WorldWideScience

Sample records for chiral su3 dynamics

  1. Chiral SU(3) dynamics and antikaon-nuclear quasibound states

    International Nuclear Information System (INIS)

    Weise, W.; Haertle, R.

    2008-01-01

    Recent developments are summarised concerning low-energy K-bar N interactions as they relate to the possible existence of antikaon-nuclear quasibound states. An exploratory study of antikaons bound to finite nuclei is performed, with emphasis on the evolution of such states from light to heavy nuclei (A = 16-208). The energy dependent, driving attractive K-bar N interactions are constructed using the s-wave coupled-channel amplitudes involving the Λ(1405) and resulting from chiral SU(3) dynamics, plus p-wave amplitudes dominated by the Σ(1385). Effects of Pauli and short-range correlations are discussed. The decay width induced by K - NN two-body absorption is estimated and found to be substantial. It is concluded that K-bar-nuclear quasibound states can possibly exist with binding energies ranging from 60 to 100 MeV, but with short life times corresponding to decay widths of similar magnitudes

  2. Self consistent propagation of hyperons and antikaons in nuclear matter based on relativistic chiral SU(3) dynamics

    International Nuclear Information System (INIS)

    Lutz, M.F.M.; Korpa, C.L.

    2001-05-01

    We evaluate the antikaon spectral density in isospin symmetric nuclear matter. The in-medium antikaon-nucleon scattering process and the antikaon propagation is treated in a self consistent and relativistic manner where a maximally scheme-independent formulation is derived by performing a partial density resummation in terms of the free-space antikaon-nucleon scattering amplitudes. The latter amplitudes are taken from a relativistic and chiral coupled-channel SU(3) approach which includes s-, p- and d-waves systematically. Particular care is taken on the proper evaluation of the in-medium mixing of the partial waves. Our analysis establishes a rich structure of the antikaon spectral function with considerable strength at small energies. At nuclear saturation density we predict attractive mass shifts for the Λ(1405), Σ(1385) and Λ(1520) of about 130 MeV, 60 MeV and 100 MeV respectively. The hyperon states are found to exhibit at the same time an increased decay width of about 150 MeV for the s-wave Λ(1405), 70 MeV for the p-wave Σ(1385) and 100 MeV for the d-wave Λ(1520) resonance. (orig.)

  3. SU(3) chiral symmetry for baryons

    International Nuclear Information System (INIS)

    Dmitrasinovic, V.

    2011-01-01

    Three-quark nucleon interpolating fields in QCD have well-defined SU L (3)xSU R (3) and U A (1) chiral transformation properties, viz. [(6,3)+(3,6)], [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] and their 'mirror' images. It has been shown (phenomenologically) in Ref. [2] that mixing of the [(6,3)+(3,6)] chiral multiplet with one ordinary ('naive') and one 'mirror' field belonging to the [(3,3-bar)+(3-bar,3)], [(8,1)+(1,8)] multiplets can be used to fit the values of the isovector (g A (3) ) and the flavor-singlet (isoscalar) axial coupling (g A (0) ) of the nucleon and then predict the axial F and D coefficients, or vice versa, in reasonable agreement with experiment. In an attempt to derive such mixing from an effective Lagrangian, we construct all SU L (3)xSU R (3) chirally invariant non-derivative one-meson-baryon interactions and then calculate the mixing angles in terms of baryons' masses. It turns out that there are (strong) selection rules: for example, there is only one non-derivative chirally symmetric interaction between J 1/2 fields belonging to the [(6,3)+(3,6)] and the [(3,3-bar)+(3-bar,3)] chiral multiplets, that is also U A (1) symmetric. We also study the chiral interactions of the [(3,3-bar)+(3-bar,3)] and [(8,1)+(1,8)] nucleon fields. Again, there are selection rules that allow only one off-diagonal non-derivative chiral SU L (3)xSU R (3) interaction of this type, that also explicitly breaks the U A (1) symmetry. We use this interaction to calculate the corresponding mixing angles in terms of baryon masses and fit two lowest lying observed nucleon (resonance) masses, thus predicting the third (J = 1/2, I = 3/2)Δ resonance, as well as one or two flavor-singlet Λ hyperon(s), depending on the type of mixing. The effective chiral Lagrangians derived here may be applied to high density matter calculations.

  4. Nucleon spin-flavor structure in the SU(3)-breaking chiral quark model

    International Nuclear Information System (INIS)

    Song, X.; McCarthy, J.S.; Weber, H.J.

    1997-01-01

    The SU(3) symmetric chiral quark model, which describes interactions between quarks, gluons, and the Goldstone bosons, explains reasonably well many aspects of the flavor and spin structure of the proton, except for the values of f 3 /f 8 and Δ 3 /Δ 8 . Introducing the SU(3)-breaking effect suggested by the mass difference between the strange and nonstrange quarks, we find that this discrepancy can be removed and better overall agreement obtained. copyright 1997 The American Physical Society

  5. Relativistic chiral SU(3) symmetry, large Nc sum rules and meson-baryon scattering

    International Nuclear Information System (INIS)

    Lutz, M.F.M.; Kolomeitsev, E.E.

    2001-05-01

    The relativistic chiral SU(3) Lagrangian is used to describe kaon-nucleon scattering imposing constraints from the pion-nucleon sector and the axial-vector coupling constants of the baryon octet states. We solve the covariant coupled-channel Bethe-Salpeter equation with the interaction kernel truncated at chiral order Q 3 where we include only those terms which are leading in the large N c limit of QCD. The baryon decuplet states are an important explicit ingredient in our scheme, because together with the baryon octet states they form the large N c baryon ground states of QCD. Part of our technical developments is a minimal chiral subtraction scheme within dimensional regularization, which leads to a manifest realization of the covariant chiral counting rules. All SU(3) symmetry-breaking effects are well controlled by the combined chiral and large N c expansion, but still found to play a crucial role in understanding the empirical data. We achieve an excellent description of the data set typically up to laboratory momenta of p lab ≅ 500 MeV. (orig.)

  6. Baryon axial-vector couplings and SU(3)-symmetry breaking in chiral quark models

    International Nuclear Information System (INIS)

    Horvat, D.; Ilakovac, A.; Tadic, D.

    1986-01-01

    SU(3)-symmetry breaking is studied in the framework of the chiral bag models. Comparisons are also made with the MIT bag model and the harmonic-oscillator quark model. An important clue for the nature of the symmetry breaking comes from the isoscalar axial-vector coupling constant g/sub A//sup S/ which can be indirectly estimated from the Bjorken sum rules for deep-inelastic scattering. The chiral bag model with two radii reasonably well accounts for the empirical values of g/sub A//sup S/ and of the axial-vector coupling constants measured in hyperon semileptonic decays

  7. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)

    2016-01-15

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)

  8. Baryonic forces and hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan Karl

    2016-02-12

    In this work the baryon-baryon interaction is studied at next-to-leading order in SU(3) chiral effective field theory and applied to hyperon-nucleon scattering. The properties of hyperons in isospin-symmetric as well as asymmetric nuclear matter are calculated within the Bruecker-Hartree-Fock formalism. Moreover, the leading three-baryon interaction is derived and its low-energy constants are estimated from decuplet intermediate states. We conclude, that chiral effective field theory is a well-suited tool to describe the baryonic forces.

  9. Consistency tests of Ampcalculator and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial-based approach

    International Nuclear Information System (INIS)

    Ananthanarayan, B.; Sentitemsu Imsong, I.; Das, Diganta

    2012-01-01

    Ampcalculator (AMPC) is a Mathematica copyright based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O(p 4 )) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G 27 . Another illustrative set of amplitudes at tree level we provide is in the context of τ-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics. (orig.)

  10. Thermal evolution of massive strange compact objects in a SU(3) chiral Quark Meson model

    Energy Technology Data Exchange (ETDEWEB)

    Zacchi, Andreas

    2017-07-04

    In this work, thermodynamical properties of strongly interacting matter within a chiral SU(2)- and SU(3) chiral Quark Meson model have been analysed. Both effective models describe the development of the quark masses in media via the corresponding fields through chiral symmetry, which is expected to be restored at high temperatures and/or high densities, and spontaneously broken at low temperatures and/or densities. Spontaneous and explicit chiral symmetry breaking patterns give rise to massive Goldstone bosons, which are associated with the pions. Their chiral partners, the sigma mesons, are expected to be degenerate in mass, which was what we studied and observed at large temperatures/densities. The derivation and computation of thermodynamical quantities and properties in both cases can for instance be used to study relativistic and hydrodynamic Heavy Ion Collisions and the early universe for vanishing baryon number (SU(2)-case). They are also interesting for extreme astrophysical scenarios, such as Supernova explosions and the thermal evolution of their remnants, which has been among the topics of this thesis (SU(3)-case). Inclusion of the zero point energy in the SU(2) model has been carried out separately for the meson sector and for the quark sector as well as in a combined approach, where we learned, that the quark sector is quite dominant and that the vacuum fluctuations of the meson fields have little influence on the order parameter, but affect the relativistic degrees of freedom. In the SU(3) case, the inclusion of the zero point energy in the quark sector is much more computationally complex, but, as in the SU(2) case, is also not negliable, as its influence also changes the thermodynamical quantities at finite temperatures in a nontrivial manner. Here some features of the Supernova equation of state have been studied, which look promising for further investigations for Supernovae (proto neutron stars) and also for compact star mergers. The final

  11. Qq(Q-bar)(q-bar)' states in chiral SU(3) quark model

    International Nuclear Information System (INIS)

    Zhang Haixia; Zhang Min; Zhang Zongye

    2007-01-01

    We study the masses of Qq(Q-bar)(q-bar)' states with J PC =0 ++ , 1 ++ , 1 +- and 2 ++ in the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q(q') is the light quark (u,d or s). According to our numerical results, it is improbable to make the interpretation of [cn(c-bar)(n-bar)] 1 ++ and [cn(c-bar)(n-bar)] 2 ++ (n=u,d) states as X(3872) and Y(3940), respectively. However, it is interesting to find the tetraquarks in the bq(b-bar)(q-bar)' system. (authors)

  12. Leading SU(3)-breaking corrections to the baryon magnetic moments in chiral perturbation theory.

    Science.gov (United States)

    Geng, L S; Camalich, J Martin; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-11-28

    We calculate the baryon magnetic moments using covariant chiral perturbation theory (chiPT) within the extended-on-mass-shell renormalization scheme. By fitting the two available low-energy constants, we improve the Coleman-Glashow description of the data when we include the leading SU(3)-breaking effects coming from the lowest-order loops. This success is in dramatic contrast with previous attempts at the same order using heavy-baryon chiPT and covariant infrared chiPT. We also analyze the source of this improvement with particular attention to the comparison between the covariant results.

