field as a sum of seven gaussian distributions, which qualitatively explains all the observed phenomena and quantitatively predicts the relative intensity of the six satellites in the far field.

  13. Front-Form Chiral Multiplets

    CERN Document Server

    Gómez-Rocha, María

    2012-01-01

    In this article we point out that the unitary transformation that relates the chiral basis $\\{R; I J^{PC}\\}$ and the $\\{I; ^{2S+1}L_J \\}$ basis, which was already derived for canonical spin in instant form, is also applicable in light-cone representations. From the most general expression for the Clebsch-Gordan coefficients of the Poincar\\'e group one can see that the chiral limit brings the angular momentum coupling into a simple form that permits a clear relation in terms of SU(2) Clebsch-Gordan coefficients. It provides a tool of measurement of chiral symmetry in relativistic composite systems.

  14. Confinement-deconfinement transition due to spontaneous symmetry breaking in quantum Hall bilayers

    Science.gov (United States)

    Pikulin, D. I.; Silvestrov, P. G.; Hyart, T.

    2016-01-01

    Band-inverted electron-hole bilayers support quantum spin Hall insulator and exciton condensate phases. Interest in quantum spin Hall effect in these systems has recently put them in the spotlight. We investigate such a bilayer in an external magnetic field. We show that the interlayer correlations lead to formation of a helical quantum Hall exciton condensate state. Existence of the counterpropagating edge modes in this system results in formation of a ground state spin-texture not supporting gapless single-particle excitations. The charged edge excitations in a sufficiently narrow Hall bar are confined: a charge on one of the edges always gives rise to an opposite charge on the other edge. Magnetic field and gate voltages allow the control of a confinement-deconfinement transition of charged edge excitations, which can be probed with nonlocal conductance. Confinement-deconfinement transitions are of great interest, not least because of their possible significance in shedding light on the confinement problem of quarks.

  15. Spectrum of the SU(3) Dirac operator on the lattice Transition from random matrix theory to chiral perturbation theory

    CERN Document Server

    Göckeler, M; Rakow, P E L; Schäfer, A; Wettig, T

    2002-01-01

    We calculate complete spectra of the Kogut-Susskind Dirac operator on the lattice in quenched SU(3) gauge theory for various values of coupling constant and lattice size. From these spectra we compute the connected and disconnected scalar susceptibilities and find agreement with chiral random matrix theory up to a certain energy scale, the Thouless energy. The dependence of this scale on the lattice volume is analyzed. In the case of the connected susceptibility this dependence is anomalous, and we explain the reason for this. We present a model of chiral perturbation theory that is capable of describing the data beyond the Thouless energy and that has a common range of applicability with chiral random matrix theory.

  16. Interplay of topology and interactions in quantum Hall topological insulators: U(1) symmetry, tunable Luttinger liquid, and interaction-induced phase transitions

    Science.gov (United States)

    Kharitonov, Maxim; Juergens, Stefan; Trauzettel, Björn

    2016-07-01

    We consider a class of quantum Hall topological insulators: topologically nontrivial states with zero Chern number at finite magnetic field, in which the counterpropagating edge states are protected by a symmetry (spatial or spin) other than time-reversal. HgTe-type heterostructures and graphene are among the relevant systems. We study the effect of electron interactions on the topological properties of the system. We particularly focus on the vicinity of the topological phase transition, marked by the crossing of two Landau levels, where the system is a strongly interacting quantum Hall ferromagnet. We analyze the edge properties using the formalism of the nonlinear σ -model. We establish the symmetry requirement for the topological protection in this interacting system: effective continuous U(1) symmetry with respect to uniaxial isospin rotations must be preserved. If U(1) symmetry is preserved, the topologically nontrivial phase persists; its edge is a helical Luttinger liquid with highly tunable effective interactions. We obtain explicit analytical expressions for the parameters of the Luttinger liquid in the quantum-Hall-ferromagnet regime. However, U(1) symmetry may be broken, either spontaneously or by U(1)-asymmetric interactions. In either case, interaction-induced transitions occur to the respective topologically trivial phases with gapped edge charge excitations.

  17. Numerical analysis on transitions and symmetry-breaking in the wake of a flapping foil

    Institute of Scientific and Technical Information of China (English)

    Guo-Yi He; Qi Wang; Xing Zhang; Shu-Guang Zhang

    2012-01-01

    Flying and marine animals often use flapping wings or tails to generate thrust.In this paper,we will use the simplest flapping model with a sinusoidal pitching motion over a range of frequency and amplitude to investigate the mechanism of thrust generation.Previous work focuses on the Karman vortex street and the reversed Karman vortex street but the transition between two states remains unknown.The present numerical simulation provides a complete scenario of flow patterns from the Karman vortex street to reversed Karman vortex street via aligned vortices and the ultimate state is the deflected Karman vortex street,as the parameters of flapping motions change.The results are in agreement with the previous experiment.We make further discussion on the relationship of the observed states with drag and thrust coefficients and explore the mechanism of enhanced thrust generation using flapping motions.

  18. Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition

    International Nuclear Information System (INIS)

    A smart polymer stabilized liquid crystal (PSLC) thin film with temperature-controllable light transmittance was prepared based on a smectic-A (SmA)–chiral nematic (N*) phase transition, and then the effect of the composition and the preparation condition of the PSLC film on its thermo-optical (T-O) characteristics has been investigated in detail. Within the temperature range of the SmA phase, the PSLC shows a strong opaque state due to the focal conic alignment of liquid crystal (LC) molecules, while the film exhibits a transparent state result from the parallel alignment of N* phase LC molecules at a higher temperature. Importantly, the PSLC films with different temperature of phase transition and contrast ratio can be prepared by changing the composition of photo-polymerizable monomer/LC/chiral dopant. According to the competition between the polymerization of the curable monomers and the diffusion of LC molecules, the ultraviolet (UV) curing surrounding temperature and the intensity of UV irradiation play a critical role in tuning the size of the polymer network meshes, which in turn influence the contrast ratio and the switching speed of the film. Our observations are expected to pave the way for preparing smart PSLC thin films for applications in areas of smart windows, thermo-detectors and other information recording devices. (paper)

  19. Chiral geometry in multiple chiral doublet bands

    Science.gov (United States)

    Zhang, Hao; Chen, Qibo

    2016-02-01

    The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)

  20. Symmetries and Symmetry Breaking

    CERN Document Server

    Van Oers, W T H

    2003-01-01

    In understanding the world of matter, the introduction of symmetry principles following experimentation or using the predictive power of symmetry principles to guide experimentation is most profound. The conservation of energy, linear momentum, angular momentum, charge, and CPT involve fundamental symmetries. All other conservation laws are valid within a restricted subspace of the four interactions: the strong, the electromagnetic, the weak, and the gravitational interaction. In this paper comments are made regarding parity violation in hadronic systems, charge symmetry breaking in two nucleon and few nucleon systems, and time-reversal-invariance in hadronic systems.

