WorldWideScience

Sample records for chiral symmetry transitions

  1. Chiral-glass transition and replica symmetry breaking of a three-dimensional heisenberg spin glass

    Science.gov (United States)

    Hukushima; Kawamura

    2000-02-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the chiral-glass ordered state.

  2. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  3. \\pi N transition distribution amplitudes: their symmetries and constraints from chiral dynamics

    CERN Document Server

    Pire, Bernard; Szymanowski, Lech

    2011-01-01

    Baryon to meson Transition Distribution Amplitudes (TDAs) extend the concept of generalized parton distributions. Baryon to meson TDAs appear as building blocks in the colinear factorized description of amplitudes for a class of hard exclusive reactions, prominent examples of which being hard exclusive meson electroproduction off a nucleon in the backward region and baryon-antibaryon annihilation into a meson and a lepton pair. We study general properties of these objects following from the underlying symmetries of QCD. In particular, the Lorentz symmetry results in the polynomiality property of the Mellin moments in longitudinal momentum fractions. We present a detailed account of isotopic and permutation symmetry properties of nucleon to pion (\\pi N) TDAs. This restricts the number of independent leading twist \\pi N TDAs to eight functions providing description of all isotopic channels. Using chiral symmetry and the crossing relation between \\pi N TDAs and \\pi N generalized distribution amplitudes we establ...

  4. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  5. Applications of chiral symmetry

    CERN Document Server

    Pisarski, R D

    1995-01-01

    I discuss several topics in the applications of chiral symmetry at nonzero temperature, including: where the rho goes, disoriented chiral condensates, and the phase diagram for QCD with 2+1 flavors. (Based upon talks presented at the "Workshop on Finite Temperature QCD", Wuhan, P.R.C., April, 1994.)

  6. The QCD chiral transition, $\\ua$ symmetry and the Dirac spectrum using domain wall fermions

    CERN Document Server

    Buchoff, Michael I; Christ, Norman H; Ding, H -T; Jung, Chulwoo; Karsch, F; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Vranas, P M; Yin, Hantao; Lin, Zhongjie

    2013-01-01

    We report on a study of the finite-temperature QCD transition region for temperatures between 139 and 196 MeV, with a pion mass of 200 MeV and two space-time volumes: $24^3\\times8$ and $32^3\\times8$, where the larger volume varies in linear size between 5.6 fm (at T=139 MeV) and 4.0 fm (at T=195 MeV). These results are compared with the results of an earlier calculation using the same action and quark masses but a smaller, $16^3\\times8$ volume. The chiral domain wall fermion formulation with a combined Iwasaki and dislocation suppressing determinant ratio gauge action are used. This lattice action accurately reproduces the $\\sua$ and $\\ua$ symmetries of the continuum. Results are reported for the chiral condensates, connected and disconnected susceptibilities and the Dirac eigenvalue spectrum. We find a pseudo-critical temperature, $T_c$, of approximately 165 MeV consistent with previous results and strong finite volume dependence below $T_c$. Clear evidence is seen for $\\ua$ symmetry breaking above $T_c$ whi...

  7. Applications of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  8. The chiral transition and U(1)_A symmetry restoration from lattice QCD using Domain Wall Fermions

    CERN Document Server

    Bazavov, A; Buchoff, Michael I; Cheng, Michael; Christ, N H; Ding, H -T; Gupta, Rajan; Hegde, Prasad; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Soltz, R A; Vranas, P M; Yin, Hantao

    2012-01-01

    We present results on both the restoration of the spontaneously broken chiral symmetry and the effective restoration of the anomalously broken U(1)_A symmetry in finite temperature QCD at zero chemical potential using lattice QCD. We employ domain wall fermions on lattices with fixed temporal extent N_\\tau = 8 and spatial extent N_\\sigma = 16 in a temperature range of T = 139 - 195 MeV, corresponding to lattice spacings of a \\approx 0.12 - 0.18 fm. In these calculations, we include two degenerate light quarks and a strange quark at fixed pion mass m_\\pi = 200 MeV. The strange quark mass is set near its physical value. We also present results from a second set of finite temperature gauge configurations at the same volume and temporal extent with slightly heavier pion mass. To study chiral symmetry restoration, we calculate the chiral condensate, the disconnected chiral susceptibility, and susceptibilities in several meson channels of different quantum numbers. To study U(1)_A restoration, we calculate spatial ...

  9. The phi-meson and Chiral-mass-meson production in heavy-ion collisions as potential probes of quark-gluon-plasma and Chiral symmetry transitions

    Science.gov (United States)

    Takahashi, Y.; Eby, P. B.

    1985-01-01

    Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.

  10. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome.

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G

    2016-06-17

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.

  11. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G.

    2016-06-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.

  12. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    CERN Document Server

    Zhang, Bin

    2015-01-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pair-wise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain (TAD) formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking which is limited by the TAD interaction strength.

  13. Random matrix model approach to chiral symmetry

    CERN Document Server

    Verbaarschot, J J M

    1996-01-01

    We review the application of random matrix theory (RMT) to chiral symmetry in QCD. Starting from the general philosophy of RMT we introduce a chiral random matrix model with the global symmetries of QCD. Exact results are obtained for universal properties of the Dirac spectrum: i) finite volume corrections to valence quark mass dependence of the chiral condensate, and ii) microscopic fluctuations of Dirac spectra. Comparisons with lattice QCD simulations are made. Most notably, the variance of the number of levels in an interval containing $n$ levels on average is suppressed by a factor $(\\log n)/\\pi^2 n$. An extension of the random matrix model model to nonzero temperatures and chemical potential provides us with a schematic model of the chiral phase transition. In particular, this elucidates the nature of the quenched approximation at nonzero chemical potential.

  14. Spontaneous Planar Chiral Symmetry Breaking in Cells

    Science.gov (United States)

    Hadidjojo, Jeremy; Lubensky, David

    Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.

  15. Dileptons and Chiral Symmetry Restoration

    CERN Document Server

    Hohler, P M

    2015-01-01

    We report on recent work relating the medium effects observed in dilepton spectra in heavy-ion collisions to potential signals of chiral symmetry restoration. The key connection remains the approach to spectral function degeneracy between the vector-isovector channel with its chiral partner, the axialvector-isovector channel. Several approaches are discussed to elaborate this connection, namely QCD and Weinberg sum rules with input for chiral order parameters from lattice QCD, and chiral hadronic theory to directly evaluate the medium effects of the axialvector channel and the pertinent pion decay constant as function of temperature. A pattern emerges where the chiral mass splitting between rho and a_1 burns off and is accompanied by a strong broadening of the spectral distributions.

  16. Exact Chiral Symmetry on the Lattice

    CERN Document Server

    Neuberger, H

    2001-01-01

    Developments during the last eight years have refuted the folklore that chiral symmetries cannot be preserved on the lattice. The mechanism that permits chiral symmetry to coexist with the lattice is quite general and may work in Nature as well. The reconciliation between chiral symmetry and the lattice is likely to revolutionize the field of numerical QCD.

  17. Symmetries of hadrons after unbreaking the chiral symmetry

    CERN Document Server

    Glozman, L Ya; Schröck, M

    2012-01-01

    We study hadron correlators upon artificial restoration of the spontaneously broken chiral symmetry. In a dynamical lattice simulation we remove the lowest lying eigenmodes of the Dirac operator from the valence quark propagators and study evolution of the hadron masses obtained. All mesons and baryons in our study, except for a pion, survive unbreaking the chiral symmetry and their exponential decay signals become essentially better. From the analysis of the observed spectroscopic patterns we conclude that confinement still persists while the chiral symmetry is restored. All hadrons fall into different chiral multiplets. The broken U(1)_A symmetry does not get restored upon unbreaking the chiral symmetry. We also observe signals of some higher symmetry that includes chiral symmetry as a subgroup. Finally, from comparison of the \\Delta - N splitting before and after unbreaking of the chiral symmetry we conclude that both the color-magnetic and the flavor-spin quark-quark interactions are of equal importance.

  18. Neutrino Oscillation Induced by Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei

    2009-01-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  19. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  20. Chiral Symmetry restoration from the hadronic regime

    CERN Document Server

    Nicola, Angel Gomez; Morales, John; de Elvira, Jacobo Ruiz; Andres, Ricardo Torres

    2016-01-01

    We discuss recent advances on QCD chiral symmetry restoration at finite temperature, within the theoretical framework of Effective Theories. $U(3)$ Ward Identities are derived between pseudoscalar susceptibilities and quark condensates, allowing to explain the behaviour of lattice meson screening masses. Unitarized interactions and the generated $f_0(500)$ thermal state are showed to play an essential role in the description of the transition through the scalar susceptibility

  1. Symmetries of Ginsparg-Wilson Chiral Fermions

    CERN Document Server

    Mandula, Jeffrey E

    2009-01-01

    The group structure of the variant chiral symmetry discovered by Luscher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter subgroup, and the factor group whose elements are its cosets is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, non-commuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example - free overlap fermions - these non-canonical elements of lattice chiral symmetry are...

  2. Symmetry structure and phase transitions

    Indian Academy of Sciences (India)

    Ashok Goyal; Meenu Dahiya; Deepak Chandra

    2003-05-01

    We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.

  3. Chiral symmetry breaking and monopoles

    CERN Document Server

    Di Giacomo, Adriano; Pucci, Fabrizio

    2015-01-01

    To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...

  4. Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange

    CERN Document Server

    Llanes-Estrada, Felipe J; Swanson, Eric S; Szczepaniak, Adam P; Llanes-Estrada, Felipe J.; Cotanch, Stephen R.; Szczepaniak, Adam P.; Swanson, Eric S.

    2004-01-01

    Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both $S$ and $D$ waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the $\\pi$-$\\rho$ mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the $\\pi$ mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The $\\eta_b$ mass is predicted to be around 9400 MeV consistent w...

  5. Infinite Chiral Symmetry in Four Dimensions

    CERN Document Server

    Beem, Christopher; Liendo, Pedro; Peelaers, Wolfger; Rastelli, Leonardo; van Rees, Balt C

    2015-01-01

    We describe a new correspondence between four-dimensional conformal field theories with extended supersymmetry and two-dimensional chiral algebras. The meromorphic correlators of the chiral algebra compute correlators in a protected sector of the four-dimensional theory. Infinite chiral symmetry has far-reaching consequences for the spectral data, correlation functions, and central charges of any four-dimensional theory with ${\\mathcal N}=2$ superconformal symmetry.

  6. Chlorophylls, Symmetry, Chirality, and Photosynthesis

    Directory of Open Access Journals (Sweden)

    Mathias O. Senge

    2014-09-01

    Full Text Available Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecular structures such as the reaction centers and light-harvesting complexes of photobiology. The biochemical function of these structures depends on the controlled interplay of structural and functional principles of the apoprotein and pigment cofactors. Chlorophylls and bacteriochlorophylls are optically active molecules with several chiral centers, which are necessary for their natural biological function and the assembly of their supramolecular complexes. However, in many cases the exact role of chromophore stereochemistry in the biological context is unknown. This review gives an overview of chlorophyll research in terms of basic function, biosynthesis and their functional and structural role in photosynthesis. It highlights aspects of chirality and symmetry of chlorophylls to elicit further interest in their role in nature.

  7. Examining a possible cascade effect in chiral symmetry breaking

    CERN Document Server

    Fariborz, Amir H

    2016-01-01

    We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.

  8. Thermal and Nonthermal Pion Enhancements with Chiral Symmetry Restoration

    CERN Document Server

    Zhuang, P

    2001-01-01

    The pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated in the framework of the Nambu-Jona-Lasinio model. The decay rate for the process sigma -> 2pion to the lowest order in a 1/N_c expansion is calculated as a function of temperature T and chemical potential mu. The thermal and nonthermal enhancements of pions generated by the decay before and after the freeze-out present only in the crossover region of the chiral symmetry transition. The strongest nonthermal enhancement is located in the vicinity of the endpoint of the first-order transition.

  9. Chiral transition of fundamental and adjoint quarks

    Energy Technology Data Exchange (ETDEWEB)

    Capdevilla, R.M. [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Doff, A., E-mail: agomes@utfpr.edu.br [Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR (Brazil); Natale, A.A., E-mail: natale@ift.unesp.br [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil)

    2014-01-20

    The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one.

  10. Chiral symmetry and scalar meson in hadron and nuclear physics

    CERN Document Server

    Kunihiro, T

    1995-01-01

    After giving a short introduction to the Nambu-Jona-Lasinio model with an anomaly term, we show the importance of the scalar-scalar correlation in the low-energy hadron dynamics, which correlation may be summarized by a scalar-isoscalar meson, the sigma meson. The discussion is based on the chiral quark model with the sigma-meson degrees of freedom. Possible experiments are proposed to produce the elusive meson in a nucleus and detect it. In relation to a precursory soft mode for the chiral transition, the reason is clarified why the dynamic properties of the superconductor may be described by the diffusive time-dependent Ginzburg-Landau (TDGL) equation. We indicate the chiral symmetry plays a significant role also in nuclei; one may say that the stability of nuclei is due to the chiral symmetry of QCD.

  11. Spontaneous Chiral Symmetry Breaking as Condensation of Dynamical Chirality

    CERN Document Server

    Alexandru, Andrei

    2012-01-01

    The occurrence of spontaneous chiral symmetry breaking (SChSB) is equivalent to sufficient abundance of Dirac near-zeromodes. However, dynamical mechanism leading to breakdown of chiral symmetry should be naturally reflected in chiral properties of the modes. Here we offer such connection, presenting evidence that SChSB in QCD proceeds via the appearance of modes exhibiting dynamical tendency for local chiral polarization. These modes form a band of finite width Lambda_ch (chiral polarization scale) around the surface of otherwise anti--polarized Dirac sea, and condense. Lambda_ch characterizes the dynamics of the breaking phenomenon and can be converted to a quark mass scale, thus offering conceptual means to determine which quarks of nature are governed by broken chiral dynamics. It is proposed that, within the context of SU(3) gauge theories with fundamental Dirac quarks, mode condensation is equivalent to chiral polarization, making Lambda_ch an "order parameter" of SChSB. Several uses of these features, ...

  12. Chiral symmetry and lattice gauge theory

    CERN Document Server

    Creutz, M

    1994-01-01

    I review the problem of formulating chiral symmetry in lattice gauge theory. I discuss recent approaches involving an infinite tower of additional heavy states to absorb Fermion doublers. For hadronic physics this provides a natural scheme for taking quark masses to zero without requiring a precise tuning of parameters. A mirror Fermion variation provides a possible way of extending the picture to chirally coupled light Fermions. Talk presented at "Quark Confinement and the Hadron Spectrum," Como, Italy, 20-24 June 1994.

  13. Chiral symmetry and the constituent quark model

    CERN Document Server

    Glozman, L Ya

    1995-01-01

    New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.

  14. Spontaneous chiral symmetry breaking in the Tayler instability

    CERN Document Server

    Del Sordo, Fabio; Brandenburg, Axel; Mitra, Dhrubaditya

    2011-01-01

    The chiral symmetry breaking properties of the Tayler instability are discussed. Effective amplitude equations are determined in one case. This model has three free parameters that are determined numerically. Comparison with chiral symmetry breaking in biochemistry is made.

  15. Magnetic rotation and chiral symmetry breaking

    Indian Academy of Sciences (India)

    Ashok Kumar Jain; Amita

    2001-08-01

    The deformed mean field of nuclei exhibits various geometrical and dynamical symmetries which manifest themselves as various types of rotational and decay patterns. Most of the symmetry operations considered so far have been defined for a situation wherein the angular momentum coincides with one of the principal axes and the principal axis cranking may be invoked. New possibilities arise with the observation of rotational features in weakly deformed nuclei and now interpreted as magnetic rotational bands. More than 120 MR bands have now been identified by filtering the existing data. We present a brief overview of these bands. The total angular momentum vector in such bands is tilted away from the principal axes. Such a situation gives rise to several new possibilities including breaking of chiral symmetry as discussed recently by Frauendorf. We present the outcome of such symmetries and their possible experimental verification. Some possible examples of chiral bands are presented.

  16. Fermion Determinant with Dynamical Chiral Symmetry Breaking

    Institute of Scientific and Technical Information of China (English)

    LU Qin; YANG Hua; WANG Qing

    2002-01-01

    One-loop fermion determinant is discussed for the case in which the dynamical chiral symmetry breakingcaused by momentum-dependent fermion self-energy ∑(p2) takes place. The obtained series generalizes the heat kernelexpansion for hard fermion mass.

  17. Chiral transition with magnetic fields

    CERN Document Server

    Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian

    2014-01-01

    We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...

  18. Rotating optical microcavities with broken chiral symmetry

    CERN Document Server

    Sarma, Raktim; Wiersig, Jan; Cao, Hui

    2014-01-01

    We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.

  19. Chiral phase transition in QED3 at finite temperature

    Science.gov (United States)

    Yin, Pei-Lin; Xiao, Hai-Xiao; Wei, Wei; Feng, Hong-Tao; Zong, Hong-Shi

    2016-12-01

    In the framework of Dyson-Schwinger equations, we employ two kinds of criteria (one kind is the chiral condensate, the other kind is thermodynamic quantities, such as the pressure, the entropy, and the specific heat) to investigate the nature of chiral phase transitions in QED3 for different fermion flavors. It is found that the chiral phase transitions in QED3 for different fermion flavors are all typical second-order phase transitions; the critical temperature and order of the chiral phase transition obtained from the chiral condensate and susceptibility are the same with that obtained by the thermodynamic quantities, which means that they are equivalent in describing the chiral phase transition; the critical temperature decreases as the number of fermion flavors increases and there is a boundary that separates the Tc-Nf plane into chiral symmetry breaking and restoration regions.

  20. A Molecular Model for Chiral Symmetry Breaking

    Science.gov (United States)

    Latinwo, Folarin; Stillinger, Frank; Debenedetti, Pablo

    In this work, we present a new class of molecular models for chiral phenomena in condensed matter systems. A key feature of these models is the ability of the four-site (tetramer) ``molecules'' to inter-convert between two distinct chiral forms (enantiomers). Given this feature, we use analytical theory and computer simulations to investigate the emergent chiral properties (including symmetry breaking) over a range of conditions. In particular, we consider the single-molecule level and condensed-phase behavior of our model system. Interestingly, we find that our liquid-phase predictions are in excellent agreement with recent experimental reports on chiral self-sorting in isotropic liquids. From this perspective, our model demonstrates accurate predictive capabilities, as well as a platform for understanding the microscopic origins of a variety of chiral phenomena. In a broader context, we anticipate that this class of models will be relevant to chirality-dominated areas such as the pharmaceutical industry and pre-biotic geochemistry.

  1. Novel local symmetries and chiral-symmetry-broken phases in S = 1/2 triangular-lattice Heisenberg model

    Science.gov (United States)

    Baskaran, G.

    1989-01-01

    Using a nonmean-field approach the triangular-lattice S = 1/2 Heisenberg antiferromagnet with nearest- and next-nearest-neighbor couplings is shown undergo an Ising-type phase transition into a chiral-symmetry-broken phase (Kalmeyer-Laughlin-like state) at small T. Removal of next-nearest-neighbor coupling introduces a local Z2 symmetry, thereby suppressing any finite-T chiral order.

  2. Random Matrices and Chiral Symmetry in QCD

    CERN Document Server

    Janik, R A; Papp, G; Zahed, I; Janik, Romuald A.; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail

    1998-01-01

    In this talk we review some recent results from random matrix models as applied to some non-perturbative issues in QCD. All of the issues we will discuss touched upon the important phenomenon related to the spontaneous breaking of chiral symmetry. The afore mentioned insights are: 1. Spontaneous breakdown of chiral symmetry and disorder. 2. Universal microscopic properties of the eigenvalues of the Dirac operator in the vacuum. 3. Universal microscopic properties of the eigenvalues of the Dirac operator in matter. 4. Structural changes of the Dirac spectrum - finite temperature. 5. Structural changes of the Dirac spectrum - finite baryonic density - ``phony vacua'' 6. Structural changes of the Dirac spectrum - finite baryonic density - ``true vacua'' . 7. Phase diagram. 8. Critical parameters. 9. Critical exponents. 10. $U(1)_A$ problem. 11. Screening of the pseudoscalar susceptibility. 12. Strong CP violation (finite $\\theta$).

  3. Chiral symmetry breaking, instantons, and monopoles

    CERN Document Server

    Di Giacomo, Adriano

    2015-01-01

    The purpose of this study is to show that monopoles induce the chiral symmetry breaking. In order to indicate the evidence, we add one pair of monopoles with magnetic charges to the quenched SU(3) configurations by a monopole creation operator, and investigate the propaties of the chiral symmetry breaking using the Overlap fermion. We show that instantons are created by the monopoles. The pseudoscalar meson mass and decay constant are computed from the correlation functions, and the renormalization constant $Z_{S}$ is determined by the non perturbative method. The renormalization group invariant chiral condensate in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV] is evaluated by the Gell-Mann-Oakes-Renner formula, and the random matrix theory. Finally, we estimate the renormalization group invariant quark masses $\\bar{m} = (m_{u} + m_{d})/2$, and $m_{s}$ in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV]. The preliminary results indicate that the chiral condensate decreases and the quark masses become slightly heavy by inc...

  4. From enemies to friends chiral symmetry on the lattice

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent

    2002-01-01

    The physics of strong interactions is invariant under the exchange of left-handed and right-handed quarks, at least in the massless limit. This invariance is reflected in the chiral symmetry of quantum chromodynamics. Surprisingly, it has become clear only recently how to implement this important symmetry in lattice formulations of quantum field theories. We will discuss realizations of exact lattice chiral symmetry and give an example of the computation of a physical observable in quantum chromodynamics where chiral symmetry is important. This calculation is performed by relying on finite size scaling methods as predicted by chiral perturbation theory.

  5. Fluctuations of Goldstone modes and the chiral transition in QCD

    CERN Document Server

    Karsch, Frithjof

    2008-01-01

    We provide evidence for the influence of thermal fluctuations of Goldstone modes on the chiral condensate at finite temperature. We show that at fixed temperature, Tchiral transition temperature this leads to a characteristic dependence of the chiral condensate on the square root of the light quark mass (m_l), which is expected for 3-dimensional models with broken O(N) symmetry. As a consequence the chiral susceptibility shows a strong quark mass dependence for all temperatures below Tc and diverges like 1/sqrt(m_l) in the chiral limit.

  6. Chiral symmetry breaking in continuum QCD

    Science.gov (United States)

    Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils

    2015-03-01

    We present a quantitative analysis of chiral symmetry breaking in two-flavor continuum QCD in the quenched limit. The theory is set up at perturbative momenta, where asymptotic freedom leads to precise results. The evolution of QCD towards the hadronic phase is achieved by means of dynamical hadronization in the nonperturbative functional renormalization group approach. We use a vertex expansion scheme based on gauge-invariant operators and discuss its convergence properties and the remaining systematic errors. In particular, we present results for the quark propagator, the full tensor structure and momentum dependence of the quark-gluon vertex, and the four-Fermi scatterings.

  7. Charge fluctuations in chiral models and the QCD phase transition

    CERN Document Server

    Skokov, V; Karsch, F; Redlich, K

    2011-01-01

    We consider the Polyakov loop-extended two flavor chiral quark--meson model and discuss critical phenomena related with the spontaneous breaking of the chiral symmetry. The model is explored beyond the mean-field approximation in the framework of the functional renormalisation group. We discuss properties of the net-quark number density fluctuations as well as their higher cumulants. We show that with the increasing net-quark number density, the higher order cumulants exhibit a strong sensitivity to the chiral crossover transition. We discuss their role as probes of the chiral phase transition in heavy-ion collisions at RHIC and LHC.

  8. Nucleon Properties and Restoration of Chiral Symmetry at Finite\

    CERN Document Server

    Christov, C V; Göke, K; Christov, Chr.V.

    1993-01-01

    Modifications of baryon properties due to the restoration of the chiral symmetry in an external hot and dense baryon medium are investigated in an effective chiral quark-meson theory. The nucleon arises as a soliton of the Gell-Mann - L\\'evi $\\zs$-model, the parameters of which are chosen to be the medium-modified meson values evaluated within the Nambu - Jona-Lasinio model. The nucleon properties are obtained by means of variational projection techniques. The nucleon form factors as well as the nucleon delta transition form factors are evaluated for various densities and temperatures of the medium. Similar to the chiral phase transition line the critical curve in the $T-\\zr$ plane for delocalization of the nucleon is non-monotonic and this feature is reflected in all nucleon properties. At medium densities of about $(2-3) \\rnm$ the baryonic phase exists only at intermediate temperatures. For finite temperature and densities the nucleon form factors get strongly reduced at finite transfer momenta.

  9. Lattice realization of the generalized chiral symmetry in two dimensions

    Science.gov (United States)

    Kawarabayashi, Tohru; Aoki, Hideo; Hatsugai, Yasuhiro

    2016-12-01

    While it has been pointed out that the chiral symmetry, which is important for the Dirac fermions in graphene, can be generalized to tilted Dirac fermions as in organic metals, such a generalized symmetry was so far defined only for a continuous low-energy Hamiltonian. Here we show that the generalized chiral symmetry can be rigorously defined for lattice fermions as well. A key concept is a continuous "algebraic deformation" of Hamiltonians, which generates lattice models with the generalized chiral symmetry from those with the conventional chiral symmetry. This enables us to explicitly express zero modes of the deformed Hamiltonian in terms of that of the original Hamiltonian. Another virtue is that the deformation can be extended to nonuniform systems, such as fermion-vortex systems and disordered systems. Application to fermion vortices in a deformed system shows how the zero modes for the conventional Dirac fermions with vortices can be extended to the tilted case.

  10. Chiral phase transition from string theory.

    Science.gov (United States)

    Parnachev, Andrei; Sahakyan, David A

    2006-09-15

    The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.

  11. Critical Temperature of Chiral Symmetry Restoration for Quark Matter with a Chiral Chemical Potential

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a quark-meson model with vacuum fluctuations included. Vacuum fluctuations give a divergent contribution to the vacuum energy, so the latter has to be renormalized before computing physical quantities. The vacuum term is important for restoration of chiral symmetry at finite temperature and $\\mu_5\

  12. BIFURCATION-THEORY APPLIED TO CHIRAL SYMMETRY-BREAKING

    NARCIS (Netherlands)

    ATKINSON, D

    1990-01-01

    Chiral symmetry breaking in quantum electrodynamics and quantum chromodynamics is considered as a problem in bifurcation theory. Inequalities and positivity play key roles, as they do in much of the work of Andre Martin.

  13. Dynamical chiral symmetry breaking in unquenched QED3

    Science.gov (United States)

    Fischer, C. S.; Alkofer, R.; Dahm, T.; Maris, P.

    2004-10-01

    We investigate dynamical chiral symmetry breaking in unquenched QED3 using the coupled set of Dyson-Schwinger equations for the fermion and photon propagators. For the fermion-photon interaction we employ an ansatz which satisfies its Ward-Green-Takahashi identity. We present self-consistent analytical solutions in the infrared as well as numerical results for all momenta. In Landau gauge, we find a phase transition at a critical number of flavors of Ncritf≈4. In the chirally symmetric phase the infrared behavior of the propagators is described by power laws with interrelated exponents. For Nf=1 and Nf=2 we find small values for the chiral condensate in accordance with bounds from recent lattice calculations. We investigate the Dyson-Schwinger equations in other linear covariant gauges as well. A comparison of their solutions to the accordingly transformed Landau gauge solutions shows that the quenched solutions are approximately gauge covariant, but reveals a significant amount of violation of gauge covariance for the unquenched solutions.

  14. Edge states protected by chiral symmetry in disordered photonic graphene

    CERN Document Server

    Zeuner, Julia M; Nolte, Stefan; Szameit, Alexander

    2013-01-01

    We experimentally investigate the impact of uncorrelated composite and structural disorder in photonic graphene. We find that in case of structural disorder not only chiral symmetry, but also the vanishing of the density of states at zero energy is preserved. This is in contrast to composite disorder, where chiral symmetry as well as the vanishing of the density of states are destroyed. Our observations are experimentally proven by exciting edge states at the bearded edge in disordered photonic graphene.

  15. How tetraquarks can generate a second chiral phase transition

    CERN Document Server

    Pisarski, Robert D

    2016-01-01

    We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of temperature and quark chemical potential, though, a crossover line for the tetraquark condensate is naturally related to the transition line for color superconductivity. For four flavors we suggest that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.

  16. Instanton-dyon Ensemble with two Dynamical Quarks: the Chiral Symmetry Breaking

    CERN Document Server

    Larsen, Rasmus

    2015-01-01

    This is the second paper of the series aimed at understanding of the ensemble of the instanton-dyons, now with two flavors of light dynamical quarks. The partition function is appended by the fermionic factor, $(det T)^{N_f}$ and Dirac eigenvalue spectra at small values are derived from the numerical simulation of 64 dyons. Those spectra show clear chiral symmetry breaking pattern at high dyon density. Within current accuracy, the confinement and chiral transitions occur at very similar densities.

  17. Self-consistent Models of Strong Interaction with Chiral Symmetry

    Science.gov (United States)

    Nambu, Y.; Pascual, P.

    1963-04-01

    Some simple models of (renormalizable) meson-nucleon interaction are examined in which the nucleon mass is entirely due to interaction and the chiral ( gamma {sub 5}) symmetry is "broken'' to become a hidden symmetry. It is found that such a scheme is possible provided that a vector meson is introduced as an elementary field. (auth)

  18. Chiral transition, eigenmode localisation and Anderson-like models

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2016-01-01

    We discuss chiral symmetry restoration and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We argue that the features of QCD relevant to both phenomena are the presence of order in the Polyakov line configuration, and the correlations that this induces between spatial links across time slices. This ties the fate of chiral symmetry and of localisation of the lowest Dirac eigenmodes to the confining properties of the theory. We then show numerical results obtained in a QCD-inspired Anderson-like toy model, derived by radically simplifying the QCD dynamics while keeping the important features mentioned above. The toy model reproduces all the important qualitative aspects of chiral symmetry breaking and localisation in QCD, thus supporting the central role played by the confinement/deconfinement transition in triggering both phenomena.

  19. Possible splitting of deconfinement and chiral transitions in strong magnetic fields in QCD

    CERN Document Server

    Fraga, Eduardo S; Chernodub, M N

    2010-01-01

    We show that finite-temperature deconfinement and chiral transitions can split in a strong enough magnetic field. The splitting in critical temperatures of these transitions in a constant magnetic field of a typical LHC magnitude is of the order of 10 MeV. A new deconfined phase with broken chiral symmetry appears.

  20. Electronic Localization Length of Carbon Nanotubes with Different Chiral Symmetries

    Institute of Scientific and Technical Information of China (English)

    杨化通; 董锦明; 邢定钰

    2001-01-01

    The electronic localization lengths λ of metallic carbon nanotubes with different chiral symmetries have been calculated by one parameter scaling method. It is found that λ is independent of the nanotube chirality, but depends linearly on the diameter. The dependence of λ on the disorder strength W has also been studied, and a power-law relation between λ and W is also found to be independent of the tube chirality. Our numerical results are in good agreement with recent experimental observations and other theoretical results for only the "armchair"nanotubes.

  1. Inhomogeneous chiral symmetry breaking in dense neutron-star matter

    Energy Technology Data Exchange (ETDEWEB)

    Buballa, Michael; Carignano, Stefano [Technische Universitaet Darmstadt, Theoriezentrum, Institut fuer Kernphysik, Darmstadt (Germany)

    2016-03-15

    An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)

  2. Symmetry Guide to Ferroaxial Transitions

    Science.gov (United States)

    Hlinka, J.; Privratska, J.; Ondrejkovic, P.; Janovec, V.

    2016-04-01

    The 212 species of the structural phase transitions with a macroscopic symmetry breaking are inspected with respect to the occurrence of the ferroaxial order parameter, the electric toroidal moment. In total, 124 ferroaxial species are found, some of them being also fully ferroelectric (62) or fully ferroelastic ones (61). This ensures a possibility of electrical or mechanical switching of ferroaxial domains. Moreover, there are 12 ferroaxial species that are neither ferroelectric nor ferroelastic. For each species, we have also explicitly worked out a canonical form for a set of representative equilibrium property tensors of polar and axial nature in both high-symmetry and low-symmetry phases. This information was gathered into the set of 212 mutually different symbolic matrices, expressing graphically the presence of nonzero independent tensorial components and the symmetry-imposed links between them, for both phases simultaneously. Symmetry analysis reveals the ferroaxiality in several currently debated materials, such as VO2 , LuFe2 O4 , and URu2 Si2 .

  3. Chiral symmetry breaking with the Curtis-Pennington vertex

    NARCIS (Netherlands)

    Atkinson, D.; Gusynin, V. P.; Maris, P.

    1992-01-01

    Published in: Phys. Lett. B 303 (1993) 157-162 citations recorded in [Science Citation Index] Abstract: We study chiral symmetry breaking in quenched QED$_4$, using a vertex Ansatz recently proposed by Curtis and Pennington. Bifurcation analysis is employed to establish the existence of a critical c

  4. Exploration of Chiral Aminophenols and Aminonaphthols with C2-Symmetry

    Institute of Scientific and Technical Information of China (English)

    Yan SUN; Zhi Min LI; Xiu Min SHEN; Feng Nian MA; Cong ZHANG

    2005-01-01

    The exploration of C2-symmetric chiral aminophenols and aminonaphthols is described.Seven new ligands have been successfully synthesized using Mannich reaction as a key step.Four of them have C2-symmetry and their structure has been fully characterized by means of NMR and X-ray crystallography.

  5. Projective symmetry group classification of chiral spin liquids

    Science.gov (United States)

    Bieri, Samuel; Lhuillier, Claire; Messio, Laura

    2016-03-01

    We present a general review of the projective symmetry group classification of fermionic quantum spin liquids for lattice models of spin S =1 /2 . We then introduce a systematic generalization of the approach for symmetric Z2 quantum spin liquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral Z2 states, we study the subset of U(1) phases variationally in the antiferromagnetic J1-J2-Jd Heisenberg model on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of these phases.

  6. Realisation of chiral symmetry in the domain model of QCD

    CERN Document Server

    Kalloniatis, Alexander C

    2003-01-01

    The domain model for the QCD vacuum has previously been developed and shown to exhibit confinement of quarks and strong correlation of the local chirality of quark modes and duality of the background domain-like gluon field. Quark fluctuations satisfy a chirality violating boundary conditions parametrized by a random chiral angle $\\alpha_j$ on the $j-th$ domain. The free energy of an ensemble of $N\\to\\infty$ domains depends on $\\{\\alpha_j, j=1... N\\}$ through the logarithm of the quark determinant. Its parity odd part is given by the axial anomaly. The anomaly contribution to the free energy suppresses continuous axial U(1) degeneracy in the ground state, leaving only a residual axial Z(2) symmetry. This discrete symmetry and flavour $SU(N_f)_L\\times SU(N_f)_R$ chiral symmetry in turn are spontaneously broken with a quark condensate arising due to the asymmetry of the spectrum of Dirac operator. In order to illustrate the splitting between the $\\eta'$ from octet pseudoscalar mesons realised in the domain mode...

  7. Testing Lorentz Symmetry using Chiral Perturbation Theory

    CERN Document Server

    Noordmans, J P

    2016-01-01

    We consider the low-energy effects of a selected set of Lorentz- and CPT-violating quark and gluon operators by deriving the corresponding chiral effective lagrangian. Using this effective lagrangian, low-energy hadronic observables can be calculated. We apply this to magnetometer experiments and derive the best bounds on some of the Lorentz-violating coefficients. We point out that progress can be made by studying the nucleon-nucleon potential, and by considering storage-ring experiments for deuterons and other light nuclei.

  8. Nonlinear Boundary Dynamics and Chiral Symmetry in Holographic QCD

    CERN Document Server

    Albrecht, Dylan; Wilcox, Ronald J

    2011-01-01

    In the hard-wall model of holographic QCD we find that nonlinear boundary dynamics are required in order to maintain the correct pattern of explicit and spontaneous chiral symmetry breaking beyond leading order in the pion fields. With the help of a field redefinition, we demonstrate that the requisite nonlinear boundary conditions are consistent with the Sturm-Liouville structure required for the Kaluza-Klein decomposition of bulk fields. Observables insensitive to the chiral limit receive only small corrections in the improved description, and classical calculations in the hard-wall model remain surprisingly accurate.

  9. Chiral Symmetry in Light-Cone Field Theory

    CERN Document Server

    Lenz, F; Thies, M; Yazaki, K

    2004-01-01

    An analysis of spontaneously broken chiral symmetry in light-cone field theory is presented. The non-locality inherent to light-cone field theory requires revision of the standard procedure in the derivation of Ward-Takahashi identities. We derive the general structure of chiral Ward-Takahashi identities and construct them explicitly for various model field theories. Gell-Mann-Oakes-Renner relations and relations between fermion propagators and the structure functions of Nambu-Goldstone bosons are discussed and the necessary modifications of the Ward-Takahashi identities due to the axial anomaly are indicated.

  10. Effects from inhomogeneities in the chiral transition

    CERN Document Server

    Taketani, B G; Taketani, Bruno G.; Fraga, Eduardo S.

    2006-01-01

    We consider an approximation procedure to evaluate the finite-temperature one-loop fermionic density in the presence of a chiral background field which systematically incorporates effects from inhomogeneities in the chiral field through a derivative expansion. We apply the method to the case of a simple low-energy effective chiral model which is commonly used in the study of the chiral phase transition, the linear sigma-model coupled to quarks. The modifications in the effective potential and their consequences for the bubble nucleation process are discussed.

  11. Possible chiral symmetry in $^{138}$Nd

    CERN Document Server

    Raduta, A A; Petrache, C M

    2015-01-01

    The pheomenological Generalized Coherent State Model Hamiltonian is amended with a many body term describing a set of nucleons moving in a shell model mean-field and interacting among themselves with paring, as well as with a particle-core interaction involving a quadrupole-quadrupole and a hexadecapole-hexdecapole force and a spin-spin interaction. The model Hamiltonian is treated in a restricted space consisting of the core projected states associated to the bands ground, $\\beta, \\gamma,\\widetilde{\\gamma}, 1^+$ and $\\widetilde{1^+}$ and two proton aligned quasiparticles coupled to the states of the ground band. The chirally transformed particle-core states are also included. The Hamiltonian contains two terms which are not invariant to the chiral transformations relating the right handed trihedral $({\\bf J_F}, {\\bf J_p}, {\\bf J_n})$ and the left handed ones $(-{\\bf J_F}, {\\bf J_p}, {\\bf J_n})$, $({\\bf J_F}, -{\\bf J_p}, {\\bf J_n})$, $({\\bf J_F}, {\\bf J_p}, -{\\bf J_n})$ where ${\\bf J_F}, {\\bf J_p}, {\\bf J_n}$...

  12. Deconfinement, chiral transition and localisation in a QCD-like model

    Science.gov (United States)

    Giordano, Matteo; Katz, Sándor D.; Kovács, Tamás G.; Pittler, Ferenc

    2017-02-01

    We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension N T = 4. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice.

  13. Can sigma models describe finite temperature chiral transitions?

    CERN Document Server

    Kocic, Aleksandar; Aleksandar KOCIC; John KOGUT

    1995-01-01

    Large-N expansions and computer simulations indicate that the universality class of the finite temperature chiral symmetry restoration transition in the 3D Gross-Neveu model is mean field theory. This is a counterexample to the standard 'sigma model' scenario which predicts the 2D Ising model universality class. We trace the breakdown of the standard scenario (dimensional reduction and universality) to the absence of canonical scalar fields in the model. We point out that our results could be generic for theories with dynamical symmetry breaking, such as Quantum Chromodynamics.

  14. Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.

    Science.gov (United States)

    Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R

    2016-05-13

    The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.

  15. Bose Symmetry and Chiral Decomposition of 2D Fermionic Determinants

    CERN Document Server

    Abreu, Everton M C; Wotzasek, C

    1998-01-01

    We show in a precise way, either in the fermionic or its bosonized version, that Bose symmetry provides a systematic way to carry out the chiral decomposition of the two dimensional fermionic determinant. Interpreted properly, we show that there is no obstruction of this decomposition to gauge invariance, as is usually claimed. Finally, a new way of interpreting the Polyakov-Wiegman identity is proposed.

  16. Precision spectroscopy of pionic atoms and chiral symmetry in nuclei

    Directory of Open Access Journals (Sweden)

    Itahashi Kenta

    2016-01-01

    Full Text Available We conduct an experimental project to make spectroscopy of deeply bound pionic atoms systematically over wide range of nuclei. We aim at studying the strong interaction in the low energy region, which has close connection to spontaneous chiral symmetry breaking and its partial restoration in nuclear matter. First experimental results show improved spectral resolution and much better statistical sensitivity than previous experiments. Present status of the experiment is reported.

  17. Bose symmetry and chiral decomposition of 2D fermionic determinants

    Science.gov (United States)

    Abreu, E. M. C.; Banerjee, R.; Wotzasek, C.

    1998-01-01

    We show in a precise way, either in the fermionic or its bosonized version, that Bose symmetry provides a systematic way to carry out the chiral decomposition of the two-dimensional fermionic determinant. Interpreted properly, we show that there is no obstruction of this decomposition to gauge invariance, as is usually claimed. Finally, a new way of interpreting the Polyakov-Wiegman identity is proposed.

  18. Bose symmetry and chiral decomposition of 2D fermionic determinants

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, E.M.C.; Banerjee, R.; Wotzasek, C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica

    1998-01-05

    We show in a precise way, either in the fermionic or its bosonized version, that Bose symmetry provides a systematic way to carry out the chiral decomposition of the two-dimensional fermionic determinant. Interpreted properly, we show that there is no obstruction of this decomposition to gauge invariance, as is usually claimed. Finally, a new way of interpreting the Polyakov-Wiegman identity is proposed. (orig.). 17 refs.

  19. Replica symmetry breaking transition of the weakly anisotropic Heisenberg spin glass in magnetic fields.

    Science.gov (United States)

    Imagawa, Daisuke; Kawamura, Hikaru

    2004-02-20

    The spin and the chirality orderings of the three-dimensional Heisenberg spin glass with the weak random anisotropy are studied under applied magnetic fields by equilibrium Monte Carlo simulations. A replica symmetry breaking transition occurs in the chiral sector accompanied by the simultaneous spin-glass order. The ordering behavior differs significantly from that of the Ising spin glass, despite the similarity in the global symmetry. Our observation is consistent with the spin-chirality decoupling-recoupling scenario of a spin-glass transition.

  20. Chirality and its spontaneous symmetry breaking in two liquid crystal systems

    Science.gov (United States)

    Kang, Louis

    Chirality, or handedness, is a key concept spanning all fields of natural science, from biology to mathematics. Chiral structures can arise from achiral building blocks that lack a handedness if their assembly is unstable to chiral deformations, a phenomenon called spontaneous symmetry breaking. We theoretically study the role of chirality in two systems composed of liquid crystals dissolved or suspended in water, and our results match those obtained experimentally by our collaborators. In the first system, we study achiral liquid crystals whose Frank twist modulus is much lower than their splay and bend Frank moduli and which are confined in capillaries. Under homeotropic anchoring, their ground state configuration undergoes spontaneous chiral symmetry breaking when the twist modulus decreases enough relative to the splay and bend moduli. Under degenerate planar anchoring, a small twist-to-saddle-splay ratio of elastic moduli leads to degenerate twisted configurations even though an undeformed configuration is possible. Measuring the twist profile of an experimental system produces a value for the saddle-splay constant, which has been difficult to achieve previously. Under either boundary condition, domain walls and point defects, whose topological charges depend on chirality, separate domains with different degenerate configurations, and certain ones are energetically preferred over others. In the second system, we study filamentous viruses acting as colloidal liquid crystals under the influence of depletion, which promotes condensation of the viruses into 2D colloidal monolayers. These membranes have tunable chirality and show a rich array of emergent behaviors, including a transition from a circular shape to a striking starfish shape upon changing the chirality of constituent viruses, partial coalescence via domain walls through which the viruses twist by 180 degrees, and phase-separated rafts of a particular size when two virus species with different lengths

  1. Vacuum Polarization and Dynamical Chiral Symmetry Breaking: Phase Diagram of QED with Four-Fermion Contact Interaction

    CERN Document Server

    Akram, F; Gutierrez-Guerrero, L X; Masud, B; Rodriguez-Quintero, J; Calcaneo-Roldan, C; Tejeda-Yeomans, M E

    2012-01-01

    We study chiral symmetry breaking for fundamental charged fermions coupled electromagnetically to photons with the inclusion of four-fermion contact self-interaction term. We employ multiplicatively renormalizable models for the photon dressing function and the electron-photon vertex which minimally ensures mass anomalous dimension = 1. Vacuum polarization screens the interaction strength. Consequently, the pattern of dynamical mass generation for fermions is characterized by a critical number of massless fermion flavors above which chiral symmetry is restored. This effect is in diametrical opposition to the existence of criticality for the minimum interaction strength necessary to break chiral symmetry dynamically. The presence of virtual fermions dictates the nature of phase transition. Miransky scaling laws for the electromagnetic interaction strength and the four-fermion coupling, observed for quenched QED, are replaced by a mean-field power law behavior corresponding to a second order phase transition. T...