  13. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, Stefan; Kaiser, Norbert [Technische Universitaet Muenchen (Germany); Haidenbauer, Johann [Forschungszentrum Juelich (Germany); Meissner, Ulf G. [Forschungszentrum Juelich (Germany); Universitaet Bonn (Germany); Weise, Wolfram [Technische Universitaet Muenchen (Germany); ECT, Trento (Italy)

    2016-07-01

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. The splittings among the Σ{sup +}, Σ{sup 0} and Σ{sup -} potentials have a non-linear dependence on the isospin asymmetry which goes beyond the usual parametrization in terms of an isovector Lane potential.

  14. One-loop divergences in chiral perturbation theory and right-invariant metrics on SU(3)

    International Nuclear Information System (INIS)

    Esposito-Farese, G.

    1991-01-01

    In the framework of chiral perturbation theory, we compute the one-loop divergences of the effective Lagrangian describing strong and non-leptonic weak interactions of pseudoscalar mesons. We use the background field method and the heat-kernel expansion, and underline the geometrical meaning of the different terms, showing how the right-invariance of the metrics on SU(3) allows to clarify and simplify the calculations. Our results are given in terms of a minimal set of independent counterterms, and shorten previous ones of the literature, in the particular case where the electromagnetic field is the only external source which is considered. We also show that a geometrical construction of the effective Lagrangian at order O(p 4 ) allows to derive some relations between the finite parts of the coupling constants. These relations do not depend on the scale μ used to renormalize. (orig.)

  15. Chiral Dynamics 2006

    Science.gov (United States)

    Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry

    2007-10-01

    of singular potentials and power counting / M.P. Valderrrama. The challenge of calculating Baryon-Baryon scattering from lattice QCD / S.R. Beane. Precise absolute np scattering cross section and the charged [Pie symbol] NN coupling constant / S. E. Vigdor. Probing hadronic parity violation using few nucleon systems / S.A. Page. Extracting the neutron-neutron scattering length from neutron-deuteron breakup / C.R. Howell. Extraction of [equationl] from [Pie symbol]-d --> [equation] / A. Grudestig. The three- and four-body system with large scattering length / L. Platter. 3N and 4N systems and the Ay puzzle / T. Clegg. Recent progress in nuclear lattice simulations with effective field theory / D. Lee. Few-body studies at KVI / J.G. Messchendorp. Results of three nucleon experiments from RIKEN / K. Sekiguchi. A new opportunity to measure the total photoabsorption cross section of helium / P. T. Debevec. Three-body photodisintegration of 3He with double polarizations / X. Zong. Large two-pion exchange contributions to the pp --> pp[Pie symbol]0 reaction / F. Myhrer. Towards a systematic theory of nuclear forces / E. Epelbaum. Ab initio calculations of eletromagnetic reactions in light nuclei / W. Leidemann. Electron scattering from a polarized deuterium target at BLAST / R. Fatemi. Neutron-neutron scattering length from the reaction [equation] / V. Lensky. Renormalization group analysis of nuclear current operators / S.X. Nakamura. Recent results and future plans at MAX-LAB / K.G. Fissum. Nucleon polarizabilities from deutron compton scattering, and its lessons for chiral power counting / H. W. Grie hammer. Compton scattering on HE-3 / D. Choudhury -- pt. D. Hadron structure and Meson-Baryon interactions. Summary of the working group on Hadron structure and Meson-Baryon interactions / G. Feldman and T.R. Hemmert. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice discretization errors in chiral effective field theories / B.C. Tiburzi. SU(3)-breaking

  16. Generalized chiral membrane dynamics

    International Nuclear Information System (INIS)

    Cordero, R.; Rojas, E.

    2003-01-01

    We develop the dynamics of the chiral superconducting membranes (with null current) in an alternative geometrical approach. Besides of this, we show the equivalence of the resulting description with the one known Dirac-Nambu-Goto (DNG) case. Integrability for chiral string model is obtained using a proposed light-cone gauge. In a similar way, domain walls are integrated by means of a simple Ansatz. (Author)

  17. Dynamical chiral bag model

    International Nuclear Information System (INIS)

    Colanero, K.; Chu, M.-C.

    2002-01-01

    We study a dynamical chiral bag model, in which massless fermions are confined within an impenetrable but movable bag coupled to meson fields. The self-consistent motion of the bag is obtained by solving the equations of motion exactly assuming spherical symmetry. When the bag interacts with an external meson wave we find three different kinds of resonances: fermionic, geometric, and σ resonances. We discuss the phenomenological implications of our results

  18. Light pseudoscalar mesons in a nonlocal SU(3) chiral quark model

    International Nuclear Information System (INIS)

    Scarpettini, A.; Gomez Dumm, D.; Scoccola, Norberto N.

    2004-01-01

    We study the properties of the light pseudoscalar mesons in a three-flavor chiral quark model with nonlocal separable interactions. We concentrate on the evaluation of meson masses and decay constants, considering both the cases of Gaussian and Lorentzian nonlocal regulators. The results are found to be in quite good agreement with the empirical values, in particular in the case of the ratio f K /f π and the anomalous decay π 0 →γγ. In addition, the model leads to a reasonable description of the observed phenomenology in the η-η ' sector, even though it implies the existence of two significantly different state mixing angles

  19. Chiral Nuclear Dynamics II

    CERN Document Server

    Rho, Mannque

    2008-01-01

    This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and

  20. Baryon Chiral Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Becher,

    2002-08-08

    After contrasting the low energy effective theory for the baryon sector with one for the Goldstone sector, I use the example of pion nucleon scattering to discuss some of the progress and open issues in baryon chiral perturbation theory.

  1. Chiral dynamics with (nonstrange quarks

    Directory of Open Access Journals (Sweden)

    Kubis Bastian

    2017-01-01

    Full Text Available We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405, the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy–Steiner analysis of pion–nucleon scattering, a high-precision extraction of the elusive pion–nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  2. Meson-baryon coupling constants from a chiral-invariant SU(3) Lagrangian and application to NN scattering

    International Nuclear Information System (INIS)

    Stoks, V.G.J.

    1997-01-01

    We present a chiral-invariant meson-baryon Lagrangian which describes the interactions of the baryon octet with the lowest-mass meson nonets. The nonlinear realization of the chiral symmetry generates pair-meson interaction vertices. The corresponding pair-meson coupling constants can all be expressed in terms of the meson-nucleon-nucleon pseudovector, scalar, and vector coupling constants, and their corresponding F/(F+D) ratios, and for which empirical estimates are given. We show that it is possible to construct an NN potential of reasonable quality satisfying these theoretical and empirical constraints. (orig.)

  3. Nuclear chiral dynamics and thermodynamics

    Science.gov (United States)

    Holt, Jeremy W.; Kaiser, Norbert; Weise, Wolfram

    2013-11-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exchange processes in combination with Pauli blocking effects in the nuclear medium. Short distance dynamics, not resolved at the wavelengths corresponding to typical nuclear Fermi momenta, are introduced as contact interactions between nucleons. Apart from a set of low-energy constants associated with these contact terms, the parameters of this theory are entirely determined by pion properties and low-energy pion-nucleon scattering observables. This framework (in-medium chiral perturbation theory) can provide a realistic description of both isospin-symmetric nuclear matter and neutron matter, with emphasis on the isospin-dependence determined by the underlying chiral NN interaction. The importance of three-body forces is emphasized, and the role of explicit Δ(1232)-isobar degrees of freedom is investigated in detail. Nuclear chiral thermodynamics is developed and a calculation of the nuclear phase diagram is performed. This includes a successful description of the first-order phase transition from a nuclear Fermi liquid to an interacting Fermi gas and the coexistence of these phases below a critical temperature Tc. Density functional methods for finite nuclei based on this approach are also discussed. Effective interactions, their density dependence and connections to Landau Fermi liquid theory are outlined. Finally, the density and temperature dependences of the chiral (quark) condensate are investigated.

  4. Light-flavor sea-quark distributions in the nucleon in the SU(3) chiral quark soliton model. I. Phenomenological predictions

    International Nuclear Information System (INIS)

    Wakamatsu, M.

    2003-01-01

    Theoretical predictions are given for the light-flavor sea-quark distributions in the nucleon including the strange quark ones on the basis of the flavor SU(3) version of the chiral quark soliton model. Careful account is taken of the SU(3) symmetry breaking effects due to the mass difference Δm s between the strange and nonstrange quarks, which is the only one parameter necessary for the flavor SU(3) generalization of the model. A particular emphasis of study is put on the light-flavor sea-quark asymmetry as exemplified by the observables d-bar(x)-u-bar(x),d-bar(x)/u-bar(x),Δu-bar(x)-Δd-bar(x) as well as on the particle-antiparticle asymmetry of the strange quark distributions represented by s(x)-s-bar(x),s(x)/s-bar(x),Δs(x)-Δs-bar(x) etc. As for the unpolarized sea-quark distributions, the predictions of the model seem qualitatively consistent with the available phenomenological information provided by the NMC data for d-bar(x)-u-bar(x), the E866 data for d-bar(x)/u-bar(x), the CCFR data and the fit of Barone et al. for s(x)/s-bar(x), etc. The model is shown to give several unique predictions also for the spin-dependent sea-quark distribution, such that Δs(x)<<Δs-bar(x) < or approx. 0 and Δd-bar(x)<0<Δu-bar(x), although the verification of these predictions must await more elaborate experimental investigations in the near future

  5. Chirality in molecular collision dynamics

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  6. Dynamics of inhomogeneous chiral condensates

    Science.gov (United States)

    Carlomagno, Juan Pablo; Krein, Gastão; Kroff, Daniel; Peixoto, Thiago

    2018-01-01

    We study the dynamics of the formation of inhomogeneous chirally broken phases in the final stages of a heavy-ion collision, with particular interest on the time scales involved in the formation process. The study is conducted within the framework of a Ginzburg-Landau time evolution, driven by a free energy functional motivated by the Nambu-Jona-Lasinio model. Expansion of the medium is modeled by one-dimensional Bjorken flow and its effect on the formation of inhomogeneous condensates is investigated. We also use a free energy functional from a nonlocal Nambu-Jona-Lasinio model which predicts metastable phases that lead to long-lived inhomogeneous condensates before reaching an equilibrium phase with homogeneous condensates.