  1. Reaction-diffusion equation for quark-hadron transition in heavy-ion collisions

    CERN Document Server

    Bagchi, Partha; Sengupta, Srikumar; Srivastava, Ajit M

    2015-01-01

    Reaction-diffusion equations with suitable boundary conditions have special propagating solutions which very closely resemble the moving interfaces in a first order transition. We show that the dynamics of chiral order parameter for chiral symmetry breaking transition in heavy-ion collisions, with dissipative dynamics, is governed by one such equation, specifically, the Newell-Whitehead equation. Further, required boundary conditions are automatically satisfied due to the geometry of the collision. The chiral transition is, therefore, completed by a propagating interface, exactly as for a first order transition, even though the transition actually is a crossover for relativistic heavy-ion collisions. Same thing also happens when we consider the initial confinement-deconfinement transition with Polyakov loop order parameter. The resulting equation, again with dissipative dynamics, can then be identified with the reaction-diffusion equation known as the Fitzhugh-Nagumo equation which is used in population genet...

  2. Opportunities for collective model and chirality studies at TRIUMF

    International Nuclear Information System (INIS)

    First predictions for a specific case of the particle-hole-core coupling model which takes advantage of symmetries of a triaxial rotor with γ = 90° are reviewed. Results of the model calculations point towards existence of stable chiral geometry in specific configurations involving high-j orbitals. Next, experimental information on doublet bands built on unique parity, πh11/2νh11/2 intruder states in odd-odd 134Pr is discussed; in particular observed disagreements between electromagnetic transitions within the doublet structures which is pointed out as inconsistent with the simplest models. Finally, the unique experimental infrastructure developed at the Tri-University Meson Facility (TRIUMF) Canada's National Laboratory for Particle and Nuclear Physics is presented including a range of isotopes in the mass 130 region that are accessible as beams and which can possibly yield significant new information in investigations of nuclear chirality. (author)

  3. A Chiral Hemiporphyrazine Derivative: Synthesis and Chiroptical Properties.

    Science.gov (United States)

    Wu, Yanping; Gai, Lizhi; Xiao, Xuqiong; Lu, Hua; Li, Zhifang; Mack, John; Harris, Jessica; Nyokong, Tebello; Shen, Zhen

    2016-08-01

    The synthesis of an optically active hemiporphyrazine with chiral binaphthyl substituents (1) is reported, providing the first example of the incorporation of an intrinsically chiral moiety into the macrocyclic core of a hemiporphyrazine analogue. A negative circular dichroism (CD) signal is observed in the 325-450 nm region of the CD spectrum of (S,S)-1, while mainly positive bands are observed in the 220-325 nm region. Mirror symmetry is observed across the entire wavelength range of the CD spectra of (R,R)-1 and (S,S)-1. An irreversible one-electron oxidation wave with an onset potential at 1.07 V is observed by cyclic voltammetry, along with a reversible one-electron reduction wave at -0.85 V. Density functional calculations reproduce the experimentally observed data and trends, and provide further insight into the nature of the electronic transitions. PMID:27348494

  4. Determination of U (1 )A restoration from pion and a0 -meson screening masses: Toward the chiral regime

    Science.gov (United States)

    Ishii, Masahiro; Yonemura, Koji; Takahashi, Junichi; Kouno, Hiroaki; Yahiro, Masanobu

    2016-01-01

    We incorporate the effective restoration of U (1 )A symmetry in the 2 +1 -flavor entanglement Polyakov-loop extended Nambu-Jona-Lasinio (EPNJL) model by introducing a temperature-dependent strength K (T ) to the Kobayashi-Maskawa-'t Hooft determinant interaction. T dependence of K (T ) is well determined from pion and a0-meson screening masses obtained by lattice QCD (LQCD) simulations with improved p4 staggered fermions. The strength is strongly suppressed in the vicinity of the pseudocritical temperature of chiral transition. The EPNJL model with the K (T ) well reproduces meson susceptibilities calculated by LQCD with domain-wall fermions. The model shows that the chiral transition is second order at the "light-quark chiral-limit" point where the light quark mass is zero and the strange quark mass is fixed at the physical value. This indicates that there exists a tricritical point. Hence, the location is estimated.

  5. Determination of $U(1)_{\\rm A}$ restoration from pion and $a_0$-meson screening masses: Toward the chiral regime

    CERN Document Server

    Ishii, Masahiro; Takahashi, Junichi; Kouno, Hiroaki; Yahiro, Masanobu

    2016-01-01

    We incorporate the effective restoration of $U(1)_{\\rm A}$ symmetry in the 2+1 flavor entanglement Polyakov-loop extended Nambu--Jona-Lasinio (EPNJL) model by introducing a temperature-dependent strength $K(T)$ to the Kobayashi-Maskawa-'t Hooft (KMT) determinant interaction. $T$ dependence of $K(T)$ is well determined from the results of state-of-the-art lattice QCD simulations on pion and $a_0$-meson screening masses. The strength is suppressed in the vicinity of the pseudocritical temperature of chiral transition and hence much faster than the instanton suppression estimated by Pisarski and Yaffe. The EPNJL model shows that the chiral transition is second order at the "light-quark chiral-limit" point where the light quark mass is zero and the strange quark mass is fixed at the physical value. This indicates that there exists a tricritical point. Hence the location is estimated.

  6. Chiral susceptibility and the scalar Ward identity.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.; Liu, Y.-X.; Roberts, C. D.; Shi, Y.-M.; Sun, W.-M.; Zong, H.-S.; Physics; Inst. of Applied Physics and Computational Mathematics; Peking Univ.; National Lab. of Heavy Ion Accelerator; Univ. of New South Wales; Nanjing Univ.; Joint Center for Particle, Nuclear Physics and Cosmology

    2009-03-01

    The chiral susceptibility is given by the scalar vacuum polarization at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularization procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansaetze. For the two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking.

