Chiral symmetry and chiral-symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Liu, Keh-Fei
2016-01-01
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Applications of chiral symmetry
Pisarski, R D
1995-01-01
I discuss several topics in the applications of chiral symmetry at nonzero temperature, including: where the rho goes, disoriented chiral condensates, and the phase diagram for QCD with 2+1 flavors. (Based upon talks presented at the "Workshop on Finite Temperature QCD", Wuhan, P.R.C., April, 1994.)
Applications of chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.
Random matrix model approach to chiral symmetry
Verbaarschot, J J M
1996-01-01
We review the application of random matrix theory (RMT) to chiral symmetry in QCD. Starting from the general philosophy of RMT we introduce a chiral random matrix model with the global symmetries of QCD. Exact results are obtained for universal properties of the Dirac spectrum: i) finite volume corrections to valence quark mass dependence of the chiral condensate, and ii) microscopic fluctuations of Dirac spectra. Comparisons with lattice QCD simulations are made. Most notably, the variance of the number of levels in an interval containing $n$ levels on average is suppressed by a factor $(\\log n)/\\pi^2 n$. An extension of the random matrix model model to nonzero temperatures and chemical potential provides us with a schematic model of the chiral phase transition. In particular, this elucidates the nature of the quenched approximation at nonzero chemical potential.
Dileptons and Chiral Symmetry Restoration
Hohler, P M
2015-01-01
We report on recent work relating the medium effects observed in dilepton spectra in heavy-ion collisions to potential signals of chiral symmetry restoration. The key connection remains the approach to spectral function degeneracy between the vector-isovector channel with its chiral partner, the axialvector-isovector channel. Several approaches are discussed to elaborate this connection, namely QCD and Weinberg sum rules with input for chiral order parameters from lattice QCD, and chiral hadronic theory to directly evaluate the medium effects of the axialvector channel and the pertinent pion decay constant as function of temperature. A pattern emerges where the chiral mass splitting between rho and a_1 burns off and is accompanied by a strong broadening of the spectral distributions.
Exact Chiral Symmetry on the Lattice
Neuberger, H
2001-01-01
Developments during the last eight years have refuted the folklore that chiral symmetries cannot be preserved on the lattice. The mechanism that permits chiral symmetry to coexist with the lattice is quite general and may work in Nature as well. The reconciliation between chiral symmetry and the lattice is likely to revolutionize the field of numerical QCD.
Symmetries of hadrons after unbreaking the chiral symmetry
Glozman, L Ya; Schröck, M
2012-01-01
We study hadron correlators upon artificial restoration of the spontaneously broken chiral symmetry. In a dynamical lattice simulation we remove the lowest lying eigenmodes of the Dirac operator from the valence quark propagators and study evolution of the hadron masses obtained. All mesons and baryons in our study, except for a pion, survive unbreaking the chiral symmetry and their exponential decay signals become essentially better. From the analysis of the observed spectroscopic patterns we conclude that confinement still persists while the chiral symmetry is restored. All hadrons fall into different chiral multiplets. The broken U(1)_A symmetry does not get restored upon unbreaking the chiral symmetry. We also observe signals of some higher symmetry that includes chiral symmetry as a subgroup. Finally, from comparison of the \\Delta - N splitting before and after unbreaking of the chiral symmetry we conclude that both the color-magnetic and the flavor-spin quark-quark interactions are of equal importance.
Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential
Braguta, V V
2016-01-01
In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.
Symmetries of Ginsparg-Wilson Chiral Fermions
Mandula, Jeffrey E
2009-01-01
The group structure of the variant chiral symmetry discovered by Luscher in the Ginsparg-Wilson description of lattice chiral fermions is analyzed. It is shown that the group contains an infinite number of linearly independent symmetry generators, and the Lie algebra is given explicitly. CP is an automorphism of this extended chiral group, and the CP transformation properties of the symmetry generators are found. The group has an infinite-parameter subgroup, and the factor group whose elements are its cosets is isomorphic to the continuum chiral symmetry group. Features of the currents associated with these symmetries are discussed, including the fact that some different, non-commuting symmetry generators lead to the same Noether current. These are universal features of lattice chiral fermions based on the Ginsparg-Wilson relation; they occur in the overlap, domain-wall, and perfect-action formulations. In a solvable example - free overlap fermions - these non-canonical elements of lattice chiral symmetry are...
Chiral symmetry breaking and monopoles
Di Giacomo, Adriano; Pucci, Fabrizio
2015-01-01
To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...
Infinite Chiral Symmetry in Four Dimensions
Beem, Christopher; Liendo, Pedro; Peelaers, Wolfger; Rastelli, Leonardo; van Rees, Balt C
2015-01-01
We describe a new correspondence between four-dimensional conformal field theories with extended supersymmetry and two-dimensional chiral algebras. The meromorphic correlators of the chiral algebra compute correlators in a protected sector of the four-dimensional theory. Infinite chiral symmetry has far-reaching consequences for the spectral data, correlation functions, and central charges of any four-dimensional theory with ${\\mathcal N}=2$ superconformal symmetry.
Chlorophylls, Symmetry, Chirality, and Photosynthesis
Directory of Open Access Journals (Sweden)
Mathias O. Senge
2014-09-01
Full Text Available Chlorophylls are a fundamental class of tetrapyrroles and function as the central reaction center, accessory and photoprotective pigments in photosynthesis. Their unique individual photochemical properties are a consequence of the tetrapyrrole macrocycle, the structural chemistry and coordination behavior of the phytochlorin system, and specific substituent pattern. They achieve their full potential in solar energy conversion by working in concert in highly complex, supramolecular structures such as the reaction centers and light-harvesting complexes of photobiology. The biochemical function of these structures depends on the controlled interplay of structural and functional principles of the apoprotein and pigment cofactors. Chlorophylls and bacteriochlorophylls are optically active molecules with several chiral centers, which are necessary for their natural biological function and the assembly of their supramolecular complexes. However, in many cases the exact role of chromophore stereochemistry in the biological context is unknown. This review gives an overview of chlorophyll research in terms of basic function, biosynthesis and their functional and structural role in photosynthesis. It highlights aspects of chirality and symmetry of chlorophylls to elicit further interest in their role in nature.
Optical chirality in gyrotropic media: symmetry approach
Proskurin, Igor; Ovchinnikov, Alexander S.; Nosov, Pavel; Kishine, Jun-ichiro
2017-06-01
We discuss optical chirality in different types of gyrotropic media. Our analysis is based on the formalism of nongeometric symmetries of Maxwell’s equations in vacuum generalized to material media with given constituent relations. This approach enables us to directly derive conservation laws related to nongeometric symmetries. For isotropic chiral media, we demonstrate that like a free electromagnetic field, both duality and helicity generators belong to the basis set of nongeometric symmetries that guarantees the conservation of optical chirality. In gyrotropic crystals, which exhibit natural optical activity, the situation is quite different from the case of isotropic media. For light propagating along a certain crystallographic direction, there arises two distinct cases: (1) the duality is broken but the helicity is preserved, or (2) only the duality symmetry survives. We show that the existence of one of these symmetries (duality or helicity) is enough to define optical chirality. In addition, we present examples of low-symmetry media, where optical chirality cannot be defined.
Spontaneous Chiral Symmetry Breaking as Condensation of Dynamical Chirality
Alexandru, Andrei
2012-01-01
The occurrence of spontaneous chiral symmetry breaking (SChSB) is equivalent to sufficient abundance of Dirac near-zeromodes. However, dynamical mechanism leading to breakdown of chiral symmetry should be naturally reflected in chiral properties of the modes. Here we offer such connection, presenting evidence that SChSB in QCD proceeds via the appearance of modes exhibiting dynamical tendency for local chiral polarization. These modes form a band of finite width Lambda_ch (chiral polarization scale) around the surface of otherwise anti--polarized Dirac sea, and condense. Lambda_ch characterizes the dynamics of the breaking phenomenon and can be converted to a quark mass scale, thus offering conceptual means to determine which quarks of nature are governed by broken chiral dynamics. It is proposed that, within the context of SU(3) gauge theories with fundamental Dirac quarks, mode condensation is equivalent to chiral polarization, making Lambda_ch an "order parameter" of SChSB. Several uses of these features, ...
Chiral symmetry and lattice gauge theory
Creutz, M
1994-01-01
I review the problem of formulating chiral symmetry in lattice gauge theory. I discuss recent approaches involving an infinite tower of additional heavy states to absorb Fermion doublers. For hadronic physics this provides a natural scheme for taking quark masses to zero without requiring a precise tuning of parameters. A mirror Fermion variation provides a possible way of extending the picture to chirally coupled light Fermions. Talk presented at "Quark Confinement and the Hadron Spectrum," Como, Italy, 20-24 June 1994.
Chiral symmetry and the constituent quark model
Glozman, L Ya
1995-01-01
New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.
Spontaneous Planar Chiral Symmetry Breaking in Cells
Hadidjojo, Jeremy; Lubensky, David
Recent progress in animal development has highlighted the central role played by planar cell polarity (PCP) in epithelial tissue morphogenesis. Through PCP, cells have the ability to collectively polarize in the plane of the epithelium by localizing morphogenetic proteins along a certain axis. This allows direction-dependent modulation of tissue mechanical properties that can translate into the formation of complex, non-rotationally invariant shapes. Recent experimental observations[1] show that cells, in addition to being planar-polarized, can also spontaneously develop planar chirality, perhaps in the effort of making yet more complex shapes that are reflection non-invariant. In this talk we will present our work in characterizing general mechanisms that can lead to spontaneous chiral symmetry breaking in cells. We decompose interfacial concentration of polarity proteins in a hexagonal cell packing into irreducible representations. We find that in the case of polar concentration distributions, a chiral state can only be reached from a secondary instability after the cells are polarized. However in the case of nematic distributions, we show that a finite-amplitude (subcritical, or ``first-order'') nematic transition can send the system from disorder directly to a chiral state. In addition, we find that perturbing the system by stretching the hexagonal packing enables direct (supercritical, or ``second-order'') chiral transition in the nematic case. Finally, we do a Landau expansion to study competition between stretch-induced chirality and the tendency towards a non-chiral state in packings that have retained the full 6-fold symmetry.
Spontaneous chiral symmetry breaking in the Tayler instability
Del Sordo, Fabio; Brandenburg, Axel; Mitra, Dhrubaditya
2011-01-01
The chiral symmetry breaking properties of the Tayler instability are discussed. Effective amplitude equations are determined in one case. This model has three free parameters that are determined numerically. Comparison with chiral symmetry breaking in biochemistry is made.
Magnetic rotation and chiral symmetry breaking
Indian Academy of Sciences (India)
Ashok Kumar Jain; Amita
2001-08-01
The deformed mean ﬁeld of nuclei exhibits various geometrical and dynamical symmetries which manifest themselves as various types of rotational and decay patterns. Most of the symmetry operations considered so far have been deﬁned for a situation wherein the angular momentum coincides with one of the principal axes and the principal axis cranking may be invoked. New possibilities arise with the observation of rotational features in weakly deformed nuclei and now interpreted as magnetic rotational bands. More than 120 MR bands have now been identiﬁed by ﬁltering the existing data. We present a brief overview of these bands. The total angular momentum vector in such bands is tilted away from the principal axes. Such a situation gives rise to several new possibilities including breaking of chiral symmetry as discussed recently by Frauendorf. We present the outcome of such symmetries and their possible experimental veriﬁcation. Some possible examples of chiral bands are presented.
Fermion Determinant with Dynamical Chiral Symmetry Breaking
Institute of Scientific and Technical Information of China (English)
LU Qin; YANG Hua; WANG Qing
2002-01-01
One-loop fermion determinant is discussed for the case in which the dynamical chiral symmetry breakingcaused by momentum-dependent fermion self-energy ∑(p2) takes place. The obtained series generalizes the heat kernelexpansion for hard fermion mass.
Analysis of chiral symmetry breaking mechanism
Energy Technology Data Exchange (ETDEWEB)
Xin-Heng, Guo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Tao, Huang [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics; Chuang, Wang
1997-07-01
The renormalization group invariant quark condensate {mu} is determinate both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like {delta} (q) which is associated with the gluon condensate. The solutions of {mu} in these two equations are consistent. We also obtain the critical strong coupling constant {alpha}c above which chiral symmetry breaks in two approaches. The nonperturbative kernel of the SD equation makes {alpha}c smaller and {mu} bigger. An intuitive picture of the condensation above {alpha}c is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity we derive the equations for the nonperturbative quark propagator from SD equation in the presence of the intermediate-range force is also responsible for dynamical chiral symmetry breaking. (author) 32 refs., 2 figs.
Rho, Mannque
2008-01-01
This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and
Rotating optical microcavities with broken chiral symmetry
Sarma, Raktim; Wiersig, Jan; Cao, Hui
2014-01-01
We demonstrate in open microcavities with broken chiral symmetry, quasi-degenerate pairs of co-propagating modes in a non-rotating cavity evolve to counter-propagating modes with rotation. The emission patterns change dramatically by rotation, due to distinct output directions of CW and CCW waves. By tuning the degree of spatial chirality, we maximize the sensitivity of microcavity emission to rotation. The rotation-induced change of emission is orders of magnitude larger than the Sagnac effect, pointing to a promising direction for ultrasmall optical gyroscopes.
A Molecular Model for Chiral Symmetry Breaking
Latinwo, Folarin; Stillinger, Frank; Debenedetti, Pablo
In this work, we present a new class of molecular models for chiral phenomena in condensed matter systems. A key feature of these models is the ability of the four-site (tetramer) ``molecules'' to inter-convert between two distinct chiral forms (enantiomers). Given this feature, we use analytical theory and computer simulations to investigate the emergent chiral properties (including symmetry breaking) over a range of conditions. In particular, we consider the single-molecule level and condensed-phase behavior of our model system. Interestingly, we find that our liquid-phase predictions are in excellent agreement with recent experimental reports on chiral self-sorting in isotropic liquids. From this perspective, our model demonstrates accurate predictive capabilities, as well as a platform for understanding the microscopic origins of a variety of chiral phenomena. In a broader context, we anticipate that this class of models will be relevant to chirality-dominated areas such as the pharmaceutical industry and pre-biotic geochemistry.
Lattice Theories with Nonlinearly Realized Chiral Symmetry
Chandrasekharan, S; Steffen, F D; Wiese, U J
2003-01-01
We present the lattice formulation of effective Lagrangians in which chiral symmetry is realized nonlinearly on the fermion fields. In this framework both the Wilson term removing unphysical doubler fermions and the fermion mass term do not break chiral symmetry. Our lattice formulation allows us to address non-perturbative questions in effective theories of baryons interacting with pions and in models involving constitutent quarks interacting with pions and gluons. With the presented methods, a system containing a non-zero density of static baryons interacting with pions can be studied on the lattice without encountering a complex action problem. This might lead to new insights into the phase diagram of strongly interacting matter at non-zero chemical potential.
Random Matrices and Chiral Symmetry in QCD
Janik, R A; Papp, G; Zahed, I; Janik, Romuald A.; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail
1998-01-01
In this talk we review some recent results from random matrix models as applied to some non-perturbative issues in QCD. All of the issues we will discuss touched upon the important phenomenon related to the spontaneous breaking of chiral symmetry. The afore mentioned insights are: 1. Spontaneous breakdown of chiral symmetry and disorder. 2. Universal microscopic properties of the eigenvalues of the Dirac operator in the vacuum. 3. Universal microscopic properties of the eigenvalues of the Dirac operator in matter. 4. Structural changes of the Dirac spectrum - finite temperature. 5. Structural changes of the Dirac spectrum - finite baryonic density - ``phony vacua'' 6. Structural changes of the Dirac spectrum - finite baryonic density - ``true vacua'' . 7. Phase diagram. 8. Critical parameters. 9. Critical exponents. 10. $U(1)_A$ problem. 11. Screening of the pseudoscalar susceptibility. 12. Strong CP violation (finite $\\theta$).
Chiral Symmetry restoration from the hadronic regime
Nicola, Angel Gomez; Morales, John; de Elvira, Jacobo Ruiz; Andres, Ricardo Torres
2016-01-01
We discuss recent advances on QCD chiral symmetry restoration at finite temperature, within the theoretical framework of Effective Theories. $U(3)$ Ward Identities are derived between pseudoscalar susceptibilities and quark condensates, allowing to explain the behaviour of lattice meson screening masses. Unitarized interactions and the generated $f_0(500)$ thermal state are showed to play an essential role in the description of the transition through the scalar susceptibility
Chiral symmetry breaking, instantons, and monopoles
Di Giacomo, Adriano
2015-01-01
The purpose of this study is to show that monopoles induce the chiral symmetry breaking. In order to indicate the evidence, we add one pair of monopoles with magnetic charges to the quenched SU(3) configurations by a monopole creation operator, and investigate the propaties of the chiral symmetry breaking using the Overlap fermion. We show that instantons are created by the monopoles. The pseudoscalar meson mass and decay constant are computed from the correlation functions, and the renormalization constant $Z_{S}$ is determined by the non perturbative method. The renormalization group invariant chiral condensate in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV] is evaluated by the Gell-Mann-Oakes-Renner formula, and the random matrix theory. Finally, we estimate the renormalization group invariant quark masses $\\bar{m} = (m_{u} + m_{d})/2$, and $m_{s}$ in $\\overline{\\mbox{MS}}$-scheme at 2 [GeV]. The preliminary results indicate that the chiral condensate decreases and the quark masses become slightly heavy by inc...
Topology in the S U (Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology. II.
Azcoiti, Vicente
2017-07-01
We investigate the physical consequences of the survival of the effects of the U (1 )A anomaly in the chiral symmetric phase of Q C D , and show that the free energy density is a singular function of the quark mass m , in the chiral limit, and that the σ and π ¯ susceptibilities diverge in this limit at any T ≥Tc. We also show that the difference between the π ¯ and δ ¯ susceptibilities diverges in the chiral limit at any T ≥Tc, a result which seems to be excluded by recent results of Tomiya et al. from numerical simulations of two-flavor QCD. We also discuss on the generalization of these results to the Nf≥3 model.
From enemies to friends chiral symmetry on the lattice
Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent
2002-01-01
The physics of strong interactions is invariant under the exchange of left-handed and right-handed quarks, at least in the massless limit. This invariance is reflected in the chiral symmetry of quantum chromodynamics. Surprisingly, it has become clear only recently how to implement this important symmetry in lattice formulations of quantum field theories. We will discuss realizations of exact lattice chiral symmetry and give an example of the computation of a physical observable in quantum chromodynamics where chiral symmetry is important. This calculation is performed by relying on finite size scaling methods as predicted by chiral perturbation theory.
Chiral symmetry breaking in continuum QCD
Mitter, Mario; Pawlowski, Jan M.; Strodthoff, Nils
2015-03-01
We present a quantitative analysis of chiral symmetry breaking in two-flavor continuum QCD in the quenched limit. The theory is set up at perturbative momenta, where asymptotic freedom leads to precise results. The evolution of QCD towards the hadronic phase is achieved by means of dynamical hadronization in the nonperturbative functional renormalization group approach. We use a vertex expansion scheme based on gauge-invariant operators and discuss its convergence properties and the remaining systematic errors. In particular, we present results for the quark propagator, the full tensor structure and momentum dependence of the quark-gluon vertex, and the four-Fermi scatterings.
Hyperfine meson splittings: chiral symmetry versus transverse gluon exchange
Llanes-Estrada, Felipe J; Swanson, Eric S; Szczepaniak, Adam P; Llanes-Estrada, Felipe J.; Cotanch, Stephen R.; Szczepaniak, Adam P.; Swanson, Eric S.
2004-01-01
Meson spin splittings are examined within an effective Coulomb gauge QCD Hamiltonian incorporating chiral symmetry and a transverse hyperfine interaction necessary for heavy quarks. For light and heavy quarkonium systems the pseudoscalar-vector meson spectrum is generated by approximate BCS-RPA diagonalizations. This relativistic formulation includes both $S$ and $D$ waves for the vector mesons which generates a set of coupled integral equations. A smooth transition from the heavy to the light quark regime is found with chiral symmetry dominating the $\\pi$-$\\rho$ mass difference. A good, consistent description of the observed meson spin splittings and chiral quantities, such as the quark condensate and the $\\pi$ mass, is obtained. Similar comparisons with TDA diagonalizations, which violate chiral symmetry, are deficient for light pseudoscalar mesons indicating the need to simultaneously include both chiral symmetry and a hyperfine interaction. The $\\eta_b$ mass is predicted to be around 9400 MeV consistent w...
Lattice realization of the generalized chiral symmetry in two dimensions
Kawarabayashi, Tohru; Aoki, Hideo; Hatsugai, Yasuhiro
2016-12-01
While it has been pointed out that the chiral symmetry, which is important for the Dirac fermions in graphene, can be generalized to tilted Dirac fermions as in organic metals, such a generalized symmetry was so far defined only for a continuous low-energy Hamiltonian. Here we show that the generalized chiral symmetry can be rigorously defined for lattice fermions as well. A key concept is a continuous "algebraic deformation" of Hamiltonians, which generates lattice models with the generalized chiral symmetry from those with the conventional chiral symmetry. This enables us to explicitly express zero modes of the deformed Hamiltonian in terms of that of the original Hamiltonian. Another virtue is that the deformation can be extended to nonuniform systems, such as fermion-vortex systems and disordered systems. Application to fermion vortices in a deformed system shows how the zero modes for the conventional Dirac fermions with vortices can be extended to the tilted case.
Ruggieri, M
2016-01-01
In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a quark-meson model with vacuum fluctuations included. Vacuum fluctuations give a divergent contribution to the vacuum energy, so the latter has to be renormalized before computing physical quantities. The vacuum term is important for restoration of chiral symmetry at finite temperature and $\\mu_5\
BIFURCATION-THEORY APPLIED TO CHIRAL SYMMETRY-BREAKING
ATKINSON, D
1990-01-01
Chiral symmetry breaking in quantum electrodynamics and quantum chromodynamics is considered as a problem in bifurcation theory. Inequalities and positivity play key roles, as they do in much of the work of Andre Martin.
Edge states protected by chiral symmetry in disordered photonic graphene
Zeuner, Julia M; Nolte, Stefan; Szameit, Alexander
2013-01-01
We experimentally investigate the impact of uncorrelated composite and structural disorder in photonic graphene. We find that in case of structural disorder not only chiral symmetry, but also the vanishing of the density of states at zero energy is preserved. This is in contrast to composite disorder, where chiral symmetry as well as the vanishing of the density of states are destroyed. Our observations are experimentally proven by exciting edge states at the bearded edge in disordered photonic graphene.
Nonlinear Realization of Chiral Symmetry on the Lattice
Chandrasekharan, S; Steffen, F D; Wiese, U J
2003-01-01
We formulate lattice theories in which chiral symmetry is realized nonlinearly on the fermion fields. In this framework the fermion mass term does not break chiral symmetry. This property allows us to use the Wilson term to remove the doubler fermions while maintaining exact chiral symmetry on the lattice. Our lattice formulation enables us to address non-perturbative questions in effective field theories of baryons interacting with pions and in models involving constituent quarks interacting with pions and gluons. We show that a system containing a non-zero density of static baryons interacting with pions can be studied on the lattice without encountering complex action problems. In our formulation one can also decide non-perturbatively if the chiral quark model of Georgi and Manohar provides an appropriate low-energy description of QCD. If so, one could understand why the non-relativistic quark model works.
Self-consistent Models of Strong Interaction with Chiral Symmetry
Nambu, Y.; Pascual, P.
1963-04-01
Some simple models of (renormalizable) meson-nucleon interaction are examined in which the nucleon mass is entirely due to interaction and the chiral ( gamma {sub 5}) symmetry is "broken'' to become a hidden symmetry. It is found that such a scheme is possible provided that a vector meson is introduced as an elementary field. (auth)
An Introduction to Chiral Symmetry on the Lattice
Chandrasekharan, S
2004-01-01
The $SU(N_f)_L \\otimes SU(N_f)_R$ chiral symmetry of QCD is of central importance for the nonperturbative low-energy dynamics of light quarks and gluons. Lattice field theory provides a theoretical framework in which these dynamics can be studied from first principles. The implementation of chiral symmetry on the lattice is a nontrivial issue. In particular, local lattice fermion actions with the chiral symmetry of the continuum theory suffer from the fermion doubling problem. The Ginsparg-Wilson relation implies L\\"uscher's lattice variant of chiral symmetry which agrees with the usual one in the continuum limit. Local lattice fermion actions that obey the Ginsparg-Wilson relation have an exact chiral symmetry, the correct axial anomaly, they obey a lattice version of the Atiyah-Singer index theorem, and still they do not suffer from the notorious doubling problem. The Ginsparg-Wilson relation is satisfied exactly by Neuberger's overlap fermions which are a limit of Kaplan's domain wall fermions, as well as ...
Chiral symmetry and scalar meson in hadron and nuclear physics
Kunihiro, T
1995-01-01
After giving a short introduction to the Nambu-Jona-Lasinio model with an anomaly term, we show the importance of the scalar-scalar correlation in the low-energy hadron dynamics, which correlation may be summarized by a scalar-isoscalar meson, the sigma meson. The discussion is based on the chiral quark model with the sigma-meson degrees of freedom. Possible experiments are proposed to produce the elusive meson in a nucleus and detect it. In relation to a precursory soft mode for the chiral transition, the reason is clarified why the dynamic properties of the superconductor may be described by the diffusive time-dependent Ginzburg-Landau (TDGL) equation. We indicate the chiral symmetry plays a significant role also in nuclei; one may say that the stability of nuclei is due to the chiral symmetry of QCD.
Electronic Localization Length of Carbon Nanotubes with Different Chiral Symmetries
Institute of Scientific and Technical Information of China (English)
杨化通; 董锦明; 邢定钰
2001-01-01
The electronic localization lengths λ of metallic carbon nanotubes with different chiral symmetries have been calculated by one parameter scaling method. It is found that λ is independent of the nanotube chirality, but depends linearly on the diameter. The dependence of λ on the disorder strength W has also been studied, and a power-law relation between λ and W is also found to be independent of the tube chirality. Our numerical results are in good agreement with recent experimental observations and other theoretical results for only the "armchair"nanotubes.
Examining a possible cascade effect in chiral symmetry breaking
Fariborz, Amir H
2016-01-01
We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.
Thermal and Nonthermal Pion Enhancements with Chiral Symmetry Restoration
Zhuang, P
2001-01-01
The pion production by sigma decay and its relation with chiral symmetry restoration in a hot and dense matter are investigated in the framework of the Nambu-Jona-Lasinio model. The decay rate for the process sigma -> 2pion to the lowest order in a 1/N_c expansion is calculated as a function of temperature T and chemical potential mu. The thermal and nonthermal enhancements of pions generated by the decay before and after the freeze-out present only in the crossover region of the chiral symmetry transition. The strongest nonthermal enhancement is located in the vicinity of the endpoint of the first-order transition.
Inhomogeneous chiral symmetry breaking in dense neutron-star matter
Energy Technology Data Exchange (ETDEWEB)
Buballa, Michael; Carignano, Stefano [Technische Universitaet Darmstadt, Theoriezentrum, Institut fuer Kernphysik, Darmstadt (Germany)
2016-03-15
An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)
Greene, Brian R
1997-01-01
Mirror symmetry has undergone dramatic progress during the last five years. Tremendous insight has been gained on a number of key issues. This volume surveys these results. Some of the contributions in this work have appeared elsewhere, while others were written specifically for this collection. The areas covered are organized into 4 sections, and each presents papers by both physicists and mathematicians. This volume collects the most important developments that have taken place in mathematical physics since 1991. It is an essential reference tool for both mathematics and physics libraries and for students of physics and mathematics.
Chiral symmetry breaking with the Curtis-Pennington vertex
Atkinson, D.; Gusynin, V. P.; Maris, P.
1992-01-01
Published in: Phys. Lett. B 303 (1993) 157-162 citations recorded in [Science Citation Index] Abstract: We study chiral symmetry breaking in quenched QED$_4$, using a vertex Ansatz recently proposed by Curtis and Pennington. Bifurcation analysis is employed to establish the existence of a critical c
Exploration of Chiral Aminophenols and Aminonaphthols with C2-Symmetry
Institute of Scientific and Technical Information of China (English)
Yan SUN; Zhi Min LI; Xiu Min SHEN; Feng Nian MA; Cong ZHANG
2005-01-01
The exploration of C2-symmetric chiral aminophenols and aminonaphthols is described.Seven new ligands have been successfully synthesized using Mannich reaction as a key step.Four of them have C2-symmetry and their structure has been fully characterized by means of NMR and X-ray crystallography.
Projective symmetry group classification of chiral spin liquids
Bieri, Samuel; Lhuillier, Claire; Messio, Laura
2016-03-01
We present a general review of the projective symmetry group classification of fermionic quantum spin liquids for lattice models of spin S =1 /2 . We then introduce a systematic generalization of the approach for symmetric Z2 quantum spin liquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral Z2 states, we study the subset of U(1) phases variationally in the antiferromagnetic J1-J2-Jd Heisenberg model on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of these phases.
Decay patterns of multi-quasiparticle bands—a model independent test of chiral symmetry
Lawrie, E. A.
2017-09-01
Nuclear chiral systems exhibit chiral symmetry bands, built on left-handed and right-handed angular momentum nucleon configurations. The experimental search for such chiral systems revealed a number of suitable candidates, however an unambiguous identification of nuclear chiral symmetry is still outstanding. In this work it is shown that the decay patterns of chiral bands built on multi-quasiparticle configurations are different from those involving different single-particle configurations. It is suggested to use the observed decay patterns of chiral candidates as a new model-independent test of chiral symmetry.
Realisation of chiral symmetry in the domain model of QCD
Kalloniatis, Alexander C
2003-01-01
The domain model for the QCD vacuum has previously been developed and shown to exhibit confinement of quarks and strong correlation of the local chirality of quark modes and duality of the background domain-like gluon field. Quark fluctuations satisfy a chirality violating boundary conditions parametrized by a random chiral angle $\\alpha_j$ on the $j-th$ domain. The free energy of an ensemble of $N\\to\\infty$ domains depends on $\\{\\alpha_j, j=1... N\\}$ through the logarithm of the quark determinant. Its parity odd part is given by the axial anomaly. The anomaly contribution to the free energy suppresses continuous axial U(1) degeneracy in the ground state, leaving only a residual axial Z(2) symmetry. This discrete symmetry and flavour $SU(N_f)_L\\times SU(N_f)_R$ chiral symmetry in turn are spontaneously broken with a quark condensate arising due to the asymmetry of the spectrum of Dirac operator. In order to illustrate the splitting between the $\\eta'$ from octet pseudoscalar mesons realised in the domain mode...
Testing Lorentz Symmetry using Chiral Perturbation Theory
Noordmans, J P
2016-01-01
We consider the low-energy effects of a selected set of Lorentz- and CPT-violating quark and gluon operators by deriving the corresponding chiral effective lagrangian. Using this effective lagrangian, low-energy hadronic observables can be calculated. We apply this to magnetometer experiments and derive the best bounds on some of the Lorentz-violating coefficients. We point out that progress can be made by studying the nucleon-nucleon potential, and by considering storage-ring experiments for deuterons and other light nuclei.
Nonlinear Boundary Dynamics and Chiral Symmetry in Holographic QCD
Albrecht, Dylan; Wilcox, Ronald J
2011-01-01
In the hard-wall model of holographic QCD we find that nonlinear boundary dynamics are required in order to maintain the correct pattern of explicit and spontaneous chiral symmetry breaking beyond leading order in the pion fields. With the help of a field redefinition, we demonstrate that the requisite nonlinear boundary conditions are consistent with the Sturm-Liouville structure required for the Kaluza-Klein decomposition of bulk fields. Observables insensitive to the chiral limit receive only small corrections in the improved description, and classical calculations in the hard-wall model remain surprisingly accurate.
Chiral Symmetry in Light-Cone Field Theory
Lenz, F; Thies, M; Yazaki, K
2004-01-01
An analysis of spontaneously broken chiral symmetry in light-cone field theory is presented. The non-locality inherent to light-cone field theory requires revision of the standard procedure in the derivation of Ward-Takahashi identities. We derive the general structure of chiral Ward-Takahashi identities and construct them explicitly for various model field theories. Gell-Mann-Oakes-Renner relations and relations between fermion propagators and the structure functions of Nambu-Goldstone bosons are discussed and the necessary modifications of the Ward-Takahashi identities due to the axial anomaly are indicated.
Possible chiral symmetry in $^{138}$Nd
Raduta, A A; Petrache, C M
2015-01-01
The pheomenological Generalized Coherent State Model Hamiltonian is amended with a many body term describing a set of nucleons moving in a shell model mean-field and interacting among themselves with paring, as well as with a particle-core interaction involving a quadrupole-quadrupole and a hexadecapole-hexdecapole force and a spin-spin interaction. The model Hamiltonian is treated in a restricted space consisting of the core projected states associated to the bands ground, $\\beta, \\gamma,\\widetilde{\\gamma}, 1^+$ and $\\widetilde{1^+}$ and two proton aligned quasiparticles coupled to the states of the ground band. The chirally transformed particle-core states are also included. The Hamiltonian contains two terms which are not invariant to the chiral transformations relating the right handed trihedral $({\\bf J_F}, {\\bf J_p}, {\\bf J_n})$ and the left handed ones $(-{\\bf J_F}, {\\bf J_p}, {\\bf J_n})$, $({\\bf J_F}, -{\\bf J_p}, {\\bf J_n})$, $({\\bf J_F}, {\\bf J_p}, -{\\bf J_n})$ where ${\\bf J_F}, {\\bf J_p}, {\\bf J_n}$...
Chiral Symmetry and the Nucleon-Nucleon Interaction
Directory of Open Access Journals (Sweden)
Ruprecht Machleidt
2016-04-01
Full Text Available We review how nuclear forces emerge from low-energy quantum chromodynamics (QCD via chiral effective field theory (EFT. During the past two decades, this approach has evolved into a powerful tool to derive nuclear two- and many-body forces in a systematic and model-independent way. We then focus on the nucleon-nucleon (N N interaction and show in detail how, governed by chiral symmetry, the long- and intermediate-range of the N N potential builds up order by order. We proceed up to sixth order in small momenta, where convergence is achieved. The final result allows for a full assessment of the validity of the chiral EFT approach to the N N interaction.
Space Group Symmetry Fractionalization in a Chiral Kagome Heisenberg Antiferromagnet.
Zaletel, Michael P; Zhu, Zhenyue; Lu, Yuan-Ming; Vishwanath, Ashvin; White, Steven R
2016-05-13
The anyonic excitations of a spin liquid can feature fractional quantum numbers under space group symmetries. Detecting these fractional quantum numbers, which are analogs of the fractional charge of Laughlin quasiparticles, may prove easier than the direct observation of anyonic braiding and statistics. Motivated by the recent numerical discovery of spin-liquid phases in the kagome Heisenberg antiferromagnet, we theoretically predict the pattern of space group symmetry fractionalization in the kagome lattice SO(3)-symmetric chiral spin liquid. We provide a method to detect these fractional quantum numbers in finite-size numerics which is simple to implement in the density matrix renormalization group. Applying these developments to the chiral spin liquid phase of a kagome Heisenberg model, we find perfect agreement between our theoretical prediction and numerical observations.
Disordered d-wave superconductors with chiral symmetry
Fukui, T.
1999-01-01
A two-dimensional lattice model for d-wave superconductor with chiral symmetry is studied. The field theory at the band center is shown to be in the universality class of U(2n)/O(2n) and U(2n) nonlinear sigma model for the system with broken and unbroken time-reversal symmetry, respectively. Vanishing of the beta function implies extended states at the band center. Density of state vanishes as a cubic function of the energy at the band center for the former case, while linear for the latter.
Bose Symmetry and Chiral Decomposition of 2D Fermionic Determinants
Abreu, Everton M C; Wotzasek, C
1998-01-01
We show in a precise way, either in the fermionic or its bosonized version, that Bose symmetry provides a systematic way to carry out the chiral decomposition of the two dimensional fermionic determinant. Interpreted properly, we show that there is no obstruction of this decomposition to gauge invariance, as is usually claimed. Finally, a new way of interpreting the Polyakov-Wiegman identity is proposed.
Bose symmetry and chiral decomposition of 2D fermionic determinants
Abreu, E. M. C.; Banerjee, R.; Wotzasek, C.
1998-01-01
We show in a precise way, either in the fermionic or its bosonized version, that Bose symmetry provides a systematic way to carry out the chiral decomposition of the two-dimensional fermionic determinant. Interpreted properly, we show that there is no obstruction of this decomposition to gauge invariance, as is usually claimed. Finally, a new way of interpreting the Polyakov-Wiegman identity is proposed.
Bose symmetry and chiral decomposition of 2D fermionic determinants
Energy Technology Data Exchange (ETDEWEB)
Abreu, E.M.C.; Banerjee, R.; Wotzasek, C. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Fisica
1998-01-05
We show in a precise way, either in the fermionic or its bosonized version, that Bose symmetry provides a systematic way to carry out the chiral decomposition of the two-dimensional fermionic determinant. Interpreted properly, we show that there is no obstruction of this decomposition to gauge invariance, as is usually claimed. Finally, a new way of interpreting the Polyakov-Wiegman identity is proposed. (orig.). 17 refs.
Precision spectroscopy of pionic atoms and chiral symmetry in nuclei
Directory of Open Access Journals (Sweden)
Itahashi Kenta
2016-01-01
Full Text Available We conduct an experimental project to make spectroscopy of deeply bound pionic atoms systematically over wide range of nuclei. We aim at studying the strong interaction in the low energy region, which has close connection to spontaneous chiral symmetry breaking and its partial restoration in nuclear matter. First experimental results show improved spectral resolution and much better statistical sensitivity than previous experiments. Present status of the experiment is reported.
Breakdown of chiral symmetry during saturation of the Tayler instability
Bonanno, Alfio; Del Sordo, Fabio; Mitra, Dhrubaditya
2012-01-01
We study spontaneous breakdown of chiral symmetry during the nonlinear evolution of the Tayler instability. We start with an initial stationary state of zero helicity. Within linearized perturbation calculations, helical perturbations of this initial state have the same growth rate for either sign of helicity. Direct numerical simulations (DNS) of the fully nonlinear equations however shows that an infinitesimal excess of one sign of helicity in the initial perturbation gives rise to a saturated helical state. We further show that this symmetry-breaking can be described by weakly nonlinear finite amplitude equations with undetermined coefficients which can be deduced solely from symmetry consideration. By fitting solutions of the amplitude equations to data from DNS we further determine the coefficients of the amplitude equations.
Probing Emergent Scale-Chiral Symmetry in Nuclear Interactions
Paeng, Won-Gi
2016-01-01
In effective field theory for baryonic matter in which broken scale symmetry and hidden local symmetry are incorporated, both scale invariance and local gauge invariance, invisible or perhaps even absent in the QCD vacuum, could arise at high density as emergent symmetries, with a dilaton figuring as a scalar Nambu-Goldstone boson and the $\\rho$ and $a_1$ mesons as gauge fields, the former at the "dialton-limit (DL) fixed point" and the latter at the "vector manifestation (VM) fixed point." A novel phenomenon observed in a simplified model is that the dilaton condensate in nuclear medium "walks" as density increases beyond $n_{1/2}\\sim (2-3)n_0$ and induces the in-medium hidden gauge symmetry coupling, un-scaling up to density $n_{1/2}$, to start dropping rapidly towards the VM fixed point $n_{VM} >n_{1/2} $ at which the vector meson mass vanishes, coinciding, most likely, with chiral symmetry restoration. We discuss how to probe both VM and DL properties by means of the nuclear symmetry energy and the sound ...
Type-II Symmetry-Protected Topological Dirac Semimetals
Chang, Tay-Rong; Xu, Su-Yang; Sanchez, Daniel S.; Tsai, Wei-Feng; Huang, Shin-Ming; Chang, Guoqing; Hsu, Chuang-Han; Bian, Guang; Belopolski, Ilya; Yu, Zhi-Ming; Yang, Shengyuan A.; Neupert, Titus; Jeng, Horng-Tay; Lin, Hsin; Hasan, M. Zahid
2017-07-01
The recent proposal of the type-II Weyl semimetal state has attracted significant interest. In this Letter, we propose the concept of the three-dimensional type-II Dirac fermion and theoretically identify this new symmetry-protected topological state in the large family of transition-metal icosagenides, M A3 (M =V , Nb, Ta; A =Al , Ga, In). We show that the VAl3 family features a pair of strongly Lorentz-violating type-II Dirac nodes and that each Dirac node can be split into four type-II Weyl nodes with chiral charge ±1 via symmetry breaking. Furthermore, we predict that the Landau level spectrum arising from the type-II Dirac fermions in VAl3 is distinct from that of known Dirac or Weyl semimetals. We also demonstrate a topological phase transition from a type-II Dirac semimetal to a quadratic Weyl semimetal or a topological crystalline insulator via crystalline distortions.
Ma, Yong-Liang; Harada, Masayasu; Lee, Hyun Kyu; Oh, Yongseok; Park, Byung-Yoon; Rho, Mannque
2014-08-01
We find that, when the dilaton is implemented as a (pseudo-)Nambu-Goldstone boson using a conformal compensator or "conformon" in a hidden gauge symmetric Lagrangian written to O(p4) from which baryons arise as solitons, namely, skyrmions, the vector manifestation and chiral symmetry restoration at high density predicted in hidden local symmetry theory—which is consistent with Brown-Rho scaling—are lost or sent to infinite density. It is shown that they can be restored if in medium the behavior of the ω field is taken to deviate from that of the ρ meson in such a way that the flavor U(2) symmetry is strongly broken at increasing density. The hitherto unexposed crucial role of the ω meson in the structure of elementary baryon and multibaryon systems is uncovered in this work. In the state of half-skyrmions to which the skyrmions transform at a density n1/2≳n0 (where n0 is the normal nuclear matter density), characterized by the vanishing (space averaged) quark condensate but nonzero pion decay constant, the nucleon mass remains more or less constant at a value ≳60% of the vacuum value, indicating a large component of the nucleon mass that is not associated with the spontaneous breaking of chiral symmetry. We discuss its connection to the chiral-invariant mass m0 that figures in the parity-doublet baryon model.
Topological protection of defect states from semi-chiral symmetry
Poli, Charles; Bellec, Matthieu; Kuhl, Ulrich; Mortessagne, Fabrice
2015-01-01
Bipartite quantum systems from the chiral universality classes admit topologically protected zero modes at point defects. However, these states are difficult to separate from compacton-like localized states that arise from flat bands, formed if the two sublattices support a different number of sites within a unit cell. Here we identify a natural reduction of chiral symmetry, obtained by coupling sites on the majority sublattice, which gives rise to spectrally isolated point-defect states, topologically characterized as zero modes supported by the complementary minority sublattice. We observe these states in a microwave realization of a dimerized Lieb lattice with next-nearest neighbour coupling, and also demonstrate topological mode selection via sublattice-staggered absorption.
Chiral symmetry and nuclear matter equation of state
Indian Academy of Sciences (India)
A B Santra
2001-08-01
We investigate the effect on the nuclear matter equation of state (EOS) due to modiﬁcation of meson and nucleon parameters in nuclear medium as a consequence of partial restoration of chiral symmetry. To get the EOS, we have used Brueckner–Bethe–Golstone formalism with Bonn- potential as two-body interaction and QCD sum rule and Brown–Rho scaling prescriptions for modiﬁcation of hadron parameters. We ﬁnd that EOS is very much sensitive to the meson parameters. We can ﬁt, with two body interaction alone, both the saturation density and the binding energy per nucleon.
Scale-setting, flavor dependence, and chiral symmetry restoration
Binosi, Daniele; Roberts, Craig D.; Rodríguez-Quintero, José
2017-06-01
We determine the flavor dependence of the renormalization-group-invariant running interaction through judicious use of both unquenched Dyson-Schwinger equation and lattice results for QCD's gauge-sector two-point functions. An important step is the introduction of a physical scale setting procedure that enables a realistic expression of the effect of different numbers of active quark flavours on the interaction. Using this running interaction in concert with a well constrained class of dressed-gluon-quark vertices, we estimate the critical number of active lighter-quarks above which dynamical chiral symmetry breaking becomes impossible: nfcr≈9 ; and hence in whose neighborhood QCD is plausibly a conformal theory.