  2. On SU(3) effective models and chiral phase-transition

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...

  3. An Anderson-like model of the QCD chiral transition

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...

  4. Chirality effects on 2D phase transitions

    DEFF Research Database (Denmark)

    Scalas, E.; Brezesinski, G.; Möhwald, H.

    1996-01-01

    -nearest neighbours (NNN) and an NNN-distorted lattice is observed. At 5 degrees C, the transition pressure is 15 mN m(-1), whereas at 20 degrees C it is 18 mN m(-1). Chirality destroys this transition: the pure enantiomer always exhibits an oblique lattice with tilted molecules, and the azimuths of tilt...... and distortion continuously vary from a direction close to NN to a direction close to NNN. The nature of the phase transition and the influence of chirality on it are discussed within the framework of Landau's theory of phase transitions....

  5. Breakdown of chiral symmetry during saturation of the Tayler instability

    CERN Document Server

    Bonanno, Alfio; Del Sordo, Fabio; Mitra, Dhrubaditya

    2012-01-01

    We study spontaneous breakdown of chiral symmetry during the nonlinear evolution of the Tayler instability. We start with an initial stationary state of zero helicity. Within linearized perturbation calculations, helical perturbations of this initial state have the same growth rate for either sign of helicity. Direct numerical simulations (DNS) of the fully nonlinear equations however shows that an infinitesimal excess of one sign of helicity in the initial perturbation gives rise to a saturated helical state. We further show that this symmetry-breaking can be described by weakly nonlinear finite amplitude equations with undetermined coefficients which can be deduced solely from symmetry consideration. By fitting solutions of the amplitude equations to data from DNS we further determine the coefficients of the amplitude equations.

  6. The chicken or the egg; or Who ordered the chiral phase transition?

    CERN Document Server

    Kogan, I I; Tekin, B; Kogan, Ian I.; Kovner, Alex; Tekin, Bayram

    2001-01-01

    We draw an analogy between the deconfining transition in the 2+1 dimensional Georgi-Glashow model and the chiral phase transition in 3+1 dimensional QCD. Based on the detailed analysis of the former (hep-th/0010201) we suggest that the chiral symmetry restoration in QCD at high temperature is driven by the thermal ensemble of baryons and antibaryons. The chiral symmetry is restored when roughly half of the volume is occupied by the baryons. Surprisingly enough, even though baryons are rather heavy, a crude estimate for the critical temperature gives $T_c=180$ Mev. In this scenario the binding of the instantons is not the cause but rather a consequence of the chiral symmetry restoration.

  7. Probing Emergent Scale-Chiral Symmetry in Nuclear Interactions

    CERN Document Server

    Paeng, Won-Gi

    2016-01-01

    In effective field theory for baryonic matter in which broken scale symmetry and hidden local symmetry are incorporated, both scale invariance and local gauge invariance, invisible or perhaps even absent in the QCD vacuum, could arise at high density as emergent symmetries, with a dilaton figuring as a scalar Nambu-Goldstone boson and the $\\rho$ and $a_1$ mesons as gauge fields, the former at the "dialton-limit (DL) fixed point" and the latter at the "vector manifestation (VM) fixed point." A novel phenomenon observed in a simplified model is that the dilaton condensate in nuclear medium "walks" as density increases beyond $n_{1/2}\\sim (2-3)n_0$ and induces the in-medium hidden gauge symmetry coupling, un-scaling up to density $n_{1/2}$, to start dropping rapidly towards the VM fixed point $n_{VM} >n_{1/2} $ at which the vector meson mass vanishes, coinciding, most likely, with chiral symmetry restoration. We discuss how to probe both VM and DL properties by means of the nuclear symmetry energy and the sound ...

  8. Dense baryonic matter in conformally-compensated hidden local symmetry: Vector manifestation and chiral symmetry restoration

    Science.gov (United States)

    Ma, Yong-Liang; Harada, Masayasu; Lee, Hyun Kyu; Oh, Yongseok; Park, Byung-Yoon; Rho, Mannque

    2014-08-01

    We find that, when the dilaton is implemented as a (pseudo-)Nambu-Goldstone boson using a conformal compensator or "conformon" in a hidden gauge symmetric Lagrangian written to O(p4) from which baryons arise as solitons, namely, skyrmions, the vector manifestation and chiral symmetry restoration at high density predicted in hidden local symmetry theory—which is consistent with Brown-Rho scaling—are lost or sent to infinite density. It is shown that they can be restored if in medium the behavior of the ω field is taken to deviate from that of the ρ meson in such a way that the flavor U(2) symmetry is strongly broken at increasing density. The hitherto unexposed crucial role of the ω meson in the structure of elementary baryon and multibaryon systems is uncovered in this work. In the state of half-skyrmions to which the skyrmions transform at a density n1/2≳n0 (where n0 is the normal nuclear matter density), characterized by the vanishing (space averaged) quark condensate but nonzero pion decay constant, the nucleon mass remains more or less constant at a value ≳60% of the vacuum value, indicating a large component of the nucleon mass that is not associated with the spontaneous breaking of chiral symmetry. We discuss its connection to the chiral-invariant mass m0 that figures in the parity-doublet baryon model.

  9. Linking Dynamical Gluon Mass to Chiral Symmetry Breaking via a QCD Low Energy Effective Field Theory

    CERN Document Server

    Oliveira, O; Frederico, T

    2011-01-01

    A low energy effective field theory model for QCD with a scalar color octet field is discussed. The model relates the gluon mass, the constituent quark masses and the quark condensate. The gluon mass comes about $\\sqrt{N_c}\\, \\Lambda_{QCD}$ with the quark condensate being proportional to the gluon mass squared. The model suggests that the restoration of chiral symmetry and the deconfinement transition occur at the same temperature and that, near the transition, the critical exponent for the condensate is twice the gluon mass one. The model also favors the decoupling like solution for the gluon propagator.

  10. Recent progress in understanding deconfinement and chiral restoration phase transitions

    CERN Document Server

    Shuryak, Edward

    2016-01-01

    Paradigme shift in gauge topology, from instantons to their constituents -- instanton-dyons -- has recently lead to very significant advances. Like instantons, they have fermionic zero modes, and their collectivization at sufficiently high density explains the chiral symmetry breaking. Unlike instantons, these objects have electric and magnetic charges. Their back reaction on the mean value of the Polyakov line (holonomy) allows to explain the deconfinement transition. The talk summarizes recent works on the dyon ensemble, done in the mean field approximation (MFA), and also by direct numerical statistical simulation. Introduction of non-trivial quark periodicity conditions leads to drastic changes in both deconfinement and chiral transitions. In particulaly, in the so called Z(N_c)-QCD model the former gets much stronger, while the latter does not seem to occur at all.

  11. Topological protection of defect states from semi-chiral symmetry

    CERN Document Server

    Poli, Charles; Bellec, Matthieu; Kuhl, Ulrich; Mortessagne, Fabrice

    2015-01-01

    Bipartite quantum systems from the chiral universality classes admit topologically protected zero modes at point defects. However, these states are difficult to separate from compacton-like localized states that arise from flat bands, formed if the two sublattices support a different number of sites within a unit cell. Here we identify a natural reduction of chiral symmetry, obtained by coupling sites on the majority sublattice, which gives rise to spectrally isolated point-defect states, topologically characterized as zero modes supported by the complementary minority sublattice. We observe these states in a microwave realization of a dimerized Lieb lattice with next-nearest neighbour coupling, and also demonstrate topological mode selection via sublattice-staggered absorption.

  12. Effects of gauge boson mass on chiral and deconfinement phase transitions in QED$_{3}$

    CERN Document Server

    Yin, Pei-Lin; Feng, Hong-Tao; Zong, Hong-Shi

    2016-01-01

    Based on the experimental observation that there is a coexisting region between the antiferromagnetic (AF) and $\\textit{d}$-wave superconducting ($\\textit{d}$SC) phases, the influences of gauge boson mass $m_{a}$ on chiral symmetry restoration and deconfinement phase transitions in QED$_{3}$ are investigated simultaneously within a unified framework, i.e., Dyson-Schwinger equations. The results show that the chiral symmetry restoration phase transition in the presence of the gauge boson mass $m_{a}$ is a typical second-order phase transition; the chiral symmetry restoration and deconfinement phase transitions are coincident; the critical number of fermion flavors $N^{c}_{f}$ decreases as the gauge boson mass $m_{a}$ increases and there exists a boundary that separates the $N^{c}_{f}$-$m_{a}$ plane into chiral symmetry breaking/confinement region for ($N_{f}^{c}$, $m_{a}$) below the boundary and chiral symmetry restoration/deconfinement region for ($N_{f}^{c}$, $m_{a}$) above it.

  13. Simultaneous Chiral Symmetry Restoration and Deconfinement Consequences for the QCD Phase Diagram

    Science.gov (United States)

    Klähn, Thomas; Fischer, Tobias; Hempel, Matthias

    2017-02-01

    For studies of quark matter in astrophysical scenarios, the thermodynamic bag model is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Klähn & Fischer we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant {B}{dc} from a given hadronic equation of state in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction, the phase diagram, and implications for protoneutron stars.

  14. Simultaneous chiral symmetry restoration and deconfinement - Consequences for the QCD phase diagram

    CERN Document Server

    Klahn, Thomas; Hempel, Matthias

    2016-01-01

    For studies of quark matter in astrophysical scenarios the thermodynamic bag model (tdBag) is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Kl\\"ahn & Fischer (2015) we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant $B_{\\rm dc}$ from a given hadronic equation of state (EoS) in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction and the phase diagram.

  15. The QCD phase transition with physical-mass, chiral quarks

    CERN Document Server

    Bhattacharya, Tanmoy; Christ, Norman H; Ding, H -T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-01-01

    We report on the first lattice calculation of the QCD phase transition using chiral fermions at physical values of the quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm$)^3$ and (11 fm$)^3$ and temperatures between 139 and 196 MeV . Each temperature was calculated using a single lattice spacing corresponding to a temporal Euclidean extent of $N_t=8$. The disconnected chiral susceptibility, $\\chi_{\\rm disc}$ shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability in the region of the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD ``phase transition'' is not first order but a continuous cross-over for $m_\\pi=135$ MeV. The peak location determines a pseudo-critical temperature $T_c = 155(1)(8)$ MeV. Chiral $SU(2)_L\\times SU(2)_R$ symmetry is fully restored above 164 MeV, but anomalous $U(1)_A$ symmetry breaking is non-zero above $T...

  16. QCD phase transition with chiral quarks and physical quark masses.

    Science.gov (United States)

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  17. Chiral symmetry and nuclear matter equation of state

    Indian Academy of Sciences (India)

    A B Santra

    2001-08-01

    We investigate the effect on the nuclear matter equation of state (EOS) due to modification of meson and nucleon parameters in nuclear medium as a consequence of partial restoration of chiral symmetry. To get the EOS, we have used Brueckner–Bethe–Golstone formalism with Bonn- potential as two-body interaction and QCD sum rule and Brown–Rho scaling prescriptions for modification of hadron parameters. We find that EOS is very much sensitive to the meson parameters. We can fit, with two body interaction alone, both the saturation density and the binding energy per nucleon.

  18. From Running Gluon Mass to Chiral Symmetry Breaking

    CERN Document Server

    Oliveira, Orlando; Dudal, D; Frederico, T; de Paula, W; Vandersickel, N

    2011-01-01

    The gluon propagator is one of the fundamental Green's functions of QCD. It is an essential ingredient in, for example, the modeling of the Schwinger-Dyson equation used to describe hadronic phenomenology. From the Landau gauge gluon propagator, computed with lattice QCD methods, we discuss its interpretation as a massive propagator and measure the gluon mass as a function of the momenta. Special attention is given to the mass at infrared scales. In the last part of the talk, the gluon mass and chiral symmetry breaking are related via an effective model for QCD.

  19. Indications of partial chiral symmetry restoration from pionic atoms

    Science.gov (United States)

    Friedman, E.

    2002-01-01

    Extensive data on strong interaction effects in pionic atoms are analyzed with a density-dependent isovector scattering amplitude suggested recently by Weise to result from a density dependence of the pion decay constant. Most of the so-called 'missing s-wave repulsion' is removed when adopting this approach, thus indicating a partial chiral symmetry restoration in dense matter. The resulting potentials describe quite well also elastic scattering of 20 MeV pions on Ca. Further tests with elastic scattering are desirable.

  20. Dynamics of the chiral phase transition

    CERN Document Server

    van Hees, H; Meistrenko, A; Greiner, C

    2013-01-01

    The intention of this study is the search for signatures of the chiral phase transition in heavy-ion collisions. To investigate the impact of fluctuations, e.g., of the baryon number, at the transition or at a critical point, the linear sigma model is treated in a dynamical (3+1)-dimensional numerical simulation. Chiral fields are approximated as classical mean fields, and quarks are described as quasi particles in a Vlasov equation. Additional dynamics is implemented by quark-quark and quark-sigma-field interactions. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.

  1. In Search of a Pristine Signal for (Scale-)Chiral Symmetry in Nuclei

    CERN Document Server

    Rho, Mannque

    2016-01-01

    I describe the long-standing search for a "smoking-gun" signal for the manifestation of (scale-)chiral symmetry in nuclear interactions. It is prompted by Gerry Brown's last unpublished note, reproduced verbatim below, on the preeminent role of pions and vector ($\\rho$,$\\omega$) mesons in providing a simple and elegant description of strongly correlated nuclear interactions. In this note written in tribute to Gerry Brown, I first describe a case of an unambiguous signal in axial-charge transitions in nuclei and then combine his ideas with the more recent development on the role of hidden symmetries in nuclear physics. What transpires is the surprising conclusion that the Landau-Migdal fixed point interaction $G_0^\\prime$, the nuclear tensor forces and Brown-Rho scaling, all encoded in scale-invariant hidden local symmetry, as Gerry put, "run the show and make all forces equal."

  2. Lattice regularization of gauge theories without loss of chiral symmetry

    CERN Document Server

    't Hooft, Gerardus

    1994-01-01

    Abstract: A lattice regularization procedure for gauge theories is proposed in which fermions are given a special treatment such that all chiral flavor symmetries that are free of Adler-Bell-Jackiw anomalies are kept intact. There is no doubling of fermionic degrees of freedom. A price paid for this feature is that the number of fermionic degrees of freedom per unit cell is still infinite, although finiteness of the complete functional integrals can be proven (details are outlined in an Appendix). Therefore, although perhaps of limited usefulness for numerical simulations, our scheme can be applied for studying aspects such as analytic convergence questions, spontaneous symmetry breakdown and baryon number violation in non-Abelian gauge theories.

  3. Baryons, their interactions and the chiral symmetry of QCD

    CERN Document Server

    Glozman, L Ya

    1997-01-01

    An implication of the spontaneous chiral symmetry breaking in QCD is that at low energy and resolution there appear quasiparticles - constituent quarks and Goldstone bosons. Thus, light and strange baryons should be considered as systems of three constituent quarks with confining interaction and a chiral interaction that is mediated by Goldstone bosons between the constituent quarks. We show how the flavor-spin structure and sign of the short-range part of the Goldstone boson exchange interaction reduces the $SU(6)_{FS}$ symmetry down to $SU(3)_F \\times SU(2)_S$, induces hyperfine splittings and provides correct ordering of the lowest states with positive and negative parity. We present a unified description of light and strange baryon spectra calculated in a semirelativistic framework. It is demonstrated that the same short-range part of Goldstone boson exchange also induces strong short-range repulsion in $NN$ system when the latter is treated as $6Q$ system. Thus, all main ingredients of $NN$ interaction a...

  4. Symmetries and in-medium effects: Chiral symmetry breaking and modification of meson properties in a strongly interacting medium

    Directory of Open Access Journals (Sweden)

    Metag Volker

    2014-01-01

    Full Text Available Chiral symmetry is a fundamental symmetry of Quantum Chromodynamics (QCD in the limit of vanishing quark masses. In the hadronic sector chiral symmetry is broken; otherwise chiral partners - hadronic states with the same spin but opposite parity - should be degenerate in mass which is not observed in nature. It has been suggested that chiral symmetry might at least be partially restored in a strongly interacting environment. As a consequence, properties of hadrons, encoded in their mass and width, may be modified when embedded in a nucleus. These ideas have motivated widespread theoretical and experimental activities. As an example, recent experimental results on the in-medium properties of the η′ meson are presented.

  5. Structure of chiral phase transitions at finite temperature in abelian gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Fukazawa, Kenji [Kure National College of Technology, Kure (Japan); Inagaki, Tomohiro [Information Media Center, Hiroshima Univ., Hiroshima (Japan); Mukaigawa, Seiji [Department of Electrical and Electronic Engineering, Faculty of Engineering, Iwate Univ., Iwate (Japan); Muta, Taizo [Department of Physics, Hiroshima Univ., Hiroshima (Japan)

    2001-06-01

    The mechanism of chiral symmetry breaking is investigated in strong-coupling Abelian gauge theories at finite temperature. The Schwinger-Dyson equation in the Landau gauge is employed in the real time formalism and is solved numerically within the framework of the instantaneous exchange approximation, including the effect of the thermal mass for the photon propagator. It is found that the chiral symmetry is broken below the critical temperature T for sufficiently large coupling {alpha}. The chiral phase transition is found to be of second order, and the phase diagram in the T-{alpha} plane is obtained. It is investigated how the structure of the chiral phase transition is affected by the thermal mass in the photon propagator. (author)

  6. Structure of chiral phase transitions at finite temperature in Abelian gauge theories

    CERN Document Server

    Fukazawa, K; Mukaigawa, S; Muta, T; Fukazawa, Kenji; Inagaki, Tomohiro; Mukaigawa, Seiji; Muta, Taizo

    1999-01-01

    The mechanism of the chiral symmetry breaking is investigated in the strong-coupling Abelian gauge theories at finite temperature. The Schwinger-Dyson equation in Landau gauge is employed in the real time formalism and is solved numerically within the framework of the instantaneous exchange approximation including the effect of the hard thermal loop for the photon propagator. It is found that the chiral symmetry is broken below the critical temperature T for sufficiently large coupling. The chiral phase transition is found to be of the 2nd order and the phase diagram on the $T-\\alpha$ plane is obtained. It is investigated how the structure of the chiral phase transition is affected by the hard thermal loops in the photon propagator.

  7. Aspects of Chiral Symmetry Breaking in Lattice QCD

    Science.gov (United States)

    Horkel, Derek P.

    phase diagram is unaffected by the inclusion of electromagnetism--the only effect is to raise the charged pion masses. For maximally twisted fermions, we previously took the twist and isospin-breaking directions to be different, in order that the fermion determinant is real and positive. However, this is incompatible with electromagnetic gauge invariance, and so here we take the twist to be in the isospin-breaking direction, following the RM123 collaboration. We map out the phase diagram in this case, which has not previously been studied. The results differ from those obtained with different twist and isospin directions. One practical issue when including electromagnetism is that the critical masses for up and down quarks differ. We show that one of the criteria suggested to determine these critical masses does not work, and propose an alternative. In chapter 4, we delve deeper into the technical details of the analysis in chapter 3. We determine the phase diagram and chiral condensate for lattice QCD with two flavors of twisted-mass fermions in the presence of nondegenerate up and down quarks, discretization errors and a nonzero value of thetaQCD. We find that, in general, the only phase structure is a first-order transition of finite length. Pion masses are nonvanishing throughout the phase plane except at the endpoints of the first-order line. Only for extremal values of the twist angle and thetaQCD (o = 0 or pi/2 and thetaQCD = 0 or pi) are there second-order transitions. In chapter 5 we move on to a new topic, working to make a first measurement of non-perturbative Greens functions which vanish in perturbation theory but have a non-vanishing one-instanton contribution, as suggested in recent work by Dine et. al. [24] using a semi- classical approach. This measurement was done using 163 x 48 configurations generated by the MILC collaboration, with coupling beta = 6.572, light quark mass m la = 0.0097, strange quark mass msa = 0.0484, lattice spacing a ≈ 0.14 fm

  8. Chiral transition and deconfinement in QCD

    CERN Document Server

    D'Elia, M; Pica, C

    2006-01-01

    The study of QCD with two light dynamical fermions is of fundamental importance to understand the mechanism of color confinement. We present results of a numerical investigation on the order of the chiral phase transition with $N_f = 2$ by use of a novel strategy in finite size scaling analysis. We compare the critical behaviour of the specific heat, of the chiral susceptibility and of the equation of state with the possible critical behaviours. A second order transition in the O(4) and O(2) universality classes are excluded by our data and substantial evidence emerges for a first order transition. Like in most of previous works we have used the standard staggered action with $L_t = 4$: possible scaling violations and the need for further studies are discussed.

  9. Conformal symmetry vs. chiral symmetry breaking in the SU(3) sextet model

    CERN Document Server

    Drach, Vincent; Hietanen, Ari; Pica, Claudio; Sannino, Francesco

    2015-01-01

    We present new results for the SU(3) "sextet model" with two flavors transforming according to the two-index symmetric representation of the gauge group. The simulations are performed using unimproved Wilson fermions. We measure the meson and baryon spectrum of the theory for multiple bare quark masses at two different lattice spacings. To address the pressing issue of whether the model is inside or below the conformal window, we compare the spectrum to the expectations for a theory with spontaneous chiral symmetry breaking and to those of an IR conformal theory. Regardless of the answer (conformal or chirally broken), the theory is a cornerstone in our understanding of near-conformal and composite dynamics, ranging from Technicolor models to unparticle physics. It is also interesting for the composite dynamics of vector-like singlets with respect to the Standard Model interactions.

  10. Chiral transition in a strong magnetic background

    CERN Document Server

    Fraga, Eduardo S

    2008-01-01

    The presence of a strong magnetic background can modify the nature and the dynamics of the chiral phase transition at finite temperature. We compute the modified effective potential in the linear sigma model with quarks to one loop in the $\\bar{MS}$ scheme for $N_{f}=2$. For fields $eB\\sim 5 m_{\\pi}^{2}$ and larger a crossover is turned into a weak first-order transition. We discuss possible implications for non-central heavy ion collisions at RHIC and LHC, and for the primordial QCD transition.

  11. Two alternatives of spontaneous chiral symmetry breaking in QCD

    CERN Document Server

    Stern, J

    1998-01-01

    Considering QCD in an Euclidean box, the mechanism of spontaneous breaking of chiral symmetry (SB$\\chi$S) is analyzed in terms of average properties of lowest eigenstates of the Dirac operator. A formal analogy between the pion decay constant and conductivity in disordered systems is established. It follows that SB$\\chi$S results from a subtle balance between the density of Euclidean quark states and their mobility. SB$\\chi$S can be realized either with $ =0$, provided the low density of states is compensated by a high mobility, or with a non-vanishing condensate, provided the mobility is suppressed. It is conjectured that the first case corresponds to extended whereas the latter case to (weakly) localized quark states.

  12. Chiral-symmetry breaking and confinement in Minkowski space

    CERN Document Server

    Biernat, Elmar P; Ribeiro, J E; Stadler, Alfred; Gross, Franz

    2014-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  13. Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.

    Science.gov (United States)

    Meyrand, Romain; Galtier, Sébastien

    2012-11-01

    Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed.

  14. Scale-setting, flavour dependence and chiral symmetry restoration

    CERN Document Server

    Binosi, Daniele; Rodriguez-Quintero, Jose

    2016-01-01

    We determine the flavour dependence of the renormalisation-group-invariant running interaction through judicious use of both unquenched Dyson-Schwinger equation and lattice results for QCD's gauge-sector two-point functions. An important step is the introduction of a physical scale setting procedure that enables a realistic expression of the effect of different numbers of active quark flavours on the interaction. Using this running interaction in concert with a well constrained class of dressed--gluon-quark vertices, we estimate the critical number of active lighter-quarks above which dynamical chiral symmetry breaking becomes impossible: $n_f^{\\rm cr}\\approx 9$; and hence in whose neighbourhood QCD is plausibly a conformal theory.

  15. Chiral-symmetry breaking and confinement in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [Unibersidade de Lisboa, 104-001, Lisboa, Portugal; Pena, M. T. [Universidade de Lisboa, 1049-001, Lisboa, Portugal; Ribiero, J. E. [Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Universidade de Évora, 7000-671 Évora, Portugal; Universidade de Lisboa, 1049-001 Lisboa, Portugal; Gross, Franz [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-01-01

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  16. Chiral-symmetry breaking and confinement in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmar P. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Peña, M. T. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Departamento de Física, Instituto Superior Técnico (IST), Universidadede Lisboa, 1049-001 Lisboa (Portugal); Ribeiro, J. E. [Centro de Física das Interações Fundamentais (CFIF), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Gross, Franz [Thomas Jefferson National Accelerator Facility (JLab), Newport News, Virginia 23606 (United States)

    2016-01-22

    We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.

  17. Chiral symmetry in a hot and dense magnetic medium

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, Gabriel N.; Pinto, Marcus B. [Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis (Brazil)

    2013-03-25

    We consider the Linear Sigma Model (LSM) in the Mean Field Approximation (MFA) in order to analyze hot and dense two flavor quark matter subject to strong magnetic fields. We pay especial attention to the case of a finite chemical potential, which has not yet been fully explored. Here, we investigate the strength of the chiral transition and the behavior of the sigma meson mass for {mu}= 0 and {mu}{ne} 0 under strong magnetic fields, as well as its effects over the T-{mu} plane.

  18. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    CERN Document Server

    Cassing, W; Moreau, P; Bratkovskaya, E L

    2015-01-01

    We study the production of strange hadrons in nucleus-nucleus collisions from 4 to 160 A GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. Especially the $K^+/\\pi^+$ and the $(\\Lambda+\\Sigma^0)/\\pi^-$ ratios in central Au+Au collisions are found to provide information on the relative importance of both transitions. The modelling of chiral symmetry restoration is driven by the pion-nucleon $\\Sigma$-term in the computation of the quark scalar condensate $$ that serves as an order parameter for CSR and also scales approximately with the effective quark masses $m_s$ and $m_q$. Furthermore, the nucleon scalar density $\\rho_s$, which also enters the computation of $$, is evaluated within the nonlinear $\\sigma-\\omega$ model which is constraint by Dirac-Brueckner calculations and low energy...

  19. Imaging chiral symmetry breaking from Kekulé bond order in graphene

    Science.gov (United States)

    Gutiérrez, Christopher; Kim, Cheol-Joo; Brown, Lola; Schiros, Theanne; Nordlund, Dennis; Lochocki, Edward B.; Shen, Kyle M.; Park, Jiwoong; Pasupathy, Abhay N.

    2016-10-01

    Chirality--or `handedness’--is a symmetry property crucial to fields as diverse as biology, chemistry and high-energy physics. In graphene, chiral symmetry emerges naturally as a consequence of the carbon honeycomb lattice. This symmetry can be broken by interactions that couple electrons with opposite momenta in graphene. Here we directly visualize the formation of Kekulé bond order, one such phase of broken chiral symmetry, in an ultraflat graphene sheet grown epitaxially on a copper substrate. We show that its origin lies in the interactions between individual vacancies in the copper substrate that are mediated electronically by the graphene. We show that this interaction causes the bonds in graphene to distort, creating a phase with broken chiral symmetry. The Kekulé ordering is robust at ambient temperature and atmospheric conditions, indicating that intercalated atoms may be harnessed to drive graphene and other two-dimensional materials towards electronically desirable and exotic collective phases.

  20. Chiral Symmetry Breaking in Micro-Ring Optical Cavity By Engineered Dissipation

    CERN Document Server

    Shu, Fang-Jie; Zou, Xu-Bo; Yang, Lan

    2016-01-01

    We propose a method to break the chiral symmetry of light in traveling wave resonators by coupling the optical modes to a lossy channel. Through the engineered dissipation, an indirect dissipative coupling between two oppositely propagating modes can be realized. Combining with reactive coupling, it can break the chiral symmetry of the resonator, allowing light propagating only in one direction. The chiral symmetry breaking is numerically verified by the simulation of an electromagnetic field in a micro-ring cavity, with proper refractive index distributions. This work provokes us to emphasize the dissipation engineering in photonics, and the generalized idea can also be applied to other systems.

  1. Peak of Chiral Susceptibility and Chiral Phase Transition in QED3

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-Qing; YANG Yong-Hong

    2011-01-01

    A general expression for the scalar susceptibility in QEDs is given. We adopt the Dyson-Schwinger equation for the fermion propagator to solve xc within a range of the number of fermion flavors, N, in chiral symmetry breaking phase. We show that the scalar susceptibility has a peak and the corresponding N is less than the critical number of fermion flavors for chiral symmetry.%@@ A general expression for the scalar susceptibility in QED3 is given.We adopt the Dyson-Schwinger equation for the fermion propagator to solve Xc within a range of the number of fermion flavors, N, in chiral symmetry breaking phase.We show that the scalar susceptibility has a peak and the corresponding N is less than thecritical number of fermion flavors for chiral symmetry.

  2. Deconfinement, chiral transition and localisation in a QCD-like model

    CERN Document Server

    Giordano, Matteo; Kovacs, Tamas G; Pittler, Ferenc

    2016-01-01

    We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension $N_T=4$. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice.

  3. Gauge fermions with flat bands and anomalous transport via chiral modes from breaking gauge symmetry

    CERN Document Server

    Luo, Xi

    2016-01-01

    The dispersionless longitudinal photon in Maxwell theory is thought of as a redundant degree of freedom due to the gauge symmetry. We find that when there exist exactly flat bands with zero energy in a condensed matter system, the fermion field may locally transform as a gauge field and the system possesses a gauge symmetry. As the longitudinal photon, the redundant degrees of freedom from the flat bands must be gauged away from the physical states. As an example, we study spinless fermions on a generalized Lieb lattice in three dimensions. The flat band of the longitudinal fermion induces a gauge symmetry. An external magnetic field breaks this gauge symmetry and emerges a bunch of non-topologically chiral modes. Combining these emergent chiral modes with the chiral anomaly mode which is of an opposite chirality, rich anomalous electric transport phenomena exhibit and are expected to be observed in Pd$_3$Bi$_2$S$_2$ and Ag$_3$Se$_2$Au.

  4. Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups

    CERN Document Server

    Shi, Yan-Liang

    2016-01-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  5. Dynamical symmetry breaking in chiral gauge theories with direct-product gauge groups

    Science.gov (United States)

    Shi, Yan-Liang; Shrock, Robert

    2016-09-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups G . If the gauge coupling for a factor group Gi⊂G becomes sufficiently strong, it can produce bilinear fermion condensates that break the Gi symmetry itself and/or break other gauge symmetries Gj⊂G . Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of G and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  6. Connecting an effective model of confinement and chiral symmetry to lattice QCD

    CERN Document Server

    Fraga, E; Fraga, Eduardo; Mocsy, Agnes

    2007-01-01

    We construct an effective model for the chiral field and the Polyakov loop in which we can investigate the interplay between the approximate chiral symmetry restoration and the deconfinement of color in a thermal SU(3) gauge theory with three flavors of massive quarks. The phenomenological couplings between these two sectors can then be related to the recent lattice data on the renormalized Polyakov loop and the chiral condensate close to the critical region.

  7. Optically probed symmetry breaking in the chiral magnet Cu2OSeO3

    NARCIS (Netherlands)

    Versteeg, R. B.; Vergara, I.; Schaefer, S. D.; Bischoff, D.; Aqeel, A.; Palstra, T. T. M.; Grueninger, M.; van Loosdrecht, P. H. M.

    2016-01-01

    We report on the linear optical properties of the chiral magnet Cu2OSeO3, specifically associated with the absence of inversion symmetry, the chiral crystallographic structure, and magnetic order. Through spectroscopic ellipsometry, we observe local crystal-field excitations below the charge-transfe

  8. Novel Lifshitz point for chiral transition in the magnetic field

    Directory of Open Access Journals (Sweden)

    Toshitaka Tatsumi

    2015-04-01

    Full Text Available Based on the generalized Ginzburg–Landau theory, chiral phase transition is discussed in the presence of magnetic field. Considering the chiral density wave we show that chiral anomaly gives rise to an inhomogeneous chiral phase for nonzero quark-number chemical potential. Novel Lifshitz point appears on the vanishing chemical potential line, which may be directly explored by the lattice QCD simulation.

  9. Sea quark transverse momentum distributions and dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Peter [Univ. of Connecticut, Storrs, CT (United States); Strikman, Mark [Penn State Univ., State College, PA (United States); Weiss, Christian [JLAB Newport News, VA (United States)

    2014-01-01

    Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.

  10. Explicit chiral symmetry breaking in Gross-Neveu type models

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Christian

    2011-07-25

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well

  11. Mirror Symmetry Breaking by Chirality Synchronisation in Liquids and Liquid Crystals of Achiral Molecules.

    Science.gov (United States)

    Tschierske, Carsten; Ungar, Goran

    2016-01-04

    Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems.

  12. Cutoff effects of Wilson fermions in the absence of spontaneous chiral symmetry breaking

    CERN Document Server

    Della Morte, M; Luz, Magdalena; Morte, Michele Della

    2006-01-01

    We simulate two dimensional QED with two degenerate Wilson fermions and plaquette gauge action. As a consequence of the Mermin-Wagner theorem, in the continuum limit chiral symmetry is realized a la Wigner. This property affects also the size of the cutoff effects. That can be understood in view of the fact that the leading lattice artifacts are described, in the continuum Symanzik effective theory, by chirality breaking terms. In particular, vacuum expectation values of non-chirality-breaking operators are expected to be O(a) improved in the chiral limit. We provide a numerical confirmation of this expectation by performing a scaling test.

  13. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    Energy Technology Data Exchange (ETDEWEB)

    Holt, Jeremy W., E-mail: jwholt.phys@gmail.com [Department of Physics, University of Washington, Seattle, 98195 (United States); Rho, Mannque [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette (France); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany); ECT*, Villa Tambosi, I-38123 Villazzano (Italy)

    2016-03-21

    Chiral symmetry, first entering in nuclear physics in the 1970s for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early, germinal idea conceived with the soft-pion theorems in the pre-QCD era has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: “it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme”. Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  14. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    CERN Document Server

    Holt, Jeremy W; Weise, Wolfram

    2014-01-01

    Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  15. Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks

    Institute of Scientific and Technical Information of China (English)

    LUO XiangQian

    2007-01-01

    One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking,which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero.In standard methods of the lattice gauge theory,one has to perform expensive simulations at multiple bare quark masses,and employ some modeled functions to extrapolate the data to the chiral limit.This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks,without any ambiguous mass extrapolation.The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD,which deserves further investigation.

  16. Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.

  17. Master formula approach to broken chiral U(3)xU(3) symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Hiroyuki Kamano

    2010-04-01

    The master formula approach to chiral symmetry breaking proposed by Yamagishi and Zahed is extended to the U_R(3)xU_L(3) group, in which effects of the U_A(1) anomaly and the flavor symmetry breaking m_u \

  18. WHY COLOR-FLAVOR LOCKING IS JUST LIKE CHIRAL SYMMETRY BREAKING

    Energy Technology Data Exchange (ETDEWEB)

    PISARSKI,R.D.; RISCHKE,D.H.

    2000-05-10

    The authors review how a classification into representations of color and flavor can be used to understand the possible patterns of symmetry breaking for color superconductivity in dense quark matter. In particular, the authors show how for three flavors, color-flavor locking is precisely analogous to the usual pattern of chiral symmetry breaking in the QCD vacuum.

  19. Chiral phase transition and Schwinger mechanism in a pure electric field

    CERN Document Server

    Cao, Gaoqing

    2016-01-01

    We systematically study the chiral symmetry breaking and restoration in the presence of a pure electric field in the Nambu--Jona-Lasinio (NJL) model at finite temperature and baryon chemical potential. In addition, we also study the effect of the chiral phase transition on the charged pair production due to the Schwinger mechanism. For these purposes, a general formalism for parallel electric and magnetic fields is developed at finite temperature and chemical potential for the first time. In the pure electric field limit $B\\rightarrow0$, we compute the order parameter, the transverse-to-longitudinal ratio of the Goldstone mode velocities, and the Schwinger pair production rate as functions of the electric field. The inverse catalysis effect of the electric field to chiral symmetry breaking is recovered. And the Goldstone mode is find to disperse anisotropically such that the transverse velocity is always smaller than the longitudinal one, especially at nonzero temperature and baryon chemical potential. As exp...

  20. Chiral phase transition in charge ordered 1T-TiSe2.

    Science.gov (United States)

    Castellan, John-Paul; Rosenkranz, Stephan; Osborn, Ray; Li, Qing'an; Gray, K E; Luo, X; Welp, U; Karapetrov, Goran; Ruff, J P C; van Wezel, Jasper

    2013-05-10

    It was recently discovered that the low-temperature, charge-ordered phase of 1T-TiSe(2) has a chiral character. This unexpected chirality in a system described by a scalar order parameter could be explained in a model where the emergence of relative phase shifts between three charge density wave components breaks the inversion symmetry of the lattice. Here, we present experimental evidence for the sequence of phase transitions predicted by that theory, going from disorder to nonchiral and finally to chiral charge order. Employing x-ray diffraction, specific heat, and electrical transport measurements, we find that a novel phase transition occurs ~7 K below the main charge ordering transition in TiSe(2), in agreement with the predicted hierarchy of charge-ordered phases.

  1. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    Science.gov (United States)

    Fischer, Tobias; Klähn, Thomas; Hempel, Matthias

    2016-08-01

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D χ SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Klähn and Fischer (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D χ SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.

  2. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    CERN Document Server

    Fischer, Tobias; Hempel, Matthias

    2016-01-01

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Kl\\"ahn and Fischer (2015) (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D$\\chi$SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.

  3. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Tobias; Klaehn, Thomas [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Hempel, Matthias [University of Basel, Department of Physics, Basel (Switzerland)

    2016-08-15

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D χ SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Klaehn and Fischer (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D χ SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium. (orig.)

  4. Chiral symmetry restoration in heavy-ion collisions at intermediate energies

    CERN Document Server

    Palmese, A; Seifert, E; Steinert, T; Moreau, P; Bratkovskaya, E L

    2016-01-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range $\\sqrt{s_{NN}}$=3-20 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear $\\sigma-\\omega$ model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations.

  5. Phase diagrams of charged colloidal rods: Can a uniaxial charge distribution break chiral symmetry?

    Science.gov (United States)

    Drwenski, Tara; Dussi, Simone; Hermes, Michiel; Dijkstra, Marjolein; van Roij, René

    2016-03-07

    We construct phase diagrams for charged rodlike colloids within the second-virial approximation as a function of rod concentration, salt concentration, and colloidal charge. Besides the expected isotropic-nematic transition, we also find parameter regimes with a coexistence between a nematic and a second, more highly aligned nematic phase including an isotropic-nematic-nematic triple point and a nematic-nematic critical point, which can all be explained in terms of the twisting effect. We compute the Frank elastic constants to see if the twist elastic constant can become negative, which would indicate the possibility of a cholesteric phase spontaneously forming. Although the twisting effect reduces the twist elastic constant, we find that it always remains positive. In addition, we find that for finite aspect-ratio rods the twist elastic constant is also always positive, such that there is no evidence of chiral symmetry breaking due to a uniaxial charge distribution.

  6. Chiral Phase Transition in the Soft-Wall Model of AdS/QCD

    CERN Document Server

    Chelabi, Kaddour; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2015-01-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t'Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realize...

  7. Detecting the chirality for coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com

    2008-04-21

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.

  8. Chiral and U(1) axial symmetry restoration in linear sigma models with two quark flavors

    CERN Document Server

    Michalski, S

    2006-01-01

    We study the restoration of chiral symmetry in linear sigma models with two quark flavors. The models taken into consideration have a U(2) x U(2) and an O(N) internal symmetry. The physical mesons of these models are sigma, pion, \\eta and a_0 where the latter two are not present in the O(N) model. Including two-loop contributions through sunset graphs we calculate the temperature behavior of the order parameter and the masses for explicit chiral symmetry breaking with and without a U(1) axial anomaly. Decay threshold effects introduced by the sunset graphs alter the temperature dependence of the condensate and consequently that of the masses as well. Chiral symmetry tends to be restored at higher temperatures in the two-loop approximation than in the Hartree-Fock approximation. To model a dynamical restoration of the U(1) axial symmetry we imply a temperature-dependent anomaly parameter that sharply drops at about 175 MeV. This triggers the restoration of chiral symmetry before the full symmetry is restored a...

  9. Chiral symmetry breaking from Ginsparg-Wilson fermions

    CERN Document Server

    Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent

    2000-01-01

    We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter \\Sigma, up to a multiplicative renormalization.

  10. Electromagnetic transitions in multiple chiral doublet bands

    CERN Document Server

    Jia, Hui; Wang, Shou-Yu; Wang, Shuo; Liu, Chen

    2016-01-01

    Multiple chiral doublet bands (M$\\chi$D) in the $80$, 130 and $190$ mass regions are studied by the model of $\\gamma$=90$^{\\circ}$ triaxial rotor coupled with identical symmetric proton-neutron configurations. By selecting the suitable basis, the calculated wave functions are explicitly exhibited to be symmetric under the operator $\\hat{A}$, which is defined as rotation by $90^{\\circ}$ about 3-axis with the exchange of valance proton and neutron. We found that both $M1$ and $E2$ transitions are allowed between the levels with different values of $A$, while are forbidden between the levels with same values of $A$. Such a selection rule holds true for M$\\chi$D in different mass regions.

  11. Hidden Galilean symmetry, conservation laws and emergence of spin current in the soliton sector of chiral helimagnet

    Energy Technology Data Exchange (ETDEWEB)

    Bostrem, I.G. [Department of Physics, Ural State University, Ekaterinburg 620083 (Russian Federation); Kishine, J. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Lavrov, R.V. [Department of Physics, Ural State University, Ekaterinburg 620083 (Russian Federation); Ovchinnikov, A.S. [Department of Physics, Ural State University, Ekaterinburg 620083 (Russian Federation)], E-mail: alexander.ovchinnikov@usu.ru

    2009-01-26

    An appearance of the transport spin current in chiral helimagnet is mathematically justified based on the symmetry arguments. Although the starting Lagrangian of the chiral magnet with the Berry phase term and the parity-violating Dzyaloshinskii-Morya coupling is not manifestly Galilean invariant, the Lie point group symmetry analysis and the variational symmetry analysis elucidate the hidden Galilean symmetry and the existence of the linear momentum as a conserved Noether current, respectively.

  12. Some Relations for Quark Confinement and Chiral Symmetry Breaking in QCD

    CERN Document Server

    Suganuma, Hideo; Redlich, Krzysztof; Sasaki, Chihiro

    2016-01-01

    We analytically study the relation between quark confinement and spontaneous chiral-symmetry breaking in QCD. In terms of the Dirac eigenmodes, we derive some formulae for the Polyakov loop, its fluctuations, and the string tension from the Wilson loop. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain wall fermion kernels, respectively. For the confinement quantities, the low-lying Dirac/fermion eigenmodes are found to give negligible contribution, while they are essential for chiral symmetry breaking. These relations indicate no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD, which seems to be natural because confinement is realized independently of the quark mass.