  7. Two-dimensional collective Hamiltonian for chiral and wobbling modes

    CERN Document Server

    Chen, Q B; Zhao, P W; Jolos, R V; Meng, J

    2016-01-01

    A two-dimensional collective Hamiltonian (2DCH) on both azimuth and polar motions in triaxial nuclei is proposed to investigate the chiral and wobbling modes. In the 2DCH, the collective potential and the mass parameters are determined from three-dimensional tilted axis cranking (TAC) calculations. The broken chiral and signature symmetries in the TAC solutions are restored by the 2DCH. The validity of the 2DCH is illustrated with a triaxial rotor ($\\gamma=-30^\\circ$) coupling to one $h_{11/2}$ proton particle and one $h_{11/2}$ neutron hole. By diagonalizing the 2DCH, the angular momenta and energy spectra are obtained. These results agree with the exact solutions of the particle rotor model (PRM) at high rotational frequencies. However, at low frequencies, the energies given by the 2DCH are larger than those by the PRM due to the underestimation of the mass parameters. In addition, with increasing angular momentum, the transitions from the chiral vibration to chiral rotation and further to longitudinal wobb...

  8. Chiral Electronics

    OpenAIRE

    Kharzeev, Dmitri E.; Yee, Ho-Ung

    2012-01-01

    We consider the properties of electric circuits involving Weyl semimetals. The existence of the anomaly-induced chiral magnetic current in a Weyl semimetal subjected to magnetic field causes an interesting and unusual behavior of such circuits. We consider two explicit examples: i) a circuit involving the "chiral battery" and ii) a circuit that can be used as a "quantum amplifier" of magnetic field. The unique properties of these circuits stem from the chiral anomaly and may be utilized for c...

  9. Testing a new analytical approach for determination of vibrational transition moment directions in low symmetry planar molecules: 1-D- and 2-D-naphthalene.

    Science.gov (United States)

    Rogojerov, Marin; Keresztury, Gábor; Kamenova-Nacheva, Mariana; Sundius, Tom

    2012-12-01

    A new analytical approach for improving the precision in determination of vibrational transition moment directions of low symmetry molecules (lacking orthogonal axes) is discussed in this paper. The target molecules are partially uniaxially oriented in nematic liquid crystalline solvent and are studied by IR absorption spectroscopy using polarized light. The fundamental problem addressed is that IR linear dichroism measurements of low symmetry molecules alone cannot provide sufficient information on molecular orientation and transition moment directions. It is shown that computational prediction of these quantities can supply relevant complementary data, helping to reveal the hidden information content and achieve a more meaningful and more precise interpretation of the measured dichroic ratios. The combined experimental and theoretical/computational method proposed by us recently for determination of the average orientation of molecules with C(s) symmetry has now been replaced by a more precise analytical approach. The new method introduced and discussed in full detail here uses a mathematically evaluated angle between two vibrational transition moment vectors as a reference. The discussion also deals with error analysis and estimation of uncertainties of the orientational parameters. The proposed procedure has been tested in an analysis of the infrared linear dichroism (IR-LD) spectra of 1-D- and 2-D-naphthalene complemented with DFT calculations using the scaled quantum mechanical force field (SQM FF) method. PMID:22981590

  10. Chiral Dynamics With Wilson Fermions

    CERN Document Server

    Splittorff, K

    2012-01-01

    Close to the continuum the lattice spacing affects the smallest eigenvalues of the Wilson Dirac operator in a very specific manner determined by the way in which the discretization breaks chiral symmetry. These effects can be computed analytically by means of Wilson chiral perturbation theory and Wilson random matrix theory. A number of insights on chiral Dynamics with Wilson fermions can be obtained from the computation of the microscopic spectrum of the Wilson Dirac operator. For example, the unusual volume scaling of the smallest eigenvalues observed in lattice simulations has a natural explanation. The dynamics of the eigenvalues of the Wilson Dirac operator also allow us to determine the additional low energy constants of Wilson chiral perturbation theory and to understand why the Sharpe-Singleton scenario is only realized in unquenched simulations.

  11. Chiral Quark Model of Mesons

    CERN Document Server

    Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin

    1999-01-01

    We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.

  12. Life's chirality from prebiotic environments

    Science.gov (United States)

    Gleiser, Marcelo; Walker, Sara Imari

    2012-10-01

    A key open question in the study of life is the origin of biomolecular homochirality: almost every life-form on Earth has exclusively levorotary amino acids and dextrorotary sugars. Will the same handedness be preferred if life is found elsewhere? We review some of the pertinent literature and discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events. In one scenario, autocatalytic prebiotic reactions undergo stochastic fluctuations due to environmental disturbances, in a mechanism reminiscent of evolutionary punctuated equilibrium: short-lived destructive events may lead to long-term enantiomeric excess. In another, chiral-selective polymerization reaction rates influenced by environmental effects lead to substantial chiral excess even in the absence of autocatalysis. Applying these arguments to other potentially life-bearing platforms has implications to the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic (chirally neutral) on average.

  13. Chiral dynamics and heavy-fermion formalism in nuclei; 1, exchange axial currents

    CERN Document Server

    Park, T S; Rho, M; Park, Tae-Sun; Min, Dong-Pil; Rho, Mannque

    1993-01-01

    Chiral perturbation theory in heavy-fermion formalism is developed for meson-exchange currents in nuclei and applied to nuclear axial- charge transitions. Calculation is performed to the next-to-leading order in chiral expansion which involves graphs up to one loop. The result turns out to be very simple. The previously conjectured notion of "chiral filter mechanism" in the time component of the nuclear axial current and the space component of the nuclear electromagnetic current is verified to that order. As a consequence, the phenomenologically observed soft-pion dominance in the nuclear process is given a simple interpretation in terms of chiral symmetry in nuclei. In this paper, we focus on the axial current, relegating the EM current which can be treated in a similar way to a separate paper. We discuss the implication of our result on the enhanced axial-charge transitions observed in heavy nuclei and clarify the relationship between the phenomenological meson-exchange description and the chiral Lagrangian...

  14. Dissecting nucleon transition electromagnetic form factors

    CERN Document Server

    Segovia, Jorge

    2016-01-01

    In Poincar\\'e-covariant continuum treatments of the three valence-quark bound-state problem, the force behind dynamical chiral symmetry breaking also generates nonpointlike, interacting diquark correlations in the nucleon and its resonances. We detail the impact of these correlations on the electromagnetically-induced nucleon-$\\Delta$ and nucleon-Roper transitions, providing a flavour-separation of the latter and associated predictions that can be tested at modern facilities.