From Running Gluon Mass to Chiral Symmetry Breaking
Oliveira, Orlando; Dudal, D; Frederico, T; de Paula, W; Vandersickel, N
2011-01-01
The gluon propagator is one of the fundamental Green's functions of QCD. It is an essential ingredient in, for example, the modeling of the Schwinger-Dyson equation used to describe hadronic phenomenology. From the Landau gauge gluon propagator, computed with lattice QCD methods, we discuss its interpretation as a massive propagator and measure the gluon mass as a function of the momenta. Special attention is given to the mass at infrared scales. In the last part of the talk, the gluon mass and chiral symmetry breaking are related via an effective model for QCD.
Indications of partial chiral symmetry restoration from pionic atoms
Friedman, E.
2002-01-01
Extensive data on strong interaction effects in pionic atoms are analyzed with a density-dependent isovector scattering amplitude suggested recently by Weise to result from a density dependence of the pion decay constant. Most of the so-called 'missing s-wave repulsion' is removed when adopting this approach, thus indicating a partial chiral symmetry restoration in dense matter. The resulting potentials describe quite well also elastic scattering of 20 MeV pions on Ca. Further tests with elastic scattering are desirable.
Lattice regularization of gauge theories without loss of chiral symmetry
't Hooft, Gerardus
1994-01-01
Abstract: A lattice regularization procedure for gauge theories is proposed in which fermions are given a special treatment such that all chiral flavor symmetries that are free of Adler-Bell-Jackiw anomalies are kept intact. There is no doubling of fermionic degrees of freedom. A price paid for this feature is that the number of fermionic degrees of freedom per unit cell is still infinite, although finiteness of the complete functional integrals can be proven (details are outlined in an Appendix). Therefore, although perhaps of limited usefulness for numerical simulations, our scheme can be applied for studying aspects such as analytic convergence questions, spontaneous symmetry breakdown and baryon number violation in non-Abelian gauge theories.
Dynamical chiral symmetry breaking in unquenched QED3
Fischer, C. S.; Alkofer, R.; Dahm, T.; Maris, P.
2004-10-01
We investigate dynamical chiral symmetry breaking in unquenched QED3 using the coupled set of Dyson-Schwinger equations for the fermion and photon propagators. For the fermion-photon interaction we employ an ansatz which satisfies its Ward-Green-Takahashi identity. We present self-consistent analytical solutions in the infrared as well as numerical results for all momenta. In Landau gauge, we find a phase transition at a critical number of flavors of Ncritf≈4. In the chirally symmetric phase the infrared behavior of the propagators is described by power laws with interrelated exponents. For Nf=1 and Nf=2 we find small values for the chiral condensate in accordance with bounds from recent lattice calculations. We investigate the Dyson-Schwinger equations in other linear covariant gauges as well. A comparison of their solutions to the accordingly transformed Landau gauge solutions shows that the quenched solutions are approximately gauge covariant, but reveals a significant amount of violation of gauge covariance for the unquenched solutions.
Baryons, their interactions and the chiral symmetry of QCD
Glozman, L Ya
1997-01-01
An implication of the spontaneous chiral symmetry breaking in QCD is that at low energy and resolution there appear quasiparticles - constituent quarks and Goldstone bosons. Thus, light and strange baryons should be considered as systems of three constituent quarks with confining interaction and a chiral interaction that is mediated by Goldstone bosons between the constituent quarks. We show how the flavor-spin structure and sign of the short-range part of the Goldstone boson exchange interaction reduces the $SU(6)_{FS}$ symmetry down to $SU(3)_F \\times SU(2)_S$, induces hyperfine splittings and provides correct ordering of the lowest states with positive and negative parity. We present a unified description of light and strange baryon spectra calculated in a semirelativistic framework. It is demonstrated that the same short-range part of Goldstone boson exchange also induces strong short-range repulsion in $NN$ system when the latter is treated as $6Q$ system. Thus, all main ingredients of $NN$ interaction a...
Directory of Open Access Journals (Sweden)
Metag Volker
2014-01-01
Full Text Available Chiral symmetry is a fundamental symmetry of Quantum Chromodynamics (QCD in the limit of vanishing quark masses. In the hadronic sector chiral symmetry is broken; otherwise chiral partners - hadronic states with the same spin but opposite parity - should be degenerate in mass which is not observed in nature. It has been suggested that chiral symmetry might at least be partially restored in a strongly interacting environment. As a consequence, properties of hadrons, encoded in their mass and width, may be modified when embedded in a nucleus. These ideas have motivated widespread theoretical and experimental activities. As an example, recent experimental results on the in-medium properties of the η′ meson are presented.
Baskaran, G.
1989-01-01
Using a nonmean-field approach the triangular-lattice S = 1/2 Heisenberg antiferromagnet with nearest- and next-nearest-neighbor couplings is shown undergo an Ising-type phase transition into a chiral-symmetry-broken phase (Kalmeyer-Laughlin-like state) at small T. Removal of next-nearest-neighbor coupling introduces a local Z2 symmetry, thereby suppressing any finite-T chiral order.
Conformal symmetry vs. chiral symmetry breaking in the SU(3) sextet model
Drach, Vincent; Hietanen, Ari; Pica, Claudio; Sannino, Francesco
2015-01-01
We present new results for the SU(3) "sextet model" with two flavors transforming according to the two-index symmetric representation of the gauge group. The simulations are performed using unimproved Wilson fermions. We measure the meson and baryon spectrum of the theory for multiple bare quark masses at two different lattice spacings. To address the pressing issue of whether the model is inside or below the conformal window, we compare the spectrum to the expectations for a theory with spontaneous chiral symmetry breaking and to those of an IR conformal theory. Regardless of the answer (conformal or chirally broken), the theory is a cornerstone in our understanding of near-conformal and composite dynamics, ranging from Technicolor models to unparticle physics. It is also interesting for the composite dynamics of vector-like singlets with respect to the Standard Model interactions.
Eta photoproduction as a test of the extended chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Fernandez-Ramirez, C. [Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain)]. E-mail: cesar@nuc2.fis.ucm.es; Moya de Guerra, E. [Instituto de Estructura de la Materia, CSIC, Serrano 123, E-28006 Madrid (Spain); Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain); Udias, J.M. [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, Avda. Complutense s/n, E-28040 Madrid (Spain)
2007-08-09
We analyze the {gamma}p->{eta}p process from threshold up to 1.2 GeV, employing an effective Lagrangian approach that allows for a mixing of eta couplings of pseudoscalar and pseudovector nature. The mixing ratio of the couplings may serve as a quantitative estimation of the SU{sub L}(3)xSU{sub R}(3) extended chiral symmetry violation in this energy regime. The data analyzed (differential cross sections and asymmetries) show a preference for the pseudoscalar coupling-91% of pseudoscalar coupling component for the best fit. We stress that a more conclusive answer to this question requires a more complete electromagnetic multipole database than the presently available one.
Chiral-symmetry breaking and confinement in Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmer P. [Unibersidade de Lisboa, 104-001, Lisboa, Portugal; Pena, M. T. [Universidade de Lisboa, 1049-001, Lisboa, Portugal; Ribiero, J. E. [Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Universidade de Ãvora, 7000-671 Ãvora, Portugal; Universidade de Lisboa, 1049-001 Lisboa, Portugal; Gross, Franz [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-01-01
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Chiral-symmetry breaking and confinement in Minkowski space
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmar P. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Peña, M. T. [Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Departamento de Física, Instituto Superior Técnico (IST), Universidadede Lisboa, 1049-001 Lisboa (Portugal); Ribeiro, J. E. [Centro de Física das Interações Fundamentais (CFIF), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora (Portugal); Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST), Universidade de Lisboa, 1049-001 Lisboa (Portugal); Gross, Franz [Thomas Jefferson National Accelerator Facility (JLab), Newport News, Virginia 23606 (United States)
2016-01-22
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.
Meyrand, Romain; Galtier, Sébastien
2012-11-01
Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed.
Chiral-symmetry breaking and confinement in Minkowski space
Biernat, Elmar P; Ribeiro, J E; Stadler, Alfred; Gross, Franz
2014-01-01
We present a model for the quark-antiquark interaction formulated in Minkowski space using the Covariant Spectator Theory. The quark propagators are dressed with the same kernel that describes the interaction between different quarks. By applying the axial-vector Ward-Takahashi identity we show that our model satisfies the Adler-zero constraint imposed by chiral symmetry. For this model, our Minkowski-space results of the dressed quark mass function are compared to lattice QCD data obtained in Euclidean space. The mass function is then used in the calculation of the electromagnetic pion form factor in relativistic impulse approximation, and the results are presented and compared with the experimental data from JLab.
Two alternatives of spontaneous chiral symmetry breaking in QCD
Stern, J
1998-01-01
Considering QCD in an Euclidean box, the mechanism of spontaneous breaking of chiral symmetry (SB$\\chi$S) is analyzed in terms of average properties of lowest eigenstates of the Dirac operator. A formal analogy between the pion decay constant and conductivity in disordered systems is established. It follows that SB$\\chi$S results from a subtle balance between the density of Euclidean quark states and their mobility. SB$\\chi$S can be realized either with $ =0$, provided the low density of states is compensated by a high mobility, or with a non-vanishing condensate, provided the mobility is suppressed. It is conjectured that the first case corresponds to extended whereas the latter case to (weakly) localized quark states.
Scale-setting, flavour dependence and chiral symmetry restoration
Binosi, Daniele; Rodriguez-Quintero, Jose
2016-01-01
We determine the flavour dependence of the renormalisation-group-invariant running interaction through judicious use of both unquenched Dyson-Schwinger equation and lattice results for QCD's gauge-sector two-point functions. An important step is the introduction of a physical scale setting procedure that enables a realistic expression of the effect of different numbers of active quark flavours on the interaction. Using this running interaction in concert with a well constrained class of dressed--gluon-quark vertices, we estimate the critical number of active lighter-quarks above which dynamical chiral symmetry breaking becomes impossible: $n_f^{\\rm cr}\\approx 9$; and hence in whose neighbourhood QCD is plausibly a conformal theory.
Gauge-Invariant Formalism with Dirac-mode Expansion for Confinement and Chiral Symmetry Breaking
Gongyo, Shinya; Suganuma, Hideo
2012-01-01
We develop a manifestly gauge-covariant expansion of the QCD operator such as the Wilson loop, using the eigen-mode of the QCD Dirac operator $\\Slash D=\\gamma^\\mu D^\\mu$. With this method, we perform a direct analysis of the correlation between confinement and chiral symmetry breaking in lattice QCD Monte Carlo calculation on $6^4$ at $\\beta$=5.6. As a remarkable fact, the confinement force is almost unchanged even after removing the low-lying Dirac modes, which are responsible to chiral symmetry breaking. This indicates that one-to-one correspondence does not hold for between confinement and chiral symmetry breaking in QCD. In this analysis, we carefully amputate only the "essence of chiral symmetry breaking" by cutting off the low-lying Dirac modes, and can artificially realize the "confined but chiral restored situation" in QCD.
Imaging chiral symmetry breaking from Kekulé bond order in graphene
Gutiérrez, Christopher; Kim, Cheol-Joo; Brown, Lola; Schiros, Theanne; Nordlund, Dennis; Lochocki, Edward B.; Shen, Kyle M.; Park, Jiwoong; Pasupathy, Abhay N.
2016-10-01
Chirality--or `handedness’--is a symmetry property crucial to fields as diverse as biology, chemistry and high-energy physics. In graphene, chiral symmetry emerges naturally as a consequence of the carbon honeycomb lattice. This symmetry can be broken by interactions that couple electrons with opposite momenta in graphene. Here we directly visualize the formation of Kekulé bond order, one such phase of broken chiral symmetry, in an ultraflat graphene sheet grown epitaxially on a copper substrate. We show that its origin lies in the interactions between individual vacancies in the copper substrate that are mediated electronically by the graphene. We show that this interaction causes the bonds in graphene to distort, creating a phase with broken chiral symmetry. The Kekulé ordering is robust at ambient temperature and atmospheric conditions, indicating that intercalated atoms may be harnessed to drive graphene and other two-dimensional materials towards electronically desirable and exotic collective phases.
Chiral Symmetry Breaking in Micro-Ring Optical Cavity By Engineered Dissipation
Shu, Fang-Jie; Zou, Xu-Bo; Yang, Lan
2016-01-01
We propose a method to break the chiral symmetry of light in traveling wave resonators by coupling the optical modes to a lossy channel. Through the engineered dissipation, an indirect dissipative coupling between two oppositely propagating modes can be realized. Combining with reactive coupling, it can break the chiral symmetry of the resonator, allowing light propagating only in one direction. The chiral symmetry breaking is numerically verified by the simulation of an electromagnetic field in a micro-ring cavity, with proper refractive index distributions. This work provokes us to emphasize the dissipation engineering in photonics, and the generalized idea can also be applied to other systems.
Gauge fermions with flat bands and anomalous transport via chiral modes from breaking gauge symmetry
Luo, Xi
2016-01-01
The dispersionless longitudinal photon in Maxwell theory is thought of as a redundant degree of freedom due to the gauge symmetry. We find that when there exist exactly flat bands with zero energy in a condensed matter system, the fermion field may locally transform as a gauge field and the system possesses a gauge symmetry. As the longitudinal photon, the redundant degrees of freedom from the flat bands must be gauged away from the physical states. As an example, we study spinless fermions on a generalized Lieb lattice in three dimensions. The flat band of the longitudinal fermion induces a gauge symmetry. An external magnetic field breaks this gauge symmetry and emerges a bunch of non-topologically chiral modes. Combining these emergent chiral modes with the chiral anomaly mode which is of an opposite chirality, rich anomalous electric transport phenomena exhibit and are expected to be observed in Pd$_3$Bi$_2$S$_2$ and Ag$_3$Se$_2$Au.
Dynamical symmetry breaking in chiral gauge theories with direct-product gauge groups
Shi, Yan-Liang; Shrock, Robert
2016-09-01
We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups G . If the gauge coupling for a factor group Gi⊂G becomes sufficiently strong, it can produce bilinear fermion condensates that break the Gi symmetry itself and/or break other gauge symmetries Gj⊂G . Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of G and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.
Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups
Shi, Yan-Liang
2016-01-01
We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.
Connecting an effective model of confinement and chiral symmetry to lattice QCD
Fraga, E; Fraga, Eduardo; Mocsy, Agnes
2007-01-01
We construct an effective model for the chiral field and the Polyakov loop in which we can investigate the interplay between the approximate chiral symmetry restoration and the deconfinement of color in a thermal SU(3) gauge theory with three flavors of massive quarks. The phenomenological couplings between these two sectors can then be related to the recent lattice data on the renormalized Polyakov loop and the chiral condensate close to the critical region.
Optically probed symmetry breaking in the chiral magnet Cu2OSeO3
Versteeg, R. B.; Vergara, I.; Schaefer, S. D.; Bischoff, D.; Aqeel, A.; Palstra, T. T. M.; Grueninger, M.; van Loosdrecht, P. H. M.
2016-01-01
We report on the linear optical properties of the chiral magnet Cu2OSeO3, specifically associated with the absence of inversion symmetry, the chiral crystallographic structure, and magnetic order. Through spectroscopic ellipsometry, we observe local crystal-field excitations below the charge-transfe
Sea quark transverse momentum distributions and dynamical chiral symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Schweitzer, Peter [Univ. of Connecticut, Storrs, CT (United States); Strikman, Mark [Penn State Univ., State College, PA (United States); Weiss, Christian [JLAB Newport News, VA (United States)
2014-01-01
Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.
Explicit chiral symmetry breaking in Gross-Neveu type models
Energy Technology Data Exchange (ETDEWEB)
Boehmer, Christian
2011-07-25
This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well
Cutoff effects of Wilson fermions in the absence of spontaneous chiral symmetry breaking
Della Morte, M; Luz, Magdalena; Morte, Michele Della
2006-01-01
We simulate two dimensional QED with two degenerate Wilson fermions and plaquette gauge action. As a consequence of the Mermin-Wagner theorem, in the continuum limit chiral symmetry is realized a la Wigner. This property affects also the size of the cutoff effects. That can be understood in view of the fact that the leading lattice artifacts are described, in the continuum Symanzik effective theory, by chirality breaking terms. In particular, vacuum expectation values of non-chirality-breaking operators are expected to be O(a) improved in the chiral limit. We provide a numerical confirmation of this expectation by performing a scaling test.
Tschierske, Carsten; Ungar, Goran
2016-01-04
Spontaneous mirror symmetry breaking is an efficient way to obtain homogeneously chiral agents, pharmaceutical ingredients and materials. It is also in the focus of the discussion around the emergence of uniform chirality in biological systems. Tremendous progress has been made by symmetry breaking during crystallisation from supercooled melts or supersaturates solutions and by self-assembly on solid surfaces and in other highly ordered structures. However, recent observations of spontaneous mirror symmetry breaking in liquids and liquid crystals indicate that it is not limited to the well-ordered solid state. Herein, progress in the understanding of a new dynamic mode of symmetry breaking, based on chirality synchronisation of transiently chiral molecules in isotropic liquids and in bicontinuous cubic, columnar, smectic and nematic liquid crystalline phases is discussed. This process leads to spontaneous deracemisation in the liquid state under thermodynamic control, giving rise to long-term stable symmetry-broken fluids, even at high temperatures. These fluids form conglomerates that are capable of extraordinary strong chirality amplification, eventually leading to homochirality and providing a new view on the discussion of emergence of uniform chirality in prebiotic systems.
Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter
Energy Technology Data Exchange (ETDEWEB)
Holt, Jeremy W., E-mail: jwholt.phys@gmail.com [Department of Physics, University of Washington, Seattle, 98195 (United States); Rho, Mannque [Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette (France); Weise, Wolfram [Physik Department, Technische Universität München, D-85747 Garching (Germany); ECT*, Villa Tambosi, I-38123 Villazzano (Italy)
2016-03-21
Chiral symmetry, first entering in nuclear physics in the 1970s for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early, germinal idea conceived with the soft-pion theorems in the pre-QCD era has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: “it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme”. Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.
Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter
Holt, Jeremy W; Weise, Wolfram
2014-01-01
Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.
Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks
Institute of Scientific and Technical Information of China (English)
LUO XiangQian
2007-01-01
One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking,which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero.In standard methods of the lattice gauge theory,one has to perform expensive simulations at multiple bare quark masses,and employ some modeled functions to extrapolate the data to the chiral limit.This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks,without any ambiguous mass extrapolation.The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD,which deserves further investigation.
Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks
Institute of Scientific and Technical Information of China (English)
2007-01-01
One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.
WHY COLOR-FLAVOR LOCKING IS JUST LIKE CHIRAL SYMMETRY BREAKING
Energy Technology Data Exchange (ETDEWEB)
PISARSKI,R.D.; RISCHKE,D.H.
2000-05-10
The authors review how a classification into representations of color and flavor can be used to understand the possible patterns of symmetry breaking for color superconductivity in dense quark matter. In particular, the authors show how for three flavors, color-flavor locking is precisely analogous to the usual pattern of chiral symmetry breaking in the QCD vacuum.
Master formula approach to broken chiral U(3)xU(3) symmetry
Energy Technology Data Exchange (ETDEWEB)
Hiroyuki Kamano
2010-04-01
The master formula approach to chiral symmetry breaking proposed by Yamagishi and Zahed is extended to the U_R(3)xU_L(3) group, in which effects of the U_A(1) anomaly and the flavor symmetry breaking m_u \
Chiral and U(1) axial symmetry restoration in linear sigma models with two quark flavors
Michalski, S
2006-01-01
We study the restoration of chiral symmetry in linear sigma models with two quark flavors. The models taken into consideration have a U(2) x U(2) and an O(N) internal symmetry. The physical mesons of these models are sigma, pion, \\eta and a_0 where the latter two are not present in the O(N) model. Including two-loop contributions through sunset graphs we calculate the temperature behavior of the order parameter and the masses for explicit chiral symmetry breaking with and without a U(1) axial anomaly. Decay threshold effects introduced by the sunset graphs alter the temperature dependence of the condensate and consequently that of the masses as well. Chiral symmetry tends to be restored at higher temperatures in the two-loop approximation than in the Hartree-Fock approximation. To model a dynamical restoration of the U(1) axial symmetry we imply a temperature-dependent anomaly parameter that sharply drops at about 175 MeV. This triggers the restoration of chiral symmetry before the full symmetry is restored a...
Chiral symmetry breaking from Ginsparg-Wilson fermions
Hernández, Pilar; Lellouch, L P; Hernandez, Pilar; Jansen, Karl; Lellouch, Laurent
2000-01-01
We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter \\Sigma, up to a multiplicative renormalization.
Chiral symmetry breaking from Ginsparg-Wilson fermions
Hernándes, Pilar; Jansen, Karl; Lellouch, Laurent
We calculate the large-volume and small-mass dependences of the quark condensate in quenched QCD using Neuberger's operator. We find good agreement with the predictions of quenched chiral perturbation theory, enabling a determination of the chiral lagrangian parameter Σ, up to a multiplicative renormalization.
Energy Technology Data Exchange (ETDEWEB)
Bostrem, I.G. [Department of Physics, Ural State University, Ekaterinburg 620083 (Russian Federation); Kishine, J. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu 804-8550 (Japan); Lavrov, R.V. [Department of Physics, Ural State University, Ekaterinburg 620083 (Russian Federation); Ovchinnikov, A.S. [Department of Physics, Ural State University, Ekaterinburg 620083 (Russian Federation)], E-mail: alexander.ovchinnikov@usu.ru
2009-01-26
An appearance of the transport spin current in chiral helimagnet is mathematically justified based on the symmetry arguments. Although the starting Lagrangian of the chiral magnet with the Berry phase term and the parity-violating Dzyaloshinskii-Morya coupling is not manifestly Galilean invariant, the Lie point group symmetry analysis and the variational symmetry analysis elucidate the hidden Galilean symmetry and the existence of the linear momentum as a conserved Noether current, respectively.
Instanton-dyon Ensemble with two Dynamical Quarks: the Chiral Symmetry Breaking
Larsen, Rasmus
2015-01-01
This is the second paper of the series aimed at understanding of the ensemble of the instanton-dyons, now with two flavors of light dynamical quarks. The partition function is appended by the fermionic factor, $(det T)^{N_f}$ and Dirac eigenvalue spectra at small values are derived from the numerical simulation of 64 dyons. Those spectra show clear chiral symmetry breaking pattern at high dyon density. Within current accuracy, the confinement and chiral transitions occur at very similar densities.
Some Relations for Quark Confinement and Chiral Symmetry Breaking in QCD
Suganuma, Hideo; Redlich, Krzysztof; Sasaki, Chihiro
2016-01-01
We analytically study the relation between quark confinement and spontaneous chiral-symmetry breaking in QCD. In terms of the Dirac eigenmodes, we derive some formulae for the Polyakov loop, its fluctuations, and the string tension from the Wilson loop. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain wall fermion kernels, respectively. For the confinement quantities, the low-lying Dirac/fermion eigenmodes are found to give negligible contribution, while they are essential for chiral symmetry breaking. These relations indicate no direct one-to-one correspondence between confinement and chiral symmetry breaking in QCD, which seems to be natural because confinement is realized independently of the quark mass.
SU(3) centre vortices underpin confinement and dynamical chiral symmetry breaking
O'Malley, Elyse-Ann; Leinweber, Derek; Moran, Peter
2011-01-01
The mass function of the nonperturbative quark propagator in SU(3) gauge theory shows only a weak dependence on the vortex content of the gauge configurations. Of particular note is the survival of dynamical mass generation on vortex-free configurations having a vanishing string tension. This admits the possibility that mass generation associated with dynamical chiral symmetry breaking persists without confinement. In this presentation, we examine the low-lying ground-state hadron spectrum of the pi, rho, N and Delta and discover that while dynamical mass generation persists in the vortex-free theory, it is not connected to dynamical chiral symmetry breaking. In this way, centre vortices in SU(3) gauge theory are intimately linked to both confinement and dynamical chiral symmetry breaking. We conclude that centre vortices are the essential underlying feature of the QCD vacuum.
Aspects of Chiral Symmetry Breaking in Lattice QCD
Horkel, Derek P.
and pion mass mpia = 0.2456. The analysis was done by separating the Green function of interest into pseudoscalar and scalar components. These are separately calculated on 440 configurations, using the Chroma software package. To improve statistics, we used the various reduction technique suggested in Ref. [13]. We subtracted out the long distance contributions from the pion, excited pion and a0 from the Green function, in the hope of obtaining the short distance form predicted by Ref. [24]. Unfortunately, after subtraction of the a0 and pion states only noise remained. While the results are not in themselves useful, we believe this approach will be worth repeating in the future with finer lattices with a fermion action with better chiral symmetry.
Chiral-glass transition and replica symmetry breaking of a three-dimensional heisenberg spin glass
Hukushima; Kawamura
2000-02-01
Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the chiral-glass ordered state.
Chiral symmetry, constituent quarks and quasi-elastic electron-nucleus scattering
Henley, E. M.; Krein, G.
1989-11-01
The effects of chiral symmetry breaking are examined for quasi-elastic electron scattering on nuclei. Nucleons are assumed to be composed of constituent quarks with masses that depend on density. This density dependence is determined on the basis of the Nambu-Jona-Lasinio model. It is found that the effects of chiral symmetry breaking are in the right direction and the right order of magnitude to explain the discrepancies between theory and experiment. On leave from Departamento de Fisica, Universidade Federal de Santa Maria, 97100 Santa Maria, R.S., Brazil.
Aoki, Ken-Ichi; Sato, Daisuke
2016-01-01
We analyze the dynamical chiral symmetry breaking in gauge theory with the nonperturbative renormalization group equation (NPRGE), which is a first order nonlinear partial differential equation (PDE). In case that the spontaneous chiral symmetry breaking occurs, the NPRGE encounters some non-analytic singularities at the finite critical scale even though the initial function is continuous and smooth. Therefore there is no usual solution of the PDE beyond the critical scale. In this paper, we newly introduce the notion of a weak solution which is the global solution of the weak NPRGE. We show how to evaluate the physical quantities with the weak solution.
Mishra, H; Mishra, Hiranmaya; Parikh, Jitendra C.
2001-01-01
We discuss in this note simultaneous existence of chiral symmetry breakingand color superconductivity at finite temperature and density in aNambu-Jona-Lasinio type model. The methodology involves an explicitconstruction of a variational ground state and minimisation of thethermodynamic potential. There appears to be a phase at finite densities withboth quark antiquark as well as diquark condensates for the "ground" state.Chiral symmetry breaking phase appear to catalyse the threshold for the diquarkcondensates to appear. We also compute the equation of state in this model.
New method for dynamical fermions and chiral-symmetry breaking
Azcoiti, V; Grillo, A F; Laliena, V; Luo, X Q
1994-01-01
The reasons for the feasibility of the Microcanonical Fermionic Average ($MFA$) approach to lattice gauge theory with dynamical fermions are discussed. We then present a new exact algorithm, which is free from systematic errors and convergent even in the chiral limit.
Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model
Institute of Scientific and Technical Information of China (English)
宗红石; 吴小华; 侯丰尧; 赵恩广
2004-01-01
A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.
Explicit versus Dynamical Chiral Symmetry Breaking and Mass Matrix of Quarks and Leptons
Handa, O.; Ishida, S.; Sekiguchi, M.
1992-02-01
By recourse to an analogy between strong and weak interactions, quark mass-matrices consisting of the two parts are proposed, which represent, respectively, dynamical chiral symmetry breaking and explicit one due to small preon mass. The sum rules among quark masses and mixing-matrix elements derived from it seem consistent with present experiments.
Casimir effect as a source of chiral symmetry breaking in QCD
Energy Technology Data Exchange (ETDEWEB)
Floratos, E. (Crete Univ., Iraklion (Greece). Physics Dept.; European Organization for Nuclear Research, Geneva (Switzerland)); Papantonopoulos, E. (Ethnikon Metsovion Polytechneion, Athens (Greece). Physics Dept.); Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))
1985-02-21
The vacuum of QCD, defined on a space-time topology T/sup 3/ x R, breaks chiral symmetry. The physical mechanism responsible is the formation of fermionic condensates due to Casimir forces. Representations of coloured fermions, which possess asymptotic freedom, stabilize the formation of these condensates through their gauge interactions. Estimates of ratios of the order parameters are given for various representations.
Eta' Mass and Chiral Symmetry Breaking at Large Nc and Nf
Girlanda, L; Talavera, P
2001-01-01
We propose a method for implementing the large-Nc, large-Nf limit of QCD at the effective Lagrangian level. Depending on the value of the ratio Nf/Nc, different patterns of chiral symmetry breaking can arise, leading in particular to different behaviors of the eta-prime mass in the combined large-N limit.
Comments on the Chiral Symmetry Breaking in Soft Wall Holographic QCD
DEFF Research Database (Denmark)
Bechi, Jacopo
2009-01-01
In this paper we describe qualitatively some aspects of the holographic QCD. Inspired by a successfull 4D description, we try to separate the Confinement and the Chiral Symmetry Breaking dynamics. We also discuss the realization of the baryons as skyrmions in Soft Wall Holographic QCD, and the is......, and the issue of the Vector Meson Dominance....
Further Investigation on Chiral Symmetry Breaking in a Uniform External Magnetic Field
Jasinski, P
2004-01-01
We study chiral symmetry breaking in QED when a uniform external magnetic field is present. We calculate higher order corrections to the dynamically generated fermion mass and find them to be small. In so doing we correct an error in the literature regarding the matrix structure of the fermion self-energy.
Highly Excited Mesons, Linear Regge Trajectories and the Pattern of the Chiral Symmetry Realization
Shifman, M
2007-01-01
The chiral symmetry of QCD shows up in the linear Weyl--Wigner mode at short Euclidean distances or at high temperatures. On the other hand, low-lying hadronic states exhibit the nonlinear Nambu--Goldstone mode. An interesting question was raised as to whether the linear realization of the chiral symmetry is asymptotically restored for highly excited states. We address it in a number of ways. On the phenomenological side we argue that to the extent the meson Regge trajectories are observed to be linear and equidistant, the Weyl--Wigner mode is not realized. This picture is supported by quasiclassical arguments implying that the quark spin interactions in high excitations are weak, the trajectories are linear, and there is no chiral symmetry restoration. Then we use the string/gauge duality. In the top-down Sakai--Sugimoto construction the nonlinear realization of the chiral symmetry is built in. In the bottom-up AdS/QCD construction by Erlich et al., and Karch et al. the situation is more ambiguous. However, ...
Evidence for discrete chiral symmetry breaking in $N = 1$ supersymmetric Yang-Mills theory
Kirchner, R; Montvay, István; Spanderen, K; Westphalen, J
1999-01-01
In a numerical Monte Carlo simulation of SU(2) Yang-Mills theory with dynamical gauginos we find evidence for two degenerate ground states at the supersymmetry point corresponding to zero gaugino mass. This is consistent with the expected pattern of spontaneous discrete chiral symmetry breaking $Z_4 \\to Z_2$ caused by gaugino condensation.
Evidence for discrete chiral symmetry breaking in N=1 supersymmetric Yang-Mills theory
Desy-Münster Collaboration; Kirchner, R.; Montvay, I.; Westphalen, J.; Luckmann, S.; Spanderen, K.
1999-01-01
In a numerical Monte Carlo simulation of SU(2) Yang-Mills theory with dynamical gauginos we find evidence for two degenerate ground states at the supersymmetry point corresponding to zero gaugino mass. This is consistent with the expected pattern of spontaneous discrete chiral symmetry breaking Z4-->Z2 caused by gaugino condensation.
Chirally Invariant Avatar in a Model of Neutrinos with Light Cone Reflection Symmetry
Chodos, Alan
2016-01-01
In previous work we developed a model of neutrinos based on a new symmetry, Light Cone Reflection (LCR), that interchanges spacelike and timelike intervals. In this paper we start with the four-dimensional model, and construct a two-dimensional avatar that obeys the same equations of motion, and preserves both the light-cone reflection symmetry and the chiral symmetry of the original theory. The avatar also contains the interaction that rendered the four-dimensional model gauge invariant. In an addendum, we make some remarks about how to determine the scalar field that enters into the definition of the LCR-covariant derivative.
Two-flavor lattice QCD simulation in the epsilon-regime with exact chiral symmetry
Fukaya, H; Chiu, T W; Hashimoto, S; Kaneko, T; Matsufuru, H; Noaki, J; Ogawa, K; Okamoto, M; Onogi, T; Yamada, N
2007-01-01
We perform lattice simulations of two-flavor QCD using Neuberger's overlap fermion, with which the exact chiral symmetry is realized at finite lattice spacings. The epsilon-regime is reached by decreasing the light quark mass down to 3 MeV on a 16^3 32 lattice with a lattice spacing \\sim 0.11 fm. We find a good agreement of the low-lying Dirac eigenvalue spectrum with the analytical predictions of the chiral random matrix theory, which reduces to the chiral perturbation theory in the epsilon-regime. The chiral condensate is extracted as \\Sigma(2 GeV) = (251(7)(11) MeV)^3, where the errors are statistical and an estimate of the higher order effects in the epsilon-expansion.
Chiral Symmetry Restoration for the large-$N$ pion gas
Cortés, Santiago; Morales, John
2016-01-01
We analyze chiral restoration within the $O(N+1)/O(N)$ Non-Linear Sigma Model for large $N$ as an effective theory for low-energy QCD at finite temperature $T$. The free energy is constructed diagramatically to $O(M^3)$ in the pion mass, which allows to derive the quark condensate and the scalar susceptibility in the chiral limit. At this order, we do not have to deal with renormalization, neither from divergences from mass tadpoles nor from those of higher order loop contributions. Our results for the critical behaviour are consistent with expectations from lattice analysis and with previous works where the susceptibility is saturated by the thermal $f_0(500)$ pole.
Chiral symmetry and the Yang--Mills gradient flow
Lüscher, Martin
2013-01-01
In the last few years, the Yang--Mills gradient flow was shown to be an attractive tool for non-perturbative studies of non-Abelian gauge theories. Here a simple extension of the flow to the quark fields in QCD is considered. As in the case of the pure-gauge gradient flow, the renormalizability of correlation functions involving local fields at positive flow times can be established using a representation through a local field theory in 4+1 dimensions. Applications of the extended flow in lattice QCD include non-perturbative renormalization and O(a) improvement as well as accurate calculations of the chiral condensate and of the pseudo-scalar decay constant in the chiral limit.
Liquid Crystal Phases of Molecular Bananas: Polarity and Chirality as Broken Symmetries
Clark, Noel
2006-03-01
The study of the interplay of chirality and polarity has been a particularly rich theme of soft matter science since Meyer's seminal discovery that tilted smectics of chiral molecules are macroscopically polar. This event, and the subsequent realization of polar domains and high-speed electro-optic switching in chiral smectics, engaged the liquid crystal community in a worldwide pursuit of novel smectics for applications, featured by the synthesis of more than 50,000 new liquid crystal compounds, and by a consequent broad diversification of the palette of liquid crystal phases and possibilities for supermolecular ordering. A current important activity in this scenario is the study of polar order in synthetically achiral molecules, for example, in molecular bananas, which, as their shape suggests, might be expected to organize in a polar way. Indeed they do, but beyond this, almost everything learned about them has been surprising, including their persistent tendency to exhibit chirality as a spontaneously broken symmetry. I will discuss some of these new phases and phenomena, including the discovery of fluid conglomerates (Pasteur's experiment in a fluid), triclinic fluid order, chiral twist grain boundary phases of achiral molecules, chirality flipping and field-induced deracemization, ferroelectric and antiferroelectric phases with supermolecular- scale polarization modulation, and chiral thermotropic sponge phases.
Chirality and its spontaneous symmetry breaking in two liquid crystal systems
Kang, Louis
Chirality, or handedness, is a key concept spanning all fields of natural science, from biology to mathematics. Chiral structures can arise from achiral building blocks that lack a handedness if their assembly is unstable to chiral deformations, a phenomenon called spontaneous symmetry breaking. We theoretically study the role of chirality in two systems composed of liquid crystals dissolved or suspended in water, and our results match those obtained experimentally by our collaborators. In the first system, we study achiral liquid crystals whose Frank twist modulus is much lower than their splay and bend Frank moduli and which are confined in capillaries. Under homeotropic anchoring, their ground state configuration undergoes spontaneous chiral symmetry breaking when the twist modulus decreases enough relative to the splay and bend moduli. Under degenerate planar anchoring, a small twist-to-saddle-splay ratio of elastic moduli leads to degenerate twisted configurations even though an undeformed configuration is possible. Measuring the twist profile of an experimental system produces a value for the saddle-splay constant, which has been difficult to achieve previously. Under either boundary condition, domain walls and point defects, whose topological charges depend on chirality, separate domains with different degenerate configurations, and certain ones are energetically preferred over others. In the second system, we study filamentous viruses acting as colloidal liquid crystals under the influence of depletion, which promotes condensation of the viruses into 2D colloidal monolayers. These membranes have tunable chirality and show a rich array of emergent behaviors, including a transition from a circular shape to a striking starfish shape upon changing the chirality of constituent viruses, partial coalescence via domain walls through which the viruses twist by 180 degrees, and phase-separated rafts of a particular size when two virus species with different lengths
External Fields and Chiral Symmetry Breaking in the Sakai-Sugimoto Model
Johnson, Clifford V
2008-01-01
Using the Sakai-Sugimoto model we study the effect of an external magnetic field on the dynamics of fundamental flavours in both the confined and deconfined phases of a large N_c gauge theory. We find that an external magnetic field promotes chiral symmetry breaking, consistent with the ``magnetic catalysis'' observed in the field theory literature, and seen in other studies using holographic duals. The external field increases the separation between the deconfinement temperature and the chiral symmetry restoring temperature. In the deconfined phase we investigate the temperature-magnetic field phase diagram and observe, for example, there exists a maximum critical temperature (at which symmetry is restored) for very large magnetic field. We find that this and certain other phenomena persist for the Sakai-Sugimoto type models with probe branes of diverse dimensions. We comment briefly on the dynamics in the presence of an external electric field.
Pleiner, Harald; Brand, Helmut R
2014-02-01
We discuss the symmetry properties as well as the dynamic behavior of various non-polar nematic liquid crystal phases with tetrahedral order. We concentrate on systems that show biaxial nematic order coexisting with octupolar (tetrahedral) order. Non-polar examples are phases with D2 and S4 symmetries, which can be characterized as biaxial nematics lacking inversion symmetry. It is this combination that allows for new features in the statics and dynamics of these phases. The D2-symmetric phase is chiral, even for achiral molecules, and shows ambidextrous chirality in all three preferred directions. The achiral S4-symmetric phase allows for ambidextrous helicity, similar to the higher-symmetric D2d-symmetric phase. Such phases are candidates for nematic phases made from banana-shaped molecules.
Alexandru, Andrei
2014-01-01
The validity of recently proposed equivalence between valence spontaneous chiral symmetry breaking (vSChSB) and chiral polarization of low energy Dirac spectrum (ChP) in SU(3) gauge theory, is examined for the case of twelve mass-degenerate fundamental quark flavors. We find that the vSChSB-ChP correspondence holds for regularized systems studied. Moreover, our results suggest that vSChSB occurs in two qualitatively different circumstances: there is a quark mass $m_c$ such that for $m > m_c$ the mode condensing Dirac spectrum exhibits standard monotonically increasing density, while for $m_{ch} < m < m_c$ the peak around zero separates from the bulk of the spectrum, with density showing a pronounced depletion at intermediate scales. Valence chiral symmetry restoration may occur at yet smaller masses $m < m_{ch}$, but this has not yet been seen by overlap valence probe, leaving the $m_{ch}=0$ possibility open. The latter option could place massless N$_f$=12 theory outside of conformal window. Anomalou...
Ruggieri, M
2016-01-01
In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows to introduce in the simplest way possible a Euclidean momentum, $p_E$, dependent quark mass function which decays (neglecting logarithms) as $1/p_E^2$ for large $p_E$ in agreement with asymptotic behaviour expected in presence of a nonperturbative quark condensate. We show that the momentum dependence of the quark mass function, which has been neglected in all of the previous model studies, drastically affects the dependence of the critical temperature versus $\\mu_5$. We explain this in terms of a natural removal of ultraviolet modes at $T>0$ in the gap equation, as well as of the natural addition of these modes at $T=0$ which help to catalyze chiral symmetry breaking. As a result we find that within this model the critical temperature increases with $\\mu_5$.
Evaluating chiral symmetry restoration through the use of sum rules
Directory of Open Access Journals (Sweden)
Rapp Ralf
2012-11-01
Full Text Available We pursue the idea of assessing chiral restoration via in-medium modifications of hadronic spectral functions of chiral partners. The usefulness of sum rules in this endeavor is illustrated, focusing on the vector/axial-vector channel. We first present an update on obtaining quantitative results for pertinent vacuum spectral functions. These serve as a basis upon which the in-medium spectral functions can be constructed. A novel feature of our analysis of the vacuum spectral functions is the need to include excited resonances, dictated by satisfying the Weinberg-type sum rules. This includes excited states in both the vector and axial-vector channels.We also analyze the QCD sum rule for the finite temperature vector spectral function, based on a ρ spectral function tested in dilepton data which develops a shoulder at low energies.We find that the ρ′ peak flattens off which may be a sign of chiral restoration, though a study of the finite temperature axial-vector spectral function remains to be carried out.
U(1) chiral symmetry in a one-dimensional interacting electron system with spin
Lee, Taejin
2016-11-01
We study a spin-dependent Tomonaga-Luttinger model in one dimension, which describes electron transport through a single barrier. Using the Fermi-Bose equivalence in one dimension, we map the model onto a massless Thirring model with a boundary interaction. A field theoretical perturbation theory for the model has been developed, and the chiral symmetry is found to play an important role. The classical bulk action possesses a global U A (1)4 chiral symmetry because the fermion fields are massless. This global chiral symmetry is broken by the boundary interaction, and the bosonic degrees of freedom, corresponding to a chiral phase transformation, become dynamical. They acquire an additional kinetic action from the fermion path-integral measure and govern the critical behaviors of the physical operators. On the critical line where the boundary interaction becomes marginal, they decouple from the fermi fields. Consequently, the action reduces to the free-field action, which contains only a fermion bilinear boundary mass term as an interaction term. By using a renormalization group analysis, we obtain a new critical line, which differs from the previously known critical lines in the literature. The result of this work implies that the phase diagram of the one-dimensional electron system may have a richer structure than previously thought.
The chiral transition and U(1)_A symmetry restoration from lattice QCD using Domain Wall Fermions
Bazavov, A; Buchoff, Michael I; Cheng, Michael; Christ, N H; Ding, H -T; Gupta, Rajan; Hegde, Prasad; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Soltz, R A; Vranas, P M; Yin, Hantao
2012-01-01
We present results on both the restoration of the spontaneously broken chiral symmetry and the effective restoration of the anomalously broken U(1)_A symmetry in finite temperature QCD at zero chemical potential using lattice QCD. We employ domain wall fermions on lattices with fixed temporal extent N_\\tau = 8 and spatial extent N_\\sigma = 16 in a temperature range of T = 139 - 195 MeV, corresponding to lattice spacings of a \\approx 0.12 - 0.18 fm. In these calculations, we include two degenerate light quarks and a strange quark at fixed pion mass m_\\pi = 200 MeV. The strange quark mass is set near its physical value. We also present results from a second set of finite temperature gauge configurations at the same volume and temporal extent with slightly heavier pion mass. To study chiral symmetry restoration, we calculate the chiral condensate, the disconnected chiral susceptibility, and susceptibilities in several meson channels of different quantum numbers. To study U(1)_A restoration, we calculate spatial ...