  13. Chiral transition and deconfinement in N_f = 2 QCD

    CERN Document Server

    D'Elia, M; Lucini, B; Paffuti, G; Pica, C

    2004-01-01

    The transition is studied by means of a disorder parameter detecting condensation of magnetic monopoles in the vacuum. The deconfining transition is found to coincide with the chiral transition and the susceptibility \\rho, related to the disorder parameter, is consistent with a first order phase transition.

  14. Nucleon-to-Delta axial transition form factors in relativistic baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We report a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism in which the $\\Delta$ couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino bubble chamber data and in quark models.

  15. Chiral symmetry breaking, color superconductivity and equation of state at high density a variational approach

    CERN Document Server

    Mishra, H; Mishra, Hiranmaya; Parikh, Jitendra C.

    2001-01-01

    We discuss in this note simultaneous existence of chiral symmetry breakingand color superconductivity at finite temperature and density in aNambu-Jona-Lasinio type model. The methodology involves an explicitconstruction of a variational ground state and minimisation of thethermodynamic potential. There appears to be a phase at finite densities withboth quark antiquark as well as diquark condensates for the "ground" state.Chiral symmetry breaking phase appear to catalyse the threshold for the diquarkcondensates to appear. We also compute the equation of state in this model.

  16. Dynamical chiral symmetry breaking and weak nonperturbative renormalization group equation in gauge theory

    CERN Document Server

    Aoki, Ken-Ichi; Sato, Daisuke

    2016-01-01

    We analyze the dynamical chiral symmetry breaking in gauge theory with the nonperturbative renormalization group equation (NPRGE), which is a first order nonlinear partial differential equation (PDE). In case that the spontaneous chiral symmetry breaking occurs, the NPRGE encounters some non-analytic singularities at the finite critical scale even though the initial function is continuous and smooth. Therefore there is no usual solution of the PDE beyond the critical scale. In this paper, we newly introduce the notion of a weak solution which is the global solution of the weak NPRGE. We show how to evaluate the physical quantities with the weak solution.

  17. Chiral symmetry, constituent quarks and quasi-elastic electron-nucleus scattering

    Science.gov (United States)

    Henley, E. M.; Krein, G.

    1989-11-01

    The effects of chiral symmetry breaking are examined for quasi-elastic electron scattering on nuclei. Nucleons are assumed to be composed of constituent quarks with masses that depend on density. This density dependence is determined on the basis of the Nambu-Jona-Lasinio model. It is found that the effects of chiral symmetry breaking are in the right direction and the right order of magnitude to explain the discrepancies between theory and experiment. On leave from Departamento de Fisica, Universidade Federal de Santa Maria, 97100 Santa Maria, R.S., Brazil.

  18. Finite-temperature phase transition of $N_{f}=3$ QCD with exact center symmetry

    CERN Document Server

    Misumi, Tatsuhiro; Itou, Etsuko

    2015-01-01

    For the $Z_{3}$-symmetric lattice QCD-like theory ($Z_3$-QCD), in which $SU(3)$ gauge theory is coupled with three fundamental Wilson quarks with flavor-dependent twisted boundary conditions, we calculate the expectation values of Polyakov loop and chiral condensate as functions of temperature on $16^3 \\times4$ and $20^3 \\times 4$ lattices with $m_{PS}/m_{V}=0.70$ fixed. We find the first-order phase transition with respect to the $Z_{3}$ center symmetry, where the Polyakov loop exhibits a hysteresis depending on the initial condition of thermalization process. We also show that the crossover behavior of chiral condensate around the critical temperature of the center transition and the manifestation of flavor symmetry breaking in the high-temperature phase.

  19. The $N_f= 2$ chiral phase transition from imaginary chemical potential with Wilson Fermions

    CERN Document Server

    Philipsen, Owe

    2015-01-01

    The order of the thermal transition in the chiral limit of QCD with two dynamical flavours of quarks is a long-standing issue. Still, it is not definitely known whether the transition is of first or second order in the continuum limit. Which of the two scenarios is realized has important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. Settling this issue by simulating at successively decreased pion mass was not conclusive yet. Recently, an alternative approach was proposed, extrapolating the first order phase transition found at imaginary chemical potential to zero chemical potential with known exponents, which are induced by the Roberge-Weiss symmetry. For staggered fermions on $N_t=4$ lattices, this results in a first order transition in the chiral limit. Here we report of $N_t=4$ simulations with Wilson fermions, where the first order region is found to be large.

  20. Characteristics of the chiral phase transition in nonlocal quark models

    CERN Document Server

    Dumm, D G

    2004-01-01

    The characteristics of the chiral phase transition are analyzed within the framework of chiral quark models with nonlocal interactions in the mean field approximation (MFA). In the chiral limit, we show that there is a region of low values of the chemical potential in which the transition is a second order one. In that region, it is possible to perform a Landau expansion and determine the critical exponents which, as expected, turn out to be the MFA ones. Our analysis also allows to obtain semi-analytical expressions for the transition curve and the location of the tricritical point. For the case of finite current quark masses, we study the behavior of various thermodynamical and chiral response functions across the phase transition.

  1. Partial dynamical symmetry at critical points of quantum phase transitions.

    Science.gov (United States)

    Leviatan, A

    2007-06-15

    We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.

  2. New method for dynamical fermions and chiral-symmetry breaking

    CERN Document Server

    Azcoiti, V; Grillo, A F; Laliena, V; Luo, X Q

    1994-01-01

    The reasons for the feasibility of the Microcanonical Fermionic Average ($MFA$) approach to lattice gauge theory with dynamical fermions are discussed. We then present a new exact algorithm, which is free from systematic errors and convergent even in the chiral limit.

  3. Comments on the Chiral Symmetry Breaking in Soft Wall Holographic QCD

    DEFF Research Database (Denmark)

    Bechi, Jacopo

    2009-01-01

    In this paper we describe qualitatively some aspects of the holographic QCD. Inspired by a successfull 4D description, we try to separate the Confinement and the Chiral Symmetry Breaking dynamics. We also discuss the realization of the baryons as skyrmions in Soft Wall Holographic QCD, and the is......, and the issue of the Vector Meson Dominance....

  4. Highly Excited Mesons, Linear Regge Trajectories and the Pattern of the Chiral Symmetry Realization

    CERN Document Server

    Shifman, M

    2007-01-01

    The chiral symmetry of QCD shows up in the linear Weyl--Wigner mode at short Euclidean distances or at high temperatures. On the other hand, low-lying hadronic states exhibit the nonlinear Nambu--Goldstone mode. An interesting question was raised as to whether the linear realization of the chiral symmetry is asymptotically restored for highly excited states. We address it in a number of ways. On the phenomenological side we argue that to the extent the meson Regge trajectories are observed to be linear and equidistant, the Weyl--Wigner mode is not realized. This picture is supported by quasiclassical arguments implying that the quark spin interactions in high excitations are weak, the trajectories are linear, and there is no chiral symmetry restoration. Then we use the string/gauge duality. In the top-down Sakai--Sugimoto construction the nonlinear realization of the chiral symmetry is built in. In the bottom-up AdS/QCD construction by Erlich et al., and Karch et al. the situation is more ambiguous. However, ...

  5. Further Investigation on Chiral Symmetry Breaking in a Uniform External Magnetic Field

    CERN Document Server

    Jasinski, P

    2004-01-01

    We study chiral symmetry breaking in QED when a uniform external magnetic field is present. We calculate higher order corrections to the dynamically generated fermion mass and find them to be small. In so doing we correct an error in the literature regarding the matrix structure of the fermion self-energy.

  6. Casimir effect as a source of chiral symmetry breaking in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Floratos, E. (Crete Univ., Iraklion (Greece). Physics Dept.; European Organization for Nuclear Research, Geneva (Switzerland)); Papantonopoulos, E. (Ethnikon Metsovion Polytechneion, Athens (Greece). Physics Dept.); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))

    1985-02-21

    The vacuum of QCD, defined on a space-time topology T/sup 3/ x R, breaks chiral symmetry. The physical mechanism responsible is the formation of fermionic condensates due to Casimir forces. Representations of coloured fermions, which possess asymptotic freedom, stabilize the formation of these condensates through their gauge interactions. Estimates of ratios of the order parameters are given for various representations.

  7. Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model

    Institute of Scientific and Technical Information of China (English)

    宗红石; 吴小华; 侯丰尧; 赵恩广

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.

  8. Eta' Mass and Chiral Symmetry Breaking at Large Nc and Nf

    CERN Document Server

    Girlanda, L; Talavera, P

    2001-01-01

    We propose a method for implementing the large-Nc, large-Nf limit of QCD at the effective Lagrangian level. Depending on the value of the ratio Nf/Nc, different patterns of chiral symmetry breaking can arise, leading in particular to different behaviors of the eta-prime mass in the combined large-N limit.

  9. Explicit versus Dynamical Chiral Symmetry Breaking and Mass Matrix of Quarks and Leptons

    Science.gov (United States)

    Handa, O.; Ishida, S.; Sekiguchi, M.

    1992-02-01

    By recourse to an analogy between strong and weak interactions, quark mass-matrices consisting of the two parts are proposed, which represent, respectively, dynamical chiral symmetry breaking and explicit one due to small preon mass. The sum rules among quark masses and mixing-matrix elements derived from it seem consistent with present experiments.

  10. Chirally Invariant Avatar in a Model of Neutrinos with Light Cone Reflection Symmetry

    CERN Document Server

    Chodos, Alan

    2016-01-01

    In previous work we developed a model of neutrinos based on a new symmetry, Light Cone Reflection (LCR), that interchanges spacelike and timelike intervals. In this paper we start with the four-dimensional model, and construct a two-dimensional avatar that obeys the same equations of motion, and preserves both the light-cone reflection symmetry and the chiral symmetry of the original theory. The avatar also contains the interaction that rendered the four-dimensional model gauge invariant. In an addendum, we make some remarks about how to determine the scalar field that enters into the definition of the LCR-covariant derivative.

  11. Dynamic symmetries and quantum nonadiabatic transitions

    Science.gov (United States)

    Li, Fuxiang; Sinitsyn, Nikolai A.

    2016-12-01

    Kramers degeneracy theorem is one of the basic results in quantum mechanics. According to it, the time-reversal symmetry makes each energy level of a half-integer spin system at least doubly degenerate, meaning the absence of transitions or scatterings between degenerate states if the Hamiltonian does not depend on time explicitly. We generalize this result to the case of explicitly time-dependent spin Hamiltonians. We prove that for a spin system with the total spin being a half integer, if its Hamiltonian and the evolution time interval are symmetric under a specifically defined time reversal operation, the scattering amplitude between an arbitrary initial state and its time reversed counterpart is exactly zero. We also discuss applications of this result to the multistate Landau-Zener (LZ) theory.

  12. Liquid Crystal Phases of Molecular Bananas: Polarity and Chirality as Broken Symmetries

    Science.gov (United States)

    Clark, Noel

    2006-03-01

    The study of the interplay of chirality and polarity has been a particularly rich theme of soft matter science since Meyer's seminal discovery that tilted smectics of chiral molecules are macroscopically polar. This event, and the subsequent realization of polar domains and high-speed electro-optic switching in chiral smectics, engaged the liquid crystal community in a worldwide pursuit of novel smectics for applications, featured by the synthesis of more than 50,000 new liquid crystal compounds, and by a consequent broad diversification of the palette of liquid crystal phases and possibilities for supermolecular ordering. A current important activity in this scenario is the study of polar order in synthetically achiral molecules, for example, in molecular bananas, which, as their shape suggests, might be expected to organize in a polar way. Indeed they do, but beyond this, almost everything learned about them has been surprising, including their persistent tendency to exhibit chirality as a spontaneously broken symmetry. I will discuss some of these new phases and phenomena, including the discovery of fluid conglomerates (Pasteur's experiment in a fluid), triclinic fluid order, chiral twist grain boundary phases of achiral molecules, chirality flipping and field-induced deracemization, ferroelectric and antiferroelectric phases with supermolecular- scale polarization modulation, and chiral thermotropic sponge phases.

  13. Chiral symmetry and the Yang--Mills gradient flow

    CERN Document Server

    Lüscher, Martin

    2013-01-01

    In the last few years, the Yang--Mills gradient flow was shown to be an attractive tool for non-perturbative studies of non-Abelian gauge theories. Here a simple extension of the flow to the quark fields in QCD is considered. As in the case of the pure-gauge gradient flow, the renormalizability of correlation functions involving local fields at positive flow times can be established using a representation through a local field theory in 4+1 dimensions. Applications of the extended flow in lattice QCD include non-perturbative renormalization and O(a) improvement as well as accurate calculations of the chiral condensate and of the pseudo-scalar decay constant in the chiral limit.

  14. Chiral Symmetry Restoration for the large-$N$ pion gas

    CERN Document Server

    Cortés, Santiago; Morales, John

    2016-01-01

    We analyze chiral restoration within the $O(N+1)/O(N)$ Non-Linear Sigma Model for large $N$ as an effective theory for low-energy QCD at finite temperature $T$. The free energy is constructed diagramatically to $O(M^3)$ in the pion mass, which allows to derive the quark condensate and the scalar susceptibility in the chiral limit. At this order, we do not have to deal with renormalization, neither from divergences from mass tadpoles nor from those of higher order loop contributions. Our results for the critical behaviour are consistent with expectations from lattice analysis and with previous works where the susceptibility is saturated by the thermal $f_0(500)$ pole.

  15. Low symmetry tetrahedral nematic liquid crystal phases: Ambidextrous chirality and ambidextrous helicity.

    Science.gov (United States)

    Pleiner, Harald; Brand, Helmut R

    2014-02-01

    We discuss the symmetry properties as well as the dynamic behavior of various non-polar nematic liquid crystal phases with tetrahedral order. We concentrate on systems that show biaxial nematic order coexisting with octupolar (tetrahedral) order. Non-polar examples are phases with D2 and S4 symmetries, which can be characterized as biaxial nematics lacking inversion symmetry. It is this combination that allows for new features in the statics and dynamics of these phases. The D2-symmetric phase is chiral, even for achiral molecules, and shows ambidextrous chirality in all three preferred directions. The achiral S4-symmetric phase allows for ambidextrous helicity, similar to the higher-symmetric D2d-symmetric phase. Such phases are candidates for nematic phases made from banana-shaped molecules.

  16. External Fields and Chiral Symmetry Breaking in the Sakai-Sugimoto Model

    CERN Document Server

    Johnson, Clifford V

    2008-01-01

    Using the Sakai-Sugimoto model we study the effect of an external magnetic field on the dynamics of fundamental flavours in both the confined and deconfined phases of a large N_c gauge theory. We find that an external magnetic field promotes chiral symmetry breaking, consistent with the ``magnetic catalysis'' observed in the field theory literature, and seen in other studies using holographic duals. The external field increases the separation between the deconfinement temperature and the chiral symmetry restoring temperature. In the deconfined phase we investigate the temperature-magnetic field phase diagram and observe, for example, there exists a maximum critical temperature (at which symmetry is restored) for very large magnetic field. We find that this and certain other phenomena persist for the Sakai-Sugimoto type models with probe branes of diverse dimensions. We comment briefly on the dynamics in the presence of an external electric field.

  17. Chiral Symmetry Restoration with a Chiral Chemical Potential: the Role of Momentum Dependent Quark Self-energy

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows to introduce in the simplest way possible a Euclidean momentum, $p_E$, dependent quark mass function which decays (neglecting logarithms) as $1/p_E^2$ for large $p_E$ in agreement with asymptotic behaviour expected in presence of a nonperturbative quark condensate. We show that the momentum dependence of the quark mass function, which has been neglected in all of the previous model studies, drastically affects the dependence of the critical temperature versus $\\mu_5$. We explain this in terms of a natural removal of ultraviolet modes at $T>0$ in the gap equation, as well as of the natural addition of these modes at $T=0$ which help to catalyze chiral symmetry breaking. As a result we find that within this model the critical temperature increases with $\\mu_5$.

  18. Evaluating chiral symmetry restoration through the use of sum rules

    Directory of Open Access Journals (Sweden)

    Rapp Ralf

    2012-11-01

    Full Text Available We pursue the idea of assessing chiral restoration via in-medium modifications of hadronic spectral functions of chiral partners. The usefulness of sum rules in this endeavor is illustrated, focusing on the vector/axial-vector channel. We first present an update on obtaining quantitative results for pertinent vacuum spectral functions. These serve as a basis upon which the in-medium spectral functions can be constructed. A novel feature of our analysis of the vacuum spectral functions is the need to include excited resonances, dictated by satisfying the Weinberg-type sum rules. This includes excited states in both the vector and axial-vector channels.We also analyze the QCD sum rule for the finite temperature vector spectral function, based on a ρ spectral function tested in dilepton data which develops a shoulder at low energies.We find that the ρ′ peak flattens off which may be a sign of chiral restoration, though a study of the finite temperature axial-vector spectral function remains to be carried out.

  19. U(1) chiral symmetry in a one-dimensional interacting electron system with spin

    Science.gov (United States)

    Lee, Taejin

    2016-11-01

    We study a spin-dependent Tomonaga-Luttinger model in one dimension, which describes electron transport through a single barrier. Using the Fermi-Bose equivalence in one dimension, we map the model onto a massless Thirring model with a boundary interaction. A field theoretical perturbation theory for the model has been developed, and the chiral symmetry is found to play an important role. The classical bulk action possesses a global U A (1)4 chiral symmetry because the fermion fields are massless. This global chiral symmetry is broken by the boundary interaction, and the bosonic degrees of freedom, corresponding to a chiral phase transformation, become dynamical. They acquire an additional kinetic action from the fermion path-integral measure and govern the critical behaviors of the physical operators. On the critical line where the boundary interaction becomes marginal, they decouple from the fermi fields. Consequently, the action reduces to the free-field action, which contains only a fermion bilinear boundary mass term as an interaction term. By using a renormalization group analysis, we obtain a new critical line, which differs from the previously known critical lines in the literature. The result of this work implies that the phase diagram of the one-dimensional electron system may have a richer structure than previously thought.

  20. A computational investigation of attrition-enhanced chiral symmetry breaking in conglomerate crystals

    Science.gov (United States)

    Ricci, Francesco; Stillinger, Frank H.; Debenedetti, Pablo G.

    2013-11-01

    Attrition-enhanced chiral symmetry breaking in crystals, also known as Viedma ripening, is a remarkable phenomenon from a variety of perspectives. By providing a direct route to solid-phase homochirality in a controllable manner, it is of inherent interest to those who study chiral symmetry-breaking/amplification mechanisms. When applied to intrinsically chiral molecules, Viedma ripening may have implications for the origin of biological homochirality, as well as applications in chiral drug resolution. Despite an abundance of research, the mechanistic details underlying this phenomenon have not been unambiguously elucidated. We employ a Monte Carlo algorithm to study this driven system, in order to gain further insights into the mechanisms capable of reproducing key experimental signatures. We provide a comprehensive numerical investigation of how the model parameters (attrition rate, liquid-phase racemization kinetics, and the relative rates of growth and dissolution kinetics) impact the system's overall behavior. It is shown that size-dependent crystal solubility alone is insufficient to reproduce most of the experimental signatures of Viedma ripening, and that some form of a solid-phase chiral feedback mechanism must be invoked in order to reproduce experimentally observed behavior. In this work, such feedback mechanisms can take the form of agglomeration, or of artificial modification of the size dependent growth kinetics.

  1. The chiral phase transition in two-flavor QCD from imaginary chemical potential

    CERN Document Server

    Bonati, Claudio; D'Elia, Massimo; Philipsen, Owe; Sanfilippo, Francesco

    2014-01-01

    We investigate the order of the finite temperature chiral symmetry restoration transition for QCD with two massless fermions, by using a novel method, based on simulating imaginary values of the quark chemical potential $\\mu=i\\mu_i,\\mu_i\\in\\mathbb{R}$. Our method exploits the fact that, for low enough quark mass $m$ and large enough chemical potential $\\mu_i$, the chiral transition is decidedly first order, then turning into crossover at a critical mass $m_c(\\mu)$. It is thus possible to determine the critical line in the $m - \\mu^2$ plane, which can be safely extrapolated to the chiral limit by taking advantage of the known tricritical indices governing its shape. We test this method with standard staggered fermions and the result of our simulations is that $m_c(\\mu=0)$ is positive, so that the phase transition at zero density is definitely first order in the chiral limit, on our coarse $N_t=4$ lattices with $a\\simeq 0.3\\,\\mathrm{fm}$.

  2. Wigner–Souriau translations and Lorentz symmetry of chiral fermions

    Directory of Open Access Journals (Sweden)

    C. Duval

    2015-03-01

    Full Text Available Chiral fermions can be embedded into Souriau's massless spinning particle model by “enslaving” the spin, viewed as a gauge constraint. The latter is not invariant under Lorentz boosts; spin enslavement can be restored, however, by a Wigner–Souriau (WS translation, analogous to a compensating gauge transformation. The combined transformation is precisely the recently uncovered twisted boost, which we now extend to finite transformations. WS-translations are identified with the stability group of a motion acting on the right on the Poincaré group, whereas the natural Poincaré action corresponds to action on the left.

  3. Wigner-Souriau translations and Lorentz symmetry of chiral fermions

    CERN Document Server

    Duval, C; Horvathy, P A; Zhang, P -M

    2014-01-01

    Chiral fermions can be embedded into Souriau's massless spinning particle model by "enslaving" the spin, viewed as a gauge constraint. The latter is not invariant under Lorentz boosts; spin enslavement can be restored, however, by a subsequent Wigner-Souriau (WS) translation, analogous to a compensating gauge transformation. The combined transformation is precisely the recently uncovered twisted boost, which we now extend to finite transformations. WS-translations are identified with the stability group of a motion acting on the right on the Poincare group, whereas the natural Poincare action corresponds to action on the left.

  4. Chiral and herringbone symmetry breaking in water-surface monolayers

    DEFF Research Database (Denmark)

    Peterson, I.R.; Kenn, R.M.; Goudot, A.

    1996-01-01

    We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...

  5. Chiral symmetry restoration in heavy-ion collisions at intermediate energies

    Science.gov (United States)

    Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Moreau, P.; Bratkovskaya, E. L.

    2016-10-01

    We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range √{sN N}=3 -20 GeV within the parton-hadron-string dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the nonlinear σ -ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon Σ term we adopt Σπ≈ 45 MeV, which corresponds to some world average. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at √{sN N}=3 -20 GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the nonstrange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results provide a microscopic explanation for the so-called horn structure in the excitation function of the K+/π+ ratio: The CSR in the hadronic phase produces the steep increase of this particle ratio up to √{sN N}≈7 GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance and disappearance of the horn-structure are investigated as functions of the system size and collision centrality. We close this work by an analysis of strangeness production in the (T ,μB ) plane (as extracted from the PHSD for central Au+Au collisions) and discuss the possibilities to identify a possible critical point in the phase diagram.

  6. Empirical Example of Nucleus with Transitional Dynamical Symmetry X(5)

    Institute of Scientific and Technical Information of China (English)

    张大立; 赵惠英

    2002-01-01

    By analysing the energy spectrum, E2 transition rates and branching ratios, it is shown explicitly that the nucleus 150Nd provides an empirical example with X(5) symmetry at the critical point of the transition from U(5) to SU(3) symmetry.

  7. Recent progress in understanding gauge topology, confinement and chiral symmetry breaking

    Science.gov (United States)

    Larsen, Rasmus; Shuryak, Edward

    2016-12-01

    A model of interacting instanton-dyons as the dominant degrees of freedom was used to discuss confinement and chiral symmetry breaking in SU(2). The case without fermions and with two flavors of fermions was discussed. Numerical results show that within this model, both with and without fermions, confinement is induced by the repulsion between dyons of same type, as the density of dyons increase at lower temperature. With fermions, the result of confinement at lower temperature, combined with the increased density made the effective distance between fermionic zero-modes smaller, thus inducing a non-zero chiral condensate, obtained by fitting to a eigenvalue density formula from random matrix theory.

  8. Chiral phase transition in a planar four-Fermi model in a tilted magnetic field

    CERN Document Server

    Ramos, Rudnei O

    2013-01-01

    We study a planar four-Fermi Gross-Neveu model in the presence of a tilted magnetic field, with components parallel and perpendicular to the system's plane. We determine how this combination of magnetic field components, when applied simultaneously, affects the phase diagram of the model. It is shown that each component of the magnetic field causes a competing effect on the chiral symmetry in these fermionic systems. While the perpendicular component of the magnetic field tends to make the chiral symmetry breaking to become stronger, the effect of the parallel component of the field in these planar systems is to weaken the chiral symmetry. We show that this competing effect, when combined also with temperature and chemical potential, can lead to a rich phase diagram, with the emergence of multiple critical points and reentrant phase transitions. We also study how the presence of these multiple critical points and reentrant phases can manifest in the quantum Hall effect. Our results provide a possible way to p...

  9. Chiral symmetry restoration and strong CP violation in a strong magnetic background

    CERN Document Server

    Fraga, Eduardo S

    2009-01-01

    Motivated by the phenomenological scenario of the chiral magnetic effect that can be possibly found in high-energy heavy ion collisions, we study the role of very intense magnetic fields and strong CP violation in the phase structure of strong interactions and, more specifically, their influence on the nature of the chiral transition. Direct implications for the dynamics of phase conversion and its time scales are briefly discussed. Our results can also be relevant in the case of the early universe.

  10. Chiral symmetry restoration and strong CP violation in a strong magnetic background

    OpenAIRE

    Fraga, Eduardo S.; Mizher, Ana Júlia

    2009-01-01

    Motivated by the phenomenological scenario of the chiral magnetic effect that can be possibly found in high-energy heavy ion collisions, we study the role of very intense magnetic fields and strong CP violation in the phase structure of strong interactions and, more specifically, their influence on the nature of the chiral transition. Direct implications for the dynamics of phase conversion and its time scales are briefly discussed. Our results can also be relevant in the case of the early un...

  11. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals.

    Science.gov (United States)

    Tortora, Luana; Lavrentovich, Oleg D

    2011-03-29

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement.

  12. Chiral symmetry breaking by spatial confinement in tactoidal droplets of lyotropic chromonic liquid crystals

    Science.gov (United States)

    Tortora, Luana; Lavrentovich, Oleg D.

    2011-01-01

    In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement. PMID:21402929

  13. The chiral and deconfinement aspects of the QCD transition

    CERN Document Server

    Bazavov, A; Cheng, M; DeTar, C; Ding, H -T; Gottlieb, Steven; Gupta, R; Hegde, P; Heller, U M; Karsch, F; Laermann, E; Levkova, L; Mukherjee, S; Petreczky, P; Schmidt, C; Soltz, R A; Soeldner, W; Sugar, R; Toussaint, D; Unger, W; Vranas, P

    2011-01-01

    We present results on the chiral and deconfinement properties of the QCD transition at finite temperature. Calculations are performed with 2+1 flavors of quarks using the p4, asqtad and HISQ/tree actions. Lattices with temporal extent N_tau=6, 8 and 12 are used to understand and control discretization errors and to reliably extrapolate estimates obtained at finite lattice spacings to the continuum limit. The chiral transition temperature is defined in terms of the phase transition in a theory with two massless flavors and analyzed using O(N) scaling fits to the chiral condensate and susceptibility. We find consistent estimates from the HISQ/tree and asqtad actions and our main result is T_c=154 +/- 9 MeV.

  14. $B_K$ from quenched QCD with exact chiral symmetry

    CERN Document Server

    Garron, N; Hölbling, C; Lellouch, L P; Rebbi, C; Garron, Nicolas; Giusti, Leonardo; Hoelbling, Christian; Lellouch, Laurent; Rebbi, Claudio

    2004-01-01

    We present a calculation of the standard model Delta S=2 matrix element relevant to indirect CP violation in K->pipi decays which uses Neuberger's chiral formulation of lattice fermions. The computation is performed in the quenched approximation on a 16^3x32 lattice that has a lattice spacing asim 0.1 fm. The resulting bare matrix element is renormalized non-perturbatively. Our main result is B_K^{RGI}=0.87(8)^{+2+14}_{-1-14}, where the first error is statistical, the second is systematic and the third is an estimate of the uncertainty associated with the quenched approximation and with the fact that our kaons are composed of degenerate s and d quarks with masses sim m_s/2.

  15. Fermat Surface and Group Theory in Symmetry of Rapidity Family in Chiral Potts Model

    CERN Document Server

    Roan, Shi-shyr

    2013-01-01

    The present paper discusses various mathematical aspects about the rapidity symmetry in chiral Potts model (CPM) in the context of algebraic geometry and group theory . We re-analyze the symmetry group of a rapidity curve in $N$-state CPM, explore the universal group structure for all $N$, and further enlarge it to modular symmetries of the complete rapidity family in CPM. As will be shown in the article that all rapidity curves in $N$-state CPM constitute a Fermat hypersurface in $\\PZ^3$ of degree 2N as the natural generalization of the Fermat K3 elliptic surface $(N=2)$, we conduct a thorough algebraic geometry study about the rapidity fibration of Fermat surface and its reduced hyperelliptic fibration via techniques in algebraic surface theory. Symmetries of rapidity family in CPM and hyperelliptic family in $\\tau^{(2)}$-model are exhibited through the geometrical representation of the universal structural group in mathematics.

  16. Chiral topological excitons in the monolayer transition metal dichalcogenides

    Science.gov (United States)

    Gong, Z. R.; Luo, W. Z.; Jiang, Z. F.; Fu, H. C.

    2017-02-01

    We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chiral topological nontrivial excitons states, which exactly connects to the bulk topological properties, i.e., Chern number = 2. The dependence of the spectrum of the chiral topological excitons on the width of the magnetic field domain wall as well as the magnetic filed strength is numerically revealed. The chiral topological valley excitons are not only important to the excitonic transport due to prevention of the backscattering, but also give rise to the quantum coherent control in the optoelectronic applications.

  17. Chiral phase transition in QED$_3$ at finite temperature

    CERN Document Server

    Wei, Wei; Zong, Hong-Shi

    2016-01-01

    Chiral phase transition in (2+1)-dimensional quantum electrodynamics (QED$_3$) at finite temperature is investigated in the framework of truncated Dyson-Schwinger equations (DSEs). We go beyond the widely used instantaneous approximation and adopt a method that retains the full frequency dependence of the fermion self-energy. We also take further step to include the effects of wave-function renormalizations and introduce a minimal dressing of the bare vertex. Finally, with the more complete solutions of the truncated DSEs, we revisit the study of chiral phase transition in finite-temperature QED$_3$.

  18. Spectra of massive QCD Dirac Operators from Random Matrix Theory all three chiral symmetry breaking patterns

    CERN Document Server

    Akemann, G

    2001-01-01

    The microscopic spectral eigenvalue correlations of QCD Dirac operators in the presence of dynamical fermions are calculated within the framework of Random Matrix Theory (RMT). Our approach treats the low--energy correlation functions of all three chiral symmetry breaking patterns (labeled by the Dyson index $\\beta=1,2$ and 4) on the same footing, offering a unifying description of massive QCD Dirac spectra. RMT universality is explicitly proven for all three symmetry classes and the results are compared to the available lattice data for $\\beta=4$.

  19. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  20. Role of center vortices in chiral symmetry breaking in SU(3) gauge theory

    OpenAIRE

    2011-01-01

    We study the behavior of the AsqTad quark propagator in Landau gauge on SU(3) Yang-Mills gauge configurations under the removal of center vortices. In SU(2) gauge theory, center vortices have been observed to generate chiral symmetry breaking and dominate the infrared behavior of the quark propagator. In contrast, we report a weak dependence on the vortex content of the gauge configurations, including the survival of dynamical mass generation on configurations with vanishing string tension.

  1. Spontaneous chiral symmetry breaking in QCD:a finite-size scaling study on the lattice

    CERN Document Server

    Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia

    2007-01-01

    Spontaneous chiral symmetry breaking in QCD with massless quarks at infinite volume can be seen in a finite box by studying, for instance, the dependence of the chiral condensate from the volume and the quark mass. We perform a feasibility study of this program by computing the quark condensate on the lattice in the quenched approximation of QCD at small quark masses. We carry out simulations in various topological sectors of the theory at several volumes, quark masses and lattice spacings by employing fermions with an exact chiral symmetry, and we focus on observables which are infrared stable and free from mass-dependent ultraviolet divergences. The numerical calculation is carried out with an exact variance-reduction technique, which is designed to be particularly efficient when spontaneous symmetry breaking is at work in generating a few very small low-lying eigenvalues of the Dirac operator. The finite-size scaling behaviour of the condensate in the topological sectors considered agrees, within our stati...

  2. A new Perspective on the Scalar meson Puzzle, from Spontaneous Chiral Symmetry Breaking Beyond BCS

    CERN Document Server

    Bicudo, P J A

    1998-01-01

    We introduce coupled channels of Bethe-Salpeter mesons both in the mass gap equation for chiral symmetry breaking and in the boundstate equation for mesons. Consistency is insured by the Ward Identities for axial currents, which preserve the Goldstone boson nature of the pion. We find that the coupling of channels yields the widths of resonances and contributes to mass splittings, but it does not shift globally the hadron spectrum. We find that coupled channels reduce the breaking of chiral symmetry. This reduction is constrained by the coupling of a scalar meson to a pair of pseudoscalar mesons. The light and wide $\\sigma-f_0(600)$, the narrow $f_0(980)$ and the relatively heavy $f_0(1370)$ are studied in order to comply with the spontaneous breaking of chiral symmetry. Exact calculations are performed in a particular model. In this model we find that the $f_0(980)$ is the best candidate for the groundstate quark antiquark meson . In particular its width is naturally small. In this case the coupled channels ...

  3. Four-Fermion Theories with Exact Chiral Symmetry in Three Dimensions

    CERN Document Server

    Schmidt, Daniel; Wipf, Andreas

    2016-01-01

    We investigate a class of four-fermion theories which includes well-known models like the Gross-Neveu model and the Thirring model. In three spacetime dimensions, they are used to model interesting solid state systems like high temperature superconductors and graphene. Additionally, they serve as toy models to study chiral symmetry breaking (CSB). For any number of fermion flavours the Gross-Neveu model has a broken and a symmetric phase, while the existence of a broken phase in the Thirring model depends on the number of flavours. The critical number of fermion flavours beyond which there exists no CSB is still subject of ongoing discussions. Using SLAC fermions we simulate the Thirring model with exact chiral symmetry. To obtain a chiral condensate one can introduce a symmetry-breaking mass term and carefully study the limits of infinite lattice and zero-mass. So far, we did not see CSB within this approach for the Thirring model with 2 or more (reducible) flavours. The talk presents alternative approaches ...

  4. Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model

    CERN Document Server

    Alam, M Sohaib; Kundu, Arnab

    2012-01-01

    A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually p...

  5. Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry

    CERN Document Server

    Aoki, S; Feng, X; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T

    2015-01-01

    We study the chiral behavior of the electromagnetic (EM) form factors of pion and kaon in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between M_pi \\simeq 290 MeV and 540 MeV and with a strange quark mass m_s close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on m_s and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy...

  6. Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry

    Science.gov (United States)

    Aoki, S.; Cossu, G.; Feng, X.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.

    2016-02-01

    We study the chiral behavior of the electromagnetic (EM) form factors of pions and kaons in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between Mπ≃290 MeV and 540 MeV and with a strange quark mass ms close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on ms and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii, and find reasonable agreement with phenomenological and experimental results.

  7. Chiral symmetry breaking as open string tachyon condensation

    CERN Document Server

    Casero, R; Paredes, A; Casero, Roberto; Kiritsis, Elias; Paredes, Angel

    2007-01-01

    We consider a general framework to study holographically the dynamics of fundamental quarks in a confining gauge theory. Flavors are introduced by placing a set of (coincident) branes and antibranes on a background dual to a confining color theory. The spectrum contains an open string tachyon and its condensation describes the U(N_f)_L x U(N_f)_R -> U(N_f)_V symmetry breaking. By studying worldvolume gauge transformations of the flavor brane action, we obtain the QCD global anomalies and an IR condition that allows to fix the quark condensate in terms of the quark mass. We find the expected N_f^2 Goldstone bosons (for m_q=0), the Gell-Mann-Oakes-Renner relation (for m_q small) and the \\eta' mass. Remarkably, the linear confinement behavior for the masses of highly excited spin-1 mesons, m_n^2 ~ n is naturally reproduced.

  8. On SU(3 Effective Models and Chiral Phase Transition

    Directory of Open Access Journals (Sweden)

    Abdel Nasser Tawfik

    2015-01-01

    Full Text Available Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL model and Polyakov linear sigma-model (PLSM has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM a gluonic sector is integrated into LSM. The hadron resonance gas (HRG model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.

  9. Disorienting the Chiral Condensate at the QCD Phase Transition

    CERN Document Server

    Rajagopal, K

    1997-01-01

    I sketch how long wavelength modes of the pion field can be amplified during the QCD phase transition. If nature had been kinder, and had made the pion mass significantly less than the critical temperature for the transition, then this phenomenon would have characterized the transition in thermal equilibrium. Instead, these long wavelength oscillations of the orientation of the chiral condensate can only arise out of equilibrium. There is a simple non-equilibrium mechanism, plausibly operational during heavy ion collisions, which naturally amplifies these oscillations. The characteristic signature of this phenomenon is large fluctuations in the ratio of the number of neutral pions to the total number of pions in regions of momentum space, that is in phase space in a detector. Detection in a heavy ion collision would imply an out of equilbrium chiral transition.

  10. Chiral symmetry breaking as open string tachyon condensation

    Energy Technology Data Exchange (ETDEWEB)

    Casero, Roberto [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France); Kiritsis, Elias [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France); Department of Physics, University of Crete, 71003 Heraklion (Greece); Paredes, Angel [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France)], E-mail: paredes@cpht.polytechnique.fr

    2007-12-24

    We consider a general framework to study holographically the dynamics of fundamental quarks in a confining gauge theory. Flavors are introduced by placing a set of (coincident) branes and antibranes on a background dual to a confining color theory. The spectrum contains an open string tachyon and its condensation describes the U(N{sub f}){sub L}xU(N{sub f}){sub R}{yields}U(N{sub f}){sub V} symmetry breaking. By studying worldvolume gauge transformations of the flavor brane action, we obtain the QCD global anomalies and an IR condition that allows to fix the quark condensate in terms of the quark mass. We find the expected N{sub f}{sup 2} Goldstone bosons (for m{sub q}=0), the Gell-Mann-Oakes-Renner relation (for m{sub q} small) and the {eta}{sup '} mass. Remarkably, the linear confinement behavior for the masses of highly excited spin-1 mesons, m{sub n}{sup 2}{approx}n is naturally reproduced.

  11. Symmetry Breaking and Second Order Phase Transitions

    Institute of Scientific and Technical Information of China (English)

    ZhangFengshou; R.M.Lynden-Bell

    2003-01-01

    In an earlier paper we showed that symmetry breaking could be induced in the triiodide ion by varying the solvent. Experiments and simulations suggest that protic solvents which can form hydrogen bonds with a negative ion cause symmetry breaking of the ion, so that the charge becomes concentrated at one end of the ion and the corresponding bond elongates. We suggested that one could draw an analogy between the mean field Ising model with free energy,

  12. Quark matter in a parallel electric and magnetic field background: Chiral phase transition and equilibration of chiral density

    Science.gov (United States)

    Ruggieri, M.; Peng, G. X.

    2016-05-01

    In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.

  13. The Chirality Of Life: From Phase Transitions To Astrobiology

    CERN Document Server

    Gleiser, Marcelo

    2008-01-01

    The search for life elsewhere in the universe is a pivotal question in modern science. However, to address whether life is common in the universe we must first understand the likelihood of abiogenesis by studying the origin of life on Earth. A key missing piece is the origin of biomolecular homochirality: permeating almost every life-form on Earth is the presence of exclusively levorotary amino acids and dextrorotary sugars. In this work we discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events in a mechanism referred to as punctuated chirality. Applying these arguments to other potentially life-bearing platforms has significant implications for the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic on average.

  14. Chiral Phase Transition at Finite Isospin Density in Linear Sigma Model

    Institute of Scientific and Technical Information of China (English)

    SHU Song; LI Jia-Rong

    2005-01-01

    Using the linear sigma model, we have introduced the pion isospin chemical potential. The chiral phase transition is studied at finite temperatures and finite isospin densities. We have studied the μ - T phase diagram for the chiral phase transition and found the transition cannot happen below a certain low temperature because of the BoseEinstein condensation in this system. Above that temperature, the chiral phase transition is studied by the isotherms of pressure versus density. We indicate that the transition, in the chiral limit, is a first-order transition from a low-density phase to a high-density phase like a gas-liquid phase transition.

  15. Chiral symmetry and pi-pi scattering in the Covariant Spectator Theory

    CERN Document Server

    Biernat, Elmar P; Ribeiro, J E; Stadler, Alfred; Gross, Franz

    2014-01-01

    The pi-pi scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward-Takahashi identity to the CST pi-pi scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. The Adler self-consistency zero for pi-pi scattering in the chiral limit emerges as the result for this sum.

  16. Breaking of Chiral Symmetry in 104Rh and Its Neighbouring Nuclei

    Institute of Scientific and Technical Information of China (English)

    彭婧; 孟杰; 张双全

    2003-01-01

    The possible chiral doublet structures in 104Rh with the asymmetric configuration πrg-19/2⊕vh11/2 have been studied in the triaxial particle-rotor model. The spectra, the Ⅰ - ω relations and the transition probabilities support the existence of the chiral bands in this nucleus. The γ-deformation interval -35°≤γ≤-25°for appearance of chiral doublets in 104Rh is given. With appropriate moment of inertia and the configuration πrg-19/2⊕vh11/2, the experimental spectra in 104 Rh, 106Rh, 108Rh, 110Ag have been well reproduced by the yrast bands of the triaxial particle-rotor-model calculation.

  17. The chiral transition in two-flavor QCD

    CERN Document Server

    D'Elia, M; Pica, C

    2005-01-01

    QCD with N_f=2 is a specially interesting system to investigate the chiral transition. The order of the transition has still not been established. We report the results of an in-depth numerical investigation performed with staggered fermions on lattices with L_t=4 and L_s=12,16,20,24,32 and quark masses am_q ranging from 0.01335 to 0.307036. Using finite-size techniques we compare the scaling behavior of a number of thermodynamical susceptibilities with the expectations of O(4) and O(2) universality classes. Clear disagreement is observed. Indications of a first order transition are found.

  18. On the Chiral Phase Transition in the Linear Sigma Model

    CERN Document Server

    Phat, T H; Hoa, L V; Phat, Tran Huu; Anh, Nguyen Tuan; Hoa, Le Viet

    2004-01-01

    The Cornwall-Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged.

  19. Dynamic aspect of the chiral phase transition in the mode coupling theory

    CERN Document Server

    Ohnishi, K; Ohta, K

    2005-01-01

    We analyze the dynamic aspect of the chiral phase transition. We apply the mode coupling theory to the linear sigma model and derive the kinetic equation for the chiral phase transition. We challenge Hohenberg and Halperin's classification scheme of dynamic critical phenomena in which the dynamic universality class of the chiral phase transition has been identified with that of the antiferromagnet. We point out a crucial difference between the chiral dynamics and the antiferromagnet system. We also calculate the dynamic critical exponent for the chiral phase transition. Our result is $z=1-\\eta/2\\cong 0.98$ which is contrasted with $z=d/2=1.5$ of the antiferromagnet.

  20. Quark Matter in a Parallel Electric and Magnetic Field Background: Equilibrated Chiral Density Effect on Chiral Phase Transition

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...

  1. Imaging dynamical chiral-symmetry breaking: pion wave function on the light front.

    Science.gov (United States)

    Chang, Lei; Cloët, I C; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C

    2013-03-29

    We project onto the light front the pion's Poincaré-covariant Bethe-Salpeter wave function obtained using two different approximations to the kernels of quantum chromodynamics' Dyson-Schwinger equations. At an hadronic scale, both computed results are concave and significantly broader than the asymptotic distribution amplitude, φ(π)(asy)(x)=6x(1-x); e.g., the integral of φ(π)(x)/φ(π)(asy)(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral-symmetry breaking is responsible for hardening the amplitude.