  15. The doublet of Dirac fermions in the field of the non-Abelian monopole, isotopic chiral symmetry, and parity selection rules

    CERN Document Server

    Redkov, V M

    1999-01-01

    The paper concerns a problem of the Dirac fermion doublet in the external monopole potential obtained by embedding the Abelian monopole solution in the non-Abelian scheme. In this case, the doublet-monopole Hamiltonian is invariant under operations consisting of a complex and one parametric Abelian subgroup in S0(3.C). This symmetry results in a certain freedom in choosing a discrete operator N(A) (A is a complex number) entering the complete set of quantum variables. The same complex number A represents an additional parameter at the basis functions. The generalized inversion like operator N(A) affords certain generalized N(A)-parity selection rules. All the different sets of basis functions Psi(A) determine the same Hilbert space. The functions Psi(A) decompose into linear combinations of Psi(A=0): Psi(A) = F(A) Psi(A=0). However, the bases considered turn out to be nonorthogonal ones when A is a complex number; the latter correlates with the non-self-conjugacy of the N(A) at complex A-s. The meaning of pos...

  16. Lattice study on QCD-like theory with exact center symmetry

    CERN Document Server

    Iritani, Takumi; Misumi, Tatsuhiro

    2015-01-01

    We investigate QCD-like theory with exact center symmetry, with emphasis on the finite-temperature phase transition concerning center and chiral symmetries. On the lattice, we formulate center symmetric $SU(3)$ gauge theory with three fundamental Wilson quarks by twisting quark boundary conditions in a compact direction ($Z_3$-QCD model). We calculate the expectation value of Polyakov loop and the chiral condensate as a function of temperature on 16^3 x 4 and 20^3 x 4 lattices along the line of constant physics realizing $m_{PS}/m_{V}=0.70$. We find out the first-order center phase transition, where the hysteresis of the magnitude of Polyakov loop exists depending on thermalization processes. We show that chiral condensate decreases around the critical temperature in a similar way to that of the standard three-flavor QCD, as it has the hysteresis in the same range as that of Polyakov loop. We also show that the flavor symmetry breaking due to the twisted boundary condition gets qualitatively manifest in the h...

  17. Studies of Phase Transitions and Critical Phenomena: I. Origin of Broken Particle-Hole Symmetry in Critical Fluids. I. Phase Transitions of Interacting Membranes.

    Science.gov (United States)

    Goldstein, Raymond Ethan

    The longstanding problem of the precise correspondence between critical phenomena in fluids and ferromagnets is resolved in Part I through a synthesis of mean field theory, exact results for lattice models, field-theoretic techniques, and by extensive quantitative comparison with experiment. Emphasis is placed on the origin of broken particle-hole symmetry in fluids as reflected in the form of the critical point scaling fields and in systematic variations in certain nonuniversal critical amplitudes with molecular polarizability. Those trends and the degree to which the scaling axes are linearly mixed versions of the bare "thermal" and "magnetic" fields in particle-hole symmetric systems are shown both for lattice models and real fluids to be intimately related to the presence of many-body interactions of the Axilrod-Teller type. A quantitatively accurate microscopic expression for the field-mixing operator of fluids is derived on the basis of an exact Hubbard-Stratonovich transformation relating the fluid Hamiltonian to that of a Landau-Ginzburg-Wilson model. A phenomenological theory of the phase behavior of multilamellar liquid crystals of hydrated phospholipid bilayers is developed in Part II, and its predictions tested by extensive comparison with experiment. A Ginzburg-Landau free energy functional based on the elastic properties of two coupled monolayers is proposed to describe intrabilayer ordering, and the phenomenon of structural phase transitions driven by membrane interactions is described by incorporating in addition the attractive dispersion interactions and repulsive "hydration" forces acting between membranes. The theory indicates and experiments support a connection between the pseudocriticality of the bilayer transitions and the large susceptibility of the in-plane order to membrane interactions. The pseudocriticality in turn is suggested to arise from the analog of a capillary critical point accessible by finite-size effects. Theoretical phase

  18. Chiral symmetry restoration and realisation of the Goldstone mechanism in the U(1) Gross-Neveu model at non-zero chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Barbour, Ian; Hands, Simon; Kogut, John B.; Lombardo, Maria-Paola; Morrison, Susan

    1999-09-20

    We simulate the Gross-Neveu model in 2+1 dimensions at non-zero baryon density (chemical potential {mu} {ne} 0). It is possible to formulate this model with a real action and therefore to perform standard hybrid Monte Carlo simulations with {mu} {ne} 0 in the functional measure. We compare the physical observables from these simulations with simulations using the Glasgow method where the value of {mu} in the functional measure is fixed at a value {mu}{sub upd}. We find that the observables are sensitive to the choice of {mu}{sub upd}. We consider the implications of our findings for Glasgow method QCD simulations at {mu} {ne} 0. We demonstrate that the realisation of the Goldstone mechanism in the Gross-Neveu model is fundamentally different from that in QCD. We find that this difference explains why there is an unphysical transition in QCD simulations at {mu} {ne} 0 associated with the pion mass scale whereas the transition in the Gross-Neveu model occurs at a larger mass scale and is therefore consistent with theoretical predictions. We note classes of theories which are exceptions to the Vafa-Witten theorem which permits the possibility of formation of baryon number violating diquark condensates.

  19. Chiral Quantum Optics

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter

    2016-01-01

    At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...

  20. Interface Effect in QCD Phase Transitions via Dyson-Schwinger Equation Approach

    CERN Document Server

    Gao, Fei

    2016-01-01

    With the chiral susceptibility criterion we obtain the phase diagram of strong-interaction matter in terms of temperature and chemical potential in the framework of Dyson-Schwinger equations (DSEs) of QCD.After calculating the pressure and some other thermodynamic properties of the matter in the DSE method, we get the phase diagram in terms of temperature and baryon number density. We also obtain the interface tension and the interface entropy density to describe the inhomogeneity of the two phases in the coexistence region of the first order phase transition. After including the interface effect, we find that the total entropy density of the system increases in both the deconfinement (dynamical chiral symmetry restoration) and the hadronization (dynamical chiral symmetry breaking) processes of the first order phase transitions and thus solve the entropy puzzle in the hadronization process.