Ricci, Francesco; Stillinger, Frank H.; Debenedetti, Pablo G.
2013-11-01
Attrition-enhanced chiral symmetry breaking in crystals, also known as Viedma ripening, is a remarkable phenomenon from a variety of perspectives. By providing a direct route to solid-phase homochirality in a controllable manner, it is of inherent interest to those who study chiral symmetry-breaking/amplification mechanisms. When applied to intrinsically chiral molecules, Viedma ripening may have implications for the origin of biological homochirality, as well as applications in chiral drug resolution. Despite an abundance of research, the mechanistic details underlying this phenomenon have not been unambiguously elucidated. We employ a Monte Carlo algorithm to study this driven system, in order to gain further insights into the mechanisms capable of reproducing key experimental signatures. We provide a comprehensive numerical investigation of how the model parameters (attrition rate, liquid-phase racemization kinetics, and the relative rates of growth and dissolution kinetics) impact the system's overall behavior. It is shown that size-dependent crystal solubility alone is insufficient to reproduce most of the experimental signatures of Viedma ripening, and that some form of a solid-phase chiral feedback mechanism must be invoked in order to reproduce experimentally observed behavior. In this work, such feedback mechanisms can take the form of agglomeration, or of artificial modification of the size dependent growth kinetics.
Wigner–Souriau translations and Lorentz symmetry of chiral fermions
Directory of Open Access Journals (Sweden)
C. Duval
2015-03-01
Full Text Available Chiral fermions can be embedded into Souriau's massless spinning particle model by “enslaving” the spin, viewed as a gauge constraint. The latter is not invariant under Lorentz boosts; spin enslavement can be restored, however, by a Wigner–Souriau (WS translation, analogous to a compensating gauge transformation. The combined transformation is precisely the recently uncovered twisted boost, which we now extend to finite transformations. WS-translations are identified with the stability group of a motion acting on the right on the Poincaré group, whereas the natural Poincaré action corresponds to action on the left.
Chiral symmetry in a hot and dense magnetic medium
Energy Technology Data Exchange (ETDEWEB)
Ferrari, Gabriel N.; Pinto, Marcus B. [Departamento de Fisica, Universidade Federal de Santa Catarina, Florianopolis (Brazil)
2013-03-25
We consider the Linear Sigma Model (LSM) in the Mean Field Approximation (MFA) in order to analyze hot and dense two flavor quark matter subject to strong magnetic fields. We pay especial attention to the case of a finite chemical potential, which has not yet been fully explored. Here, we investigate the strength of the chiral transition and the behavior of the sigma meson mass for {mu}= 0 and {mu}{ne} 0 under strong magnetic fields, as well as its effects over the T-{mu} plane.
Wigner-Souriau translations and Lorentz symmetry of chiral fermions
Duval, C; Horvathy, P A; Zhang, P -M
2014-01-01
Chiral fermions can be embedded into Souriau's massless spinning particle model by "enslaving" the spin, viewed as a gauge constraint. The latter is not invariant under Lorentz boosts; spin enslavement can be restored, however, by a subsequent Wigner-Souriau (WS) translation, analogous to a compensating gauge transformation. The combined transformation is precisely the recently uncovered twisted boost, which we now extend to finite transformations. WS-translations are identified with the stability group of a motion acting on the right on the Poincare group, whereas the natural Poincare action corresponds to action on the left.
Chiral and herringbone symmetry breaking in water-surface monolayers
DEFF Research Database (Denmark)
Peterson, I.R.; Kenn, R.M.; Goudot, A.
1996-01-01
We report the observation from monolayers of eicosanoic acid in the L(2)' phase of three distinct out-of-plane first-order diffraction peaks, indicating molecular tilt in a nonsymmetry direction and hence the absence of mirror symmetry. At lower pressures the molecules tilt in the direction of th...
Recent progress in understanding gauge topology, confinement and chiral symmetry breaking
Larsen, Rasmus; Shuryak, Edward
2016-12-01
A model of interacting instanton-dyons as the dominant degrees of freedom was used to discuss confinement and chiral symmetry breaking in SU(2). The case without fermions and with two flavors of fermions was discussed. Numerical results show that within this model, both with and without fermions, confinement is induced by the repulsion between dyons of same type, as the density of dyons increase at lower temperature. With fermions, the result of confinement at lower temperature, combined with the increased density made the effective distance between fermionic zero-modes smaller, thus inducing a non-zero chiral condensate, obtained by fitting to a eigenvalue density formula from random matrix theory.
Simulations of Lattice Fermions with Chiral Symmetry in Quantum Chromodynamics
Shcheredin, S
2005-01-01
This thesis is to explore the feasibility of calculations in the $\\epsilon$--regime of QCD for the extraction of physical information. We apply two formulations of the Ginsparg-Wilson fermions the Neuberger operator and the hypercube overlap operator to compute the observables of interest. As a main result we present the comparison of the distributions of the leading individual eigenvalues of the Neuberger operator in QCD and the analytical predictions of chiral random matrix theory. We observe a good agreement as long as each side of the physical volume exceeds about $L\\approx 1.12\\fm$. It turns out that this bound for $L$ is generic and sets the size of the physical volume where the axial correlator behaves according to chiral perturbation theory. This allows us to compute a value for the pion decay constant $F_{\\pi}$. As an alternative procedure we only consider the contribution from the zero modes. Here we are able to obtain an estimate for $F_{\\pi}$ and $\\alpha$. As a theoretical development the L\\"usche...
Tortora, Luana; Lavrentovich, Oleg D
2011-03-29
In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement.
Tortora, Luana; Lavrentovich, Oleg D.
2011-01-01
In many colloidal systems, an orientationally ordered nematic (N) phase emerges from the isotropic (I) melt in the form of spindle-like birefringent tactoids. In cases studied so far, the tactoids always reveal a mirror-symmetric nonchiral structure, sometimes even when the building units are chiral. We report on chiral symmetry breaking in the nematic tactoids formed in molecularly nonchiral polymer-crowded aqueous solutions of low-molecular weight disodium cromoglycate. The parity is broken by twisted packing of self-assembled molecular aggregates within the tactoids as manifested by the observed optical activity. Fluorescent confocal microscopy reveals that the chiral N tactoids are located at the boundaries of cells. We explain the chirality induction as a replacement of energetically costly splay packing of the aggregates within the curved bipolar tactoidal shape with twisted packing. The effect represents a simple pathway of macroscopic chirality induction in an organic system with no molecular chirality, as the only requirements are orientational order and curved shape of confinement. PMID:21402929
$B_K$ from quenched QCD with exact chiral symmetry
Garron, N; Hölbling, C; Lellouch, L P; Rebbi, C; Garron, Nicolas; Giusti, Leonardo; Hoelbling, Christian; Lellouch, Laurent; Rebbi, Claudio
2004-01-01
We present a calculation of the standard model Delta S=2 matrix element relevant to indirect CP violation in K->pipi decays which uses Neuberger's chiral formulation of lattice fermions. The computation is performed in the quenched approximation on a 16^3x32 lattice that has a lattice spacing asim 0.1 fm. The resulting bare matrix element is renormalized non-perturbatively. Our main result is B_K^{RGI}=0.87(8)^{+2+14}_{-1-14}, where the first error is statistical, the second is systematic and the third is an estimate of the uncertainty associated with the quenched approximation and with the fact that our kaons are composed of degenerate s and d quarks with masses sim m_s/2.
Fermat Surface and Group Theory in Symmetry of Rapidity Family in Chiral Potts Model
Roan, Shi-shyr
2013-01-01
The present paper discusses various mathematical aspects about the rapidity symmetry in chiral Potts model (CPM) in the context of algebraic geometry and group theory . We re-analyze the symmetry group of a rapidity curve in $N$-state CPM, explore the universal group structure for all $N$, and further enlarge it to modular symmetries of the complete rapidity family in CPM. As will be shown in the article that all rapidity curves in $N$-state CPM constitute a Fermat hypersurface in $\\PZ^3$ of degree 2N as the natural generalization of the Fermat K3 elliptic surface $(N=2)$, we conduct a thorough algebraic geometry study about the rapidity fibration of Fermat surface and its reduced hyperelliptic fibration via techniques in algebraic surface theory. Symmetries of rapidity family in CPM and hyperelliptic family in $\\tau^{(2)}$-model are exhibited through the geometrical representation of the universal structural group in mathematics.
\\pi N transition distribution amplitudes: their symmetries and constraints from chiral dynamics
Pire, Bernard; Szymanowski, Lech
2011-01-01
Baryon to meson Transition Distribution Amplitudes (TDAs) extend the concept of generalized parton distributions. Baryon to meson TDAs appear as building blocks in the colinear factorized description of amplitudes for a class of hard exclusive reactions, prominent examples of which being hard exclusive meson electroproduction off a nucleon in the backward region and baryon-antibaryon annihilation into a meson and a lepton pair. We study general properties of these objects following from the underlying symmetries of QCD. In particular, the Lorentz symmetry results in the polynomiality property of the Mellin moments in longitudinal momentum fractions. We present a detailed account of isotopic and permutation symmetry properties of nucleon to pion (\\pi N) TDAs. This restricts the number of independent leading twist \\pi N TDAs to eight functions providing description of all isotopic channels. Using chiral symmetry and the crossing relation between \\pi N TDAs and \\pi N generalized distribution amplitudes we establ...
Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome
Zhang, Bin
2015-01-01
We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pair-wise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain (TAD) formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking which is limited by the TAD interaction strength.
Chiral symmetry restoration in σ-meson production in hadronic processes
Directory of Open Access Journals (Sweden)
Kukulin V.I.
2014-06-01
Full Text Available Some puzzles about the nature and properties of the lightest scalar meson, σ or f0(500, are analyzed in the paper. We studied the σ-meson production both in N + N, N + d, etc., collisions and also in J/ψ, ψ(2S, ψ(3S, Υ(2S, etc., two-pion decays. The fundamental distinctions between the basic σ-meson parameters found in various hadronic processes can be explained most naturally by the chiral symmetry restoration in intermediate excited hadronic resonances. In the present paper we discuss some important aspects of chiral symmetry restoration in hadronic processes with interrelation to the basic features of QCD.
Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome
Zhang, Bin; Wolynes, Peter G.
2016-06-01
We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.
Akemann, G
2001-01-01
The microscopic spectral eigenvalue correlations of QCD Dirac operators in the presence of dynamical fermions are calculated within the framework of Random Matrix Theory (RMT). Our approach treats the low--energy correlation functions of all three chiral symmetry breaking patterns (labeled by the Dyson index $\\beta=1,2$ and 4) on the same footing, offering a unifying description of massive QCD Dirac spectra. RMT universality is explicitly proven for all three symmetry classes and the results are compared to the available lattice data for $\\beta=4$.
Role of center vortices in chiral symmetry breaking in SU(3) gauge theory
2011-01-01
We study the behavior of the AsqTad quark propagator in Landau gauge on SU(3) Yang-Mills gauge configurations under the removal of center vortices. In SU(2) gauge theory, center vortices have been observed to generate chiral symmetry breaking and dominate the infrared behavior of the quark propagator. In contrast, we report a weak dependence on the vortex content of the gauge configurations, including the survival of dynamical mass generation on configurations with vanishing string tension.
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmer P. [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de FÃsica, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de FÃsica, Universidade de Ãvora, 7000-671 Ãvora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.
Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model
Alam, M Sohaib; Kundu, Arnab
2012-01-01
A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually p...
Four-Fermion Theories with Exact Chiral Symmetry in Three Dimensions
Schmidt, Daniel; Wipf, Andreas
2016-01-01
We investigate a class of four-fermion theories which includes well-known models like the Gross-Neveu model and the Thirring model. In three spacetime dimensions, they are used to model interesting solid state systems like high temperature superconductors and graphene. Additionally, they serve as toy models to study chiral symmetry breaking (CSB). For any number of fermion flavours the Gross-Neveu model has a broken and a symmetric phase, while the existence of a broken phase in the Thirring model depends on the number of flavours. The critical number of fermion flavours beyond which there exists no CSB is still subject of ongoing discussions. Using SLAC fermions we simulate the Thirring model with exact chiral symmetry. To obtain a chiral condensate one can introduce a symmetry-breaking mass term and carefully study the limits of infinite lattice and zero-mass. So far, we did not see CSB within this approach for the Thirring model with 2 or more (reducible) flavours. The talk presents alternative approaches ...
A new Perspective on the Scalar meson Puzzle, from Spontaneous Chiral Symmetry Breaking Beyond BCS
Bicudo, P J A
1998-01-01
We introduce coupled channels of Bethe-Salpeter mesons both in the mass gap equation for chiral symmetry breaking and in the boundstate equation for mesons. Consistency is insured by the Ward Identities for axial currents, which preserve the Goldstone boson nature of the pion. We find that the coupling of channels yields the widths of resonances and contributes to mass splittings, but it does not shift globally the hadron spectrum. We find that coupled channels reduce the breaking of chiral symmetry. This reduction is constrained by the coupling of a scalar meson to a pair of pseudoscalar mesons. The light and wide $\\sigma-f_0(600)$, the narrow $f_0(980)$ and the relatively heavy $f_0(1370)$ are studied in order to comply with the spontaneous breaking of chiral symmetry. Exact calculations are performed in a particular model. In this model we find that the $f_0(980)$ is the best candidate for the groundstate quark antiquark meson . In particular its width is naturally small. In this case the coupled channels ...
Spontaneous chiral symmetry breaking in QCD:a finite-size scaling study on the lattice
Giusti, Leonardo; Giusti, Leonardo; Necco, Silvia
2007-01-01
Spontaneous chiral symmetry breaking in QCD with massless quarks at infinite volume can be seen in a finite box by studying, for instance, the dependence of the chiral condensate from the volume and the quark mass. We perform a feasibility study of this program by computing the quark condensate on the lattice in the quenched approximation of QCD at small quark masses. We carry out simulations in various topological sectors of the theory at several volumes, quark masses and lattice spacings by employing fermions with an exact chiral symmetry, and we focus on observables which are infrared stable and free from mass-dependent ultraviolet divergences. The numerical calculation is carried out with an exact variance-reduction technique, which is designed to be particularly efficient when spontaneous symmetry breaking is at work in generating a few very small low-lying eigenvalues of the Dirac operator. The finite-size scaling behaviour of the condensate in the topological sectors considered agrees, within our stati...
String constraints on discrete symmetries in MSSM type II quivers
Energy Technology Data Exchange (ETDEWEB)
Anastasopoulos, Pascal [Technische Univ. Wien (Austria). Inst. fur Theor. Phys.; Cvetic, Mirjam [Univ. of Pennsylvania, Philadelphia PA (United States). Dept. of Physics and Astronomy; Univ. of Maribor (Slovenia). Center for Applied Mathematics and Theoretical Physics; Richter, Robert [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Vaudrevange, Patrick K.S. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-11-15
We study the presence of discrete gauge symmetries in D-brane semirealistic compactifications. After establishing the constraints on the transformation behaviour of the chiral matter for the presence of a discrete gauge symmetry we perform a systematic search for discrete gauge symmetries within semi-realistic D-brane realizations, based on four D-brane stacks, of the MSSM and the MSSM with three right-handed neutrinos. The systematic search reveals that Proton hexality, a discrete symmetry which ensures the absence of R-parity violating terms as well as the absence of dangerous dimension 5 proton decay operators, is only rarely realized. Moreover, none of the semi-realistic local D-brane configurations exhibit any family dependent discrete gauge symmetry.
Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry
Aoki, S; Feng, X; Hashimoto, S; Kaneko, T; Noaki, J; Onogi, T
2015-01-01
We study the chiral behavior of the electromagnetic (EM) form factors of pion and kaon in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between M_pi \\simeq 290 MeV and 540 MeV and with a strange quark mass m_s close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on m_s and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy...
Light meson electromagnetic form factors from three-flavor lattice QCD with exact chiral symmetry
Aoki, S.; Cossu, G.; Feng, X.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.
2016-02-01
We study the chiral behavior of the electromagnetic (EM) form factors of pions and kaons in three-flavor lattice QCD. In order to make a direct comparison of the lattice data with chiral perturbation theory (ChPT), we employ the overlap quark action that has exact chiral symmetry. Gauge ensembles are generated at a lattice spacing of 0.11 fm with four pion masses ranging between Mπ≃290 MeV and 540 MeV and with a strange quark mass ms close to its physical value. We utilize the all-to-all quark propagator technique to calculate the EM form factors with high precision. Their dependence on ms and on the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields, respectively. A detailed comparison with SU(2) and SU(3) ChPT reveals that the next-to-next-to-leading order terms in the chiral expansion are important to describe the chiral behavior of the form factors in the pion mass range studied in this work. We estimate the relevant low-energy constants and the charge radii, and find reasonable agreement with phenomenological and experimental results.
Chiral symmetry breaking as open string tachyon condensation
Casero, R; Paredes, A; Casero, Roberto; Kiritsis, Elias; Paredes, Angel
2007-01-01
We consider a general framework to study holographically the dynamics of fundamental quarks in a confining gauge theory. Flavors are introduced by placing a set of (coincident) branes and antibranes on a background dual to a confining color theory. The spectrum contains an open string tachyon and its condensation describes the U(N_f)_L x U(N_f)_R -> U(N_f)_V symmetry breaking. By studying worldvolume gauge transformations of the flavor brane action, we obtain the QCD global anomalies and an IR condition that allows to fix the quark condensate in terms of the quark mass. We find the expected N_f^2 Goldstone bosons (for m_q=0), the Gell-Mann-Oakes-Renner relation (for m_q small) and the \\eta' mass. Remarkably, the linear confinement behavior for the masses of highly excited spin-1 mesons, m_n^2 ~ n is naturally reproduced.
Chiral symmetry breaking as open string tachyon condensation
Energy Technology Data Exchange (ETDEWEB)
Casero, Roberto [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France); Kiritsis, Elias [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France); Department of Physics, University of Crete, 71003 Heraklion (Greece); Paredes, Angel [CPHT, Ecole Polytechnique, UMR du CNRS 7644, 91128 Palaiseau (France)], E-mail: paredes@cpht.polytechnique.fr
2007-12-24
We consider a general framework to study holographically the dynamics of fundamental quarks in a confining gauge theory. Flavors are introduced by placing a set of (coincident) branes and antibranes on a background dual to a confining color theory. The spectrum contains an open string tachyon and its condensation describes the U(N{sub f}){sub L}xU(N{sub f}){sub R}{yields}U(N{sub f}){sub V} symmetry breaking. By studying worldvolume gauge transformations of the flavor brane action, we obtain the QCD global anomalies and an IR condition that allows to fix the quark condensate in terms of the quark mass. We find the expected N{sub f}{sup 2} Goldstone bosons (for m{sub q}=0), the Gell-Mann-Oakes-Renner relation (for m{sub q} small) and the {eta}{sup '} mass. Remarkably, the linear confinement behavior for the masses of highly excited spin-1 mesons, m{sub n}{sup 2}{approx}n is naturally reproduced.
Duality symmetries and the type II string effective action
Bergshoeff, E.
1996-01-01
We discuss the duality symmetries of Type II string effective actions in nine, ten and eleven dimensions. As a by-product we give a covariant action underlying the ten-dimensional Type IIB supergravity theory. We apply duality symmetries to construct dyonic Type II string solutions in six dimensions
In Search of a Pristine Signal for (Scale-)Chiral Symmetry in Nuclei
Rho, Mannque
2016-01-01
I describe the long-standing search for a "smoking-gun" signal for the manifestation of (scale-)chiral symmetry in nuclear interactions. It is prompted by Gerry Brown's last unpublished note, reproduced verbatim below, on the preeminent role of pions and vector ($\\rho$,$\\omega$) mesons in providing a simple and elegant description of strongly correlated nuclear interactions. In this note written in tribute to Gerry Brown, I first describe a case of an unambiguous signal in axial-charge transitions in nuclei and then combine his ideas with the more recent development on the role of hidden symmetries in nuclear physics. What transpires is the surprising conclusion that the Landau-Migdal fixed point interaction $G_0^\\prime$, the nuclear tensor forces and Brown-Rho scaling, all encoded in scale-invariant hidden local symmetry, as Gerry put, "run the show and make all forces equal."
Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics
Chernodub, M. N.; Gongyo, Shinya
2017-01-01
We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads to restoration of spontaneously broken chiral symmetry while the vacuum at zero temperature is insensitive to rotation ("cold vacuum cannot rotate"). As the temperature increases the critical angular frequency decreases and the transition becomes softer. A phase diagram in angular frequency-temperature plane is presented. We also show that at fixed temperature the fermion matter in the chirally restored (gapless) phase has a higher moment of inertia compared to the one in the chirally broken (gapped) phase.
Chiral symmetry and pi-pi scattering in the Covariant Spectator Theory
Biernat, Elmar P; Ribeiro, J E; Stadler, Alfred; Gross, Franz
2014-01-01
The pi-pi scattering amplitude calculated with a model for the quark-antiquark interaction in the framework of the Covariant Spectator Theory (CST) is shown to satisfy the Adler zero constraint imposed by chiral symmetry. The CST formalism is established in Minkowski space and our calculations are performed in momentum space. We prove that the axial-vector Ward-Takahashi identity is satisfied by our model. Then we show that, similarly to what happens within the Bethe-Salpeter formalism, application of the axial-vector Ward-Takahashi identity to the CST pi-pi scattering amplitude allows us to sum the intermediate quark-quark interactions to all orders. The Adler self-consistency zero for pi-pi scattering in the chiral limit emerges as the result for this sum.
Simultaneous chiral symmetry restoration and deconfinement - Consequences for the QCD phase diagram
Klahn, Thomas; Hempel, Matthias
2016-01-01
For studies of quark matter in astrophysical scenarios the thermodynamic bag model (tdBag) is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Kl\\"ahn & Fischer (2015) we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant $B_{\\rm dc}$ from a given hadronic equation of state (EoS) in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction and the phase diagram.
Simultaneous Chiral Symmetry Restoration and Deconfinement Consequences for the QCD Phase Diagram
Klähn, Thomas; Fischer, Tobias; Hempel, Matthias
2017-02-01
For studies of quark matter in astrophysical scenarios, the thermodynamic bag model is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Klähn & Fischer we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant {B}{dc} from a given hadronic equation of state in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction, the phase diagram, and implications for protoneutron stars.
On multipartite invariant states II. Orthogonal symmetry
Chruściński, Dariusz; Kossakowski, Andrzej
2006-01-01
We construct a new class of multipartite states possessing orthogonal symmetry. This new class defines a convex hull of multipartite states which are invariant under the action of local unitary operations introduced in our previous paper "On multipartite invariant states I. Unitary symmetry". We study basic properties of multipartite symmetric states: separability criteria and multi-PPT conditions.
On multipartite invariant states II. Orthogonal symmetry
Chruscinski, D; Chruscinski, Dariusz; Kossakowski, Andrzej
2006-01-01
We construct a new class of multipartite states possessing orthogonal symmetry. This new class defines a convex hull of multipartite states which are invariant under the action of local unitary operations introduced in our previous paper "On multipartite invariant states I. Unitary symmetry". We study basic properties of multipartite symmetric states: separability criteria and multi-PPT conditions.
Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation
Herbut, Igor F
2016-01-01
Spontaneous chiral symmetry breaking in three dimensional ($d=3$) quantum electrodynamics is understood as annihilation of an infrared-stable fixed point that describes the large-N conformal phase by another unstable fixed point at a critical number of fermions $N=N_c$. We discuss the root of universality of $N_c$ in this picture, together with some features of the phase boundary in the $(d,N)$ plane. In particular, it is shown that as $d\\rightarrow 4$, $N_c\\rightarrow 0$ with a constant slope, our best estimate of which suggests that $N_c = 2.89$ in $d=3$.
Linking Dynamical Gluon Mass to Chiral Symmetry Breaking via a QCD Low Energy Effective Field Theory
Oliveira, O; Frederico, T
2011-01-01
A low energy effective field theory model for QCD with a scalar color octet field is discussed. The model relates the gluon mass, the constituent quark masses and the quark condensate. The gluon mass comes about $\\sqrt{N_c}\\, \\Lambda_{QCD}$ with the quark condensate being proportional to the gluon mass squared. The model suggests that the restoration of chiral symmetry and the deconfinement transition occur at the same temperature and that, near the transition, the critical exponent for the condensate is twice the gluon mass one. The model also favors the decoupling like solution for the gluon propagator.
Imaging dynamical chiral-symmetry breaking: pion wave function on the light front.
Chang, Lei; Cloët, I C; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C
2013-03-29
We project onto the light front the pion's Poincaré-covariant Bethe-Salpeter wave function obtained using two different approximations to the kernels of quantum chromodynamics' Dyson-Schwinger equations. At an hadronic scale, both computed results are concave and significantly broader than the asymptotic distribution amplitude, φ(π)(asy)(x)=6x(1-x); e.g., the integral of φ(π)(x)/φ(π)(asy)(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral-symmetry breaking is responsible for hardening the amplitude.
Confinement and Chiral Symmetry Breaking via Domain-Like Structures in the QCD Vacuum
Kalloniatis, Alexander C; Kalloniatis, Alex C.; Nedelko, Sergei N.
2001-01-01
A qualitative mechanism for the emergence of domain structured background gluon fields due to singularities in gauge field configurations is considered, and a model displaying a type of mean field approximation to the QCD partition function based on this mechanism is formulated. Estimation of the vacuum parameters (gluon condensate, topological susceptibility, string constant and quark condensate) indicates that domain-like structures lead to an area law for the Wilson loop, nonzero topological susceptibility and spontaneous breakdown of chiral symmetry. Gluon and ghost propagators in the presence of domains are calculated explicitly and their analytical properties are discussed. The Fourier transforms of the propagators are entire functions and thus describe confined dynamical fields.
Probing the Source of Proton Mass by"Unbreaking" Scale-Chiral Symmetry
Rho, Mannque
2016-01-01
I describe a possible scenario for the origin of proton mass in terms of Cheshire Cat, half-skyrmions, topology change and interplay between hidden chiral-scale symmetry and induced local symmetry. This differs from the standard constituent-quark scenario. As the baryonic matter density is increased toward the vector manifestation (VM) fixed-point at which the $\\rho$ mass is to vanish, the effective in-medium mass ratio $m^*_\\rho/m^*_N$ is to tend to zero proportionally to $g^*_\\rho$ where $g^*_\\rho$ is the in-medium hidden gauge coupling constant. I develop the thesis that the intricacy involved in the mass generation could be decoded from experiments at RIB accelerators and massive compact stars.
Kagome Chiral Spin Liquid as a Gauged U(1) Symmetry Protected Topological Phase.
He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank; Moessner, R
2015-12-31
While the existence of a chiral spin liquid (CSL) on a class of spin-1/2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U(1) symmetry protected topological (SPT) phase, which upon promoting its U(1) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.
Chiral Symmetry Breaking for Domain Wall Fermions in Quenched Lattice QCD
Wu, L
2001-01-01
The domain wall fermion formulation exhibits full chiral symmetry for finite lattice spacing except for the effects of mixing between the domain walls. Close to the continuum limit these symmetry breaking effects should be described by a single residual mass. We determine this mass from the conservation law obeyed by the conserved axial current in quenched simulations with beta=5.7 and 6.0 and domain wall separations varying between 12 and 48 on 8^3x32 and 16^3x32 lattices. Using the resulting values for the residual mass we perform two complete and independent calculations of the pion decay constant. Good agreement is found between these two methods and with experiment.
Kagome Chiral Spin Liquid as a Gauged U (1 ) Symmetry Protected Topological Phase
He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank; Moessner, R.
2015-12-01
While the existence of a chiral spin liquid (CSL) on a class of spin-1 /2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U (1 ) symmetry protected topological (SPT) phase, which upon promoting its U (1 ) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.
Nuclear symmetry energy with mesonic cross-couplings in the effective chiral model
Malik, Tuhin; Banerjee, Kinjal; Jha, T. K.; Agrawal, B. K.
2017-09-01
The effective chiral model is extended by introducing the contributions from the cross-couplings between isovector and isoscalar mesons. These cross-couplings are found to be instrumental in improving the density content of the nuclear symmetry energy. The nuclear symmetry energy as well as its slope and curvature parameters at the saturation density are in harmony with those deduced from a diverse set of experimental data. The equation of state for pure neutron matter at subsaturation densities is also in accordance with the ones obtained from different microscopic models. The maximum mass of a neutron star is consistent with the measurement, and the radius at the canonical mass of the neutron star is within the empirical bounds.
Akram, F; Gutierrez-Guerrero, L X; Masud, B; Rodriguez-Quintero, J; Calcaneo-Roldan, C; Tejeda-Yeomans, M E
2012-01-01
We study chiral symmetry breaking for fundamental charged fermions coupled electromagnetically to photons with the inclusion of four-fermion contact self-interaction term. We employ multiplicatively renormalizable models for the photon dressing function and the electron-photon vertex which minimally ensures mass anomalous dimension = 1. Vacuum polarization screens the interaction strength. Consequently, the pattern of dynamical mass generation for fermions is characterized by a critical number of massless fermion flavors above which chiral symmetry is restored. This effect is in diametrical opposition to the existence of criticality for the minimum interaction strength necessary to break chiral symmetry dynamically. The presence of virtual fermions dictates the nature of phase transition. Miransky scaling laws for the electromagnetic interaction strength and the four-fermion coupling, observed for quenched QED, are replaced by a mean-field power law behavior corresponding to a second order phase transition. T...
Scale-Chiral Symmetry and the Sound Velocity in Compact-Star Matter
Paeng, Won-Gi
2016-01-01
When a light scalar dilaton $\\sigma$ and the light-quark vector mesons $V=(\\rho,\\omega)$ are incorporated into an effective scale-invariant hidden local symmetric (sHLS) Lagrangian, scale symmetry for $\\sigma$ and local gauge symmetry for $V$, both hidden in QCD in the vacuum, arise as "emergent" symmetries at a density above $n_{1/2}\\sim 2n_0$, a phenomenon highly relevant for massive compact stars, hitherto unobserved in standard chiral perturbative approaches. What takes place as the density increases beyond $n_{1/2}$ is (1) a topology change to half-skyrmions , (2) parity doubling in the nucleon structure, (3) the maximum neutron star mass $M\\simeq 2.01 M_{\\odot}$ and the radius $R\\simeq 12.0$ km and (4) the sound velocity $v_s^2/c^2\\simeq 1/3$ due to the $\\rho$ meson moving toward the vector manifestation (VM) fixed point $m_\\rho\\rightarrow 0$ and a precursor to emerging conformal symmetry in dense medium.
Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries
Juchtmans, Roeland; Verbeeck, Jo
2015-10-01
In this work we present an alternative way to look at electron diffraction in a transmission electron microscope. Instead of writing the scattering amplitude in Fourier space as a set of plane waves, we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating, e.g., rotation and screw-axis symmetries. For the latter we find selection rules on the OAM coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample, nor the exact crystal structure. We propose an experimental setup to measure the OAM components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform multislice simulations on α quartz to demonstrate how the method indeed reveals the chirality. The experimental feasibility of the technique is discussed together with its main advantages with respect to chirality determination of screw axes. The method shows how the use of a spiral phase plate can be extended from a simple phase imaging technique to a tool to measure the local OAM decomposition of an electron wave, widening the field of interest well beyond chiral space group determination.
Chirality-induced spin polarization places symmetry constraints on biomolecular interactions
Kumar, Anup; Capua, Eyal; Kesharwani, Manoj K.; Martin, Jan M. L.; Sitbon, Einat; Waldeck, David H.; Naaman, Ron
2017-01-01
Noncovalent interactions between molecules are key for many biological processes. Necessarily, when molecules interact, the electronic charge in each of them is redistributed. Here, we show experimentally that, in chiral molecules, charge redistribution is accompanied by spin polarization. We describe how this spin polarization adds an enantioselective term to the forces, so that homochiral interaction energies differ from heterochiral ones. The spin polarization was measured by using a modified Hall effect device. An electric field that is applied along the molecules causes charge redistribution, and for chiral molecules, a Hall voltage is measured that indicates the spin polarization. Based on this observation, we conjecture that the spin polarization enforces symmetry constraints on the biorecognition process between two chiral molecules, and we describe how these constraints can lead to selectivity in the interaction between enantiomers based on their handedness. Model quantum chemistry calculations that rigorously enforce these constraints show that the interaction energy for methyl groups on homochiral molecules differs significantly from that found for heterochiral molecules at van der Waals contact and shorter (i.e., ∼0.5 kcal/mol at 0.26 nm). PMID:28228525
Chiral Separation by Flows: The Role of Flow Symmetry and Dimensionality
Ro, Sunghan; Yi, Juyeon; Kim, Yong Woon
2016-01-01
Separation of enantiomers by flows is a promising chiral resolution method using cost-effective microfluidics. Notwithstanding a number of experimental and numerical studies, a fundamental understanding still remains elusive, and an important question as to whether it is possible to specify common physical properties of flows that induce separation has not been addressed. Here, we study the separation of rigid chiral objects of an arbitrary shape induced by a linear flow field at low Reynolds numbers. Based on a symmetry property under parity inversion, we show that the rate-of-strain field is essential to drift the objects in opposite directions according to chirality. From eigenmode analysis, we also derive an analytic expression for the separation conditions which shows that the flow field should be quasi-two-dimensional for the precise and efficient resolutions of microscopic enantiomers. We demonstrate this prediction by Langevin dynamics simulations with hydrodynamic interactions fully implemented. Finally, we discuss the practical feasibility of the linear flow analysis, considering separations by a vortex flow or an extensional flow under a confining potential. PMID:27739430
Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density
Cassing, W; Moreau, P; Bratkovskaya, E L
2015-01-01
We study the production of strange hadrons in nucleus-nucleus collisions from 4 to 160 A GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. Especially the $K^+/\\pi^+$ and the $(\\Lambda+\\Sigma^0)/\\pi^-$ ratios in central Au+Au collisions are found to provide information on the relative importance of both transitions. The modelling of chiral symmetry restoration is driven by the pion-nucleon $\\Sigma$-term in the computation of the quark scalar condensate $$ that serves as an order parameter for CSR and also scales approximately with the effective quark masses $m_s$ and $m_q$. Furthermore, the nucleon scalar density $\\rho_s$, which also enters the computation of $$, is evaluated within the nonlinear $\\sigma-\\omega$ model which is constraint by Dirac-Brueckner calculations and low energy...
The QCD chiral transition, $\\ua$ symmetry and the Dirac spectrum using domain wall fermions
Buchoff, Michael I; Christ, Norman H; Ding, H -T; Jung, Chulwoo; Karsch, F; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Vranas, P M; Yin, Hantao; Lin, Zhongjie
2013-01-01
We report on a study of the finite-temperature QCD transition region for temperatures between 139 and 196 MeV, with a pion mass of 200 MeV and two space-time volumes: $24^3\\times8$ and $32^3\\times8$, where the larger volume varies in linear size between 5.6 fm (at T=139 MeV) and 4.0 fm (at T=195 MeV). These results are compared with the results of an earlier calculation using the same action and quark masses but a smaller, $16^3\\times8$ volume. The chiral domain wall fermion formulation with a combined Iwasaki and dislocation suppressing determinant ratio gauge action are used. This lattice action accurately reproduces the $\\sua$ and $\\ua$ symmetries of the continuum. Results are reported for the chiral condensates, connected and disconnected susceptibilities and the Dirac eigenvalue spectrum. We find a pseudo-critical temperature, $T_c$, of approximately 165 MeV consistent with previous results and strong finite volume dependence below $T_c$. Clear evidence is seen for $\\ua$ symmetry breaking above $T_c$ whi...
Multipartite invariant states. II. Orthogonal symmetry
Chruściński, Dariusz; Kossakowski, Andrzej
2006-06-01
We construct a class of multipartite states possessing orthogonal symmetry. This new class contains multipartite states which are invariant under the action of local unitary operations introduced in our preceding paper [Phys. Rev. A 73, 062314 (2006)]. We study basic properties of multipartite symmetric states: separability criteria and multi-PPT conditions.
Takahashi, Y.; Eby, P. B.
1985-01-01
Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.
Consistent quantization and symmetry structure of a non-Abelian chiral gauge theory
Shizuya, Ken-Ichi
1989-08-01
The SU(N) chiral Schwinger model with a Wess-Zumino term is studied by use of non-Abelian bosonization, the Becchi-Rouet-Stora formalism, and a dual transformation, and it is confirmed that this model is a sensible quantum theory in a certain range of the anomaly parameter a. The SU(N) gauge symmetry restored by the inclusion of the Wess-Zumino term gets spontaneously broken and the gauge field becomes massive. Left-handed fermions are found to be confined while right-handed fermions remain free and massless. For the specific value a=2, the symmetry of the model enlarges [to a U(N)×U(N) Kac-Moody symmetry]. It is shown by fermionization of the Wess-Zumino field that for a=2 this model is equivalent to massless two-dimensional QCD (QCD2) in the sense that they share the same gauge field and the same left-handed fermions. A dual transformation is used to cast the model into an equivalent nonlinear system of scalar fields only, which reveals the particle spectrum of the model.
Bajc, B.; Blin, A. H.; Hiller, B.; Nemes, M. C.; Rosina, M.
1994-01-01
We calculate the momentum dependence of three particle vertices $\\sigma \\gamma \\gamma$, $\\sigma \\rho \\gamma$ and $\\sigma \\rho \\rho$ in the context of a Nambu Jona Lasinio type model. We show how they influence the processes $\\gamma \\gamma \\rightarrow \\sigma \\rightarrow \\pi \\pi$, $\\rho \\rightarrow \\gamma \\sigma$ and $\\gamma \\gamma \\rightarrow \\rho \\rho$ and how chiral symmetry shadows the presence of the $\\sigma$.
Timofeev, I. V.; Vetrov, S. Ya.
2016-09-01
A new optical state at the boundary of a chiral medium whose dielectric tensor has a helical symmetry is described analytically and numerically. The case of zero tangential wavenumber is considered. The state localized near the boundary does not transfer energy along this boundary and decreases exponentially with the distance from the boundary. The penetration of the field into the chiral medium is blocked at wavelengths corresponding to the photonic band gap and close to the pitch of the helix. The polarization of light near the boundary has the same sign of chirality as the helical symmetry. It is shown that the homogeneous environment or a substrate should exhibit anisotropic metallic reflection. The spectral manifestation of the state is determined by the angle between the optical axes of the media at the interface. A state at the interface between a cholesteric liquid crystal and an anisotropic metal-dielectric nanocomposite was considered as an example.
Chiral symmetry restoration in heavy-ion collisions at intermediate energies
Palmese, A; Seifert, E; Steinert, T; Moreau, P; Bratkovskaya, E L
2016-01-01
We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range $\\sqrt{s_{NN}}$=3-20 GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the non-linear $\\sigma-\\omega$ model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations.
Localization and chiral symmetry in 2+1 flavor domain wall QCD
Antonio, David J; Boyle, Peter A; Christ, Norman H; Clark, Michael A; Cohen, Saul D; Dawson, Chris; Hart, Alistair; Joó, Balint; Jung, Chulwoo; Kenway, Richard D; Li, Shu; Lin, Meifeng; Mawhinney, Robert D; Maynard, Christopher M; Ohta, Shigemi; Tweedie, Robert J; Yamaguchi, Azusa
2007-01-01
We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator for 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3\\times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} \\ge 1.6$ GeV.
Energy Technology Data Exchange (ETDEWEB)
Fischer, Tobias; Klaehn, Thomas [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Hempel, Matthias [University of Basel, Department of Physics, Basel (Switzerland)
2016-08-15
The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D χ SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Klaehn and Fischer (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D χ SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium. (orig.)
Mass limits for the chiral color symmetry G‧-boson from LHC dijet data
Frolov, I. V.; Smirnov, A. D.
2016-07-01
The contributions of G‧-boson predicted by the chiral color symmetry of quarks to the differential dijet cross-sections in pp-collisions at the large hadron collider (LHC) are calculated and analyzed in dependence on two free parameters of the model, the G‧ mass mG‧ and mixing angle 𝜃G. The exclusion and consistency mG‧- 𝜃G regions imposed by the ATLAS and CMS data on dijet cross-sections are found. Using the CT10 (MSTW2008) parton distribution function (PDF) set we show that the G‧-boson for 𝜃G = 45∘, i.e. the axigluon, with the masses mG‧ CL = 68% and CL = 90% are also found.
Progress of Chiral Schiff Bases with C1 Symmetry in Metal-Catalyzed Asymmetric Reactions.
Hayashi, Masahiko
2016-12-01
In this Personal Account, various chiral Schiff base-metal-catalyzed enantioselective organic reactions are reported; the Schiff bases used were O,N,O- as well as N,N,P-tridentate ligands and N,N-bidentate ligands having C1 symmetry. In particular, the enantioselective addition of trimethylsilyl cyanide, dialkylzinc, and organozinc halides to aldehydes, enantioselective 1,4-addition of dialkylzinc to cyclic and acyclic enones, and asymmetric allylic oxidation are reported. Typically, ketimine-type Schiff base-metal complexes exhibited higher reactivity and enantioselectivity compared with the corresponding aldimine-type Schiff base-metal complexes. Notably, remarkable ligand acceleration was observed for all reactions. The obtained products can be used as key intermediates for optically active natural products and pharmaceuticals.
Stefani, F; Giesecke, A; Weber, N; Weier, T
2016-01-01
The current-driven, kink-type Tayler instability (TI) is a key ingredient of the Tayler-Spruit dynamo model for the generation of stellar magnetic fields, but is also discussed as a mechanism that might hamper the up-scaling of liquid metal batteries. Under some circumstances, the TI involves a helical flow pattern which goes along with some alpha effect. Here we focus on the chiral symmetry breaking and the related impact on the alpha effect that would be needed to close the dynamo loop in the Tayler-Spruit model. For low magnetic Prandtl numbers, we observe intrinsic oscillations of the alpha effect. These oscillations serve then as the basis for a synchronized Tayler-Spruit dynamo model, which could possibly link the periodic tidal forces of planets with the oscillation periods of stellar dynamos.
Localization and chiral symmetry in 2+1 flavor domain wall QCD
Energy Technology Data Exchange (ETDEWEB)
David J. Antonio; Kenneth C. Bowler; Peter A. Boyle; Norman H. Christ; Michael A. Clark; Saul D. Cohen; Chris Dawson; Alistair Hart; Balint Joó; Chulwoo Jung; Richard D. Kenway; Shu Li; Meifeng Lin; Robert D. Mawhinney; Christopher M. Maynard; Shigemi Ohta; Robert J. Tweedie; Azusa Yamaguchi
2008-01-01
We present results for the dependence of the residual mass of domain wall fermions (DWF) on the size of the fifth dimension and its relation to the density and localization properties of low-lying eigenvectors of the corresponding hermitian Wilson Dirac operator relevant to simulations of 2+1 flavor domain wall QCD. Using the DBW2 and Iwasaki gauge actions, we generate ensembles of configurations with a $16^3\\times 32$ space-time volume and an extent of 8 in the fifth dimension for the sea quarks. We demonstrate the existence of a regime where the degree of locality, the size of chiral symmetry breaking and the rate of topology change can be acceptable for inverse lattice spacings $a^{-1} \\ge 1.6$ GeV.
Fischer, Tobias; Hempel, Matthias
2016-01-01
The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Kl\\"ahn and Fischer (2015) (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D$\\chi$SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.
Fischer, Tobias; Klähn, Thomas; Hempel, Matthias
2016-08-01
The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D χ SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Klähn and Fischer (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D χ SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.
Phase diagrams of charged colloidal rods: Can a uniaxial charge distribution break chiral symmetry?
Drwenski, Tara; Dussi, Simone; Hermes, Michiel; Dijkstra, Marjolein; van Roij, René
2016-03-07
We construct phase diagrams for charged rodlike colloids within the second-virial approximation as a function of rod concentration, salt concentration, and colloidal charge. Besides the expected isotropic-nematic transition, we also find parameter regimes with a coexistence between a nematic and a second, more highly aligned nematic phase including an isotropic-nematic-nematic triple point and a nematic-nematic critical point, which can all be explained in terms of the twisting effect. We compute the Frank elastic constants to see if the twist elastic constant can become negative, which would indicate the possibility of a cholesteric phase spontaneously forming. Although the twisting effect reduces the twist elastic constant, we find that it always remains positive. In addition, we find that for finite aspect-ratio rods the twist elastic constant is also always positive, such that there is no evidence of chiral symmetry breaking due to a uniaxial charge distribution.