  2. Confinement and Chiral Symmetry Breaking via Domain-Like Structures in the QCD Vacuum

    CERN Document Server

    Kalloniatis, Alexander C; Kalloniatis, Alex C.; Nedelko, Sergei N.

    2001-01-01

    A qualitative mechanism for the emergence of domain structured background gluon fields due to singularities in gauge field configurations is considered, and a model displaying a type of mean field approximation to the QCD partition function based on this mechanism is formulated. Estimation of the vacuum parameters (gluon condensate, topological susceptibility, string constant and quark condensate) indicates that domain-like structures lead to an area law for the Wilson loop, nonzero topological susceptibility and spontaneous breakdown of chiral symmetry. Gluon and ghost propagators in the presence of domains are calculated explicitly and their analytical properties are discussed. The Fourier transforms of the propagators are entire functions and thus describe confined dynamical fields.

  3. Probing the Source of Proton Mass by"Unbreaking" Scale-Chiral Symmetry

    CERN Document Server

    Rho, Mannque

    2016-01-01

    I describe a possible scenario for the origin of proton mass in terms of Cheshire Cat, half-skyrmions, topology change and interplay between hidden chiral-scale symmetry and induced local symmetry. This differs from the standard constituent-quark scenario. As the baryonic matter density is increased toward the vector manifestation (VM) fixed-point at which the $\\rho$ mass is to vanish, the effective in-medium mass ratio $m^*_\\rho/m^*_N$ is to tend to zero proportionally to $g^*_\\rho$ where $g^*_\\rho$ is the in-medium hidden gauge coupling constant. I develop the thesis that the intricacy involved in the mass generation could be decoded from experiments at RIB accelerators and massive compact stars.

  4. Chiral Symmetry Breaking for Domain Wall Fermions in Quenched Lattice QCD

    CERN Document Server

    Wu, L

    2001-01-01

    The domain wall fermion formulation exhibits full chiral symmetry for finite lattice spacing except for the effects of mixing between the domain walls. Close to the continuum limit these symmetry breaking effects should be described by a single residual mass. We determine this mass from the conservation law obeyed by the conserved axial current in quenched simulations with beta=5.7 and 6.0 and domain wall separations varying between 12 and 48 on 8^3x32 and 16^3x32 lattices. Using the resulting values for the residual mass we perform two complete and independent calculations of the pion decay constant. Good agreement is found between these two methods and with experiment.

  5. Kagome Chiral Spin Liquid as a Gauged U (1 ) Symmetry Protected Topological Phase

    Science.gov (United States)

    He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank; Moessner, R.

    2015-12-01

    While the existence of a chiral spin liquid (CSL) on a class of spin-1 /2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U (1 ) symmetry protected topological (SPT) phase, which upon promoting its U (1 ) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.

  6. Kagome Chiral Spin Liquid as a Gauged U(1) Symmetry Protected Topological Phase.

    Science.gov (United States)

    He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank; Moessner, R

    2015-12-31

    While the existence of a chiral spin liquid (CSL) on a class of spin-1/2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U(1) symmetry protected topological (SPT) phase, which upon promoting its U(1) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.

  7. Scale-Chiral Symmetry and the Sound Velocity in Compact-Star Matter

    CERN Document Server

    Paeng, Won-Gi

    2016-01-01

    When a light scalar dilaton $\\sigma$ and the light-quark vector mesons $V=(\\rho,\\omega)$ are incorporated into an effective scale-invariant hidden local symmetric (sHLS) Lagrangian, scale symmetry for $\\sigma$ and local gauge symmetry for $V$, both hidden in QCD in the vacuum, arise as "emergent" symmetries at a density above $n_{1/2}\\sim 2n_0$, a phenomenon highly relevant for massive compact stars, hitherto unobserved in standard chiral perturbative approaches. What takes place as the density increases beyond $n_{1/2}$ is (1) a topology change to half-skyrmions , (2) parity doubling in the nucleon structure, (3) the maximum neutron star mass $M\\simeq 2.01 M_{\\odot}$ and the radius $R\\simeq 12.0$ km and (4) the sound velocity $v_s^2/c^2\\simeq 1/3$ due to the $\\rho$ meson moving toward the vector manifestation (VM) fixed point $m_\\rho\\rightarrow 0$ and a precursor to emerging conformal symmetry in dense medium.

  8. Chiral Separation by Flows: The Role of Flow Symmetry and Dimensionality

    Science.gov (United States)

    Ro, Sunghan; Yi, Juyeon; Kim, Yong Woon

    2016-01-01

    Separation of enantiomers by flows is a promising chiral resolution method using cost-effective microfluidics. Notwithstanding a number of experimental and numerical studies, a fundamental understanding still remains elusive, and an important question as to whether it is possible to specify common physical properties of flows that induce separation has not been addressed. Here, we study the separation of rigid chiral objects of an arbitrary shape induced by a linear flow field at low Reynolds numbers. Based on a symmetry property under parity inversion, we show that the rate-of-strain field is essential to drift the objects in opposite directions according to chirality. From eigenmode analysis, we also derive an analytic expression for the separation conditions which shows that the flow field should be quasi-two-dimensional for the precise and efficient resolutions of microscopic enantiomers. We demonstrate this prediction by Langevin dynamics simulations with hydrodynamic interactions fully implemented. Finally, we discuss the practical feasibility of the linear flow analysis, considering separations by a vortex flow or an extensional flow under a confining potential. PMID:27739430

  9. Chirality-induced spin polarization places symmetry constraints on biomolecular interactions

    Science.gov (United States)

    Kumar, Anup; Capua, Eyal; Kesharwani, Manoj K.; Martin, Jan M. L.; Sitbon, Einat; Waldeck, David H.; Naaman, Ron

    2017-01-01

    Noncovalent interactions between molecules are key for many biological processes. Necessarily, when molecules interact, the electronic charge in each of them is redistributed. Here, we show experimentally that, in chiral molecules, charge redistribution is accompanied by spin polarization. We describe how this spin polarization adds an enantioselective term to the forces, so that homochiral interaction energies differ from heterochiral ones. The spin polarization was measured by using a modified Hall effect device. An electric field that is applied along the molecules causes charge redistribution, and for chiral molecules, a Hall voltage is measured that indicates the spin polarization. Based on this observation, we conjecture that the spin polarization enforces symmetry constraints on the biorecognition process between two chiral molecules, and we describe how these constraints can lead to selectivity in the interaction between enantiomers based on their handedness. Model quantum chemistry calculations that rigorously enforce these constraints show that the interaction energy for methyl groups on homochiral molecules differs significantly from that found for heterochiral molecules at van der Waals contact and shorter (i.e., ∼0.5 kcal/mol at 0.26 nm). PMID:28228525

  10. The effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes

    CERN Document Server

    Yu, Lang; Huang, Mei

    2015-01-01

    We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.

  11. Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions

    CERN Document Server

    Mizher, A J; Fraga, E S

    2010-01-01

    The structure of the phase diagram for strong interactions becomes richer in the presence of a magnetic background, which enters as a new control parameter for the thermodynamics. Motivated by the relevance of this physical setting for current and future high-energy heavy ion collision experiments and for the cosmological QCD transitions, we use the linear sigma model coupled to quarks and to Polyakov loops as an effective theory to investigate how the chiral and the deconfining transitions are affected, and present a general picture for the temperature--magnetic field phase diagram. We compute and discuss each contribution to the effective potential for the approximate order parameters, and uncover new phenomena such as the paramagnetically-induced breaking of global $\\mathbb{Z}_3$ symmetry, and possible splitting of deconfinement and chiral transitions in a strong magnetic field.

  12. Topological conditions for discrete symmetry breaking and phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Fabrizio; Casetti, Lapo [Dipartimento di Fisica, Universita di Firenze, via G. Sansone 1, I-50019 Sesto Fiorentino (Finland) (Italy)

    2006-01-20

    In the framework of a recently proposed topological approach to phase transitions, some sufficient conditions ensuring the presence of the spontaneous breaking of a Z{sub 2} symmetry and of a symmetry-breaking phase transition are introduced and discussed. A very simple model, which we refer to as the hypercubic model, is introduced and solved. The main purpose of this model is that of illustrating the content of the sufficient conditions, but it is interesting also in itself due to its simplicity. Then some mean-field models already known in the literature are discussed in the light of the sufficient conditions introduced here.

  13. Langevin dynamics for the chiral transition and DCC formation

    Energy Technology Data Exchange (ETDEWEB)

    Kroff, Daniel; Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica

    2011-07-01

    Full text: The theory of the strong interactions allows for the formation of metastable exotic configurations of the vacuum. Such metastable states can, in principle, be produced in high-energy heavy ion collisions taking place in accelerators like the LHC and in cosmic rays in the atmosphere. In this work, we consider disoriented chiral condensates (DCC), treating them through an effective field theory - the linear-sigma model couple to quarks - and consider possible consequences for ultra-energetic cosmic ray observations performed by the Pierre Auger observatory. After a high-energy collision, the state of the system can be chirally rotated from its true vacuum orientation. Later, this disoriented state (DCC) will relax into the ordinary vacuum configuration, emitting pions. This leads to an asymmetry between charged and neutral pions. This is especially interesting in the context of cosmic rays, where the primary collision in the atmosphere presents favorable conditions for the formation of DCCs. Such exotics might be related to the Centauro and Anti-Centauro events observed by Lattes and collaborators in high-energy cosmic rays experiments. We consider the possibility of DCC formation during a first-order chiral transition, studying the order parameter evolution in a Langevin description. We analyse the DCC influence on the typical time scales of transition and also calculate the pion production rate. (author)

  14. Meson Effects on the Chiral Condensate at Finite Density

    Institute of Scientific and Technical Information of China (English)

    HUANG Mei; ZHUANG Peng-Fei; ZHAO Wei-Qin

    2002-01-01

    Meson corrections on the chiral condensate up to next-to-leading order in a 1/Nc expansion at finite densityare investigated in the NJL model with explicit chiral symmetry breaking. Compared with mean-field results, the chiralphase transition is still of the first order while the properties near the critical density for chiral phase transition are foundto change significantly.

  15. Configurons: Thermodynamic Parameters and Symmetry Changes at Glass Transition

    Directory of Open Access Journals (Sweden)

    Michael I. Ojovan

    2008-09-01

    Full Text Available Thermodynamic parameters of configurons – elementary excitations resulting from broken bonds in amorphous materials – are found from viscosity-temperature relationships. Glass-liquid transition phenomena and most popular models are described along with the configuron model of glass transition. The symmetry breaking, which occurs as a change of Hausdorff dimension of bonds, is examined at glass-liquid transition. Thermal history effects in the glass-liquid transition are interpreted in terms of configuron relaxation.

  16. Dynamical symmetries and causality in non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte

    2015-01-01

    Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant $n$-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  17. Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions

    Directory of Open Access Journals (Sweden)

    Malte Henkel

    2015-11-01

    Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  18. Momentum Dependent Vertices $\\sigma \\gamma \\gamma$, $\\sigma \\rho \\gamma$ and $\\sigma \\rho \\rho$ : The NJL Scalar Hidden by Chiral Symmetry

    OpenAIRE

    Bajc, B.; Blin, A. H.; Hiller, B.; Nemes, M. C.; Rosina, M.

    1994-01-01

    We calculate the momentum dependence of three particle vertices $\\sigma \\gamma \\gamma$, $\\sigma \\rho \\gamma$ and $\\sigma \\rho \\rho$ in the context of a Nambu Jona Lasinio type model. We show how they influence the processes $\\gamma \\gamma \\rightarrow \\sigma \\rightarrow \\pi \\pi$, $\\rho \\rightarrow \\gamma \\sigma$ and $\\gamma \\gamma \\rightarrow \\rho \\rho$ and how chiral symmetry shadows the presence of the $\\sigma$.

  19. Chiral optical Tamm states at the boundary of the medium with helical symmetry of the dielectric tensor

    Science.gov (United States)

    Timofeev, I. V.; Vetrov, S. Ya.

    2016-09-01

    A new optical state at the boundary of a chiral medium whose dielectric tensor has a helical symmetry is described analytically and numerically. The case of zero tangential wavenumber is considered. The state localized near the boundary does not transfer energy along this boundary and decreases exponentially with the distance from the boundary. The penetration of the field into the chiral medium is blocked at wavelengths corresponding to the photonic band gap and close to the pitch of the helix. The polarization of light near the boundary has the same sign of chirality as the helical symmetry. It is shown that the homogeneous environment or a substrate should exhibit anisotropic metallic reflection. The spectral manifestation of the state is determined by the angle between the optical axes of the media at the interface. A state at the interface between a cholesteric liquid crystal and an anisotropic metal-dielectric nanocomposite was considered as an example.

  20. Chiral phases of fundamental and adjoint quarks

    Energy Technology Data Exchange (ETDEWEB)

    Natale, A. A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC 09210-170, Santo André, SP (Brazil); Instituto de Física Teórica - UNESP Rua Dr. Bento T. Ferraz, 271, Bl.II - 01140-070, São Paulo, SP (Brazil)

    2016-01-22

    We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.

  1. Progress of Chiral Schiff Bases with C1 Symmetry in Metal-Catalyzed Asymmetric Reactions.

    Science.gov (United States)

    Hayashi, Masahiko

    2016-12-01

    In this Personal Account, various chiral Schiff base-metal-catalyzed enantioselective organic reactions are reported; the Schiff bases used were O,N,O- as well as N,N,P-tridentate ligands and N,N-bidentate ligands having C1 symmetry. In particular, the enantioselective addition of trimethylsilyl cyanide, dialkylzinc, and organozinc halides to aldehydes, enantioselective 1,4-addition of dialkylzinc to cyclic and acyclic enones, and asymmetric allylic oxidation are reported. Typically, ketimine-type Schiff base-metal complexes exhibited higher reactivity and enantioselectivity compared with the corresponding aldimine-type Schiff base-metal complexes. Notably, remarkable ligand acceleration was observed for all reactions. The obtained products can be used as key intermediates for optically active natural products and pharmaceuticals.

  2. Localization and chiral symmetry in 2+1 flavor domain wall QCD

    Energy Technology Data Exchange (ETDEWEB)

    David J. Antonio; Kenneth C. Bowler; Peter A. Boyle; Norman H. Christ; Michael A. Clark; Saul D. Cohen; Chris Dawson; Alistair Hart; Balint Joó; Chulwoo Jung; Richard D. Kenway; Shu Li; Meifeng Lin; Robert D. Mawhinney; Christopher M. Maynard; Shigemi Ohta; Robert J. Tweedie; Azusa Yamaguchi

    2008-01-01

    We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3\\times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} \\ge 1.6$ GeV.

  3. The Tayler instability at low magnetic Prandtl numbers: Chiral symmetry breaking and synchronizable helicity oscillations

    CERN Document Server

    Stefani, F; Giesecke, A; Weber, N; Weier, T

    2016-01-01

    The current-driven, kink-type Tayler instability (TI) is a key ingredient of the Tayler-Spruit dynamo model for the generation of stellar magnetic fields, but is also discussed as a mechanism that might hamper the up-scaling of liquid metal batteries. Under some circumstances, the TI involves a helical flow pattern which goes along with some alpha effect. Here we focus on the chiral symmetry breaking and the related impact on the alpha effect that would be needed to close the dynamo loop in the Tayler-Spruit model. For low magnetic Prandtl numbers, we observe intrinsic oscillations of the alpha effect. These oscillations serve then as the basis for a synchronized Tayler-Spruit dynamo model, which could possibly link the periodic tidal forces of planets with the oscillation periods of stellar dynamos.

  4. Mass limits for the chiral color symmetry G‧-boson from LHC dijet data

    Science.gov (United States)

    Frolov, I. V.; Smirnov, A. D.

    2016-07-01

    The contributions of G‧-boson predicted by the chiral color symmetry of quarks to the differential dijet cross-sections in pp-collisions at the large hadron collider (LHC) are calculated and analyzed in dependence on two free parameters of the model, the G‧ mass mG‧ and mixing angle 𝜃G. The exclusion and consistency mG‧- 𝜃G regions imposed by the ATLAS and CMS data on dijet cross-sections are found. Using the CT10 (MSTW2008) parton distribution function (PDF) set we show that the G‧-boson for 𝜃G = 45∘, i.e. the axigluon, with the masses mG‧ CL = 68% and CL = 90% are also found.

  5. Localization and chiral symmetry in 2+1 flavor domain wall QCD

    CERN Document Server

    Antonio, David J; Boyle, Peter A; Christ, Norman H; Clark, Michael A; Cohen, Saul D; Dawson, Chris; Hart, Alistair; Joó, Balint; Jung, Chulwoo; Kenway, Richard D; Li, Shu; Lin, Meifeng; Mawhinney, Robert D; Maynard, Christopher M; Ohta, Shigemi; Tweedie, Robert J; Yamaguchi, Azusa

    2007-01-01

    We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator for 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3\\times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} \\ge 1.6$ GeV.

  6. Chiral Symmetry Breaking During Growing Process of NaClO3 Crystal under Direct-Current Electric Field

    Institute of Scientific and Technical Information of China (English)

    CHEN Wan-Chun; CHEN Xiao-Long

    2007-01-01

    @@ We investigate the influence of dc electric field on chiral symmetry breaking during the growing process of NaClO3 crystal. Nucleation and growth of NaClO3 are completed from an aqueous solution by a fast cooling temperature technology. A pair of polarization microscopes are used to identify a distribution of chiral crystals. Experimental results indicate that the dc electric field has an effect on distribution of chirality, but the direction of the dc electric field is not sensitive to the chiral autocatalysis and selectivity, i.e. the nature convection driving by the gravity does not play an important role on a thin layer of NaClO3 solution. The experimental phenomena may be elucidated by the ECSN mechanism.

  7. Random matrix model for chiral symmetry breaking and color superconductivity in QCD at finite density

    CERN Document Server

    Vanderheyden, B J; Vanderheyden, Benoit

    2000-01-01

    We consider a random matrix model which describes the competition between chiral symmetry breaking and the formation of quark Cooper pairs in QCD at finite density. We study the evolution of the phase structure in temperature and chemical potential with variations of the strength of the interaction in the quark-quark channel and demonstrate that the phase diagram can realize a total of six different topologies. A vector interaction representing single-gluon exchange reproduces a topology commonly encountered in previous QCD models, in which a low-density chiral broken phase is separated from a high-density diquark phase by a first-order line. The other five topologies either do not possess a diquark phase or display a new phase and new critical points. Since these five cases require large variations of the coupling constants away from the values expected for a vector interaction, we conclude that the phase diagram of finite density QCD has the topology suggested by single-gluon exchange and that this topology...

  8. Topology in the SU(Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology

    CERN Document Server

    Azcoiti, Vicente

    2016-01-01

    We investigate the topological properties of unquenched QCD on the basis of numerical results of simulations at fixed topological charge, recently reported by Borsanyi et al., and analytical predictions of the dilute instanton gas approximation. We demonstrate that the mean value of the chiral condensate at fixed topological charge is, in both cases, inconsistent with the analytical prediction of the large volume expansion around the saddle point, and argue that the most plausible explanation for the failure of the saddle point expansion is a vacuum energy density theta-independent at high temperatures, but surprisingly not too high (T\\sim 2T_c), a result which would imply a vanishing topological susceptibility, and the absence of all physical effects of the U(1) axial anomaly at these temperatures. We also show that under a general assumption concerning the high temperature phase of QCD, where the SU(Nf)_A symmetry is restored, the analytical prediction for the chiral condensate at fixed topological charge i...

  9. Topology in the S U (Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology

    Science.gov (United States)

    Azcoiti, Vicente

    2016-11-01

    We investigate the topological properties of unquenched QCD on the basis of numerical results of simulations at fixed topological charge, recently reported by Borsanyi et al. We demonstrate that their results for the mean value of the chiral condensate at fixed topological charge are inconsistent with the analytical prediction of the large-volume expansion around the saddle point, and argue that the most plausible explanation for the failure of the saddle-point expansion is a vacuum energy density that is θ -independent at high temperatures, but surprisingly not too high (T ˜2 Tc), a result which would imply a vanishing topological susceptibility and the absence of all physical effects of the U (1 ) axial anomaly at these temperatures. We also show that under a general assumption concerning the high-temperature phase of QCD, where the S U (Nf)A symmetry is restored, the analytical prediction for the chiral condensate at fixed topological charge is in very good agreement with the numerical results of Borsanyi et al., all effects of the axial anomaly should disappear, the topological susceptibility and all the θ derivatives of the vacuum energy density vanish, and the theory becomes θ independent at any T >Tc in the infinite-volume limit.

  10. Chiral behavior of light meson form factors in 2+1 flavor QCD with exact chiral symmetry

    CERN Document Server

    Kaneko, T; Cossu, G; Feng, X; Fukaya, H; Hashimoto, S; Noaki, J; Onogi, T

    2016-01-01

    We present a study of chiral behavior of light meson form factors in QCD with three flavors of overlap quarks. Gauge ensembles are generated at single lattice spacing 0.12 fm with pion masses down to 300 MeV. The pion and kaon electromagnetic form factors and the kaon semileptonic form factors are precisely calculated using the all-to-all quark propagator. We discuss their chiral behavior using the next-to-next-to-leading order chiral perturbation theory.

  11. Chiral gap effect in curved space

    CERN Document Server

    Flachi, Antonino

    2014-01-01

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  12. Topological String in Quantum-Chromodynamical Chiral Phase Transitions

    Institute of Scientific and Technical Information of China (English)

    LI Yun-De

    2005-01-01

    @@ It is pointed out that if in heavy ion collision processes, the quark-gluon plasma SU(2) chiral phase transition really takes place and the phase transition is a second order. Then the topological string, i.e., the π string, will be formed. The main effect of this phenomenon is that there will be a number of pions produced by decay of the π string in the final state. The pions from the decay of the π string lead to the same effect of decreasing the Hanbury-Brown-Twiss peak in two-pion spectra which is just as that of the long-lived hadronic resonances.At relativistic heavy-ion collision and large hadron collision energies, it is expected that the factors are about α~ 0.7 - 0.9 and α~ 0.6 - 0.85, respectively.

  13. Quantum phase transitions with parity-symmetry breaking and hysteresis

    Science.gov (United States)

    Trenkwalder, A.; Spagnolli, G.; Semeghini, G.; Coop, S.; Landini, M.; Castilho, P.; Pezzè, L.; Modugno, G.; Inguscio, M.; Smerzi, A.; Fattori, M.

    2016-09-01

    Symmetry-breaking quantum phase transitions play a key role in several condensed matter, cosmology and nuclear physics theoretical models. Its observation in real systems is often hampered by finite temperatures and limited control of the system parameters. In this work we report, for the first time, the experimental observation of the full quantum phase diagram across a transition where the spatial parity symmetry is broken. Our system consists of an ultracold gas with tunable attractive interactions trapped in a spatially symmetric double-well potential. At a critical value of the interaction strength, we observe a continuous quantum phase transition where the gas spontaneously localizes in one well or the other, thus breaking the underlying symmetry of the system. Furthermore, we show the robustness of the asymmetric state against controlled energy mismatch between the two wells. This is the result of hysteresis associated with an additional discontinuous quantum phase transition that we fully characterize. Our results pave the way to the study of quantum critical phenomena at finite temperature, the investigation of macroscopic quantum tunnelling of the order parameter in the hysteretic regime and the production of strongly quantum entangled states at critical points.

  14. Sigma(770) Resonance and the Breaking of Scale and Chiral Symmetry in Effective QCD

    CERN Document Server

    Svec, M

    2002-01-01

    CERN measurements of pi(-)p->pi(-)pi(+)n on polarized target at 17.2 GeV/c enable experimental determination of partial wave production amplitudes below 1080 MeV. The measured S-wave transversity amplitudes provide evidence for a narrow scalar resonance sigma(770). The assumption of analyticity of production amplitudes in dipion mass allows to determine S-wave helicity amplitudes S_0 and S_1. The amplitude S_1 is related to pi(-)pi(+)->pi(-)pi(+) scattering. There are four "down" solutions (1, 1bar), (2, 1bar), (1, 2bar) and (2, 2bar) selected by unitarity in pipi scattering. Ellis-Lanik relation between the mass m_sigma and partial width Gamma(sigma->pi(-)pi(+)) derived from an effective QCD theory with broken scale and chiral symmetry selects solutions (1, 1bar) and (1, 2bar) and imparts the sigma(770) resonance with a dilaton-gluonium interpretation. Weinberg's mended symmetry selects solutions (1, 1bar) and (2, 1bar). The combin ed solution (1, 1bar) has m_sigma=769 +/- 13 MeV and Gamma_sigma=154 +/- 22 M...

  15. Isospin Symmetry of Transitions Probed by Weak and Strong Interactions

    CERN Multimedia

    Roeckl, E

    2002-01-01

    Under the assumption that isospin is a good quantum number, isospin symmetry is expected for the transitions from the ground states of the pair of T = 1, T$_{z}$ = $\\pm$ 1 nuclei to excited states of the T = 0 nucleus situated in between the pair. In order to study the isospin symmetry of these transitions, we propose to perform an accurate comparison of Gamow-Teller (GT) transitions for the A = 58 system. This system is the heaviest for which such a comparison is possible. The $^{58}$Ni(T$_{z}$ = 1 ) $\\rightarrow^{58}$Cu(T$_{z}$ = 0 ) GT transitions are presently studied by using high-resolution charge exchange reaction at RNCP Osaka, while those of $^{58}$Zn(T$_{z}$ = -1) $\\rightarrow^{58}$Cu will be investigated in the $\\beta$-decay study at ISOLDE. Due to the large $Q\\scriptstyle_\\textrm{EC}$-value of $^{58}$Zn, GT transitions can be observed up to high excitation energies in $^{58}$Cu. In order to reach this goal, it is proposed to measure $\\beta$-delayed protons and $\\gamma$-rays by using a dedicated de...

  16. Chiral optical Tamm states at the boundary of the medium with helical symmetry of the dielectric tensor

    CERN Document Server

    Timofeev, Ivan V

    2016-01-01

    A new optical state is described both analytically and numerically at the boundary of a chiral medium with continuous helical symmetry of the dielectric tensor. The tangential wave number is assumed to be zero. The state appears to be localized near the boundary. It does not transfer energy along this boundary and falls off exponentially with the distance from the boundary. The field penetration into chiral medium is blocked at wavelengths close to the helical pitch and corresponding to the photonic band gap. The polarization of light near the boundary has the same sign of chirality as the helical medium. It is shown that the homogeneous environment, or the substrate must exhibit the anisotropic metallic reflection. Spectral manifestation of the state is determined by the angle between the optical axes at the interface. A realistic example is considered at the boundary of a cholesteric liquid crystal and a metal-dielectric anisotropic nanocomposite.

  17. Deconfinement and chiral transition in AdS/QCD wall models supplemented with a magnetic field

    CERN Document Server

    Dudal, David; Mertens, Thomas G

    2016-01-01

    We discuss the phenomenon of (inverse) magnetic catalysis for both the deconfinement and chiral transition. We discriminate between the hard and soft wall model, which we suitably generalize to include a magnetic field. Our findings show a critical deconfinement temperature going down, in contrast with the chiral restoration temperature growing with increasing magnetic field. This is at odds with contemporary lattice data, so the quest for a holographic QCD model capable of capturing inverse magnetic catalysis in the chiral sector remains open.

  18. UNIVERSALITY OF PHASE TRANSITION DYNAMICS: TOPOLOGICAL DEFECTS FROM SYMMETRY BREAKING

    Energy Technology Data Exchange (ETDEWEB)

    Zurek, Wojciech H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Del Campo, Adolfo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-02-13

    In the course of a non-equilibrium continuous phase transition, the dynamics ceases to be adiabatic in the vicinity of the critical point as a result of the critical slowing down (the divergence of the relaxation time in the neighborhood of the critical point). This enforces a local choice of the broken symmetry and can lead to the formation of topological defects. The Kibble-Zurek mechanism (KZM) was developed to describe the associated nonequilibrium dynamics and to estimate the density of defects as a function of the quench rate through the transition. During recent years, several new experiments investigating formation of defects in phase transitions induced by a quench both in classical and quantum mechanical systems were carried out. At the same time, some established results were called into question. We review and analyze the Kibble-Zurek mechanism focusing in particular on this surge of activity, and suggest possible directions for further progress.

  19. Consistency of the Light-Front Quark Model with the Chiral Symmetry in the Pseudoscalar Meson Analysis

    CERN Document Server

    Choi, Ho-Meoyng

    2014-01-01

    We discuss the link between the chiral symmetry of QCD and the numerical results of the light-front quark model (LFQM), analyzing both the two-point and three-point functions of a pseudoscalar meson from the perspective of the vacuum fluctuation consistent with the chiral symmetry of QCD. The two-point and three-point functions are exemplified in this work by the twist-2 and twist-3 distribution amplitudes of a pseudoscalar meson and the pion elastic form factor, respectively. The present analysis of the pseudoscalar meson commensurates with the previous analysis of the vector meson two-point function and fortifies our observation that the light-front quark model with effective degrees of freedom represented by the constituent quark and antiquark may provide the view of effective zero-mode cloud around the quark and antiquark inside the meson. Consequently, the constituents dressed by the zero-mode cloud may be expected to satisfy the chiral symmetry of QCD. Our results appear consistent with this expectation...

  20. Duality between chiral symmetry breaking and charged pion condensation at large $N_c$: Consideration of an NJL$_2$ model with baryon-, isospin- and chiral isospin chemical potentials

    CERN Document Server

    Ebert, D; Klimenko, K G

    2016-01-01

    In this paper we investigate the phase structure of a (1+1)-dimensional schematic quark model with four-quark interaction and in the presence of baryon ($\\mu_B$), isospin ($\\mu_I$) and chiral isospin ($\\mu_{I5}$) chemical potentials. It is established that in the large-$N_c$ limit ($N_c$ is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation (PC) one. The role and influence of this property on the phase structure of the model are studied. Moreover, it is shown that the chemical potential $\\mu_{I5}$ promotes the appearance of the charged PC phase with nonzero baryon density.

  1. CP violation and chiral symmetry restoration in the hot linear sigma model in a strong magnetic background

    CERN Document Server

    Mizher, Ana Júlia

    2008-01-01

    We study the effects of CP violation on the nature of the chiral transition within the linear sigma model with two flavors of quarks. The finite-temperature effective potential containing contributions from nontrivial values for the parameter $\\theta$ is computed to one loop order and their minima structure is analyzed. Motivated by the possibility of observing the formation of CP-odd domains in high-energy heavy ion collisions, we also investigate the behavior of the effective potential in the presence of a strong magnetic background. We find that the nature of the chiral transition is influenced by both $\\theta$ and the magnetic field.

  2. CP violation and chiral symmetry restoration in the hot linear sigma model in a strong magnetic background

    Energy Technology Data Exchange (ETDEWEB)

    Mizher, Ana Julia, E-mail: anajulia@if.ufrj.b [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Fraga, Eduardo S., E-mail: fraga@if.ufrj.b [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)

    2009-12-01

    We study the effects of CP violation on the nature of the chiral transition within the linear sigma model with two flavors of quarks. The finite-temperature effective potential containing contributions from nontrivial values for the parameter theta is computed to one loop order and their minima structure is analyzed. Motivated by the possibility of observing the formation of CP-odd domains in high-energy heavy ion collisions, we also investigate the behavior of the effective potential in the presence of a strong magnetic background. We find that the nature of the chiral transition is influenced by both theta and the magnetic field.

  3. Mass limits for the chiral color symmetry $G'$-boson from LHC dijet data

    CERN Document Server

    Frolov, I V

    2016-01-01

    The contributions of $G'$-boson predicted by the chiral color symmetry of quarks to the differential dijet cross-sections in $pp$-collisions at the LHC are calculated and analysed in dependence on two free parameters of the model, the $G'$ mass $m_{G'}$ and mixing angle $\\theta_G$. The exclusion and consistency $m_{G'}-\\theta_G$ regions imposed by the ATLAS and CMS data on dijet cross-sections are found. Using the CT10 (MSTW~2008) PDF set we show that the $G'$-boson for $\\theta_G=45^{\\circ}$, i.e. the axigluon, with the masses $m_{G'} < 2.3 \\,\\, (2.6) \\,\\, \\mbox{TeV}$ and $m_{G'} < 3.35 \\,\\, (3.25) \\,\\, \\mbox{TeV}$ is excluded at the probability level of $95\\%$ by the ATLAS and CMS dijet data respectively. For the other values of $\\theta_G$ the exclusion limits are more stringent. The $m_{G'}-\\theta_G$ regions consistent with these data at $CL=68\\%$ and $CL=90\\%$ are also found.

  4. Quantum phase transitions between bosonic symmetry-protected topological states without sign problem: Nonlinear sigma model with a topological term

    Science.gov (United States)

    You, Yi-Zhuang; Bi, Zhen; Mao, Dan; Xu, Cenke

    2016-03-01

    We propose a series of simple two-dimensional (2D) lattice interacting fermion models that we demonstrate at low energy describe bosonic symmetry-protected topological (SPT) states and quantum phase transitions between them. This is because due to interaction, the fermions are gapped both at the boundary of the SPT states and at the bulk quantum phase transition, thus these models at low energy can be described completely by bosonic degrees of freedom. We show that the bulk of these models is described by a Sp (N ) principal chiral model with a topological Θ term, whose boundary is described by a Sp (N ) principal chiral model with a Wess-Zumino-Witten term at level 1. The quantum phase transition between SPT states in the bulk is tuned by a particular interaction term, which corresponds to tuning Θ in the field theory, and the phase transition occurs at Θ =π . The simplest version of these models with N =1 is equivalent to the familiar O(4) nonlinear sigma model (NLSM) with a topological term, whose boundary is a (1 +1 )D conformal field theory with central charge c =1 . After breaking the O(4) symmetry to its subgroups, this model can be viewed as bosonic SPT states with U(1), or Z2 symmetries, etc. All of these fermion models, including the bulk quantum phase transitions, can be simulated with the determinant quantum Monte Carlo method without the sign problem. Recent numerical results strongly suggest that the quantum disordered phase of the O(4) NLSM with precisely Θ =π is a stable (2 +1 )D conformal field theory with gapless bosonic modes.

  5. O(5) symmetry in IBA-1 - the O(6)-U(5) transition region

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.; Novoselsky, A.; Talmi, I.

    1986-05-15

    All IBA-1 hamiltonians whose eigenstates are combinations of states with numbers of d-bosons differing by an even number have O(5) symmetry. Consequences of this symmetry are presented for the O(6)-U(5) transition region for energy levels and electromagnetic transitions. We draw the distinction between evidence for O(6) character of nuclei and that for O(5) symmetry only.

  6. Transitions in Dilaton Holography with Global or Local Symmetries

    CERN Document Server

    Salvio, Alberto

    2013-01-01

    We study various transitions in dilaton holography, including those associated with the spontaneous breaking of a global (superfluid case) or local (superconductor case) U(1) symmetry in diverse dimensions d. By analyzing the thermodynamics of the dilaton-gravity system we find that scale invariance is broken at low temperatures, as shown by a nontrivial hyperscaling violation exponent in the infrared; increasing the temperature we recover scale symmetry in a d dependent way: while for d=2+1 a phase transition is found, for d=3+1 the transition is rather a crossover (as expected in QCD). When the U(1) is preserved and at low temperatures, the system is insulating for arbitrary d if the dilaton is appropriately coupled to the gauge field; for other couplings we also find a linear in temperature resistivity. We then determine the prediction of these models for several quantities in the superconducting phase: the DC and AC conductivity, the gap for charged excitations, the superfluid density, the vortex profiles...

  7. Extended ensemble theory, spontaneous symmetry breaking, and phase transitions

    Science.gov (United States)

    Xiao, Ming-wen

    2006-09-01

    In this paper, as a personal review, we suppose a possible extension of Gibbs ensemble theory so that it can provide a reasonable description of phase transitions and spontaneous symmetry breaking. The extension is founded on three hypotheses, and can be regarded as a microscopic edition of the Landau phenomenological theory of phase transitions. Within its framework, the stable state of a system is determined by the evolution of order parameter with temperature according to such a principle that the entropy of the system will reach its minimum in this state. The evolution of order parameter can cause a change in representation of the system Hamiltonian; different phases will realize different representations, respectively; a phase transition amounts to a representation transformation. Physically, it turns out that phase transitions originate from the automatic interference among matter waves as the temperature is cooled down. Typical quantum many-body systems are studied with this extended ensemble theory. We regain the Bardeen Cooper Schrieffer solution for the weak-coupling superconductivity, and prove that it is stable. We find that negative-temperature and laser phases arise from the same mechanism as phase transitions, and that they are unstable. For the ideal Bose gas, we demonstrate that it will produce Bose Einstein condensation (BEC) in the thermodynamic limit, which confirms exactly Einstein's deep physical insight. In contrast, there is no BEC either within the phonon gas in a black body or within the ideal photon gas in a solid body. We prove that it is not admissible to quantize the Dirac field by using Bose Einstein statistics. We show that a structural phase transition belongs physically to the BEC happening in configuration space, and that a double-well anharmonic system will undergo a structural phase transition at a finite temperature. For the O(N)-symmetric vector model, we demonstrate that it will yield spontaneous symmetry breaking and produce

  8. Emergent SO(3) Symmetry of the Frictionless Shear Jamming Transition

    Science.gov (United States)

    Baity-Jesi, Marco; Goodrich, Carl P.; Liu, Andrea J.; Nagel, Sidney R.; Sethna, James P.

    2017-01-01

    We study the shear jamming of athermal frictionless soft spheres, and find that in the thermodynamic limit, a shear-jammed state exists with different elastic properties from the isotropically-jammed state. For example, shear-jammed states can have a non-zero residual shear stress in the thermodynamic limit that arises from long-range stress-stress correlations. As a result, the ratio of the shear and bulk moduli, which in isotropically-jammed systems vanishes as the jamming transition is approached from above, instead approaches a constant. Despite these striking differences, we argue that in a deeper sense, the shear jamming and isotropic jamming transitions actually have the same symmetry, and that the differences can be fully understood by rotating the six-dimensional basis of the elastic modulus tensor.

  9. Light baryon magnetic moments and N -> Delta gamma transition in a Lorentz covariant chiral quark approach

    CERN Document Server

    Faessler, A; Holstein, Barry R; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Thomas; Holstein, Barry R.; Lyubovitskij, Valery E.; Nicmorus, Diana; Pumsa-ard, Kem

    2006-01-01

    We calculate magnetic moments of light baryons and N -> Delta gamma transition characteristics using a manifestly Lorentz covariant chiral quark approach for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons.

  10. Influence of boson mass on chiral phase transition in QED3

    Science.gov (United States)

    Feng, Hong-tao; Wang, Xiu-Zhen; Yu, Xin-hua; Zong, Hong-shi

    2016-08-01

    Based on the truncated Dyson-Schwinger equations for the fermion propagator with N fermion flavors at zero temperature, the chiral phase transition of quantum electrodynamics in 2 +1 dimensions (QED3 ) with boson mass—which is obtained via the Anderson-Higgs mechanism—is investigated. In the chiral limit, we find that the critical behavior of QED3 with a massless boson is different from that with a massive boson: the chiral phase transition in the presence of a nonzero boson mass reveals the typical second-order phase transition, at either the critical boson mass or a critical number of fermion flavors, while for a vanishing boson mass it exhibits a higher than second-order phase transition at the critical number of fermion flavors. Furthermore, it is shown that the system undergoes a crossover behavior from a small number of fermion flavors or boson mass to its larger one beyond the chiral limit.

  11. O(N) universality and the chiral phase transition in QCD

    CERN Document Server

    Karsch, Frithjof

    2010-01-01

    We discuss universal scaling properties of (2+1)-flavor QCD in the vicinity of the chiral phase transition at vanishing as well as non-vanishing light quark chemical potential (mu_l). We provide evidence for O(N) scaling of the chiral order parameter in (2+1)-flavor QCD and show that the scaling analysis of its derivative with respect to the light quark chemical potential provides a unique approach to the determination of the curvature of the chiral phase transition line in the vicinity of mu_l/T=0.

  12. Nucleation in the chiral transition with an inhomogeneous background

    CERN Document Server

    Taketani, B G; Taketani, Bruno G.; Fraga, Eduardo S.

    2007-01-01

    We consider an approximation procedure to evaluate the finite-temperature one-loop fermionic density in the presence of a chiral background field which systematically incorporates effects from inhomogeneities in the chiral field through a derivative expansion. Modifications in the effective potential and their consequences for the bubble nucleation process are discussed.

  13. Chiral and Parity Symmetry Breaking for Planar Fermions: Effects of a Heat Bath and Uniform External Magnetic Field

    CERN Document Server

    Ayala, Alejandro; Gutierrez, Enif; Raya, Alfredo; Sanchez, Angel

    2010-01-01

    We study chiral symmetry breaking for relativistic fermions, described by a parity violating Lagrangian in 2+1-dimensions, in the presence of a heat bath and a uniform external magnetic field. Working within their four-component formalism allows for the inclusion of both parity-even and -odd mass terms. Therefore, we can define two types of fermion anti-fermion condensates. For a given value of the magnetic field, there exist two different critical temperatures which would render one of these condensates identically zero, while the other would survive. Our analysis is completely general: it requires no particular simplifying hierarchy among the energy scales involved, namely, bare masses, field strength and temperature. However, we do reproduce some earlier results, obtained or anticipated in literature, corresponding to special kinematical regimes for the parity conserving case. Relating the chiral condensate to the one-loop effective Lagrangian, we also obtain the magnetization and the pair production rate ...

  14. Field-induced transition from chiral spin-triplet to mixed-parity Fulde-Ferrell-Larkin-Ovchinnikov superconductivity

    Science.gov (United States)

    Romano, Alfonso; Cuoco, Mario; Noce, Canio; Gentile, Paola; Annunziata, Gaetano

    2010-02-01

    We analyze the response to a magnetic field of a two-dimensional spin-triplet superconductor with chiral order parameter when triplet pairing is closely competing with the singlet one. The study is performed via numerical solution of the Bogoliubov-de Gennes equations, assuming that the translational symmetry is broken in one direction by the presence of an interface beyond which superconducting pairing is not effective. We show that as the intensity of the magnetic field is increased above a threshold value, the system undergoes a transition to a spatially inhomogeneous state of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type where chirality disappears and a singlet-triplet mixing takes place along the direction perpendicular to the interface. Subdominant singlet components are found to accompany the triplet dominant ones in both phases. They develop close to the interface at low fields, then turning continuously into oscillating long-range ones as the field is increased. A similar behavior is found for the magnetization. It nucleates at the interface in the chiral phase, then acquiring in the FFLO phase an oscillatory behavior reaching its maximum amplitude at the sites where the dominant triplet component has a node. At these sites, the local spin-resolved density of states exhibits strong resonances, associated with the formation of Andreev bound states, which tend to broaden and decay in intensity as increasingly high magnetic fields are considered.

  15. Symmetry Breaking in Chiral Ionic Liquids Evidenced by Vibrational Optical Activity.

    Science.gov (United States)

    Oulevey, Patric; Luber, Sandra; Varnholt, Birte; Bürgi, Thomas

    2016-09-19

    Ionic liquids (ILs) are receiving increasing interest for their use in synthetic laboratories and industry. Being composed of charged entities, they show a complex and widely unexplored dynamic behavior. Chiral ionic liquids (CILs) have a high potential as solvents for use in asymmetric synthesis. Chiroptical methods, owing to their sensitivity towards molecular conformation, offer unique possibilities to study the structure of these chiral ionic liquids. Raman optical activity proved particularly useful to study ionic liquids composed of amino acids and the achiral 1-ethyl-3-methylimidazolium counterion. We could substantiate, supported by selected theoretical methods, that the achiral counterion adopts an overall chiral conformation in the presence of chiral amino acid ions. These findings suggest that in the design of chiral ionic liquids for asymmetric synthesis, the structure of the achiral counter ion also has to be carefully considered.