  7. Chiral dynamics with (non)strange quarks

    International Nuclear Information System (INIS)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S_1_1 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy–Steiner analysis of pion–nucleon scattering, a high-precision extraction of the elusive pion–nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  8. Chiral dynamics with (non)strange quarks

    Science.gov (United States)

    Kubis, Bastian; Meißner, Ulf-G.

    2017-01-01

    We review the results and achievements of the project B.3. Topics addressed include pion photoproduction off the proton and off deuterium, three-flavor chiral perturbation theory studies, chiral symmetry tests in Goldstone boson decays, the development of unitarized chiral perturbation theory to next-to-leading order, the two-pole structure of the Λ(1405), the dynamical generation of the lowest S11 resonances, the theory of hadronic atoms and its application to various systems, precision studies in light-meson decays based on dispersion theory, the Roy-Steiner analysis of pion-nucleon scattering, a high-precision extraction of the elusive pion-nucleon σ-term, and aspects of chiral dynamics in few-nucleon systems.

  9. Coupled SU(3) models of rotational states in nuclei and quasi-dynamical symmetry

    International Nuclear Information System (INIS)

    Thiamova, G.; Rowe, D. J.

    2007-01-01

    This contribution reports a first step towards the development of a model of low-lying nuclear collective states based on the progression from weak to strong coupling of a combination of systems in multiple SU(3) irreps. The motivation for such a model comes partly from the remarkable persistence of rotational structure observed experimentally and in many model calculations. This work considers the spectra obtainable by coupling just two SU(3) irreps by means of a quadrupole-quadrupole interaction. For a particular value of this interaction, the two irreps combine to form strongly-coupled irreps while for zero interaction the weakly-coupled results are mixtures of many such strongly-coupled irreps. A notable result is the persistence of the rotor character of the low-energy states for a wide range of the interaction strength. Also notable is the fact that, for very weak interaction strengths, the energy levels of the yrast band resemble those of a vibrational sequence while the B(E2) transition strengths remain close to those of an axially symmetric rotor, as observed in many nuclei. (Author)

  10. Static and dynamical anomalies caused by chiral soliton lattice in molecular-based chiral magnets

    International Nuclear Information System (INIS)

    Kishine, Jun-ichiro; Inoue, Katsuya; Kikuchi, Koichi

    2007-01-01

    Interplay of crystallographic chirality and magnetic chirality has been of great interest in both chemist's and physicist's viewpoints. Crystals belonging to chiral space groups are eligible to stabilize macroscopic chiral magnetic order. This class of magnetic order is described by the chiral XY model, where the transverse magnetic field perpendicular to the chiral axis causes the chiral soliton lattice (CSL) formation. As a clear evidence of the chiral magnetic order, the temperature dependence of the transverse magnetization exhibits sharp cusp just below the mean field ferrimagnetic transition temperature, indicating the formation of the CSL. In addition to the static anomaly, we expect the CSL formation also causes dynamical anomalies such as induction of the spin supercurrent

  11. Hadron spectroscopy with dynamical chirally improved fermions

    Science.gov (United States)

    Gattringer, Christof; Hagen, Christian; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas

    2009-03-01

    We simulate two dynamical, mass-degenerate light quarks on 163×32 lattices with a spatial extent of 2.4 fm using the chirally improved Dirac operator. The simulation method, the implementation of the action, and signals of equilibration are discussed in detail. Based on the eigenvalues of the Dirac operator we discuss some qualitative features of our approach. Results for ground-state masses of pseudoscalar and vector mesons as well as for the nucleon and delta baryons are presented.

  12. Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics

    International Nuclear Information System (INIS)

    Ebert, D.; Feldmann, T.; Friedrich, R.; Reinhardt, H.

    1994-06-01

    By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3) F symmetry breaking effects are estimated and, if possible, confronted with experiment. (orig.)

  13. Static properties of baryons in the SU(3) Skyrme model

    International Nuclear Information System (INIS)

    Sriram, M.S.; Mani, H.S.; Ramachandran, R.

    1984-01-01

    We study the SU(3) x SU(3) Skyrme model with explicit chiral- and flavor-symmetry-breaking terms. We evaluate the SU(3)-symmetric meson-baryon coupling-constant ratio α, SU(3) mass breaking in the octet and decuplet, and the ΔI = 1 part of the electromagnetic mass splitting in baryons. The theoretical numbers are in reasonable agreement with the experimental values

  14. Hadron spectroscopy with dynamical chirally improved fermions

    International Nuclear Information System (INIS)

    Gattringer, Christof; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Hagen, Christian; Schaefer, Andreas

    2009-01-01

    We simulate two dynamical, mass-degenerate light quarks on 16 3 x32 lattices with a spatial extent of 2.4 fm using the chirally improved Dirac operator. The simulation method, the implementation of the action, and signals of equilibration are discussed in detail. Based on the eigenvalues of the Dirac operator we discuss some qualitative features of our approach. Results for ground-state masses of pseudoscalar and vector mesons as well as for the nucleon and delta baryons are presented.

  15. Molecular Dynamics Simulations of Kinetic Models for Chiral Dominance in Soft Condensed Matter

    DEFF Research Database (Denmark)

    Toxvaerd, Søren

    2001-01-01

    Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality......Molecular dynamics simulation, models for isomerization kinetics, origin of biomolecular chirality...

  16. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  17. 8th International Workshop on Chiral Dynamics

    CERN Document Server

    2016-01-01

    The International Workshop on Chiral Dynamics 2015, the eighth in a series which started in 1994 at MIT, and was later held in Mainz (1997), Jefferson Lab (2000 and 2012), Bonn (2003), Duke (2006) and Bern (2009), will take place in Pisa, from June 29 to July 3 2015, and will be jointly hosted by the Department of Physics of the University of Pisa and the Pisa branch of the Istituto Nazionale di Fisica Nucleare. The purpose of this workshop series is to bring physicists together who are active in this field, as well as those who are interested, to discuss and debate the most recent achievements and future developments. The workshop will have a near equal contribution from theorists and experimentalists and, as in the latest editions, a strong synergy with the lattice community will be present. Topics: Hadron structure Isospin breaking in hadronic systems Meson-meson and meson-baryon interaction Effective field theory and chiral perturbation theory Few-body physics Compton scattering and the polarizabilities o...

  18. Dynamic kinetic resolution of biaryl atropisomers by chiral dialkylaminopyridine catalysts.

    Science.gov (United States)

    Ma, Gaoyuan; Deng, Chao; Deng, Jun; Sibi, Mukund P

    2018-05-02

    The acylative dynamic kinetic resolution (DKR) of configurationally unstable biaryl atropisomers is achieved by using newly developed chiral dialkylaminopyridine catalysts with fluxional chirality. Various types of biaryl substrates containing phenolic structures were subjected to the DKR to obtain a range of acylated biaryl products with enantiomeric ratios up to 90 : 10.

  19. A nonlocal model of chiral dynamics

    International Nuclear Information System (INIS)

    Holdom, B.; Terning, J.; Verbeek, K.

    1989-01-01

    We consider a nonlocal generalization of the nonlinear σ model. Our chirally symmetric model couples quarks with self-energy Σ(p) to Goldstone bosons (GBs). By integrating out the quarks we obtain a chiral lagrangian, the parameters of which are finite integrals of Σ(p). We find that chiral symmetry is not sufficient to derive the well-known Pagels-Stokar formula for the GB decay constant. We reproduce the Wess-Zumino term and we illustrate the dependence of other four derivative coefficients on Σ(p). (orig.)

  20. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  1. Magnetic test of chiral dynamics in QCD

    International Nuclear Information System (INIS)

    Simonov, Yu.A.

    2014-01-01

    Strong magnetic fields in the range eB≫m π 2 effectively probe internal quark structure of chiral mesons and test basic parameters of the chiral theory, such as 〈q-barq〉,f π . We argue on general grounds that 〈q-barq〉 should grow linearly with eB when charged quark degrees of freedom come into play. To make explicit estimates we extend the previously formulated chiral theory, including quark degrees of freedom, to the case of strong magnetic fields and show that the quark condensate |〈q-barq〉| u,d grows quadratically with eB for eB<0.2 GeV 2 and linearly for higher field values. These results agree quantitatively with recent lattice data and differ from χPT predictions

  2. Dynamics of chiral oscillations: a comparative analysis with spin flipping

    International Nuclear Information System (INIS)

    Bernardini, A E

    2006-01-01

    Chiral oscillation as well as spin flipping effects correspond to quantum phenomena of fundamental importance in the context of particle physics and, in particular, of neutrino physics. From the point of view of first quantized theories, we are specifically interested in pointing out the differences between chirality and helicity by obtaining their dynamic equations for a fermionic Dirac-type particle (neutrino). We also identify both effects when the non-minimal coupling with an external (electro)magnetic field in the neutrino interacting Lagrangian is taken into account. We demonstrate that, however, there is no constraint between chiral oscillations, when it takes place in vacuum, and the process of spin flipping related to the helicity quantum number, which does not take place in vacuum. To conclude, we show that the origin of chiral oscillations (in vacuum) can be interpreted as projections of very rapid oscillations of position onto the longitudinal direction of momentum

  3. Model for dynamical chiral symmetry breaking and quark condensate

    International Nuclear Information System (INIS)

    Nekrasov, M.L.; Rochev, V.E.

    1986-01-01

    In the framework of the model, proposed earlier to describe nonperturbative QCD, the singularity of the type 1/k 4 in the gluon propagator is shown to result in dynamical chiral symmetry breaking and appearance of quark condensate. The value, obtained for quark condensate, is close to the phenomenological one

  4. Facets of confinement and dynamical chiral symmetry breaking

    International Nuclear Information System (INIS)

    Maris, P.; Raya, A.; Roberts, C.D.; Schmidt, S.M.