Institute of Scientific and Technical Information of China (English)
CHEN Wan-Chun; CHEN Xiao-Long
2007-01-01
@@ We investigate the influence of dc electric field on chiral symmetry breaking during the growing process of NaClO3 crystal. Nucleation and growth of NaClO3 are completed from an aqueous solution by a fast cooling temperature technology. A pair of polarization microscopes are used to identify a distribution of chiral crystals. Experimental results indicate that the dc electric field has an effect on distribution of chirality, but the direction of the dc electric field is not sensitive to the chiral autocatalysis and selectivity, i.e. the nature convection driving by the gravity does not play an important role on a thin layer of NaClO3 solution. The experimental phenomena may be elucidated by the ECSN mechanism.
Type II chiral affine Lie algebras and string actions in doubled space
Hatsuda, Machiko; Siegel, Warren
2015-01-01
We present affine Lie algebras generated by the supercovariant derivatives and the supersymmetry generators for the left and right moving modes in the doubled space. Chirality is manifest in our doubled space as well as the T-duality symmetry. We present gauge invariant bosonic and superstring actions preserving the two-dimensional diffeomorphism invariance and the kappa-symmetry where doubled spacetime coordinates are chiral fields. The doubled space becomes the usual space by dimensional reduction constraints.
Chiral Symmetry Restoration, Naturalness and the Absence of Fine-Tuning I: Global Theories
Lynn, Bryan W.
2013-01-01
The Standard Model (SM), and the scalar sector of its zero-gauge-coupling limit -- the chiral-symmetric limit of the Gell Mann-Levy Model (GML) -- have been shown not to suffer from a Higgs Fine-Tuning (FT) problem. All ultraviolet quadratic divergences (UVQD) are absorbed into the mass-squared of pseudo Nambu-Goldstone (pNGB) bosons, in GML. Since chiral SU(2)_{L-R} symmetry is restored as the pNGB mass-squared or as the Higgs vacuum expectation value (VEV) are taken to 0, small values of these quantities and of the Higgs mass are natural, and therefore not Fine-Tuned. In this letter, we extend our results on the absence of FT to a wide class of high-mass-scale (M_{Heavy}>>m_{Higgs}) extensions to a simplified SO(2) version of GML. We explicitly demonstrate naturalness and no-FT for two examples of heavy physics, both SO(2) singlets: a heavy (M_S >> m_{Higgs}) real scalar field (with or without a VEV); and a right-handed Type 1 See-Saw Majorana neutrino with M_R >> m_{Higgs}. We prove that for |q^2| <<...
Cluster expansions and chiral symmetry at large density in 2-color QCD
Tomboulis, E T
2015-01-01
$SU(N_c)$ lattice gauge theories with $N_f$ flavors of massless staggered fermions are considered at high quark chemical potential $\\mu$ and any temperature $T$. In the strong coupling regime (sufficiently small $\\beta$) they have been shown to possess a chiral phase of intact global $U(N_f)\\times U(N_f)$ symmetry. The proof is by cluster expansions which converge in the infinite volume limit. Extension to weaker coupling does not appear feasible in the presence of complex fermion determinant. For theories with real determinant, however, such as 2-color QCD with fundamental fermions, or any $N_c$ with even $N_f$ and adjoint fermions, such large $\\mu$ cluster expansions can be used to show chiral behavior of fermionic lattice observables at any gauge coupling. Unfortunately, this absence of color superfluidity/superconductivity at high $\\mu$ appears to be a lattice artifact due to lattice saturation, a serious problem plaguing the standard finite density formalism on the lattice. Some possible ways of circumve...
Topology in the SU(Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology
Azcoiti, Vicente
2016-01-01
We investigate the topological properties of unquenched QCD on the basis of numerical results of simulations at fixed topological charge, recently reported by Borsanyi et al., and analytical predictions of the dilute instanton gas approximation. We demonstrate that the mean value of the chiral condensate at fixed topological charge is, in both cases, inconsistent with the analytical prediction of the large volume expansion around the saddle point, and argue that the most plausible explanation for the failure of the saddle point expansion is a vacuum energy density theta-independent at high temperatures, but surprisingly not too high (T\\sim 2T_c), a result which would imply a vanishing topological susceptibility, and the absence of all physical effects of the U(1) axial anomaly at these temperatures. We also show that under a general assumption concerning the high temperature phase of QCD, where the SU(Nf)_A symmetry is restored, the analytical prediction for the chiral condensate at fixed topological charge i...
Topology in the S U (Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology
Azcoiti, Vicente
2016-11-01
We investigate the topological properties of unquenched QCD on the basis of numerical results of simulations at fixed topological charge, recently reported by Borsanyi et al. We demonstrate that their results for the mean value of the chiral condensate at fixed topological charge are inconsistent with the analytical prediction of the large-volume expansion around the saddle point, and argue that the most plausible explanation for the failure of the saddle-point expansion is a vacuum energy density that is θ -independent at high temperatures, but surprisingly not too high (T ˜2 Tc), a result which would imply a vanishing topological susceptibility and the absence of all physical effects of the U (1 ) axial anomaly at these temperatures. We also show that under a general assumption concerning the high-temperature phase of QCD, where the S U (Nf)A symmetry is restored, the analytical prediction for the chiral condensate at fixed topological charge is in very good agreement with the numerical results of Borsanyi et al., all effects of the axial anomaly should disappear, the topological susceptibility and all the θ derivatives of the vacuum energy density vanish, and the theory becomes θ independent at any T >Tc in the infinite-volume limit.
Chiral behavior of light meson form factors in 2+1 flavor QCD with exact chiral symmetry
Kaneko, T; Cossu, G; Feng, X; Fukaya, H; Hashimoto, S; Noaki, J; Onogi, T
2016-01-01
We present a study of chiral behavior of light meson form factors in QCD with three flavors of overlap quarks. Gauge ensembles are generated at single lattice spacing 0.12 fm with pion masses down to 300 MeV. The pion and kaon electromagnetic form factors and the kaon semileptonic form factors are precisely calculated using the all-to-all quark propagator. We discuss their chiral behavior using the next-to-next-to-leading order chiral perturbation theory.
Sigma(770) Resonance and the Breaking of Scale and Chiral Symmetry in Effective QCD
Svec, M
2002-01-01
CERN measurements of pi(-)p->pi(-)pi(+)n on polarized target at 17.2 GeV/c enable experimental determination of partial wave production amplitudes below 1080 MeV. The measured S-wave transversity amplitudes provide evidence for a narrow scalar resonance sigma(770). The assumption of analyticity of production amplitudes in dipion mass allows to determine S-wave helicity amplitudes S_0 and S_1. The amplitude S_1 is related to pi(-)pi(+)->pi(-)pi(+) scattering. There are four "down" solutions (1, 1bar), (2, 1bar), (1, 2bar) and (2, 2bar) selected by unitarity in pipi scattering. Ellis-Lanik relation between the mass m_sigma and partial width Gamma(sigma->pi(-)pi(+)) derived from an effective QCD theory with broken scale and chiral symmetry selects solutions (1, 1bar) and (1, 2bar) and imparts the sigma(770) resonance with a dilaton-gluonium interpretation. Weinberg's mended symmetry selects solutions (1, 1bar) and (2, 1bar). The combin ed solution (1, 1bar) has m_sigma=769 +/- 13 MeV and Gamma_sigma=154 +/- 22 M...
Chiral symmetry restoration in heavy-ion collisions at intermediate energies
Palmese, A.; Cassing, W.; Seifert, E.; Steinert, T.; Moreau, P.; Bratkovskaya, E. L.
2016-10-01
We study the effect of the chiral symmetry restoration (CSR) on heavy-ion collisions observables in the energy range √{sN N}=3 -20 GeV within the parton-hadron-string dynamics (PHSD) transport approach. The PHSD includes the deconfinement phase transition as well as essential aspects of CSR in the dense and hot hadronic medium, which are incorporated in the Schwinger mechanism for the hadronic particle production. We adopt different parametrizations of the nuclear equation of state from the nonlinear σ -ω model, which enter in the computation of the quark scalar density for the CSR mechanism, in order to estimate the uncertainty in our calculations. For the pion-nucleon Σ term we adopt Σπ≈ 45 MeV, which corresponds to some world average. Our systematic studies show that chiral symmetry restoration plays a crucial role in the description of heavy-ion collisions at √{sN N}=3 -20 GeV, realizing an increase of the hadronic particle production in the strangeness sector with respect to the nonstrange one. We identify particle abundances and rapidity spectra to be suitable probes in order to extract information about CSR, while transverse mass spectra are less sensitive. Our results provide a microscopic explanation for the so-called horn structure in the excitation function of the K+/π+ ratio: The CSR in the hadronic phase produces the steep increase of this particle ratio up to √{sN N}≈7 GeV, while the drop at higher energies is associated to the appearance of a deconfined partonic medium. Furthermore, the appearance and disappearance of the horn-structure are investigated as functions of the system size and collision centrality. We close this work by an analysis of strangeness production in the (T ,μB ) plane (as extracted from the PHSD for central Au+Au collisions) and discuss the possibilities to identify a possible critical point in the phase diagram.
Timofeev, Ivan V
2016-01-01
A new optical state is described both analytically and numerically at the boundary of a chiral medium with continuous helical symmetry of the dielectric tensor. The tangential wave number is assumed to be zero. The state appears to be localized near the boundary. It does not transfer energy along this boundary and falls off exponentially with the distance from the boundary. The field penetration into chiral medium is blocked at wavelengths close to the helical pitch and corresponding to the photonic band gap. The polarization of light near the boundary has the same sign of chirality as the helical medium. It is shown that the homogeneous environment, or the substrate must exhibit the anisotropic metallic reflection. Spectral manifestation of the state is determined by the angle between the optical axes at the interface. A realistic example is considered at the boundary of a cholesteric liquid crystal and a metal-dielectric anisotropic nanocomposite.
Ebert, D; Klimenko, K G
2016-01-01
In this paper we investigate the phase structure of a (1+1)-dimensional schematic quark model with four-quark interaction and in the presence of baryon ($\\mu_B$), isospin ($\\mu_I$) and chiral isospin ($\\mu_{I5}$) chemical potentials. It is established that in the large-$N_c$ limit ($N_c$ is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation (PC) one. The role and influence of this property on the phase structure of the model are studied. Moreover, it is shown that the chemical potential $\\mu_{I5}$ promotes the appearance of the charged PC phase with nonzero baryon density.
Choi, Ho-Meoyng
2014-01-01
We discuss the link between the chiral symmetry of QCD and the numerical results of the light-front quark model (LFQM), analyzing both the two-point and three-point functions of a pseudoscalar meson from the perspective of the vacuum fluctuation consistent with the chiral symmetry of QCD. The two-point and three-point functions are exemplified in this work by the twist-2 and twist-3 distribution amplitudes of a pseudoscalar meson and the pion elastic form factor, respectively. The present analysis of the pseudoscalar meson commensurates with the previous analysis of the vector meson two-point function and fortifies our observation that the light-front quark model with effective degrees of freedom represented by the constituent quark and antiquark may provide the view of effective zero-mode cloud around the quark and antiquark inside the meson. Consequently, the constituents dressed by the zero-mode cloud may be expected to satisfy the chiral symmetry of QCD. Our results appear consistent with this expectation...
Mass limits for the chiral color symmetry $G'$-boson from LHC dijet data
Frolov, I V
2016-01-01
The contributions of $G'$-boson predicted by the chiral color symmetry of quarks to the differential dijet cross-sections in $pp$-collisions at the LHC are calculated and analysed in dependence on two free parameters of the model, the $G'$ mass $m_{G'}$ and mixing angle $\\theta_G$. The exclusion and consistency $m_{G'}-\\theta_G$ regions imposed by the ATLAS and CMS data on dijet cross-sections are found. Using the CT10 (MSTW~2008) PDF set we show that the $G'$-boson for $\\theta_G=45^{\\circ}$, i.e. the axigluon, with the masses $m_{G'} < 2.3 \\,\\, (2.6) \\,\\, \\mbox{TeV}$ and $m_{G'} < 3.35 \\,\\, (3.25) \\,\\, \\mbox{TeV}$ is excluded at the probability level of $95\\%$ by the ATLAS and CMS dijet data respectively. For the other values of $\\theta_G$ the exclusion limits are more stringent. The $m_{G'}-\\theta_G$ regions consistent with these data at $CL=68\\%$ and $CL=90\\%$ are also found.
Ayala, Alejandro; Gutierrez, Enif; Raya, Alfredo; Sanchez, Angel
2010-01-01
We study chiral symmetry breaking for relativistic fermions, described by a parity violating Lagrangian in 2+1-dimensions, in the presence of a heat bath and a uniform external magnetic field. Working within their four-component formalism allows for the inclusion of both parity-even and -odd mass terms. Therefore, we can define two types of fermion anti-fermion condensates. For a given value of the magnetic field, there exist two different critical temperatures which would render one of these condensates identically zero, while the other would survive. Our analysis is completely general: it requires no particular simplifying hierarchy among the energy scales involved, namely, bare masses, field strength and temperature. However, we do reproduce some earlier results, obtained or anticipated in literature, corresponding to special kinematical regimes for the parity conserving case. Relating the chiral condensate to the one-loop effective Lagrangian, we also obtain the magnetization and the pair production rate ...
Poli, Charles; Schomerus, Henning; Bellec, Matthieu; Kuhl, Ulrich; Mortessagne, Fabrice
2017-06-01
Bipartite quantum systems from the chiral universality classes admit topologically protected zero modes at point defects. However, in two-dimensional systems these states can be difficult to separate from compacton-like localized states that arise from flat bands, formed if the two sublattices support a different number of sites within a unit cell. Here we identify a natural reduction of chiral symmetry, obtained by coupling sites on the majority sublattice, which gives rise to spectrally isolated point-defect states, topologically characterized as zero modes supported by the complementary minority sublattice. We observe these states in a microwave realization of a dimerized Lieb lattice with next-nearest neighbour coupling, and also demonstrate topological mode selection via sublattice-staggered absorption.
Symmetry Breaking in Chiral Ionic Liquids Evidenced by Vibrational Optical Activity.
Oulevey, Patric; Luber, Sandra; Varnholt, Birte; Bürgi, Thomas
2016-09-19
Ionic liquids (ILs) are receiving increasing interest for their use in synthetic laboratories and industry. Being composed of charged entities, they show a complex and widely unexplored dynamic behavior. Chiral ionic liquids (CILs) have a high potential as solvents for use in asymmetric synthesis. Chiroptical methods, owing to their sensitivity towards molecular conformation, offer unique possibilities to study the structure of these chiral ionic liquids. Raman optical activity proved particularly useful to study ionic liquids composed of amino acids and the achiral 1-ethyl-3-methylimidazolium counterion. We could substantiate, supported by selected theoretical methods, that the achiral counterion adopts an overall chiral conformation in the presence of chiral amino acid ions. These findings suggest that in the design of chiral ionic liquids for asymmetric synthesis, the structure of the achiral counter ion also has to be carefully considered. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Mishra, H
2001-01-01
We discuss in this note simultaneous existence of chiral symmetry breaking and color superconductivity at finite temperature and density in a Nambu-Jona-Lasinio type model. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. There exist nontrivial solutions to the gap equations at finite densities with both quark-antiquark as well as diquark condensates for the 'ground' state. However, such a phase is thermodynamically unstable with the pressure being negative in this region. We also compute the equation of state, and obtain the structure of the phase diagram in the model.
Effects of rotation and boundaries on chiral symmetry breaking of relativistic fermions
Chernodub, M. N.; Gongyo, Shinya
2017-05-01
In order to avoid unphysical causality-violating effects, any rigidly rotating system must be bounded in directions transverse to the axis of rotation. We demonstrate that this requirement implies substantial dependence of properties of the relativistically rotating system on the boundary conditions. We consider a system of interacting fermions described by the Nambu-Jona-Lasinio model in a space bounded by the cylindrical surface of the finite radius. In order to confine the fermions inside the cylinder, we impose "chiral" MIT boundary conditions on its surface. These boundary conditions are parametrized by a continuous chiral angle Θ . We find that, at any value of Θ , the chiral restoration temperature Tc decreases as a quadratic function of the angular frequency Ω . However, the position and the slope of the critical curve Tc=Tc(Ω ) in the phase diagram depend noticeably on the value of the chiral angle.
Chiral symmetry restoration and strong CP violation in a strong magnetic background
Fraga, Eduardo S
2009-01-01
Motivated by the phenomenological scenario of the chiral magnetic effect that can be possibly found in high-energy heavy ion collisions, we study the role of very intense magnetic fields and strong CP violation in the phase structure of strong interactions and, more specifically, their influence on the nature of the chiral transition. Direct implications for the dynamics of phase conversion and its time scales are briefly discussed. Our results can also be relevant in the case of the early universe.
Chiral symmetry restoration and strong CP violation in a strong magnetic background
Fraga, Eduardo S.; Mizher, Ana Júlia
2009-01-01
Motivated by the phenomenological scenario of the chiral magnetic effect that can be possibly found in high-energy heavy ion collisions, we study the role of very intense magnetic fields and strong CP violation in the phase structure of strong interactions and, more specifically, their influence on the nature of the chiral transition. Direct implications for the dynamics of phase conversion and its time scales are briefly discussed. Our results can also be relevant in the case of the early un...
Barik, N.; Mishra, R. N.; Mohanty, D. K.; Panda, P. K.; Frederico, T.
2013-07-01
We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations. The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.
Specific features and symmetries for magnetic and chiral bands in nuclei
Raduta, A. A.
2016-09-01
Magnetic and chiral bands have been a hot subject for more than twenty years. Therefore, quite large volumes of experimental data as well as theoretical descriptions have been accumulated. Although some of the formalisms are not so easy to handle, the results agree impressively well with the data. The objective of this paper is to review the actual status of both experimental and theoretical investigations. Aiming at making this material accessible to a large variety of readers, including young students and researchers, I gave some details on the schematic models which are able to unveil the main features of chirality in nuclei. Also, since most formalisms use a rigid triaxial rotor for the nuclear system's core, I devoted some space to the semi-classical description of the rigid triaxial as well as of the tilted triaxial rotor. In order to answer the question whether the chiral phenomenon is spread over the whole nuclear chart and whether it is specific only to a certain type of nuclei, odd-odd, odd-even or even-even, the current results in the mass regions of A ∼ 60 , 80 , 100 , 130 , 180 , 200 are briefly described for all kinds of odd/even-odd/even systems. The chiral geometry is a sufficient condition for a system of proton-particle, neutron-hole and a triaxial rotor to have the electromagnetic properties of chiral bands. In order to prove that such geometry is not unique for generating magnetic bands with chiral features, I presented a mechanism for a new type of chiral bands. One tries to underline the fact that this rapidly developing field is very successful in pushing forward nuclear structure studies.
Breaking of Chiral Symmetry in 104Rh and Its Neighbouring Nuclei
Institute of Scientific and Technical Information of China (English)
彭婧; 孟杰; 张双全
2003-01-01
The possible chiral doublet structures in 104Rh with the asymmetric configuration πrg-19/2⊕vh11/2 have been studied in the triaxial particle-rotor model. The spectra, the Ⅰ - ω relations and the transition probabilities support the existence of the chiral bands in this nucleus. The γ-deformation interval -35°≤γ≤-25°for appearance of chiral doublets in 104Rh is given. With appropriate moment of inertia and the configuration πrg-19/2⊕vh11/2, the experimental spectra in 104 Rh, 106Rh, 108Rh, 110Ag have been well reproduced by the yrast bands of the triaxial particle-rotor-model calculation.
Lorentz symmetry violation in the fermion number anomaly with the chiral overlap operator
Makino, Hiroki
2016-01-01
Recently, Grabowska and Kaplan proposed a 4-dimensional lattice formulation of chiral gauge theories on the basis of a chiral overlap operator. We compute the classical continuum limit of the fermion number anomaly in this formulation. Unexpectedly, we find that the anomaly contains a term which is not Lorentz invariant. The term is however proportional to the gauge anomaly coefficient and thus the fermion number anomaly in this lattice formulation automatically restores the Lorentz invariant form when and only when the anomaly cancellation condition is met.
Lorentz symmetry violation in the fermion number anomaly with the chiral overlap operator
Makino, Hiroki; Morikawa, Okuto
2016-12-01
Recently, Grabowska and Kaplan proposed a four-dimensional lattice formulation of chiral gauge theories on the basis of a chiral overlap operator. We compute the classical continuum limit of the fermion number anomaly in this formulation. Unexpectedly, we find that the continuum limit contains a term which is not Lorentz invariant. The term is, however, proportional to the gauge anomaly coefficient, and thus the fermion number anomaly in this lattice formulation automatically restores the Lorentz-invariant form when and only when the anomaly cancellation condition is met.
Directory of Open Access Journals (Sweden)
Ayako Nakao
2013-06-01
Full Text Available Solvent chirality transfer of (S-/(R-limonenes allows the instant generation of optically active PF8P2 aggregates with distinct circular dichroism (CD/circularly polarized luminescence (CPL amplitudes with a high quantum yield of 16–20%. The present paper also reports subtle mirror-symmetry-breaking effects in CD-/CPL-amplitude and sign, CD/UV-vis spectral wavelengths, and photodynamics of the aggregates, though the reasons for the anomaly are unsolved. However, these photophysical properties depend on (i the chemical natures of chiral and achiral molecules when used in solvent quantity, (ii clockwise and counterclockwise stirring operations, and (iii the order of addition of limonene and methanol to the chloroform solution.
Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Dash, B.K.
1986-11-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment.
Complete chiral symmetry breaking of an amino acid derivative directed by circularly polarized light
Noorduin, Wim L.; Bode, Arno A.C.; Meijden, Maarten van der; Meekes, Hugo; Etteger, Albert F. van; Enckevort, Willem J.P. van; Christianen, Peter C.M.; Kaptein, Bernard; Kellogg, Richard M.; Rasing, Theo; Vlieg, Elias
2009-01-01
Circularly polarized light (CPL) emitted from star-forming regions is an attractive candidate as a cause of single chirality in nature. It has remained difficult, however, to translate the relatively small chemical effects observed on irradiation of molecular systems with CPL into high enantiomeric
Energy Technology Data Exchange (ETDEWEB)
Bernardini, Alex Eduardo de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Inst. de Fisica Gleb Wataghin (IFGW). Dept. de Raios Cosmicos]. E-mail: alexeb@ifi.unicamp.br
2002-07-01
This work presents a briefly discussion on the chirality, a important quantum character of the neutrinos and particles physics. A SU(4) symmetry base is establish for the study on the chiral oscillation 'left-right' for the determination the quantum numbers related to the different representations of the SU(4) symmetry group.
Energy Technology Data Exchange (ETDEWEB)
Hilger, Thomas Uwe
2012-04-11
The interplay of hadron properties and their modification in an ambient nuclear medium on the one hand and spontaneous chiral symmetry breaking and its restoration on the other hand is investigated. QCD sum rules for D and B mesons embedded in cold nuclear matter are evaluated. We quantify the mass splitting of D- anti D and B- anti B mesons as a function of the nuclear matter density and investigate the impact of various condensates in linear density approximation. The analysis also includes D{sub s} and D{sup *}{sub 0} mesons. QCD sum rules for chiral partners in the open-charm meson sector are presented at nonzero baryon net density or temperature. We focus on the differences between pseudo-scalar and scalar as well as vector and axial-vector D mesons and derive the corresponding Weinberg type sum rules. Based on QCD sum rules we explore the consequences of a scenario for the ρ meson, where the chiral symmetry breaking condensates are set to zero whereas the chirally symmetric condensates remain at their vacuum values. The complementarity of mass shift and broadening is discussed. An alternative approach which utilizes coupled Dyson-Schwinger and Bethe-Salpeter equations for quark-antiquark bound states is investigated. For this purpose we analyze the analytic structure of the quark propagators in the complex plane numerically and test the possibility to widen the applicability of the method to the sector of heavy-light mesons in the scalar and pseudo-scalar channels, such as the D mesons, by varying the momentum partitioning parameter. The solutions of the Dyson-Schwinger equation in the Wigner-Weyl phase of chiral symmetry at nonzero bare quark masses are used to investigate a scenario with explicit but without dynamical chiral symmetry breaking.
Barik, N; Mohanty, D K; Panda, P K; Frederico, T
2013-01-01
We have calculated the properties of nuclear matter in a self-consistent manner with quark-meson coupling mechanism incorporating structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon, is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious centre of mass motion as well as those due to other residual interactions such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration; have been considered in a perturbation manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to sigma and omega mesons through mean field approximations. The relevant parameters of the interaction are obtained self consistently while realizing the saturation properties such as the binding energy, pressure a...
Chiral anomaly and longitudinal magnetotransport in type-II Weyl semimetals
Sharma, Girish; Tewari, Sumanta
2016-01-01
In the presence of parallel electric and magnetic fields, the violation of separate number conservation laws for the three dimensional left and right handed Weyl fermions is known as the chiral anomaly. The recent discovery of Weyl and Dirac semimetals has paved the way for experimentally testing the effects of chiral anomaly via longitudinal magneto-transport measurements. More recently, a type-II Weyl semimetal (WSM) phase has been proposed, where the nodal points possess a finite density of states due to the touching between electron- and hole- pockets. It has been suggested that the main difference between the two types of WSMs (type-I and type-II) is that in the latter, chiral anomaly and the associated longitudinal magneto-resistance are strongly anisotropic, vanishing when the applied magnetic field is perpendicular to the direction of tilt of Weyl fermion cones in a type-II WSM. We analyze chiral anomaly in a type-II WSM in quasiclassical Boltzmann framework, and find that the chiral anomaly induced p...
Enamullah, Mohammed; Makhloufi, Gamall; Ahmed, Rifat; Joy, Baitul Alif; Islam, Mohammad Ariful; Padula, Daniele; Hunter, Howard; Pescitelli, Gennaro; Janiak, Christoph
2016-07-01
Bidentate enantiopure Schiff base ligands, (R or S)-N-1-(Ar)ethyl-2-oxo-1-naphthaldiminate (R- or S-N^O), diastereoselectively provide Λ- or Δ-chiral-at-metal four-coordinated Zn(R- or S-N^O)2 {Ar = C6H5; Zn-1R or Zn-1S and p-C6H4OMe; Zn-2R or Zn-2S}. Two R- or S-N^O-chelate ligands coordinate to the zinc(II) in a tetrahedral mode and induce Λ- or Δ-configuration at the zinc metal center. In the solid state, the R- or S-ligand diastereoselectively gives Λ- or Δ-Zn configuration, respectively, and forms enantiopure crystals. Single crystal structure determinations show two symmetry-independent molecules (A and B) in each asymmetric unit to give Z' = 2 structures. Electronic circular dichroism (ECD) spectra show the expected mirror image relationship resulting from diastereomeric excess toward the Λ-Zn for R-ligands and Δ-Zn for S-ligands in solution. ECD spectra are well reproduced by TDDFT calculations, while the application of the exciton chirality method, in the common point-dipole approximation, predicts the wrong sign for the long-wavelength couplet. A dynamic diastereomeric equilibrium (Λ vs Δ) prevails for both R- and S-ligand-metal complexes in solution, respectively, evidenced by (1)H NMR spectroscopy. Variable temperature (1)H NMR spectra show a temperature-dependent shift of the diastereomeric equilibrium and confirm Δ-Zn configuration (for S-ligand) to be the most stable one and favored at low temperature. DSC analyses provide quantitative diastereomeric excess in the solid state for Zn-2R and Zn-2S, which is comparable to the results of solution studies.
The Schrödinger functional in lattice QCD with exact chiral symmetry
Lüscher, Martin
2006-01-01
Similarly to the interaction lagrangian, the possible boundary conditions in quantum field theories on space-time manifolds with boundaries are strongly constrained by the symmetry and scaling properties of the theory. Based on this general insight, a lattice formulation of the QCD Schr\\"odinger functional is proposed for the case where the lattice Dirac operator in the bulk of the lattice coincides with the Neuberger--Dirac operator. The construction satisfies all basic requirements (locality, symmetries, hermiticity) and is suitable for numerical simulations.
D meson mass increase by restoration of chiral symmetry in nuclear matter
Suzuki, Kei; Oka, Makoto
2015-01-01
Spectral functions of the pseudoscalar $D$ meson in the nuclear medium are analyzed using QCD sum rules and the maximum entropy method. This approach enables us to extract the spectral functions without any phenomenological assumption, and thus to visualize in-medium modification of the spectral functions directly. It is found that the reduction of the chiral condensates of dimension 3 and 5 causes the masses of both $D^+$ and $D^-$ mesons to grow gradually at finite density. Additionally, we construct charge-conjugate-projected sum rules and find a $D^+$-$D^-$ mass splitting of about -15 MeV at nuclear saturation density.
Triplets, Static SU(6), and Spontaneously Broken Chiral SU(3) Symmetry
Nambu, Y.
1966-01-01
I would like to present here my view of the current problems of elementary particle theory. It is largely inspired by the recent successes of SU(3) and SU(6) symmetries, and more or less summarizes what I have been pursuing lately. For the details of individual problems I must refer to the original papers. However, what is emphasized here is not the details, but a coherent overall picture plus some speculations which cannot yet be formulated precisely.
Jansen, Johan F.G.A.; Feringa, Bernard
1990-01-01
Various chiral zinc(II) complexes catalyze the asymmetric 1,4-addition of Grignard reagents to α,β-unsaturated ketones with high chemoselectivities (yields of 1,4-adducts, 83-99%), high regioselectivities (1,4/1,2 ratios up to 499) and modest enantioselectivities (ee up to 33%). A study of several f
Hyperbolic Weyl Point in Reciprocal Chiral Metamaterials.
Xiao, Meng; Lin, Qian; Fan, Shanhui
2016-07-29
We report the existence of Weyl points in a class of noncentral symmetric metamaterials, which has time reversal symmetry, but does not have inversion symmetry due to chiral coupling between electric and magnetic fields. This class of metamaterial exhibits either type-I or type-II Weyl points depending on its nonlocal response. We also provide a physical realization of such metamaterial consisting of an array of metal wires in the shape of elliptical helices which exhibits type-II Weyl points.
Interacting fermions in rotation: chiral symmetry restoration, moment of inertia and thermodynamics
Chernodub, M N
2016-01-01
We study rotating fermionic matter at finite temperature in the framework of the Nambu-Jona-Lasinio model. In order to respect causality the rigidly rotating system must be bound by a cylindrical boundary with appropriate boundary conditions that confine the fermions inside the cylinder. We show the finite geometry with the MIT boundary conditions affects strongly the phase structure of the model leading to three distinct regions characterized by explicitly broken (gapped), partially restored (nearly gapless) and spontaneously broken (gapped) phases at, respectively, small, moderate and large radius of the cylinder. The presence of the boundary leads to specific steplike irregularities of the chiral condensate as functions of coupling constant, temperature and angular frequency. These steplike features have the same nature as the Shubnikov-de Haas oscillations with the crucial difference that they occur in the absence of both external magnetic field and Fermi surface. At finite temperature the rotation leads ...
Blanco, Celia; Ribó, Josep M; Hochberg, David
2015-02-01
We derive the class of population balance equations (PBE), recently applied to model the Viedma deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes erases the microreversible nature of the molecular interactions in the population growth rate functions and limits the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the ideal racemic composition up to observable enantiometric excess levels.
Symmetry broken and restored coupled-cluster theory: II. Global gauge symmetry and particle number
Duguet, T.; Signoracci, A.
2017-01-01
We have recently extended many-body perturbation theory (MBPT) and coupled-cluster theory performed on top of a Slater determinant breaking rotational symmetry to allow for the restoration of the angular momentum at any truncation order (Duguet 2015 J. Phys. G: Nucl. Part. Phys. 42 025107). Following a similar route, we presently extend Bogoliubov MBPT and Bogoliubov coupled cluster theory performed on top of a Bogoliubov reference state breaking global gauge symmetry to allow for the restoration of the particle number at any truncation order. Eventually, formalisms can be merged to handle SU(2) and U(1) symmetries at the same time. The long-term goal relates to the ab initio description of near-degenerate finite quantum systems with an open-shell character.
Sheikh, J A; Dar, W A; Jehangir, S; Ganai, P A
2015-01-01
A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of $\\gamma$-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, $\\gamma$-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering $\\gamma$-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the $\\gamma$-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of $\\gamma$-bands observed up to the highest spin in Dysposium, Hafnium, Mercury and Uranium isotopes. Furthermore, several measurements related to chira...
Beilinson, Alexander
2004-01-01
Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch
Hypersurfaces in Pn with 1-parameter symmetry groups II
DEFF Research Database (Denmark)
Plessis, Andrew du; Wall, C.T.C.
2010-01-01
We assume V a hypersurface of degree d in with isolated singularities and not a cone, admitting a group G of linear symmetries. In earlier work we treated the case when G is semi-simple; here we analyse the unipotent case. Our first main result lists the possible groups G. In each case we discuss...
Crystallography of decahedral and icosahedral particles. II - High symmetry orientations
Yang, C. Y.; Yacaman, M. J.; Heinemann, K.
1979-01-01
Based on the exact crystal structure of decahedral and icosahedral particles, high energy electron diffraction patterns and image profiles have been derived for various high symmetry orientations of the particles with respect to the incident beam. These results form a basis for the identification of small metal particle structures with advanced methods of transmission electron microscopy.
Orbital angular momentum in electron diffraction and its use to determine chiral crystal symmetries
Juchtmans, Roeland
2015-01-01
In this work we present an alternative way to look at electron diffraction in a transmission electron microscope. In stead of writing the scattering amplitude in Fourier space as a set of plane waves, we use the cylindrical Fourier transform to describe the scattering amplitude in a basis of orbital angular momentum (OAM) eigenstates. We show how working in this framework can be very convenient when investigating e.g. rotation and screw axis symmetries. For the latter we find selection rules on the OAM-coefficients that unambiguously reveal the handedness of the screw axis. Detecting the OAM-coefficients of the scattering amplitude thus offers the possibility to detect the handedness of crystals without the need for dynamical simulations, the thickness of the sample nor the exact crystal structure. We propose an experimental setup to measure the OAM-components where an image of the crystal is taken after inserting a spiral phase plate in the diffraction plane and perform mulsti-slice simulations on $\\alpha$-q...
Unconstrained Higher Spins of Mixed Symmetry. II. Fermi Fields
Campoleoni, Andrea; Mourad, Jihad; Sagnotti, Augusto
2010-01-01
This paper is a sequel of arXiv:0810.4350 [hep-th], and is also devoted to the local "metric-like" unconstrained Lagrangians and field equations for higher-spin fields of mixed symmetry in flat space. Here we complete the previous constrained on-shell formulation of Labastida for Fermi fields, deriving the corresponding constrained Lagrangians both via the Bianchi identities and via the requirement of self-adjointness. We also describe two types of unconstrained Lagrangian formulations: a "minimal" one, containing higher derivatives of the compensator fields, and another non-minimal one, containing only one-derivative terms. We identify classes of these systems that are invariant under Weyl-like symmetry transformations.
Unconstrained higher spins of mixed symmetry II. Fermi fields
Energy Technology Data Exchange (ETDEWEB)
Campoleoni, A., E-mail: a.campoleoni@sns.i [Scuola Normale Superiore and INFN, Piazza dei Cavalieri, 7, I-56126 Pisa (Italy); Francia, D., E-mail: francia@apc.univ-paris7.f [AstroParticule et Cosmologie (APC), Universite Paris VII - Campus Paris Rive Gauche, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Mourad, J., E-mail: mourad@apc.univ-paris7.f [AstroParticule et Cosmologie (APC), Universite Paris VII - Campus Paris Rive Gauche, 10, rue Alice Domon et Leonie Duquet, F-75205 Paris Cedex 13 (France); Sagnotti, A., E-mail: sagnotti@sns.i [Scuola Normale Superiore and INFN, Piazza dei Cavalieri, 7, I-56126 Pisa (Italy)
2010-04-01
This paper is a sequel of [A. Campoleoni, D. Francia, J. Mourad, A. Sagnotti, Nucl. Phys. B 815 (2009) 289, (arXiv:0810.4350 [hep-th])], and is also devoted to the local 'metric-like' unconstrained Lagrangians and field equations for higher-spin fields of mixed symmetry in flat space. Here we complete the previous constrained on-shell formulation of Labastida for Fermi fields, deriving the corresponding constrained Lagrangians both via the Bianchi identities and via the requirement of self-adjointness. We also describe two types of unconstrained Lagrangian formulations: a 'minimal' one, containing higher derivatives of the compensator fields, and another non-minimal one, containing only one-derivative terms. We identify classes of these systems that are invariant under Weyl-like symmetry transformations.
Chiral Random Matrix Theory and Chiral Perturbation Theory
Damgaard, P H
2011-01-01
Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.
Chiral Random Matrix Theory and Chiral Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Damgaard, Poul H, E-mail: phdamg@nbi.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)
2011-04-01
Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.
Ribó, Josep M; El-Hachemi, Zoubir; Moyano, Albert; Blanco, Celia; Hochberg, David; 10.1089/ast.2012.0904
2013-01-01
The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution nor in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continous internal flow. In such conditions the system can evolve, for certain reaction and system parameters, towards a chiral stationary state, i.e., the system is able to reach a bifurcation point leading to SMSB. Numerical simulations using reasonable ch...
Sterile neutrino portal to Dark Matter II: exact dark symmetry
Energy Technology Data Exchange (ETDEWEB)
Escudero, Miguel; Rius, Nuria [Universidad de Valencia-CSIC, Departamento de Fisica Teorica and IFIC, C/Catedratico Jose Beltran, 2, 46980, Paterna (Spain); Sanz, Veronica [University of Sussex, Department of Physics and Astronomy, Brighton (United Kingdom)
2017-06-15
We analyze a simple extension of the standard model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV. (orig.)
The symmetries of image formation by scattering. II. Applications
Schwander, Peter; Ourmazd, Abbas; Giannakis, Dimitrios
2011-01-01
We show that the symmetries of image formation by scattering enable graph-theoretic manifold-embedding techniques to extract structural and timing information from simulated and experimental snapshots at extremely low signal. The approach constitutes a physically-based, computationally efficient, and noise-robust route to analyzing the large and varied datasets generated by existing and emerging methods for studying structure and dynamics by scattering. We demonstrate three-dimensional structure recovery from X-ray diffraction and cryo-electron microscope image snapshots of unknown orientation, the latter at 12 times lower dose than currently in use. We also show that ultra-low-signal, random sightings of dynamically evolving systems can be sequenced into high quality movies to reveal their evolution. Our approach offers a route to recovering timing information in time-resolved experiments, and extracting 3D movies from two-dimensional random sightings of dynamic systems.
Sterile Neutrino portal to Dark Matter II: Exact Dark symmetry
Escudero, Miguel; Sanz, Verónica
2016-01-01
We analyze a simple extension of the Standard Model (SM) with a dark sector composed of a scalar and a fermion, both singlets under the SM gauge group but charged under a dark sector symmetry group. Sterile neutrinos, which are singlets under both groups, mediate the interactions between the dark sector and the SM particles, and generate masses for the active neutrinos via the seesaw mechanism. We explore the parameter space region where the observed Dark Matter relic abundance is determined by the annihilation into sterile neutrinos, both for fermion and scalar Dark Matter particles. The scalar Dark Matter case provides an interesting alternative to the usual Higgs portal scenario. We also study the constraints from direct Dark Matter searches and the prospects for indirect detection via sterile neutrino decays to leptons, which may be able to rule out Dark Matter masses below and around 100 GeV.
Kondratyuk, S; Myhrer, F; Scholten, O
2004-01-01
The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: 1) by evaluating of the scattering amplitude at the corresponding low-energy kinematics and 2) by evaluating the sum-rule integrals with the calculated total cross section. The discrepancy between the results of the two methods provides a measure of the breaking of analyticity and chiral symmetry in the model. The contribution of the $\\Delta$ resonance, including its dressing with meson loops, is discussed in some detail and found to be small.
Chiral Cu(II-catalyzed enantioselective β-borylation of α,β-unsaturated nitriles in water
Directory of Open Access Journals (Sweden)
Lei Zhu
2015-10-01
Full Text Available The promising performance of copper(II complexes was demonstrated for asymmetric boron conjugate addition to α,β-unsaturated nitriles in water. The catalyst system, which consisted of Cu(OAc2 and a chiral 2,2′-bipyridine ligand, enabled β-borylation and chiral induction in water. Subsequent protonation, which was accelerated in aqueous medium, led to high activity of this asymmetric catalysis. Both solid and liquid substrates were suitable despite being insoluble in water.
Quantum groups as generalized gauge symmetries in WZNW models. Part II. The quantized model
Hadjiivanov, L.; Furlan, P.
2017-07-01
This is the second part of a paper dealing with the "internal" (gauge) symmetry of the Wess-Zumino-Novikov-Witten (WZNW) model on a compact Lie group G. It contains a systematic exposition, for G = SU( n), of the canonical quantization based on the study of the classical model (performed in the first part) following the quantum group symmetric approach first advocated by L.D. Faddeev and collaborators. The internal symmetry of the quantized model is carried by the chiral WZNW zero modes satisfying quadratic exchange relations and an n-linear determinant condition. For generic values of the deformation parameter the Fock representation of the zero modes' algebra gives rise to a model space of U q ( sl( n)). The relevant root of unity case is studied in detail for n = 2 when a "restricted" (finite dimensional) quotient quantum group is shown to appear in a natural way. The module structure of the zero modes' Fock space provides a specific duality with the solutions of the Knizhnik-Zamolodchikov equation for the four point functions of primary fields suggesting the existence of an extended state space of logarithmic CFT type. Combining left and right zero modes (i.e., returning to the 2 D model), the rational CFT structure shows up in a setting reminiscent to covariant quantization of gauge theories in which the restricted quantum group plays the role of a generalized gauge symmetry.
Supersymmetry and chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Walker, Michael Luke [Dept. of Physics and Applied Physics and College of Natural Sciences, Kyung-Hee University, KyongGi, Yong-In 449-701 (Korea, Republic of)]. E-mail: m.walker@aip.org.au
2004-12-01
We dispute the nonperturbative non-renormalisation theorem stating that mass cannot be spontaneously generated in supersymmetric QED. Our analysis, which requires no truncation and is fully gauge and supersymmetry consistent, finds instead that there is no reason for the mass corrections to be exactly zero. We concede that an achiral solution is yet to be found. We also extend a long-standing perturbative result, that the effective potential is zero to all orders of perturbation theory, to the nonperturbative regime for arbitrary numbers of flavours. (author)
Type Ii/heterotic Duality And Mirror Symmetry (bundle Deformation, String Duality)
Perevalov, E V
1998-01-01
Toric geometry is used to systematically construct Type II compactifications dual to Heterotic models in six dimensions involving singular K3 surfaces as well as vector bundles. Reflexive polyhedra are shown to encode the spectra of the resulting low-energy theories. Finally, the connection between mirror symmetry and deformation of bundles on K3 surfaces is exhibited via string duality.
Lattice Regularization and Symmetries
Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc
2006-01-01
Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.