  16. Duality, Gauge Symmetries, Renormalization Groups and the BKT Transition

    Science.gov (United States)

    José, Jorge V.

    2013-06-01

    In this chapter, I will briefly review, from my own perspective, the situation within theoretical physics at the beginning of the 1970s, and the advances that played an important role in providing a solid theoretical and experimental foundation for the Berezinskii-Kosterlitz-Thouless theory (BKT). Over this period, it became clear that the Abelian gauge symmetry of the 2D-XY model had to be preserved to get the right phase structure of the model. In previous analyses, this symmetry was broken when using low order calculational approximations. Duality transformations at that time for two-dimensional models with compact gauge symmetries were introduced by José, Kadanoff, Nelson and Kirkpatrick (JKKN). Their goal was to analyze the phase structure and excitations of XY and related models, including symmetry breaking fields which are experimentally important. In a separate context, Migdal had earlier developed an approximate Renormalization Group (RG) algorithm to implement Wilson's RG for lattice gauge theories. Although Migdal's RG approach, later extended by Kadanoff, did not produce a true phase transition for the XY model, it almost did asymptotically in terms of a non-perturbative expansion in the coupling constant with an essential singularity. Using these advances, including work done on instantons (vortices), JKKN analyzed the behavior of the spin-spin correlation functions of the 2D XY-model in terms of an expansion in temperature and vortex-pair fugacity. Their analysis led to a perturbative derivation of RG equations for the XY model which are the same as those first derived by Kosterlitz for the two-dimensional Coulomb gas. JKKN's results gave a theoretical formulation foundation and justification for BKT's sound physical assumptions and for the validity of their calculational approximations that were, in principle, strictly valid only at very low temperatures, away from the critical TBKT temperature. The theoretical predictions were soon tested

  17. Chiral symmetry breaking, color superconductivity and quark matter phase diagram: a variational approach 12.38.Gc

    CERN Document Server

    Mishra, H

    2001-01-01

    We discuss in this note simultaneous existence of chiral symmetry breaking and color superconductivity at finite temperature and density in a Nambu-Jona-Lasinio type model. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. There exist nontrivial solutions to the gap equations at finite densities with both quark-antiquark as well as diquark condensates for the 'ground' state. However, such a phase is thermodynamically unstable with the pressure being negative in this region. We also compute the equation of state, and obtain the structure of the phase diagram in the model.

  18. Chiral atomically thin films

    Science.gov (United States)

    Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong

    2016-06-01

    Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.

  19. Chiral Kosterlitz-Thouless transition in the frustrated Heisenberg antiferromagnet on a pyrochlore slab.

    Science.gov (United States)

    Kawamura, Hikaru; Arimori, Takuya

    2002-02-18

    Ordering of the geometrically frustrated two-dimensional Heisenberg antiferromagnet on a pyrochlore slab is studied by Monte Carlo simulations. In contrast to the kagomé Heisenberg antiferromagnet, the model exhibits locally noncoplanar spin structures at low temperatures, bearing nontrivial chiral degrees of freedom. Under certain conditions, the model exhibits a novel Kosterlitz-Thouless-type transition at a finite temperature associated with these chiral degrees of freedom.

  20. Amplification of Quantum Meson Modes in the Late Time of the Chiral Phase Transition

    CERN Document Server

    Watanabe, K

    2007-01-01

    We investigate the time evolution of the quantum meson modes in the late time of chiral phase transition. In particular, it is shown that there exists a possible solution to the equation of motion for the quantum meson modes, which reveals a parametric resonance and/or resonance through forced oscillation induced by the small oscillation of the chiral condensate. After that, we demonstrate the unstable regions for the quantum meson modes in both the cases of a uniform and spatially expanding system.

  1. Partial Dynamical Symmetry at Critical-Points of Quantum Phase Transitions

    CERN Document Server

    Leviatan, A

    2007-01-01

    We show that partial dynamical symmetries (PDS) can occur at critical-points of quantum phase transitions, in which case, underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of PDS are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape-phases in nuclei.

  2. CP violation and chiral symmetry restoration in the hot linear sigma model in a strong magnetic background

    OpenAIRE

    Mizher, Ana Júlia; Fraga, Eduardo S.

    2008-01-01

    We study the effects of CP violation on the nature of the chiral transition within the linear sigma model with two flavors of quarks. The finite-temperature effective potential containing contributions from nontrivial values for the parameter $\\theta$ is computed to one loop order and their minima structure is analyzed. Motivated by the possibility of observing the formation of CP-odd domains in high-energy heavy ion collisions, we also investigate the behavior of the effective potential in t...

  3. Nuclear equation of state in a relativistic independent quark model with chiral symmetry and dependence on quark masses

    Science.gov (United States)

    Barik, N.; Mishra, R. N.; Mohanty, D. K.; Panda, P. K.; Frederico, T.

    2013-07-01

    We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations. The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.

  4. On the strength of the $U_A(1)$ anomaly at the chiral phase transition in $N_f=2$ QCD

    CERN Document Server

    Brandt, Bastian B; Meyer, Harvey B; Philipsen, Owe; Robaina, Daniel; Wittig, Hartmut

    2016-01-01

    We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the splitting between isovector scalar and pseudoscalar screening masses around the chiral phase transition by at least a factor of three compared to its value at zero temperature. In fact, the splitting is consistent with zero within our uncertainties. This disfavours a chiral phase transition in the $O(4)$ universality class.

  5. Specific features and symmetries for magnetic and chiral bands in nuclei

    Science.gov (United States)

    Raduta, A. A.

    2016-09-01

    Magnetic and chiral bands have been a hot subject for more than twenty years. Therefore, quite large volumes of experimental data as well as theoretical descriptions have been accumulated. Although some of the formalisms are not so easy to handle, the results agree impressively well with the data. The objective of this paper is to review the actual status of both experimental and theoretical investigations. Aiming at making this material accessible to a large variety of readers, including young students and researchers, I gave some details on the schematic models which are able to unveil the main features of chirality in nuclei. Also, since most formalisms use a rigid triaxial rotor for the nuclear system's core, I devoted some space to the semi-classical description of the rigid triaxial as well as of the tilted triaxial rotor. In order to answer the question whether the chiral phenomenon is spread over the whole nuclear chart and whether it is specific only to a certain type of nuclei, odd-odd, odd-even or even-even, the current results in the mass regions of A ∼ 60 , 80 , 100 , 130 , 180 , 200 are briefly described for all kinds of odd/even-odd/even systems. The chiral geometry is a sufficient condition for a system of proton-particle, neutron-hole and a triaxial rotor to have the electromagnetic properties of chiral bands. In order to prove that such geometry is not unique for generating magnetic bands with chiral features, I presented a mechanism for a new type of chiral bands. One tries to underline the fact that this rapidly developing field is very successful in pushing forward nuclear structure studies.

  6. Pseudospin Symmetry and Forbidden Magnetic Dipole and Gamow-Teller Transitions

    Science.gov (United States)

    Ginocchio, Joseph

    1999-10-01

    Recently it has been shown that pseudospin symmetry has its origins in a relativistic symmetry of the Dirac Hamiltonian[1]. Using this symmetry we relate single - nucleon relativistic magnetic moments of states in a pseudospin doublet to the relativistic magnetic dipole transitions between the states in the doublet, and we relate single - nucleon relativistic Gamow - Teller transitions within states in the doublet. We apply these relationships to the Gamow - Teller transitions from ^39Ca to its mirror nucleus ^39K [2] and to the systematics of forbidden magnetic dipole transitions. 1. J. N. Ginocchio and A. Leviatan Phys. Lett. B 425, 1 (1998). 2. J. N. Ginocchio Phys. Rev. C 59, 2487 (1999).

  7. Inequality of Chances as a Symmetry Phase Transition

    Directory of Open Access Journals (Sweden)

    Jorge Rosenblatt

    2013-05-01

    Full Text Available We propose a model for Lorenz curves. It provides two-parameter fits to data on incomes, electric consumption, life expectation and rate of survival after cancer. Graphs result from the condition of maximum entropy and from the symmetry of statistical distributions. Differences in populations composing a binary system (poor and rich, young and old, etc. bring about chance inequality. Symmetrical distributions insure equality of chances, generate Gini coefficients Gi £ ⅓, and imply that nobody gets more than twice the per capita benefit. Graphs generated by different symmetric distributions, but having the same Gini coefficient, intersect an even number of times. The change toward asymmetric distributions follows the pattern set by second-order phase transitions in physics, in particular universality: Lorenz plots reduce to a single universal curve after normalisation and scaling. The order parameter is the difference between cumulated benefit fractions for equal and unequal chances. The model also introduces new parameters: a cohesion range describing the extent of apparent equality in an unequal society, a poor-rich asymmetry parameter, and a new Gini-like indicator that measures unequal-chance inequality and admits a theoretical expression in closed form.

  8. Chiral phase transition of QCD with N f = 2 + 1 flavors from holography

    Science.gov (United States)

    Li, Danning; Huang, Mei

    2017-02-01

    Chiral phase transition for three-flavor N f = 2 + 1 QCD with m u = m d ≠ m s is investigated in a modified soft-wall holographic QCD model. Solving temperature dependent chiral condensates from equations of motion of the modified soft-wall model, we extract the quark mass dependence of the order of chiral phase transition in the case of N f = 2 + 1, and the result is in agreement with the "Columbia Plot", which is summarized from lattice simulations and other non-perturbative methods. First order phase transition is observed around the three flavor chiral limit m u/ d = 0, m s = 0, while at sufficient large quark masses it turns to be a crossover phase transition. The first order and crossover regions are separated by a second order phase transition line. The second order line is divided into two parts by the m u/ d = m s line, and the m s dependence of the transition temperature in these two parts are totally contrast, which might indicate that the two parts are governed by different universality classes.

  9. Multi critical point structure for chiral phase transition induce by charge neutrality and vector interaction

    CERN Document Server

    Zhang, Zhao

    2010-01-01

    The combined effect of the repulsive vector interaction and the positive electric chemical potential on the chiral phase transition is investigated by considering neutral color superconductivity. Under the charge-neutrality constraint, the chiral condensate, diquark condensate and quark number densities are obtained in two-plus-one-flavor Nambu-Jona-Lasinio model with the so called Kobayashi-Maskawa-'t Hooft term. We demonstrate that multiple chiral critical-point structures always exist in the Nambu-Jona-Lasinio model within the self-consistent mean-field approximation, and that the number of chiral critical points can vary from zero to four, which is dependent on the magnitudes of vector interaction and the diquark coupling.

  10. Chiral phase transition of $N_f$=2+1 QCD with the HISQ action

    CERN Document Server

    Ding, H -T; Karsch, F; Maezawa, Y; Mukherjee, Swagato; Petreczky, P

    2013-01-01

    We present studies of universal properties of the chiral phase transition in $N_f$=2+1 QCD based on the simulations using Highly Improved Staggered fermions on lattices with temporal extent $N_\\tau$=6. We analyze the quark mass and volume dependence of the chiral condensates and chiral susceptibilities in QCD with two degenerate light quarks and a strange quark. The strange quark mass is chosen to be fixed to its physical value ($m^{phy}_s$) and five values of light quark masses ($m_l$) that are varied in the interval 1/20$\\gtrsim m_l/m^{phy}_s \\gtrsim$1/80. Here various quark masses correspond to pseudo Goldstone pion masses ranging from about 160 MeV to about 80 MeV. The O(N) scaling of chiral observables and the influence of universal scaling on physical observables in the region of physical quark mass values are also discussed.

  11. Lorentz symmetry violation in the fermion number anomaly with the chiral overlap operator

    CERN Document Server

    Makino, Hiroki

    2016-01-01

    Recently, Grabowska and Kaplan proposed a 4-dimensional lattice formulation of chiral gauge theories on the basis of a chiral overlap operator. We compute the classical continuum limit of the fermion number anomaly in this formulation. Unexpectedly, we find that the anomaly contains a term which is not Lorentz invariant. The term is however proportional to the gauge anomaly coefficient and thus the fermion number anomaly in this lattice formulation automatically restores the Lorentz invariant form when and only when the anomaly cancellation condition is met.

  12. Observation of chirality transition of quasiparticles at stacking solitons in trilayer graphene

    Science.gov (United States)

    Yin, Long-Jing; Wang, Wen-Xiao; Zhang, Yu; Ou, Yang-Yang; Zhang, Hao-Ting; Shen, Cai-Yun; He, Lin

    2017-02-01

    Trilayer graphene (TLG) exhibits rich, alternative electronic properties and extraordinary quantum Hall phenomena owing to enhanced electronic interactions and tunable chirality of its quasiparticles. Here, we report direct observation of chirality transition of quasiparticles at stacking solitons of TLG via spatial-resolved Landau level spectroscopy. The one-dimensional stacking solitons with width of the order of 10 nm separate adjacent Bernal-stacked TLG and rhombohedral-stacked TLG. By using high-field tunneling spectra from scanning tunneling microscopy, we measured Landau quantization in both the Bernal-stacked TLG and the rhombohedral-stacked TLG and, importantly, we observed evolution of quasiparticles between the chiral degree l =1 and 2 and l =3 across the stacking domain-wall solitons. Our experiment indicates that such a chirality transition occurs smoothly, accompanying the transition of the stacking orders of TLG, around the domain-wall solitons. This result demonstrates the important relationship between the crystallographic stacking order and the chirality of quasiparticles in graphene systems.

  13. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    Science.gov (United States)

    Sharma, Sayantan; Dick, Viktor; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2016-12-01

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a systematic study of the finite size and cut-off effects since the signals of U(1) violation are sensitive to it. We also provide a glimpse of the microscopic topological structures of the QCD medium that are responsible for the strongly interacting nature of the quark gluon plasma phase. We study the effect of these microscopic constituents through our first calculations for the topological susceptibility of QCD at finite temperature, which could be a crucial input for the equation of state for anomalous hydrodynamics.

  14. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    CERN Document Server

    Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2016-01-01

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a system...

  15. Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light

    NARCIS (Netherlands)

    Noorduin, Wim L.; Bode, Arno A.C.; Meijden, Maarten van der; Meekes, Hugo; Etteger, Albert F. van; Enckevort, Willem J.P. van; Christianen, Peter C.M.; Kaptein, Bernard; Kellogg, Richard M.; Rasing, Theo; Vlieg, Elias

    2009-01-01

    Circularly polarized light (CPL) emitted from star-forming regions is an attractive candidate as a cause of single chirality in nature. It has remained difficult, however, to translate the relatively small chemical effects observed on irradiation of molecular systems with CPL into high enantiomeric

  16. Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, B.K.

    1986-11-01

    Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment.

  17. Medium modifications of mesons. Chiral symmetry restoration, in-medium QCD sum rules for D and ρ mesons, and Bethe-Salpeter equations

    Energy Technology Data Exchange (ETDEWEB)

    Hilger, Thomas Uwe

    2012-04-11

    The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes D{sub s} and D{sup *}{sub 0} mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.

  18. Nuclear equation of state in a relativistic independent quark model with chiral symmetry and variation with quark masses

    CERN Document Server

    Barik, N; Mohanty, D K; Panda, P K; Frederico, T

    2013-01-01

    We have calculated the properties of nuclear matter in a self-consistent manner with quark-meson coupling mechanism incorporating structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon, is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious centre of mass motion as well as those due to other residual interactions such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration; have been considered in a perturbation manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to sigma and omega mesons through mean field approximations. The relevant parameters of the interaction are obtained self consistently while realizing the saturation properties such as the binding energy, pressure a...

  19. Reflection symmetry at a B=0 metal-insulator transition in two dimensions

    OpenAIRE

    Simonian, D.; Kravchenko, S. V.; Sarachik, M. P.

    1996-01-01

    We report a remarkable symmetry between the resistivity and conductivity on opposite sides of the B=0 metal-insulator transition in a two-dimensional electron gas in high-mobility silicon MOSFET's. This symmetry implies that the transport mechanisms on the two sides are related.

  20. Time evolution of chiral phase transition at finite temperature and density in the linear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Koide, Tomoi; Maruyama, Masahiro [Tohoku Univ., Faculty of Science, Sendai, Miyagi (Japan)

    1999-08-01

    There are various approaches to nonequilibrium system. We use the projection operator method investigated by F. Shibata and N. Hashitsume on the linear sigma model at finite temperature and density. We derive a differential equation of the time evolution for the order parameter and pion number density in chiral phase transition. (author)

  1. Chiral perturbation theory study of the axial $N\\to\\Delta(1232)$ transition

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We have performed a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in covariant baryon chiral perturbation theory within a formalism in which the unphysical spin-1/2 components of the $\\Delta$ fields are decoupled.

  2. DSAM lifetime measurements for the chiral pair in {sup 194}Tl

    Energy Technology Data Exchange (ETDEWEB)

    Masiteng, P.L.; Bvumbi, S.P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); University of Johannesburg, PO Box 524, Auckland Park (South Africa); Pasternak, A.A. [A.F. Ioffe Physical-Technical Institute, St.-Petersburg (Russian Federation); Lawrie, E.A.; Shirinda, O.; Lawrie, J.J.; Bark, R.A.; Kheswa, N.Y.; Lieder, E.O.; Lieder, R.M.; Mullins, S.M.; Murray, S.H.T. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); Lindsay, R. [University of the Western Cape, Private Bag X17, Bellville (South Africa); Madiba, T.E.; Sharpey-Schafer, J.F. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); Ndayishimye, J.; Papka, P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Stellenbosch, Department of Physics, Private Bag X1, Matieland (South Africa); Ntshangase, S.S. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Cape Town, Department of Physics, Private Bag, Rondebosch (South Africa)

    2016-02-15

    Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of {sup 194}Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario. (orig.)

  3. Can a strong magnetic background modify the nature of the chiral transition in QCD?

    OpenAIRE

    Fraga, Eduardo S.; Mizher, Ana Júlia

    2008-01-01

    The presence of a strong magnetic background can modify the nature and the dynamics of the chiral phase transition at finite temperature: for high enough magnetic fields, comparable to the ones expected to be created in noncentral high-energy heavy ion collisions at RHIC and the LHC, the original crossover is turned into a first-order transition. We illustrate this effect within the linear sigma model with quarks to one loop in the ${\\rm MS}$ scheme for $N_{f}=2$.

  4. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.

    Science.gov (United States)

    Sunoj, Raghavan B

    2016-05-17

    In asymmetric catalysis, a chiral catalyst bearing chiral center(s) is employed to impart chirality to developing stereogenic center(s). A rich and diverse set of chiral catalysts is now available in the repertoire of synthetic organic chemistry. The most recent trends point to the emergence of axially chiral catalysts based on binaphthyl motifs, in particular, BINOL-derived phosphoric acids and phosphoramidites. More fascinating ideas took shape in the form of cooperative multicatalysis wherein organo- and transition-metal catalysts are made to work in concert. At the heart of all such manifestations of asymmetric catalysis, classical or contemporary, is the stereodetermining transition state, which holds a perennial control over the stereochemical outcome of the catalytic process. Delving one step deeper, one would find that the origin of the stereoselectivity is delicately dependent on the relative stabilization of one transition state, responsible for the formation of the predominant stereoisomer, over the other transition state for the minor stereoisomer. The most frequently used working hypothesis to rationalize the experimentally observed stereoselectivity places an undue emphasis on steric factors and tends to regard the same as the origin of facial discrimination between the prochiral faces of the reacting partners. In light of the increasing number of asymmetric catalysts that rely on hydrogen bonding as well as other weak non-covalent interactions, it is important to take cognizance of the involvement of such interactions in the sterocontrolling transition states. Modern density functional theories offer a pragmatic and effective way to capture non-covalent interactions in transition states. Aided by the availability of such improved computational tools, it is quite timely that the molecular origin of stereoselectivity is subjected to more intelligible analysis. In this Account, we describe interesting molecular insights into the stereocontrolling

  5. The $N_f=2 chiral phase transition from imaginary chemical potential with Wilson Fermions

    CERN Document Server

    Cuteri, Francesca; Philipsen, Owe; Pinke, Christopher

    2015-01-01

    The finite temperature chiral and deconfinement phase transitions at zero density for light and heavy quarks, respectively, have analytic continuations to imaginary chemical potential. At some critical imaginary chemical potential, they meet the Roberge-Weiss transition between adjacent $Z3$ sectors. For light and heavy quarks, where the chiral and deconfinement transitions are first order, the transition lines meet in a triple point. For intermediate masses chiral or deconfinement transitions are crossover and the Roberge-Weiss transition ends in a second order point. At the boundary between these regimes the junction is a tricritical point, as shown in studies with $N_f=2,3$ flavors of staggered and Wilson quarks on $N_\\tau=4$ lattices. Employing finite size scaling we investigate the nature of this point as a function of quark mass for $N_f=2$ flavors of Wilson fermions with a temporal lattice extent of $N_\\tau=6$. In particular we are interested in the change of the location of tricritical points compared...

  6. Finite-volume effects on phase transition in the Polyakov-loop extended Nambu-Jona-Lasinio model with a chiral chemical potential

    CERN Document Server

    Pan, Zan; Chang, Chao-Hsi; Zong, Hong-Shi

    2016-01-01

    To investigate finite-volume effects on the chiral symmetry restoration and the deconfinement transition and some impacts of possible global topological background for a quantum chromodynamics (QCD) system with $N_f=2$ (two quark flavors), we apply the Polyakov-loop extended Nambu-Jona-Lasinio model by introducing a chiral chemical potential $\\mu_5$ artificially. The final numerical results indicate that the introduced chiral chemical potential does not change the critical exponents but shifts the location of critical end point (CEP) significantly; the ratios for the chiral chemical potentials and temperatures at CEP, $\\mu_c/\\mu_{5c}$ and $T_c/T_{5c}$, are significantly affected by the system size $R$. The behavior is that $T_c$ increases slowly with $\\mu_5$ when $R$ is large and $T_c$ decreases first and then increases with $\\mu_5$ when $R$ is small. It is also found that for a fixed $\\mu_5$, there is a $R_{\\text{min}}$, where the critical end point vanishes, and the whole phase diagram becomes a crossover w...

  7. The chiral phase transition in a random matrix model with molecular correlations

    CERN Document Server

    Wettig, T; Weidenmüller, H A; Wettig, Tilo

    1995-01-01

    The chiral phase transition of QCD is analyzed in a model combining random matrix elements of the Dirac operator with specially chosen non-random ones. The special form of the latter is motivated by the assumption that the fermionic quasi-zero modes associated with instanton and anti-instanton configurations determine the chiral properties of QCD. Our results show that the degree of correlation between these modes plays the decisive role. To reduce the value of the chiral condensate by more than a factor of 2 about 95 percent of the instantons and anti-instantons must form so-called molecules. This conclusion agrees with numerical results of the Stony Brook group.

  8. D meson mass increase by restoration of chiral symmetry in nuclear matter

    CERN Document Server

    Suzuki, Kei; Oka, Makoto

    2015-01-01

    Spectral functions of the pseudoscalar $D$ meson in the nuclear medium are analyzed using QCD sum rules and the maximum entropy method. This approach enables us to extract the spectral functions without any phenomenological assumption, and thus to visualize in-medium modification of the spectral functions directly. It is found that the reduction of the chiral condensates of dimension 3 and 5 causes the masses of both $D^+$ and $D^-$ mesons to grow gradually at finite density. Additionally, we construct charge-conjugate-projected sum rules and find a $D^+$-$D^-$ mass splitting of about -15 MeV at nuclear saturation density.

  9. Quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be with meson-exchange currents derived from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pastore, S. [University of South Carolina; Wiringa, Robert B. [ANL; Pieper, Steven C. [ANL; Schiavilla, Rocco [Old Dominion U., JLAB

    2014-08-01

    We report quantum Monte Carlo calculations of electromagnetic transitions in $^8$Be. The realistic Argonne $v_{18}$ two-nucleon and Illinois-7 three-nucleon potentials are used to generate the ground state and nine excited states, with energies that are in excellent agreement with experiment. A dozen $M1$ and eight $E2$ transition matrix elements between these states are then evaluated. The $E2$ matrix elements are computed only in impulse approximation, with those transitions from broad resonant states requiring special treatment. The $M1$ matrix elements include two-body meson-exchange currents derived from chiral effective field theory, which typically contribute 20--30\\% of the total expectation value. Many of the transitions are between isospin-mixed states; the calculations are performed for isospin-pure states and then combined with the empirical mixing coefficients to compare to experiment. In general, we find that transitions between states that have the same dominant spatial symmetry are in decent agreement with experiment, but those transitions between different spatial symmetries are often significantly underpredicted.

  10. Triplets, Static SU(6), and Spontaneously Broken Chiral SU(3) Symmetry

    Science.gov (United States)

    Nambu, Y.

    1966-01-01

    I would like to present here my view of the current problems of elementary particle theory. It is largely inspired by the recent successes of SU(3) and SU(6) symmetries, and more or less summarizes what I have been pursuing lately. For the details of individual problems I must refer to the original papers. However, what is emphasized here is not the details, but a coherent overall picture plus some speculations which cannot yet be formulated precisely.

  11. Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain

    Science.gov (United States)

    Azimi, M.; Sekania, M.; Mishra, S. K.; Chotorlishvili, L.; Toklikishvili, Z.; Berakdar, J.

    2016-08-01

    Quantum dynamics of magnetic order in a chiral multiferroic chain is studied. We consider two different scenarios: ultrashort terahertz excitations or a sudden electric field quench. Performing analytical and numerical exact diagonalization calculations, we trace the pulse induced spin dynamics and extract quantities that are relevant to quantum information processing. In particular, we analyze the dynamics of the system chirality, the von Neumann entropy, and the pairwise and many-body entanglement. If the characteristic frequencies of the generated states are noncommensurate, then a partial loss of pair concurrence occurs. Increasing the system size, this effect becomes even more pronounced. Many-particle entanglement and chirality are robust and persist in the incommensurate phase. To analyze the dynamical quantum transitions for the quenched and pulsed dynamics we combined the Weierstrass factorization technique for entire functions and the Lanczos exact diagonalization method. For a small system we obtained analytical results including the rate function of the Loschmidt echo. Exact numerical calculations for a system up to 40 spins confirm phase transition. Quench-induced dynamical transitions have been extensively studied recently. Here we show that related dynamical transitions can be achieved and controlled by appropriate electric field pulses.

  12. Provable forst-order transitions for liquid crystal and lattice gauge models with continuous symmetries

    CERN Document Server

    Van Enter, A C D

    2003-01-01

    We consider various sufficiently nonlinear sigma models for nematic ordering of RP^{N-1} type and of lattice gauge type with continous symmetries. We rigorously show that they exhibit a first-order transition in the temperature. The result holds in dimension 2 or more for the RP{N-1} models and in dimension 3 or more for the lattice gauge models. In the two-dimensional case our results clarify and solve a recent controversy about the possibilty of such transitions. For lattice gauge models our methods provide the first prof of a first-order transition in a model with a continous gauge symmetry.

  13. Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics

    CERN Document Server

    Chernodub, M N

    2016-01-01

    We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads ...

  14. Modeling spontaneous chiral symmetry breaking and deracemization phenomena: discrete versus continuum approaches.

    Science.gov (United States)

    Blanco, Celia; Ribó, Josep M; Hochberg, David

    2015-02-01

    We derive the class of population balance equations (PBE), recently applied to model the Viedma deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes erases the microreversible nature of the molecular interactions in the population growth rate functions and limits the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the ideal racemic composition up to observable enantiometric excess levels.

  15. The influence of chiral chemical potential, parallel electric and magnetic fields on the critical temperature of QCD

    CERN Document Server

    Ruggieri, M; Peng, G X

    2016-01-01

    We study the influence of external electric, $E$, and magnetic, $B$, fields parallel to each other, and of a chiral chemical potential, $\\mu_5$, on the chiral phase transition of Quantum Chromodynamics. Our theoretical framework is a Nambu-Jona-Lasinio model with a contact interaction. Within this model we compute the critical temperature of chiral symmetry restoration, $T_c$, as a function of the chiral chemical potential and field strengths. We find that the fields inhibit and $\\mu_5$ enhances chiral symmetry breaking, in agreement with previous studies.

  16. Electromagnetic nucleon-delta transition in the perturbative chiral quark model

    CERN Document Server

    Pumsa-ard, K; Gutsche, T; Faessler, A; Cheedket, S; Gutsche, Th.; Faessler, Amand

    2003-01-01

    We apply the perturbative chiral quark model to the gamma N -> Delta transition. The four momentum dependence of the respective transverse helicity amplitudes A(1/2) and A(3/2) is determined at one loop in the pseudoscalar Goldstone boson fluctuations. Inclusion of excited states in the quark propagator is shown to result in a reasonable description of the experimental values for the helicity amplitudes at the real photon point.

  17. Non-local effects at the onset of the chiral transition

    CERN Document Server

    Palhares, L F; Kodama, T; Krein, G; Palhares, Let\\'icia F.; Fraga, Eduardo S.; Kodama, Takeshi; Krein, Gast\\~ao

    2007-01-01

    Inspired by analytic results obtained for a systematic expansion of the memory kernel in dissipative quantum mechanics, we propose a phenomenological procedure to incorporate non-markovian corrections to the Langevin dynamics of an order parameter in field theory systematically. In this note, we restrict our analysis to the onset of the evolution. As an example, we consider the process of phase conversion in the chiral transition.

  18. Symmetry of electron states and optical transitions in GaN/AlN hexagonal quantum dots

    Science.gov (United States)

    Tronc, P.; Smirnov, V. P.; Zhuravlev, K. S.

    2004-11-01

    The exact symmetry of hexagonal quantum dots (QDs) made of materials with the wurtzite structure such as GaN/AlN QDs for example, is described by the C3v point group and does not depend on the existence of a wetting layer. We have determined the possible exact symmetries of electron states and vibration modes in the dots and derived the optical selection rules. The vibration modes involved in the Frölich interaction are totally symmetric with respect to the C3v group and can induce transitions only between states with the same symmetry. The not totally symmetric modes provide other channels for lowering the energy of excited carriers and excitons by connecting states with symmetries different one from another. The rapid decay of created polarons, due to the short lifetime of vibration modes, releases the carriers and excitons into ground levels. In the envelope function approximation (EFA), the symmetry of the dots is represented by the C6v point group. Interband transitions are allowed only between states whose envelope functions have the same symmetry. EFA artificially increases the number of dark exciton symmetries.

  19. Microscopic nuclear structure models and methods : Chiral symmetry, Wobbling motion and $\\gamma-$bands

    CERN Document Server

    Sheikh, J A; Dar, W A; Jehangir, S; Ganai, P A

    2015-01-01

    A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of $\\gamma$-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, $\\gamma$-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering $\\gamma$-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the $\\gamma$-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of $\\gamma$-bands observed up to the highest spin in Dysposium, Hafnium, Mercury and Uranium isotopes. Furthermore, several measurements related to chira...

  20. Phenomena at the QCD phase transition in nonequilibrium chiral fluid dynamics (NχFD)

    Energy Technology Data Exchange (ETDEWEB)

    Nahrgang, Marlene [Duke University, Department of Physics, Durham, NC (United States); Herold, Christoph [Suranaree University of Technology, School of Physics, Nakhon Ratchasima (Thailand)

    2016-08-15

    Heavy-ion collisions performed in the beam energy range accessible by the NICA collider facility are expected to produce systems of extreme net-baryon densities and can thus reach yet unexplored regions of the QCD phase diagram. Here, one expects the phase transition between the plasma of deconfined quarks and gluons and the hadronic matter to be of first order. A discovery of the first-order phase transition would as well prove the existence of the QCD critical point, a landmark in the phase diagram. In order to understand possible signals of the first-order phase transition in heavy-ion collision experiments it is very important to develop dynamical models of the phase transition. Here, we discuss the opportunities of studying dynamical effects at the QCD first-order phase transition within our model of nonequilibrium chiral fluid dynamics. (orig.)

  1. Phase transition from the symmetry breaking of charged Klein–Gordon fields

    Energy Technology Data Exchange (ETDEWEB)

    Matos, T.; Castellanos, E. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del IPN, A.P. 14-740, 07000 México D.F. (Mexico)

    2014-01-14

    We analyze the phase transition associated with the U(1) symmetry breaking of the complex Klein–Gordon (KG) equation with a Mexican–hat scalar field potential up to one loop in perturbations immersed in a thermal bath. We show that the KG equation reduces to a Gross–Pitaevskii like–equation (GP), which also contains the entire information of the phase transition. Indeed, the thermal bath contributions, together with the corresponding U(1) local symmetry, allow us to interpret the resulting GP equation as a charged and finite temperature version of the system. Finally, we obtain the hydrodynamics and consequently, the corresponding thermodynamics, and show that breakdown of the U(1) local symmetry of the KG field into the new version of the GP equation corresponds, under certain circumstances, to a phase transition of the gas into a condensate, superfluid, and/or superconductor.

  2. Observation of parity-time symmetry breaking transitions in a dissipative Floquet system of ultracold atoms

    CERN Document Server

    Li, Jiaming; Liu, Ji; de Melo, Leonardo; Joglekar, Yogesh N; Luo, Le

    2016-01-01

    Open physical systems with balanced loss and gain exhibit a transition, absent in their solitary counterparts, which engenders modes that exponentially decay or grow with time and thus spontaneously breaks the parity-time PT symmetry. This PT-symmetry breaking is induced by modulating the strength or the temporal profile of the loss and gain, but also occurs in a pure dissipative system without gain. It has been observed that, in classical systems with mechanical, electrical, and electromagnetic setups with static loss and gain, the PT-symmetry breaking transition leads to extraordinary behavior and functionalities. However, its observation in a quantum system is yet to be realized. Here we report on the first quantum simulation of PT-symmetry breaking transitions using ultracold Li-6 atoms. We simulate static and Floquet dissipative Hamiltonians by generating state-dependent atom loss in a noninteracting Fermi gas, and observe the PT-symmetry breaking transitions by tracking the atom number for each state. W...

  3. Can a strong magnetic background modify the nature of the chiral transition in QCD?

    CERN Document Server

    Fraga, Eduardo S

    2008-01-01

    The presence of a strong magnetic background can modify the nature and the dynamics of the chiral phase transition at finite temperature: for high enough magnetic fields, comparable to the ones expected to be created in noncentral high-energy heavy ion collisions at RHIC and the LHC, the original crossover is turned into a first-order transition. We illustrate this effect within the linear sigma model with quarks to one loop in the $\\overline{\\rm MS}$ scheme for $N_{f}=2$.

  4. Can a strong magnetic background modify the nature of the chiral transition in QCD?

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S.; Mizher, Ana Julia [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)

    2009-04-01

    The presence of a strong magnetic background can modify the nature and the dynamics of the chiral phase transition at finite temperature: for high enough magnetic fields, comparable to the ones expected to be created in noncentral high-energy heavy ion collisions at RHIC and the LHC, the original crossover is turned into a first-order transition. We illustrate this effect within the linear sigma model with quarks to one loop in the MS-bar scheme for N{sub f}=2.

  5. Intensity of d-d symmetry-forbidden electronic transition in Cr(CO)6.

    Science.gov (United States)

    Rocha, Alexandre B

    2007-05-31

    Absolute absorption intensities (oscillator strengths) are calculated for the d-d symmetry-forbidden transition in hexacarbonyl chromium. The vibronic coupling mechanism is taken into account in a way that represents an alternative to the traditional perturbative approach of Herzberg and Teller. In the so-called direct method, the electronic transition moment is directly expanded in a power series of the vibrational normal coordinates of suitable symmetry. In the present case, i.e., d-d ligand field transitions, or more specifically (1)A(1g) --> (1)T(1g) and (1)A(1g) --> (1)T(2g) transitions, the dipole selection rule is broken by vibronic interaction induced by normal modes that transform like T(1u) and T(2u) representations of the O(h) group. An analysis of the relative importance of normal modes in promoting electronic transitions is carried out.

  6. The Szilard engine revisited: Entropy, macroscopic randomness, and symmetry breaking phase transitions

    Science.gov (United States)

    Parrondo, Juan M. R.

    2001-09-01

    The role of symmetry breaking phase transitions in the Szilard engine is analyzed. It is shown that symmetry breaking is the only necessary ingredient for the engine to work. To support this idea, we show that the Ising model behaves exactly as the Szilard engine. We design a purely macroscopic Maxwell demon from an Ising model, demonstrating that a demon can operate with information about the macrostate of the system. We finally discuss some aspects of the definition of entropy and how thermodynamics should be modified to account for the variations of entropy in second-order phase transitions.

  7. Confinement/deconfinement transition from symmetry breaking in gauge/gravity duality

    Science.gov (United States)

    Čubrović, Mihailo

    2016-10-01

    We study the confinement/deconfinement transition in a strongly coupled system triggered by an independent symmetry-breaking quantum phase transition in gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS near-boundary behavior and soft wall interior at zero scalar condensate. We study the cases of neutral and charged condensate separately. In the former case the condensation breaks the discrete {Z}_2 symmetry while a charged condensate breaks the continuous U(1) symmetry. After the condensation of the order parameter, the non-zero vacuum expectation value of the scalar couples to the dilaton, changing the soft wall geometry into a non-confining and anisotropically scale-invariant infrared metric. In other words, the formation of long-range order is immediately followed by the deconfinement transition and the two critical points coincide. The confined phase has a scale — the confinement scale (energy gap) which vanishes in the deconfined case. Therefore, the breaking of the symmetry of the scalar ( {Z}_2 or U(1)) in turn restores the scaling symmetry in the system and neither phase has a higher overall symmetry than the other. When the scalar is charged the phase transition is continuous which goes against the Ginzburg-Landau theory where such transitions generically only occur discontinuously. This phenomenon has some commonalities with the scenario of deconfined criticality. The mechanism we have found has applications mainly in effective field theories such as quantum magnetic systems. We briefly discuss these applications and the relation to real-world systems.

  8. Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries

    CERN Document Server

    Juchtmans, Roeland

    2015-01-01

    In this work we present an alternative way to look at electron diffraction in a transmission electron microscope. In stead of writing the scattering amplitude in Fourier space as a set of plane waves, we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating e.g. rotation and screw axis symmetries. For the latter we find selection rules on the OAM-coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM-coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample nor the exact crystal structure. We propose an experimental setup to measure the OAM-components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform mulsti-slice simulations on $\\alpha$-q...

  9. Floquet topological phase transitions and chiral edge states in a kagome lattice

    Energy Technology Data Exchange (ETDEWEB)

    He, Chaocheng; Zhang, Zhiyong, E-mail: zyzhang@nju.edu.cn

    2014-09-05

    The Floquet topological phases and chiral edge states in a kagome lattice under a circularly-polarized driving field are studied. In the off-resonant case, the system exhibits the similar character as the kagome lattice model with staggered magnetic fluxes, but the total band width is damped in oscillation. In the on-resonant case, the degeneracy splitting at the Γ point does not always result in a gap. The positions of the other two gaps are influenced by the flat band. With the field intensity increased, these two gaps undergo closing-then-reopening processes, accompanied with the changing of the winding numbers. - Highlights: • A kagome lattice under a circularly-polarized driving field is studied. • The band structures and chiral edge states are studied via exact Floquet method. • Various modifications of the Floquet band structure are found. • Floquet topological phase transitions appear in both off- and on-resonant cases.

  10. Magnetic transitions in the chiral armchair-kagome system Mn2Sb2O7

    Science.gov (United States)

    Peets, Darren C.; Sim, Hasung; Choi, Seongil; Avdeev, Maxim; Lee, Seongsu; Kim, Su Jae; Kang, Hoju; Ahn, Docheon; Park, Je-Geun

    2017-01-01

    The competition between interactions in frustrated magnets allows a wide variety of new ground states, often exhibiting emergent physics and unique excitations. Expanding the suite of lattices available for study enhances our chances of finding exotic physics. Mn2Sb2O7forms in a chiral, kagome-based structure in which a fourth member is added to the kagome-plane triangles to form an armchair unit and link adjacent kagome planes. This structural motif may be viewed as intermediate between the triangles of the kagome network and the tetrahedra in the pyrochlore lattice. Mn2Sb2O7exhibits two distinct magnetic phase transitions, at 11.1 and 14.2 K, at least one of which has a weak ferromagnetic component. The magnetic propagation vector does not change through the lower transition, suggesting a metamagnetic transition or a transition involving a multicomponent order parameter. Although previously reported in the P 3121 space group, Mn2Sb2O7actually crystallizes in P 2 , which allows ferroelectricity, and we show clear evidence of magnetoelectric coupling indicative of multiferroic order. The quasi-two-dimensional "armchair-kagome" lattice presents a promising platform for probing chiral magnetism and the effect of dimensionality in highly frustrated systems.

  11. Universal space-time scaling symmetry in the dynamics of bosons across a quantum phase transition

    CERN Document Server

    Clark, Logan W; Chin, Cheng

    2016-01-01

    The dynamics of many-body systems spanning condensed matter, cosmology, and beyond is hypothesized to be universal when the systems cross continuous phase transitions. The universal dynamics is expected to satisfy a scaling symmetry of space and time with the crossing rate, inspired by the Kibble-Zurek mechanism. We test this symmetry based on Bose condensates in a shaken optical lattice. Shaking the lattice drives condensates across an effectively ferromagnetic quantum phase transition. After crossing the critical point, the condensates manifest delayed growth of spin fluctuations and develop anti-ferromagnetic spatial correlations resulting from sub-Poisson generation of topological defects. The characteristic times and lengths scale as power-laws of the crossing rate, yielding the temporal exponent 0.50(2) and the spatial exponent 0.26(2), consistent with theory. Furthermore, the fluctuations and correlations are invariant in scaled space-time coordinates, in support of the scaling symmetry of quantum crit...

  12. Scaling behavior of chiral phase transition in two-flavor QCD with improved Wilson quarks at finite density

    CERN Document Server

    Ejiri, S; Aoki, S; Kanaya, K; Ohno, H; Saito, H; Hatsuda, T; Maezawa, Y; Umeda, T

    2010-01-01

    We study scaling behavior of a chiral order parameter performing a simulation of two-flavor QCD with improved Wilson quarks. It has been shown that the scaling behavior of the chiral order parameter defined by a Ward-Takahashi identity agrees with the scaling function of the three-dimensional O(4) spin model at zero chemical potential. We extend the scaling study to finite density QCD. Calculating derivatives of the chiral order parameter with respect to the chemical potential in two-flavor QCD, the scaling property of chiral phase transition is discussed in the low density region. We moreover calculate the curvature of the phase boundary of the chirl phase transition in the temperature and chemical potential plane assuming the O(4) scaling relation.

  13. Provable first-order transitions for nonlinear vector and gauge models with continuous symmetries

    NARCIS (Netherlands)

    Enter, Aernout C.D. van; Shlosman, Senya B.

    2005-01-01

    We consider various sufficiently nonlinear vector models of ferromagnets, of nematic liquid crystals and of nonlinear lattice gauge theories with continuous symmetries. We show, employing the method of Reflection Positivity and Chessboard Estimates, that they all exhibit first-order transitions in t

  14. Symmetry and Transitive Properties of Monohedral f-triangulations of the Riemannian Sphere

    Institute of Scientific and Technical Information of China (English)

    Ana M. BREDA; J. M. SIGARRETA

    2009-01-01

    Here we give the complete description of the symmetry group and transitive properties of the set of all of monohedral triangulations of the Riemannian sphere by f-tilings. We shall also show that each monohedral f-tiling of the Riemannian sphere can be seen, up to a spherical isometry, as the singular set of a spherical isometric folding.

  15. Chiral and deconfinement transitions in a magnetic background using the functional renormalization group with the Polyakov loop

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jens O.; Naylor, William R. [Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim (Norway); Tranberg, Anders [Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger (Norway)

    2014-04-30

    We use the Polyakov loop coupled quark-meson model to approximate low energy QCD and present results for the chiral and deconfinement transitions in the presence of a constant magnetic background B at finite temperature T and baryon chemical potential μ{sub B}. We investigate effects of various gluonic potentials on the deconfinement transition with and without a fermionic backreaction at finite B. Additionally we investigate the effect of the Polyakov loop on the chiral phase transition, finding that magnetic catalysis at low μ{sub B} is present, but weakened by the Polyakov loop.