  1. Symmetry Restoring Phase Transitions at High Density in a 4D Nambu-Jona-Lasinio Model with a Single Order Parameter

    Institute of Scientific and Technical Information of China (English)

    ZHOUBang-Rong

    2003-01-01

    High density phase transitions in a 4-dimensional Nambu-dona-Lasinio model containing a single symmetry breaking order parameter coming from the fermion-antifermion condensates are researched and expounded by means of both the gap equation and the effective potential approach. The phase transitions are proven to be second-order at a high temperature T; however at T = 0 they are first- or second-order, depending on whether A/m(0), the ratio of the momentum cutoff A in the fermion-loop integrals to the dynamical fermion mass m(0) at zero temperature, is lessthan 3.387 or not. The former condition cannot be satisfied in some models. The discussions further show complete effectiveness of the critical analysis based on the gap equation for second order phase transitions including determination of the condition of their occurrence.

  2. Symmetry Restoring Phase Transitions at High Density in a 4D Nambu-Jona-Lasinio Model with a Single Order Parameter

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bang-Rong

    2003-01-01

    High density phase transitions in a 4-dimensional Nambu-Jona-Lasinio model containing a single symmetry breaking order parameter coming from the fermion-antifermion condensates are researched and expounded by means of both the gap equation and the effective potential approach. The phase transitions are proven to be second-order at a high temperature T; however at T = 0 they are first- or second-order, depending on whether A/m(0), the ratio of the momentum cutoff A in the fermion-loop integrals to the dynamicalfermion mass m(0) at zero temperature, is less than 3.387 or not. The former condition cannot be satisfied in some models. The discussions further show complete effectiveness of the critical analysis based on the gap equation for second order phase transitions including determination of the condition of their occurrence.

  3. Orientation-Dependent Handedness and Chiral Design

    Science.gov (United States)

    Efrati, Efi; Irvine, William T. M.

    2014-01-01

    Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems—a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial—and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles.

  4. Chiral matrix model of the semi-QGP in QCD

    Science.gov (United States)

    Pisarski, Robert D.; Skokov, Vladimir V.

    2016-08-01

    Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the

  5. The van der Waals-Maxwell phase transition, hidden in Sommerfeld-Dirac hydrogen theory, proves that symmetry in the Coulomb bond is broken

    CERN Document Server

    Van Hooydonk, G

    2012-01-01

    Left unnoticed for almost a century, 1916 Sommerfeld H theory hides a van der Waals-Maxwell phase transition in the Coulomb lepton-nucleon attraction of ground state H. This classical 19th century symmetry breaking effect, important for CPT, is confirmed by observed H nS(sub1/2 and nP(sub1/2) series. It proves that trying to produce antihydrogen H with e(sup+)+ p(sup-)\\rightarrow Hbar does not make sense. Since hydrogen is the major constituent of the Universe, the energy equilibrium of Hbar antimatter and H matter states in natural hydrogen is in line with the Big Bang hypothesis.

  6. Construction of Ligand Group Orbitals for Polyatomics and Transition-Metal Complexes Using an Intuitive Symmetry-Based Approach

    Science.gov (United States)

    Johnson, Adam R.

    2013-01-01

    A molecular orbital (MO) diagram, especially its frontier orbitals, explains the bonding and reactivity for a chemical compound. It is therefore important for students to learn how to construct one. The traditional methods used to derive these diagrams rely on linear algebra techniques to combine ligand orbitals into symmetry-adapted linear…

  7. Symmetry-Breaking Orbital Anisotropy Observed for Detwinned Ba(Fe1-xCox)2As2 above the Spin Density Wave Transition

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Ming

    2011-08-19

    Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high temperature superconductors. Similarly, the new iron-based high temperature superconductors exhibit a tetragonal to orthorhombic structural transition (i.e. a broken C{sub 4} symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here we present an angle resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe{sub 1-x}Co{sub x}){sub 2}As{sub 2} in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant d{sub xz} and d{sub yz} character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (T{sub S}) precedes the magnetic transition (T{sub SDW}), an anisotropic splitting is observed to develop above T{sub SDW}, indicating that it is specifically associated with T{sub S}. For unstressed crystals, the band splitting is observed close to T{sub S}, whereas for stressed crystals the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.

  8. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  9. Chiral Superconductors

    OpenAIRE

    Kallin, Catherine; Berlinsky, John

    2015-01-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a c...

  10. A chiral route to pulling optical forces and left-handed optical torques

    CERN Document Server

    Canaguier-Durand, Antoine

    2015-01-01

    We analyze how chirality can generate pulling optical forces and left-handed torques by cross-coupling linear-to-angular momenta between the light field and the chiral object. In the dipolar regime, we reveal that such effects can emerge from a competition between non-chiral and chiral contributions to dissipative optical forces and torques, a competition balanced by the strength of chirality of the object. We extend the analysis to large chiral spheres where the interplay between chirality and multipolar resonances can give rise to a break of symmetry that flips the signs of both optical forces and torques.

  11. Super Virasoro Algebras From Chiral Supergravity

    CERN Document Server

    Hyakutake, Yoshifumi

    2015-01-01

    In this note, we construct Noether charges for the chiral supergravity, which contains the Lorentz Chern-Simons term, by applying Wald's prescription to the vielbein formalism. We investigate the AdS3/CFT2 correspondence by using the vielbein formalism. The asymptotic symmetry group is carefully examined by taking into account the local Lorentz transformation, and we construct super Virasoro algebras with central extensions from the chiral supergravity.

  12. Chiral interaction and biomolecular evolution

    International Nuclear Information System (INIS)

    Recent developments in the concept of chiral interaction open now new options and dynamical possibilities for biomolecules which have so far been overlooked. A few of these possibilities are mentioned, such as the control mechanism of enzymatic activity and the role played by non-ergodicity in evolutionary processes. It is shown that chiral interaction, being a surface phenomenon, does not obey Barron's symmetry constraints, which are suitable for force fields present in bulk interactions. In particular, the situation at the ocean-air surface in the prebiotic era is described, as well as the possible role played by chiral interaction in conjunction with the terrestrial magnetic field normal to the ocean surface, which could have lead to a process of deracernization at the ocean-air interface. (author)

  13. Chiral solitons in a coupled double Peierls chain.

    Science.gov (United States)

    Cheon, Sangmo; Kim, Tae-Hwan; Lee, Sung-Hoon; Yeom, Han Woong

    2015-10-01

    Chiral edge states are the hallmark of two- and three-dimensional topological materials, but their one-dimensional (1D) analog has not yet been found. We report that the 1D topological edge states, solitons, of the charge density wave system of indium atomic wires self-assembled on a silicon surface have chirality. The system is described by a coupled double Peierls-dimerized atomic chain, where the interchain coupling induces dynamical sublattice symmetry breaking. This changes its topological symmetry from Z₂× Z₂to Z₄ and endows solitons with a chiral degree of freedom. Chiral solitons can produce quantized charge transport across the chain that is topologically protected and controllable by the soliton's chirality. Individual right- and left-chiral solitons in indium wires are directly identified by scanning tunneling microscopy. PMID:26450206

  14. Strain-induced transitions to quantum chaos and effective time-reversal symmetry breaking in triangular graphene nanoflakes

    OpenAIRE

    Rycerz, Adam

    2013-01-01

    We investigate the effect of strain-induced gauge fields on statistical distribution of energy levels of triangular graphene nanoflakes with zigzag edges. In the absence of strain fields but in the presence of weak potential disorder such systems were found in Ref. [1] to display the spectral statistics of the Gaussian unitary ensemble (GUE) due to the effective time-reversal (symplectic) symmetry breaking. Here show that, in the absence of disorder, strain fields may solely lead to spectral ...