Molecular chirality at surfaces
Energy Technology Data Exchange (ETDEWEB)
Ernst, Karl-Heinz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Organic Chemistry Institute, University Zurich, 8057 Zuerich (Switzerland)
2012-11-15
With the adsorption of larger molecules being increasingly tackled by surface scientists, the aspect of chirality often plays a role. This paper gives a topical review of molecular chirality at surfaces and gives a phenomenological overview of different aspects of adsorption and self-assembly of chiral and prochiral molecules and the principles of mirror-symmetry breaking at a surface. After a brief introduction into the history of molecular chirality and the important role it played for understanding the spatial structure of molecules, definitions of chirality are presented. Topics treated here are principle ways to create single chiral adsorbates, chiral ensembles, and monolayers by achiral molecules, adsorption of intrinsically chiral molecules at achiral and chiral surfaces, long-range symmetry breaking in two-dimensional (2D) crystals due to additional chiral bias, chiral restructuring of solid surfaces under the influence of chiral molecules, switching the handedness of adsorbates, and chirality at the liquid/air interface. An outlook onto further potential research directions and recommendations for further reading, including nonsurface-related sources of chiral topics completes this paper. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Mizher, Ana Júlia
2008-01-01
We study the effects of CP violation on the nature of the chiral transition within the linear sigma model with two flavors of quarks. The finite-temperature effective potential containing contributions from nontrivial values for the parameter $\\theta$ is computed to one loop order and their minima structure is analyzed. Motivated by the possibility of observing the formation of CP-odd domains in high-energy heavy ion collisions, we also investigate the behavior of the effective potential in the presence of a strong magnetic background. We find that the nature of the chiral transition is influenced by both $\\theta$ and the magnetic field.
Energy Technology Data Exchange (ETDEWEB)
Mizher, Ana Julia, E-mail: anajulia@if.ufrj.b [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Fraga, Eduardo S., E-mail: fraga@if.ufrj.b [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)
2009-12-01
We study the effects of CP violation on the nature of the chiral transition within the linear sigma model with two flavors of quarks. The finite-temperature effective potential containing contributions from nontrivial values for the parameter theta is computed to one loop order and their minima structure is analyzed. Motivated by the possibility of observing the formation of CP-odd domains in high-energy heavy ion collisions, we also investigate the behavior of the effective potential in the presence of a strong magnetic background. We find that the nature of the chiral transition is influenced by both theta and the magnetic field.
Detecting the chirality for coupled quantum dots
Energy Technology Data Exchange (ETDEWEB)
Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com
2008-04-21
We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.
Borah, Manikanta; Das, Mrinal Kumar; Patra, Sudhanwa
2014-01-01
We study the possibility of generating non-zero reactor mixing angle $\\theta_{13}$ by perturbing the $\\mu-\\tau$ symmetric neutrino mass matrix. The leading order $\\mu-\\tau$ symmetric neutrino mass matrix originates from type I seesaw mechanism whereas the perturbations to $\\mu-\\tau$ symmetry originate from type II seesaw term. We consider four different realizations of $\\mu-\\tau$ symmetry: Bimaximal Mixing(BM), Tri-bimaximal Mixing (TBM), Hexagonal Mixing (HM) and Golden Ratio Mixing (GRM) all giving rise to $\\theta_{13} = 0, \\theta_{23} = \\frac{\\pi}{4}$ but different non-zero values of solar mixing angle $\\theta_{12}$. We assume a minimal $\\mu-\\tau$ symmetry breaking type II seesaw mass matrix as a perturbation and calculate the neutrino oscillation parameters as a function of type II seesaw strength. We then consider the origin of non-trivial leptonic CP phase in the charged lepton sector and calculate the lepton asymmetry arising from the lightest right handed neutrino decay by incorporating the presence o...
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Dash, B.K.
1986-04-01
Under the assumption that baryons are an assembly of independent quarks, confined in a first approximation by an effective potential U(r) = 1/2(1+..gamma../sup 0/)(ar/sup 2/+V/sub 0/ ) which presumably represents the nonperturbative gluon interactions, the mass spectrum of the low-lying ground-state baryons has been calculated by considering perturbatively the contributions of the residual quark-pion coupling arising out of the requirement of chiral symmetry and that of the quark-gluon coupling due to one-gluon exchange over and above the necessary center-of-mass correction. The physical masses of the baryons so obtained agree quite well with the corresponding experimental value. The strong coupling constant ..cap alpha../sub c/ = 0.58 required here to describe the QCD mass splittings is quite consistent with the idea of treating one-gluon-exchange effects in lowest-order perturbation theory.
Zhang, Wei Chuan; Tang, Xue; Lu, Xiaoming
2016-03-01
Three novel copper(II) compounds of formulas {[Cu(Phen)(Ala)]·NO3·H2O}n (1), {[Cu(Phen)(Ala)]·NO3}n (2) and [Cu(Ala)2]n (3) have been synthesized and determined by X-ray diffraction. 1 and 2 are shown in one dimensional long-chain chiral structures, and 3 is a two dimensional checkerboard-type structure. Both 1 and 2 displayed a higher anticancer activity than 3 against various cancer cells, even higher than the similar mononuclear complexes and clinical anticancer drug 5-fluorouracil. The noncancerous cell lines (CCC-HEL-1) have showed that complexes 1-3 have hardly any cytotoxicity. Transmission electron microscopy was studied to show the nano-structure and π function of two complexes. The ligand 1,10-phenanthroline inserted into its enantiomer lead complex 1 stable, and the π-π interaction outside the chain made complex 2 active, which is easy to crack and pile up together. In addition, the energy gaps, UV-vis, luminescent and cyclic voltammetry were experimented to show the stable one dimensional long-chain chiral structure and the π function of two complexes.
Arakawa, Naoya
2016-11-01
I propose the emergence of the spin-orbital-coupled vector chirality in a nonfrustrated Mott insulator with the strong spin-orbit coupling due to a b -plane's inversion-symmetry (IS) breaking. I derive the superexchange interactions for a t2 g-orbital Hubbard model on a square lattice with the strong spin-orbit coupling and the IS-breaking-induced hopping integrals, and explain the microscopic origins of the Dzyaloshinsky-Moriya (DM) -type and the Kitaev-type interactions. Then, by adopting the mean-field approximation to a minimal model including only the Heisenberg-type and the DM-type nearest-neighbor interactions, I show that the IS breaking causes the spin-orbital-coupled chirality as a result of stabilizing the screw state. I also highlight the limit of the hard-pseudospin approximation in discussing the stability of the screw states in the presence of both the DM-type and the Kitaev-type interactions, and discuss its meaning. I finally discuss the effects of tetragonal crystal field and Jeff=3/2 states, and the application to the iridates near the [001 ] surface of Sr2IrO4 and the interface between Sr2IrO4 and Sr3Ir2O7 .
Energy Technology Data Exchange (ETDEWEB)
D. J. Antonio; T. Blum; K. C. Bowler; P. A. Boyle; N. H. Christ; S. D. Cohen; M. A. Clark; C. Dawson; A. Hart; K. Hashimoto; T. Izubuchi; B. Joó; C. Jung; A. D. Kennedy; R. D. Kenway; S. Li; H. W. Lin; M.F. Lin; R. D. Mawhinney; C.M. Maynard; J. Noaki; S. Ohta; S. Sasaki; A. Soni; R. J. Tweedie; A. Yamaguchi
2007-06-01
We present results for the static interquark potential, light meson and baryon masses, and light pseudoscalar meson decay constants obtained from simulations of domain wall QCD with one dynamical flavour approximating the $s$ quark, and two degenerate dynamical flavours with input bare masses ranging from $m_s$ to $m_s/4$ approximating the $u$ and $d$ quarks. We compare these quantities obtained using the Iwasaki and DBW2 improved gauge actions, and actions with larger rectangle coefficients, on $16^3\\times32$ lattices. We seek parameter values at which both the chiral symmetry breaking residual mass due to the finite lattice extent in the fifth dimension and the Monte Carlo time history for topological charge are acceptable for this set of quark masses at lattice spacings above 0.1 fm. We find that the Iwasaki gauge action is best, demonstrating the feasibility of using QCDOC to generate ensembles which are good representations of the QCD path integral on lattices of up to 3 fm in spatial extent with lattice spacings in the range 0.09-0.13 fm. Despite large residual masses and a limited number of sea quark mass values with which to perform chiral extrapolations, our results for light hadronic physics scale and agree with experimental measurements within our statistical uncertainties.
Dual chirality control of palladium(II) complexes bearing tropos biphenyl diamine ligands.
Aikawa, Kohsuke; Mikami, Koichi
2005-12-14
Axial and center chirality of Pd complexes with tropos biphenyl secondary diamine ligands is shown to be controlled by chiral amide (R)-DABNTf, which can efficiently discriminate between two enantiomeric Pd complexes.
Mizher, Ana Júlia; Fraga, Eduardo S.
2008-01-01
We study the effects of CP violation on the nature of the chiral transition within the linear sigma model with two flavors of quarks. The finite-temperature effective potential containing contributions from nontrivial values for the parameter $\\theta$ is computed to one loop order and their minima structure is analyzed. Motivated by the possibility of observing the formation of CP-odd domains in high-energy heavy ion collisions, we also investigate the behavior of the effective potential in t...
Sakai, M.; Miyazawa, K.; Jitsumatsu, H.; Kamio, K.; Mitsuiki, S.; Toh, N.; Sugihara, G.; Norde, W.
2010-01-01
A new technique of the jet drop method (JDM) was applied to a chiral molecular discrimination of optically active D- or L-glucose (guest) by chiral N-octyl-beta-D-glycoside (O beta DG)-Cu(II) complex (host) at the gas/liquid interface of small bubbles. The discrimination of glucoses as the guests is
Chiral Gravitational Waves from Chiral Fermions
Anber, Mohamed M
2016-01-01
We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.
Chiral gravitational waves from chiral fermions
Anber, Mohamed M.; Sabancilar, Eray
2017-07-01
We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.
Molecular model for chirality phenomena.
Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G
2016-10-21
Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.
Spiral Galaxies as Chiral Objects?
Capozziello, S; Capozziello, Salvatore; Lattanzi, Alessandra
2005-01-01
Spiral galaxies show axial symmetry and an intrinsic 2D-chirality. Environmental effects can influence the chirality of originally isolated stellar systems and a progressive loss of chirality can be recognised in the Hubble sequence. We point out a preferential modality for genetic galaxies as in microscopic systems like aminoacids, sugars or neutrinos. This feature could be the remnant of a primordial symmetry breaking characterizing systems at all scales.
Conformal manifolds in four dimensions and chiral algebras
Buican, Matthew; Nishinaka, Takahiro
2016-11-01
Any { N }=2 superconformal field theory (SCFT) in four dimensions has a sector of operators related to a two-dimensional chiral algebra containing a Virasoro sub-algebra. Moreover, there are well-known examples of isolated SCFTs whose chiral algebra is a Virasoro algebra. In this note, we consider the chiral algebras associated with interacting { N }=2 SCFTs possessing an exactly marginal deformation that can be interpreted as a gauge coupling (i.e., at special points on the resulting conformal manifolds, free gauge fields appear that decouple from isolated SCFT building blocks). At any point on these conformal manifolds, we argue that the associated chiral algebras possess at least three generators. In addition, we show that there are examples of SCFTs realizing such a minimal chiral algebra: they are certain points on the conformal manifold obtained by considering the low-energy limit of type IIB string theory on the three complex-dimensional hypersurface singularity {x}13+{x}23+{x}33+α {x}1{x}2{x}3+{w}2=0. The associated chiral algebra is the { A }(6) theory of Feigin, Feigin, and Tipunin. As byproducts of our work, we argue that (i) a collection of isolated theories can be conformally gauged only if there is a SUSY moduli space associated with the corresponding symmetry current moment maps in each sector, and (ii) { N }=2 SCFTs with a≥slant c have hidden fermionic symmetries (in the sense of fermionic chiral algebra generators).
Luo, Cui-Bai; Shi, Song; Xia, Yong-Hui; Zong, Hong-Shi
2017-06-01
The Eigenstate Method has been developed to deduce the fermion propagator with a constant external magnetic field. In general, we find its result is equivalent to other methods and this new method is more convenient, especially when one evaluates the contribution from the infinitesimal imaginary term of the fermion propagator. Using the Eigenstate Method we try to discuss whether the infinitesimal imaginary frequency of the fermion propagator in a strong magnetic field and Lorentz-violating extension of the minimal SU(3)×SU(2)×SU(1) Standard Model could have a significant influence on the dynamical mass. When the imaginary term of the fermion propagator in this model is not trivial , this model gives a correction to the dynamical mass. When one does not consider the influence from the imaginary term , there is another correction from the conventional term. Under both circumstances, chiral symmetry is broken. Supported in part by National Natural Science Foundation of China (11275097, 11475085, 11535005, 11690030), China Postdoctoral Science Foundation (2014M561621), and Jiangsu Planned Projects for Postdoctoral Research Funds (1401116C)
Energy Technology Data Exchange (ETDEWEB)
Araujo, Vanilse da Silva
1997-12-31
In this work we study the effects of chiral symmetry in the pion-nucleon coupling constant in the context of the linear {sigma}- model. First, we introduce the linear {sigma}-model and we discuss the phenomenological hypothesis of CVC and PCAC. Next, we calculate the coupling constant g+{pi}{sub NN}(q{sup 2}) and the nucleon pionic mean square radius considering the contribution of all the diagrams up to one-loop in the framework of the linear {sigma}-model for different values of the mass of the sigma meson and we compare them with the phenomenological form factors. Finally we make an extension of the linear {sigma}-model that consists of taking into account the mass differences of ions and nucleons into the Lagrangian of the model, to study the change dependence of g{sub {pi}nn} (q{sup 2}) and of the mean square radius. (author) 21 refs., 17 figs., 4 tabs.
Energy Technology Data Exchange (ETDEWEB)
Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)
2017-03-15
The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)
Legré, J.-P.; Albinet, G.; Firpo, J.-L.; Tremblay, A.-M. S.
1984-11-01
This paper is concerned with the liquid-expanded (LE) -liquid-condensed (LC) transition in monolayers of amphiphilic molecules at the air-water interface. A model, which can be mapped into the Blume-Emery-Griffiths Hamiltonian, has been considered before within the (mean-field) Bragg-Williams approximation and it gave results which could be successfully compared with experiment. The LE-LC transition has been associated with a chiral-symmetry breaking of the hydrocarbon-chain defects. This model is treated here with a Migdal-Kadanoff approximate position-space renormalization group. Renormalization-group flows are consistent with those obtained by previous authors. The connection between experimental and Hamiltonian parameters is easiest for a particular choice of ensemble, which turns out to be rather subtle for this problem. As in the work of Lavis, Southern, and Bell, isotherms in the surface-pressure-molecular-area plane do not show a signature of the LE-LC transition. The better agreement between experiments (showing a compressibility jump at the LE-LC transition) and mean-field theory suggests that in these cases long-range forces depending on the nature of the polar head and on the water substrate pH are responsible for the jump.
Chorazy, Szymon; Podgajny, Robert; Nitek, Wojciech; Fic, Tomasz; Görlich, Edward; Rams, Michał; Sieklucka, Barbara
2013-08-04
Unique two dimensional enantiopure cyanido-bridged {[Mn(II)(R-mpm)2]2[Nb(IV)(CN)8]}·4H2O and {[Mn(II)(S-mpm)2]2[Nb(IV)(CN)8]}·4H2O (-S) (mpm = α-methyl-2-pyridine-methanol) ferrimagnets with TC = 23.5 K were synthesized and characterized. They reveal natural optical activity (NOA) due to the chiral crystal structure, and magnetic optical activity (MOA) in the presence of an external magnetic field, with the strong enhancement in the magnetically ordered phase below TC.
Bergagnini, Mackenzie; Fukushi, Kazunobu; Han, Jianlin; Shibata, Norio; Roussel, Christian; Ellis, Trevor K; Aceña, José Luis; Soloshonok, Vadim A
2014-02-28
The work being reported here deals with the design of a new type of "N-H" Ni(II) complexes of glycine Schiff bases and study general aspects of their reactivity. It was confirmed that the presence of NH function in these Ni(II) complexes does not interfere with the homologation of the glycine residue, rendering these derivatives of high synthetic value for the general synthesis of α-amino acids. In particular, the practical application of these NH-type complexes was demonstrated by asymmetric synthesis of various β-substituted pyroglutamic acids via Michael addition reactions with chiral Michael acceptors.
Chiral three-nucleon force at N^4LO II: Intermediate-range contributions
Krebs, Hermann; Epelbaum, Evgeny
2013-01-01
We derive the subleading contributions to the two-pion-one-pion exchange and ring three-nucleon force topologies emerging at next-to-next-to-next-to-next-to-leading order in chiral effective field theory. The resulting expressions do not involve any unknown parameters. To study convergence of the chiral expansion we work out the most general operator structure of a local isospin-invariant three-nucleon force. Using the resulting operator basis with 22 independent structures, we compare the strength of the corresponding potentials in configuration space for individual topologies at various orders in the chiral expansion. As expected, the subleading contributions from the two-pion-one-pion-exchange and ring diagrams are large which can be understood in terms of intermediate excitation of the Delta(1232) isobar.
Superconductivity in a chiral nanotube
Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.
2017-02-01
Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.
Energy Technology Data Exchange (ETDEWEB)
Dimitrova, Pepa [TU Kaiserslautern, Institut fuer Thermische Verfahrenstechnik, P.O. Box 3049, Gottlieb-Daimler-Str. 44, 67653 Kaiserslautern (Germany); Bart, Hans-Joerg, E-mail: bart@mv.uni-kl.de [TU Kaiserslautern, Institut fuer Thermische Verfahrenstechnik, P.O. Box 3049, Gottlieb-Daimler-Str. 44, 67653 Kaiserslautern (Germany)
2010-03-17
The influence of non-ionic surfactants on the selectivity and retention in the ligand exchange chromatography for the enantioselective separation of racemic mixtures of the amino acids DL-methionine, DL-leucine, DL-valine and DL-tyrosine applying chiral mobile phases was investigated, whereas five different surfactants were tested as modifiers. The experiments were carried out using a commercially available non-chiral RP-C8 column and the copper (II) complex of N,N-dimethyl-L-phenylalanine as the chiral additive. Varying the surfactant concentrations the retention factors and the selectivity could be controlled and in general no negative influence on the separation (due to surfactant adsorption on the non-chiral stationary phase) occurred. Changing the temperature the van't Hoff plots were obtained and the thermodynamic parameters calculated. Temperature had influence on the selectivity for each surfactant and lowered the retention times as expected.
Dimitrova, Pepa; Bart, Hans-Jörg
2010-03-17
The influence of non-ionic surfactants on the selectivity and retention in the ligand exchange chromatography for the enantioselective separation of racemic mixtures of the amino acids dl-methionine, dl-leucine, dl-valine and dl-tyrosine applying chiral mobile phases was investigated, whereas five different surfactants were tested as modifiers. The experiments were carried out using a commercially available non-chiral RP-C8 column and the copper (II) complex of N,N-dimethyl-l-phenylalanine as the chiral additive. Varying the surfactant concentrations the retention factors and the selectivity could be controlled and in general no negative influence on the separation (due to surfactant adsorption on the non-chiral stationary phase) occurred. Changing the temperature the van't Hoff plots were obtained and the thermodynamic parameters calculated. Temperature had influence on the selectivity for each surfactant and lowered the retention times as expected.
Rich, Jordi; Rodríguez, Montserrat; Romero, Isabel; Vaquer, Lydia; Sala, Xavier; Llobet, Antoni; Corbella, Montserrat; Collomb, Marie-Noëlle; Fontrodona, Xavier
2009-10-14
A series of mononuclear and dinuclear chiral manganese(II) complexes containing the neutral bidentate chiral nitrogen ligand (-)-pinene[5,6]bipyridine, (-)-L, were prepared from different manganese salts. The chirality in these complexes arises from the pinene ring that has been fused to the 5,6 positions of one pyridine group of the bipyridine ligand. These complexes have been characterized through analytical, spectroscopic (IR, UV/Vis, ESI-MS) and electrochemical techniques (cyclic voltammetry). Single X-ray structure analysis revealed a five-coordinated Mn(II) ion in [{MnCl((-)-L)}2(mu-Cl)2] (2), [{Mn((-)-L)}2(mu-OAc)3](PF6) (3) and [MnCl2(H2O)((-)-L)] (4) and a six-coordinated one in [MnCl2((-)-L)2] (5), [Mn(CF3SO3)2((-)-L)2] (6) and [Mn(NO3)(H2O)((-)-L)2)](NO3) (7). The magnetic properties of the binuclear compounds 2 and 3 have been studied. Both compounds show a weak antiferromagnetic coupling (2, J = -0.22 cm(-1); 3, J = -0.85 cm(-1)). The catalytic activity of the whole set of complexes has been tested with regard to the epoxidation of aromatic alkenes with peracetic acid. In the particular case of styrene, good selectivities and moderate enantioselectivities were obtained. Furthermore, total retention of the initial cis configuration was achieved when epoxidizing cis-beta-methylstyrene with the chloride complexes. In general, the epoxidation activity of these manganese complexes is strongly dependent on the steric encumbrance of the substrates employed.
Terzis, Petros A
2010-01-01
Lie group symmetry analysis for systems of coupled, nonlinear ordinary differential equations is performed in order to obtain the entire solution space to Einstein's field equations for vacuum Bianchi spacetime geometries. The symmetries used are the automorphisms of the Lie algebra of the corresponding three- dimensional isometry group acting on the hyper-surfaces of simultaneity for each Bianchi Type, as well as the scaling and the time reparametrization symmetry. The method is applied to Bianchi Types I; II; IV and V. The result is the acquisition, in each case, of the entire solution space of either Lorenzian of Euclidean signature. This includes all the known solutions for each Type and the general solution of Type IV (in terms of sixth Painlev\\'e transcendent PVI).
Electrodynamics of chiral matter
Qiu, Zebin; Cao, Gaoqing; Huang, Xu-Guang
2017-02-01
Many-body systems with chiral fermions can exhibit novel transport phenomena that violate parity and time-reversal symmetries, such as the chiral magnetic effect, the anomalous Hall effect, and the anomalous generation of charge. Based on the Maxwell-Chern-Simons electrodynamics, we examine some electromagnetic and optical properties of such systems including the electrostatics, the magnetostatics, the propagation of electromagnetic waves, the novel optical effects, etc.
Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong
2016-06-01
Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.
Mambrini, Matthieu; Orús, Román; Poilblanc, Didier
2016-11-01
We elaborate a simple classification scheme of all rank-5 SU(2) spin rotational symmetric tensors according to (i) the onsite physical spin S , (ii) the local Hilbert space V⊗4 of the four virtual (composite) spins attached to each site, and (iii) the irreducible representations of the C4 v point group of the square lattice. We apply our scheme to draw a complete list of all SU(2)-symmetric translationally and rotationally invariant projected entangled pair states (PEPS) with bond dimension D ≤6 . All known SU(2)-symmetric PEPS on the square lattice are recovered and simple generalizations are provided in some cases. More generally, to each of our symmetry class can be associated a (D -1 )-dimensional manifold of spin liquids (potentially) preserving lattice symmetries and defined in terms of D -independent tensors of a given bond dimension D . In addition, generic (low-dimensional) families of PEPS explicitly breaking either (i) particular point-group lattice symmetries (lattice nematics) or (ii) time-reversal symmetry (chiral spin liquids) or (iii) SU(2) spin rotation symmetry down to U(1 ) (spin nematics or Néel antiferromagnets) can also be constructed. We apply this framework to search for new topological chiral spin liquids characterized by well-defined chiral edge modes, as revealed by their entanglement spectrum. In particular, we show how the symmetrization of a double-layer PEPS leads to a chiral topological state with a gapless edge described by a SU (2) 2 Wess-Zumino-Witten model.
Proof of the equivalence theorem in the chiral lagrangian formalism
He, H J; Li, X; Hong-Jian He; He, Hong-Jian; Kuang, Yu-Ping; Li, Xiaoyuan; Xiaoyuan Li
1994-01-01
A general proof of the equivalence theorem in electroweak theories with the symmetry breaking sector described by the chiral Lagrangian is given in the $R_{\\xi}$ gauge by means of the Ward-Takahashi identities. The precise form of the theorem contains a modification factor $C_{mod}$ associated with each external Goldstone boson similar to that in the standard model. $C_{mod}$ is exactly unity in our previously proposed renormalization scheme, {\\it Scheme-II}.
Modelling the Global Solar Corona II: Coronal Evolution and Filament Chirality Comparison
Yeates, A R; Van Ballegooijen, A A
2007-01-01
The hemispheric pattern of solar filaments is considered using newly-developed simulations of the real photospheric and 3D coronal magnetic fields over a 6-month period, on a global scale. The magnetic field direction in the simulation is compared directly with the chirality of observed filaments, at their observed locations. In our model the coronal field evolves through a continuous sequence of nonlinear force-free equilibria, in response to the changing photospheric boundary conditions and the emergence of new magnetic flux. In total 119 magnetic bipoles with properties matching observed active regions are inserted. These bipoles emerge twisted and inject magnetic helicity into the solar atmosphere. When we choose the sign of this active-region helicity to match that observed in each hemisphere, the model produces the correct chirality for up to 96% of filaments, including exceptions to the hemispheric pattern. If the emerging bipoles have zero helicity, or helicity of the opposite sign, then this percenta...
Neutrino Oscillation Induced by Chiral Phase Transition
Institute of Scientific and Technical Information of China (English)
MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei
2009-01-01
Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.
Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry
Directory of Open Access Journals (Sweden)
Michiya Fujiki
2014-08-01
Full Text Available Controlled mirror symmetry breaking arising from chemical and physical origin is currently one of the hottest issues in the field of supramolecular chirality. The dynamic twisting abilities of solvent molecules are often ignored and unknown, although the targeted molecules and polymers in a fluid solution are surrounded by solvent molecules. We should pay more attention to the facts that mostly all of the chemical and physical properties of these molecules and polymers in the ground and photoexcited states are significantly influenced by the surrounding solvent molecules with much conformational freedom through non-covalent supramolecular interactions between these substances and solvent molecules. This review highlights a series of studies that include: (i historical background, covering chiral NaClO3 crystallization in the presence of d-sugars in the late 19th century; (ii early solvent chirality effects for optically inactive chromophores/fluorophores in the 1960s–1980s; and (iii the recent development of mirror symmetry breaking from the corresponding achiral or optically inactive molecules and polymers with the help of molecular chirality as the solvent use quantity.
Symmetries, Symmetry Breaking, Gauge Symmetries
Strocchi, Franco
2015-01-01
The concepts of symmetry, symmetry breaking and gauge symmetries are discussed, their operational meaning being displayed by the observables {\\em and} the (physical) states. For infinitely extended systems the states fall into physically disjoint {\\em phases} characterized by their behavior at infinity or boundary conditions, encoded in the ground state, which provide the cause of symmetry breaking without contradicting Curie Principle. Global gauge symmetries, not seen by the observables, are nevertheless displayed by detectable properties of the states (superselected quantum numbers and parastatistics). Local gauge symmetries are not seen also by the physical states; they appear only in non-positive representations of field algebras. Their role at the Lagrangian level is merely to ensure the validity on the physical states of local Gauss laws, obeyed by the currents which generate the corresponding global gauge symmetries; they are responsible for most distinctive physical properties of gauge quantum field ...
Hall, David R; Bond, Charles S; Leonard, Gordon A; Watt, C Ian; Berry, Alan; Hunter, William N
2002-06-14
Tagatose-1,6-bisphosphate aldolase (TBPA) is a tetrameric class II aldolase that catalyzes the reversible condensation of dihydroxyacetone phosphate with glyceraldehyde 3-phosphate to produce tagatose 1,6-bisphosphate. The high resolution (1.45 A) crystal structure of the Escherichia coli enzyme, encoded by the agaY gene, complexed with phosphoglycolohydroxamate (PGH) has been determined. Two subunits comprise the asymmetric unit, and a crystallographic 2-fold axis generates the functional tetramer. A complex network of hydrogen bonds position side chains in the active site that is occupied by two cations. An unusual Na+ binding site is created using a pi interaction with Tyr183 in addition to five oxygen ligands. The catalytic Zn2+ is five-coordinate using three histidine nitrogens and two PGH oxygens. Comparisons of TBPA with the related fructose-1,6-bisphosphate aldolase (FBPA) identifies common features with implications for the mechanism. Because the major product of the condensation catalyzed by the enzymes differs in the chirality at a single position, models of FBPA and TBPA with their cognate bisphosphate products provide insight into chiral discrimination by these aldolases. The TBPA active site is more open on one side than FBPA, and this contributes to a less specific enzyme. The availability of more space and a wider range of aldehyde partners used by TBPA together with the highly specific nature of FBPA suggest that TBPA might be a preferred enzyme to modify for use in biotransformation chemistry.
Chiral phases of fundamental and adjoint quarks
Energy Technology Data Exchange (ETDEWEB)
Natale, A. A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC 09210-170, Santo André, SP (Brazil); Instituto de Física Teórica - UNESP Rua Dr. Bento T. Ferraz, 271, Bl.II - 01140-070, São Paulo, SP (Brazil)
2016-01-22
We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.
Form, symmetry and packing of biomacromolecules. II. Serotypes of human rhinovirus
Janner, A.
2010-05-01
The differentiation of the human rhinovirus into serotypes, all having very similar structures and the same architecture, is shown to be related to the packing of the viruses in the crystal and to its space-group symmetry.
A (1 + 2-Dimensional Simplified Keller–Segel Model: Lie Symmetry and Exact Solutions. II
Directory of Open Access Journals (Sweden)
Roman Cherniha
2017-01-01
Full Text Available A simplified Keller–Segel model is studied by means of Lie symmetry based approaches. It is shown that a (1 + 2-dimensional Keller–Segel type system, together with the correctly-specified boundary and/or initial conditions, is invariant with respect to infinite-dimensional Lie algebras. A Lie symmetry classification of the Cauchy problem depending on the initial profile form is presented. The Lie symmetries obtained are used for reduction of the Cauchy problem to that of (1 + 1-dimensional. Exact solutions of some (1 + 1-dimensional problems are constructed. In particular, we have proved that the Cauchy problem for the (1 + 1-dimensional simplified Keller–Segel system can be linearized and solved in an explicit form. Moreover, additional biologically motivated restrictions were established in order to obtain a unique solution. The Lie symmetry classification of the (1 + 2-dimensional Neumann problem for the simplified Keller–Segel system is derived. Because Lie symmetry of boundary-value problems depends essentially on geometry of the domain, which the problem is formulated for, all realistic (from applicability point of view domains were examined. Reduction of the the Neumann problem on a strip is derived using the symmetries obtained. As a result, an exact solution of a nonlinear two-dimensional Neumann problem on a finite interval was found.
Pion-nucleon scattering in chiral perturbation theory II: Fourth order calculation
Fettes, N
2000-01-01
We analyze elastic pion-nucleon scattering to fourth order in heavy-baryon chiral perturbation theory, extending the third-order study published in Nucl. Phys. A 640 (1998) 199. We use various partial-wave analyses to pin down the low-energy constants from data in the physical region. The S-wave scattering lengths are consistent with recent determinations from pionic hydrogen and deuterium. We find an improved description of the P-waves. We also discuss the pion-nucleon sigma term and problems related to the prediction of the subthreshold parameters.
Chiral Algebras of (0,2) Sigma Models: Beyond Perturbation Theory - II
Tan, Meng-Chwan
2008-01-01
We extend our analysis in [arXiv:0801.4782] and show that the chiral algebras of (0,2) sigma models are totally trivialized by worldsheet instantons for all complete flag manifolds of compact semisimple Lie groups. Consequently, supersymmetry is spontaneously broken. Our results verify Stolz's idea that there are no harmonic spinors on the loop spaces of these flag manifolds. Moreover, they also imply that the kernels of certain twisted Dirac operators on these spaces will be empty under a "quantum" deformation of their geometries.
Orientation-dependent handedness and chiral design
Efrati, Efi; Irvine, William T. M.
2013-01-01
Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in ...
Chiral gap effect in curved space
Flachi, Antonino
2014-01-01
We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.
Cortes, Santiago; Morales, John
2016-01-01
In this work, we review how the mass and the width of the $f_{0}(500)$ pole behave in a regime where temperature is below the critical chiral transition value. This is attained by considering a large-$N$ $O(N + 1)/O(N)$ invariant Non-Linear Sigma Model (NLSM) such that we can study the dynamical generation of a $f_{0}(500)$ resonance. Introducing thermal effects via the imaginary time formalism allows us to study the behavior of the pole and relate it to chiral restoration.
Quark structure of chiral solitons
Diakonov, D
2004-01-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
Metabolic chiral inversion of stiripentol in the rat. II. Influence of route of administration.
Tang, C; Zhang, K; Lepage, F; Levy, R H; Baillie, T A
1994-01-01
As described in the accompanying study, it was found that when the S enantiomer of stiripentol [(S)-STP] was given orally to rats, blood specimens contained only (S)-STP, whereas following administration of an equivalent dose of (R)-STP, both R and S forms of the drug were detected in the systemic circulation. In the present study, we investigated the influence of route of administration on this apparently unidirectional chiral inversion of (R)-STP in the rat. When (R)-STP was given either intravenously (60 mg kg-1) or intraperitoneally (300 mg kg-1), the inversion phenomenon was not observed, indicating that the process must take place presystemically. Following oral administration of either enantiomer of STP, it was found that the drug present at various points along the gastrointestinal tract became progressively enriched in molecules of R configuration, such that the free STP in cecum, large intestine, and feces consisted largely of the R enantiomer, regardless of the configuration of the administered drug. In a parallel in vitro study, it was demonstrated that STP undergoes acid-catalyzed racemization, the rate of which is appreciable at the pH value of the rat stomach (pH approximately 4). On the basis of these observations, it is proposed that the apparent metabolic chiral inversion of (R)-STP results from the combination of at least two factors: 1) partial acid-catalyzed racemization in gastric acid (that affects both enantiomers equally), and 2) enantioselectivity in one or more of the processes involved in the absorption, first pass metabolism or biliary excretion of STP, such that the S isomer appears selectively in the systemic circulation, whereas the R enantiomer is eliminated preferentially in the feces.
Meta-Chirality: Fundamentals, Construction and Applications
Directory of Open Access Journals (Sweden)
Xiaoliang Ma
2017-05-01
Full Text Available Chiral metamaterials represent a special type of artificial structures that cannot be superposed to their mirror images. Due to the lack of mirror symmetry, cross-coupling between electric and magnetic fields exist in chiral mediums and present unique electromagnetic characters of circular dichroism and optical activity, which provide a new opportunity to tune polarization and realize negative refractive index. Chiral metamaterials have attracted great attentions in recent years and have given rise to a series of applications in polarization manipulation, imaging, chemical and biological detection, and nonlinear optics. Here we review the fundamental theory of chiral media and analyze the construction principles of some typical chiral metamaterials. Then, the progress in extrinsic chiral metamaterials, absorbing chiral metamaterials, and reconfigurable chiral metamaterials are summarized. In the last section, future trends in chiral metamaterials and application in nonlinear optics are introduced.
Meta-Chirality: Fundamentals, Construction and Applications
Ma, Xiaoliang; Pu, Mingbo; Li, Xiong; Guo, Yinghui; Gao, Ping; Luo, Xiangang
2017-01-01
Chiral metamaterials represent a special type of artificial structures that cannot be superposed to their mirror images. Due to the lack of mirror symmetry, cross-coupling between electric and magnetic fields exist in chiral mediums and present unique electromagnetic characters of circular dichroism and optical activity, which provide a new opportunity to tune polarization and realize negative refractive index. Chiral metamaterials have attracted great attentions in recent years and have given rise to a series of applications in polarization manipulation, imaging, chemical and biological detection, and nonlinear optics. Here we review the fundamental theory of chiral media and analyze the construction principles of some typical chiral metamaterials. Then, the progress in extrinsic chiral metamaterials, absorbing chiral metamaterials, and reconfigurable chiral metamaterials are summarized. In the last section, future trends in chiral metamaterials and application in nonlinear optics are introduced. PMID:28513560
Attanucci, Frank J.; Losse, John
2008-01-01
In a first calculus course, it is not unusual for students to encounter the theorems which state: If f is an even (odd) differentiable function, then its derivative is odd (even). In our paper, we prove some theorems which show how the symmetry of a continuous function f with respect to (i) the vertical line: x = a or (ii) with respect to the…
Synthesis, Immobilization and Catalytic Activity of a Copper(II Complex with a Chiral Bis(oxazoline
Directory of Open Access Journals (Sweden)
Liliana Carneiro
2014-08-01
Full Text Available A chiral bis(oxazoline bearing CH2OH groups was synthesized from a commercial bis(oxazoline and characterized by 1H- and 13C-NMR, high resolution ESI-mass spectrometry and FTIR. The corresponding copper(II complex was immobilized onto the surface of a mesoporous carbonaceous material (Starbon® 700 in which the double bonds had been activated via conventional bromination. The materials were characterized by elemental analysis, ICP-OES, XPS, thermogravimetry and nitrogen adsorption at 77 K. The new copper(II bis(oxazoline was tested both in the homogeneous phase and once immobilized onto a carbonaceous support for the kinetic resolution of hydrobenzoin. Both were active, enantioselective and selective in the mono-benzoylation of hydrobenzoin, but better enantioselectivities were obtained in the homogeneous phase. The heterogeneous catalyst could be separated from the reaction media at the end of the reaction and reused in another catalytic cycle, but with loss of product yield and enantioselectivity.
Pathinettam-Padiyan, D; Murugesan, R
2000-01-01
The electron paramagnetic resonance spectra of Cu(II) doped sarcosine cadmium chloride single crystals have been investigated at room temperature. Experimental results reveal that the Cu(II) ion enters the lattice interstitially. The observed superhyperfine lines indicate the superposition of two sets of quintet structure with interaction of nitrogen atoms and the two isotopes of copper. The spin Hamiltonian parameters are evaluated by Schonland method and the electric field symmetry around the copper ion is rhombic. An admixture of d sub z sup 2 orbital with the d sub x sub sup 2 sub - sub y sub sup 2 ground state is observed. Evaluation of MO coefficients reveals that the in-plane interaction between copper and nitrogen is strong in this lattice.
Ibragimov, Nail H; Kovalev, Vladimir F
2011-01-01
74J30The maximal group of Lie point symmetries of a system of nonlinear equations used in geophysical fluid dynamics is presented. The Lie algebra of this group is infinite-dimensional and involves three arbitrary functions of time. The invariant solution under the rotation and dilation is constructed. Qualitative analysis of the invariant solution is provided and the energy of this solution is presented.
Wang, Yu-Chuan; Qian, Chen; Peng, Zai-Li; Hou, Xiao-Juan; Wang, Li-Li; Chao, Hui; Ji, Liang-Nian
2014-01-01
A series of chiral Ru(II) complexes bearing thiophene ligands were synthesized and characterized. Both Ru(II) complexes Δ/Λ-[Ru(bpy)2(pscl)](2+) (Δ/Λ-1) and Δ/Λ-[Ru(bpy)2(psbr)](2+) (Δ/Λ-2) (bpy=2,2'-bipyridine, pscl=2-(5-chlorothiophen-2-yl)imidazo[4,5-f][1,10]phenanthroline, psbr=2-(5-bromothiophen-2-yl)imidazo[4,5-f][1,10]phenanthroline) showed antitumor activities against A549, HepG2 and BEL-7402 tumor cell lines, especially HeLa tumor cell line. Moreover, Δ enantiomers were more active than Λ enantiomers, accounting for the different cellular uptake. In addition, with the extension of time, these enantiomers could finally accumulate in the nucleus, suggesting that nucleic acids were the cellular target of these enantiomers. The DNA-binding behaviors of complexes were studied using spectroscopic and viscosity measurements. Results suggested that four complexes could bind to DNA in an intercalative mode but no obvious DNA-binding selectivity between the enantiomers was observed. Topoisomerase inhibition and DNA religation assay confirmed that four complexes acted as efficient dual topoisomerase I and II poisons, DNA strand breaks had also been observed from alkaline single cell gel electrophoresis (comet assay). Δ-1 and Δ-2 inhibited the growth of HeLa cells through the induction of apoptotic cell death, as evidenced by the Alexa Fluor® 488 annexin V staining assays and flow cytometry analysis. The results demonstrated that Δ/Λ-1 and Δ/Λ-2 acted as dual topoisomerase I and II poisons and caused DNA damage that could lead to cell cycle arrest by apoptosis. © 2013.
Khan, Noor-ul Hasan; Pandya, Nirali; Prathap, K Jeya; Kureshy, Rukhsana Ilays; Abdi, Sayed Hasan Razi; Mishra, Sandhya; Bajaj, Hari Chandra
2011-10-15
Chiral Schiff base ligands (S)-H(2)L and (R)-H(2)L and their complexes (S-Ni-L, R-Ni-L, S-Cu-L, R-Cu-L, S-Zn-L and R-Zn-L) were synthesized, characterized and examined for their DNA binding, antioxidant and antibacterial activities. The complexes showed higher binding affinity to calf thymus DNA with binding constant ranging from 2.0×10(5) to 4.5×10(6) M(-1). All the complexes also exhibited remarkable superoxide (56-99%) and hydroxyl scavenging (45-89%) activities as well as antibacterial activities against gram (+) and gram (-) bacteria. However, none of the complexes showed antifungal activity. Conclusively, S enantiomers of the complexes were found to be relatively more efficient for DNA interaction, antioxidant and antibacterial activities than their R enantiomers. This study reveals the possible utilization of chiral Schiff base complexes for pharmaceutical applications.
Momose, Takamasa; Yamaguchi, Makoto; Shida, Tadamasa
1990-11-01
Following the previous work on the isotropic hyperfine coupling constants (HFCCs) of polyatomic radicals the symmetry adapted cluster expansion-configuration interaction (SAC-CI) theory is applied to calculate anisotropic HFCCs also. The results are compared with available experimental data from diatomic to polyatomic radicals such as the vinoxy. For radicals consisting of only the first row atoms Dunning's double zeta (DZ) basis set is shown to be adequate, but for those containing the second row atoms inclusion of polarization functions is required. Compared with the isotropic HFCC the calculation of the anisotropic HFCC is less formidable. However, ignorance of electron correlation causes serious disagreements with experimental data.
Directory of Open Access Journals (Sweden)
Nan Sun
2007-06-01
Full Text Available The room temperature ionic liquid [bmim][PF6] was employed as the reactionmedium in the asymmetric glyoxylate-ene reaction of ÃŽÂ±-methyl styrene (4a with ethylglyoxylate using chiral palladium(II complexes as the catalysts. [Pd(S-BINAP(3,5-CF3-PhCN2](SbF62 (1b showed the highest catalytic activity. Under the reaction conditionsof 40 oC, 0.5 h, and 1b/4a molar ratio of 0.05, ethyl ÃŽÂ±-hydroxy-4-phenyl-4-pentenoate wasobtained in excellent chemical yield (94 % with high enantioselectivity (70 %. OtherÃŽÂ±-hydroxy esters can also be obtained in high chemical yields and enantioselectitiesthrough the glyoxylate-ene reactions of alkenes with glyoxylates catalyzed by 1b in[bmim][PF6]. Moreover, the ionic liquid [bmim][PF6] which contained the palladium(IIcomplex could be recycled and reused several times without significant loss of the catalyticactivity.
Grancha, Thais; Ferrando-Soria, Jesús; Cano, Joan; Lloret, Francesc; Julve, Miguel; De Munno, Giovanni; Armentano, Donatella; Pardo, Emilio
2013-07-01
The Cu(2+)-mediated self-assembly of oxamato-based ligands derived from either the (S)- or (R)-enantiomers of the amino acid valine leads to the formation of two antiferromagnetically coupled homochiral anionic hexacopper(II) wheels in the presence of templating tetramethylammonium countercations.
Defect topologies in chiral liquid crystals confined to mesoscopic channels.
Schlotthauer, Sergej; Skutnik, Robert A; Stieger, Tillmann; Schoen, Martin
2015-05-21
We present Monte Carlo simulations in the grand canonical and canonical ensembles of a chiral liquid crystal confined to mesochannels of variable sizes and geometries. The mesochannels are taken to be quasi-infinite in one dimension but finite in the two other directions. Under thermodynamic conditions chosen and for a selected value of the chirality coupling constant, the bulk liquid crystal exhibits structural characteristics of a blue phase II. This is established through the tetrahedral symmetry of disclination lines and the characteristic simple-cubic arrangement of double-twist helices formed by the liquid-crystal molecules along all three axes of a Cartesian coordinate system. If the blue phase II is then exposed to confinement, the interplay between its helical structure, various anchoring conditions at the walls of the mesochannels, and the shape of the mesochannels gives rise to a broad variety of novel, qualitative disclination-line structures that are reported here for the first time.