  16. Large-$N$ Pion Scattering, Finite-Temperature Effects and the Relationship of the $f_{0}(500)$ with Chiral Symmetry Restoration

    CERN Document Server

    Cortes, Santiago; Morales, John

    2016-01-01

    In this work, we review how the mass and the width of the $f_{0}(500)$ pole behave in a regime where temperature is below the critical chiral transition value. This is attained by considering a large-$N$ $O(N + 1)/O(N)$ invariant Non-Linear Sigma Model (NLSM) such that we can study the dynamical generation of a $f_{0}(500)$ resonance. Introducing thermal effects via the imaginary time formalism allows us to study the behavior of the pole and relate it to chiral restoration.

  17. Chiral Random Matrix Theory and Chiral Perturbation Theory

    CERN Document Server

    Damgaard, P H

    2011-01-01

    Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.

  18. Chiral Random Matrix Theory and Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Damgaard, Poul H, E-mail: phdamg@nbi.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2011-04-01

    Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.

  19. Fractal butterflies of chiral fermions in bilayer graphene: Phase transitions and emergent properties

    Science.gov (United States)

    Ghazaryan, Areg; Chakraborty, Tapash

    2015-12-01

    We have studied the influence of electron-electron interaction on the fractal butterfly spectrum of Dirac fermions in biased bilayer graphene in the fractional quantum Hall effect (FQHE) regime. We demonstrate that the butterfly spectrum exhibits remarkable phase transitions between the FQHE gap and the butterfly gap for chiral electrons in bilayer graphene, when the periodic potential strength or the bias voltage is varied. We also find that, in addition to those phase transitions, by varying the bias voltage one can effectively control the periodic potential strength experienced by the electrons. The electron-electron interaction causes the butterfly spectrum to exhibit new gaps inside the Bloch sub-bands not found in the single-particle case. We expect that both the observed phase transition and other new features in the butterfly spectrum of interacting Dirac fermions will be of great interest to researchers from diverse fields.

  20. Phase transitions and ordering structures of a model of a chiral helimagnet in three dimensions

    Science.gov (United States)

    Nishikawa, Yoshihiko; Hukushima, Koji

    2016-08-01

    Phase transitions in a classical Heisenberg spin model of a chiral helimagnet with the Dzyaloshinskii-Moriya interaction in three dimensions are numerically studied. By using the event-chain Monte Carlo algorithm recently developed for particle and continuous spin systems, we perform equilibrium Monte Carlo simulations for large systems up to about 106 spins. Without magnetic fields, the system undergoes a continuous phase transition with critical exponents of the three-dimensional XY model, and a uniaxial periodic helical structure emerges in the low-temperature region. In the presence of a magnetic field perpendicular to the axis of the helical structure, it is found that there exists a critical point on the temperature and magnetic-field phase diagram and that above the critical point the system exhibits a phase transition with strong divergence of the specific heat and the uniform magnetic susceptibility.

  1. Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD

    CERN Document Server

    Cui, Zhu-Fang; Shi, Yuan-Mei; Wang, Yong-Long; Zong, Hong-Shi

    2015-01-01

    The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial-vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson-Schwinger equations.

  2. Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhu-Fang, E-mail: phycui@nju.edu.cn [Department of Physics, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190 (China); Hou, Feng-Yao [Institute of Theoretical Physics, CAS, Beijing 100190 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190 (China); Shi, Yuan-Mei [Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics and Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190 (China); Wang, Yong-Long [Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics, School of Science, Linyi University, Linyi 276005 (China); Zong, Hong-Shi, E-mail: zonghs@nju.edu.cn [Department of Physics, Nanjing University, Nanjing 210093 (China); Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190 (China)

    2015-07-15

    The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial–vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson–Schwinger equations.

  3. $B \\to A$ transitions in the light-cone QCD sum rules with the chiral current

    CERN Document Server

    Yan-Jun, Sun; Tao, Huang

    2011-01-01

    In this article, we calculate the form-factors of the transitions $B \\to a_1(1260)$, $b_1(1235) $ in the leading-order approximation using the light-cone QCD sum rules. In calculations, we choose the chiral current to interpolate the $B$-meson, which has outstanding advantage that the twist-3 light-cone distribution amplitudes of the axial-vector mesons have no contributions, and the resulting sum rules for the form-factors suffer from much less uncertainties. Then we study the semi-leptonic decays $B \\to a_1(1260) l\\bar{\

  4. Transition state models for probing stereoinduction in Evans chiral auxiliary-based asymmetric aldol reactions.

    Science.gov (United States)

    Shinisha, C B; Sunoj, Raghavan B

    2010-09-08

    The use of chiral auxiliaries is one of the most fundamental protocols employed in asymmetric synthesis. In the present study, stereoselectivity-determining factors in a chiral auxiliary-based asymmetric aldol reaction promoted by TiCl(4) are investigated by using density functional theory methods. The aldol reaction between chiral titanium enolate [derived from Evans propionyl oxazolidinone (1a) and its variants oxazolidinethione (1b) and thiazolidinethione (1c)] and benzaldehyde is examined by using transition-state modeling. Different stereochemical possibilities for the addition of titanium enolates to aldehyde are compared. On the basis of the coordination of the carbonyl/thiocarbonyl group of the chiral auxiliary with titanium, both pathways involving nonchelated and chelated transition states (TSs) are considered. The computed relative energies of the stereoselectivity-determining C-C bond formation TSs in the nonchelated pathway, for both 1a and 1c, indicate a preference toward Evans syn aldol product. The presence of a ring carbonyl or thiocarbonyl group in the chiral auxiliary renders the formation of neutral TiCl(3)-enolate, which otherwise is energetically less favored as compared to the anionic TiCl(4)-enolate. Hence, under suitable conditions, the reaction between titanium enolate and aldehyde is expected to be viable through chelated TSs leading to the selective formation of non-Evans syn aldol product. Experimentally known high stereoselectivity toward Evans syn aldol product is effectively rationalized by using the larger energy differences between the corresponding diastereomeric TSs. In both chelated and nonchelated pathways, the attack by the less hindered face of the enolate on aldehyde through a chair-like TS with an equatorial disposition of the aldehydic substituent is identified as the preferred mode. The steric hindrance offered by the isopropyl group and the possible chelation are identified as the key reasons behind the interesting

  5. The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules as probes of constraints from analyticity and chiral symmetry in dynamical models for pion-nucleon scattering

    CERN Document Server

    Kondratyuk, S; Myhrer, F; Scholten, O

    2004-01-01

    The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: 1) by evaluating of the scattering amplitude at the corresponding low-energy kinematics and 2) by evaluating the sum-rule integrals with the calculated total cross section. The discrepancy between the results of the two methods provides a measure of the breaking of analyticity and chiral symmetry in the model. The contribution of the $\\Delta$ resonance, including its dressing with meson loops, is discussed in some detail and found to be small.

  6. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  7. Phase transitions, interfacial fluctuations and hidden symmetries for fluids near structured walls

    Indian Academy of Sciences (India)

    A O Parry; J M Romero-Enrique

    2005-05-01

    Fluids adsorbed at micro-patterned and geometrically structured substrates can exhibit novel phase transitions and interfacial fluctuation effects distinct from those characteristic of wetting at planar, homogeneous walls. We review recent theoretical progress in this area paying particular attention to filling transitions pertinent to fluid adsorption near wedges, which have highlighted a deep connection between geometrical and contact angles. We show that filling transitions are not only characterized by large scale interfacial fluctuations leading to universal critical singularities but also reveal hidden symmetries with short-ranged critical wetting transitions and properties of dimensional reduction. We propose a non-local interfacial model which fulfills all these properties and throws light on long-standing problems regarding the order of the 3D short-range critical wetting transition.

  8. Pion-to-photon transition distribution amplitudes in the non-local chiral quark model

    CERN Document Server

    Kotko, Piotr

    2008-01-01

    We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDA's. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.

  9. Thermal Chiral and Deconfining Transitions in the Presence of a Magnetic Background

    Science.gov (United States)

    Fraga, Eduardo S.

    We review the influence of a magnetic background on the phase diagram of strong interactions and how the chiral and deconfining transitions can be affected. First we summarize results for both transitions obtained in the framework of the linear sigma model coupled to quarks and to the Polyakov loop, and how they compare to other effective model approaches and to lattice QCD. Then we discuss the outcome of the magnetic MIT bag model that yields a behavior for the critical deconfining temperature which is compatible with recent lattice results and magnetic catalysis. The qualitative success of the magnetic MIT bag model hints to T c being a confinement-driven quantity, and leads us to the discussion of its behavior as predicted within the large-N c limit of QCD, which is also in line with the most recent lattice QCD results provided that quarks behave paramagnetically.

  10. Thermal chiral and deconfining transitions in the presence of a magnetic background

    CERN Document Server

    Fraga, Eduardo S

    2012-01-01

    We review the influence of a magnetic background on the phase diagram of strong interactions and how the chiral and deconfining transitions can be affected. First we summarize results for both transitions obtained in the framework of the linear sigma model coupled to quarks and to the Polyakov loop, and how they compare to other effective model approaches and to lattice QCD. Then we discuss the outcome of the magnetic MIT bag model that yields a behavior for the critical deconfining temperature which is compatible with recent lattice results and magnetic catalysis. The qualitative success of the magnetic MIT bag model hints to $T_{c}$ being a confinement-driven quantity, and leads us to the discussion of its behavior as predicted within the large-$N_{c}$ limit of QCD, which is also in line with the most recent lattice QCD results provided that quarks behave paramagnetically.

  11. Surface tension in the cold and dense chiral transition and astrophysical applications

    CERN Document Server

    Palhares, L F

    2011-01-01

    The surface tension of cold and dense QCD phase transitions has appeared recently as a key ingredient in different astrophysical scenarios, ranging from core-colapse supernovae explosions to compact star structure. If the surface tension is low enough, observable consequences are possible. Its value is however not known from first-principle methods in QCD, calling for effective approaches. Working within the framework of homogeneous nucleation by Langer, we discuss the steps that are needed to obtain the nucleation parameters from a given effective potential. As a model for deriving the effective potential for the chiral transition, we adopt the linear sigma model with constituent quarks at very low temperatures, which provides an effective description for the thermodynamics of the strong interaction in cold and dense matter, and predict a surface tension of Sigma ~ 5--15 MeV/fm^2, well below previous estimates. Including temperature effects and vacuum logarithmic corrections, we find a clear competition betw...

  12. First-order quantum phase transitions: Test ground for emergent chaoticity, regularity and persisting symmetries

    Energy Technology Data Exchange (ETDEWEB)

    Macek, M., E-mail: mmacek@Racah.phys.huji.ac.il; Leviatan, A., E-mail: ami@phys.huji.ac.il

    2014-12-15

    We present a comprehensive analysis of the emerging order and chaos and enduring symmetries, accompanying a generic (high-barrier) first-order quantum phase transition (QPT). The interacting boson model Hamiltonian employed, describes a QPT between spherical and deformed shapes, associated with its U(5) and SU(3) dynamical symmetry limits. A classical analysis of the intrinsic dynamics reveals a rich but simply-divided phase space structure with a Hénon–Heiles type of chaotic dynamics ascribed to the spherical minimum and a robustly regular dynamics ascribed to the deformed minimum. The simple pattern of mixed but well-separated dynamics persists in the coexistence region and traces the crossing of the two minima in the Landau potential. A quantum analysis discloses a number of regular low-energy U(5)-like multiplets in the spherical region, and regular SU(3)-like rotational bands extending to high energies and angular momenta, in the deformed region. These two kinds of regular subsets of states retain their identity amidst a complicated environment of other states and both occur in the coexistence region. A symmetry analysis of their wave functions shows that they are associated with partial U(5) dynamical symmetry (PDS) and SU(3) quasi-dynamical symmetry (QDS), respectively. The pattern of mixed but well-separated dynamics and the PDS or QDS characterization of the remaining regularity, appear to be robust throughout the QPT. Effects of kinetic collective rotational terms, which may disrupt this simple pattern, are considered.

  13. Can symmetry transitions of complex fields enable 3-d control of fluid vorticity?

    Energy Technology Data Exchange (ETDEWEB)

    Martin, James E. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Solis, Kyle Jameson [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-08-01

    Methods of inducing vigorous noncontact fluid flow are important to technologies involving heat and mass transfer and fluid mixing, since they eliminate the need for moving parts, pipes and seals, all of which compromise system reliability. Unfortunately, traditional noncontact flow methods are few, and have limitations of their own. We have discovered two classes of fields that can induce fluid vorticity without requiring either gravity or a thermal gradient. The first class we call Symmetry-Breaking Rational Fields. These are triaxial fields comprised of three orthogonal components, two ac and one dc. The second class is Rational Triad Fields, which differ in that all three components are alternating. In this report we quantify the induced vorticity for a wide variety of fields and consider symmetry transitions between these field types. These transitions give rise to orbiting vorticity vectors, a technology for non-contact, non-stationary fluid mixing.

  14. Supersymmetry and chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Michael Luke [Dept. of Physics and Applied Physics and College of Natural Sciences, Kyung-Hee University, KyongGi, Yong-In 449-701 (Korea, Republic of)]. E-mail: m.walker@aip.org.au

    2004-12-01

    We dispute the nonperturbative non-renormalisation theorem stating that mass cannot be spontaneously generated in supersymmetric QED. Our analysis, which requires no truncation and is fully gauge and supersymmetry consistent, finds instead that there is no reason for the mass corrections to be exactly zero. We concede that an achiral solution is yet to be found. We also extend a long-standing perturbative result, that the effective potential is zero to all orders of perturbation theory, to the nonperturbative regime for arbitrary numbers of flavours. (author)

  15. Confinement/deconfinement transition from symmetry breaking in gauge/gravity duality

    CERN Document Server

    Čubrović, Mihailo

    2016-01-01

    We study the confinement/deconfinement transition in a strongly coupled system triggered by an independent symmetry-breaking quantum phase transition in gauge/gravity duality. The gravity dual is an Einstein-scalar-dilaton system with AdS near-boundary behavior and soft wall interior at zero scalar condensate. We study the cases of neutral and charged condensate separately. In the former case the condensation breaks the discrete $\\mathbb{Z}_2$ symmetry while a charged condensate breaks the continuous $U(1)$ symmetry. After the condensation of the order parameter, the non-zero vacuum expectation value of the scalar couples to the dilaton, changing the soft wall geometry into a non-confining and anisotropically scale-invariant infrared metric. In other words, the formation of long-range order is immediately followed by the deconfinement transition and the two critical points coincide. The confined phase has a scale -- the confinement scale (energy gap) which vanishes in the deconfined case. Therefore, the break...

  16. Z(5): critical point symmetry for the prolate to oblate nuclear shape phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Bonatsos, Dennis; Lenis, D.; Petrellis, D.; Terziev, P.A

    2004-05-27

    A critical point symmetry for the prolate to oblate shape phase transition is introduced, starting from the Bohr Hamiltonian and approximately separating variables for {gamma}=30 deg. Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are found to be in good agreement with experimental data for {sup 194}Pt, which is supposed to be located very close to the prolate to oblate critical point, as well as for its neighbours ({sup 192}Pt, {sup 196}Pt)

  17. Z(5): Critical point symmetry for the prolate to oblate nuclear shape phase transition

    CERN Document Server

    Bonatsos, D; Petrellis, D; Terziev, P A; Bonatsos, Dennis

    2004-01-01

    A critical point symmetry for the prolate to oblate shape phase transition is introduced, starting from the Bohr Hamiltonian and approximately separating variables for $\\gamma=30^{\\rm o}$. Parameter-free (up to overall scale factors) predictions for spectra and B(E2) transition rates are found to be in good agreement with experimental data for 194-Pt, which is supposed to be located very close to the prolate to oblate critical point, as well as for its neighbours (192-Pt, 196-Pt).

  18. Bona fide interaction-driven topological phase transition in correlated symmetry-protected topological states

    Science.gov (United States)

    He, Yuan-Yao; Wu, Han-Qing; You, Yi-Zhuang; Xu, Cenke; Meng, Zi Yang; Lu, Zhong-Yi

    2016-03-01

    It is expected that the interplay between nontrivial band topology and strong electron correlation will lead to very rich physics. Thus a controlled study of the competition between topology and correlation is of great interest. Here, employing large-scale quantum Monte Carlo simulations, we provide a concrete example of the Kane-Mele-Hubbard model on an AA-stacking bilayer honeycomb lattice with interlayer antiferromagnetic interaction. Our simulation identified several different phases: a quantum spin Hall insulator (QSH), an x y -plane antiferromagnetic Mott insulator, and an interlayer dimer-singlet insulator. Most importantly, a bona fide topological phase transition between the QSH and the dimer-singlet insulators, purely driven by the interlayer antiferromagnetic interaction, is found. At the transition, the spin and charge gap of the system close while the single-particle excitations remain gapped, which means that this transition has no mean-field analog and it can be viewed as a transition between bosonic symmetry-protected topological (SPT) states. At one special point, this transition is described by a (2 +1 )d O (4 ) nonlinear sigma model with exact S O (4 ) symmetry and a topological term at exactly Θ =π . The relevance of this work towards more general interacting SPT states is discussed.

  19. Lattice Regularization and Symmetries

    CERN Document Server

    Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc

    2006-01-01

    Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.

  20. Floquet engineering of Haldane Chern insulators and chiral bosonic phase transitions

    Science.gov (United States)

    Plekhanov, Kirill; Roux, Guillaume; Le Hur, Karyn

    2017-01-01

    The realization of synthetic gauge fields has attracted a lot of attention recently in relation to periodically driven systems and the Floquet theory. In ultracold atom systems in optical lattices and photonic networks, this allows one to simulate exotic phases of matter such as quantum Hall phases, anomalous quantum Hall phases, and analogs of topological insulators. In this paper, we apply the Floquet theory to engineer anisotropic Haldane models on the honeycomb lattice and two-leg ladder systems. We show that these anisotropic Haldane models still possess a topologically nontrivial band structure associated with chiral edge modes. Focusing on (interacting) boson systems in s -wave bands of the lattice, we show how to engineer through the Floquet theory, a quantum phase transition (QPT) between a uniform superfluid and a Bose-Einstein condensate analog of Fulde-Ferrell-Larkin-Ovchinnikov states, where bosons condense at nonzero wave vectors. We perform a Ginzburg-Landau analysis of the QPT on the graphene lattice, and compute observables such as chiral currents and the momentum distribution. The results are supported by exact diagonalization calculations and compared with those of the isotropic situation. The validity of high-frequency expansion in the Floquet theory is also tested using time-dependent simulations for various parameters of the model. Last, we show that the anisotropic choice for the effective vector potential allows a bosonization approach in equivalent ladder (strip) geometries.

  1. The phase boundary for the chiral transition in (2+1)-flavor QCD at small values of the chemical potential

    CERN Document Server

    Karsch, F; Miao, C; Mukherjee, S; Petreczky, P; Schmidt, C; Soeldner, W; Unger, W

    2010-01-01

    We determine the chiral phase transition line in (2+1)-flavor QCD for small values of the light quark chemical potential. We show that for small values of the chemical potential the curvature of the phase transition line can be deduced from an analysis of scaling properties of the chiral condensate and its susceptibilities. To do so we extend earlier studies of the magnetic equation of state in (2+1)-flavor QCD to finer lattice spacings, aT=1/8. We use these universal scaling properties of the chiral order parameter to extract the curvature of the transition line at two values of the cut-off, aT=1/4 and 1/8. We find that cut-off effects are small for the curvature parameter and determine the transition line in the chiral limit to leading order in the light quark chemical potential. We obtain Tc(\\mu_q)/Tc(0) = 1 - 0.059(2)(4) (\\mu_q/T)^2 +O(\\mu_q^4).

  2. Simulation of Vortex-Antivortex Pair Production in a Phase Transition with Explicit Symmetry Breaking

    CERN Document Server

    Digal, S; Srivastava, A M; Digal, Sanatan; Sengupta, Supratim; Srivastava, Ajit M.

    1998-01-01

    We carry out numerical simulation of the formation of U(1) global vortices in a first order phase transition in 2+1 dimensions in the presence of small explicit symmetry breaking. Bubbles of broken symmetry phase are randomly nucleated, which grow and coalesce. Vortices are formed at junctions of bubbles via standard Kibble mechanism as well as due to a new mechanism, recently proposed by us, where defect-antidefect pairs can be produced due to field oscillations. We find that, due to explicit symmetry breaking, vortex production is completely dominated by this new mechanism, which account for the production of about 80% of the vortices and antivortices, remaining 20% being produced via the Kibble mechanism. We study the dependence of the effectiveness of the new mechanism on the magnitude of explicit symmetry breaking, as well as on the nucleation rate of bubbles. We also study the effect of damping on this mechanism and show that damping suppresses this mode of vortex production.

  3. Symmetry Nonrestoration in a Gross-Neveu Model with Random Chemical Potential

    CERN Document Server

    Hong, S I; Hong, Seok-In; Kogut, John B.

    2001-01-01

    We study the symmetry behavior of the Gross-Neveu model in three and two dimensions with random chemical potential. This is equivalent to a four-fermion model with charge conjugation symmetry as well as Z_2 chiral symmetry. At high temperature the Z_2 chiral symmetry is always restored. In three dimensions the initially broken charge conjugation symmetry is not restored at high temperature, irrespective of the value of the disorder strength. In two dimensions and at zero temperature the charge conjugation symmetry undergoes a quantum phase transition from a symmetric state (for weak disorder) to a broken state (for strong disorder) as the disorder strength is varied. For any given value of disorder strength, the high-temperature behavior of the charge conjugation symmetry is the same as its zero-temperature behavior. Therefore, in two dimensions and for strong disorder strength the charge conjugation symmetry is not restored at high temperature.

  4. Role of Symmetry Breaking on the Optical Transitions in Lead-Salt Quantum Dots

    KAUST Repository

    Nootz, Gero

    2010-09-08

    The influence of quantum confinement on the one- and two-photon absorption spectra (1PA and 2PA) of PbS and PbSe semiconductor quantum dots (QDs) is investigated. The results show 2PA peaks at energies where only 1PA transitions are predicted and 1PA peaks where only 2PA transitions are predicted by the often used isotropic k•p four-band envelope function formalism. The first experimentally identified two-photon absorption peak coincides with the energy of the first one photon allowed transition. This first two-photon peak cannot be explained by band anisotropy, verifying that the inversion symmetry of the wave functions is broken and relaxation of the parity selection rules has to be taken into account to explain optical transitions in lead-salt QDs. Thus, while the band anisotropy of the bulk semiconductor plays a role in the absorption spectra, especially for the more anisotropic PbSe QDs, a complete model of the absorption spectra, for both 1PA and 2PA, must also include symmetry breaking of the quantum confined wave functions. These studies clarify the controversy of the origin of spectral features in lead-salt QDs. © 2010 American Chemical Society.

  5. Molecular chirality at surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Karl-Heinz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Organic Chemistry Institute, University Zurich, 8057 Zuerich (Switzerland)

    2012-11-15

    With the adsorption of larger molecules being increasingly tackled by surface scientists, the aspect of chirality often plays a role. This paper gives a topical review of molecular chirality at surfaces and gives a phenomenological overview of different aspects of adsorption and self-assembly of chiral and prochiral molecules and the principles of mirror-symmetry breaking at a surface. After a brief introduction into the history of molecular chirality and the important role it played for understanding the spatial structure of molecules, definitions of chirality are presented. Topics treated here are principle ways to create single chiral adsorbates, chiral ensembles, and monolayers by achiral molecules, adsorption of intrinsically chiral molecules at achiral and chiral surfaces, long-range symmetry breaking in two-dimensional (2D) crystals due to additional chiral bias, chiral restructuring of solid surfaces under the influence of chiral molecules, switching the handedness of adsorbates, and chirality at the liquid/air interface. An outlook onto further potential research directions and recommendations for further reading, including nonsurface-related sources of chiral topics completes this paper. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. B→A transitions in the light-cone QCD sum rules with the chiral current

    Institute of Scientific and Technical Information of China (English)

    SUN Yan-Jun; WANG Zhi-Gang; HUANG Tao

    2012-01-01

    In this article,we calculate the form-factors of the transitions B → a1(1260),b1(1235) in the leading-order approximation using the light-cone QCD sum rules.In calculations,we choose the chiral current to interpolate the B-meson,which has the outstanding advantage that the twist-3 light-cone distribution amplitudes of the axial-vector mesons make no contributions,and the resulting sum rules for the form-factors suffer from far fewer uncertainties.Then we study the semi-leptonic decays B → a1(1260)l(v1),b1(1235)l(v1) (l =e,μ,Τ),and make predictions for the differential decay widths and decay widths,which can be compared with the experimental data in the coming future.

  7. Effects of Tsallis distribution on parametric resonance in chiral phase transitions

    CERN Document Server

    Ishihara, Masamichi

    2016-01-01

    The parametric resonance was studied in chiral phase transitions when the momentum distribution is described by a Tsallis distribution. A Tsallis distribution has two parameters, the temperature $T$ and the entropic index $q$. The amplification was estimated in two cases: 1) expansionless case and 2) one dimensional expansion case. In an expansionless case, the temperature $T$ is constant, and the amplified modes as a function of $T$ were calculated for various $q$. In one dimensional expansion case, the temperature $T$ decreases as a function of the proper time, and the amplification as a function of the transverse momentum was calculated for various $q$. In the expansionless case, the following facts were found: 1) the larger the value $q$ is, the softer the amplified modes are for the first and second resonance bands, 2) the amplified mode of the first resonance band decreases and vanishes, as the temperature $T$ increases, and 3) the amplified mode of the second resonance band decreases and approaches to ...

  8. Collision and symmetry-breaking in the transition to strange nonchaotic attractors

    CERN Document Server

    Prasad, A K; Satija, I I; Shah, N; Prasad, Awadhesh; Ramaswamy, Ramakrishna; Satija, Indubala I.; Shah, Nausheen

    1999-01-01

    Strange nonchaotic attractors (SNAs) can be created due to the collision of an invariant curve with itself. This novel ``homoclinic'' transition to SNAs occurs in quasiperiodically driven maps which derive from the discrete Schrödinger equation for a particle in a quasiperiodic potential. In the classical dynamics, there is a transition from torus attractors to SNAs, which, in the quantum system is manifest as the localization transition. This equivalence provides new insights into a variety of properties of SNAs, including its fractal measure. Further, there is a {\\it symmetry breaking} associated with the creation of SNAs which rigorously shows that the Lyapunov exponent is nonpositive. By considering other related driven iterative mappings, we show that these characteristics associated with the the appearance of SNA are robust and occur in a large class of systems.

  9. Gravitational Waves from the Phase Transition of a Non-linearly Realised Electroweak Gauge Symmetry

    CERN Document Server

    Kobakhidze, Archil; Yue, Jason

    2016-01-01

    Within the Standard Model with non-linearly realised electroweak symmetry, the LHC Higgs boson may reside in a singlet representation of the gauge group. Several new interactions are then allowed, including anomalous Higgs self-couplings, which may drive the electroweak phase transition to be strongly first-order. In this paper we investigate the cosmological electroweak phase transition in a simplified model with an anomalous Higgs cubic self- coupling. We look at the feasibility of detecting gravitational waves produced during such a transition in the early universe by future space-based experiments. We find that for the range of relatively large cubic couplings, $111~{\\rm GeV}~ \\lesssim |\\kappa| \\lesssim 118~{\\rm GeV}$, $\\sim $mHz frequency gravitational waves can be observed by eLISA, while BBO will potentially be able to detect waves in a wider frequency range, $0.1-10~$mHz.

  10. Density functional calculations on electronic circular dichroism spectra of chiral transition metal complexes.

    Science.gov (United States)

    Autschbach, Jochen; Jorge, Francisco E; Ziegler, Tom

    2003-05-05

    Time-dependent density functional theory (TD-DFT) has for the first time been applied to the computation of circular dichroism (CD) spectra of transition metal complexes, and a detailed comparison with experimental spectra has been made. Absorption spectra are also reported. Various Co(III) complexes as well as [Rh(en)(3)](3+) are studied in this work. The resulting simulated CD spectra are generally in good agreement with experimental spectra after corrections for systematic errors in a few of the lowest excitation energies are applied. This allows for an interpretation and assignment of the spectra for the whole experimentally accessible energy range (UV/vis). Solvent effects on the excitations are estimated via inclusion of a continuum solvent model. This significantly improves the computed excitation energies for charge-transfer bands for complexes of charge +3, but has only a small effect on those for neutral or singly charged complexes. The energies of the weak d-to-d transitions of the Co complexes are systematically overestimated due to deficiencies of the density functionals. These errors are much smaller for the 4d metal complex. Taking these systematic errors and the effect of a solvent into consideration, TD-DFT computations are demonstrated to be a reliable tool in order to assist with the assignment and interpretation of CD spectra of chiral transition metal complexes.

  11. Order, Chaos and Quasi Symmetries in a First-Order Quantum Phase Transition

    CERN Document Server

    Leviatan, A

    2014-01-01

    We study the competing order and chaos in a first-order quantum phase transition with a high barrier. The boson model Hamiltonian employed, interpolates between its U(5) (spherical) and SU(3) (deformed) limits. A classical analysis reveals regular (chaotic) dynamics at low (higher) energy in the spherical region, coexisting with a robustly regular dynamics in the deformed region. A quantum analysis discloses, amidst a complicated environment, persisting regular multiplets of states associated with partial U(5) and quasi SU(3) dynamical symmetries.

  12. Mass spectrum of low-lying baryons in the ground state in a relativistic potential model of independent quarks with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, B.K.

    1986-04-01

    Under the assumption that baryons are an assembly of independent quarks, confined in a first approximation by an effective potential U(r) = 1/2(1+..gamma../sup 0/)(ar/sup 2/+V/sub 0/ ) which presumably represents the nonperturbative gluon interactions, the mass spectrum of the low-lying ground-state baryons has been calculated by considering perturbatively the contributions of the residual quark-pion coupling arising out of the requirement of chiral symmetry and that of the quark-gluon coupling due to one-gluon exchange over and above the necessary center-of-mass correction. The physical masses of the baryons so obtained agree quite well with the corresponding experimental value. The strong coupling constant ..cap alpha../sub c/ = 0.58 required here to describe the QCD mass splittings is quite consistent with the idea of treating one-gluon-exchange effects in lowest-order perturbation theory.

  13. First results from 2+1-Flavor Domain Wall QCD: Mass Spectrum, Topology Change and Chiral Symmetry with $L_s=8$

    Energy Technology Data Exchange (ETDEWEB)

    D. J. Antonio; T. Blum; K. C. Bowler; P. A. Boyle; N. H. Christ; S. D. Cohen; M. A. Clark; C. Dawson; A. Hart; K. Hashimoto; T. Izubuchi; B. Joó; C. Jung; A. D. Kennedy; R. D. Kenway; S. Li; H. W. Lin; M.F. Lin; R. D. Mawhinney; C.M. Maynard; J. Noaki; S. Ohta; S. Sasaki; A. Soni; R. J. Tweedie; A. Yamaguchi

    2007-06-01

    We present results for the static interquark potential, light meson and baryon masses, and light pseudoscalar meson decay constants obtained from simulations of domain wall QCD with one dynamical flavour approximating the $s$ quark, and two degenerate dynamical flavours with input bare masses ranging from $m_s$ to $m_s/4$ approximating the $u$ and $d$ quarks. We compare these quantities obtained using the Iwasaki and DBW2 improved gauge actions, and actions with larger rectangle coefficients, on $16^3\\times32$ lattices. We seek parameter values at which both the chiral symmetry breaking residual mass due to the finite lattice extent in the fifth dimension and the Monte Carlo time history for topological charge are acceptable for this set of quark masses at lattice spacings above 0.1 fm. We find that the Iwasaki gauge action is best, demonstrating the feasibility of using QCDOC to generate ensembles which are good representations of the QCD path integral on lattices of up to 3 fm in spatial extent with lattice spacings in the range 0.09-0.13 fm. Despite large residual masses and a limited number of sea quark mass values with which to perform chiral extrapolations, our results for light hadronic physics scale and agree with experimental measurements within our statistical uncertainties.

  14. Vector chirality for effective total momentum Jeff in a nonfrustrated Mott insulator: Effects of strong spin-orbit coupling and broken inversion symmetry

    Science.gov (United States)

    Arakawa, Naoya

    2016-11-01

    I propose the emergence of the spin-orbital-coupled vector chirality in a nonfrustrated Mott insulator with the strong spin-orbit coupling due to a b -plane's inversion-symmetry (IS) breaking. I derive the superexchange interactions for a t2 g-orbital Hubbard model on a square lattice with the strong spin-orbit coupling and the IS-breaking-induced hopping integrals, and explain the microscopic origins of the Dzyaloshinsky-Moriya (DM) -type and the Kitaev-type interactions. Then, by adopting the mean-field approximation to a minimal model including only the Heisenberg-type and the DM-type nearest-neighbor interactions, I show that the IS breaking causes the spin-orbital-coupled chirality as a result of stabilizing the screw state. I also highlight the limit of the hard-pseudospin approximation in discussing the stability of the screw states in the presence of both the DM-type and the Kitaev-type interactions, and discuss its meaning. I finally discuss the effects of tetragonal crystal field and Jeff=3/2 states, and the application to the iridates near the [001 ] surface of Sr2IrO4 and the interface between Sr2IrO4 and Sr3Ir2O7 .

  15. Magnetic transition temperatures follow crystallographic symmetry in samarium under high-pressures and low-temperatures

    Science.gov (United States)

    Johnson, Craig R.; Tsoi, Georgiy M.; Vohra, Yogesh K.

    2017-02-01

    Magnetic ordering temperatures in rare earth metal samarium (Sm) have been studied using an ultrasensitive electrical transport measurement technique in a designer diamond anvil cell to high-pressure up to 47 GPa and low-temperature to 10 K. The two magnetic transitions at 106 K and 14 K in the α-Sm phase, attributed to antiferromagnetic ordering on hexagonal and cubic layers respectively, collapse in to one magnetic transition near 10 GPa when Sm assumes a double hexagonal close packed (dhcp) phase. On further increase in pressure above 34 GPa, the magnetic transitions split again as Sm adopts a hexagonal-hP3 structure indicating different magnetic transition temperatures for different crystallographic sites. A model for magnetic ordering for the hexagonal-hP3 phase in samarium has been proposed based on the experimental data. The magnetic transition temperatures closely follow the crystallographic symmetry during α-Sm  →  dhcp  →  fcc/dist.fcc  →  hP3 structure sequence at high-pressures and low-temperatures.

  16. Impact of the symmetry energy on nuclear pasta phases and crust-core transition in neutron stars

    CERN Document Server

    Bao, S S

    2015-01-01

    We study the impact of the symmetry energy on properties of nuclear pasta phases and crust-core transition in neutron stars. We perform a self-consistent Thomas--Fermi calculation employing the relativistic mean-field model. The properties of pasta phases presented in the inner crust of neutron stars are investigated and the crust-core transition is examined. It is found that the slope of the symmetry energy plays an important role in determining the pasta phase structure and the crust-core transition. The correlation between the symmetry energy slope and the crust-core transition density obtained in the Thomas--Fermi approximation is consistent with that predicted by the liquid-drop model.

  17. Scaling properties of the chiral phase transition in the low density region of two-flavor QCD with improved Wilson fermions

    CERN Document Server

    Umeda, T; Kanaya, K; Maezawa, Y; Nakagawa, Y; Ohno, H; Saito, H; Yoshida, S

    2013-01-01

    We study scaling behavior of a chiral order parameter in the low density region, performing a simulation of two-flavor QCD with improved Wilson quarks. The scaling behavior of the chiral order parameter defined by a Ward-Takahashi identity agrees with the scaling function of the three-dimensional O(4) spin model at zero chemical potential. We extend the scaling study to finite density QCD. Applying the reweighting method and calculating derivatives of the chiral order parameter with respect to the chemical potential, the scaling properties of the chiral phase transition are discussed in the low density region. We moreover calculate the curvature of the phase boundary of the chiral phase transition in the temperature and chemical potential plane assuming the O(4) scaling relation.

  18. Remote Control of the Planar Chirality in Peptide-Bound Metallomacrocycles and Dynamic-to-Static Planar Chirality Control Triggered by Solvent-Induced 3(10)-to-α-Helix Transitions.

    Science.gov (United States)

    Mamiya, Fumihiko; Ousaka, Naoki; Yashima, Eiji

    2015-11-23

    The dynamic planar chirality in a peptide-bound Ni(II)-salphen-based macrocycle can be remotely controlled. First, a right-handed (P)-3(10)-helix is induced in the dynamic helical oligopeptides by a chiral amino acid residue far from the macrocyclic framework. The induced planar chirality remains dynamic in chloroform and acetonitrile, but is almost completely locked in fluoroalcohols as a result of the solvent-induced transition of the peptide chains from a 3(10)-helix to a wider α-helix, which freezes the rotation of the pendant peptide units around the macrocycle.

  19. Exploring the QCD phase transition in core collapse supernova simulations in spherical symmetry

    CERN Document Server

    Fischery, T; Hempelz, M; Pagliaraz, G; Schaffner-Bielichz, J; Mezzacappa, A; Thielemanny, F -K; Liebendorfer, M

    2010-01-01

    For finite chemical potential effective models of QCD predict a first order phase transition. In favour for the search of such a phase transition in nature, we construct an equation of state for strange quark matter based on the MIT bag model. We apply this equation of state to highly asymmetric core collapse supernova matter with finite temperatures and large baryon densities. The phase transition is constructed using the general Gibbs conditions, which results in an extended coexistence region between the pure hadronic and pure quark phases in the phase diagram, i.e. the mixed phase. The supernovae are simulated via general relativistic radiation hydrodynamics based on three flavor Boltzmann neutrino transport in spherical symmetry. During the dynamical evolution temperatures above 10 MeV, baryon densities above nuclear saturation density and a proton-to-baryon ratio below 0.2 are obtained. At these conditions the phase transition is triggered which leads to a significant softening of the EoS for matter in ...

  20. Symmetries of Quadrupole-Collective Vibrational Motion in Transitional Even-Even 124−134Xenon Nuclei

    CERN Document Server

    Pietralla, N; Rainovski, G; Ahn, T; Bauer, C; Leske, J; Möller, O; Möller, T

    2010-01-01

    Projectile-Coulomb excitation of Xe isotopes has been performed at ANL using the Gammasphere array for the detection of γ-rays. The one-quadrupole phonon 2+ 1,ms mixed-symmetry state (MSS) has been traced in the stable N=80 isotones down to 134Xe. First, the data on absolute E2 andM1 transition rates quantify the amount of F-spin symmetry in these nuclei and provide a new local measure for the pn-QQ interaction. Second, the evolution of the 2+ 1,ms state has been studied along the sequence of stable even-even 124−134Xe isotopes that are considered to form a shape transition path from vibrational nuclei with vibrational U(5) symmetry near N=82 to γ-softly deformed shapes with almost O(6) symmetry. Third, our data on more than 50 absolute E2 transition rates between off-yrast low-spin states of 124,126Xe enable us to quantitatively test O(6) symmetry in these nuclei. As a result we find that O(6) symmetry is more strongly broken in the A=130 mass region than previously thought. The data will be discussed.

  1. Higher-order baryon number susceptibilities: interplay between the chiral and the nuclear liquid-gas transitions

    CERN Document Server

    Mukherjee, A; Schramm, S

    2016-01-01

    We use an improved version of the SU(3) flavour parity-doublet quark-hadron model to investigate the higher order baryon number susceptibilities near the chiral and the nuclear liquid-gas transitions. The parity-doublet model has been improved by adding higher-order interaction terms of the scalar fields in the effective mean field Lagrangian, resulting in a much-improved description of nuclear ground-state properties, in particular the nuclear compressibility. The resulting phase diagram of the model agrees qualitatively with expectations from lattice QCD, i.e., it shows a crossover at zero net baryo-chemical potential and a critical point at finite density. Using this model, we investigate the dependence of the higher-order baryon number susceptibilities as function of temperature and chemical potential. We observe a string interplay between the chiral and liquid-gas transition at intermediate baryo chemical potentials. Due to this interplay between the chiral and the nuclear liquid-gas transitions, the exp...

  2. First-order quantum phase transitions: test ground for emergent chaoticity, regularity and persisting symmetries

    CERN Document Server

    Macek, M

    2014-01-01

    We present a comprehensive analysis of the emerging order and chaos and enduring symmetries, accompanying a generic (high-barrier) first-order quantum phase transition (QPT). The interacting boson model Hamiltonian employed, describes a QPT between spherical and deformed shapes, associated with its U(5) and SU(3) dynamical symmetry limits. A~classical analysis of the intrinsic dynamics reveals a rich but simply-divided phase space structure with a H\\'enon-Heiles type of chaotic dynamics ascribed to the spherical minimum and a robustly regular dynamics ascribed to the deformed minimum. The simple pattern of mixed but well-separated dynamics persists in the coexistence region and traces the crossing of the two minima in the Landau potential. A quantum analysis discloses a number of regular low-energy U(5)-like multiplets in the spherical region, and regular SU(3)-like rotational bands extending to high energies and angular momenta, in the deformed region. These two kinds of regular subsets of states retain thei...

  3. Where does the rho go? Chirally symmetric vector mesons in the quark-gluon plasma

    CERN Document Server

    Pisarski, R D

    1995-01-01

    If the phase transition of QCD at nonzero temperature is dominated by the (approximate) restoration of chiral symmetry, then the transition might be characterized using a gauged linear sigma model. Assuming that vector meson dominance holds, such sigma models predict that at the temperature of chiral restoration, the pole mass of the thermal \\rho meson is greater than that at zero temperature; in the chiral limit and in weak coupling this mass is \\sim 962 \\, MeV. The width of the thermal \\rho-a_1 peak is estimated to be about 200 - 250 \\, MeV.

  4. Particle Density in Zero Temperature Symmetry Restoring Phase Transitions in Four-Fermion Interaction Models

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bang-Rong

    2004-01-01

    By means of critical behaviors of the dynamical fermion mass in four-fermion interaction models, we show by explicit calculations that when T = 0 the particle density will have a discontinuous jumping across the critical chemical potential μc in 2D and 3D Gross-Neveu (GN) model and these physically explain the first-order feature of the corresponding symmetry restoring phase transitions. For the second-order phase transitions in the 3D GN model when T → 0 and in 4D Nambu-Jona-Lasinio (NJL) model when T = 0, it is proven that the particle density itself will be continuous across μc but its derivative over the chemical potential μ will have a discontinuous jumping. The results give a physical explanation of implications of the tricritical point (T, μ) = (0,μc) in the 3D GN model. The discussions also show effectiveness of the critical analysis approach of phase transitions.

  5. Anomalous dimension, chiral phase transition and inverse magnetic catalysis in soft-wall AdS/QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhen, E-mail: fangzhen@itp.ac.cn [Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing (China)

    2016-07-10

    A modified soft-wall AdS/QCD model with a z-dependent bulk scalar mass is proposed. We argue for the necessity of a modified bulk scalar mass from the quark mass anomalous dimension and carefully constrain the form of bulk mass by the corresponding UV and IR asymptotics. After fixing the form of bulk scalar mass, we calculate the mass spectra of (axial-)vector and pseudoscalar mesons, which have a good agreement with the experimental data. The behavior of chiral phase transition is also investigated, and the results are consistent with the standard scenario and lattice simulations. Finally, the issue of chiral magnetic effects is addressed. We find that the inverse magnetic catalysis emerges naturally from the modified soft-wall model, which is consistent with the recent lattice simulations.

  6. Higher-order time-symmetry-breaking phase transition due to meeting of an exceptional point and a Fano resonance

    Science.gov (United States)

    Tanaka, Satoshi; Garmon, Savannah; Kanki, Kazuki; Petrosky, Tomio

    2016-08-01

    We have theoretically investigated the time-symmetry-breaking phase-transition process for two discrete states coupled with a one-dimensional continuum by solving the nonlinear eigenvalue problem for the effective Hamiltonian associated with the discrete spectrum. We obtain the effective Hamiltonian with use of the Feshbach-Brillouin-Wigner projection method. Strong energy dependence of the self-energy appearing in the effective Hamiltonian plays a key role in the time-symmetry-breaking phase transition: As a result of competition in the decay process between the Van Hove singularity and the Fano resonance, the phase transition becomes a higher-order transition when both the two discrete states are located near the continuum threshold.