  15. Lectures on Yangian symmetry

    Science.gov (United States)

    Loebbert, Florian

    2016-08-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.

  16. Lectures on Yangian symmetry

    Science.gov (United States)

    Loebbert, Florian

    2016-08-01

    In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang–Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang–Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross–Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang–Mills theory in four dimensions.

  17. Mirror Symmetry Breaking of cis-[Ni(NCS)2tren]: Special Chiral Conformations of Chelate Rings%cis-[Ni(NCS)2tren]的镜面对称性破缺:螯环的特殊手性构象

    Institute of Scientific and Technical Information of China (English)

    刘成勇; 颜建新; 林以玑; 李丹; 方雪明; 章慧

    2012-01-01

    为了探究cis-[Ni(NCS)2tren] [tren:三(2-氨基乙基)胺]的手性来源,本文采用单晶X射线衍射、溶液紫外-可见-近红外(UV-Vis-NIR)光谱、固体紫外圆二色(CD)光谱和粉末X射线衍射(XRD)等对cis-[Ni(NCS )2tren]的一对手性晶体进行了表征.研究结果表明:该手性晶体由结晶过程中的镜面对称性破缺而形成;三角架型配体tren配位后的特殊手性构象(δδλ,λλδ)是cis-[Ni(NCS)2tren]的主要手性来源.络合物固体紫外CD谱所呈现的Cotton效应可能来自其螯环手性构象以及手性金属中心对NCS-配体的π-π*跃迁和荷移跃迁生色团的手性微扰.对20批次合成产物进行固体CD检测的统计结果表明:它们的对映体过量(ee)值在39%-100%之间.%In order to explore the chiral origin of c/s-[Ni(NCS)2tren] [tren: tris(2-aminoethyl) amine], a pair of chiral crystals of c;s-[Ni(NCS)jtren] was characterized by X-ray single crystal structural analysis, solution UV-Vis-near infrared (NIR) spectroscopy, solid state UV-circular dichiroism (CD), and powder X-ray diffraction (XRD) spectra. The results indicated that the chiral crystals of c/s-[Ni(NCS)2tren] were obtained by mirror symmetry-breaking crystallization, and the special chiral ring conformations (66A, AA6) of the coordinated tripod-type tren ligands are responsible for the chiral origin of c/s-[Ni(NCS)2tren]. The Cotton effects of Ni(ll) complexes in the solid-state UV-CD spectra are presumably attributed to the tt-tt* and charge-transfer chromophores of the NCS" ligands by the chiral perturbation of the helical ring conformations and metal-centered chirality. According to the statistical results of solid-state CD spectra of c/s-[Ni(NCS)2tren] for twenty batch syntheses, their enantiomeric excess (ee) values are between 39% and 100%.

  18. Interplay between Deconfinement and Chiral Properties

    CERN Document Server

    Suganuma, Hideo; Redlich, Krzysztof; Sasaki, Chihiro

    2016-01-01

    We study interplay between confinement/deconfinement and chiral properties. We derive some analytical relations of the Dirac modes with the confinement quantities, such as the Polyakov loop, its susceptibility and the string tension. For the confinement quantities, the low-lying Dirac eigenmodes are found to give negligible contribution, while they are essential for chiral symmetry breaking. This indicates no direct, one-to-one correspondence between confinement/deconfinement and chiral properties in QCD. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain-wall fermion kernels, respectively.

  19. Chiral condensates and QCD vacuum in two dimensions

    CERN Document Server

    Christiansen, H R

    1997-01-01

    We analyze the chiral symmetries of flavored quantum chromodynamics in two dimensions and show the existence of chiral condensates within the path-integral approach. The massless and massive cases are discussed as well, for arbitrary finite and infinite number of colors. Our results put forward the question of topological issues when matter is in the fundamental representation of the gauge group.

  20. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    ZHANG; XuMu

    2001-01-01

    Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals  ……

  1. Developing a Practical Chiral Toolbox for Asymmetric Catalytic Reactions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@ Chiral Quest's Toolbox Approach: During the last several decades, chemists have made major progress in discovering man-made catalysts to perform challenging asymmetric transformations. However, there is no universal chiral ligand or catalyst for solving problems in enantioselective transformations. The focus of Chiral Quest's research is to develop a useful chiral toolbox for strategically important asymmetric catalytic reactions by inventing a diverse set of novel chiral ligands and combining them with transition metals as effective enantioselective catalysts. The toolbox approach addresses significant problems in organic stereochemistry and has resulted in practical methods for the synthesis of chiral pharmaceuticals and agrochemicals

  2. Chiral doublet bands and energy-level crossing

    Institute of Scientific and Technical Information of China (English)

    QI Bin; MENG Jie; ZHANG Shuang-Quan; WANG Shou-Yu; PENG Jing

    2009-01-01

    Different definitions for chiral doublet bands based on excitation energies, B(E2) and B(M1) respectively are discussed in the triaxial particle rotor model. For the ideal chiral geometry, the selection rules of the electromagnetic transitions in different band definitions are illustrated. It is also shown that the energy-level crossings between chiral doublet bands may occur.

  3. Chiral Ordering in the Four-Dimensional XY Spin Glass

    OpenAIRE

    Jain, S.