Baryon spectrum and chiral dynamics
Glozman, L Ya
1995-01-01
New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.
Gardas, Bartlomiej
2010-01-01
The problem of decoherence viewed from a block operator matrix perspective is revisited. We study an algebraic Riccati equation associate with the Hamiltonian modeling the process of decoherence. We proof that if the environment responsible for decoherence process is an invariant under transformation of an antilinear involution, then this operator (a symmetry of the system) is a solution of the Riccati equation in question. We also argue the later solution leads to neither linear not antilinear similarity operator matrix and therefore cause the problem with the standard procedure of solving linear differential equation, like for instance Schrodinger one. Finally, we give an explicit formula for the solution of the Riccati equation in the case when the operators defining the environment commute with each other. We also discuses a connection between our results and the standard Kraus representation approach of the completely positive map. We show that reduced dynamics we obtained dose not posses the Kraus repre...
Applications Of Chiral Perturbation Theory
Mohta, V
2005-01-01
Effective field theory techniques are used to describe the spectrum and interactions of hadrons. The mathematics of classical field theory and perturbative quantum field theory are reviewed. The physics of effective field theory and, in particular, of chiral perturbation theory and heavy baryon chiral perturbation theory are also reviewed. The geometry underlying heavy baryon chiral perturbation theory is described in detail. Results by Coleman et. al. in the physics literature are stated precisely and proven. A chiral perturbation theory is developed for a multiplet containing the recently- observed exotic baryons. A small coupling expansion is identified that allows the calculation of self-energy corrections to the exotic baryon masses. Opportunities in lattice calculations are discussed. Chiral perturbation theory is used to study the possibility of two multiplets of exotic baryons mixed by quark masses. A new symmetry constraint on reduced partial widths is identified. Predictions in the literature based ...
Chiral Fermions on the Lattice
Bietenholz, Wolfgang
2010-01-01
In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.
Coupling chiral bosons to gravity
Braga, N R F; Braga, N R F; Wotzasek, C
1995-01-01
chiral boson actions of Floreanini and Jackiw (FJ), and of McClain,Wu and Yu (MWY) have been recently shown to be different representations of the same chiral boson theory. MWY displays manifest covariance and also a (gauge) symmetry that is hidden in the FJ side, which, on the other hand, displays the physical spectrum in a simple manner. We make use of the covariance of the MWY representation for the chiral boson to couple it to background gravity showing explicitly the equivalence with the previous results for the FJ representation
Chiral gravity in higher dimensions
Ootsuka, T; Ura, K; Ootsuka, Takayoshi; Tanaka, Erico; Ura, Kousuke
2003-01-01
We construct a chiral theory of gravity in 7 and 8 dimensions, which are equivalent to Einstein-Cartan theory using less variables. In these dimensions, we can construct such higher dimensional chiral gravity because of the existence of gravitational instanton. The octonionic-valued variables in the theory represent the deviation from the gravitational instanton, and from their non-associativity, prevents the theory to be SO(n) gauge invariant. Still the chiral gravity holds G_2 (7-D), and Spin(7) (8-D) gauge symmetry.
Hao, Xin-Qi; Huang, Juan-Juan; Wang, Tao; Lv, Jing; Gong, Jun-Fang; Song, Mao-Ping
2014-10-17
A series of chiral PCN pincer Pd(II) complexes VI-XIII with aryl-based aminophosphine-imidazoline or phosphinite-imidazoline ligands were synthesized and characterized. They were examined as enantioselective catalysts for the hydrophosphination of enones. Among them, complex IX, which features a Ph2PO donor as well as an imidazoline donor with (4S)-phenyl and N-Tol-p groups, was found to be the optimal catalyst. Thus, in the presence of 2-5 mol % of complex IX a wide variety of enones reacted smoothly with diarylphosphines to give the corresponding chiral phosphine derivatives in high yields with enantioselectivities of up to 98% ee. In particular, heteroaryl species such as 2-thienyl-, 2-furyl-, and 2-pyridinyl-containing enones that have a strong coordination ability to the Pd center were also appropriate substrates for the current catalytic system. For example, hydrophosphination of 2-alkenoylpyridines with diphenylphosphine followed by oxidation with H2O2 afforded the corresponding pyridine-functionalized chiral phosphine oxides in good yields with good to excellent enantioselectivities (10 examples, up to 95% ee). Furthermore, it had been demonstrated that the obtained pyridine-containing phosphine oxide acted as a tridentate ligand in the reaction with PdCl2 to form an intriguing NCsp(3)O pincer Pd(II) complex via Csp(3)-H bond activation, which to our knowledge is the first example of a chiral DCsp(3)D' Pd pincer (D ≠ D'; D and D' denote donor atoms such as P, N, etc.).
Chirality and the angular momentum of light
Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.; Yao, Alison M.
2017-02-01
Chirality is exhibited by objects that cannot be rotated into their mirror images. It is far from obvious that this has anything to do with the angular momentum of light, which owes its existence to rotational symmetries. There is nevertheless a subtle connection between chirality and the angular momentum of light. We demonstrate this connection and, in particular, its significance in the context of chiral light-matter interactions. This article is part of the themed issue 'Optical orbital angular momentum'.
Meson Effects on the Chiral Condensate at Finite Density
Institute of Scientific and Technical Information of China (English)
HUANG Mei; ZHUANG Peng-Fei; ZHAO Wei-Qin
2002-01-01
Meson corrections on the chiral condensate up to next-to-leading order in a 1/Nc expansion at finite densityare investigated in the NJL model with explicit chiral symmetry breaking. Compared with mean-field results, the chiralphase transition is still of the first order while the properties near the critical density for chiral phase transition are foundto change significantly.
Bélombé, Michel M; Nenwa, Justin; Kouamo, Jean S T Wankap; Ponou, Siméon; Fischer, Andreas
2012-05-01
The crystal structure of the title compound, {[Cu(C(4)H(4)O(6))(C(2)H(6)N(4)O(2))]·4H(2)O}(n), contains the central Cu(II) cation in a distorted octahedral coordination, symmetrically chelated by the two imine N atoms of a neutral oxamide dioxime (H(2)oxado) ligand [Cu-N = 1.9829 (16) Å] and unsymmetrically bis-chelated by two halves of the L-(+)-tartrate(2-) (tart) ligands, each half being linked to the Cu(II) cation via the deprotonated carboxylate group and protonated hydroxy group [Cu-O = 1.9356 (14) and 2.4674 (13) Å, respectively]. The extended asymmetric unit is defined by twofold axes, one passing through the Cu(II) cation and the centre of the oxamide dioxime (H(2)oxado) ligand and the another two (symmetry related) bisecting the central C-C bonds of the tartrate ions. The structure is chiral, consisting of enantiomeric linear-chain polymers oriented along [001], with virtual monomeric {Cu(tart(0.5))(2)(H(2)oxado)} repeat units and with the chains interleaved face-to-face into `twin pillars'. Nanochannels exist, running parallel to the c axis and bisecting a and b, which host `double strings' of solvent water molecules. Extensive hydrogen bonding (O-H···O and N-H···O) between the chains and solvent water molecules, together with extended π-σ interactions, consolidate the bulk crystal structure.
Heavy-Light Mesons in Chiral AdS/QCD
Liu, Yizhuang
2016-01-01
We discuss a minimal holographic model for the description of heavy-light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang-Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy-light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy-light mesons.
Adler, Stephen L
2016-01-01
We continue our study of Coleman-Weinberg symmetry breaking induced by a third rank antisymmetric tensor scalar, in the context of the $SU(8)$ model [1] we proposed earlier. We discuss the mechanism for giving the spin $\\frac{3}{2}$ field a mass by the BEH mechanism, and analyze the remaining massless spin $\\frac{1}{2}$ fermions, the global chiral symmetries, and the running couplings after symmetry breaking. We note that the smallest gluon mass matrix eigenvalue has an eigenvector suggestive of $U(1)_{B-L}$, and conjecture that the theory runs to an infrared fixed point at which there is a massless gluon with 3 to -1 ratios in generator components. Assuming this, we discuss a mechanism for producing hierarchies, and for generating the standard model fermions as composites formed from the original $SU(8)$ model fermions, which play the role of "preons". Quarks can emerge 5 preon composites and leptons as 3 preon composites, with consequent stability of the proton against decay to a single lepton plus mesons.
Zhang, Xiao-Peng; Wu, Tao; Liu, Jian; Zhao, Jin-Cheng; Li, Cheng-Hui; You, Xiao-Zeng
2013-07-01
Two couples of enantiomeric platinum(II) complexes: Pt(L1a )Cl (1a), Pt(L1b )Cl (1b) and Pt(L1a )(C ≡ C - Ph) (2a), Pt(L1b )(C ≡ C - Ph) (2b) (L1a = (+)-1,3-di-(2-(4,5-pinene)pyridyl)benzene, L1b = (-)-1,3-di-(2-(4,5-pinene)pyridyl)benzene) were synthesized and characterized. Their absolute configurations were determined by single crystal X-ray diffraction and further verified by circular dichroism (CD) spectra (including electronic circular dichroism [ECD] and vibrational circular dichroism [VCD]). These complexes show interesting mechanoluminescence and/or vapoluminescence due to crystalline-to-amorphous transformation. The crystalline solids, grinding-induced amorphous powders, and vapor-induced amorphous powders of complexes 2a and 2b were comparatively investigated by solid-state ECD and VCD spectra. The transformation from crystalline solids to amorphous powders was accompanied by significant variances of the spectral feature in both ECD and VCD spectra. © 2013 Wiley Periodicals, Inc.
Kojo, Toru; McLerran, Larry; Pisarski, Robert D
2009-01-01
We consider the formation of chiral density waves in Quarkyonic matter, which is a phase where cold, dense quarks experience confining forces. We model confinement following Gribov and Zwanziger, taking the gluon propagator, in Coulomb gauge and momentum space, as 1/(p^2)^2. We assume that the number of colors, N, is large, and that the quark chemical potential, mu, is much larger than renormalization mass scale, Lambda_QCD. To leading order in 1/N and Lambda_QCD, a gauge theory with Nf flavors of massless quarks in 3+1 dimensions naturally reduces to a gauge theory in 1+1 dimensions, with an enlarged flavor symmetry of SU(2Nf). Through an anomalous chiral rotation, in two dimensions a Fermi sea of massless quarks maps directly onto the corresponding theory in vacuum. A chiral condensate forms locally, and varies with the spatial position, z, as . Following Schon and Thies, we term this two dimensional pion condensate a (Quarkyonic) chiral spiral. Massive quarks also exhibit chiral spirals, with the magnitude...
Neutrino mixing and leptogenesis in type-II seesaw scenarios with left right symmetry
Chao, Wei; Luo, Shu; Xing, Zhi-zhong
2008-01-01
We propose two type-II seesaw scenarios for the neutrino mass matrix in the left-right symmetric model, in which the Higgs triplet Yukawa coupling matrix takes the appealing Friedberg-Lee texture. We show that the nearly tri-bimaximal neutrino mixing pattern, which is especially favored by current neutrino oscillation data, can be obtained from both scenarios. We also show that the cosmological baryon number asymmetry can naturally be interpreted in these two scenarios via the flavor-independent leptogenesis mechanism.
Neutrino Mixing and Leptogenesis in Type-II Seesaw Scenarios with Left-Right Symmetry
Chao, Wei; Xing, Zhi-zhong
2008-01-01
We propose two Type-II seesaw scenarios for the neutrino mass matrix in the left-right symmetric model, in which the Higgs triplet Yukawa coupling matrix takes the appealing Friedberg-Lee texture. We show that the nearly tri-bimaximal neutrino mixing pattern, which is especially favored by current neutrino oscillation data, can be obtained from both scenarios. We also show that the cosmological baryon number asymmetry can naturally be interpreted in these two scenarios via the flavor-independent leptogenesis mechanism.
Energy Technology Data Exchange (ETDEWEB)
Yu, Jeong Jae; Ryoo, Jae Jeong [Kyungpook National Univ., Daegu (Korea, Republic of)
2013-11-15
The potency of new chiral selector candidate was assessed by this simple chiral discrimination test. This experiment showed that the macrocyclic molecule can be a powerful candidate as a chiral selector to obtain optically pure amino acid or amino acid derivatives, particularly phenylalanine and N-benzoyl-phenylalanine enantiomers from racemic mixtures. This study attempted to use the chiral metal organic framework (MOF), 1, as a good chiral selector candidate for the chiral discrimination of racemic phenylalanine, N-benzoyl-alanine, N-benzoyl-phenylalanine, N-benzoyl-methionine, N-CBZ-alanine. The chiral recognition ability of the chiral macromolecule, was examined by varying the molar ratio of the macromolecule and racemates.
Babich, R; Hölbling, C; Howard, J; Lellouch, L; Rebbi, C; Babich, Ronald; Garron, Nicolas; Hoelbling, Christian; Howard, Joseph; Lellouch, Laurent; Rebbi, Claudio
2006-01-01
We present results for the \\Delta S=2 matrix elements which are required to study neutral kaon mixing in the standard model (SM) and beyond (BSM). We also provide leading chiral order results for the matrix elements of the electroweak penguin operators which give the dominant \\Delta I=3/2 contribution to direct CP violation in K->\\pi\\pi decays. Our calculations were performed with Neuberger fermions on two sets of quenched Wilson gauge configurations at inverse lattice spacings of approximately 2.2 GeV and 1.5 GeV. All renormalizations were implemented non-perturbatively in the RI/MOM scheme, where we accounted for sub-leading operator product expansion corrections and discretization errors. We find ratios of non-SM to SM matrix elements which are roughly twice as large as in the only other dedicated lattice study of these amplitudes. On the other hand, our results for the electroweak penguin matrix elements are in good agreement with two recent domain-wall fermion calculations. As a by-product of our study, ...
Xiao, Guolan; Ma, Chaoqun; Xing, Dong; Hu, Wenhao
2016-12-02
An enantioselective method for the synthesis of α-mercapto-β-amino esters has been developed via a rhodium(II)/chiral phosphoric acid-cocatalyzed three-component reaction of diazo compounds, thiols, and imines. This transformation is proposed to proceed through enantioselective trapping of the sulfonium ylide intermediate generated in situ from the diazo compound and thiol by the phosphoric acid-activated imine. With this method, a series of α-mercapto-β-amino esters were obtained in good yields with moderate to good stereoselectivities.
Brading, Katherine; Castellani, Elena
2010-01-01
Preface; Copyright acknowledgements; List of contributors; 1. Introduction; Part I. Continuous Symmetries: 2. Classic texts: extracts from Weyl and Wigner; 3. Review paper: On the significance of continuous symmetry to the foundations of physics C. Martin; 4. The philosophical roots of the gauge principle: Weyl and transcendental phenomenological idealism T. Ryckman; 5. Symmetries and Noether's theorems K. A. Brading and H. R. Brown; 6. General covariance, gauge theories, and the Kretschmann objection J. Norton; 7. The interpretation of gauge symmetry M. Redhead; 8. Tracking down gauge: an ode to the constrained Hamiltonian formalism J. Earman; 9. Time-dependent symmetries: the link between gauge symmetries and indeterminism D. Wallace; 10. A fourth way to the Aharanov-Bohm effect A. Nounou; Part II. Discrete Symmetries: 11. Classic texts: extracts from Lebniz, Kant and Black; 12. Review paper: Understanding permutation symmetry S. French and D. Rickles; 13. Quarticles and the identity of discernibles N. Hugget; 14. Review paper: Handedness, parity violation, and the reality of space O. Pooley; 15. Mirror symmetry: what is it for a relational space to be orientable? N. Huggett; 16. Physics and Leibniz's principles S. Saunders; Part III. Symmetry Breaking: 17: Classic texts: extracts from Curie and Weyl; 18. Extract from G. Jona-Lasinio: Cross-fertilization in theoretical physics: the case of condensed matter and particle physics G. Jona-Lasinio; 19. Review paper: On the meaning of symmetry breaking E. Castellani; 20. Rough guide to spontaneous symmetry breaking J. Earman; 21. Spontaneous symmetry breaking: theoretical arguments and philosophical problems M. Morrison; Part IV. General Interpretative Issues: 22. Classic texts: extracts from Wigner; 23. Symmetry as a guide to superfluous theoretical structure J. Ismael and B. van Fraassen; 24. Notes on symmetries G. Belot; 25. Symmetry, objectivity, and design P. Kosso; 26. Symmetry and equivalence E. Castellani.
Peak of Chiral Susceptibility and Chiral Phase Transition in QED3
Institute of Scientific and Technical Information of China (English)
ZHOU Yu-Qing; YANG Yong-Hong
2011-01-01
A general expression for the scalar susceptibility in QEDs is given. We adopt the Dyson-Schwinger equation for the fermion propagator to solve xc within a range of the number of fermion flavors, N, in chiral symmetry breaking phase. We show that the scalar susceptibility has a peak and the corresponding N is less than the critical number of fermion flavors for chiral symmetry.%@@ A general expression for the scalar susceptibility in QED3 is given.We adopt the Dyson-Schwinger equation for the fermion propagator to solve Xc within a range of the number of fermion flavors, N, in chiral symmetry breaking phase.We show that the scalar susceptibility has a peak and the corresponding N is less than thecritical number of fermion flavors for chiral symmetry.
Symmetry Non-restoration at High Temperature
Rius, N
1998-01-01
We discuss the (non)-restoration of global and local symmetries at high temperature. First, we analyze a two-scalar model with $Z_2 \\times Z_2$ symmetry using the exact renormalization group. We conclude that inverse symmetry breaking is possible in this kind of models within the perturbative regime. Regarding local symmetries, we consider the $SU(2) \\otimes U(1)$ gauge symmetry and focus on the case of a strongly interacting scalar sector. Employing a model-independent chiral Lagrangian we find indications of symmetry restoration.
Neutrino phenomenology and scalar Dark Matter with A4 flavor symmetry in Inverse and type II seesaw
Mukherjee, Ananya; Das, Mrinal Kumar
2016-12-01
We present a TeV scale seesaw mechanism for exploring the dark matter and neutrino phenomenology in the light of recent neutrino and cosmology data. A different realization of the Inverse seesaw (ISS) mechanism with A4 flavor symmetry is being implemented as a leading contribution to the light neutrino mass matrix which usually gives rise to vanishing reactor mixing angle θ13. Using a non-diagonal form of Dirac neutrino mass matrix and 3σ values of mass square differences we parameterize the neutrino mass matrix in terms of Dirac Yukawa coupling "y". We then use type II seesaw as a perturbation which turns out to be active to have a non-vanishing reactor mixing angle without much disturbing the other neutrino oscillation parameters. Then we constrain a common parameter space satisfying the non-zero θ13, Yukawa coupling and the relic abundance of dark matter. Contributions of neutrinoless double beta decay are also included for standard as well as non-standard interaction. This study may have relevance in future neutrino and Dark Matter experiments.
Energy Technology Data Exchange (ETDEWEB)
Cho, Hana; Strader, Matthew L.; Hong, Kiryong; Jamula, Lindsey; Gullikson, Eric M.; Kim, Tae Kyu; de Groot, Frank M. F.; McCusker, James K.; Schoenlein, Robert W.; Huse, Nils
2012-01-01
Ultrafast excited-state evolution in polypyridyl FeII complexes are of fundamental interest for understanding the origins of the sub-ps spin-state changes that occur upon photoexcitation of this class of compounds as well as for the potential impact such ultrafast dynamics have on incorporation of these compounds in solar energy conversion schemes or switchable optical storage technologies. We have demonstrated that ground-state and, more importantly, ultrafast time-resolved x-ray absorption methods can offer unique insights into the interplay between electronic and geometric structure that underpin the photo-induced dynamics of this class of compounds. The present contribution examines in greater detail how the symmetry of the ligand field surrounding the metal ion can be probed using these x-ray techniques. In particular, we show that steady-state K-edge spectroscopy of the nearest-neighbour nitrogen atoms reveals the characteristic chemical environment of the respective ligands and suggests an interesting target for future charge-transfer femtosecond and attosecond spectroscopy in the x-ray water window.
Ng, Chew Hee; Chan, Cheang Wei; Lai, Jing Wei; Ooi, Ing Hong; Chong, Kok Vei; Maah, Mohd Jamil; Seng, Hoi Ling
2016-07-01
Like chiral organic drugs, the chemical and biological properties of metal complexes can be dependent on chirality. Two pairs of [Cu(phen)(ala)(H2O)]X·xH2O (phen=1.10-phenanthroline: X=NO3(-); ala: l-alanine (l-ala), 1 and d-alanine (d-ala) 2; and (X=Cl(-); ala: l-ala, 3 and d-ala, 4) complex salts (x=number of lattice water molecules) have been synthesized and characterized. The crystal structure of 3 has been determined. The same pair of enantiomeric species, viz. [Cu(phen)(l-ala)(H2O)](+) and [Cu(phen)(d-ala)(H2O)](+), have been identified to be present in the aqueous solutions of both 1 and 3, and in those of both 2 and 4 respectively. Both 3 and 4 bind more strongly to ds(AT)6 than ds(CG)6. There is no or insignificant effect of the chirality of 3 and 4 on the production of hydroxyl radicals, binding to deoxyribonucleic acid from calf thymus (CT-DNA), ds(CG)6, G-quadruplex and 17-base pair duplex, and inhibition of both topoisomerase I and proteasome. Among the three proteasome proteolytic sites, the trypsin-like site is inhibited most strongly by these complexes. However, the chirality of 3 and 4 does affect the number of restriction enzymes inhibited, and their binding constants towards ds(AT)6 and serum albumin.
Redkov, V M
1999-01-01
The paper concerns a problem of the Dirac fermion doublet in the external monopole potential obtained by embedding the Abelian monopole solution in the non-Abelian scheme. In this case, the doublet-monopole Hamiltonian is invariant under operations consisting of a complex and one parametric Abelian subgroup in S0(3.C). This symmetry results in a certain freedom in choosing a discrete operator N(A) (A is a complex number) entering the complete set of quantum variables. The same complex number A represents an additional parameter at the basis functions. The generalized inversion like operator N(A) affords certain generalized N(A)-parity selection rules. All the different sets of basis functions Psi(A) determine the same Hilbert space. The functions Psi(A) decompose into linear combinations of Psi(A=0): Psi(A) = F(A) Psi(A=0). However, the bases considered turn out to be nonorthogonal ones when A is a complex number; the latter correlates with the non-self-conjugacy of the N(A) at complex A-s. The meaning of pos...
Buron-Le Cointe, M.; Ould Moussa, N.; Trzop, E.; Moréac, A.; Molnar, G.; Toupet, L.; Bousseksou, A.; Létard, J. F.; Matouzenko, G. S.
2010-12-01
Crystallographic, magnetic, and Raman investigations of the mononuclear [FeII(Hpy-DAPP)](BF4)2 complex are presented. Its particular feature is a two-step thermal spin conversion in spite of a unique symmetry-independent iron site per unit cell. The plateau around 140 K is associated with a symmetry breaking visible by the appearance of weak (0k0) k odd Bragg peaks. Symmetries of the high-temperature high-spin state and of the low-temperature low-spin state are both monoclinic P21/c , so that the symmetry breaking on the plateau is associated with a reentrant phase transition. It is discussed in relation with Ising-type microscopic models. At the plateau level, the two symmetry-independent molecules differ both by their spin state and the conformation (chair versus twist-boat) of one metallocycle. At low-temperature photoinduced phenomena have been investigated: a partial phototransformation [light-induced excited spin-state trapping (LIESST) effect] is observed under visible red irradiation. Raman spectroscopy shows that the molecular photoinduced state is the high-spin one. Nevertheless, as no macroscopic symmetry breaking is observed, the unique average cationic [FeII(Hpy-DAPP)] state of the unit cell is intermediate between pure low-spin and high-spin states and presents a conformational disorder for one metallocycle. Reverse-LIESST has also been evidenced using near infrared excitation. Thus, the mononuclear [Fe(Hpy-DAPP)](BF4)2 compound offers the opportunity to discuss the interplay between spin conversion, molecular conformational change, and ordering processes.
Augmented Superfield Approach To Exact Nilpotent Symmetries For Matter Fields In Non-Abelian Theory
Malik, R P; Mandal, Bhabani Prasad
2006-01-01
We derive the nilpotent (anti-) BRST symmetry transformations for the Dirac (matter) fields of an interacting four $(3+1)$-dimensional 1-form non-Abelian gauge theory by applying the theoretical arsenal of augmented superfield formalism where (i) the horizontality condition, and (ii) the equality of a gauge invariant quantity, on the six (4, 2)-dimensional supermanifold, are exploited together. The above supermanifold is parameterized by four bosonic spacetime coordinates $x^\\mu$ (with $\\mu = 0,1,2,3)$ and a couple of Grassmannian variables $\\theta $ and $\\bar{\\theta}$. The on-shell nilpotent BRST symmetry transformations for all the fields of the theory are derived by considering the chiral superfields on the five ($4, 1)$-dimensional super sub-manifold and the off-shell nilpotent symmetry transformations emerge from the consideration of the general superfields on the full six (4, 2)-dimensional supermanifold. Geometrical interpretations for all the above nilpotent symmetry transformations are also discussed...
Chiral Dynamics With Wilson Fermions
Splittorff, K
2012-01-01
Close to the continuum the lattice spacing affects the smallest eigenvalues of the Wilson Dirac operator in a very specific manner determined by the way in which the discretization breaks chiral symmetry. These effects can be computed analytically by means of Wilson chiral perturbation theory and Wilson random matrix theory. A number of insights on chiral Dynamics with Wilson fermions can be obtained from the computation of the microscopic spectrum of the Wilson Dirac operator. For example, the unusual volume scaling of the smallest eigenvalues observed in lattice simulations has a natural explanation. The dynamics of the eigenvalues of the Wilson Dirac operator also allow us to determine the additional low energy constants of Wilson chiral perturbation theory and to understand why the Sharpe-Singleton scenario is only realized in unquenched simulations.
Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin
1999-01-01
We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.
Inoue, Yoshihisa
2004-01-01
Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S
Directory of Open Access Journals (Sweden)
Jingran Tao
2014-06-01
Full Text Available The Co(II complex of a new D2-symmetric chiral porphyrin 3,5-DiMes-QingPhyrin, [Co(P6], can catalyze asymmetric aziridination of alkenes with bis(2,2,2-trichloroethylphosphoryl azide (TcepN3 as a nitrene source. This new Co(II-based metalloradical aziridination is suitable for different aromatic olefins, producing the corresponding N-phosphorylaziridines in good to excellent yields (up to 99% with moderate to high enantioselectivities (up to 85% ee. In addition to mild reaction conditions and generation of N2 as the only byproduct, this new metalloradical catalytic system is highlighted with a practical protocol that operates under neutral and non-oxidative conditions.
Chiral corrections to the Adler-Weisberger sum rule
Beane, Silas R.; Klco, Natalie
2016-12-01
The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .
Adly, Frady G; Maddalena, Johncarlo; Ghanem, Ashraf
2014-11-01
A new series of dirhodium(II) tetracarboxylate was derived from N-1,2-naphthaloyl-(S)-amino acid ligands. In terms of enantioselectivity, Rh2 (S-1,2-NTTL)4 () derived from N-1,2-naphthaloyl-(S)-tert-leucine, was the best-performing catalyst among the new series in the enantioselective synthesis of cyclopropylphosphonate derivatives (up to >99% enantiomeric excess). A predictive model was proposed to justify the observed high enantiomeric induction exhibited by Rh2 (S-1,2-NTTL)4 with donor-acceptor phosphonate carbenoids.
Symmetry structure and phase transitions
Indian Academy of Sciences (India)
Ashok Goyal; Meenu Dahiya; Deepak Chandra
2003-05-01
We study chiral symmetry structure at ﬁnite density and temperature in the presence of external magnetic ﬁeld and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.
Gravitation and Duality Symmetry
D'Andrade, V C; Pereira, J G
2005-01-01
By generalizing the Hodge dual operator to the case of soldered bundles, and working in the context of the teleparallel equivalent of general relativity, an analysis of the duality symmetry in gravitation is performed. Although the basic conclusion is that, at least in the general case, gravitation does not present duality symmetry, there is a particular theory in which this symmetry is present. This theory is a self dual (or anti-self dual) teleparallel gravity in which, owing to the fact that it does not contribute to the gravitational interaction of fermions, the purely tensor part of torsion is assumed to vanish. The corresponding fermionic gravitational interaction is found to be chiral. Since duality is intimately related to renormalizability, this theory will probably be much more amenable to renormalization than teleparallel gravity or general relativity. Although obtained in the context of teleparallel gravity, these results must also be true for general relativity.
Spatial control of chirality in supramolecular aggregates
Castriciano, Maria A.; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù
2017-01-01
Chirality is one of the most intriguing properties of matter related to a molecule’s lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic. PMID:28275239
Spatial control of chirality in supramolecular aggregates.
Castriciano, Maria A; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù
2017-03-09
Chirality is one of the most intriguing properties of matter related to a molecule's lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic.
Kallin, Catherine; Berlinsky, John
2016-05-01
Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.
Experimental Demonstration of Spontaneous Chirality in a Nonlinear Microresonator
Cao, Qi-Tao; Wang, Heming; Dong, Chun-Hua; Jing, Hui; Liu, Rui-Shan; Chen, Xi; Ge, Li; Gong, Qihuang; Xiao, Yun-Feng
2017-01-01
Chirality is an asymmetric property widely found in nature. Here, we propose and demonstrate experimentally the spontaneous emergence of chirality in an on-chip ultrahigh-Q whispering-gallery microresonator, without broken parity or time-reversal symmetry. This counterintuitive effect arises due to the inherent Kerr-nonlinearity-modulated coupling between clockwise and counterclockwise propagating waves. Above an input threshold of a few hundred microwatts, the initial chiral symmetry is broken spontaneously, and the counterpropagating output ratio exceeds 20 ∶1 with bidirectional inputs. The spontaneous chirality in an on-chip microresonator holds great potential in studies of fundamental physics and applied photonic devices.
Sardella, Roccaldo; Macchiarulo, Antonio; Carotti, Andrea; Ianni, Federica; Rubiño, Maria Eugenia García; Natalini, Benedetto
2012-12-21
With the use of a chiral ligand-exchange chromatography (CLEC) system operating with the O-benzyl-(S)-serine [(S)-OBS] [1,2] as the chiral mobile phase (CMP) additive to the eluent, the effect of the copper(II) anion type on retention (k) and separation (α) factors was evaluated, by rationally changing the following experimental conditions: salt concentration and temperature. The CLEC-CMP analysis was carried out on ten amino acidic racemates and with nine different cupric salts. While the group of analytes comprised both aliphatic (leucine, isoleucine, nor-leucine, proline, valine, nor-valine, and α-methyl-valine) and aromatic (1-aminoindan-1,5-dicarboxylic acid, phenylglycine, and tyrosine) species, representative organic (formate, methanesulfonate, and trifluoroacetate) and inorganic (bromide, chloride, fluoride, nitrate, perchlorate, and sulfate) Cu(II) salts were selected as the metal source into the eluent. This route of investigation was pursued with the aim of identifying analogies among the employed Cu(II) salts, by observing the variation profile of the selected chromatographic parameters, upon a change of the above experimental conditions. All the data were collected and analyzed through a statistical approach (PCA and k-means clustering) that revealed the presence of two behavioral classes of cupric salts, sharing the same variation profile for k and α values. Interestingly, this clustering can be explained in terms of ESP (electrostatic surface potential) balance (ESP(bal)) values, obtained by an ab initio calculation operated on the cupric salts. The results of this appraisal could aid the rational choice of the most suitable eluent system, to succeed in the enantioseparation of difficult-to-resolve compounds, along with the eventual scale-up to a semi-preparative level.
Orientation-Dependent Handedness and Chiral Design
Directory of Open Access Journals (Sweden)
Efi Efrati
2014-01-01
Full Text Available Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in the paradox of chiral connectedness. In this work, we put forward a quantification scheme in which the handedness of an object depends on the direction in which it is viewed. While consistent with familiar chiral notions, such as the right-hand rule, this framework allows objects to be simultaneously right and left handed. We demonstrate this orientation dependence in three different systems—a biomimetic elastic bilayer, a chiral propeller, and optical metamaterial—and find quantitative agreement with chirality pseudotensors whose form we explicitly compute. The use of this approach resolves the existing paradoxes and naturally enables the design of handed metamaterials from symmetry principles.
Hoffmann, S K; Hilczer, W; Goslar, J; Massa, M M; Calvo, R
2001-11-01
Low-temperature (4-55 K) pulsed EPR measurements were performed with the magnetic field directed along the z-axis of the g-factor of the low-symmetry octahedral complex [(63)Cu(L-aspartate)(2)(H2O)2] undergoing dynamic Jahn-Teller effect in diaqua(L-aspartate)Zn(II) hydrate single crystals. Spin-lattice relaxation time T(1) and phase memory time T(M) were determined by the electron spin echo (ESE) method. The relaxation rate 1/T(1) increases strongly over 5 decades in the temperature range 4-55 K. Various processes and mechanisms of T(1)-relaxation are discussed, and it is shown that the relaxation is governed mainly by Raman relaxation processes with the Debye temperature Theta(D)=204 K, with a detectable contribution from disorder in the doped Cu(2+) ions system below 12 K. An analytical approximation of the transport integral I(8) is given in temperature range T=0.025-10Theta(D) and applied for computer fitting procedures. Since the Jahn-Teller distorted configurations differ strongly in energy (delta(12)=240 cm(-1)), there is no influence of the classical vibronic dynamics mechanism on T(1). Dephasing of the ESE (phase relaxation) is governed by instantaneous diffusion and spectral diffusion below 20 K with resulting rigid lattice value 1/T(0)(M)=1.88 MHz. Above this temperature the relaxation rate 1/T(M) increases upon heating due to two mechanisms. The first is the phonon-controlled excitation to the first excited vibronic level of energy Delta=243 cm(-1), with subsequent tunneling to the neighbor potential well. This vibronic-type dynamics also produces a temperature-dependent broadening of lines in the ESEEM spectra. The second mechanism is produced by the spin-lattice relaxation. The increase in T(M) is described in terms of the spin packets forming inhomogeneously broadened EPR lines.
Mutti, Francesco G; Gullotti, Michele; Casella, Luigi; Santagostini, Laura; Pagliarin, Roberto; Andersson, K Kristoffer; Iozzi, Maria Francesca; Zoppellaro, Giorgio
2011-05-28
The new poly-imidazole N(8) ligand (S)-2-piperazinemethanamine-1,4-bis[2-((N-(1-acetoxy-3-(1-methyl-1H-imidazol-4-yl))-2-(S)-propyl)-(N-(1-methyl-1H-imidazol-2-ylmethyl)))ethyl]-N-(phenylmethyl)-N-(acetoxy), also named (S)-Pz-(C2-(HisIm))(2) (L), containing three chiral (S) centers, was obtained by a multi-step synthesis and used to prepare dinuclear [Cu(2)(L)](4+) and trinuclear [Cu(3)(L)](6+) copper(II) complexes. Low-temperature EPR experiments performed on [Cu(2)(L)](4+) demonstrated that the two S = ½ centers behaved as independent paramagnetic units, while the EPR spectra used to study the trinuclear copper complex, [Cu(3)(L)](6+), were consistent with a weakly coupled three-spin ½ system. Theoretical models for the two complexes were obtained by DFT/RI-BP86/TZVP geometry optimization, where the structural and electronic characteristics nicely supported the EPR experimental findings. In addition, the theoretical analysis unveiled that the conformational flexibility encoded in both [Cu(2)(L)](4+) and [Cu(3)(L)](6+) arises not only from the presence of several σ-bonds and the bulky residues attached to the (S)-Pz-(C2-(HisIm))(2) ligand scaffold, but also from the poor coordination ability of the tertiary amino groups located in the ligand side-chains containing the imidazole units towards the copper(II) ions. Both the dinuclear and trinuclear complexes are efficient catalysts in the stereoselective oxidation of several catechols and flavonoid compounds, yielding the corresponding quinones. The structural features of the substrate-catalyst adduct intermediates were assessed by searching the conformational space of the molecule through MMFF94/Monte Carlo (MMFF94/MC) methods. The conformational flexibility of the bound ligand in the complexes proves to be beneficial for substrate binding and recognition. For the dinuclear complex, chiral recognition of the optically active substrates derives from weak electrostatic interactions between bound substrates and
Topics in three flavor chiral dynamics
Energy Technology Data Exchange (ETDEWEB)
Nissler, Robin
2007-07-01
In this work, we investigate several processes in low-energy hadron physics by combining chiral perturbation theory (ChPT), the effective field theory of quantum chromodynamics (QCD) at low energies, with a unitarization method based on the Bethe-Salpeter equation. Such so-called chiral unitary approaches are capable of describing processes in the three flavor sector of the strong interaction which involve substantial effects from final-state interactions and the excitation of (subthreshold) resonances, a domain where the perturbative framework of ChPT is not applicable. In part I of this work we study {eta} and {eta}' decays which constitute a perfect tool to examine symmetries and symmetry breaking patterns of QCD being incorporated in a model-independent fashion in ChPT. In particular, these decays allow to investigate the breaking of isospin symmetry due to the light quark mass difference m{sub d}-m{sub u} as well as effects of anomalies stemming from the quantum nature of QCD. For these reasons the decays of {eta} and {eta}' have also attracted considerable experimental interest. They are currently under investigation at several facilities including KLOE rate at DA{phi}NE, Crystal Ball at MAMI, WASA-at-COSY, VES at IHEP, and CLEO at CESR. In part II we investigate low-energy meson-baryon scattering in the strangeness S=-1 sector which is dominated by the {lambda}(1405) resonance immediately below the anti KN threshold. The anti KN interaction below threshold is of relevance for the quest of possible deeply bound anti K-nuclear clusters and has recently received an additional tight constraint: the K{sup -}p scattering length as determined from kaonic hydrogen by the KEK and the DEAR collaborations. Apart from successfully describing a large amount of experimental data and furnishing predictions for yet unmeasured quantities, our calculations allow to interrelate different experimental observables providing important consistency tests of experiments. E
Fluctuations of Goldstone modes and the chiral transition in QCD
Karsch, Frithjof
2008-01-01
We provide evidence for the influence of thermal fluctuations of Goldstone modes on the chiral condensate at finite temperature. We show that at fixed temperature, T
Fabrication and characterization of three-dimensional biomimetic chiral composites.
Turner, Mark D; Schröder-Turk, Gerd E; Gu, Min
2011-05-09
Here we show the fabrication and characterization of a novel class of biomimetic photonic chiral composites inspired by a recent finding in butterfly wing-scales. These three-dimensional networks have cubic symmetry, are fully interconnected, have robust mechanical strength and possess chirality which can be controlled through the composition of multiple chiral networks, providing an excellent platform for developing novel chiral materials. Using direct laser writing we have fabricated different types of chiral composites that can be engineered to form novel photonic devices. We experimentally show strong circular dichroism and compare with numerical simulations to illustrate the high quality of these three-dimensional photonic structures.
A web site for calculating the degree of chirality.
Zayit, Amir; Pinsky, Mark; Elgavi, Hadassah; Dryzun, Chaim; Avnir, David
2011-01-01
The web site, http://www.csm.huji.ac.il/, uses the Continuous Chirality Measure to evaluate quantitatively the degree of chirality of a molecule, a structure, a fragment. The value of this measure ranges from zero, the molecule is achiral, to higher values (the upper limit is 100); the higher the chirality value, the more chiral the molecule is. The measure is based on the distance between the chiral molecule and the nearest structure that is achiral. Questions such as the following can be addressed: by how much is one molecule more chiral than the other? how does chirality change along conformational motions? is there a correlation between chirality and enantioselectivity in a series of molecules? Both elementary and advanced features are offered. Related calculation options are the symmetry measures and shape measures.
Chiral transition of fundamental and adjoint quarks
Energy Technology Data Exchange (ETDEWEB)
Capdevilla, R.M. [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Doff, A., E-mail: agomes@utfpr.edu.br [Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR (Brazil); Natale, A.A., E-mail: natale@ift.unesp.br [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil)
2014-01-20
The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one.
A chiral route to pulling optical forces and left-handed optical torques
Canaguier-Durand, Antoine
2015-01-01
We analyze how chirality can generate pulling optical forces and left-handed torques by cross-coupling linear-to-angular momenta between the light field and the chiral object. In the dipolar regime, we reveal that such effects can emerge from a competition between non-chiral and chiral contributions to dissipative optical forces and torques, a competition balanced by the strength of chirality of the object. We extend the analysis to large chiral spheres where the interplay between chirality and multipolar resonances can give rise to a break of symmetry that flips the signs of both optical forces and torques.
Loebbert, Florian
2016-08-01
In these introductory lectures we discuss the topic of Yangian symmetry from various perspectives. Forming the classical counterpart of the Yangian and an extension of ordinary Noether symmetries, first the concept of nonlocal charges in classical, two-dimensional field theory is reviewed. We then define the Yangian algebra following Drinfel’d's original motivation to construct solutions to the quantum Yang-Baxter equation. Different realizations of the Yangian and its mathematical role as a Hopf algebra and quantum group are discussed. We demonstrate how the Yangian algebra is implemented in quantum, two-dimensional field theories and how its generators are renormalized. Implications of Yangian symmetry on the two-dimensional scattering matrix are investigated. We furthermore consider the important case of discrete Yangian symmetry realized on integrable spin chains. Finally we give a brief introduction to Yangian symmetry in planar, four-dimensional super Yang-Mills theory and indicate its impact on the dilatation operator and tree-level scattering amplitudes. These lectures are illustrated by several examples, in particular the two-dimensional chiral Gross-Neveu model, the Heisenberg spin chain and { N }=4 superconformal Yang-Mills theory in four dimensions.
Epelbaum, E; Meißner, Ulf G
2000-01-01
We employ the chiral nucleon-nucleon potential derived in [Nucl. Phys. A 637 (1998) 107] to study bound and scattering states in the two-nucleon system. At next-to-leading order, this potential is the sum of renormalized one-pion and two-pion exchange and contact interactions. At next-to-next-to-leading order, we have additional chiral two-pion exchange with low-energy constants determined from pion-nucleon scattering. Alternatively, we consider the DELTA(1232) as an explicit degree of freedom in the effective field theory. The nine parameters related to the contact interactions can be determined by a fit to the np S- and P-waves and the mixing parameter epsilon sub 1 for laboratory energies below 100 MeV. The predicted phase shifts and mixing parameters for higher energies and higher angular momenta are mostly well described for energies below 300 MeV. The S-waves are described as precisely as in modern phenomenological potentials. We find a good description of the deuteron properties.
Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh
2014-10-15
Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.
Alizadeh, Rahman; Afzal, Mohd; Arjmand, Farukh
2014-10-01
Bicyclic heterocyclic compounds viz. benzothiazoles are key components of deoxyribonucleic acid (DNA) molecules and participate directly in the encoding of genetic information. Benzothiazoles, therefore, represent a potent and selective class of antitumor compounds. The design and synthesis of chiral antitumor chemotherapeutic agents of Cu(II) and Zn(II), L- and -D benzothiazole Schiff base-valine complexes 1a &b and 2a &b, respectively were carried out and thoroughly characterized by spectroscopic and analytical techniques. Interaction of 1a and b and 2a and b with CT DNA by employing UV-vis, florescence, circular dichroic methods and cleavage studies of 1a with pBR322 plasmid, molecular docking were done in order to demonstrate their enantiomeric disposition toward the molecular drug target DNA. Interestingly, these studies unambiguously demonstrated the greater potency of L-enantiomer in comparison to D-enantiomer.