    2003-01-01

    The gap equation is a cornerstone in understanding dynamical chiral symmetry breaking and may also provide clues to confinement. A symmetry-preserving truncation of its kernel enables proofs of important results and the development of an efficacious phenomenology. We describe a model of the kernel that yields: a momentum-dependent dressed-quark propagator in fair agreement with quenched lattice-QCD results; and chiral limit values, f π 0 =68 MeV and left angle anti q q right angle =-(190 MeV) 3 . It is compared with models inferred from studies of the gauge sector. (orig.)

  5. Topics in three flavor chiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nissler, Robin

    2007-07-01

    In this work, we investigate several processes in low-energy hadron physics by combining chiral perturbation theory (ChPT), the effective field theory of quantum chromodynamics (QCD) at low energies, with a unitarization method based on the Bethe-Salpeter equation. Such so-called chiral unitary approaches are capable of describing processes in the three flavor sector of the strong interaction which involve substantial effects from final-state interactions and the excitation of (subthreshold) resonances, a domain where the perturbative framework of ChPT is not applicable. In part I of this work we study {eta} and {eta}' decays which constitute a perfect tool to examine symmetries and symmetry breaking patterns of QCD being incorporated in a model-independent fashion in ChPT. In particular, these decays allow to investigate the breaking of isospin symmetry due to the light quark mass difference m{sub d}-m{sub u} as well as effects of anomalies stemming from the quantum nature of QCD. For these reasons the decays of {eta} and {eta}' have also attracted considerable experimental interest. They are currently under investigation at several facilities including KLOE rate at DA{phi}NE, Crystal Ball at MAMI, WASA-at-COSY, VES at IHEP, and CLEO at CESR. In part II we investigate low-energy meson-baryon scattering in the strangeness S=-1 sector which is dominated by the {lambda}(1405) resonance immediately below the anti KN threshold. The anti KN interaction below threshold is of relevance for the quest of possible deeply bound anti K-nuclear clusters and has recently received an additional tight constraint: the K{sup -}p scattering length as determined from kaonic hydrogen by the KEK and the DEAR collaborations. Apart from successfully describing a large amount of experimental data and furnishing predictions for yet unmeasured quantities, our calculations allow to interrelate different experimental observables providing important consistency tests of experiments. E

  6. Chiral pion dynamics for spherical nucleon bags

    International Nuclear Information System (INIS)

    Vento, V.; Rho, M.; Nyman, E.M.; Jun, J.H.; Brown, G.E.; CEA Centre d'Etudes Nucleaires de Saclay, 91 - Gif-sur-Yvette

    1980-01-01

    A chirally symmetric quark-bag model for the nucleon is obtained by introducing an explicit, classical, pion field exterior to the bag. The coupling at the bag surface is determined by the requirement of a conserved axial-vector current. The pion field satisfies equations of motion corresponding to the non-linear sigma-model. We study on this paper the simplified case where the bag and the pion field are spherically symmetric. Corrections due to gluon exchange between the quarks are ignored along with other interactions which split the N- and Δ-masses. The equations of motion for the pion field are solved and we find a substantial pion pressure at the bag surface, along with an attractive contribution to the nucleon self-energy. The total energy of the system, bag plus meson cloud, turns out to be approximately Msub(n)c 2 for a wide range of bag radii, from 1.5 fm down to about 0.5 fm. Introduction of a form factor for the pion would extend the range of possible radii to even smaller values. We propose that the bag with the smallest allowed radius be identified with the 'little bag' discussed before. One surprising result of the paper is that as long as one restricts to spherically symmetric bags, restoring chiral symmetry to the bag model makes the axial-vector current coupling constant gsub(A) to be always too large compared with the experimental value for any bag radius, suggesting a deviation from spherical symmetry for the intrinsic bag wave functions of the 'ground-state' hadrons. (orig.)

  7. QCD with two light dynamical chirally improved quarks: Mesons

    Science.gov (United States)

    Engel, Georg P.; Lang, C. B.; Limmer, Markus; Mohler, Daniel; Schäfer, Andreas

    2012-02-01

    We present results for the spectrum of light and strange mesons on configurations with two flavors of mass-degenerate Chirally Improved sea quarks. The calculations are performed on seven ensembles of lattice size 163×32 at three different gauge couplings and with pion masses ranging from 250 to 600 MeV. To reliably extract excited states, we use the variational method with an interpolator basis containing both Gaussian and derivative quark sources. Both conventional and exotic channels up to spin 2 are considered. Strange quarks are treated within the partially quenched approximation. For kaons we investigate the mixing of interpolating fields corresponding to definite C-parity in the SU(3) limit. This enlarged basis allows for an improved determination of the low-lying kaon spectrum. In addition to masses we also extract the ratio of the pseudoscalar decay constants of the kaon and pion and obtain FK/Fπ=1.215(41). The results presented here include some ensembles from previous publications and the corresponding results supersede the previously published values.

  8. Confinement and dynamical chiral symmetry breaking in QED3

    International Nuclear Information System (INIS)

    Bashir, A.; Raya, A.; Cloeet, I. C.; Roberts, C. D.

    2008-01-01

    We establish that QED3 can possess a critical number of flavors, N f c , associated with dynamical chiral symmetry breaking if, and only if, the fermion wave function renormalization and photon vacuum polarization are homogeneous functions at infrared momenta when the fermion mass function vanishes. The Ward identity entails that the fermion-photon vertex possesses the same property and ensures a simple relationship between the homogeneity degrees of each of these functions. Simple models for the photon vacuum polarization and fermion-photon vertex are used to illustrate these observations. The existence and value of N f c are contingent upon the precise form of the vertex but any discussion of gauge dependence is moot. We introduce an order parameter for confinement. Chiral symmetry restoration and deconfinement are coincident owing to an abrupt change in the analytic properties of the fermion propagator when a nonzero scalar self-energy becomes insupportable

  9. Dynamical chiral symmetry breaking and pion decay constant

    International Nuclear Information System (INIS)

    Gogohia, V.Sh.; Kluge, Gy.

    1991-08-01

    Flavour non-singlet, chiral axial-vector Ward-Takahashi identity is investigated in the framework of dynamical chiral symmetry breaking. The use of the condition of stationarity for the bound-state amplitude is proposed in order to fully determine this quantity and the regular piece of the corresponding axial vertex. This makes it possible to express the pion decay constant in terms of the quark propagator variables only. An exact expression was found for the pion decay constant in current algebra and in Jackiw-Johnson representation as well. We also find a new expression for the pion decay constant in the Pagels-Stokar-Cornwall variables within the framework of Jackiw-Johnson representation. (author) 22 refs.; 2 figs

  10. Schwinger Dyson equations: Dynamical chiral symmetry breaking and confinement

    International Nuclear Information System (INIS)

    Roberts, C.D.

    1992-01-01

    A representative but not exhaustive review of the Schwinger-Dyson equation (SDE) approach to the nonperturbative study of QCD is presented. The main focus is the SDE for the quark self energy but studies of the gluon propagator and quark-gluon vertex are also discussed insofar as they are important to the quark SDE. The scope of this article is the application of these equations to the study of dynamical chiral symmetry breaking, quark confinement and the phenomenology of the spectrum and dynamics of QCD

  11. Transport coefficients from SU(3) Polyakov linear-σ model

    International Nuclear Information System (INIS)

    Tawfik, A.; Diab, A.

    2015-01-01

    In the mean field approximation, the grand potential of SU(3) Polyakov linear-σ model (PLSM) is analyzed for the order parameter of the light and strange chiral phase-transitions, σ l and σ s , respectively, and for the deconfinement order parameters φ and φ*. Furthermore, the subtracted condensate Δ l,s and the chiral order-parameters M b are compared with lattice QCD calculations. By using the dynamical quasiparticle model (DQPM), which can be considered as a system of noninteracting massive quasiparticles, we have evaluated the decay width and the relaxation time of quarks and gluons. In the framework of LSM and with Polyakov loop corrections included, the interaction measure Δ/T 4 , the specific heat c v and speed of sound squared c s 2 have been determined, as well as the temperature dependence of the normalized quark number density n q /T 3 and the quark number susceptibilities χ q /T 2 at various values of the baryon chemical potential. The electric and heat conductivity, σ e and κ, and the bulk and shear viscosities normalized to the thermal entropy, ζ/s and η/s, are compared with available results of lattice QCD calculations.

  12. Finite subgroups of SU(3)

    International Nuclear Information System (INIS)

    Bovier, A.; Lueling, M.; Wyler, D.

    1980-12-01

    We present a new class of finite subgroups of SU(3) of the form Zsub(m) s zsub(n) (semidirect product). We also apply the methods used to investigate semidirect products to the known SU(3) subgroups Δ(3n 2 ) and Δ(6n 2 ) and give analytic formulae for representations (characters) and Clebsch-Gordan coefficients. (orig.)

  13. Deracemization of Axially Chiral Nicotinamides by Dynamic Salt Formation with Enantiopure Dibenzoyltartaric Acid (DBTA

    Directory of Open Access Journals (Sweden)

    Fumitoshi Yagishita

    2013-11-01

    Full Text Available Dynamic atroposelective resolution of chiral salts derived from oily racemic nicotinamides and enantiopure dibenzoyltartaric acid (DBTA was achieved by crystallization. The absolute structures of the axial chiral nicotinamides were determined by X-ray structural analysis. The chirality could be controlled by the selection of enantiopure DBTA as a chiral auxiliary. The axial chirality generated by dynamic salt formation was retained for a long period after dissolving the chiral salt in solution even after removal of the chiral acid. The rate of racemization of nicotinamides could be controlled based on the temperature and solvent properties, and that of the salts was prolonged compared to free nicotinamides, as the molecular structure of the pyridinium ion in the salts was different from that of acid-free nicotinamides.