    1997-01-01

    The chiral glass behaviour of the nearest-neighbour random-bond XY spin glass in four dimensions is studied by Monte Carlo simulations. A chiral glass transition at $T_{cg}=0.90\\pm 0.05$ is found by a finite-size scaling analysis of the results. The associated chiral correlation-length exponent is estimated to be $\

  4. Pion and Kaon Polarizabilities and Radiative Transitions

    OpenAIRE

    Moinester, Murray A.; Steiner, Victor

    1998-01-01

    CERN COMPASS plans measurements of gamma-pi and gamma-K interactions using 50-280 GeV pion (kaon) beams and a virtual photon target. Pion (kaon) polarizabilities and radiative transitions will be measured via Primakoff effect reactions such as pi+gamma->pi'+gamma and pi+gamma->meson. The former can test a precise prediction of chiral symmetry; the latter for pi+gamma->a1(1260) is important for understanding the polarizability. The radiative transition of a pion to a low mass two-pion system, ...

  5. 孤立条件下布洛芬分子手性转变过程的理论研究%The theoretical research on the chiral transition of ibuprofen molecules under isolated conditions

    Institute of Scientific and Technical Information of China (English)

    邹晓威; 梅泽民; 王丽萍; 佟华; 于天荣; 王佐成

    2015-01-01

    基于密度泛函理论的B3LYP方法,采用6-31+g( d,p)基组,对孤立条件下布洛芬分子的手性转变过程进行研究.通过寻找反应过程中包括过渡态和中间体的各极值点结构,绘制了布洛芬分子手性转变路径反应势能面,分析了各极值点的几何和电子结构特性.结果表明:布洛芬实现从S型到R型手性转变的反应路径有两条.路径1包括三个过渡态和两个中间体,路径2包括四个过渡态和三个中间体.反应路径上最大的能垒是73.54 Kcal/mol,来源于手性碳上的氢向羧基上的氧转移.这一研究为进一步实现一些有重要应用价值的点手性分子手性转变反应调控提供了理论参考.%In this article, we do a research on the chiral shift process of the isolated alpha alanine molecule using the basis set of 6-31+g(d,p), which is based on density functional theory B3LYP.Further more, the chiral transition path reaction potential energy surface of ibuprofen molecule is drawn by looking for the extreme value point structure including the transition state and intermediate.Finally, the geometry and electronic structure properties of extreme value point are also analyzed.The results show that there are two achieve reaction paths of ibuprofen from S -type to R-type.Path 1 consists of three transition states and two intermediate states .Path 2 includes four transition states and three intermediate states.On the reaction path, the greatest barrier which is from the transfer of hydrogen in chiral carbon to oxygen in carboxyl , is 73.54 Kcal /mol.The research provides a theoretical reference to further real-ize some important application value over the chiral transition reaction control of point chiral molecule .

  6. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  7. Partial Dynamical Symmetries

    CERN Document Server

    Leviatan, A

    2010-01-01

    This overview focuses on the notion of partial dynamical symmetry (PDS), for which a prescribed symmetry is obeyed by a subset of solvable eigenstates, but is not shared by the Hamiltonian. General algorithms are presented to identify interactions, of a given order, with such intermediate-symmetry structure. Explicit bosonic and fermionic Hamiltonians with PDS are constructed in the framework of models based on spectrum generating algebras. PDSs of various types are shown to be relevant to nuclear spectroscopy, quantum phase transitions and systems with mixed chaotic and regular dynamics.

  8. Direct Evidence of the Symmetry Change of Co-3d Orbitals Associated with the Spin-State Transition in LaCoO3 by X-ray Compton Scattering

    Science.gov (United States)

    Kobayashi, Yoshihiko; Sakurai, Yoshiharu; Itou, Masayoshi; Sato, Keisuke; Asai, Kichizo

    2015-11-01

    We have investigated the electron momentum density of Co-3d electrons in LaCoO3 using X-ray Compton scattering in order to demonstrate the symmetry change of the Co(3d) electron orbital states through the spin-state transition. The electron momentum density reconstructed from the Compton profiles indicates the symmetry change in the 3d electron-orbital states between below and above 100 K, which provides the first microscopic direct evidence for the orbital symmetry change of occupied electronic state associated with the spin-state transition in LaCoO3. The reproduced electron orbital states show a covalent bond with O-2p orbitals, which is responsible for the collectiveness in the characteristics of the spin-state transition.

  9. Direct evidence of the symmetry change of Co-3d orbitals associated with the spin-state transition in LaCoO3 by X-ray Compton scattering

    International Nuclear Information System (INIS)

    We have investigated the electron momentum density of Co-3d electrons in LaCoO3 using X-ray Compton scattering in order to demonstrate the symmetry change of the Co(3d) electron orbital states through the spin-state transition. The electron momentum density reconstructed from the Compton profiles indicates the symmetry change in the 3d electron-orbital states between below and above 100 K, which provides the first microscopic direct evidence for the orbital symmetry change of occupied electronic state associated with the spin-state transition in LaCoO3. The reproduced electron orbital states show a covalent bond with O-2p orbitals, which is responsible for the collectiveness in the characteristics of the spin-state transition. (author)

  10. Topological Anderson insulators in systems without time-reversal symmetry

    Science.gov (United States)

    Su, Ying; Avishai, Y.; Wang, X. R.

    2016-06-01

    Occurrence of the topological Anderson insulator (TAI) in a HgTe quantum well suggests that when time-reversal symmetry (TRS) is maintained, the pertinent topological phase transition, marked by re-entrant 2 e2/h quantized conductance contributed by helical edge states, is driven by disorder. Here we show that when TRS is broken, the physics of the TAI becomes even richer. The pattern of longitudinal conductance and nonequilibrium local current distribution displays novel TAI phases characterized by nonzero Chern numbers, indicating the occurrence of multiple chiral edge modes. Tuning either disorder or Fermi energy (in both topologically trivial and nontrivial phases), drives transitions between these distinct TAI phases, characterized by jumps of the quantized conductance from 0 to e2/h and from e2/h to 2 e2/h . An effective medium theory based on the Born approximation yields an accurate description of different TAI phases in parameter space.

  11. Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials

    Science.gov (United States)

    Xiao, Meng; Lin, Qian; Fan, Shanhui

    2016-07-01

    We report the existence of Weyl points in a class of noncentral symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its nonlocal response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl points.

  12. Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials.

    Science.gov (United States)

    Xiao, Meng; Lin, Qian; Fan, Shanhui

    2016-07-29

    We report the existence of Weyl points in a class of noncentral symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its nonlocal response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl points.