Crystal structures of three mercury(II complexes [HgCl2L] where L is a bidentate chiral imine ligand
Directory of Open Access Journals (Sweden)
Guadalupe Hernández
2015-12-01
Full Text Available The crystal structures of three complexes [HgCl2L] were determined, namely, (S-(+-dichlorido[1-phenyl-N-(pyridin-2-ylmethylideneethylamine-κ2N,N′]mercury(II, [HgCl2(C14H14N2], (S-(+-dichlorido[1-(4-methylphenyl-N-(pyridin-2-ylmethylideneethylamine-κ2N,N′]mercury(II, [HgCl2(C15H16N2], and (1S,2S,3S,5R-(+-dichlorido[N-(pyridin-2-ylmethylideneisopinocampheylamine-κ2N,N′]mercury(II, [HgCl2(C16H22N2]. The complexes consist of a bidentate chiral imine ligand coordinating to HgCl2 and crystallize with four independent molecules in the first complex and two independent molecules in the other two. The coordination geometry of mercury is tetrahedral, with strong distortion towards a disphenoidal geometry, as a consequence of the imine bite angle being close to 70°. The Cl—Hg—Cl angles span a large range, 116.0 (2–138.3 (3°, which is related to the aggregation state in the crystals. For small Cl—Hg—Cl angles, complexes have a tendency to form dimers, via intermolecular Hg...Cl contacts. These contacts become less significant in the third complex, which features the largest intramolecular Cl—Hg—Cl angles.
Energy Technology Data Exchange (ETDEWEB)
Floss, H.G. [Univ. of Washington, Seattle, WA (United States)
1994-12-01
This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.
Baryons in chiral constituent quark model
Glozman, L Ya
1996-01-01
Beyond the spontaneous chiral symmetry breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a flavor-spin chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks. One cannot exclude, however, the possibility that this flavor-spin interaction has an appreciable vector- and higher meson exchange component.
Jimbo, Michio
2013-03-01
Since the beginning of 1980s, hidden infinite dimensional symmetries have emerged as the origin of integrability: first in soliton theory and then in conformal field theory. Quest for symmetries in quantum integrable models has led to the discovery of quantum groups. On one hand this opened up rapid mathematical developments in representation theory, combinatorics and other fields. On the other hand it has advanced understanding of correlation functions of lattice models, leading to multiple integral formulas in integrable spin chains. We shall review these developments which continue up to the present time.
Institute of Scientific and Technical Information of China (English)
刘成勇; 颜建新; 林以玑; 李丹; 方雪明; 章慧
2012-01-01
为了探究cis-[Ni(NCS)2tren] [tren:三(2-氨基乙基)胺]的手性来源,本文采用单晶X射线衍射、溶液紫外-可见-近红外(UV-Vis-NIR)光谱、固体紫外圆二色(CD)光谱和粉末X射线衍射(XRD)等对cis-[Ni(NCS )2tren]的一对手性晶体进行了表征.研究结果表明:该手性晶体由结晶过程中的镜面对称性破缺而形成;三角架型配体tren配位后的特殊手性构象(δδλ,λλδ)是cis-[Ni(NCS)2tren]的主要手性来源.络合物固体紫外CD谱所呈现的Cotton效应可能来自其螯环手性构象以及手性金属中心对NCS-配体的π-π*跃迁和荷移跃迁生色团的手性微扰.对20批次合成产物进行固体CD检测的统计结果表明:它们的对映体过量(ee)值在39％-100％之间.%In order to explore the chiral origin of c/s-[Ni(NCS)2tren] [tren: tris(2-aminoethyl) amine], a pair of chiral crystals of c;s-[Ni(NCS)jtren] was characterized by X-ray single crystal structural analysis, solution UV-Vis-near infrared (NIR) spectroscopy, solid state UV-circular dichiroism (CD), and powder X-ray diffraction (XRD) spectra. The results indicated that the chiral crystals of c/s-[Ni(NCS)2tren] were obtained by mirror symmetry-breaking crystallization, and the special chiral ring conformations (66A, AA6) of the coordinated tripod-type tren ligands are responsible for the chiral origin of c/s-[Ni(NCS)2tren]. The Cotton effects of Ni(ll) complexes in the solid-state UV-CD spectra are presumably attributed to the tt-tt* and charge-transfer chromophores of the NCS" ligands by the chiral perturbation of the helical ring conformations and metal-centered chirality. According to the statistical results of solid-state CD spectra of c/s-[Ni(NCS)2tren] for twenty batch syntheses, their enantiomeric excess (ee) values are between 39% and 100%.
Levitskiy, Oleg A; Grishin, Yuri K; Semivrazhskaya, Olesya O; Ambartsumyan, Asmik A; Kochetkov, Konstantin A; Magdesieva, Tatiana V
2017-03-01
Stereoselective electrosynthesis of the first individual ((f,t) A)- and ((f,t) C)-1,4-fullerene derivatives with a non-inherently chiral functionalization pattern is described, as well as the first example of an optically pure protected primary amino acid directly linked to the fullerene through only the chiral α-amino-acid carbon atom. An application of an auxiliary chiral nickel-Schiff base moiety as derivatizing agent allowed separation of ((f,t) A)- and ((f,t) C)-1,4-fullerene derivatives using an achiral stationary phase, a separation which has never been done before.
Large Chiroptical Effects in Planar Chiral Metamaterials
Ye, Weimin; Yuan, Xiaodong; Guo, Chucai; Zhang, Jianfa; Yang, Biao; Zhang, Shuang
2017-05-01
Chiroptical effects characterized by different optical responses for left- (LCP) and right-handed circularly polarized light (RCP) are powerful and valuable tools in optics with wide applications in polarization-resolved imaging and sensing. Previously observed strong chiroptical effects are limited to metamaterials with complex three-dimensional chiral structures at the subwavelength scale. Although asymmetrical transmission of LCP and RCP have been investigated in planar chiral metasurfaces, the observed weak chiroptical effects result from anisotropic Ohmic dissipation of the metal constituents. Here, we demonstrate by theory and proof-of-concept experiments that a large difference in transmittances of LCP and RCP can be attained in a single-layer planar chiral metamaterial with a subwavelength thickness. Without violating the reciprocity and mirror symmetry, the strong chiroptical effect, independent of dielectric loss, arises from a mechanism of multimode interference. The described effect may lead to a gateway towards chiral manipulations of light and chiral optical devices.
Cosmic chirality both true and false.
Barron, Laurence D
2012-12-01
The discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. It is well known that parity violation infiltrates into ordinary matter via an interaction between the nucleons and electrons, mediated by the Z(0) particle, that lifts the degeneracy of the mirror-image enantiomers of a chiral molecule. Being odd under P but even under T, this P-violating interaction exhibits true chirality and so may induce absolute enantioselection under all circumstances. It has been suggested that CP violation may also infiltrate into ordinary matter via a P-odd, T-odd interaction mediated by the (as yet undetected) axion. This CP-violating interaction exhibits false chirality and so may induce absolute enantioselection in processes far from equilibrium. Both true and false cosmic chirality should be considered together as possible sources of homochirality in the molecules of life.
Interplay between Deconfinement and Chiral Properties
Suganuma, Hideo; Redlich, Krzysztof; Sasaki, Chihiro
2016-01-01
We study interplay between confinement/deconfinement and chiral properties. We derive some analytical relations of the Dirac modes with the confinement quantities, such as the Polyakov loop, its susceptibility and the string tension. For the confinement quantities, the low-lying Dirac eigenmodes are found to give negligible contribution, while they are essential for chiral symmetry breaking. This indicates no direct, one-to-one correspondence between confinement/deconfinement and chiral properties in QCD. We also investigate the Polyakov loop in terms of the eigenmodes of the Wilson, the clover and the domain-wall fermion kernels, respectively.
Ferrando-Soria, Jesús; Cangussu, Danielle; Eslava, Mercedes; Journaux, Yves; Lescouëzec, Rodrigue; Julve, Miguel; Lloret, Francesc; Pasán, Jorge; Ruiz-Pérez, Catalina; Lhotel, Elsa; Paulsen, Carley; Pardo, Emilio
2011-10-24
A new series of neutral oxamato-bridged M(II)Cu(II) chiral chains of general formula [MCuL(x)(S)(m)(H(2)O)(n)]·aS·bH(2)O [L(1)=(M)-1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (1a) and Co (1b); L(2)=(P)-1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (2a) and Co (2b)] and the analogous racemic chains of formula [MCuL(3)(S)(m)(H(2)O)(n)]·aS·bH(2)O [L(3)=1,1'-binaphthalene-2,2'-bis(oxamate) with M=Mn (3a) and Co (3b)] have been prepared by reaction of the corresponding dianionic oxamatocopper(II) complex [Cu(L(x))](2-) with Mn(2+) or Co(2+) cations in either dimethylformamide (DMF) or dimethyl sulfoxide (DMSO). Solid circular dichroism (CD) spectra of the bimetallic chain compounds were recorded to establish their chiral and enantiomeric nature. They exhibit maximum positive and negative Cotton effects, each pair of enantiomeric chains being non-superimposable mirror images. The crystal structures of the Mn(II)Cu(II) (1a-3a) and the Co(II)Cu(II) (1b and 2b) chain compounds were solved by single-crystal X-ray diffraction methods. Our attempts to obtain X-ray quality crystals of 3b were unsuccessful. The values of the shortest interchain Mn···Mn and Co···Co distances are indicative of a good isolation of neighbouring chains in the crystal lattice, which is caused by the bulky aromatic ligand. Although all the Mn(II)Cu(II) and Co(II)Cu(II) chains exhibit ferrimagnetic behaviour (-J(MnCu)=18.9-26.6 cm(-1) and -J(CoCu)=19.5-32.5 cm(-1)), only the enantiopure Co(II)Cu(II) chains (1b and 2b) show slow magnetic relaxation at low temperatures (T(B)=0.6-1.8 K), which is a characteristic of single-chain magnets (SCMs) and is related to the magnetic anisotropy of the high-spin Co(II) ion. Analysis of the SCM behaviour of 1b and 2b, based on Glauber's theory for an Ising one-dimensional system, shows a thermally activated mechanism for the magnetic relaxation (Arrhenius law dependence). The energy barriers (E(a)) to reverse the magnetisation direction are 8.2 (1b) and
Yamada, Yasusada; Uesu, Yoshiaki; Matsuda, Masaaki; Fujishiro, Kouji; Cox, Dave E.; Noheda, Beatriz; Shirane, Gen
2002-01-01
The structural characteristics of the perovskite-based ferroelectric Pb(Zn1/3Nb2/3)1-xTixO3 at the morphotropic phase boundary (MPB) region (x ≈ 0.09) have been analyzed. The analysis is based on the symmetry adapted free energy functions under the assumption that the total polarization and the unit
Extending Chiral Perturbation Theory with an Isosinglet Scalar
DEFF Research Database (Denmark)
Hansen, Martin; Langaeble, Kasper; Sannino, Francesco
2017-01-01
We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology...
Chiral condensates and QCD vacuum in two dimensions
Christiansen, H R
1997-01-01
We analyze the chiral symmetries of flavored quantum chromodynamics in two dimensions and show the existence of chiral condensates within the path-integral approach. The massless and massive cases are discussed as well, for arbitrary finite and infinite number of colors. Our results put forward the question of topological issues when matter is in the fundamental representation of the gauge group.
Strong magneto-chiral dichroism in a paramagnetic molecular helix observed by hard X-ray
Sessoli, Roberta; Boulon, Marie-Emmanuelle; Caneschi, Andrea; Mannini, Matteo; Poggini, Lorenzo; Wilhelm, Fabrice; Rogalev, Andrei
2014-01-01
Magneto-chiral dichroism (MχD) is a non-reciprocal, i. e. directional, effect observed in magnetised chiral systems featuring an unbalanced absorption of unpolarised light depending on the direction of the magnetisation. Despite the fundamental interest in a phenomenon breaking both parity and time reversal symmetries, MχD is one of the least investigated aspects of light-matter interaction because of the weakness of the effect in most reported experiments. Here we have exploited the element selectivity of hard X-ray radiation to investigate the magneto-chiral properties of enentiopure crsytals of two isostructural molecular helicoidal chains comprising Cobalt(II) and Manganese (II) ions, respectively. A strong magneto-chiral dichroism, with Kuhn asymmetry of the order of a few percent, has been observed in the Cobalt chain system, while it is practically absent for the Manganese derivative. The spectral features of the XMχD signal differ significantly from the natural and magnetic dichroic contributions and have been here rationalized using the simple multipolar expansion of matter-radiation interaction. PMID:25729401
New chiral fermions, a new gauge interaction, Dirac neutrinos, and dark matter
Energy Technology Data Exchange (ETDEWEB)
Gouvêa, André de; Hernández, Daniel [Northwestern University, Department of Physics & Astronomy,2145 Sheridan Road, Evanston, IL 60208 (United States)
2015-10-07
We propose that all light fermionic degrees of freedom, including the Standard Model (SM) fermions and all possible light beyond-the-standard-model fields, are chiral with respect to some spontaneously broken abelian gauge symmetry. Hypercharge, for example, plays this role for the SM fermions. We introduce a new symmetry, U(1){sub ν}, for all new light fermionic states. Anomaly cancellations mandate the existence of several new fermion fields with nontrivial U(1){sub ν} charges. We develop a concrete model of this type, for which we show that (i) some fermions remain massless after U(1){sub ν} breaking — similar to SM neutrinos — and (ii) accidental global symmetries translate into stable massive particles — similar to SM protons. These ingredients provide a solution to the dark matter and neutrino mass puzzles assuming one also postulates the existence of heavy degrees of freedom that act as “mediators' between the two sectors. The neutrino mass mechanism described here leads to parametrically small Dirac neutrino masses, and the model also requires the existence of at least four Dirac sterile neutrinos. Finally, we describe a general technique to write down chiral-fermions-only models that are at least anomaly-free under a U(1) gauge symmetry.
Continuum model for chiral induced spin selectivity in helical molecules
Energy Technology Data Exchange (ETDEWEB)
Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)
2015-05-21
A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.
Hamhalter, Jan; Turilova, Ekaterina
2017-02-01
Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.
DSAM lifetime measurements for the chiral pair in {sup 194}Tl
Energy Technology Data Exchange (ETDEWEB)
Masiteng, P.L.; Bvumbi, S.P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); University of Johannesburg, PO Box 524, Auckland Park (South Africa); Pasternak, A.A. [A.F. Ioffe Physical-Technical Institute, St.-Petersburg (Russian Federation); Lawrie, E.A.; Shirinda, O.; Lawrie, J.J.; Bark, R.A.; Kheswa, N.Y.; Lieder, E.O.; Lieder, R.M.; Mullins, S.M.; Murray, S.H.T. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); Lindsay, R. [University of the Western Cape, Private Bag X17, Bellville (South Africa); Madiba, T.E.; Sharpey-Schafer, J.F. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of the Western Cape, Private Bag X17, Bellville (South Africa); Ndayishimye, J.; Papka, P. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Stellenbosch, Department of Physics, Private Bag X1, Matieland (South Africa); Ntshangase, S.S. [National Research Foundation, iThemba LABS, PO Box 722, Somerset West (South Africa); University of Cape Town, Department of Physics, Private Bag, Rondebosch (South Africa)
2016-02-15
Most important for the identification of chiral symmetry in atomic nuclei is to establish a pair of bands that are near-degenerate in energy, but also in B(M1) and B(E2) transition probabilities. Dedicated lifetime measurements were performed for four bands of {sup 194}Tl, including the pair of four-quasiparticle chiral bands with close near-degeneracy, considered as a prime candidate for best chiral symmetry pair. The lifetime measurements confirm the excellent near-degeneracy in this pair and indicate that a third band may be involved in the chiral symmetry scenario. (orig.)
Adly, Frady G; Ghanem, Ashraf
2014-11-01
In this review the recent advances in the utilization of two of the most important classes of dirhodium(II) paddlewheel complexes, dirhodium(II) carboxylates and carboxamidates, as chemzymes in inter- and intramolecular asymmetric cyclopropanation, as well as cyclopropenation reactions are discussed.
Directory of Open Access Journals (Sweden)
Zakharov V.I.
2015-01-01
Full Text Available We review briefly properties of chiral liquids, or liquids with massless fermionic constituents. We concentrate on three effects, namely, the low ratio of viscosity η to entropy density s, chiral magnetic and vortical effects. We sketch standard derivations of these effects in the hydrodynamic approximation and then concentrate on possibile unifying approach which is based on consideration of the (anomalously conserved axial current. The point is that the conservation of chirality is specific for the microscopic, field-theoretic description of massless fermions and their interactions. On the macroscopic side, the standard hydrodynamic equations are not consistent, generally speaking, with conservation of a helical macroscopic motion. Imposing extra constraints on the hydrodynamics might resolve this “clash-of-symmetries” paradox.
Type II string theory on Calabi-Yau manifolds with torsion and non-Abelian discrete gauge symmetries
Braun, Volker; Cvetič, Mirjam; Donagi, Ron; Poretschkin, Maximilian
2017-07-01
We provide the first explicit example of Type IIB string theory compactification on a globally defined Calabi-Yau threefold with torsion which results in a four-dimensional effective theory with a non-Abelian discrete gauge symmetry. Our example is based on a particular Calabi-Yau manifold, the quotient of a product of three elliptic curves by a fixed point free action of Z_2× Z_2 . Its cohomology contains torsion classes in various degrees. The main technical novelty is in determining the multiplicative structure of the (torsion part of) the cohomology ring, and in particular showing that the cup product of second cohomology torsion elements goes non-trivially to the fourth cohomology. This specifies a non-Abelian, Heisenberg-type discrete symmetry group of the cfour-dimensional theory.
Nucci, M. C.
2016-09-01
We review some of our recent work devoted to the problem of quantization with preservation of Noether symmetries, finding hidden linearity in superintegrable systems, and showing that nonlocal symmetries are in fact local. In particular, we derive the Schrödinger equation for the isochronous Calogero goldfish model using its relation to Darwin equation. We prove the linearity of a classical superintegrable system on a plane of nonconstant curvature. We find the Lie point symmetries that correspond to the nonlocal symmetries (also reinterpreted as λ-symmetries) of the Riccati chain.
Chiral phase transition in QED3 at finite temperature
Yin, Pei-Lin; Xiao, Hai-Xiao; Wei, Wei; Feng, Hong-Tao; Zong, Hong-Shi
2016-12-01
In the framework of Dyson-Schwinger equations, we employ two kinds of criteria (one kind is the chiral condensate, the other kind is thermodynamic quantities, such as the pressure, the entropy, and the specific heat) to investigate the nature of chiral phase transitions in QED3 for different fermion flavors. It is found that the chiral phase transitions in QED3 for different fermion flavors are all typical second-order phase transitions; the critical temperature and order of the chiral phase transition obtained from the chiral condensate and susceptibility are the same with that obtained by the thermodynamic quantities, which means that they are equivalent in describing the chiral phase transition; the critical temperature decreases as the number of fermion flavors increases and there is a boundary that separates the Tc-Nf plane into chiral symmetry breaking and restoration regions.
Bootstrap Dynamical Symmetry Breaking
Directory of Open Access Journals (Sweden)
Wei-Shu Hou
2013-01-01
Full Text Available Despite the emergence of a 125 GeV Higgs-like particle at the LHC, we explore the possibility of dynamical electroweak symmetry breaking by strong Yukawa coupling of very heavy new chiral quarks Q . Taking the 125 GeV object to be a dilaton with suppressed couplings, we note that the Goldstone bosons G exist as longitudinal modes V L of the weak bosons and would couple to Q with Yukawa coupling λ Q . With m Q ≳ 700 GeV from LHC, the strong λ Q ≳ 4 could lead to deeply bound Q Q ¯ states. We postulate that the leading “collapsed state,” the color-singlet (heavy isotriplet, pseudoscalar Q Q ¯ meson π 1 , is G itself, and a gap equation without Higgs is constructed. Dynamical symmetry breaking is affected via strong λ Q , generating m Q while self-consistently justifying treating G as massless in the loop, hence, “bootstrap,” Solving such a gap equation, we find that m Q should be several TeV, or λ Q ≳ 4 π , and would become much heavier if there is a light Higgs boson. For such heavy chiral quarks, we find analogy with the π − N system, by which we conjecture the possible annihilation phenomena of Q Q ¯ → n V L with high multiplicity, the search of which might be aided by Yukawa-bound Q Q ¯ resonances.
Chiral random matrix theory for staggered fermions
Osborn, James C
2012-01-01
We present a completed random matrix theory for staggered fermions which incorporates all taste symmetry breaking terms at their leading order from the staggered chiral Lagrangian. This is an extension of previous work which only included some of the taste breaking terms. We will also discuss the effects of taste symmetry breaking on the eigenvalues in the weak and strong taste breaking limits, and compare with some results from lattice simulations.
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
pt. A. Plenary session. Opening remarks: experimental tests of chiral symmetry breaking / A. M. Bernstein. [Double pie symbols] scattering / H. Leutwyler. Chiral effective field theory in a [Triangle]-resonance region / V. Pascalutsa. Some recent developments in chiral perturbation theory / Ulf-G. Mei ner. Chiral extrapolation and nucleon structure from the lattice / R.D. Young. Recent results from HAPPEX / R. Michaels. Chiral symmetries and low energy searches for new physics / M.J. Ramsey-Musolf. Kaon physics: recent experimental progress / M. Moulson. Status of the Cabibbo angle / V. Cirigliano. Lattice QCD and nucleon spin structure / J.W. Negele. Spin sum rules and polarizabilities: results from Jefferson lab / J-P Chen. Compton scattering and nucleon polarisabilities / Judith A. McGovern. Virtual compton scattering at MIT-bates / R. Miskimen. Physics results from the BLAST detector at the BATES accelerator / R.P. Redwine. The [Pie sympbol]NN system, recent progress / C. Hanhart. Application of chiral nuclear forces to light nuclei / A. Nogga. New results on few-body experiments at low energy / Y. Nagai. Few-body lattice calculations / M.J. Savage. Research opportunities at the upgraded HI?S facility / H.R. Weller -- pt. B. Goldstone boson dynamics. Working group summary: Goldstone Boson dynamics / G. Colangelo and S. Giovannella. Recent results on radiative Kaon decays from NA48 and NA48/2 / S.G. López. Cusps in K-->3 [Pie symbol] decays / B. Kubis. Recent KTeV results on radiative Kaon decays / M.C. Ronquest. The [Double pie symbols] scattering amplitude / J.R. Peláez. Determination of the Regge parameters in the [Double pie symbols] scattering amplitude / I. Caprini. e+e- Hadronic cross section measurement at DA[symbol]NE with the KLOE detector / P. Beltrame. Measurement of the form factors of e+e- -->2([Pie symbol]+[Pie symbol]-), pp and the resonant parameters of the heavy charmonia at BES / H. Hu. Measurement of e+e- multihadronic cross section below 4
Chiral Nanoscience and Nanotechnology
Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao
2008-01-01
The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology describes the nanoscale appr...
The topological structures in strongly coupled QGP with chiral fermions on the lattice
Sharma, Sayantan; Dick, Viktor; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato
2016-12-01
The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a systematic study of the finite size and cut-off effects since the signals of U(1) violation are sensitive to it. We also provide a glimpse of the microscopic topological structures of the QCD medium that are responsible for the strongly interacting nature of the quark gluon plasma phase. We study the effect of these microscopic constituents through our first calculations for the topological susceptibility of QCD at finite temperature, which could be a crucial input for the equation of state for anomalous hydrodynamics.
The topological structures in strongly coupled QGP with chiral fermions on the lattice
Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato
2016-01-01
The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a system...
On Chiral Space Groups and Chiral Molecules
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.
On Chiral Space Groups and Chiral Molecules
Institute of Scientific and Technical Information of China (English)
NgSeikWng; HUSheng－Zhi
2003-01-01
This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations).For a chiral molecule,which must crystallize in a chiral space group,the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.
Two-color QCD with non-zero chiral chemical potential
Energy Technology Data Exchange (ETDEWEB)
Braguta, V.V. [Institute for High Energy Physics NRC “Kurchatov Institute' ,142281 Protvino (Russian Federation); Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Goy, V.A. [Far Eastern Federal University, School of Natural Sciences,690950 Vladivostok (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Research,BLTP, 141980 Dubna (Russian Federation); Kotov, A.Yu. [Institute of Theoretical and Experimental Physics,117259 Moscow (Russian Federation); Molochkov, A.V. [Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Müller-Preussker, M.; Petersson, B. [Humboldt-Universität zu Berlin, Institut für Physik,12489 Berlin (Germany)
2015-06-16
The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.
A Nodal-independent and tissue-intrinsic mechanism controls heart-looping chirality
Noël, Emily S.; Verhoeven, Manon; Lagendijk, Anne Karine; Tessadori, Federico; Smith, Kelly; Choorapoikayil, Suma; den Hertog, Jeroen; Bakkers, Jeroen
2013-11-01
Breaking left-right symmetry in bilateria is a major event during embryo development that is required for asymmetric organ position, directional organ looping and lateralized organ function in the adult. Asymmetric expression of Nodal-related genes is hypothesized to be the driving force behind regulation of organ laterality. Here we identify a Nodal-independent mechanism that drives asymmetric heart looping in zebrafish embryos. In a unique mutant defective for the Nodal-related southpaw gene, preferential dextral looping in the heart is maintained, whereas gut and brain asymmetries are randomized. As genetic and pharmacological inhibition of Nodal signalling does not abolish heart asymmetry, a yet undiscovered mechanism controls heart chirality. This mechanism is tissue intrinsic, as explanted hearts maintain ex vivo retain chiral looping behaviour and require actin polymerization and myosin II activity. We find that Nodal signalling regulates actin gene expression, supporting a model in which Nodal signalling amplifies this tissue-intrinsic mechanism of heart looping.
Nuclear chiral dynamics and thermodynamics
Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram
2013-11-01
This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.
Sur, Shouvik; Lee, Sung-Sik
2014-07-01
A non-Fermi liquid state without time-reversal and parity symmetries arises when a chiral Fermi surface is coupled with a soft collective mode in two space dimensions. The full Fermi surface is described by a direct sum of chiral patch theories, which are decoupled from each other in the low-energy limit. Each patch includes low-energy excitations near a set of points on the Fermi surface with a common tangent vector. General patch theories are classified by the local shape of the Fermi surface, the dispersion of the critical boson, and the symmetry group, which form the data for distinct universality classes. We prove that a large class of chiral non-Fermi liquid states exists as stable critical states of matter. For this, we use a renormalization group scheme where low-energy excitations of the Fermi surface are interpreted as a collection of (1+1)-dimensional chiral fermions with a continuous flavor labeling the momentum along the Fermi surface. Due to chirality, the Wilsonian effective action is strictly UV finite. This allows one to extract the exact scaling exponents although the theories flow to strongly interacting field theories at low energies. In general, the low-energy effective theory of the full Fermi surface includes patch theories of more than one universality classes. As a result, physical responses include multiple universal components at low temperatures. We also point out that, in quantum field theories with extended Fermi surface, a noncommutative structure naturally emerges between a coordinate and a momentum which are orthogonal to each other. We show that the invalidity of patch description for Fermi liquid states is tied with the presence of UV/IR mixing associated with the emergent noncommutativity. On the other hand, UV/IR mixing is suppressed in non-Fermi liquid states due to UV insensitivity, and the patch description is valid.
Chicherin, Dmitry
2017-03-09
We study the multipoint super-correlation functions of the full non-chiral stress-tensor multiplet in N=4 super-Yang-Mills theory in the Born approximation. We derive effective supergraph Feynman rules for them. Surprisingly, the Feynman rules for the non-chiral correlators differ only slightly from those for the chiral correlators. We rely on the formulation of the theory in Lorentz harmonic chiral (LHC) superspace elaborated in the twin paper \\cite{PartI}. In this approach only the chiral half of the supersymmetry is manifest. The other half is realized by nonlinear and nonlocal transformations of the LHC superfields. However, at Born level only the simple linear part of the transformations is relevant. It corresponds to effectively working in the self-dual sector of the theory. Our method is also applicable to a wider class of supermultiplets like all the half-BPS operators and the Konishi multiplet.
Field-enlarging transformations and chiral theories
Sladkowski, J
1995-01-01
A field-enlarging transformation in the chiral electrodynamics is performed. This introduces an additional gauge symmetry to the model that is unitary and anomaly-free and allows for comparison of different models discussed in the literature. The problem of superfluous degrees of freedom and their influence on quantization is discussed. Several "mysteries" are explained from this point of view.
Hydrodynamics of the Chiral Dirac Spectrum
Liu, Yizhuang; Zahed, Ismail
2016-01-01
We derive a hydrodynamical description of the eigenvalues of the chiral Dirac spectrum in the vacuum and in the large $N$ (volume) limit. The linearized hydrodynamics supports sound waves. The stochastic relaxation of the eigenvalues is captured by a hydrodynamical instanton configuration which follows from a pertinent form of Euler equation. The relaxation from a phase of localized eigenvalues and unbroken chiral symmetry to a phase of de-localized eigenvalues and broken chiral symmetry occurs over a time set by the speed of sound. We show that the time is $\\Delta \\tau=\\pi\\rho(0)/2\\beta N$ with $\\rho(0)$ the spectral density at zero virtuality and $\\beta=1,2,4$ for the three Dyson ensembles that characterize QCD with different quark representations in the ergodic regime.
Interference Phenomenon for Different Chiral Bosonization Schemes
Abreu, Everton M C; Abreu, Everton M C; Wotzasek, Clovis
1998-01-01
We study the relationship between different chiral bosonization schemes (CBS) in the context of the soldering formalism\\cite{MS}, that considers the phenomenon of interference in the quantum field theory\\cite{ABW}. This analysis is done in the framework put forward by Siegel\\cite{WS} and by Floreanini and Jackiw\\cite{FJ} (FJ). We propose a field redefinition that discloses the presence of a noton, a non dynamical field, in Siegel's formulation for chiral bosons. The presence of a noton in the Siegel CBS is a new and surprising result, that separates dynamics from symmetry by diagonalising the Siegel action into the FJ and the noton action. While the first describes the chiral dynamics, the noton carries the symmetry contents, acquiring dynamics upon quantization and is fully responsible for the Siegel anomaly. The diagonal representation proposed here is used to study the effect of quantum interference between gauged rightons and leftons.
Chiral Liquid Crystals: Structures, Phases, Effects
Directory of Open Access Journals (Sweden)
Ingo Dierking
2014-06-01
Full Text Available The introduction of chirality, i.e., the lack of mirror symmetry, has a profound effect on liquid crystals, not only on the molecular scale but also on the supermolecular scale and phase. I review these effects, which are related to the formation of supermolecular helicity, the occurrence of novel thermodynamic phases, as well as electro-optic effects which can only be observed in chiral liquid crystalline materials. In particular, I will discuss the formation of helical superstructures in cholesteric, Twist Grain Boundary and ferroelectric phases. As examples for the occurrence of novel phases the Blue Phases and Twist Grain Boundary phases are introduced. Chirality related effects are demonstrated through the occurrence of ferroelectricity in both thermotropic as well as lyotropic liquid crystals. Lack of mirror symmetry is also discussed briefly for some biopolymers such as cellulose and DNA, together with its influence on liquid crystalline behavior.
Charge fluctuations in chiral models and the QCD phase transition
Skokov, V; Karsch, F; Redlich, K
2011-01-01
We consider the Polyakov loop-extended two flavor chiral quark--meson model and discuss critical phenomena related with the spontaneous breaking of the chiral symmetry. The model is explored beyond the mean-field approximation in the framework of the functional renormalisation group. We discuss properties of the net-quark number density fluctuations as well as their higher cumulants. We show that with the increasing net-quark number density, the higher order cumulants exhibit a strong sensitivity to the chiral crossover transition. We discuss their role as probes of the chiral phase transition in heavy-ion collisions at RHIC and LHC.
Bigler, Raphael; Mezzetti, Antonio
2014-12-19
Bis(isonitrile) iron(II) complexes bearing a C2-symmetric N2P2 macrocyclic ligand, which are easily prepared from the corresponding bis(acetonitrile) analogue, catalyze the asymmetric transfer hydrogenation (ATH) of a broad scope of ketones in excellent yields (up to 98%) and with high enantioselectivity (up to 91% ee).
Bigler, Raphael; Huber, Raffael; Mezzetti, Antonio
2015-04-20
Bis(isonitrile) iron(II) complexes bearing a C2 -symmetric diamino (NH)2 P2 macrocyclic ligand efficiently catalyze the hydrogenation of polar bonds of a broad scope of substrates (ketones, enones, and imines) in high yield (up to 99.5 %), excellent enantioselectivity (up to 99 % ee), and with low catalyst loading (generally 0.1 mol %). The catalyst can be easily tuned by modifying the substituents of the isonitrile ligand.
Kitanosono, Taku; Xu, Pengyu; Kobayashi, Shū
2013-09-25
It was proved that a judicious choice of counteranion played a prominent role in Cu(II) catalysis for enantioselective boron conjugate additions in water; the use of Cu(OH)2 renders heterogeneous catalysis, whereas Cu(OAc)2 renders homogeneous catalysis; cyclic dienones underwent a remarkable switch of regioselectivity between 1,4- and 1,6-modes of the additions through these catalyses.
Chiral Magnetic Effect in Heavy Ion Collisions
Liao, Jinfeng
2016-01-01
The Chiral Magnetic Effect (CME) is a remarkable phenomenon that stems from highly nontrivial interplay of QCD chiral symmetry, axial anomaly, and gluonic topology. It is of fundamental importance to search for the CME in experiments. The heavy ion collisions provide a unique environment where a hot chiral-symmetric quark-gluon plasma is created, gluonic topological fluctuations generate chirality imbalance, and very strong magnetic fields $|\\vec{\\bf B}|\\sim m_\\pi^2$ are present during the early stage of such collisions. Significant efforts have been made to look for CME signals in heavy ion collision experiments. In this contribution we give a brief overview on the status of such efforts.
Chiral dynamics with (non)strange quarks
Kubis, Bastian; Meißner, Ulf-G.
2017-01-01
We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.
Hsu, J. P.
1983-01-01
The foundation of the quantum field theory is changed by introducing a new universal probability principle into field operators: one single inherent and invariant probability distribution P(/k/) is postulated for boson and fermion field oscillators. This can be accomplished only when one treats the four-dimensional symmetry from a broad viewpoint. Special relativity is too restrictive to allow such a universal probability principle. A radical length, R, appears in physics through the probability distribution P(/k/). The force between two point particles vanishes when their relative distance tends to zero. This appears to be a general property for all forces and resembles the property of asymptotic freedom. The usual infinities in vacuum fluctuations and in local interactions, however complicated they may be, are all removed from quantum field theories. In appendix A a simple finite and unitary theory of unified electroweak interactions is discussed without assuming Higgs scalar bosons.
Multifunctional composites of chiral valine derivative Schiff base Cu(II) complexes and TiO2.
Takeshita, Yuki; Takakura, Kazuya; Akitsu, Takashiro
2015-02-12
We have prepared four new Cu(II) complexes containing valine moieties with imidazole ligands at the fourth coordination sites and examined their photo-induced reactions with TiO2 in order of understanding the reaction mechanisms. Under a nitrogen atmosphere, the intermolecular electron transfer reactions (essentially supramolecular interactions) of these systems, which resulted in the reduction of Cu(II) species to Cu(I) ones, occurred after UV light irradiation. In this study, we have investigated the conditions of the redox reactions in view of substituent effects of aldehyde moieties. The results of cyclic voltammetry (CV) on an rotating ring-disk electrode (RRDE) suggested that the substitution effects and redox potentials were correlated. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were also performed to simulate the UV-Vis and circular dichroism (CD) spectra; the results revealed a reasonably good correlation between the substituent effects and the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals (HOMO-LUMO) gaps associated with the most intense transition bands. In addition, we summarized the substitution effects of Cu(II) complexes for their corresponding UV light-induced reactions.
Multifunctional Composites of Chiral Valine Derivative Schiff Base Cu(II Complexes and TiO2
Directory of Open Access Journals (Sweden)
Yuki Takeshita
2015-02-01
Full Text Available We have prepared four new Cu(II complexes containing valine moieties with imidazole ligands at the fourth coordination sites and examined their photo-induced reactions with TiO2 in order of understanding the reaction mechanisms. Under a nitrogen atmosphere, the intermolecular electron transfer reactions (essentially supramolecular interactions of these systems, which resulted in the reduction of Cu(II species to Cu(I ones, occurred after UV light irradiation. In this study, we have investigated the conditions of the redox reactions in view of substituent effects of aldehyde moieties. The results of cyclic voltammetry (CV on an rotating ring-disk electrode (RRDE suggested that the substitution effects and redox potentials were correlated. Density functional theory (DFT and time-dependent DFT (TD-DFT calculations were also performed to simulate the UV–Vis and circular dichroism (CD spectra; the results revealed a reasonably good correlation between the substituent effects and the highest occupied molecular orbitals and the lowest unoccupied molecular orbitals (HOMO-LUMO gaps associated with the most intense transition bands. In addition, we summarized the substitution effects of Cu(II complexes for their corresponding UV light-induced reactions.
Petra; Reek; Handgraaf; Meijer; Dierkes; Kamer; Brussee; Schoemaker; van Leeuwen PW
2000-08-04
The enantioselective outcome of transfer hydrogenation reactions that are catalysed by ruthenium(II) amino alcohol complexes was studied by means of a systematically varied series of ligands. It was found that both the substituent at the 1-position in the 2-amino-1-alcohol ligand and the substituent at the amine functionality influence the enantioselectivity of the reaction to a large extent: enantioselectivities (ee values) of up to 95% were obtained for the reduction of acetophenone. The catalytic cycle of ruthenium(II) amino alcohol catalysed transfer hydrogenation was examined at the density functional theory level. The formation of a hydrogen bond between the carbonyl functionality of the substrate and the amine proton of the ligand, as well as the formation of an intramolecular H...H bond and a planar H-Ru-N-H moiety are crucially important for the reaction mechanism. The enantioselective outcome of the reaction can be illustrated with the aid of molecular modelling by the visualisation of the steric interactions between the ketone and the ligand backbone in the ruthenium(II) catalysts.
Indian Academy of Sciences (India)
BETA NUR PRATIWI; A SUPARMI; C CARI; ANDRI SOFYAN HUSEIN
2017-02-01
Analytical solution of the Dirac equation for the modified Pöschl–Teller potential and trigonometric Scarf II non-central potential for spin symmetry is studied using asymptotic iteration method. One-dimensional Dirac equation consisting of the radial and angular parts can be obtained by the separation of variables. By usingasymptotic iteration method, the relativistic energy equation and orbital quantum number (l) equation can be obtained, where both are interrelated. Relativistic energy equation is calculated numerically by the Matlab software. The increase in the radial quantum number $n_r$ causes a decrease in the energy value, and the wave functions of the radial and the angular parts are expressed in terms of hypergeometric functions. Some thermodynamical properties of the system can be determined by reducing the relativistic energy equation to the non-relativisticenergy equation. Thermodynamical properties such as vibrational partition function, vibrational specific heat function and vibrational mean energy function are expressed in terms of error function.
Pratiwi, Beta Nur; Suparmi, A.; Cari, C.; Husein, Andri Sofyan
2017-02-01
Analytical solution of the Dirac equation for the modified Pöschl-Teller potential and trigonometric Scarf II non-central potential for spin symmetry is studied using asymptotic iteration method. One-dimensional Dirac equation consisting of the radial and angular parts can be obtained by the separation of variables. By using asymptotic iteration method, the relativistic energy equation and orbital quantum number ( l) equation can be obtained, where both are interrelated. Relativistic energy equation is calculated numerically by the Matlab software. The increase in the radial quantum number n r causes a decrease in the energy value, and the wave functions of the radial and the angular parts are expressed in terms of hypergeometric functions. Some thermodynamical properties of the system can be determined by reducing the relativistic energy equation to the non-relativistic energy equation. Thermodynamical properties such as vibrational partition function, vibrational specific heat function and vibrational mean energy function are expressed in terms of error function.
Cameron, R.P.; Cameron, J. A.; Barnett, S. M.
2016-01-01
We explain that Stegosaurus exhibited exterior chirality and observe that the largest plate in particular of USNM 4394, USNM 4714, DMNS 2818 and NHMUK R36730 appears to have tilted to the right rather than to the left in each case. Several instances in which Stegosaurus specimens have been confused with their distinct, hypothetical mirror-image forms are highlighted. We believe our findings to be consistent with the hypothesis that Stegosaurus's plates acted primarily as display structures. A...
Jindal, Garima; Sunoj, Raghavan B
2015-06-19
The density functional (M06) computations on a cooperative multicatalytic reaction involving palladium acetate and a chiral Brønsted acid in the conversion of an indenyl cyclobutanol to spirocyclic indene bearing a quaternary carbon ring junction are reported. A chiral Pd-bis-phosphate is identified as the active catalyst in the enantioselective ring expansion as compared to alternative possibilities wherein the chiral phosphate/phosphoric acid is in the outer sphere of palladium. The enantiocontrolling transition state exhibited more effective C-H···π interactions, lower distortion of the catalyst, and an orthogonal orientation of the bulky phosphate ligands.
Dimensional reduction and dynamical symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Forgacs, P.; Zoupanos, G.
1984-11-22
We present a model in which the electroweak gauge group is broken according to a dynamical scenario based on the chiral symmetry breaking of high colour representations. The dynamical scenario requires also the existence of elementary Higgs fields, which in the present scheme come from the dimensional reduction of a pure gauge theory.
Dimensional reduction and dynamical symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Forgacs, P.; Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))
1984-11-22
We present a model in which the electroweak gauge group is broken according to a dynamical scenario based on the chiral symmetry breaking of high colour representations. The dynamical scenario also requires the existence of elementary Higgs fields, which in the present scheme come from the dimensional reduction of a pure gauge theory.
Chiral closed strings: four massless states scattering amplitude
Leite, Marcelo M.; Siegel, Warren
2017-01-01
We compute the scattering amplitudes of four massless states for chiral (closed) bosonic and type II superstrings using the Kawai-Lewellen-Tye ( KLT ) factorization method. The amplitude in the chiral bosonic case is identical to a field theory amplitude corresponding to the spin-2 tachyon, massless gravitational sector and massive spin-2 tardyon states of the spectrum. Chiral type II superstrings amplitude only possess poles associated with the massless gravitational sector. We briefly discuss the extension of the calculation to heterotic superstrings.
Chiral Closed strings: Four massless states scattering amplitude
Leite, Marcelo M
2016-01-01
We compute the scattering amplitudes of four massless states for chiral (closed) bosonic and type II superstrings using the Kawai-Lewellen-Tye ($KLT$) factorization method. The amplitude in the chiral bosonic case is identical to a field theory amplitude corresponding to the spin-$2$ tachyon, massless gravitational sector and massive spin-2 tardyon states of the spectrum. Chiral type II superstrings amplitude only possess poles associated with the massless gravitational sector. We briefly discuss the extension of the calculation to heterotic superstrings.
Chiral THz metamaterial with tunable optical activity
Energy Technology Data Exchange (ETDEWEB)
Zhou, Jiangfeng [Los Alamos National Laboratory; Taylor, Antoinette [Los Alamos National Laboratory; O' Hara, John [Los Alamos National Laboratory; Chowdhury, Roy [Los Alamos National Laboratory; Zhao, Rongkuo [IOWA STATE UNIV; Soukoullis, Costas M [IOWA STATE UNIV
2010-01-01
Optical activity in chiral metamaterials is demonstrated in simulation and shows actively tunable giant polarization rotation at THz frequencies. Electric current distributions show that pure chirality is achieved by our bi-Iayer chiral metamaterial design. The chirality can be optically controlled by illumination with near-infrared light. Optical activity, occurring in chiral materials such as DNA, sugar and many other bio-molecules, is a phenomenon of great importance to many areas of science including molecular biology, analytical chemistry, optoelectronics and display applications. This phenomenon is well understood at an effective medium level as a magnetic/electric moment excited by the electric/magnetic field of the incident electromagnetic (EM) wave. Usually, natural chiral materials exhibit very weak optical activity e.g. a gyrotropic quartz crystal. The optical activity of chiral metamaterials, however, can be five orders of magnitude stronger. Chiral metamaterials are made of sub-wavelength resonators lacking symmetry planes. The asymmetry allows magnetic moments to be excited by the electric field of the incident EM wave and vice versa. Recently, chiral metamaterials have been demonstrated and lead to prospects in giant optical activity, circular dichroism, negative refraction and reversing the Casmir force. These fascinating optical properties require strong chirality, which may be designed through the microscopic structure of chiral metamaterials. However, these metamaterials have a fixed response function, defined by the geometric structuring, which limits their ability to manipulate EM waves. Active metamaterials realize dynamic control of response functions and have produced many influential applications such as ultra-fast switching devices, frequency and phase modulation and memory devices. Introducing active designs to chiral metamaterials will give additional freedom in controlling the optical activity, and therefore enable dynamic manipulation
Chiral dynamics of baryons in the perturbative chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Pumsa-ard, K.