  14. Non-ladder extended renormalization group analysis of the dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Aoki, Ken-Ichi; Takagi, Kaoru; Terao, Haruhiko; Tomoyose, Masashi [Kanazawa Univ., Inst. for Theoretical Physics, Kanazawa, Ishikawa (Japan)

    2000-04-01

    The order parameters of dynamical chiral symmetry breaking in QCD, the dynamical mass of quarks and the chiral condensates, are evaluated by numerically solving the non-perturbative renormalization group (NPRG) equations. We employ an approximation scheme beyond 'the ladder', that is, beyond the (improved) ladder Schwinger-Dyson equations. The chiral condensates are enhanced in comparison with the ladder approximation, which is phenomenologically favorable. The gauge dependence of the order parameters is reduced significantly in this scheme. (author)

  15. Non-ladder extended renormalization group analysis of the dynamical chiral symmetry breaking

    International Nuclear Information System (INIS)

    Aoki, Ken-Ichi; Takagi, Kaoru; Terao, Haruhiko; Tomoyose, Masashi

    2000-01-01

    The order parameters of dynamical chiral symmetry breaking in QCD, the dynamical mass of quarks and the chiral condensates, are evaluated by numerically solving the non-perturbative renormalization group (NPRG) equations. We employ an approximation scheme beyond 'the ladder', that is, beyond the (improved) ladder Schwinger-Dyson equations. The chiral condensates are enhanced in comparison with the ladder approximation, which is phenomenologically favorable. The gauge dependence of the order parameters is reduced significantly in this scheme. (author)

  16. Chiral symmetry and strangeness at SIS energies

    International Nuclear Information System (INIS)

    Lutz, M.F.M.

    2003-11-01

    In this talk we review the consequences of the chiral SU(3) symmetry for strangeness propagation in nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. Results for antikaon and hyperon-resonance spectral functions in cold nuclear matter are presented and discussed. The importance of the Σ(1385) resonance for the subthreshold antikaon production in heavy-ion reaction at SIS is pointed out. The in-medium properties of the latter together with an antikaon spectral function based on chiral SU(3) dynamics suggest a significant enhancement of the π Λ → anti Κ N reaction in nuclear matter. (orig.)

  17. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding.

    Science.gov (United States)

    Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua

    2013-12-14

    Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.

  18. The algebra and geometry of SU(3) matrices

    International Nuclear Information System (INIS)

    Mallesh, K.S.; Mukunda, N.

    1997-01-01

    We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of multiplying two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level system is outlined. (author)

  19. Symmetry, structure, and dynamics of monoaxial chiral magnets

    International Nuclear Information System (INIS)

    Togawa, Yoshihiko; Kousaka, Yusuke; Inoue, Katsuya; Kishine, Jun-ichiro

    2016-01-01

    Nontrivial spin orders with magnetic chirality emerge in a particular class of magnetic materials with structural chirality, which are frequently referred to as chiral magnets. Various interesting physical properties are expected to be induced in chiral magnets through the coupling of chiral magnetic orders with conduction electrons and electromagnetic fields. One promising candidate for achieving these couplings is a chiral spin soliton lattice. Here, we review recent experimental observations mainly carried out on the monoaxial chiral magnetic crystal CrNb_3S_6 via magnetic imaging using electron, neutron, and X-ray beams and magnetoresistance measurements, together with the strategy for synthesizing chiral magnetic materials and underlying theoretical backgrounds. The chiral soliton lattice appears under a magnetic field perpendicular to the chiral helical axis and is very robust and stable with phase coherence on a macroscopic length scale. The tunable and topological nature of the chiral soliton lattice gives rise to nontrivial physical properties. Indeed, it is demonstrated that the interlayer magnetoresistance scales to the soliton density, which plays an essential role as an order parameter in chiral soliton lattice formation, and becomes quantized with the reduction of the system size. These interesting features arising from macroscopic phase coherence unique to the chiral soliton lattice will lead to the exploration of routes to a new paradigm for applications in spin electronics using spin phase coherence. (author)

  20. Nonequilibrium chiral fluid dynamics including dissipation and noise

    International Nuclear Information System (INIS)

    Nahrgang, Marlene; Herold, Christoph; Bleicher, Marcus; Leupold, Stefan

    2011-01-01

    We present a consistent theoretical approach for the study of nonequilibrium effects in chiral fluid dynamics within the framework of the linear σ model with constituent quarks. Treating the quarks as an equilibrated heat bath, we use the influence functional formalism to obtain a Langevin equation for the σ field. This allows us to calculate the explicit form of the damping coefficient and the noise correlators. For a self-consistent derivation of both the dynamics of the σ field and the quark fluid, we have to employ the 2PI (two-particle irreducible) effective action formalism. The energy dissipation from the field to the fluid is treated in the exact formalism of the 2PI effective action where a conserved energy-momentum tensor can be constructed. We derive its form and comment on approximations generating additional terms in the energy-momentum balance of the entire system.

  1. DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic.

    Science.gov (United States)

    Zhou, Chao; Duan, Xiaoyang; Liu, Na

    2017-12-19

    The development of DNA nanotechnology, especially the advent of DNA origami, has made DNA ideally suited to construct nanostructures with unprecedented complexity and arbitrariness. As a fully addressable platform, DNA origami can be used to organize discrete entities in space through DNA hybridization with nanometer accuracy. Among a variety of functionalized particles, metal nanoparticles such as gold nanoparticles (AuNPs) feature an important pathway to endow DNA-origami-assembled nanostructures with tailored optical functionalities. When metal particles are placed in close proximity, their particle plasmons, i.e., collective oscillations of conduction electrons, can be coupled together, giving rise to a wealth of interesting optical phenomena. Nevertheless, characterization methods that can read out the optical responses from plasmonic nanostructures composed of small metal particles, and especially can optically distinguish in situ their minute conformation changes, are very few. Circular dichroism (CD) spectroscopy has proven to be a successful means to overcome these challenges because of its high sensitivity in discrimination of three-dimensional conformation changes. In this Account, we discuss a variety of static and dynamic chiral plasmonic nanostructures enabled by DNA nanotechnology. In the category of static plasmonic systems, we first show chiral plasmonic nanostructures based on spherical AuNPs, including plasmonic helices, toroids, and tetramers. To enhance the CD responses, anisotropic gold nanorods with larger extinction coefficients are utilized to create chiral plasmonic crosses and helical superstructures. Next, we highlight the inevitable evolution from static to dynamic plasmonic systems along with the fast development of this interdisciplinary field. Several dynamic plasmonic systems are reviewed according to their working mechanisms. We first elucidate a reconfigurable plasmonic cross structure that can execute DNA-regulated conformational

  2. Chiral Rayleigh particles discrimination in dynamic dual optical traps

    International Nuclear Information System (INIS)

    Carretero, Luis; Acebal, Pablo; Blaya, Salvador

    2017-01-01

    Highlights: • A chiral optical conveyor belt for enantiomeric separation of nanopar-ticles is numerically demonstrated. • Chiral resolution has been theoretically analyzed for chiral spheres immersed in water. • Electromagnetic fields have been designed for obtaining Chiral selective optical tweezers to separate enantiomers in different spatial regions. - Abstract: A chiral optical conveyor belt for enantiomeric separation of nanoparticles is numerically demonstrated by using different types of counter propagating elliptical Laguerre Gaussian beams with different beam waist and topological charge. The analysis of chiral resolution has been made for particles immersed in water demonstrating that in the analyzed conditions one type of enantiomer is trapped in a deep potential and the others are transported by the chiral conveyor toward another trap located in a different geometrical region.

  3. Dynamics of vortex domain walls in ferromagnetic nanowires - A possible method for chirality manipulation

    Science.gov (United States)

    Li, Y.; Lu, Z.; Chen, C.; Cheng, M.; Yin, H.; Wang, W.; Li, C.; Liu, Y.; Xiong, R.; Shi, J.

    2018-06-01

    The dynamic behaviors of vortex domain walls (VDWs) in ferromagnetic nanowires driven by a magnetic field above Walker breakdown field (Hw) were investigated using micromagnetic simulation. It was found when nanowire has proper geometrical dimensions, the VDW may oscillate in a chirality invariant mode or a chirality switching mode depending on applied field and damping constant. At fixed damping constant, the oscillation mode can be controlled by applied field - with the increase of applied field, the oscillation of VDW change from a chirality invariant mode to a variant one. As the oscillation of VDW changes from chirality invariant regime to chirality switching regime, the oscillation frequency and amplification will undergo an abnormal change, which may offer a fingerprint for the switch of oscillation mode. Our finding proposes a simple way to control the chirality of a VDW by properly manipulating nanowire geometry and applied field, which may have important applications in VDW-based devices.

  4. Dynamical chiral-symmetry breaking in dual QCD

    International Nuclear Information System (INIS)

    Krein, G.; Williams, A.G.

    1991-01-01

    We have extended recent studies by Baker, Ball, and Zachariasen (BBZ) of dynamical chiral-symmetry breaking in dual QCD. Specifically, we have taken dual QCD to specify the nonperturbative infrared nature of the quark-quark interaction and then we have smoothly connected onto this the known leading-log perturbative QCD interaction in the ultraviolet region. In addition, we have solved for a momentum-dependent self-energy and have used the complete lowest-order dual QCD quark-quark interaction. We calculate the quark condensate left-angle bar qq right-angle and the pion decay constant f π within this model. We find that the dual QCD parameters needed to give acceptable results are reasonably consistent with those extracted from independent physical considerations by BBZ

  5. The Effective Chiral Lagrangian for a Light Dynamical "Higgs Particle"

    CERN Document Server

    Alonso, R.; Merlo, L.; Rigolin, S.; Yepes, J.

    2013-01-01

    We generalize the basis of CP-even chiral effective operators describing a dynamical Higgs sector, to the case in which the Higgs-like particle is light. Gauge and gauge-Higgs operators are considered up to mass dimension five. This analysis completes the tool needed to explore at leading order the connection between linear realizations of the electroweak symmetry breaking mechanism - whose extreme case is the Standard Model - and non-linear realizations with a light Higgs-like particle present. It may also provide a model-independent guideline to explore which exotic gauge-Higgs couplings may be expected, and their relative strength to Higgsless observable amplitudes. With respect to fermions, the analysis is reduced by nature to the consideration of those flavour-conserving operators that can be written in terms of pure-gauge or gauge-Higgs ones via the equations of motion, but for the standard Yukawa-type couplings.

  6. Chiral dynamics and partonic structure at large transverse distances

    Energy Technology Data Exchange (ETDEWEB)

    Strikman, M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Theory Center

    2009-12-30

    In this paper, we study large-distance contributions to the nucleon’s parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x≲Mπ/MN and transverse distances b~1/Mπ. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse “core” radius estimated from the nucleon’s axial form factor, Rcore=0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the “pion cloud” model of the nucleon’s sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry d¯-u¯ at x~0.1; (b) the strange sea quarks s and s¯ are significantly more localized than the light antiquark sea; (c) the nucleon’s singlet quark size for x<0.1 is larger than its gluonic size, (b2)q+q¯>(b2)g, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/ψ production measured at HERA and FNAL. We show that our approach reproduces the general Nc-scaling of parton densities in QCD, thanks to the degeneracy of N and Δ intermediate states in the large-Nc limit. Finally, we also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.