  13. Influence of nuclear matter fourth-order symmetry energy on neutron star crust-core phase transition

    International Nuclear Information System (INIS)

    In this work, we shall examine the critical importance of the fourth-order terms in the Taylor's series expansion in the prediction of the crust-core transition density. We shall perform the study in the Non-relativistic mean field approximation using finite range Simple Effective Interaction (SEI) that has been used in the finite nuclei and nuclear matter (NM) studies. We shall use the thermodynamics method to calculate the crust-core phase transition in neutron star

  14. On Chiral Space Groups and Chiral Molecules

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.

  15. The relation between random matrix theory, chiral perturbation theory and lattice-QCD; Die Beziehungen zwischen Random-Matrix-Theorie, chiraler Stoerungstheorie und Gitter-QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hehl, H.

    2002-07-01

    This thesis has studied the range of validity of the chiral random matrix theory in QCD on the example of the quenched staggered Dirac operator. The eigenvalues of this operator in the neighbourhood of zero are essential for the understanding of the spontaneous breaking of the chiral symmetry and the phase transition connected with this. The phase transition cannot be understood in the framework of perturbation theory, so that the formulation of QCD on the lattice has been chosen as the only non-perturbative approach. In order to circumvent both the problem of the fermion doubling and to study chiral properties on the lattice with acceptable numerical effort, quenched Kogut-Susskind fermions have been applied. The corresponding Dirac operator can be completely diagonalized by the Lanczos procedure of Cullum and Willoughby. Monte carlo simulations on hypercubic lattice have been performed and the Dirac operators of very much configurations diagonalized at different lattice lengths and coupling constants. The eigenvalue correlations on the microscopic scale are completely described by the chiral random matrix theory for the topological sector zero, which has been studied by means of the distribution of the smallest eigenvalue, the microscopic spectral density and the corresponding 2-point correlation function. The found universal behaviour shows, that on the scale of the lowest eigenvalue only completely general properties of the theory are important, but not the full dynamics. In order to determine the energy scale, from which the chiral random matrix theory losses its validity, - the Thouless energy - with the scalar susceptibilities observables have been analyzed, which are because of their spectral mass dependence sensitive on this. For each combination of the lattice parameter so the deviation point has been identified.

  16. Effect of symmetry reduction on the electronic transitions in polytypic GdAl3(BO3)4:Eu:Tb crystals

    Science.gov (United States)

    Lengyel, K.; Beregi, E.; Földvári, I.; Corradi, G.; Kovács, L.; Solarz, P.; Ryba-Romanowski, W.

    2016-03-01

    The existence of a recently described monoclinic phase (C2/c, Z = 8) (Beregi et al., 2012) in addition to the well-known Huntite type rhombohedral (R32) polytypic modification of the GdAl3(BO3)4 (GAB) crystal at room temperature provides a unique possibility to investigate the incorporation of rare earth dopants into slightly modified crystal lattice by spectroscopic methods. In these characteristic GAB structures the dopant ions, e.g. Tb3+ or Eu3+, possess slightly different neighbor geometries and local symmetries. The Tb3+: 7F6 → 5D4 and Eu3+: 7F0,1,2 → 5D0,1,2 electronic transitions were successfully identified in the absorption spectra using polarization, concentration and temperature dependent measurements in both polytypic modifications. The positions of the investigated Tb lines are shifted by up to 10 cm-1 due to symmetry changes. In addition, some of the Eu lines show splittings of about 4-30 cm-1 as a consequence of the change of the local environment. From the room temperature absorption measurements some of the low energy crystal field levels of 7F and 5D states of the Eu3+ ions were successfully determined for both modifications.

  17. Hyperon forward spin polarizability gamma0 in baryon chiral perturbation theory

    CERN Document Server

    Blin, Astrid Hiller; Ledwig, Tim; Lyubovitskij, Valery E

    2015-01-01

    We present the calculation of the hyperon forward spin polarizability gamma0 using manifestly Lorentz covariant baryon chiral perturbation theory including the intermediate contribution of the spin 3/2 states. As at the considered order the extraction of gamma0 is a pure prediction of chiral perturbation theory, the obtained values are a good test for this theory. After including explicitly the decuplet states, our SU(2) results have a very good agreement with the experimental data and we extend our framework to SU(3) to give predictions to the hyperons' gamma0 values. Prominent are the Sigma^- and Xi^- baryons as their photon transition to the decuplet is forbidden in SU(3) symmetry and therefore they are not sensitive to the explicit inclusion of the decuplet in the theory.

  18. Quantum origin of quantum jumps: Breaking of unitary symmetry induced by information transfer in the transition from quantum to classical

    Science.gov (United States)

    Zurek, Wojciech Hubert

    2007-11-01

    Measurements transfer information about a system to the apparatus and then, further on, to observers and (often inadvertently) to the environment. I show that even imperfect copying essential in such situations restricts possible unperturbed outcomes to an orthogonal subset of all possible states of the system, thus breaking the unitary symmetry of its Hilbert space implied by the quantum superposition principle. Preferred outcome states emerge as a result. They provide a framework for “wave-packet collapse,” designating terminal points of quantum jumps and defining the measured observable by specifying its eigenstates. In quantum Darwinism, they are the progenitors of multiple copies spread throughout the environment—the fittest quantum states that not only survive decoherence, but subvert the environment into carrying information about them—into becoming a witness.

  19. Ligand Symmetry Modulation for Designing a Mesoporous Metal-Organic Framework: Dual Reactivity to Transition and Lanthanide Metals for Enhanced Functionalization.

    Science.gov (United States)

    Du, Miao; Wang, Xi; Chen, Min; Li, Cheng-Peng; Tian, Jia-Yue; Wang, Zhuo-Wei; Liu, Chun-Sen

    2015-06-26

    A promising alternative strategy for designing mesoporous metal-organic frameworks (MOFs) has been proposed, by modifying the symmetry rather than expanding the length of organic linkers. By means of this approach, a unique MOF material based on the target [Zn8(ad)4] (ad = adeninate) clusters and C3-symmetric organic linkers can be obtained, with trigonal microporous (ca., 0.8 nm) and hexagonal mesoporous (ca., 3.0 nm) 1D channels. Moreover, the resulting 446-MOF shows distinct reactivity to transition and lanthanide metal ions. Significantly, the transmetalation of Co(II) or Ni(II) on the Zn(II) centers in 446-MOF can enhance the sorption capacities of CO2 and CH4 (16-21%), whereas the impregnation of Eu(III) and Tb(III) in the channels of 446-MOF will result in adjustable light-emitting behaviors.

  20. Bootstrap Dynamical Symmetry Breaking

    Directory of Open Access Journals (Sweden)

    Wei-Shu Hou

    2013-01-01

    Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700  GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.