  7. Molecular model for chirality phenomena.

    Science.gov (United States)

    Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G

    2016-10-21

    Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.

  8. Spiral Galaxies as Chiral Objects?

    CERN Document Server

    Capozziello, S; Capozziello, Salvatore; Lattanzi, Alessandra

    2005-01-01

    Spiral galaxies show axial symmetry and an intrinsic 2D-chirality. Environmental effects can influence the chirality of originally isolated stellar systems and a progressive loss of chirality can be recognised in the Hubble sequence. We point out a preferential modality for genetic galaxies as in microscopic systems like aminoacids, sugars or neutrinos. This feature could be the remnant of a primordial symmetry breaking characterizing systems at all scales.

  9. Nuclear chiral dynamics and thermodynamics

    Science.gov (United States)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  10. Chiral symmetry effect on the pion-nucleon coupling constant; O efeito da simetria quiral na constante de acoplamento pion-nucleon

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Vanilse da Silva

    1997-12-31

    In this work we study the effects of chiral symmetry in the pion-nucleon coupling constant in the context of the linear {sigma}- model. First, we introduce the linear {sigma}-model and we discuss the phenomenological hypothesis of CVC and PCAC. Next, we calculate the coupling constant g+{pi}{sub NN}(q{sup 2}) and the nucleon pionic mean square radius considering the contribution of all the diagrams up to one-loop in the framework of the linear {sigma}-model for different values of the mass of the sigma meson and we compare them with the phenomenological form factors. Finally we make an extension of the linear {sigma}-model that consists of taking into account the mass differences of ions and nucleons into the Lagrangian of the model, to study the change dependence of g{sub {pi}nn} (q{sup 2}) and of the mean square radius. (author) 21 refs., 17 figs., 4 tabs.

  11. The bulk transition of QCD with twelve flavors and the role of improvement

    NARCIS (Netherlands)

    Deuzeman, Albert; Lombardo, Maria Paola; da Silva, Tiago Nunes; Pallante, Elisabetta

    2013-01-01

    We study the SU(3) gauge theory with N-f = 12 flavors in the fundamental representation by use of lattice simulations with staggered fermions. With a non-improved action we observe a chiral zero-temperature (bulk) transition separating a region at weak coupling, where chiral symmetry is realized, fr

  12. Chiral phase transition of $N_f$=2+1 and 3 QCD at vanishing baryon chemical potential

    CERN Document Server

    Ding, Heng-Tong

    2015-01-01

    We present updated results on chiral phase structure in (2+1)-flavor ($N_f$=2+1) and 3-flavor ($N_f=3$) QCD based on the simulations using Highly Improved Staggered Quarks on lattices with temporal extent $N_\\tau$ =6 at vanishing baryon chemical potential. In $N_f$=2+1 QCD we have performed simulations with a strange quark fixed to its physical value and two degenerate light quarks whose values are adjusted to have 5 values of Goldstone pion masses in the region of 160 - 80 MeV in the continuum limit. The universal scaling behavior of chiral condensates as well as chiral susceptibilities is discussed and the tri-critical point is suggested to be located below the physical point, i.e. at smaller than physical strange quark mass. In $N_f$=3 QCD simulations with 6 different masses of 3 degenerate quarks corresponding to the Goldstone pion masses in the region of 230 - 80 MeV have also been performed. Our results suggest that the QCD transition with these values of quark masses is of crossover type and an upper b...

  13. The $N_f=2$ QCD chiral phase transition with Wilson fermions at zero and imaginary chemical potential

    CERN Document Server

    Philipsen, Owe

    2016-01-01

    The order of the thermal phase transition in the chiral limit of Quantum Chromodynamics (QCD) with two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit. Whether the transition is first or second order has important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. We follow a recently proposed approach to explicitly determine the region of first order chiral transitions at imaginary chemical potential, where it is large enough to be simulated, and extrapolate it to zero chemical potential with known critical exponents. Using unimproved Wilson fermions on coarse $N_t=4$ lattices, the first order region turns out to be so large that no extrapolation is necessary. The critical pion mass $m_\\pi^c\\approx 560$ MeV is by nearly a factor 10 larger than the corresponding one using staggered fermions. Our results are in line with investigations of three-flavour QCD using improved Wilson fermions and indicate that the syste...

  14. Non-locality and the flux line lattice square to hexagonal symmetry transition in the borocarbide superconductors

    DEFF Research Database (Denmark)

    Eskildsen, M.R.; Fisher, I.R.; Gammel, P.L.

    2000-01-01

    Using small angle neutron scattering we have studied the square to hexagonal flux line lattice symmetry transition in different members of the borocarbide superconductors. The studies were performed using samples of ErNi2B2C, Lu(Ni1-xCox)(2)B2C with cobalt doping levels x = 1.5-9% and Y0.64Lu0.36...... that the transition onset follows a model by V. Kogan et nl., which includes non-local corrections to the London model due to the Fermi surface anisotropy of the borocarbides. (C) 2000 Elsevier Science B.V. All rights reserved.......2B2C. We find that the onset field of the symmetry transition can be shifted more than an order of magnitude due to changes in the range of the non-local electrodynamics. Comparing the results to transport measurements of the electronic mean free path and the superconducting coherence length we find...

  15. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  16. The nonequilibrium phase transition and the symmetry revival induced by time delay in an asymmetric bistable system with correlated noises

    Institute of Scientific and Technical Information of China (English)

    Long Fei; Du Lu-Chun; Mei Dong-Cheng

    2009-01-01

    The nonequilibrium phase transition and the symmetry revival induced by time delay in a bistable system are investigated. The stationary probability distribution function (SPDF) of the bistable system with time delay and correlated noises are calculated by an analytical method and stochastic simulation respectively. The analytical and simulative results indicate that: (1) There is a certain value of λ(λ denotes the strength of correlations between the multiplicative and additive noises) to make the SPDF symmetric under some time delay; however, above or below the given value, the symmetry will be broken; (2) With the monotonic change of λ, the unimodal peak structure of SPDF becomes bimodal at the beginning, then it becomes unimodal again; this means that there is a reentrance phenomenon in the process; (3) There is a critical value of delay time, which makes the lower peak of SPDF equal to the higher one under the critical condition. This means that the symmetry revival phenomenon emerges.

  17. Chiral symmetry breaking, duality in the $\\overline{Q}q$ channel and $b \\to \\overline{c}cs$ decays

    CERN Document Server

    Blok, B Yu; Uraltsev, N

    1997-01-01

    We address the issue of the quark-hadron duality in the spectral densities induced by the heavy-light quark currents anti-Q q. In the limit m_Q ->oo, m_q ->0 we observe an enhancement of the physical spectral density compared to the quark one in the scalar and axial channels, due to the Goldstone meson contributions. This may imply that the scale where duality sets in in these channels is higher than in the vector (pseudoscalar) case. Implications for the nonleptonic decays of B mesons (the b -> anti-c cs transition) are considered.

  18. Monte-Carlo approach to particle-field interactions and the kinetics of the chiral phase transition

    CERN Document Server

    Greiner, Carsten; van Hees, Hendrik; Meistrenko, Alex

    2015-01-01

    The kinetics of the chiral phase transition is studied within a linear quark-meson-$\\sigma$ model, using a Monte-Carlo approach to semiclassical particle-field dynamics. The meson fields are described on the mean-field level and quarks and antiquarks as ensembles of test particles. Collisions between quarks and antiquarks as well as the $q\\overline{q}$ annihilation to $\\sigma$ mesons and the decay of $\\sigma$ mesons is treated, using the corresponding transition-matrix elements from the underlying quantum field theory, obeying strictly the rule of detailed balance and energy-momentum conservation. The approach allows to study fluctuations without making ad hoc assumptions concerning the statistical nature of the random process as necessary in Langevin-Fokker-Planck frameworks.

  19. Abrupt symmetry decrease in the ThT{sub 2}Al{sub 20} alloys (T = 3d transition metal)

    Energy Technology Data Exchange (ETDEWEB)

    Uziel, A.; Bram, A.I. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Venkert, A. [Nuclear Research Center-Negev, POB 9001, Beer-Sheva (Israel); Kiv, A.E.; Fuks, D. [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Meshi, L., E-mail: louisa@bgu.ac.il [Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel); Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501 (Israel)

    2015-11-05

    Th-T-Al system, where T-3d transition metals, was studied at ThT{sub 2}Al{sub 20} stoichiometry to establish the influence of T on the structural stability of ternary aluminide formed. Different alloys were prepared, varying T in the row from Ti to Fe. Using electron microscopy and X-ray diffraction methods it was found that ThT{sub 2}Al{sub 20} phase adopts CeCr{sub 2}Al{sub 20} structure type when T = Ti, V, and Cr. Starting from Mn, the symmetry of the stable Al-rich phase, which forms in the alloys with the same composition, decreases from cubic to orthorhombic. The results of Density Functional Theory (DFT) calculations coincide with experiments. Concepts of the Theory of Coordination Compounds and Jahn–Teller effect were used to explain the observed abrupt change of the symmetry. These considerations were supported by DFT calculations. - Highlights: • Type of transition metal influences symmetry change in the ThT{sub 2}Al{sub 20} alloys. • It was found that cubic ThT{sub 2}Al{sub 20} phase is stable for T = Ti, V and Cr. • When T = Mn, Fe–Al + orthorhombic ThT{sub 2}Al{sub 10} are formed, lowering the symmetry. • Experimental results and DFT calculations were in full agreement. • TCC and of Jahn–Teller effect were used for explanation of the results.

  20. Chiral magnetic effect and anomalous transport from real-time lattice simulations

    CERN Document Server

    Mueller, Niklas; Sharma, Sayantan

    2016-01-01

    We present a first-principle study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian $SU(N_c)$ and Abelian $U(1)$ gauge fields. Investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the Chiral magnetic (CME) and Chiral separation effect (CSE) lead to the formation of a propagating wave. We further analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark mass.

  1. The U(1)A anomaly in high temperature QCD with chiral fermions on the lattice

    CERN Document Server

    Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2015-01-01

    The magnitude of the $U_A(1)$ symmetry breaking is expected to affect the nature of $N_f=2$ QCD chiral phase transition. The explicit breaking of chiral symmetry due to realistic light quark mass is small, so it is important to use chiral fermions on the lattice to understand the effect of $U_A(1)$ near the chiral crossover temperature, $T_c$. We report our latest results for the eigenvalue spectrum of 2+1 flavour QCD with dynamical Mobius domain wall fermions at finite temperature probed using the overlap operator on $32^3\\times 8$ lattice. We check how sensitive the low-lying eigenvalues are to the sea-light quark mass. We also present a comparison with the earlier independent results with domain wall fermions.

  2. Necessary Condition for Emergent Symmetry from the Conformal Bootstrap

    Science.gov (United States)

    Nakayama, Yu; Ohtsuki, Tomoki

    2016-09-01

    We use the conformal bootstrap program to derive the necessary conditions for emergent symmetry enhancement from discrete symmetry (e.g., Zn ) to continuous symmetry [e.g., U (1 )] under the renormalization group flow. In three dimensions, in order for Z2 symmetry to be enhanced to U (1 ) symmetry, the conformal bootstrap program predicts that the scaling dimension of the order parameter field at the infrared conformal fixed point must satisfy Δ1>1.08 . We also obtain the similar necessary conditions for Z3 symmetry with Δ1>0.580 and Z4 symmetry with Δ1>0.504 from the simultaneous conformal bootstrap analysis of multiple four-point functions. As applications, we show that our necessary conditions impose severe constraints on the nature of the chiral phase transition in QCD, the deconfinement criticality in Néel valence bond solid transitions, and anisotropic deformations in critical O (n ) models. We prove that some fixed points proposed in the literature are unstable under the perturbation that cannot be forbidden by the discrete symmetry. In these situations, the second-order phase transition with enhanced symmetry cannot happen.

  3. Temperature dependence of the flux line lattice transition into square symmetry in superconducting LuNi2B2C

    DEFF Research Database (Denmark)

    Eskildsen, M.R.; Abrahamsen, A.B.; Kogan, V.G.;

    2001-01-01

    We have investigated the temperature dependence of the H parallel to c flux line lattice structural phase transition from square to hexagonal symmetry, in the tetragonal superconductor LuNi2B2C (T-c = 16.6 K). At temperatures below 10 K the transition onset field, H-2(T), is only weakly temperature...... dependent. Above 10 K, H-2(T) rises sharply, bending away from the upper critical field. This contradicts theoretical predictions of H-2(T) merging with the upper critical field and suggests that just below the H-c2(T) curve the flux line lattice might be hexagonal....

  4. The effect of the Polyakov loop on the chiral phase transition

    Directory of Open Access Journals (Sweden)

    Szép Zs.

    2011-04-01

    Full Text Available The Polyakov loop is included in the S U(2L × S U(2R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq – T phase diagram is studied for various forms of the Polyakov loop potential.

  5. Mirror-Symmetry-Breaking in Poly[(9,9-di-n-octylfluorenyl-2,7-diyl-alt-biphenyl] (PF8P2 is Susceptible to Terpene Chirality, Achiral Solvents, and Mechanical Stirring

    Directory of Open Access Journals (Sweden)

    Ayako Nakao

    2013-06-01

    Full Text Available Solvent chirality transfer of (S-/(R-limonenes allows the instant generation of optically active PF8P2 aggregates with distinct circular dichroism (CD/circularly polarized luminescence (CPL amplitudes with a high quantum yield of 16–20%. The present paper also reports subtle mirror-symmetry-breaking effects in CD-/CPL-amplitude and sign, CD/UV-vis spectral wavelengths, and photodynamics of the aggregates, though the reasons for the anomaly are unsolved. However, these photophysical properties depend on (i the chemical natures of chiral and achiral molecules when used in solvent quantity, (ii clockwise and counterclockwise stirring operations, and (iii the order of addition of limonene and methanol to the chloroform solution.

  6. Critical phenomena of emergent magnetic monopoles in a chiral magnet.

    Science.gov (United States)

    Kanazawa, N; Nii, Y; Zhang, X-X; Mishchenko, A S; De Filippis, G; Kagawa, F; Iwasa, Y; Nagaosa, N; Tokura, Y

    2016-05-16

    Second-order continuous phase transitions are characterized by symmetry breaking with order parameters. Topological orders of electrons, characterized by the topological index defined in momentum space, provide a distinct perspective for phase transitions, which are categorized as quantum phase transitions not being accompanied by symmetry breaking. However, there are still limited observations of counterparts in real space. Here we show a real-space topological phase transition in a chiral magnet MnGe, hosting a periodic array of hedgehog and antihedgehog topological spin singularities. This transition is driven by the pair annihilation of the hedgehogs and antihedgehogs acting as monopoles and antimonopoles of the emergent electromagnetic field. Observed anomalies in the magnetoresistivity and phonon softening are consistent with the theoretical prediction of critical phenomena associated with enhanced fluctuations of emergent field near the transition. This finding reveals a vital role of topology of the spins in strongly correlated systems.

  7. Transition-metal dopants in tetrahedrally bonded semiconductors: Symmetry and exchange interactions from tight-binding models

    Science.gov (United States)

    Kortan, Victoria Ramaker

    It has become increasingly apparent that the future of electronic devices can and will rely on the functionality provided by single or few dopant atoms. The most scalable physical system for quantum technologies, i.e. sensing, communication and computation, are spins in crystal lattices. Diamond is an excellent host crystal offering long room temperature spin coherence times and there has been exceptional experimental work done with the nitrogen vacancy center in diamond demonstrating many forms of spin control. Transition metal dopants have additional advantages, large spin-orbit interaction and internal core levels, that are not present in the nitrogen vacancy center. This work explores the implications of the internal degrees of freedom associated with the core d levels using a tight-binding model and the Koster-Slater technique. The core d levels split into two separate symmetry states in tetrahedral bonding environments and result in two levels with different wavefunction spatial extents. For 4 d semiconductors, e.g. GaAs, this is reproduced in the tight-binding model by adding a set of d orbitals on the location of the transition metal impurity and modifying the hopping parameters from impurity to its nearest neighbors. This model does not work in the case of 3d semiconductors, e.g. diamond, where there is no physical reason to drastically alter the hopping from 3 d dopant to host and the difference in wavefunction extent is not as pronounced. In the case of iron dopants in gallium arsenide the split symmetry levels in the band gap are responsible for a decrease in tunneling current when measured with a scanning tunneling microscope due to interference between two elastic tunneling paths and comparison between wavefunction measurements and tight-binding calculations provides information regarding material parameters. In the case of transition metal dopants in diamond there is less distinction between the symmetry split d levels. When considering pairs of

  8. Superconductivity in a chiral nanotube

    Science.gov (United States)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  9. Electrodynamics of chiral matter

    Science.gov (United States)

    Qiu, Zebin; Cao, Gaoqing; Huang, Xu-Guang

    2017-02-01

    Many-body systems with chiral fermions can exhibit novel transport phenomena that violate parity and time-reversal symmetries, such as the chiral magnetic effect, the anomalous Hall effect, and the anomalous generation of charge. Based on the Maxwell-Chern-Simons electrodynamics, we examine some electromagnetic and optical properties of such systems including the electrostatics, the magnetostatics, the propagation of electromagnetic waves, the novel optical effects, etc.

  10. Broken symmetry phase transition in solid p-H 2, o-D 2 and HD: crystal field effects

    Science.gov (United States)

    Freiman, Yu. A.; Hemley, R. J.; Jezowski, A.; Tretyak, S. M.

    1999-04-01

    We report the effect of the crystal field (CF) on the broken symmetry phase transition (BSP) in solid parahydrogen, orthodeuterium, and hydrogen deuteride. The CF was calculated taking into account a distortion from the ideal HCP structure. We find that, in addition to the molecular field generated by the coupling terms in the intermolecular potential, the Hamiltonian of the system contains a crystal-field term, originating from single-molecular terms in the intermolecular potential. Ignoring the CF is the main cause of the systematic underestimation of the transition pressure, characteristic of published theories of the BSP transition. The distortion of the lattice that gives rise to the negative CF in response to the applied pressure is in accord with the general Le Chatelier-Braun principle.

  11. Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet

    Science.gov (United States)

    Karube, K.; White, J. S.; Reynolds, N.; Gavilano, J. L.; Oike, H.; Kikkawa, A.; Kagawa, F.; Tokunaga, Y.; Rønnow, H. M.; Tokura, Y.; Taguchi, Y.

    2016-12-01

    Skyrmions, topologically protected nanometric spin vortices, are being investigated extensively in various magnets. Among them, many structurally chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibrium state. However, this state exists only in a narrow temperature and magnetic-field region just below the magnetic transition temperature Tc, while a helical or conical magnetic state prevails at lower temperatures. Here we describe that for a room-temperature skyrmion material, β-Mn-type Co 8Zn 8Mn 4, a field-cooling via the equilibrium SkX state can suppress the transition to the helical or conical state, instead realizing robust metastable SkX states that survive over a very wide temperature and magnetic-field region. Furthermore, the lattice form of the metastable SkX is found to undergo reversible transitions between a conventional triangular lattice and a novel square lattice upon varying the temperature and magnetic field. These findings exemplify the topological robustness of the once-created skyrmions, and establish metastable skyrmion phases as a fertile ground for technological applications.

  12. Oscillator strength of symmetry-forbidden d-d absorption of octahedral transition metal complex: theoretical evaluation.

    Science.gov (United States)

    Saito, Ken; Eishiro, Yoshinori; Nakao, Yoshihide; Sato, Hirofumi; Sakaki, Shigeyoshi

    2012-03-01

    The theoretical evaluation of the oscillator strength of a symmetry-forbidden d-d transition is not easy even nowadays. A new approximate method is proposed here and applied to octahedral complexes [Co(NH(3))(6)](3+) and [Rh(NH(3))(6)](3+) as an example. Our method incorporates the effects of geometry distortion induced by molecular vibration and the thermal distribution of such distorted geometries but does not need the Herzberg-Teller approximation. The calculated oscillator strengths of [Co(NH(3))(6)](3+) agree well with the experimental values in both (1)A(1g) → (1)T(1g) and (1)A(1g) → (1)T(2g) transitions. In the Rh analogue, though the calculated oscillator strengths are somewhat smaller than the experimental values, computational results reproduce well the experimental trends that the oscillator strengths of [Rh(NH(3))(6)](3+) are much larger than those of the Co analogue and the oscillator strength of the (1)A(1g) → (1)T(1g) transition is larger than that of the (1)A(1g) → (1)T(2g) transition. It is clearly shown that the oscillator strength is not negligibly small even at 0 K because the distorted geometry (or the uncertainty in geometry) by zero-point vibration contributes to the oscillator strength at 0 K. These results are discussed in terms of frequency of molecular vibration, extent of distortion induced by molecular vibration, and charge-transfer character involved in the d-d transition. The computational results clearly show that our method is useful in evaluating and discussing the oscillator strength of symmetry-forbidden d-d absorption of transition metal complex.

  13. Cosmological phase transitions from lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-11-22

    In this proceedings contribution we discuss the fate of the electroweak and the quantum chromodynamics phase transitions relevant for the early stage of the universe at non-zero temperature. These phase transitions are related to the Higgs mechanism and the breaking of chiral symmetry, respectively. We will review that non-perturbative lattice field theory simulations show that these phase transitions actually do not occur in nature and that physical observables show a completely smooth behaviour as a function of the temperature.

  14. Symmetries, Symmetry Breaking, Gauge Symmetries

    CERN Document Server

    Strocchi, Franco

    2015-01-01

    The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...

  15. Rotation Driven Shape-Phase Transition of the Yrast Nuclear States with O(6) Symmetry in the Interacting Boson Model

    Institute of Scientific and Technical Information of China (English)

    MU Liang-Zhu; LIU Yu-Xin

    2005-01-01

    @@ In a framework of the interacting boson model (usually referred to as IBM-1) with angular momentum projection on the coherent state, we obtain the energy surface functional of nuclei in terms of angular momentum and shape parameters. Analysing the rotation driven effect on the equilibrium shape shows that the yrast states of the nuclei with O(6) symmetry will experience a shape-phase transition from γ-soft deformed to triaxially deformed and then to spherical shape along the yrast line as the angular momentum increases.

  16. Topological phases in condensed matter systems: A study of symmetries, quasiparticles and phase transitions

    NARCIS (Netherlands)

    Haaker, S.M.

    2014-01-01

    The research described in this thesis focuses on topological phases in condensed matter systems. It can be roughly divided into two parts. In the first part noninteracting systems are studied. The symmetry algebra of a charged spin-1/2 particle coupled to a non-Abelian magnetic field is determined,

  17. Topological phase transitions and chiral inelastic transport induced by the squeezing of light

    Science.gov (United States)

    Peano, Vittorio; Houde, Martin; Brendel, Christian; Marquardt, Florian; Clerk, Aashish A.

    2016-01-01

    There is enormous interest in engineering topological photonic systems. Despite intense activity, most works on topological photonic states (and more generally bosonic states) amount in the end to replicating a well-known fermionic single-particle Hamiltonian. Here we show how the squeezing of light can lead to the formation of qualitatively new kinds of topological states. Such states are characterized by non-trivial Chern numbers, and exhibit protected edge modes, which give rise to chiral elastic and inelastic photon transport. These topological bosonic states are not equivalent to their fermionic (topological superconductor) counterparts and, in addition, cannot be mapped by a local transformation onto topological states found in particle-conserving models. They thus represent a new type of topological system. We study this physics in detail in the case of a kagome lattice model, and discuss possible realizations using nonlinear photonic crystals or superconducting circuits. PMID:26931620

  18. Quark-hadron phase transition in massive gravity

    Science.gov (United States)

    Atazadeh, K.

    2016-11-01

    We study the quark-hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark-hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.

  19. Isospin and symmetry energy effects on nuclear fragment production in liquid-gas type phase transition region

    CERN Document Server

    Buyukcizmeci, N; Botvina, A S

    2005-01-01

    We have demonstrated that the isospin of nuclei influences the fragment production during the nuclear liquid-gas phase transition. Calculations for Au197, Sn124, La124 and Kr78 at various excitation energies were carried out on the basis of the statistical multifragmentation model (SMM). We analyzed the behavior of the critical exponent tau with the excitation energy and its dependence on the critical temperature. Relative yields of fragments were classified with respect to the mass number of the fragments in the transition region. In this way, we have demonstrated that nuclear multifragmentation exhibits a 'bimodality' behavior. We have also shown that the symmetry energy has a small influence on fragment mass distribution, however, its effect is more pronounced in the isotope distributions of produced fragments.

  20. Isospin and symmetry energy effects on nuclear fragment distributions in liquid-gas type phase transition region

    CERN Document Server

    Buyukcizmeci, N; Botvina, A S

    2004-01-01

    We have demonstrated that the isospin of nuclei influences the fragment distributions during the nuclear liquid-gas phase transition. Calculations for Au197, Sn124, La124 and Kr78 at various excitation energies were carried out on the basis of the statistical multifragmentation model (SMM). We analyzed the behavior of the critical exponent tau with the excitation energy and its dependence on the critical temperature. Relative yields of fragments were classified with respect to the mass number of the fragments in the transition region. In this way, we have demonstrated that nuclear multifragmentation exhibits a 'bimodality' behavior. We have also shown that the symmetry energy has a small influence on fragment mass distribution, however, its effect is more pronounced in the isotope distributions of produced fragments.

  1. Orientation-dependent handedness and chiral design

    OpenAIRE

    Efrati, Efi; Irvine, William T. M.

    2013-01-01

    Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in ...

  2. Transitional justice and liberal post-conflict governance : synergies and symmetries, frictions and contradictions

    NARCIS (Netherlands)

    Sharp, Dustin Nachise

    2016-01-01

    Transitional justice” is a field of practice, policy and study that focuses on the ways that societies respond to legacies of large-scale atrocities though tribunals, truth commissions, reparations, and other mechanisms. Over the last thirty years, transitional justice has become the globally domin

  3. Quark structure of chiral solitons

    CERN Document Server

    Diakonov, D

    2004-01-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  4. AM1 Transition State Modeling for the Enantioselectivities in the Chiral Oxazaborolidine-Catalyzed Reductions of a- and β-Aminoketones

    Institute of Scientific and Technical Information of China (English)

    FAN Jian-Fen; LU Yun-Xiang; WANG Qiu-Xia; WU Li-Fen

    2005-01-01

    AM1 transition state (TS) models were developed for the enantioselectivities in the reductions of α- and β-aminoketones catalyzed by (S)-4-benzyl-5,5-diphenyl-1,3,2-oxazaborolidine. The result showed that β-aminoketone gave better enantioselectivity than its α-analog. Different chiralities of the final products were obtained, R for the former and S for the latter. These semiempirical TS models are consistent with the experimental data.

  5. Chiral phase transitions in quantum chromodynamics at finite temperature: Hard-thermal-loop resummed Dyson–Schwinger equation in the real time formalism

    Indian Academy of Sciences (India)

    Hisao Nakkagawa; Hiroshi Yokota; Koji Yoshida; Yuko Fueki

    2003-05-01

    Chiral phase transition in thermal QCD is studied by using the Dyson–Schwinger (DS) equation in the real time hard thermal loop approximation. Our results on the critical temperature and the critical coupling are significantly different from those in the preceding analyses in the ladder DS equation, showing the importance of properly taking into account the essential thermal effects, namely the Landau damping and the unstable nature of thermal quasiparticles.

  6. The order of the chiral transition in N_f=2 QCD

    CERN Document Server

    D'Elia, M; Pica, C

    2004-01-01

    A strategy is developed to investigate the order of the transition using finite size scaling and its relation to color confinement. An in-depth numerical investigation has been performed with KS fermions on lattices with N_t=4 and N_s=12,16,20,24,32 and quark masses am_q ranging from 0.01335 to 0.35. The specific heat and a number of susceptibilities have been measured and compared with the expectation of an O(4) second order and a first order phase transition. A second order O(4) is excluded, whilst data are consistent with a first order.

  7. Chiral perturbation theory approach to hadronic weak amplitudes

    Energy Technology Data Exchange (ETDEWEB)

    Rafael, E. de (Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique 2)

    1989-07-01

    We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing {Delta}S=1 and {Delta}S=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3){sub Left}xSU(3){sub Right} rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI).

  8. Simulation study on dynamics transition in neuronal activity during sleep cycle by using asynchronous and symmetry neural network model.

    Science.gov (United States)

    Nakao, M; Takahashi, T; Mizutani, Y; Yamamoto, M

    1990-01-01

    We have found that single neuronal activities in different regions in the brain commonly exhibit the distinct dynamics transition during sleep-waking cycle in cats. Especially, power spectral densities of single neuronal activities change their profiles from the white to the 1/f along with sleep cycle from slow wave sleep (SWS) to paradoxical sleep (PS). Each region has different neural network structure and physiological function. This suggests a globally working mechanism may be underlying the dynamics transition we concern. Pharmacological studies have shown that a change in a wide-spread serotonergic input to these regions possibly causes the neuronal dynamics transition during sleep cycle. In this paper, based on these experimental results, an asynchronous and symmetry neural network model including inhibitory input, which represents the role of the serotonergic system, is utilized to examine the reality of our idea that the inhibitory input level varying during sleep cycle induce that transition. Simulation results show that the globally applied inhibitory input can control the dynamics of single neuronal state evolution in the artificial neural network: 1/f-like power spectral density profiles result under weak inhibition, which possibly corresponds to PS, and white profiles under strong inhibition, which possibly corresponds to SWS. An asynchronous neural network is known to change its state according to its energy function. The geometrical structure of network energy function is thought to vary along with the change in inhibitory level, which is expected to cause the dynamics transition of neuronal state evolution in the network model. These simulation results support the possibility that the serotonergic system is essential for the dynamics transition of single neuronal activities during sleep cycle.

  9. Interacting N-vector order parameters with O(N) symmetry

    CERN Document Server

    Pelissetto, A; Pelissetto, Andrea; Vicari, Ettore

    2004-01-01

    We consider the critical behavior of the most general system of two N-vector order parameters that is O(N) invariant. We show that it may a have a multicritical transition with enlarged symmetry controlled by the chiral O(2)xO(N) fixed point. For N=2, 3, 4, if the system is also invariant under the exchange of the two order parameters and under independent parity transformations, one may observe a critical transition controlled by a fixed point belonging to the mn model. Also in this case there is a symmetry enlargement at the transition, the symmetry being [SO(N)+SO(N)]xC_2, where C_2 is the symmetry group of the square.

  10. The order of the chiral transition in N_f=2 QCD

    DEFF Research Database (Denmark)

    D'Elia, M.; Di Giacomo, A.; Pica, Claudio

    2004-01-01

    A strategy is developed to investigate the order of the transition using finite size scaling and its relation to color confinement. An in-depth numerical investigation has been performed with KS fermions on lattices with N_t=4 and N_s=12,16,20,24,32 and quark masses am_q ranging from 0.01335 to 0...

  11. Binary mixtures of chiral gases

    CERN Document Server

    Presilla, Carlo

    2015-01-01

    A possible solution of the well known paradox of chiral molecules is based on the idea of spontaneous symmetry breaking. At low pressure the molecules are delocalized between the two minima of a given molecular potential while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a phase transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. In particular, at pressure greater than a critical value no inversion line is observed. These data are well accounted for by a model previously developed and recently extended to mixtures. In the present paper, we discuss the variation of the critical pressure in binary mixtures as a function of the fractions of the constituents.

  12. A nontrivial critical fixed point for replica-symmetry-breaking transitions

    CERN Document Server

    Charbonneau, Patrick

    2016-01-01

    The transformation of the free-energy landscape from smooth to fractal is the richest feature of mean-field disordered systems. A well-studied example is the de Almeida-Thouless transition for spin glasses in a magnetic field, and a similar phenomenon--the Gardner transition--has recently been predicted for structural glasses. However, the existence of these phase transitions has been called into question below the upper critical dimension d_u=6. Here, we obtain evidence for these transitions in dimensions d

  13. Symmetry-induced pinning-depinning transition of a subharmonic wave pattern.

    Science.gov (United States)

    Garay, Jeremías; Ortega, Ignacio; Clerc, Marcel G; Falcón, Claudio

    2012-03-01

    The stationary to drifting transition of a subharmonic wave pattern is studied in the presence of inhomogeneities and drift forces as the pattern wavelength is comparable with the system size. We consider a pinning-depinning transition of stationary subharmonic waves in a tilted quasi-one-dimensional fluidized shallow granular bed driven by a periodic air flow in a small cell. The transition is mediated by the competition of the inherent periodicity of the subharmonic pattern, the asymmetry of the system, and the finite size of the cell. Measurements of the mean phase velocity of the subharmonic pattern are in good agreement with those inferred from an amplitude equation, which takes into account asymmetry and finite-size effects of the system, emphasizing the main ingredients and mechanism of the transition.

  14. Symmetry, Symmetry Breaking and Topology

    Directory of Open Access Journals (Sweden)

    Siddhartha Sen

    2010-07-01

    Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.

  15. Landau-Level Mixing and Particle-Hole Symmetry Breaking for Spin Transitions in the Fractional Quantum Hall Effect

    Science.gov (United States)

    Zhang, Yuhe; Wójs, A.; Jain, J. K.

    2016-09-01

    The spin transitions in the fractional quantum Hall effect provide a direct measure of the tiny energy differences between differently spin-polarized states and thereby serve as an extremely sensitive test of the quantitative accuracy of the theory of the fractional quantum Hall effect, and, in particular, of the role of Landau-level mixing in lifting the particle-hole symmetry. We report on an accurate quantitative study of this physics, evaluating the effect of Landau-level mixing in a nonperturbative manner using a fixed-phase diffusion Monte Carlo method. We find excellent agreement between our calculated critical Zeeman energies and the experimentally measured values. In particular, we find, as also do experiments, that the critical Zeeman energies for fractional quantum Hall states at filling factors ν =2 -n /(2 n ±1 ) are significantly higher than those for ν =n /(2 n ±1 ), a quantitative signature of the lifting of particle-hole symmetry due to Landau-level mixing.

  16. Landau-Level Mixing and Particle-Hole Symmetry Breaking for Spin Transitions in the Fractional Quantum Hall Effect.

    Science.gov (United States)

    Zhang, Yuhe; Wójs, A; Jain, J K

    2016-09-09

    The spin transitions in the fractional quantum Hall effect provide a direct measure of the tiny energy differences between differently spin-polarized states and thereby serve as an extremely sensitive test of the quantitative accuracy of the theory of the fractional quantum Hall effect, and, in particular, of the role of Landau-level mixing in lifting the particle-hole symmetry. We report on an accurate quantitative study of this physics, evaluating the effect of Landau-level mixing in a nonperturbative manner using a fixed-phase diffusion Monte Carlo method. We find excellent agreement between our calculated critical Zeeman energies and the experimentally measured values. In particular, we find, as also do experiments, that the critical Zeeman energies for fractional quantum Hall states at filling factors ν=2-n/(2n±1) are significantly higher than those for ν=n/(2n±1), a quantitative signature of the lifting of particle-hole symmetry due to Landau-level mixing.

  17. Geometries of low spin states of multi-centre transition metal complexes through extended broken symmetry variational Monte Carlo

    Science.gov (United States)

    Barborini, Matteo; Guidoni, Leonardo

    2016-09-01

    The correct description of the ground state electronic and geometrical properties of multi-centre transition metal complexes necessitates of a high-level description of both dynamical and static correlation effects. In di-metallic complexes, the ground state low spin properties can be computed starting from single-determinants High-Spin (HS) and Broken Symmetry (BS) states by reconstructing an approximated low spin potential energy surface through the extended broken symmetry approach, based on the Heisenberg Hamiltonian. In the present work, we first apply this approach within the variational Monte Carlo method to tackle the geometry optimization of a Fe2S2(SH)42- model complex. To describe the HS and BS wavefunctions, we use a fully optimized unrestricted single determinant with a correlated Jastrow factor able to recover a large amount of dynamical correlation. We compared our results with those obtained by density functional theory and other multiconfigurational approaches, discussing the role of the nodal surface on the structural parameters.

  18. Chiral nonracemic late-transition-metal organometallics with a metal-bonded stereogenic carbon atom: development of new tools for asymmetric organic synthesis.

    Science.gov (United States)

    Malinakova, Helena C

    2004-06-07

    Transition-metal-catalyzed cross-coupling reactions and the Heck reaction have evolved into powerful tools for the construction of carbon-carbon bonds. In most cases, the reactive organometallic intermediates feature a carbon-transition-metal sigma bond between a sp(2)-hybridized carbon atom and the transition metal (Csp(2)--TM). New, and potentially more powerful approach to transition-metal-catalyzed asymmetric organic synthesis would arise if catalytic chiral nonracemic organometallic intermediates with a stereogenic sp(3)-hybridized carbon atoms directly bonded to the transition metal (C*sp(3)--TM bond) could be formed from racemic or achiral organic substrates, and subsequently participate in the formation of a new carbon-carbon bond (C*sp(3)-C) with retention of the stereochemical information. To date, only a few catalytic processes that are based on this concept, have been developed. In this account, both "classical" and recent studies on preparation and reactivity of stable chiral nonracemic organometallics with a metal-bonded stereogenic carbon, which provide the foundation for the future design of new synthetic transformations exploiting the outlined concept, are discussed, along with examples of relevant catalytic processes.

  19. Chiral discrimination in optical trapping and manipulation

    Science.gov (United States)

    Bradshaw, David S.; Andrews, David L.

    2014-10-01

    When circularly polarized light interacts with chiral molecules or nanoscale particles powerful symmetry principles determine the possibility of achieving chiral discrimination, and the detailed form of electrodynamic mechanisms dictate the types of interaction that can be involved. The optical trapping of molecules and nanoscale particles can be described in terms of a forward-Rayleigh scattering mechanism, with trapping forces being dependent on the positioning within the commonly non-uniform intensity beam profile. In such a scheme, nanoparticles are commonly attracted to local potential energy minima, ordinarily towards the centre of the beam. For achiral particles the pertinent material response property usually entails an electronic polarizability involving transition electric dipole moments. However, in the case of chiral molecules, additional effects arise through the engagement of magnetic counterpart transition dipoles. It emerges that, when circularly polarized light is used for the trapping, a discriminatory response can be identified between left- and right-handed polarizations. Developing a quantum framework to accurately describe this phenomenon, with a tensor formulation to correctly represent the relevant molecular properties, the theory leads to exact analytical expressions for the associated energy landscape contributions. Specific results are identified for liquids and solutions, both for isotropic media and also where partial alignment arises due to a static electric field. The paper concludes with a pragmatic analysis of the scope for achieving enantiomer separation by such methods.

  20. Thermal metal-insulator transition in a helical topological superconductor

    OpenAIRE

    Fulga, I. C.; Akhmerov, A. R.; Tworzydło, J.; Béri, B.; Beenakker, C. W. J.

    2012-01-01

    Two-dimensional superconductors with time-reversal symmetry have a Z_2 topological invariant, that distinguishes phases with and without helical Majorana edge states. We study the topological phase transition in a class-DIII network model, and show that it is associated with a metal-insulator transition for the thermal conductance of the helical superconductor. The localization length diverges at the transition with critical exponent nu approx 2.0, about twice the known value in a chiral supe...

  1. Relativistic pseudospin symmetry and shell model Hamiltonians that conserve pseudospin symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, Joseph N [Los Alamos National Laboratory

    2010-09-21

    Professor Akito Arima and his colleagues discovered 'pseudospin' doublets forty-one years ago in spherical nuclei. These doublets were subsequently discovered in deformed nuclei. We show that pseudospin symmetry is an SU(2) symmetry of the Dirac Hamiltonian which occurs when the scalar and vector potentials are opposite in sign but equal in magnitude. This symmetry occurs independent of the shape of the nucleus: spherical, axial deformed, triaxial, and gamma unstable. We survey some of the evidence that pseudospin symmetry is approximately conserved for a Dirac Hamiltonian with realistic scalar and vector potentials by examining the energy spectra, the lower components of the Dirac eigenfunctions, the magnetic dipole and Gamow-Teller transitions in nuclei, the upper components of the Dirac eigenfunctions, and nucleon-nucleus scattering. We shall also suggest that pseudospin symmetry may have a fundamental origin in chiral symmetry breaking by examining QCD sum rules. Finally we derive the shell model Hamiltonians which conserve pseudospin and show that they involve tensor interactions.

  2. T-\\mu phase diagram of the chiral quark model from a large flavor number expansion

    CERN Document Server

    Jakovác, A; Szép, Z; Szépfalusy, P; Szep, Zs.

    2004-01-01

    The chiral phase boundary of strong matter is determined in the T-\\mu plane from the chiral quark model, applying a non-perturbatively renormalised treatment, involving chains of pion-bubbles and 1-loop fermion contributions. In the absence of explicit symmetry breaking the second order portion of the phase boundary and the location of the tricritical point (TCP) are determined analytically. Sensitivity of the results to the renormalisation scale is carefully investigated. The softening of the sigma-pole near the second order transitions is confirmed.

  3. Symmetry transition in the cubic phase of a ternary surfactant system

    OpenAIRE

    Radiman, S.; Toprakcioglu, C.; Faruqi, A.R.

    1990-01-01

    We report a small-angle X-ray and neutron scattering investigation in the cubic phase of the ternary system water/didodecyldimethyl ammonium bromide (DDAB)/octane. We have observed a systematic variation in the lattice parameter as a function of water content, which can be related to the change in interfacial area per unit cell with the aqueous volume fraction. Our results are consistent with a bicontinuous periodic constant mean curvature structure, and show a transition from diamond to body...

  4. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, F. [Los Alamos National Labs., NM (United States)

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  5. Macroscopic time-reversal symmetry breaking at a nonequilibrium phase transition

    Science.gov (United States)

    Shim, Pyoung-Seop; Chun, Hyun-Myung; Noh, Jae Dong

    2016-01-01

    We study the entropy production in a globally coupled Brownian particles system that undergoes an order-disorder phase transition. Entropy production is a characteristic feature of nonequilibrium dynamics with broken detailed balance. We find that the entropy production rate is subextensive in the disordered phase and extensive in the ordered phase. It is found that the entropy production rate per particle vanishes in the disordered phase and becomes positive in the ordered phase following critical scaling laws. We derive the scaling relations for associated critical exponents. The disordered phase exemplifies a case where the entropy production is subextensive with the broken detailed balance.

  6. Dynamical symmetry restoration for a higher-derivative four-fermion model in an external electromagnetic field

    CERN Document Server

    Elizalde, E; Odintsov, S D; Shilnov, Yu I; Shil'nov, Yu. I.

    1998-01-01

    A four-fermion model with additional higher-derivative terms is investigated in an external electromagnetic field. The effective potential in the leading order of large-N expansion is calculated in external constant magnetic and electric fields. It is shown that, in contrast to the former results concerning the universal character of "magnetic catalysis" in dynamical symmetry breaking, in the present higher-derivative model the magnetic field restores chiral symmetry broken initially on the tree level. Numerical results describing a second-order phase transition that accompanies the symmetry restoration at the quantum level are presented.

  7. Transition from Sign-Reversed to Sign-Preserved Cooper-Pairing Symmetry in Sulfur-Doped Iron Selenide Superconductors.