  7. Dynamical pion production via parametric resonance from disoriented chiral condensates

    Science.gov (United States)

    Hiro-Oka, Hideaki; Minakata, Hisakazu

    2000-04-01

    We discuss a dynamical mechanism of pion production from disoriented chiral condensates. It leads to an explosive production of pions via the parametric resonance mechanism, which is similar to the reheating mechanism in inflationary cosmology. Classically it is related with the instability in the solutions of the Mathieu equation and we explore the quantum aspects of the mechanism. We show that nonlinearities and back reactions can be ignorable for a sufficiently long time under the small amplitude approximations of background σ oscillations, which may be appropriate for the late stage of a nonequilibrium phase transition. It allows us to obtain an explicit quantum state of the produced pions and σ, the squeezed state of BCS type. Single particle distributions and two pion correlation functions are computed within these approximations. The results obtained illuminate the characteristic features of multipion states produced through the parametric amplification mechanism. In particular, two pion correlations of various charge combinations contain back-to-back correlations which cannot be masked by the identical particle interference effect. We suggest that the parametric resonance mechanism might be a cause of the long lasting amplification of low-momentum modes in linear sigma model simulations.

  8. Chiral dynamics and heavy quark symmetry in a solvable toy field-theoretic model

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Hill, C.T.

    1994-01-01

    We study a solvable QCD-like toy theory, a generalization of the Nambu--Jona-Lasinio model, which implements chiral symmetries of light quarks and heavy quark symmetry. The chiral symmetric and chiral broken phases can be dynamically tuned. This implies a parity-doubled heavy-light meson system, corresponding to a (0 - ,1 - ) multiplet and a (0 + ,1 + ) heavy spin multiplet. Consequently the mass difference of the two multiplets is given by a Goldberger-Treiman relation and g A is found to be small. The Isgur-Wise function ξ(w), the decay constant f B , and other observables are studied

  9. Automorphisms of the affine SU(3) fusion rules

    International Nuclear Information System (INIS)

    Ruelle, P.

    1994-01-01

    We classify the automorphisms of the (chiral) level-k affine SU(3) fusion rules, for any value of k, by looking for all permutations that commute with the modular matrices S and T. This can be done by using the arithmetic of the cyclotomic extensions where the problem is naturally posed. When k is divisible by 3, the automorphism group ( similar Z 2 ) is generated by the charge conjugation C. If k is not divisible by 3, the automorphism group ( similar Z 2 xZ 2 ) is generated by C and the Altschueler-Lacki-Zaugg automorphism. Although the combinatorial analysis can become more involved, the techniques used here for SU(3) can be applied to other algebras. (orig.)

  10. SU(3) breaking in hyperon transition vector form factors

    International Nuclear Information System (INIS)

    Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Rakow, P.E.L.

    2015-08-01

    We present a calculation of the SU(3)-breaking corrections to the hyperon transition vector form factors to O(p 4 ) in heavy baryon chiral perturbation theory with finite-range regularisation. Both octet and decuplet degrees of freedom are included. We formulate a chiral expansion at the kinematic point Q 2 =-(M B 1 -M B 2 ) 2 , which can be conveniently accessed in lattice QCD. The two unknown low-energy constants at this point are constrained by lattice QCD simulation results for the Σ - →n and Ξ 0 →Σ + transition form factors. Hence we determine lattice-informed values of f 1 at the physical point. This work constitutes progress towards the precise determination of vertical stroke V us vertical stroke from hyperon semileptonic decays.

  11. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thiourea- and Squaramide-Based Organocatalysts

    Directory of Open Access Journals (Sweden)

    Pan Li

    2016-10-01

    Full Text Available The organocatalysis-based dynamic kinetic resolution (DKR process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thiourea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael–Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thiourea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.

  12. Instantons: Dynamical mass generation, chiral ward identities and the topological charge correlation function

    Energy Technology Data Exchange (ETDEWEB)

    McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)

    1983-01-10

    When dynamical mass generation resulting from the breakdown of chiral symmetry is taken into account, instanton dynamics treated within the dilute gas approximation may satisfy the constraints on the quark condensates and the topological charge correlation function derived by Crewther from an analysis of the chiral Ward identities assuming the absence of a physical axial U(1) Goldstone boson. From a consideration of the contribution of the eta' to the topological charge correlation function, a relationship is derived in which msub(eta')/sup 2/fsub(eta')/sup 2/ is proportional to the vacuum energy density.

  13. Instantons: Dynamical mass generation, chiral ward identities and the topological charge correlation function

    International Nuclear Information System (INIS)

    McDougall, N.A.

    1983-01-01

    When dynamical mass generation resulting from the breakdown of chiral symmetry is taken into account, instanton dynamics treated within the dilute gas approximation may satisfy the constraints on the quark condensates and the topological charge correlation function derived by Crewther from an analysis of the chiral Ward identities assuming the absence of a physical axial U(1) Goldstone boson. From a consideration of the contribution of the eta' to the topological charge correlation function, a relationship is derived in which msub(eta') 2 fsub(eta') 2 is proportional to the vacuum energy density. (orig.)

  14. Chiral Dynamics in Pion-Photon Reactions Habilitation

    CERN Document Server

    Friedrich, Jan Michael

    As the lightest particle of the strong force, the pion plays a central role in the field of strong interactions, and understanding its properties is of prime relevance for understanding the strong interaction in general. The low-energy behaviour of pions is of particular interest. Although the quark-gluon substructure and their quantum chromodynamics is not apparent then, this specific inner structure causes the presence of approximate symmetries in pion-pion interactions and in pion decays, which gives rise to the systematic description of processes involving pions in terms of few low-energy constants. Specifically, the chiral symmetry and its spontaneous and explicit breaking, treated in chiral perturbation theory (ChPT), leads to firm predictions for low-energy properties of the pion. To those belong the electromagnetic polarisabilities of the pion, describing the leading-order structure effect in pion Compton scattering. The research presented in this work is concerned with the interaction of pions and ph...

  15. Vacuum polarization and dynamical chiral symmetry breaking in quantum electrodynamics

    International Nuclear Information System (INIS)

    Gusynin, V.P.

    1989-01-01

    The Schwinger-Dyson equation in the ladder approximation is considered for the fermion mass function taking into account the vacuum polarization effects. It is shown that even in the 'zero-charge' situation there exists, at rather large coupling constant (α>α c >0), a solution with spontaneously broken chiral symmetry. The existence of the local limit in the model concerned is discussed. 30 refs.; 1 fig

  16. Dynamical breakdown of chiral symmetry in vectorial theories: QED and QCD

    International Nuclear Information System (INIS)

    Garcia, J.C.M.

    1987-01-01

    Using a variational approach for the Effective Potential for composite operators we dicuss the dynamical breakdown of chiral symmetry in two vectorial theories: Quantum Electrodynamics (QED) and Quantum Chromodynamics (QCD). We study the energetic aspects of the problem calculating the Effective Potential with the asymptotic nonperturbative solutions of the Schwinger-Dyson equation for the fermion selfenergy. (author) [pt

  17. Semileptonic B-meson decays in SU(3)

    International Nuclear Information System (INIS)

    Li Zuohong; Hou Yunzhi

    1994-01-01

    Based on the SU(3) approximate symmetry in the strong interaction three-body and four-body semileptonic B-meson decays are analyzed. Relations between decay rates are derived. Some of these relations may provide information on the nature of various competing dynamical effects that can occur in semileptonic B-meson decays

  18. Dynamic Chiral Magnetic Effect and Faraday Rotation in Macroscopically Disordered Helical Metals.

    Science.gov (United States)

    Ma, J; Pesin, D A

    2017-03-10

    We develop an effective medium theory for electromagnetic wave propagation through gapless nonuniform systems with a dynamic chiral magnetic effect. The theory allows us to calculate macroscopic-disorder-induced corrections to the values of optical, as well as chiral magnetic conductivities. In particular, we show that spatial fluctuations of the optical conductivity induce corrections to the effective value of the chiral magnetic conductivity. The absolute value of the effect varies strongly depending on the system parameters, but yields the leading frequency dependence of the polarization rotation and circular dichroism signals. Experimentally, these corrections can be observed as features in the Faraday rotation angle near frequencies that correspond to the bulk plasmon resonances of a material. Such features are not expected to be present in single-crystal samples.

  19. Computation of the chiral condensate using Nf=2 and Nf=2+1+1 dynamical flavors of twisted mass fermions

    International Nuclear Information System (INIS)

    Cichy, K.; Jansen, K.; Shindler, A.; Forschungszentrum Juelich; Forschungszentrum Juelich

    2013-12-01

    We apply the spectral projector method, recently introduced by Giusti and Luescher, to compute the chiral condensate using N f =2 and N f =2+1+1 dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the O(a) improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for N f =2 and N f =2+1+1 dynamical flavors.

  20. Dynamic Covalent Chemistry within Biphenyl Scaffolds: Reversible Covalent Bonding, Control of Selectivity, and Chirality Sensing with a Single System.