2006-07-01
In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints
Chiral medium produced by parallel electric and magnetic fields
Ruggieri, Marco; Chernodub, Maxim
2016-01-01
We compute (pseudo)critical temperature, $T_c$, of chiral symmetry restoration for quark matter in the background of parallel electric and magnetic fields. This field configuration leads to the production of a chiral medium on a time scale $\\tau$, characterized by a nonvanishing value of the chiral density that equilibrates due to microscopic processes in the thermal bath. We estimate the relaxation time $\\tau$ to be about $\\approx 0.1-1$ fm/c around the chiral crossover; then we compute the effect of the fields and of the chiral medium on~$T_c$. We find $T_c$ to be lowered by the external fields in the chiral medium.
Directory of Open Access Journals (Sweden)
Mikiji Miyata
2015-10-01
Full Text Available A multi-point approximation method clarifies supramolecular chirality of twofold rotational or helical assemblies as well as bundles of the one-dimensional (1D assemblies. While one-point approximation of materials claims no chirality generation of such assemblies, multi-point approximations do claim possible generation in the 1D assemblies of bars and plates. Such chirality derives from deformations toward three-axial directions around the helical axes. The chiral columns are bundled in chiral ways through symmetry operations. The preferable right- or left-handed columns are bundled together to yield chiral crystals with right- or left-handedness, respectively, indicating that twofold helix symmetry operations cause chiral crystals composed of achiral components via a three-stepwise and three-directional process.
Ruggieri, M; Peng, G X
2016-01-01
We study the influence of external electric, $E$, and magnetic, $B$, fields parallel to each other, and of a chiral chemical potential, $\\mu_5$, on the chiral phase transition of Quantum Chromodynamics. Our theoretical framework is a Nambu-Jona-Lasinio model with a contact interaction. Within this model we compute the critical temperature of chiral symmetry restoration, $T_c$, as a function of the chiral chemical potential and field strengths. We find that the fields inhibit and $\\mu_5$ enhances chiral symmetry breaking, in agreement with previous studies.
Dilepton bounds on left-right symmetry at the LHC run II and neutrinoless double beta decay
Lindner, Manfred; Rodejohann, Werner
2016-01-01
In the light of the new 13 TeV dilepton data set with $ 3.2\\, {\\rm fb^{-1}}$ integrated luminosity from the ATLAS collaboration, we derive limits on the $Z^{\\prime}$ mass in the context of left-right symmetric models and exploit the complementarity with dijet and $lljj$ data, as well as neutrinoless double beta decay. We keep the ratio of the left- and right-handed gauge coupling free in order to take into account different patterns of left-right symmetry breaking. By combining the dielectron and dimuon data we can exclude $Z^{\\prime}$ masses below $3$~TeV for $g_R=g_L$, and for $g_R \\sim 1$ we rule out masses up to $\\sim 4$~TeV. Those comprise the strongest direct bounds on the $Z^{\\prime}$ mass from left-right models up to date. We show that in the usual plane of right-handed neutrino and charged gauge boson mass, dilepton data can probe a region of parameter space inaccessible to neutrinoless double beta decay and $lljj$ studies. Lastly, we present a stringent indirect indirect bound on the lifetime of neu...
Dilepton bounds on left-right symmetry at the LHC run II and neutrinoless double beta decay
Lindner, Manfred; Queiroz, Farinaldo S.; Rodejohann, Werner
2016-11-01
In the light of the new 13 TeV dilepton data set with 3.2 fb-1 integrated luminosity from the ATLAS Collaboration, we derive limits on the Z‧ mass in the context of left-right symmetric models and exploit the complementarity with dijet and lljj data, as well as neutrinoless double beta decay. We keep the ratio of the left- and right-handed gauge coupling free in order to take into account different patterns of left-right symmetry breaking. By combining the dielectron and dimuon data we can exclude Z‧ masses below 3 TeV for gR =gL, and for gR ∼ 1 we rule out masses up to ∼ 4 TeV. Those comprise the strongest direct bounds on the Z‧ mass from left-right models up to date. We show that in the usual plane of right-handed neutrino and charged gauge boson mass, dilepton data can probe a region of parameter space inaccessible to neutrinoless double beta decay and lljj studies. Lastly, through the mass relation between WR and Z‧ we present an indirect bound on the lifetime of neutrinoless double beta decay using dilepton data. Our results prove that the often ignored dilepton data in the context of left-right models actually provide important complementary limits.
Objects of maximum electromagnetic chirality
Fernandez-Corbaton, Ivan
2015-01-01
We introduce a definition of the electromagnetic chirality of an object and show that it has an upper bound. The upper bound is attained if and only if the object is transparent for fields of one handedness (helicity). Additionally, electromagnetic duality symmetry, i.e. helicity preservation upon scattering, turns out to be a necessary condition for reciprocal scatterers to attain the upper bound. We use these results to provide requirements for the design of such extremal scatterers. The requirements can be formulated as constraints on the polarizability tensors for dipolar scatterers or as material constitutive relations. We also outline two applications for objects of maximum electromagnetic chirality: A twofold resonantly enhanced and background free circular dichroism measurement setup, and angle independent helicity filtering glasses.
Fermion mass generation and electroweak symmetry breaking from colour forces
Energy Technology Data Exchange (ETDEWEB)
Zoupanos, G. (European Organization for Nuclear Research, Geneva (Switzerland))
1983-09-29
The colour gauge group is extended to SU(3) x SU(3) and is subsequently broken to diagonal SU(3)sub(c). Under the diagonal SU(3)sub(c) the fundamental fermionic constituents of the larger strong group become ordinary quarks plus new quarks with exotic quantum numbers. Chiral symmetry breaking in the exotic quark sector may occur at much larger mass scales than ordinary chiral symmetry breaking, and could produce dynamical breaking of electroweak gauge symmetry and radiative masses for the light fermions.
Wenz, Jan; Kochan, Alexander; Wadepohl, Hubert; Gade, Lutz H
2017-03-20
A new class of chiral C2-symmetric N-donor pincer ligands, 2,5-bis(2-oxazolinyldimethylmethyl)pyrroles (PdmBox)H, was synthesized starting from the readily available ethyl 2,2-dimethyl-3-oxobutanoate (1). The synthesis of the ligand backbone was achieved by oxidative enole coupling with CuC12 followed by Paal-Knorr-type pyrrole synthesis. The corresponding protioligands ((R)PdmBox)H (R = iPr: 5a; Ph: 5b) were obtained by condensation with amino alcohols and subsequent zinc-catalyzed cyclization. Reaction of the lithiated ligands with [NiCl2(dme)] yielded the corresponding square-planar nickel(II) complexes [((R)PdmBox)NiCl] (6a/b). Salt metathesis of 6a with the corresponding alkali or cesium salts in acetone led to the formation of air- and moisture-stable [((iPr)PdmBox)NiX] (X = F (7), X = Br (8), X = I (9), X = N3 (10), X = OAc (11). Furthermore, the conversion of [((iPr)PdmBox)NiF] (7) with hydride transfer reagents such as PhSiH3 led to the stable hydrido species [((iPr)PdmBox)NiH] (27), the stoichiometric transformations of which were studied. Treatment of 6a with organometallic reagents such as ZnEt2, PhLi, PhC≡CLi, NsLi, or ((4F)Bn)2Mg(THF)2 gave the corresponding alkyl, alkynyl, or aryl complexes. The availability of the new nonisomerizable PdmBox pincer ligands allowed the comparative study of their ligation to square-planar complexes as helically twisted spectator ligands as opposed to the enforced planar rigidity of their iso-PmBox analogues and the way this influences the reactivity of the Ni complexes.
Bosonization and Mirror Symmetry
Kachru, Shamit; Torroba, Gonzalo; Wang, Huajia
2016-01-01
We study bosonization in 2+1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an $O(2)$-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a chiral mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.
Bosonization and mirror symmetry
Kachru, Shamit; Mulligan, Michael; Torroba, Gonzalo; Wang, Huajia
2016-10-01
We study bosonization in 2 +1 dimensions using mirror symmetry, a duality that relates pairs of supersymmetric theories. Upon breaking supersymmetry in a controlled way, we dynamically obtain the bosonization duality that equates the theory of a free Dirac fermion to QED3 with a single scalar boson. This duality may be used to demonstrate the bosonization duality relating an O (2 )-symmetric Wilson-Fisher fixed point to QED3 with a single Dirac fermion, Peskin-Dasgupta-Halperin duality, and the recently conjectured duality relating the theory of a free Dirac fermion to fermionic QED3 with a single flavor. Chern-Simons and BF couplings for both dynamical and background gauge fields play a central role in our approach. In the course of our study, we describe a "chiral" mirror pair that may be viewed as the minimal supersymmetric generalization of the two bosonization dualities.
Staggering of the B(M1) value as a fingerprint of specific chiral bands structure
Grodner, Ernest
2011-01-01
Nuclear chirality has been intensively studdied for the last several years in the context of experimental as well as theoretical approach. Characteristic gamma selection rules have been predicted for the strong chiral symmetry breaking limit that has been observed in Cs isotopes. The presented analysis shows that the gamma selection rules cannot be attributed only to chiral symmetry breaking. The selection rules relate to structural composition of the chiral rotational bands, i.e. to odd particle configuration and the deformation of the core.
From cosmic chirality to protein structure: Lord Kelvin's legacy.
Barron, Laurence D
2012-11-01
A selection of my work on chirality is sketched in two distinct parts of this lecture. Symmetry and Chirality explains how the discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. The concepts of true chirality (time-invariant enantiomorphism) and false chirality (time-noninvariant enantiomorphism) that emerge provide an extension of Lord Kelvin's original definition of chirality to situations where motion is an essential ingredient thereby clarifying, inter alia, the nature of physical influences able to induce absolute enantioselection. Consideration of symmetry violations reveals that strict enantiomers (exactly degenerate) are interconverted by the combined CP operation. Raman optical activity surveys work, from first observation to current applications, on a new chiroptical spectroscopy that measures vibrational optical activity via Raman scattering of circularly polarized light. Raman optical activity provides incisive information ranging from absolute configuration and complete solution structure of smaller chiral molecules and oligomers to protein and nucleic acid structure of intact viruses.
Voisin, Claire
1999-01-01
This is the English translation of Professor Voisin's book reflecting the discovery of the mirror symmetry phenomenon. The first chapter is devoted to the geometry of Calabi-Yau manifolds, and the second describes, as motivation, the ideas from quantum field theory that led to the discovery of mirror symmetry. The other chapters deal with more specialized aspects of the subject: the work of Candelas, de la Ossa, Greene, and Parkes, based on the fact that under the mirror symmetry hypothesis, the variation of Hodge structure of a Calabi-Yau threefold determines the Gromov-Witten invariants of its mirror; Batyrev's construction, which exhibits the mirror symmetry phenomenon between hypersurfaces of toric Fano varieties, after a combinatorial classification of the latter; the mathematical construction of the Gromov-Witten potential, and the proof of its crucial property (that it satisfies the WDVV equation), which makes it possible to construct a flat connection underlying a variation of Hodge structure in the ...
Häring, Reto Andreas
1993-01-01
The representations of the observable algebra of a low dimensional quantum field theory form the objects of a braided tensor category. The search for gauge symmetry in the theory amounts to finding an algebra which has the same representation category. In this paper we try to establish that every quantum field theory satisfying some basic axioms posseses a weak quasi Hopf algebra as gauge symmetry. The first step is to construct a functor from the representation category to the category of finite dimensional vector spaces. Given such a functor we can use a generalized reconstruction theorem to find the symmetry algebra. It is shown how this symmetry algebra is used to build a gauge covariant field algebra and we investigate the question why this generality is necessary.
Ruggieri, M.; Peng, G. X.
2016-05-01
In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.
Status of chiral meson physics
Energy Technology Data Exchange (ETDEWEB)
Bijnens, Johan [Department of Astronomy and Theoretical Physics, Lund University, Sölvegatan 14A, SE 22362 Lund (Sweden)
2016-01-22
This talk includes a short introduction to Chiral Perturbation Theory in the meson sector concentrating on a number of recent developments. I discuss the latest fit of the low-energy constants. Finite volume corrections are discussed for the case with twisted boundary conditions for form-factors and first results at two-loops for three flavours for masses. The last part discusses the extension to other symmetry breaking patterns relevant for technicolour and related theories as well as the calculation of leading logarithms to high loop orders.
Chiral Nanoscience and Nanotechnology
Directory of Open Access Journals (Sweden)
Dibyendu S. Bag
2008-09-01
Full Text Available The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology describes the nanoscale approaches to chiraltechnology such as asymmetric synthesis and catalysis, chiral separation and detection, and enantiomericanalysis. Chiral sensors have also been included. The state-of-the-art chiral research at DMSRDE,Kanpur isalso presented.Defence Science Journal, 2008, 58(5, pp.626-635, DOI:http://dx.doi.org/10.14429/dsj.58.1685
Parveen, Shazia; Arjmand, Farukh
2012-01-01
Novel ternary dizinc(II) complexes 1- 3, derived from 1,2-bis(1H-benzimidazol-2-yl)ethane-1,2-diol and L-form of amino acids (viz., tryptophan, leucine and valine) were synthesized and characterized by spectroscopic (IR, 1H NMR, UV-vis, ESI-MS) and other analytical methods. To evaluate the biological preference of chiral drugs for inherently chiral target DNA, interaction of 1- 3 with calf thymus DNA in Tris-HCl buffer was studied by various biophysical techniques which reveal that all these complexes bind to CT DNA non-covalently via electrostatic interaction. The higher Kb value of L-tryptophan complex 1 suggested greater DNA binding propensity. Further, to evaluate the mode of action at the molecular level, interaction studies of complexes 1 and 2 with nucleotides (5'-GMP and 5'-TMP) were carried out by UV-vis titrations, 1H and 31P NMR which implicates the preferential selectivity of these complexes to N3 of thymine rather than N7 of guanine. Furthermore, complex 1 exhibits efficient DNA cleavage with supercoiled pBR322. The complex 1 cleaves DNA efficiently involving hydrolytic cleavage pathway. Such chiral synthetic hydrolytic nucleases with asymmetric centers are gaining considerable attention owing to their importance in biotechnology and drug design, in particular to cleave DNA with sequence selectivity different from that of the natural enzymes.
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu
2016-06-21
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
Heavy-tailed chiral random matrix theory
Kanazawa, Takuya
2016-01-01
We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.
Heavy-tailed chiral random matrix theory
Kanazawa, Takuya
2016-05-01
We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.
Sigma, Kappa and fo(980) in E791 and BES II data
Bugg, D V
2006-01-01
Both sigma and kappa are well established from E791 data on D->3pi and D->K-pi-pi$ and BES II data on J/Psi->omega-pi-pi and KKpipi. Fits to these data are accurately consistent with pi-pi and Kpi elastic scattering when one allows for the Adler zero which arises from Chiral Symmetry Breaking. The phase variation with mass is also consistent between elastic scattering and production data.
Philip, Elizabath; Zeki Güngördü, M.; Pal, Sharmistha; Kung, Patrick; Kim, Seongsin Margaret
2017-09-01
In this article, recent progress and development of terahertz chiral metamaterials including stereometamaterials are thoroughly reviewed. This review mainly focuses on the fundamental principles of design and arrangement of meta-atoms in metamaterials exhibiting chirality with various asymmetry and symmetry and 2D and 3D configuration. Related optical and propagation properties in chiral metamaterials, such as optical activity, circular dichroism, and negative refraction for each different chiral metamaterials, are compared and investigated. Finally, comparison between chiral metamaterials with stereometamaterials in terms of the polarization selective operation along with the similarity and the distinction is addressed as well.
Energy Technology Data Exchange (ETDEWEB)
Joshipura, A.S. [Physical Research Laboratory, Navarangpura, Ahmedabad (India)
2008-01-15
The possible maximal mixing seen in the oscillations of atmospheric neutrinos has led to the postulate of {mu}-{tau} symmetry, which interchanges {nu}{sub {mu}} and {nu}{sub {tau}}. We argue that such a symmetry need not be special to neutrinos but can be extended to all fermions. The assumption that all fermion mass matrices are approximately invariant under the interchange of the second and the third generation fields is shown to be phenomenologically viable and has interesting consequences. In the quark sector, the smallness of V{sub ub} and V{sub cb} can be consequences of this approximate 2-3 symmetry. The same approximate symmetry can simultaneously lead to a large atmospheric mixing angle and can describe the leptonic mixing quite well. We identify two generic scenarios leading to this. One is based on the conventional type-I seesaw mechanism and the other follows from the type-II seesaw model. The latter requires a quasi-degenerate neutrino spectrum for obtaining large atmospheric neutrino mixing in the presence of an approximate {mu}-{tau} symmetry. (orig.)
Experimental demonstration of spontaneous chirality in a nonlinear microresonator
Cao, Qi-Tao; Dong, Chun-Hua; Jing, Hui; Liu, Rui-Shan; Chen, Xi; Ge, Li; Gong, Qihuang; Xiao, Yun-Feng
2016-01-01
Chirality is an important concept that describes the asymmetry property of a system, which usually emerges spontaneously due to mirror symmetry breaking. Such spontaneous chirality manifests predominantly as parity breaking in modern physics, which has been studied extensively, for instance, in Higgs physics, double-well Bose-Einstein condensates, topological insulators and superconductors. In the optical domain, spontaneous chiral symmetry breaking has been elusive experimentally, especially for micro- and nano-photonics which demands multiple identical subsystems, such as photonic nanocavities, meta-molecules and other dual-core settings. Here, for the first time, we observe spontaneous emergence of a chiral field in a single ultrahigh-Q whispering- gallery microresonator. This counter-intuitive effect arises due to the inherent Kerr nonlinearity-modulated coupling between clockwise (CW) and counterclockwise (CCW) propagating waves. At an ultra-weak input threshold of a few hundred microwatts, the initial c...
Polarization Control by Using Anisotropic 3D Chiral Structures
Chen, Menglin L N; Sha, Wei E I; Choy, Wallace C H; Itoh, Tatsuo
2016-01-01
Due to the mirror symmetry breaking, chiral structures show fantastic electromagnetic (EM) properties involving negative refraction, giant optical activity, and asymmetric transmission. Aligned electric and magnetic dipoles excited in chiral structures contribute to extraordinary properties. However, the chiral structures that exhibit n-fold rotational symmetry show limited tuning capability. In this paper, we proposed a compact, light, and highly tunable anisotropic chiral structure to overcome this limitation and realize a linear-to-circular polarization conversion. The anisotropy is due to simultaneous excitations of two different pairs of aligned electric and magnetic dipoles. The 3D omega-like structure, etched on two sides of one PCB board and connected by metallic vias, achieves 60% of linearto- circular conversion (transmission) efficiency at the operating frequency of 9.2 GHz. The desired 90-degree phase shift between the two orthogonal linear polarization components is not only from the finite-thick...
Energy Technology Data Exchange (ETDEWEB)
Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)
2015-06-01
Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.
Extending chiral perturbation theory with an isosinglet scalar
Hansen, Martin; Langæble, Kasper; Sannino, Francesco
2017-02-01
We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology and lattice investigations. By construction our results encompass several interesting limits, ranging from the dilaton to the linear sigma model.
One-loop Chiral Perturbation Theory with two fermion representations
DeGrand, Thomas; Neil, Ethan T; Shamir, Yigal
2016-01-01
We develop Chiral Perturbation Theory for chirally broken theories with fermions in two different representations of the gauge group. Any such theory has a non-anomalous singlet $U(1)_A$ symmetry, yielding an additional Nambu-Goldstone boson when spontaneously broken. We calculate the next-to-leading order corrections for the pseudoscalar masses and decay constants, which include the singlet Nambu-Goldstone boson, as well as for the two condensates. The results can be generalized to more than two representations.
Extending Chiral Perturbation Theory with an Isosinglet Scalar
Hansen, Martin; Sannino, Francesco
2016-01-01
We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology and lattice investigations. By construction our results encompass several interesting limits, ranging from the dilaton to the linear sigma model.
Circular dichroism induced by Fano resonances in planar chiral oligomers
Hopkins, Ben; Miroshnichenko, Andrey E; Kivshar, Yuri S
2016-01-01
We present a general theory of circular dichroism induced in planar chiral nanostructures with rotational symmetry. It is demonstrated, analytically, that the handedness of the incident field's polarization can control whether a nanostructure induces either absorption or scattering losses, even when the total loss (extinction) is polarization-independent. We then show that this effect is a consequence of modal interference so that strong circular dichroism in absorption and scattering can be engineered by combining Fano resonances with chiral nanoparticle clusters.
Extended chiral transformations including diquark fields as parameters
Novozhilov, V Yu; Vasilevich, D V; Novozhilov, Yuri; Pronko, Andrei; Vassilevich, Dmitri
1994-01-01
We introduce extended chiral transformation, which depends both on pseudoscalar and diquark fields as parameters and determine its group structure. Assuming soft symmetry breaking in diquark sector, bosonisation of a quasi-Goldstone ud-diquark is performed. In the chiral limit the ud-diquark mass is defined by the gluon condensate, m_{ud}\\approx 300 MeV. The diquark charge radius is \\langle r^2_{ud}\\rangle^{1/2}\\approx 0.5 fm.
Chiral transition, eigenmode localisation and Anderson-like models
Giordano, Matteo; Pittler, Ferenc
2016-01-01
We discuss chiral symmetry restoration and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We argue that the features of QCD relevant to both phenomena are the presence of order in the Polyakov line configuration, and the correlations that this induces between spatial links across time slices. This ties the fate of chiral symmetry and of localisation of the lowest Dirac eigenmodes to the confining properties of the theory. We then show numerical results obtained in a QCD-inspired Anderson-like toy model, derived by radically simplifying the QCD dynamics while keeping the important features mentioned above. The toy model reproduces all the important qualitative aspects of chiral symmetry breaking and localisation in QCD, thus supporting the central role played by the confinement/deconfinement transition in triggering both phenomena.
A hidden classical symmetry of QCD
Glozman, L Ya
2016-01-01
The classical part of the QCD partition function (the integrand) has, ignoring irrelevant exact zero modes of the Dirac operator, a local SU(2N_F) \\supset SU(N_F)_L \\times SU(N_F)_R \\times U(1)_A symmetry which is absent at the Lagrangian level. This symmetry is broken anomalously and spontaneously. Effects of spontaneous breaking of chiral symmetry are contained in the near-zero modes of the Dirac operator. If physics of anomaly is also encoded in the same near-zero modes, then their truncation on the lattice should recover a hidden classical SU(2N_F) symmetry in correlators and spectra. This naturally explains observation on the lattice of a large degeneracy of hadrons, that is higher than the SU(N_F)_L \\times SU(N_F)_R \\times U(1)_A chiral symmetry, upon elimination by hands of the lowest-lying modes of the Dirac operator. We also discuss an implication of this symmetry for the high temperature QCD.
Symmetry reduction related with nonlocal symmetry for Gardner equation
Ren, Bo
2017-01-01
Based on the truncated Painlevé method or the Möbious (conformal) invariant form, the nonlocal symmetry for the (1+1)-dimensional Gardner equation is derived. The nonlocal symmetry can be localized to the Lie point symmetry by introducing one new dependent variable. Thanks to the localization procedure, the finite symmetry transformations are obtained by solving the initial value problem of the prolonged systems. Furthermore, by using the symmetry reduction method to the enlarged systems, many explicit interaction solutions among different types of solutions such as solitary waves, rational solutions, Painlevé II solutions are given. Especially, some special concrete soliton-cnoidal interaction solutions are analyzed both in analytical and graphical ways.
Anomalous transport effects and possible environmental symmetry 'violation' in heavy-ion collisions
Indian Academy of Sciences (India)
Jinfeng Liao
2015-05-01
The heavy-ion collision provides a unique many-body environment where local domains of strongly interacting chiral medium may occur and in a sense allow environmental symmetry 'violation' phenomena. For example, certain anomalous transport processes, forbidden in usual medium, become possible in such domains. We briefly review recent progress in both the theoretical understanding and experimental search of various anomalous transport effects (such as the chiral magnetic effect, chiral separation effect, chiral electric separation effect, chiral electric/magnetic waves, etc.) in the hot QCD fluid formed by such collisions.
Kane-Maguire, Leon A P; Wallace, Gordon G
2010-07-01
This critical review describes the preparation and properties of a relatively new class of chiral macromolecules, namely chiral conducting polymers. It focuses in particular on examples based on polypyrrole, polythiophene and polyaniline. They possess remarkable properties, combining not only chirality with electrical conductivity but also the ability to undergo facile redox and pH switching. These unique properties have opened up a range of exciting new potential applications, including as chiral sensors, as novel stationary phases for chiral separations, and as chiral electrodes for electrochemical asymmetric synthesis (153 references).
Incommensurate Chirality Density Wave Transition in a Hybrid Molecular Framework
Hill, Joshua A.; Christensen, Kirsten E.; Goodwin, Andrew L.
2017-09-01
Using single-crystal x-ray diffraction we characterize the 235 K incommensurate phase transition in the hybrid molecular framework tetraethylammonium silver(I) dicyanoargentate, [NEt4]Ag3(CN )4 . We demonstrate the transition to involve spontaneous resolution of chiral [NEt4]+ conformations, giving rise to a state in which molecular chirality is incommensurately modulated throughout the crystal lattice. We refer to this state as an incommensurate chirality density wave (XDW) phase, which represents a fundamentally new type of chiral symmetry breaking in the solid state. Drawing on parallels to the incommensurate ferroelectric transition of NaNO2 , we suggest the XDW state arises through coupling between acoustic (shear) and molecular rotoinversion modes. Such coupling is symmetry forbidden at the Brillouin zone center but symmetry allowed for small but finite modulation vectors q =[0 ,0 ,qz]* . The importance of long-wavelength chirality modulations in the physics of this hybrid framework may have implications for the generation of mesoscale chiral textures, as required for advanced photonic materials.
Nuclear chiral dynamics and thermodynamics
Holt, J W; Weise, W
2013-01-01
This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic des...
Chiral light by symmetric optical antennas
Mekonnen, Addis; Zubritskaya, Irina; Jönsson, Gustav Edman; Dmitriev, Alexandre
2014-01-01
Chirality is at the origin of life and is ubiquitous in nature. An object is deemed chiral if it is non-superimposable with its own mirror image. This relates to how circularly polarized light interacts with such object, a circular dichroism, the differential absorption of right and left circularly polarized light. According to the common understanding in biology, chemistry and physics, the circular dichroism results from an internal chiral structure or external symmetry breaking by illumination. We show that circular dichroism is possible with simple symmetric optical nanoantennas at symmetric illumination. We experimentally and theoretically demonstrate that two electromagnetic dipole-like modes with a phase lag, in principle, suffice to produce circular dichroism in achiral structure. Examples of the latter are all visible spectrum optical nanoantennas, symmetric nanoellipses and nanodimers. The simplicity and generality of this finding reveal a whole new significance of the electromagnetic design at a nan...
Chirally symmetric strong and electroweak interactions
Rajpoot, Subhash
1988-07-01
Strong and electroweak interactions may be a relic of the spontaneous breakdown of a chirally symmetric colour-flavour gauge group. The minimum possibility of such a structure that is symmetric between left and right is SU(3) L×SU(3) R×SU(2) L×SU(2) R×U(1) B- L where quantum chromodynamics originates in the chiral colour group SU(3) L×SU(3) R and the electroweak interaction originates in the ambidextrous electroweak interaction group SU L×SU(2) R×U(1) B- L. The chiral anomalies are cancelled by adding a set of fermions that transform as singlets under the weak interaction group SU(2) L×SU(2) R. This model requires only three Higgs representations to break the proposed gauge symmetry to SU(3) C×U(1) em and give masses to all the quarks and leptons of the theory. All fermion masses are “see-saw” masses.
From helical to planar chirality by on-surface chemistry.
Stetsovych, Oleksandr; Švec, Martin; Vacek, Jaroslav; Chocholoušová, Jana Vacek; Jančařík, Andrej; Rybáček, Jiří; Kosmider, Krzysztof; Stará, Irena G; Jelínek, Pavel; Starý, Ivo
2017-03-01
The chirality of molecular structures is paramount in many phenomena, including enantioselective reactions, molecular self-assembly, biological processes and light or electron-spin polarization. Flat prochiral molecules, which are achiral in the gas phase or solution, can exhibit adsorption-induced chirality when deposited on surfaces. The whole array of such molecular adsorbates is naturally racemic as spontaneous global mirror-symmetry breaking is disfavoured. Here we demonstrate a chemical method of obtaining flat prochiral molecules adsorbed on the solid achiral surface in such a way that a specific adsorbate handedness globally dominates. An optically pure helical precursor is flattened in a cascade of on-surface reactions, which enables chirality transfer. The individual reaction products are identified by high-resolution scanning-probe microscopy. The ultimate formation of globally non-racemic assemblies of flat molecules through stereocontrolled on-surface synthesis allows for chirality to be expressed in as yet unexplored types of organic-inorganic chiral interfaces.
From helical to planar chirality by on-surface chemistry
Stetsovych, Oleksandr; Švec, Martin; Vacek, Jaroslav; Chocholoušová, Jana Vacek; Jančařík, Andrej; Rybáček, Jiří; Kosmider, Krzysztof; Stará, Irena G.; Jelínek, Pavel; Starý, Ivo
2016-11-01
The chirality of molecular structures is paramount in many phenomena, including enantioselective reactions, molecular self-assembly, biological processes and light or electron-spin polarization. Flat prochiral molecules, which are achiral in the gas phase or solution, can exhibit adsorption-induced chirality when deposited on surfaces. The whole array of such molecular adsorbates is naturally racemic as spontaneous global mirror-symmetry breaking is disfavoured. Here we demonstrate a chemical method of obtaining flat prochiral molecules adsorbed on the solid achiral surface in such a way that a specific adsorbate handedness globally dominates. An optically pure helical precursor is flattened in a cascade of on-surface reactions, which enables chirality transfer. The individual reaction products are identified by high-resolution scanning-probe microscopy. The ultimate formation of globally non-racemic assemblies of flat molecules through stereocontrolled on-surface synthesis allows for chirality to be expressed in as yet unexplored types of organic-inorganic chiral interfaces.
Chiral fermions in asymptotically safe quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Meibohm, J. [Gothenburg University, Department of Physics, Goeteborg (Sweden); Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); Pawlowski, J.M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung mbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany)
2016-05-15
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions. (orig.)
Chiral fermions in asymptotically safe quantum gravity
Meibohm, Jan
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck-scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works \\cite{Christiansen:2015rva, Meibohm:2015twa}, concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models, regardless of the number of fermion flavours. This suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Chiral gold nanowires with boerdijk-coxeter-bernal structure
Zhu, Yihan
2014-09-10
A Boerdijk-Coxeter-Bernal (BCB) helix is made of linearly stacked regular tetrahedra (tetrahelix). As such, it is chiral without nontrivial translational or rotational symmetries. We demonstrate here an example of the chiral BCB structure made of totally symmetrical gold atoms, created in nanowires by direct chemical synthesis. Detailed study by high-resolution electron microscopy illustrates their elegant chiral structure and the unique one-dimensional "pseudo-periodicity". The BCB-type atomic packing mode is proposed to be a result of the competition and compromise between the lattice and surface energy.
Anomalous properties of spin-extended chiral fermions
Elbistan, M
2015-01-01
The spin-extended semiclassical chiral fermion (we call the S-model), which had been used to derive the twisted Lorentz symmetry of the "spin-enslaved" chiral chiral fermion (we call the c-model) is equivalent to the latter in the free case, however coupling to an external electromagnetic field yields inequivalent systems. The difference is highlighted by the inconsistency of spin enslavement within the spin-extended framework. The S-model exhibits nevertheless similar though slightly different anomalous properties as the usual c-model does.
Parton distributions for the pion in a chiral quark model
Ruiz-Arriola, E
2001-01-01
Parton distributions for the pion are studied in a chiral quark model characterized by a quark propagator for which a spectral representation is assumed. Electromagnetic and chiral symmetry constraints are imposed through the relevant Ward-Takahashi identities for flavoured vertex functions. Finiteness of the theory, requires the spectral function to be non-positive definite. Straightforward calculation yields the result that the pion structure function becomes one in the chiral limit, regardless of the details of the spectral function. LO and NLO evolution provide a satisfactory description of phenomenological parameterizations of the valence distribution functions but fails to describe gluon and sea distributions.
Superconformal Symmetry, NMSSM, and Inflation
Ferrara, Sergio; Linde, Andrei; Marrani, Alessio; Van Proeyen, Antoine
2011-01-01
We identify a particularly simple class of supergravity models describing superconformal coupling of matter to supergravity. In these models, which we call the canonical superconformal supergravity (CSS) models, the kinetic terms in the Jordan frame are canonical, and the scalar potential is the same as in the global theory. The pure supergravity part of the total action has a local Poincare supersymmetry, whereas the chiral and vector multiplets coupled to supergravity have a larger local superconformal symmetry. The scale-free globally supersymmetric theories, such as the NMSSM with a scale-invariant superpotential, can be naturally embedded into this class of theories. After the supergravity embedding, the Jordan frame scalar potential of such theories remains scale free; it is quartic, it contains no mass terms, no nonrenormalizable terms, no cosmological constant. The local superconformal symmetry can be broken by additional terms, which, in the small field limit, are suppressed by the gravitational coup...
Ruggieri, M
2016-01-01
In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...
A novel probe of chiral restoration in nuclear medium
Gubler, Philipp; Kunihiro, Teiji; Lee, Su Houng
2017-04-01
We propose measuring the mass shift and width broadening of the f1 (1285) meson together with those of the ω from a nuclear target as a means to experimentally probe the partial restoration of chiral symmetry inside the nuclear matter. The relation between the order parameter of chiral symmetry and the difference in the correlation functions of the f1 (1285) current and the ω current is discussed in the limit where the disconnected diagrams are neglected. A QCD sum rule analysis of the f1 (1285) meson mass leads to about 100 MeV attraction in nuclear matter, which can be probed in future experiments.
Sum-Frequency Generation from Chiral Media and Interfaces
Energy Technology Data Exchange (ETDEWEB)
Ji, Na [Univ. of California, Berkeley, CA (United States)
2006-02-13
Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers.
Topics on heavy baryon chiral perturbation theory in the large N_c limit
Flores-Mendieta, R
2002-01-01
We compute nonanalytical pion-loop corrections to baryon masses in a combined expansion in chiral symmetry breaking and 1/N_c, where N_c is the number of colors. Specifically, we compute flavor-27 baryon mass splittings at leading order in chiral perturbation theory. Our results, at the physical value N_c=3, are compared with the expressions obtained in heavy baryon chiral perturbation theory with no 1/N_c expansion.
Li, Pei-zhou; Lu, Xiao-ming; Liu, Bo; Wang, Shuo; Wang, Xiao-jun
2007-07-23
Two chiral supramolecules with enantiomeric three-dimensional porous host frameworks, (Delta){[Fe(II)(phen)(3)][Fe(III)Na(C(2)O(4))(3)]}(n) (1) and (Lambda){[Fe(II)(phen)(3)][Fe(III)Na(C(2)O(4))(3)]}(n) (2) (phen = 1,10-phenanthroline), have been synthesized, and their crystal structures have been determined. The structural analysis shows that compounds 1 and 2 are a pair of enantiomers, both consisting of a three-dimensional porous skeleton formed by (Delta)/(Lambda){[Fe(III)Na(C(2)O(4))(3)](2-)}(n) and guest (Delta)/(Lambda)[Fe(phen)(3)](2+) units. The circular dichroism spectrum measurements confirmed the optical activity and the enantiomeric nature of complexes 1 and 2.
Symmetry Nonrestoration in a Gross-Neveu Model with Random Chemical Potential
Hong, S I; Hong, Seok-In; Kogut, John B.
2001-01-01
We study the symmetry behavior of the Gross-Neveu model in three and two dimensions with random chemical potential. This is equivalent to a four-fermion model with charge conjugation symmetry as well as Z_2 chiral symmetry. At high temperature the Z_2 chiral symmetry is always restored. In three dimensions the initially broken charge conjugation symmetry is not restored at high temperature, irrespective of the value of the disorder strength. In two dimensions and at zero temperature the charge conjugation symmetry undergoes a quantum phase transition from a symmetric state (for weak disorder) to a broken state (for strong disorder) as the disorder strength is varied. For any given value of disorder strength, the high-temperature behavior of the charge conjugation symmetry is the same as its zero-temperature behavior. Therefore, in two dimensions and for strong disorder strength the charge conjugation symmetry is not restored at high temperature.
Thermoelectric studies of the non-thermal equilibrium dynamics in chiral metals
Energy Technology Data Exchange (ETDEWEB)
McDonald, R.D. [National High Magnetic Field Laboratory, Los Alamos National Laboratory, MS-E536, Los Alamos, NM 87545 (United States)], E-mail: rmcd@lanl.gov; Harrison, N.; Singleton, J. [National High Magnetic Field Laboratory, Los Alamos National Laboratory, MS-E536, Los Alamos, NM 87545 (United States)
2008-04-01
The conventional pyroelectric effect is intimately connected to the symmetry, or rather lack of center of symmetry, of the material. Although the experiments we discuss involve studies of low symmetry materials, the pyroelectric currents observed are of an entirely new origin. Systems with broken-translational-symmetry phases that incorporate orbital quantization can exhibit significant departures from thermodynamic equilibrium due to a change in magnetic induction. For example, orbitally quantized field-induced spin- or charge density wave systems, in which the competition between the elastic forces of the density wave and pinning leads to a critical state analogous to the vortex phase of type II superconductors. This metastable state consists of a balance between the density-wave pinning force and the Lorentz force on the extended currents due to the drift of cyclotron orbits. This results in the establishment of a three-dimensional chiral metal that can extend deep into the bulk of the crystal. In this way the density wave pinning potential plays a similar role to the edge potential in a two-dimensional electron gas, leading to a large Hall angle and quantization of the Hall resistance. A thermal perturbation that reduces the pinning potential returns the system toward thermal equilibrium, which can only be achieved by current flow orthogonal to the surface. The observation of this new form of pyroelectric effect in the high magnetic field phase (B>30 T) of the organic charge transfer salt {alpha}-(BEDT-TTF){sub 2}KHg(SCN){sub 4} is conclusive proof of the existence of a three-dimensional chiral metal.
Thermoelectric studies of the non-thermal equilibrium dynamics in chiral metals
McDonald, R. D.; Harrison, N.; Singleton, J.
2008-04-01
The conventional pyroelectric effect is intimately connected to the symmetry, or rather lack of center of symmetry, of the material. Although the experiments we discuss involve studies of low symmetry materials, the pyroelectric currents observed are of an entirely new origin. Systems with broken-translational-symmetry phases that incorporate orbital quantization can exhibit significant departures from thermodynamic equilibrium due to a change in magnetic induction. For example, orbitally quantized field-induced spin- or charge density wave systems, in which the competition between the elastic forces of the density wave and pinning leads to a critical state analogous to the vortex phase of type II superconductors. This metastable state consists of a balance between the density-wave pinning force and the Lorentz force on the extended currents due to the drift of cyclotron orbits. This results in the establishment of a three-dimensional chiral metal that can extend deep into the bulk of the crystal. In this way the density wave pinning potential plays a similar role to the edge potential in a two-dimensional electron gas, leading to a large Hall angle and quantization of the Hall resistance. A thermal perturbation that reduces the pinning potential returns the system toward thermal equilibrium, which can only be achieved by current flow orthogonal to the surface. The observation of this new form of pyroelectric effect in the high magnetic field phase (B>30 T) of the organic charge transfer salt α- (BEDT-TTF)2KHg(SCN)4 is conclusive proof of the existence of a three-dimensional chiral metal.
Chiral damping of magnetic domain walls
Jué, Emilie
2015-12-21
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Chiral damping of magnetic domain walls
Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2016-03-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).
Symmetry, Symmetry Breaking and Topology
Directory of Open Access Journals (Sweden)
Siddhartha Sen
2010-07-01
Full Text Available The ground state of a system with symmetry can be described by a group G. This symmetry group G can be discrete or continuous. Thus for a crystal G is a finite group while for the vacuum state of a grand unified theory G is a continuous Lie group. The ground state symmetry described by G can change spontaneously from G to one of its subgroups H as the external parameters of the system are modified. Such a macroscopic change of the ground state symmetry of a system from G to H correspond to a “phase transition”. Such phase transitions have been extensively studied within a framework due to Landau. A vast range of systems can be described using Landau’s approach, however there are also systems where the framework does not work. Recently there has been growing interest in looking at such non-Landau type of phase transitions. For instance there are several “quantum phase transitions” that are not of the Landau type. In this short review we first describe a refined version of Landau’s approach in which topological ideas are used together with group theory. The combined use of group theory and topological arguments allows us to determine selection rule which forbid transitions from G to certain of its subgroups. We end by making a few brief remarks about non-Landau type of phase transition.
Possible splitting of deconfinement and chiral transitions in strong magnetic fields in QCD
Fraga, Eduardo S; Chernodub, M N
2010-01-01
We show that finite-temperature deconfinement and chiral transitions can split in a strong enough magnetic field. The splitting in critical temperatures of these transitions in a constant magnetic field of a typical LHC magnitude is of the order of 10 MeV. A new deconfined phase with broken chiral symmetry appears.
Diabatic crossing of chiral "twins" in the odd-odd 106Ag nucleus: A theoretical perspective
Malik, Sham S.
2016-07-01
A systematic study of both the observed positive-parity magnetic rotation band and the negative-parity Δ I =1 doublet bands in an odd-odd 106Ag nucleus is carried out. The negative-parity doublet bands depict some unusual features that have not been observed in any isotope in the mass A =100 region. For instance, (i) the moment of inertia of the partner band is quite different from that of the yrast band, and (ii) these bands cross each other at an angular momentum of I =14 ℏ . Also, the observed significantly large but constant B (M 1 ) transitions confirm that the strong M 1 transitions are being reinforced by the contributions from collective rotation. To explain these features, a collective model has been developed whose kinetic and potential energies are extracted from the tilted-axis cranking model. Instead of the triaxial parameter γ , a second-order phase transition is found to be responsible for the spontaneous breakdown of chiral symmetry. Analytical solution of the Schrödinger equation has generated a doublet nondegenerate eigenvalue spectrum. The ensuing model results based on the two-quasiparticle configuration π g9/2⊗ν h11/2 exhibit similarities with many observed features of the negative-parity doublet bands and hence confirm their chiral character. The cranking mass parameter in kinetic energy plays an important role in diabatic crossing between these emerged chiral twin bands.
Generalized Symmetries of Massless Free Fields on Minkowski Space
Directory of Open Access Journals (Sweden)
Stephen C. Anco
2008-01-01
Full Text Available A complete and explicit classification of generalized, or local, symmetries of massless free fields of spin s ≥ 1/2 is carried out. Up to equivalence, these are found to consists of the conformal symmetries and their duals, new chiral symmetries of order 2s, and their higher-order extensions obtained by Lie differentiation with respect to conformal Killing vectors. In particular, the results yield a complete classification of generalized symmetries of the Dirac-Weyl neutrino equation, Maxwell's equations, and the linearized gravity equations.