    Science.gov (United States)

    Wang, Qisi; Park, J T; Feng, Yu; Shen, Yao; Hao, Yiqing; Pan, Bingying; Lynn, J W; Ivanov, A; Chi, Songxue; Matsuda, M; Cao, Huibo; Birgeneau, R J; Efremov, D V; Zhao, Jun

    2016-05-13

    An essential step toward elucidating the mechanism of superconductivity is to determine the sign or phase of the superconducting order parameter, as it is closely related to the pairing interaction. In conventional superconductors, the electron-phonon interaction induces attraction between electrons near the Fermi energy and results in a sign-preserved s-wave pairing. For high-temperature superconductors, including cuprates and iron-based superconductors, prevalent weak coupling theories suggest that the electron pairing is mediated by spin fluctuations which lead to repulsive interactions, and therefore that a sign-reversed pairing with an s_{±} or d-wave symmetry is favored. Here, by using magnetic neutron scattering, a phase sensitive probe of the superconducting gap, we report the observation of a transition from the sign-reversed to sign-preserved Cooper-pairing symmetry with insignificant changes in T_{c} in the S-doped iron selenide superconductors K_{x}Fe_{2-y}(Se_{1-z}S_{z})_{2}. We show that a rather sharp magnetic resonant mode well below the superconducting gap (2Δ) in the undoped sample (z=0) is replaced by a broad hump structure above 2Δ under 50% S doping. These results cannot be readily explained by simple spin fluctuation-exchange pairing theories and, therefore, multiple pairing channels are required to describe superconductivity in this system. Our findings may also yield a simple explanation for the sometimes contradictory data on the sign of the superconducting order parameter in iron-based materials.

  8. Interplay of topology and interactions in quantum Hall topological insulators: U(1) symmetry, tunable Luttinger liquid, and interaction-induced phase transitions

    Science.gov (United States)

    Kharitonov, Maxim; Juergens, Stefan; Trauzettel, Björn

    2016-07-01

    We consider a class of quantum Hall topological insulators: topologically nontrivial states with zero Chern number at finite magnetic field, in which the counterpropagating edge states are protected by a symmetry (spatial or spin) other than time-reversal. HgTe-type heterostructures and graphene are among the relevant systems. We study the effect of electron interactions on the topological properties of the system. We particularly focus on the vicinity of the topological phase transition, marked by the crossing of two Landau levels, where the system is a strongly interacting quantum Hall ferromagnet. We analyze the edge properties using the formalism of the nonlinear σ -model. We establish the symmetry requirement for the topological protection in this interacting system: effective continuous U(1) symmetry with respect to uniaxial isospin rotations must be preserved. If U(1) symmetry is preserved, the topologically nontrivial phase persists; its edge is a helical Luttinger liquid with highly tunable effective interactions. We obtain explicit analytical expressions for the parameters of the Luttinger liquid in the quantum-Hall-ferromagnet regime. However, U(1) symmetry may be broken, either spontaneously or by U(1)-asymmetric interactions. In either case, interaction-induced transitions occur to the respective topologically trivial phases with gapped edge charge excitations.

  9. Numerical analysis on transitions and symmetry-breaking in the wake of a flapping foil

    Institute of Scientific and Technical Information of China (English)

    Guo-Yi He; Qi Wang; Xing Zhang; Shu-Guang Zhang

    2012-01-01

    Flying and marine animals often use flapping wings or tails to generate thrust.In this paper,we will use the simplest flapping model with a sinusoidal pitching motion over a range of frequency and amplitude to investigate the mechanism of thrust generation.Previous work focuses on the Karman vortex street and the reversed Karman vortex street but the transition between two states remains unknown.The present numerical simulation provides a complete scenario of flow patterns from the Karman vortex street to reversed Karman vortex street via aligned vortices and the ultimate state is the deflected Karman vortex street,as the parameters of flapping motions change.The results are in agreement with the previous experiment.We make further discussion on the relationship of the observed states with drag and thrust coefficients and explore the mechanism of enhanced thrust generation using flapping motions.

  10. Anomalous parity-time-symmetry transition away from an exceptional point

    Science.gov (United States)

    Ge, Li

    2016-07-01

    Parity-time (PT ) symmetric systems have two distinguished phases, e.g., one with real-energy eigenvalues and the other with complex-conjugate eigenvalues. To enter one phase from the other, it is believed that the system must pass through an exceptional point, which is a non-Hermitian degenerate point with coalesced eigenvalues and eigenvectors. Here we reveal an anomalous PT transition that takes place away from an exceptional point in a nonlinear system: as the nonlinearity increases, the original linear system evolves along two distinct PT -symmetric trajectories, each of which can have an exceptional point. However, the two trajectories collide and vanish away from these exceptional points, after which the system is left with a PT -broken phase. We first illustrate this phenomenon using a coupled-mode theory and then exemplify it using paraxial wave propagation in a transverse periodic potential.

  11. Anomalous Parity-Time Symmetry Transition away from an Exceptional Point

    CERN Document Server

    Ge, Li

    2016-01-01

    Parity-time (PT) symmetric systems have two distinguished phases, e.g., one with real energy eigenvalues and the other with complex conjugate eigenvalues. To enter one phase from the other, it is believed that the system must pass through an exceptional point, which is a non-Hermitian degenerate point with coalesced eigenvalues and eigenvectors. In this letter we reveal an anomalous PT transition that takes place away from an exceptional point in a nonlinear system: as the nonlinearity increases, the original linear system evolves along two distinct PT-symmetric trajectories, each of which can have an exceptional point. However, the two trajectories collide and vanish away from these exceptional points, after which the system is left with a PT-broken phase. We first illustrate this phenomenon using a coupled mode theory and then exemplify it using paraxial wave propagation in a transverse periodic potential.

  12. Double symmetry breaking and magnetic transitions in ErFe 4Ge 2

    Science.gov (United States)

    Schobinger-Papamantellos, P.; Rodríguez-Carvajal, J.; Buschow, K. H. J.

    2007-03-01

    We have revised the T-magnetic phase diagram of the compound ErFe 4Ge 2 based on a recent X-ray powder diffraction study and software development enabling a new approach to this complex situation. Special emphasis is given to the intermediate temperature (IT) range 20 K- TN, Tc below the double first-order magneto-elastic transition where the tetragonal high-temperature (HT) phase disproportionates into two distinct orthorhombic phases: P4 2/mnm (HT phase) TN, Tc=44 K→ Cmmm (majority low-temperature (LT) phase) q=(0, {1}/{2}, 0)+Pnnm (minority IT Phase) ( q2=(0, q y, 0), q y≈2/11). The phase diagram comprises three distinct regions: the HT range TN, Tc-293 K where the tetragonal phase P4 2/mnm is stable, the IT range 20 K- TN, where the Cmmm and Pnnm phases coexist in strongly variable proportions and the LT range, 1.5-20 K, where Cmmm prevails. The Pnnm phase reaches its highest concentration (≈33%) around 30 K. We report on the multi-axial amplitude modulated incommensurate magnetic structure of the Pnnm phase with a 2D-canted Fe moment arrangement q2=(0, q y, 0) and on the coexisting Cmmm 3D-canted magnetic phase with q=(0, {1}/{2}, 0). The spin reorientation transitions occurring in the Cmmm phase relate to the various structural changes both arising from competing magneto-elastic mechanisms, involving the Er crystal field anisotropy the Er-Er, Er-Fe and Fe-Fe exchange interactions and their coupling to the lattice strain. The Er-Er and Er-Fe interactions are dominating in the LT Cmmm phase while the Fe-Fe and Er-Fe interactions prevail in the Pnnm phase.

  13. Linear and nonlinear resistivity of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} ceramics at chiral-glass transition

    Energy Technology Data Exchange (ETDEWEB)

    Deguchi, H., E-mail: deguchi@tobata.isc.kyutech.ac.j [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu (Japan); Hashimoto, Y.; Shoho, T.; Mito, M.; Takagi, S. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu (Japan); Koyama, K. [Faculty of Integrated Arts and Sciences, University of Tokushima, Tokushima (Japan); Hagiwara, M. [Faculty of Engineering and Design, Kyoto Institute of Technology, Kyoto (Japan)

    2010-12-15

    Ceramic YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} composed of sub-micron size grains has shown successive phase transitions under zero field. The first transition occurs inside each grain at T{sub c1} and the second transition occurs among the grains at T{sub c2} (chiral-glass ordering occurs at T{sub c2}.

  14. Baryon spectrum and chiral dynamics

    CERN Document Server

    Glozman, L Ya

    1995-01-01

    New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.

  15. Double symmetry breaking and magnetic transitions in ErFe{sub 4}Ge{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Schobinger-Papamantellos, P. [Laboratory of Crystallography, ETH-Zurich, 8093 Zurich (Switzerland)]. E-mail: Schobinger@mat.ethz.ch; Rodriguez-Carvajal, J. [Institut Laue-Langevin, 156X, 38042 Grenoble Cedex (France); Buschow, K.H.J. [Van der Waals-Zeeman Institute, University of Amsterdam, NL-1018 XE Amsterdam (Netherlands)

    2007-03-15

    We have revised the T-magnetic phase diagram of the compound ErFe{sub 4}Ge{sub 2} based on a recent X-ray powder diffraction study and software development enabling a new approach to this complex situation. Special emphasis is given to the intermediate temperature (IT) range 20K-T{sub N},T{sub c} below the double first-order magneto-elastic transition where the tetragonal high-temperature (HT) phase disproportionates into two distinct orthorhombic phases: P4{sub 2}/mnm (HT phase) T{sub N},T{sub c}=44K->Cmmm (majority low-temperature (LT) phase) q{sub 1}=(0,12,0)+Pnnm (minority IT Phase) (q{sub 2}=(0, q{sub y}, 0), q{sub y}{approx}2/11). The phase diagram comprises three distinct regions: the HT range T{sub N},T{sub c}-293K where the tetragonal phase P4{sub 2}/mnm is stable, the IT range 20K-T{sub N}, where the Cmmm and Pnnm phases coexist in strongly variable proportions and the LT range, 1.5-20K, where Cmmm prevails. The Pnnm phase reaches its highest concentration ({approx}33%) around 30K. We report on the multi-axial amplitude modulated incommensurate magnetic structure of the Pnnm phase with a 2D-canted Fe moment arrangement q{sub 2}=(0, q{sub y}, 0) and on the coexisting Cmmm 3D-canted magnetic phase with q{sub 1}=(0,12,0). The spin reorientation transitions occurring in the Cmmm phase relate to the various structural changes both arising from competing magneto-elastic mechanisms, involving the Er crystal field anisotropy the Er-Er, Er-Fe and Fe-Fe exchange interactions and their coupling to the lattice strain. The Er-Er and Er-Fe interactions are dominating in the LT Cmmm phase while the Fe-Fe and Er-Fe interactions prevail in the Pnnm phase.

  16. Chirality effect on nearly half-metallic properties in systematic endo-doping of 3d transition metals of narrow carbon nanotubes

    Science.gov (United States)

    Malehmir, M.; Khoshnevisan, B.

    2016-10-01

    Spin polarized density functional calculations were employed to study chirality effect on electronic and magnetic properties of 3d transition metals (TMs) endo-doped co-diameter (∼7 Å) narrow (5,5) and (9,0) single walled carbon nanotubes (CNTs). Various magnetizations up to ∼6μB was obtained for different 3dTM-CNT systems (recall that the magnetization of fcc structure cobalt is ∼1.6μB). In addition nearly half-metallic magnetic behavior has been observed for the most of considered systems. These results would be useful for spintronic and nano-magnetic technology.

  17. Chirally symmetric but confining dense and cold matter

    CERN Document Server

    Glozman, L Ya

    2007-01-01

    The folklore tradition about the QCD phase diagram is that the chiral restoration and deconfinement transitions coincide. Very recently McLerran and Pisarski suggested, based on qualitative large $N_c$ arguments, that at moderate temperature and not very small chemical potential it is not the case. We address this question within the only known exactly solvable confining and chirally symmetric model. It is postulated within this model that there exists linear Coulomb-like confining interaction. The chiral symmetry breaking and the quark Green function are obtained from the Schwinger-Dyson equation while the color-singlet meson spectrum results from the Bethe-Salpeter equation. Single quarks cannot be observed because the single-quark Green function is infrared divergent. We solve this model at T=0 and finite chemical potential \\mu and obtain a clear chiral restoration phase transition at the critical value \\mu_{cr}. Below this value the quarks have a finite momentum-dependent dynamical mass and the spectrum i...

  18. Applications Of Chiral Perturbation Theory

    CERN Document Server

    Mohta, V

    2005-01-01

    Effective field theory techniques are used to describe the spectrum and interactions of hadrons. The mathematics of classical field theory and perturbative quantum field theory are reviewed. The physics of effective field theory and, in particular, of chiral perturbation theory and heavy baryon chiral perturbation theory are also reviewed. The geometry underlying heavy baryon chiral perturbation theory is described in detail. Results by Coleman et. al. in the physics literature are stated precisely and proven. A chiral perturbation theory is developed for a multiplet containing the recently- observed exotic baryons. A small coupling expansion is identified that allows the calculation of self-energy corrections to the exotic baryon masses. Opportunities in lattice calculations are discussed. Chiral perturbation theory is used to study the possibility of two multiplets of exotic baryons mixed by quark masses. A new symmetry constraint on reduced partial widths is identified. Predictions in the literature based ...

  19. Coupling chiral bosons to gravity

    CERN Document Server

    Braga, N R F; Braga, N R F; Wotzasek, C

    1995-01-01

    chiral boson actions of Floreanini and Jackiw (FJ), and of McClain,Wu and Yu (MWY) have been recently shown to be different representations of the same chiral boson theory. MWY displays manifest covariance and also a (gauge) symmetry that is hidden in the FJ side, which, on the other hand, displays the physical spectrum in a simple manner. We make use of the covariance of the MWY representation for the chiral boson to couple it to background gravity showing explicitly the equivalence with the previous results for the FJ representation

  20. Chiral gravity in higher dimensions

    CERN Document Server

    Ootsuka, T; Ura, K; Ootsuka, Takayoshi; Tanaka, Erico; Ura, Kousuke

    2003-01-01

    We construct a chiral theory of gravity in 7 and 8 dimensions, which are equivalent to Einstein-Cartan theory using less variables. In these dimensions, we can construct such higher dimensional chiral gravity because of the existence of gravitational instanton. The octonionic-valued variables in the theory represent the deviation from the gravitational instanton, and from their non-associativity, prevents the theory to be SO(n) gauge invariant. Still the chiral gravity holds G_2 (7-D), and Spin(7) (8-D) gauge symmetry.

  1. Chiral Fermions on the Lattice

    CERN Document Server

    Bietenholz, Wolfgang

    2010-01-01

    In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.

  2. Chirality and the angular momentum of light

    Science.gov (United States)

    Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.

    2017-02-01

    Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions. This article is part of the themed issue 'Optical orbital angular momentum'.

  3. Heavy-Light Mesons in Chiral AdS/QCD

    CERN Document Server

    Liu, Yizhuang

    2016-01-01

    We discuss a minimal holographic model for the description of heavy-light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang-Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy-light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy-light mesons.

  4. Quarkyonic Chiral Spirals

    CERN Document Server

    Kojo, Toru; McLerran, Larry; Pisarski, Robert D

    2009-01-01

    We consider the formation of chiral density waves in Quarkyonic matter, which is a phase where cold, dense quarks experience confining forces. We model confinement following Gribov and Zwanziger, taking the gluon propagator, in Coulomb gauge and momentum space, as 1/(p^2)^2. We assume that the number of colors, N, is large, and that the quark chemical potential, mu, is much larger than renormalization mass scale, Lambda_QCD. To leading order in 1/N and Lambda_QCD, a gauge theory with Nf flavors of massless quarks in 3+1 dimensions naturally reduces to a gauge theory in 1+1 dimensions, with an enlarged flavor symmetry of SU(2Nf). Through an anomalous chiral rotation, in two dimensions a Fermi sea of massless quarks maps directly onto the corresponding theory in vacuum. A chiral condensate forms locally, and varies with the spatial position, z, as . Following Schon and Thies, we term this two dimensional pion condensate a (Quarkyonic) chiral spiral. Massive quarks also exhibit chiral spirals, with the magnitude...

  5. Chirality generated by flows in pseudocyanine dye J-aggregates: revisiting 40 years old reports.

    Science.gov (United States)

    El-Hachemi, Zoubir; Arteaga, Oriol; Canillas, Adolf; Crusats, Joaquim; Llorens, Joan; Ribo, Josep M

    2011-09-01

    Spontaneous symmetry breaking in J-aggregates of cyanine dyes has a long history in chemical literature. In 1976, Honda and Hada claimed that they had achieved chiral induction (CD) by stirring J-aggregates of pseudocyanine. However, this report is controversial, as the combinations of linear dichroism and birefringence can lead to artifactual circular dichroic signals that are unrelated to molecular chirality. A Mueller matrix spectroscopy study, with an approach for the application of a gradient of the shear rate (solution layer between a rotating and a fixed disk) that differs from the simple vortex stirring used in the original report, shows that true CD can be induced in the sample. The phenomenon is discussed, taking into account the flow dynamics that allows the alignment of the aggregate particles and the gradient of shear rates that determines their folding/torsion, which leads to a chiral excitonic transition.

  6. Symmetry Non-restoration at High Temperature

    CERN Document Server

    Rius, N

    1998-01-01

    We discuss the (non)-restoration of global and local symmetries at high temperature. First, we analyze a two-scalar model with $Z_2 \\times Z_2$ symmetry using the exact renormalization group. We conclude that inverse symmetry breaking is possible in this kind of models within the perturbative regime. Regarding local symmetries, we consider the $SU(2) \\otimes U(1)$ gauge symmetry and focus on the case of a strongly interacting scalar sector. Employing a model-independent chiral Lagrangian we find indications of symmetry restoration.

  7. Dissecting nucleon transition electromagnetic form factors

    CERN Document Server

    Segovia, Jorge

    2016-01-01

    In Poincar\\'e-covariant continuum treatments of the three valence-quark bound-state problem, the force behind dynamical chiral symmetry breaking also generates nonpointlike, interacting diquark correlations in the nucleon and its resonances. We detail the impact of these correlations on the electromagnetically-induced nucleon-$\\Delta$ and nucleon-Roper transitions, providing a flavour-separation of the latter and associated predictions that can be tested at modern facilities.

  8. Thermodynamics of the symmetry energy and the equation of state of isospin-asymmetric nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Wellenhofer, Corbinian; Kaiser, Norbert [Physik Department, Technische Universitaet Muenchen (Germany); Holt, Jeremy W. [Department of Physics, University of Washington, Seattle (United States); Weise, Wolfram [Physik Department, Technische Universitaet Muenchen (Germany); ECT, Villa Tambosi, Trento (Italy)

    2015-07-01

    Knowledge of the thermodynamic properties of the nuclear symmetry energy is essential for the study of heavy-ion collisions and a multitude of astrophysical phenomena. In this work, we investigate the density and temperature dependence of the symmetry energy using many-body perturbation theory with microscopic chiral nuclear forces. The calculational methods and nuclear force models are benchmarked against empirical constraints for isospin-symmetric nuclear matter and the virial expansion of low-density neutron matter. It is found that whereas the symmetry free energy and entropy both increase uniformly with temperature, the symmetry energy exhibits almost universal behavior. Moreover, we show results for the equation of state of isospin-asymmetric nuclear matter, obtained from the parabolic approximation. The different thermodynamic instabilities at subsaturation densities are examined, and we construct the equation of state corresponding to an equilibrium liquid-gas phase transition by means of the generalized Maxwell construction for two-component fluids.

  9. Studies of Phase Transitions and Critical Phenomena: I. Origin of Broken Particle-Hole Symmetry in Critical Fluids. I. Phase Transitions of Interacting Membranes.

    Science.gov (United States)

    Goldstein, Raymond Ethan

    The longstanding problem of the precise correspondence between critical phenomena in fluids and ferromagnets is resolved in Part I through a synthesis of mean field theory, exact results for lattice models, field-theoretic techniques, and by extensive quantitative comparison with experiment. Emphasis is placed on the origin of broken particle-hole symmetry in fluids as reflected in the form of the critical point scaling fields and in systematic variations in certain nonuniversal critical amplitudes with molecular polarizability. Those trends and the degree to which the scaling axes are linearly mixed versions of the bare "thermal" and "magnetic" fields in particle-hole symmetric systems are shown both for lattice models and real fluids to be intimately related to the presence of many-body interactions of the Axilrod-Teller type. A quantitatively accurate microscopic expression for the field-mixing operator of fluids is derived on the basis of an exact Hubbard-Stratonovich transformation relating the fluid Hamiltonian to that of a Landau-Ginzburg-Wilson model. A phenomenological theory of the phase behavior of multilamellar liquid crystals of hydrated phospholipid bilayers is developed in Part II, and its predictions tested by extensive comparison with experiment. A Ginzburg-Landau free energy functional based on the elastic properties of two coupled monolayers is proposed to describe intrabilayer ordering, and the phenomenon of structural phase transitions driven by membrane interactions is described by incorporating in addition the attractive dispersion interactions and repulsive "hydration" forces acting between membranes. The theory indicates and experiments support a connection between the pseudocriticality of the bilayer transitions and the large susceptibility of the in-plane order to membrane interactions. The pseudocriticality in turn is suggested to arise from the analog of a capillary critical point accessible by finite-size effects. Theoretical phase

  10. Chiral susceptibility and the scalar Ward identity.

    Energy Technology Data Exchange (ETDEWEB)

    Chang, L.; Liu, Y.-X.; Roberts, C. D.; Shi, Y.-M.; Sun, W.-M.; Zong, H.-S.; Physics; Inst. of Applied Physics and Computational Mathematics; Peking Univ.; National Lab. of Heavy Ion Accelerator; Univ. of New South Wales; Nanjing Univ.; Joint Center for Particle, Nuclear Physics and Cosmology

    2009-03-01

    The chiral susceptibility is given by the scalar vacuum polarization at zero total momentum. This follows directly from the expression for the vacuum quark condensate so long as a nonperturbative symmetry preserving truncation scheme is employed. For QCD in-vacuum the susceptibility can rigorously be defined via a Pauli-Villars regularization procedure. Owing to the scalar Ward identity, irrespective of the form or Ansatz for the kernel of the gap equation, the consistent scalar vertex at zero total momentum can automatically be obtained and hence the consistent susceptibility. This enables calculation of the chiral susceptibility for markedly different vertex Ansaetze. For the two cases considered, the results were consistent and the minor quantitative differences easily understood. The susceptibility can be used to demarcate the domain of coupling strength within a theory upon which chiral symmetry is dynamically broken. Degenerate massless scalar and pseudoscalar bound-states appear at the critical coupling for dynamical chiral symmetry breaking.

  11. Two-dimensional collective Hamiltonian for chiral and wobbling modes

    CERN Document Server

    Chen, Q B; Zhao, P W; Jolos, R V; Meng, J

    2016-01-01

    A two-dimensional collective Hamiltonian (2DCH) on both azimuth and polar motions in triaxial nuclei is proposed to investigate the chiral and wobbling modes. In the 2DCH, the collective potential and the mass parameters are determined from three-dimensional tilted axis cranking (TAC) calculations. The broken chiral and signature symmetries in the TAC solutions are restored by the 2DCH. The validity of the 2DCH is illustrated with a triaxial rotor ($\\gamma=-30^\\circ$) coupling to one $h_{11/2}$ proton particle and one $h_{11/2}$ neutron hole. By diagonalizing the 2DCH, the angular momenta and energy spectra are obtained. These results agree with the exact solutions of the particle rotor model (PRM) at high rotational frequencies. However, at low frequencies, the energies given by the 2DCH are larger than those by the PRM due to the underestimation of the mass parameters. In addition, with increasing angular momentum, the transitions from the chiral vibration to chiral rotation and further to longitudinal wobb...

  12. Two-dimensional collective Hamiltonian for chiral and wobbling modes

    Science.gov (United States)

    Chen, Q. B.; Zhang, S. Q.; Zhao, P. W.; Jolos, R. V.; Meng, J.

    2016-10-01

    A two-dimensional collective Hamiltonian (2DCH) on both azimuth and polar motions in triaxial nuclei is proposed to investigate the chiral and wobbling modes. In the 2DCH, the collective potential and the mass parameters are determined from three-dimensional tilted axis cranking (TAC) calculations. The broken chiral and signature symmetries in the TAC solutions are restored by the 2DCH. The validity of the 2DCH is illustrated with a triaxial rotor (γ =-30∘ ) coupling to one h11 /2 proton particle and one h11 /2 neutron hole. By diagonalizing the 2DCH, the angular momenta and energy spectra are obtained. These results agree with the exact solutions of the particle rotor model (PRM) at high rotational frequencies. However, at low frequencies, the energies given by the 2DCH are larger than those by the PRM due to the underestimation of the mass parameters. In addition, with increasing angular momentum, the transitions from the chiral vibration to chiral rotation and further to longitudinal wobbling motion have been presented in the 2DCH.

  13. Chiral Imbalance in QCD and its consequences

    Directory of Open Access Journals (Sweden)

    Andrianov Alexander

    2016-01-01

    Full Text Available Under extreme conditions of high temperature and/or large quark (baryon density, the vacuum of QCD changes its properties, and deconfinement, chiral symmetry restoration as well as chiral symmetry breaking take place. These transitions (phases are accompanied by the rapid change in the rate and nature of topological transitions connecting different topological sectors. The heavy ion collisions (HIC program opens a possibility to study these phenomena in so-called non-Abelian Quark-gluon plasma (QGP. In these phases the currents of light quarks (vector and axial-vector can be independently examined for right-handed (RH and left-handed (LH quarks. To describe such a quark matter chiral chemical potential can be introduced to quantify the presence of chirality imbalance (ChI i.e. the difference between the average numbers of RH and LH quarks in the fireball after HIC. In this review talk we will focus our attention on the discussion of the ChI related developments in heavy ion physics at central collisions and the plans for the future experiments aimed at establishing (or falsifying the presence of Local spacial Parity Breaking (LPB in heavy ion data. We describe some of experimental observables in detecting the signal of LPB. A number of measurements is proposed that allow to reach a definite conclusion on the occurrence of LPB effects in non-Abelian QGP produced in central heavy ion collisions and its simulation within a number of QCD-inspired models is outlined. Based on the effective meson theory in the presence of Chern-Simons interaction it is found that the spectrum of massive vector mesons splits into three polarization components with different effective masses. Moreover a resonance broadening occurs that leads to an increase of spectral contribution to the dilepton production as compared to the vacuum state. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the

  14. Chiral Imbalance in QCD and its consequences

    Science.gov (United States)

    Andrianov, Alexander; Andrianov, Vladimir; Espriu, Domenec

    2016-10-01

    Under extreme conditions of high temperature and/or large quark (baryon) density, the vacuum of QCD changes its properties, and deconfinement, chiral symmetry restoration as well as chiral symmetry breaking take place. These transitions (phases) are accompanied by the rapid change in the rate and nature of topological transitions connecting different topological sectors. The heavy ion collisions (HIC) program opens a possibility to study these phenomena in so-called non-Abelian Quark-gluon plasma (QGP). In these phases the currents of light quarks (vector and axial-vector) can be independently examined for right-handed (RH) and left-handed (LH) quarks. To describe such a quark matter chiral chemical potential can be introduced to quantify the presence of chirality imbalance (ChI) i.e. the difference between the average numbers of RH and LH quarks in the fireball after HIC. In this review talk we will focus our attention on the discussion of the ChI related developments in heavy ion physics at central collisions and the plans for the future experiments aimed at establishing (or falsifying) the presence of Local spacial Parity Breaking (LPB) in heavy ion data. We describe some of experimental observables in detecting the signal of LPB. A number of measurements is proposed that allow to reach a definite conclusion on the occurrence of LPB effects in non-Abelian QGP produced in central heavy ion collisions and its simulation within a number of QCD-inspired models is outlined. Based on the effective meson theory in the presence of Chern-Simons interaction it is found that the spectrum of massive vector mesons splits into three polarization components with different effective masses. Moreover a resonance broadening occurs that leads to an increase of spectral contribution to the dilepton production as compared to the vacuum state. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton

  15. Lattice study on QCD-like theory with exact center symmetry

    CERN Document Server

    Iritani, Takumi; Misumi, Tatsuhiro

    2015-01-01

    We investigate QCD-like theory with exact center symmetry, with emphasis on the finite-temperature phase transition concerning center and chiral symmetries. On the lattice, we formulate center symmetric $SU(3)$ gauge theory with three fundamental Wilson quarks by twisting quark boundary conditions in a compact direction ($Z_3$-QCD model). We calculate the expectation value of Polyakov loop and the chiral condensate as a function of temperature on 16^3 x 4 and 20^3 x 4 lattices along the line of constant physics realizing $m_{PS}/m_{V}=0.70$. We find out the first-order center phase transition, where the hysteresis of the magnitude of Polyakov loop exists depending on thermalization processes. We show that chiral condensate decreases around the critical temperature in a similar way to that of the standard three-flavor QCD, as it has the hysteresis in the same range as that of Polyakov loop. We also show that the flavor symmetry breaking due to the twisted boundary condition gets qualitatively manifest in the h...

  16. The doublet of Dirac fermions in the field of the non-Abelian monopole, isotopic chiral symmetry, and parity selection rules

    CERN Document Server

    Redkov, V M

    1999-01-01

    The paper concerns a problem of the Dirac fermion doublet in the external monopole potential obtained by embedding the Abelian monopole solution in the non-Abelian scheme. In this case, the doublet-monopole Hamiltonian is invariant under operations consisting of a complex and one parametric Abelian subgroup in S0(3.C). This symmetry results in a certain freedom in choosing a discrete operator N(A) (A is a complex number) entering the complete set of quantum variables. The same complex number A represents an additional parameter at the basis functions. The generalized inversion like operator N(A) affords certain generalized N(A)-parity selection rules. All the different sets of basis functions Psi(A) determine the same Hilbert space. The functions Psi(A) decompose into linear combinations of Psi(A=0): Psi(A) = F(A) Psi(A=0). However, the bases considered turn out to be nonorthogonal ones when A is a complex number; the latter correlates with the non-self-conjugacy of the N(A) at complex A-s. The meaning of pos...

  17. Chiral Dynamics With Wilson Fermions

    CERN Document Server

    Splittorff, K

    2012-01-01

    Close to the continuum the lattice spacing affects the smallest eigenvalues of the Wilson Dirac operator in a very specific manner determined by the way in which the discretization breaks chiral symmetry. These effects can be computed analytically by means of Wilson chiral perturbation theory and Wilson random matrix theory. A number of insights on chiral Dynamics with Wilson fermions can be obtained from the computation of the microscopic spectrum of the Wilson Dirac operator. For example, the unusual volume scaling of the smallest eigenvalues observed in lattice simulations has a natural explanation. The dynamics of the eigenvalues of the Wilson Dirac operator also allow us to determine the additional low energy constants of Wilson chiral perturbation theory and to understand why the Sharpe-Singleton scenario is only realized in unquenched simulations.

  18. Chiral Quark Model of Mesons

    CERN Document Server

    Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin

    1999-01-01

    We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.

  19. Interface Effect in QCD Phase Transitions via Dyson-Schwinger Equation Approach

    CERN Document Server

    Gao, Fei

    2016-01-01

    With the chiral susceptibility criterion we obtain the phase diagram of strong-interaction matter in terms of temperature and chemical potential in the framework of Dyson-Schwinger equations (DSEs) of QCD.After calculating the pressure and some other thermodynamic properties of the matter in the DSE method, we get the phase diagram in terms of temperature and baryon number density. We also obtain the interface tension and the interface entropy density to describe the inhomogeneity of the two phases in the coexistence region of the first order phase transition. After including the interface effect, we find that the total entropy density of the system increases in both the deconfinement (dynamical chiral symmetry restoration) and the hadronization (dynamical chiral symmetry breaking) processes of the first order phase transitions and thus solve the entropy puzzle in the hadronization process.

  20. Interface effect in QCD phase transitions via Dyson-Schwinger equation approach

    Science.gov (United States)

    Gao, Fei; Liu, Yu-xin

    2016-11-01

    With the chiral susceptibility criterion, we obtain the phase diagram of strong-interaction matter in terms of temperature and chemical potential in the framework of Dyson-Schwinger equations of QCD. After calculating the pressure and some other thermodynamic properties of the matter in the Dyson-Schwinger method, we get the phase diagram in terms of temperature and baryon number density. We also obtain the interface tension and the interface entropy density to describe the inhomogeneity of the two phases in the coexistence region of the first-order phase transition. After including the interface effect, we find that the total entropy density of the system increases in both the deconfinement (dynamical chiral symmetry restoration) and the hadronization (dynamical chiral symmetry breaking) processes of the first-order phase transitions and thus solve the entropy puzzle in the hadronization process.

  1. Chiral corrections to the Adler-Weisberger sum rule

    Science.gov (United States)

    Beane, Silas R.; Klco, Natalie

    2016-12-01

    The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .

  2. Gravitation and Duality Symmetry

    CERN Document Server

    D'Andrade, V C; Pereira, J G

    2005-01-01

    By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general case, gravitation does not present duality symmetry, there is a particular theory in which this symmetry is present. This theory is a self dual (or anti-self dual) teleparallel gravity in which, owing to the fact that it does not contribute to the gravitational interaction of fermions, the purely tensor part of torsion is assumed to vanish. The corresponding fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory will probably be much more amenable to renormalization than teleparallel gravity or general relativity. Although obtained in the context of teleparallel gravity, these results must also be true for general relativity.

  3. Square to hexagonal symmetry transition of the flux line lattice in YNi2B2C for different field orientations

    DEFF Research Database (Denmark)

    Eskildsen, M.R.; Gammel, P.L.; Barber, B.P.;

    1998-01-01

    Using small-angle neutron scattering we have studied the magnetic flux line lattice in YNi2B2C with the field rotated 30(:) away from the crystalline c-axis. Previously we have reported on a square to hexagonal symmetry transition of the fluc line lattice below 1 kOe for H parallel to c. We find ...... the hexagonal Aux line lattice up to the highest measured field of 30 kOe. The difference between the two axes is also reflected in the Aux line lattice distortion. (C) 1998 Elsevier Science B.V. All rights reserved....... that the rotation of the field shifts the transition to higher fields in agreement with theoretical prediction. Two different directions in the ab-plane were chosen as axes of rotation. Rotating the field around [1,1,0] shifts the onset of the transition up to 3 kOe. Rotating the field around [1,0,0] stabilizes...

  4. Symmetry Restoring Phase Transitions at High Density in a 4D Nambu-Jona-Lasinio Model with a Single Order Parameter

    Institute of Scientific and Technical Information of China (English)

    ZHOUBang-Rong

    2003-01-01

    High density phase transitions in a 4-dimensional Nambu-dona-Lasinio model containing a single symmetry breaking order parameter coming from the fermion-antifermion condensates are researched and expounded by means of both the gap equation and the effective potential approach. The phase transitions are proven to be second-order at a high temperature T; however at T = 0 they are first- or second-order, depending on whether A/m(0), the ratio of the momentum cutoff A in the fermion-loop integrals to the dynamical fermion mass m(0) at zero temperature, is lessthan 3.387 or not. The former condition cannot be satisfied in some models. The discussions further show complete effectiveness of the critical analysis based on the gap equation for second order phase transitions including determination of the condition of their occurrence.

  5. Symmetry Restoring Phase Transitions at High Density in a 4D Nambu-Jona-Lasinio Model with a Single Order Parameter

    Institute of Scientific and Technical Information of China (English)

    ZHOU Bang-Rong

    2003-01-01

    High density phase transitions in a 4-dimensional Nambu-Jona-Lasinio model containing a single symmetry breaking order parameter coming from the fermion-antifermion condensates are researched and expounded by means of both the gap equation and the effective potential approach. The phase transitions are proven to be second-order at a high temperature T; however at T = 0 they are first- or second-order, depending on whether A/m(0), the ratio of the momentum cutoff A in the fermion-loop integrals to the dynamicalfermion mass m(0) at zero temperature, is less than 3.387 or not. The former condition cannot be satisfied in some models. The discussions further show complete effectiveness of the critical analysis based on the gap equation for second order phase transitions including determination of the condition of their occurrence.

  6. Chiral Symmetry Restoration and Realisation of the Goldstone Mechanism in the U(1) Gross-Neveu Model at Non-Zero Chemical Potential

    CERN Document Server

    Barbour, Ian M; Kogut, J B; Lombardo, M P; Morrison, S; Barbour, Ian; Hands, Simon; Kogut, John B.; Lombardo, Maria-Paola; Morrison, Susan

    1999-01-01

    We simulate the Gross-Neveu model in 2+1 dimensions at nonzero baryon density (chemical potential mu =/= 0). It is possible to formulate this model with a real action and therefore to perform standard hybrid Monte Carlo simulations with mu =/= 0 in the functional measure. We compare the physical observables from these simulations with simulations using the Glasgow method where the value of mu in the functional measure is fixed at a value mu_upd. We find that the observables are sensitive to the choice of mu_upd. We consider the implications of our findings for Glasgow method QCD simulations at mu =/= 0. We demonstrate that the realisation of the Goldstone mechanism in the Gross-Neveu model is fundamentally different from that in QCD. We find that this difference explains why there is an unphysical transition in QCD simulations at mu =/= 0 associated with the pion mass scale whereas the transition in the Gross-Neveu model occurs at a larger mass scale and is therefore consistent with theoretical predictions. W...

  7. Spatial control of chirality in supramolecular aggregates.

    Science.gov (United States)

    Castriciano, Maria A; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù

    2017-03-09

    Chirality is one of the most intriguing properties of matter related to a molecule's lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic.

  8. Spatial control of chirality in supramolecular aggregates

    Science.gov (United States)

    Castriciano, Maria A.; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù

    2017-01-01

    Chirality is one of the most intriguing properties of matter related to a molecule’s lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic. PMID:28275239

  9. Symmetry-Breaking Transitions in RECuAs2-xPx (RE=Sm, Gd, Ho, and Er)

    Energy Technology Data Exchange (ETDEWEB)

    Mozharivskyj, Yurij [Iowa State Univ., Ames, IA (United States)

    2002-01-01

    Structural changes resulting in lower symmetries can be understood in terms of electronic instabilities and Coulomb interactions. The interplay of these two interrelated factors is complicated and difficult to analyze. The RECuAs2-xP x phases, because of the variation in the chemical content (As/P substitution), allow, with the aid of band structures, Madelung energies and Landau theory, a partial unraveling of the forces important in the symmetry-breaking transitions in RECuAs2-xP x (RE = Sm, Gd, Ho and Er). Distortions of the P layers in SmCu1.15P2, GdCuP2.20 and ErCuP2 are usefully thought of as generalized Peierls distortions, i.e., they lower the electronic (and total) energy and lead to more stable structures. On the other hand, the P4/nmm → Pmmn transitions, which are observed in all studied arsenophosphide series and occur upon substitution of P for As, originate from the B1g vibrational mode and are structural adaptations to smaller P atoms. These transitions provide tighter atomic packing and better Coulomb interactions. Configurational contribution to the entropy becomes important in stabilizing the mixed occupancy in the RECuAs 2-xP x arsenophosphides. While geometric and electronic factors favor separation of the As and P atoms over two different crystallographic sites, configurational entropy stabilizes the As/P mixing on these two sites.;Progress in the research on RECuAs2-xP x was dependent upon the ability of Landau theory to predict, explain and dismiss structural models and transitions. The space group Pmmn (arising from the B 1g vibrational mode) in all mixed arsenophosphides and the existence of these mixed arsenophosphides followed from the analysis of GdCuAs 2 and GdCuP2, using Landau theory. The impossibility of obtaining the high-symmetry structure (P4/nmm) and the low symmetry structure

  10. Chiral Quantum Optics

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter

    2016-01-01

    At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...

  11. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  12. Chiral Graphene Quantum Dots.

    Science.gov (United States)

    Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A

    2016-02-23

    Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.

  13. Construction of Ligand Group Orbitals for Polyatomics and Transition-Metal Complexes Using an Intuitive Symmetry-Based Approach

    Science.gov (United States)

    Johnson, Adam R.

    2013-01-01

    A molecular orbital (MO) diagram, especially its frontier orbitals, explains the bonding and reactivity for a chemical compound. It is therefore important for students to learn how to construct one. The traditional methods used to derive these diagrams rely on linear algebra techniques to combine ligand orbitals into symmetry-adapted linear…

  14. A relativistic symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)

    2007-11-15

    We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.

  15. Chiral Restoration and the Scalar and Vector Correlations in Hot and Dense Matter

    CERN Document Server

    Kunihiro, T

    2003-01-01

    First, it is pointed out that hadron/nuclear physics based on QCD should be regarded as ``condensed matter physics'' of the QCD vacuum. We indicate that phase shift analyses which respect chiral symmetry (ChS), analyticity and crossing symmetry of the scattering amplitude show the $sigma$ meson pole in the s-channel in the low mass region as well as the $rho$ meson pole in the $t$-channel in the pipi scattering in the scalar channel. We review recent developments in exploring possible precursory phenomena of partial restoration of chis in nuclear medium by examining the spectral function in the scalar and the vector channels. We emphasize that the wave function renormalization of the pion in the medium plays an essential role to induce the decrease of the pion decay constant as the order parameter of chiral transition. An emphasis is also put on the importance to examine the scalar and vector channels simultaneously for exploring the possible restoration of chiral symmetry.

  16. Chiral Nuclear Dynamics II

    CERN Document Server

    Rho, Mannque

    2008-01-01

    This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and

  17. Spontaneous symmetry breaking for geometrical trajectories of actin-based motility in three dimensions

    Science.gov (United States)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2016-07-01

    Actin-based motility is important for many cellular processes. In this article we extend our previous studies of an actin-propelled circular disk in two dimensions to an actin-propelled spherical bead in three dimensions. We find that for an achiral load the couplings between the motion of the load and the actin network induce a series of bifurcations, starting with a transition from rest to moving state, followed by a transition from straight to planar curves, and finally a further transition from motion in a plane to one with torsion. To address the intriguing, experimentally observed chiral motility of the bacterium Listeria monocytogenes, we also study the motility of a spherical load with a built-in chirality. For such a chiral load, stable circular trajectories are no longer found in numerical simulations. Instead, helical trajectories with handedness that depends on the chirality of the load are found. Our results reveal the relation between the symmetry of actin network and the trajectories of actin-propelled loads.

  18. QCD Equation of State From a Chiral Hadronic Model Including Quark Degrees of Freedom

    CERN Document Server

    Rau, Philip; Schramm, Stefan; Stöcker, Horst

    2013-01-01

    This work presents an effective model for strongly interacting matter and the QCD equation of state (EoS). The model includes both hadron and quark degrees of freedom and takes into account the transition of chiral symmetry restoration as well as the deconfinement phase transition. At low temperatures $T$ and baryonic densities $\\rho_B$ a hadron resonance gas is described using a SU(3)-flavor sigma-omega model and a quark phase is introduced in analogy to PNJL models for higher $T$ and $\\rho_B$. In this way, the correct asymptotic degrees of freedom are used in a wide range of $T$ and $\\rho_B$. Here, results of this model concerning the chiral and deconfinement phase transitions and thermodynamic model properties are presented. Large hadron resonance multiplicities in the transition region emphasize the importance of heavy-mass resonance states in this region and their impact on the chiral transition behavior. The resulting phase diagram of QCD matter at small chemical potentials is in line with latest lattic...

  19. Nuclear 111Cd probes detect a hidden symmetry change at the γ → α transition in cerium considered isostructural for 60 years

    Science.gov (United States)

    Tsvyashchenko, A. V.; Nikolaev, A. V.; Velichkov, A. I.; Salamatin, A. V.; Fomicheva, L. N.; Ryasny, G. K.; Sorokin, A. A.; Kochetov, O. I.; Budzynski, M.

    2010-10-01

    We use the time-differential perturbed angular correlation technique to study nuclear electric quadupole hyperfine interactions of probe 111Cd nuclei in cerium lattice sites at room temperature under pressures up to 8 GPa. We have found that the well known γ → α phase transition in cerium is not isostructural. In α-Ce, the probe 111Cd nuclei reveal a quadrupole electron charge density component that is absent in γ-Ce. The hidden spacial structure of electronic quadrupoles in α-Ce is triple-q antiferroquadrupolar, as was suggested in [14]. We relate our findings to the current understanding of the γ → α phase transition and also report on nuclear quadrupole interactions in other high-pressure phases of cerium: α″ ( C2/ m space symmetry) and α' (α-U structure).

  20. Chiral matrix model of the semi-QGP in QCD

    Science.gov (United States)

    Pisarski, Robert D.; Skokov, Vladimir V.

    2016-08-01

    Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the