    Science.gov (United States)

    Ni, Cailing; Zha, Daijun; Ye, Hebo; Hai, Yu; Zhou, Yuntao; Anslyn, Eric V; You, Lei

    2018-01-26

    Axial chirality is a prevalent and important phenomenon in chemistry. Herein we report a combination of dynamic covalent chemistry and axial chirality for the development of a versatile platform for the binding and chirality sensing of multiple classes of mononucleophiles. An equilibrium between an open aldehyde and its cyclic hemiaminal within biphenyl derivatives enabled the dynamic incorporation of a broad range of alcohols, thiols, primary amines, and secondary amines with high efficiency. Selectivity toward different classes of nucleophiles was also achieved by regulating the distinct reactivity of the system with external stimuli. Through induced helicity as a result of central-to-axial chirality transfer, the handedness and ee values of chiral monoalcohol and monoamine analytes were reported by circular dichroism. The strategies introduced herein should find application in many contexts, including assembly, sensing, and labeling. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Molecular dynamics studies and quantification of the effect of chirality on the formation of liquid crystal mesophases

    International Nuclear Information System (INIS)

    Solymosi, Miklos

    2002-01-01

    Results are presented from theoretical studies and from a series of molecular dynamics simulations undertaken to quantify the effect of chirality on the formation of liquid crystal mesophases. In the theoretical studies we have proposed a scaled chiral index with a formulation which allows comparison to be made between molecules comprising different numbers of atoms. We have undertaken chirality calculations utilizing the proposed scaled chiral index, G 0S , for one optimized static molecular geometry for a range of liquid crystal chiral dopants and ferroelectric liquid crystal molecules. The scaled chiral index, G 0S , allows a rapid calculation to be made of a pseudoscalar quantity which shows a good correlation with the helical twisting power of liquid crystal chiral dopants in a nematic liquid crystal solvent. This could prove a powerful aid in the design of novel dopant molecules where the dopant is rigid and the helical twisting is predominantly a steric effect. The same scaled chirality index, G 0S , calculation for ferroelectric liquid crystal molecules hints at an inverse correlation with spontaneous polarization agreeing with some experimental results. The scaled chiral index is a chemically useful index that can also be decomposed into atomic or functional group contributions, thereby creating a new measure of the asymmetric potential of functional groups and their different possible substitution positions. In the molecular dynamics simulation studies we have investigated two three-site Gay-Berne models, one chiral and the other achiral, each with a rotated central site forming a zigzag shape. In the chiral model one of the end site was additionally rotated out of the plane of the other two sites by a chiral angle θ c . Results from the achiral phase simulations support the theory that steric molecular shape can be associated with a driving force that leads to the smectic A - smectic C phase transition since such a transition was observed in the achiral

  2. Spontaneous formation and dynamics of half-skyrmions in a chiral liquid-crystal film

    Science.gov (United States)

    Nych, Andriy; Fukuda, Jun-Ichi; Ognysta, Uliana; Žumer, Slobodan; Muševič, Igor

    2017-12-01

    Skyrmions are coreless vortex-like excitations emerging in diverse condensed-matter systems, and real-time observation of their dynamics is still challenging. Here we report the first direct optical observation of the spontaneous formation of half-skyrmions. In a thin film of a chiral liquid crystal, depending on experimental conditions including film thickness, they form a hexagonal lattice whose lattice constant is a few hundred nanometres, or appear as isolated entities with topological defects compensating their charge. These half-skyrmions exhibit intriguing dynamical behaviour driven by thermal fluctuations. Numerical calculations of real-space images successfully corroborate the experimental observations despite the challenge because of the characteristic scale of the structures close to the optical resolution limit. A thin film of a chiral liquid crystal thus offers an intriguing platform that facilitates a direct investigation of the dynamics of topological excitations such as half-skyrmions and their manipulation with optical techniques.

  3. Dynamical chiral symmetry breaking and confinement : its interrelation and effects on the hadron mass spectrum

    International Nuclear Information System (INIS)

    Schröck, M.

    2013-01-01

    Within the framework of this thesis, the interrelation between the two characteristic phenomena of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement, is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method to artificially restore the dynamically broken chiral symmetry. The low-mode part of the Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the Banks--Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we construct valence quark propagators that exclude a variable sized part of the low-mode Dirac spectrum, with the aim of using these as an input for meson and baryon interpolating fields. Subsequently, we explore the behavior of ground and excited states of the low-mode truncated hadrons using the variational analysis method. We look for the existence of confined hadron states and extract effective masses where applicable. Moreover, we explore the evolution of the quark wavefunction renormalization function and the renormalization point invariant mass function of the quark propagator under Dirac low-mode truncation in a gauge fixed setting. Motivated by the necessity of fixing the gauge in the aforementioned study of the quark propagator, we also developed a flexible high performance code for lattice gauge fixing, accelerated by graphic processing units (GPUs) using NVIDIA CUDA (Compute Unified Device Architecture). Lastly, more related but unpublished work on the topic is presented. This includes a study of the locality violation of low-mode truncated Dirac operators, a discussion of the possible extension of the low-mode truncation method to the sea quark sector based on a reweighting scheme, as well as the presentation of an alternative way to restore the dynamically broken chiral symmetry. (author) [de

  4. Recent developments in chiral dynamics of hadrons and hadrons in a nuclear medium

    International Nuclear Information System (INIS)

    Oset, E.; Sarkar, S.; Vicente Vacas, M.J.; Kaskulov, M.; Roca, L.; Magas, V.K.; Ramos, A.; Toki, H.

    2007-01-01

    In this talk I present recent developments in chiral dynamics of hadrons and hadrons in a medium addressing the following points: interaction of the octet of pseudoscalar mesons with the octet of baryons of the nucleon, showing recent experimental evidence on the existence of two Λ(1405) states, the interaction of the octet of pseudoscalar mesons with the decuplet of baryons of the Δ, with particular emphasis on the Λ(1520) resonance, dynamically generated by this interaction. Then I review the interaction of kaons in a nuclear medium and briefly discuss the situation around the claims of deeply bound states in nuclei. The large renormalization of the Λ(1520) in the nuclear medium is shown as another example of successful application of the chiral unitary techniques

  5. Bosonization of the generalized SU(3) Nambu-Jona-Lasinio model in the 1/N expansion

    International Nuclear Information System (INIS)

    Campos, Francisco Antonio Pena

    1995-01-01

    The present work consists in a 1/N expansion of extended version of the SU(3) Nambu-Jona-Lasinio model in the context of the Functional Integral. The gap equations, meson propagators, triangle diagram, etc, appear quite naturally as different orders in the expansion. The new features of this approach is the inclusion of high order corrections in the 1/N leading orders, which have never included in the previous one. The method also allows for the construction of a chiral Lagrangian of interacting mesons based on the SU(3) NJL model, here obtained for the first time. (author)

  6. Towards Molecular Dynamics Simulations of Chiral Room-Temperature Ionic Liquids

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Chval, Z.; Storch, Jan; Izák, Pavel

    2014-01-01

    Roč. 189, SI (2014), s. 85-94 ISSN 0167-7322 R&D Projects: GA ČR(CZ) GAP106/12/0569; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : chiral room-temperature ionic liquid * molecular dynamics simulation * non-polarizable fully flexible all-atom force field Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.515, year: 2014

  7. Theoretical study on dynamical planar-chirality switching in checkerboard-like metasurfaces

    Directory of Open Access Journals (Sweden)

    Urade Yoshiro

    2017-01-01

    Full Text Available In this paper, we show that the handedness of a planar chiral checkerboard-like metasurface can be dynamically switched by modulating the local sheet impedance of the metasurface structure. We propose a metasurface design to realize the handedness switching and theoretically analyze its electromagnetic characteristic based on Babinet’s principle. Numerical simulations of the proposed metasurface are performed to validate the theoretical analysis. It is demonstrated that the polarity of asymmetric transmission for circularly polarized waves, which is determined by the planar chirality of the metasurface, is inverted by switching the sheet impedance at the interconnection points of the checkerboard-like structure. The physical origin of the asymmetric transmission is also discussed in terms of the surface current and charge distributions on the metasurface.

  8. First Measurement of Chiral Dynamics in $\\pi^-\\gamma \\to \\pi^-\\pi^-\\pi^+$

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K A; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Burtin, E; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmitt, L; Schonning, K; Schopferer, S; Schroder, W; Shevchenko, O Yu; Siebert, H W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2012-01-01

    The COMPASS collaboration at CERN has investigated the $\\pi^-\\gamma \\to \\pi^-\\pi^-\\pi^+$ reaction at center-of-momentum energy below five pion masses, $\\sqrt{s} \\lt 5m_\\pi$ , embedded in the Primakoff reaction of 190 GeV pions impinging on a lead target. Exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, $t' \\lt 0.001 GeV^2/c^2$. Using partial-wave analysis techniques, the scattering intensity of Coulomb production described in terms of chiral dynamics and its dependence on the 3pi-invariant mass $m_{3\\pi} = \\sqrt{s}$ were extracted. The absolute cross section was determined in seven bins of $\\sqrt{s}$ with an overall precision of 20%. At leading order, the result is found to be in good agreement with the prediction of chiral perturbation theory over the whole energy range investigated.

  9. First measurement of chiral dynamics in π- γ → π- π- π+.

    Science.gov (United States)

    Adolph, C; Alekseev, M G; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badełek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K A; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Burtin, E; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dünnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmüller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Höppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Königsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Krämer, M; Kroumchtein, Z V; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W-D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J-F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schlüter, T; Schmitt, L; Schönning, K; Schopferer, S; Schröder, W; Shevchenko, O Yu; Siebert, H-W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Windmolders, R; Wiślicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2012-05-11

    The COMPASS Collaboration at CERN has investigated the π- γ → π- π- π+ reaction at center-of-momentum energy below five pion masses, sqrt[s]<5m(π), embedded in the Primakoff reaction of 190 GeV pions impinging on a lead target. Exchange of quasireal photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, t'<0.001  GeV2/c2. Using partial-wave analysis techniques, the scattering intensity of Coulomb production described in terms of chiral dynamics and its dependence on the 3π-invariant mass m(3π)=sqrt[s] were extracted. The absolute cross section was determined in seven bins of sqrt[s] with an overall precision of 20%. At leading order, the result is found to be in good agreement with the prediction of chiral perturbation theory over the whole energy range investigated.

  10. Dynamic Multi-Component Covalent Assembly for the Reversible Binding of Secondary Alcohols and Chirality Sensing

    Science.gov (United States)

    You, Lei; Berman, Jeffrey S.; Anslyn, Eric V.

    2011-01-01

    Reversible covalent bonding is often employed for the creation of novel supramolecular structures, multi-component assemblies, and sensing ensembles. In spite of remarkable success of dynamic covalent systems, the reversible binding of a mono-alcohol with high strength is challenging. Here we show that a strategy of carbonyl activation and hemiaminal ether stabilization can be embodied in a four-component reversible assembly that creates a tetradentate ligand and incorporates secondary alcohols with exceptionally high affinity. Evidence is presented that the intermediate leading to binding and exchange of alcohols is an iminium ion. Further, to demonstrate the use of this assembly process we explored chirality sensing and enantiomeric excess determinations. An induced twist in the ligand by a chiral mono-ol results in large Cotton effects in the circular dichroism spectra indicative of the alcohol’s handedness. The strategy revealed in this study should prove broadly applicable for the incorporation of alcohols into supramolecular architecture construction. PMID:22109274

  11. Investigation of the scalar spectrum in SU (3) with eight degenerate flavors

    Science.gov (United States)

    Rinaldi, E.

    2017-12-01

    The Lattice Strong Dynamics collaboration is investigating the properties of a SU(3) gauge theory with Nf = 8 light fermions on the lattice. We measure the masses of the lightest pseudoscalar, scalar and vector states using simulations with the nHYP staggered-fermion action on large volumes and at small fermion masses, reaching Mρ/Mπ ≈ 2.2. The axial-vector meson and the nucleon are also studied for the same range of fermion masses. One of the interesting features of this theory is the dynamical presence of a light flavor-singlet scalar state with 0++ quantum numbers that is lighter than the vector resonance and has a mass consistent with the one of the pseudoscalar state for the whole fermion mass range explored. We comment on the existence of such state emerging from our lattice simulations and on the challenges of its analysis. Moreover we highlight the difficulties in pursuing simulations in the chiral regime of this theory using large volumes.

  12. Dynamical breakdown of chiral symmetry and abnormal perturbation expansion

    International Nuclear Information System (INIS)

    Ebert, D.; Pervushin, V.N.

    1976-01-01

    Dynamical breakdown of γ 5 -symmetry is studied in the Abelian gauge theory of massless ''quarks'' interacting with massless vector ''gluons''. For this purpose the path-integral approach with bilocal fields as dynamical variables is used. The classical field equation defined by the stationary point of the generating functional turns out to be identical with the Schwinger-Dyson equation for the quark propagator. After a short discussion of the possible solutions of this equation an abnormal perturbation theory has been worked out

  13. Molecular dynamics simulation of a nanofluidic energy absorption system: effects of the chiral vector of carbon nanotubes.

    Science.gov (United States)

    Ganjiani, Sayed Hossein; Hossein Nezhad, Alireza

    2018-02-14

    A Nanofluidic Energy Absorption System (NEAS) is a novel nanofluidic system with a small volume and weight. In this system, the input mechanical energy is converted to surface tension energy during liquid infiltration in the nanotube. The NEAS is made of a mixture of nanoporous material particles in a functional liquid. In this work, the effects of the chiral vector of a carbon nanotube (CNT) on the performance characteristics of the NEAS are investigated by using molecular dynamics simulation. For this purpose, six CNTs with different diameters for each type of armchair, zigzag and chiral, and several chiral CNTs with different chiral vectors (different values of indices (m,n)) are selected and studied. The results show that in the chiral CNTs, the contact angle shows the hydrophobicity of the CNT, and infiltration pressure is reduced by increasing the values of m and n (increasing the CNT diameter). Contact angle and infiltration pressure are decreased by almost 1.4% and 9% at all diameters, as the type of CNT is changed from chiral to zigzag and then to armchair. Absorbed energy density and efficiency are also decreased by increasing m and n and by changing the type of CNT from chiral to zigzag and then to armchair.

  14. Nuclear collective rotation in the SU3 model, 2

    International Nuclear Information System (INIS)

    Kinouchi, Shin-ichi; Kishimoto, Teruo; Kammuri, Tetsuo.

    1989-05-01

    The collective rotation of a nuclear system with the SU 3 Hamiltonian is described by the quantal dynamical nuclear field theory. An angular frequency in the Coriolis interaction of the driving Hamiltonian is replaced by a total angular momentum operator divided by the corresponding moment of inertia. We consider here the low spin states for a triaxial intrinsic configuration. The rotational effect is taken into account by using the effective quadrupole and angular momentum operators, whose expressions are different depending on whether they refer to the laboratory frame or the body-fixed one. Effective forms of the total Hamiltonian and the particle angular momentum are compared with the exact SU 3 energy and the rotor's angular momentum, respectively. In order to dissolve the disagreement for the effective operators, the perturbing interaction should be supplemented by a residual part of the quadrupole-quadrupole interaction, which restores the rotational invariance of the intrinsic Hamiltonian. (author)

  15. Yang-Mills- SU(3) via FORM

    International Nuclear Information System (INIS)

    Costa Jorge, Patricia M. da; Peres, Patricia Duarte; Boldo, J.L.

    1997-06-01

    This work uses FORM software aspects for obtaining a series of formal results in the non-Abelian gauge theory, with SU(3) group. The work also studies field transformation, Lagrangian density invariance, field equations, energy distribution and the theory reparametrization in terms of fields associated to particles which are possible to be detected in accelerators

  16. Flavor SU(3) in hadronic B decays

    International Nuclear Information System (INIS)

    Dighe, A.

    1998-11-01

    Here we shall outline a few methods that use the flavor SU(3) symmetry in the decays of B mesons to determine the angles of the unitarity triangle and to identify the decay modes which would display a significant CP violation. (author)

  17. Optical patterning and dynamics of torons and hopfions in a chiral nematic with photo-tunable equilibrium pitch

    Science.gov (United States)

    Sohn, Hayley; Ackerman, Paul; Smalyukh, Ivan

    Three-dimensional (3D) topological solitons arise in field theories ranging from particle physics to condensed matter and cosmology. They are the 3D counterparts of 2D skyrmions (often called ``baby skyrmions''), which attract a great deal of interest in studies of chiral ferromagnets and enable the emerging field of skyrmionics. In chiral nematic liquid crystals, the stability of such solitons is enhanced by the chiral medium's tendency to twist the director field describing the 3D spatial patterns of molecular alignment. However, their experimental realization, control and detailed studies remain limited. We combine experimental realization and numerical modeling of such light-responsive solitonic structures, including elementary torons and hopfions, in confined chiral nematic liquid crystals with photo-tunable cholesteric pitch. We show that the optical tunability of the pitch allows for using low-intensity light to control the soliton stability, dimensions, spatial patterning and dynamics.

  18. String completion of an SU(3c⊗SU(3L⊗U(1X electroweak model

    Directory of Open Access Journals (Sweden)

    Andrea Addazi

    2016-08-01

    Full Text Available The extended electroweak SU(3c⊗SU(3L⊗U(1X symmetry framework “explaining” the number of fermion families is revisited. While 331-based schemes can not easily be unified within the conventional field theory sense, we show how to do it within an approach based on D-branes and (unoriented open strings, on Calabi–Yau singularities. We show how the theory can be UV-completed in a quiver setup, free of gauge and string anomalies. Lepton and baryon numbers are perturbatively conserved, so neutrinos are Dirac-type, and their lightness results from a novel TeV scale seesaw mechanism. Dynamical violation of baryon number by exotic instantons could induce neutron–antineutron oscillations, with proton decay and other dangerous R-parity violating processes strictly forbidden.

  19. Asymmetric chiral colour

    International Nuclear Information System (INIS)

    Cuypers, F.

    1990-01-01

    Chiral colour is considered in a general framework where the coupling constants associated with each SU(3) component are allowed to be different. To reproduce QCD at low energy, gluons and axigluons cannot then be maximally mixed. Present data form e + e - colliders contrains the axigluon mass to values between 50 GeV and 375 GeV whilst the mixing angle is bounded by 13deg and 45deg. The lower limit of the axigluon mass is a definite bound at 90% C.L., whereas the upper limit only applies if chiral colour is to explain the anomalously high rates of hadron production at TRISTAN. (orig.)

  20. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  1. Phenomena at the QCD phase transition in nonequilibrium chiral fluid dynamics (NχFD)

    Energy Technology Data Exchange (ETDEWEB)

    Nahrgang, Marlene [Duke University, Department of Physics, Durham, NC (United States); Herold, Christoph [Suranaree University of Technology, School of Physics, Nakhon Ratchasima (Thailand)

    2016-08-15

    Heavy-ion collisions performed in the beam energy range accessible by the NICA collider facility are expected to produce systems of extreme net-baryon densities and can thus reach yet unexplored regions of the QCD phase diagram. Here, one expects the phase transition between the plasma of deconfined quarks and gluons and the hadronic matter to be of first order. A discovery of the first-order phase transition would as well prove the existence of the QCD critical point, a landmark in the phase diagram. In order to understand possible signals of the first-order phase transition in heavy-ion collision experiments it is very important to develop dynamical models of the phase transition. Here, we discuss the opportunities of studying dynamical effects at the QCD first-order phase transition within our model of nonequilibrium chiral fluid dynamics. (orig.)

  2. Quantifying the chiral magnetic effect from anomalous-viscous fluid dynamics

    Science.gov (United States)

    Jiang, Yin; Shi, Shuzhe; Yin, Yi; Liao, Jinfeng

    2018-01-01

    The Chiral Magnetic Effect (CME) is a macroscopic manifestation of fundamental chiral anomaly in a many-body system of chiral fermions, and emerges as an anomalous transport current in the fluid dynamics framework. Experimental observation of the CME is of great interest and has been reported in Dirac and Weyl semimetals. Significant efforts have also been made to look for the CME in heavy ion collisions. Critically needed for such a search is the theoretical prediction for the CME signal. In this paper we report a first quantitative modeling framework, Anomalous Viscous Fluid Dynamics (AVFD), which computes the evolution of fermion currents on top of realistic bulk evolution in heavy ion collisions and simultaneously accounts for both anomalous and normal viscous transport effects. AVFD allows a quantitative understanding of the generation and evolution of CME-induced charge separation during the hydrodynamic stage, as well as its dependence on theoretical ingredients. With reasonable estimates of key parameters, the AVFD simulations provide the first phenomenologically successful explanation of the measured signal in 200 AGeV AuAu collisions. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, within the framework of the Beam Energy Scan Theory (BEST) Topical Collaboration. The work is also supported in part by the National Science Foundation under Grant No. PHY-1352368 (SS and JL), by the National Science Foundation of China under Grant No. 11735007 (JL) and by the U.S. Department of Energy under grant Contract Number No. DE- SC0012704 (BNL)/DE-SC0011090 (MIT) (YY). JL is grateful to the Institute for Nuclear Theory for hospitality during the INT-16-3 Program. The computation of this research was performed on IU’s Big Red II cluster, supported in part by Lilly Endowment, Inc. (through its support for the Indiana University Pervasive Technology Institute) and in part by the Indiana METACyt

  3. Hyperon resonances in SU(3) soliton models

    International Nuclear Information System (INIS)

    Scoccola, N.N.

    1990-01-01

    Hyperon resonances excited in kaon-nucleon scattering are investigated in the framework of an SU(3) soliton model in which kaon degrees of freedom are treated as small fluctuations around an SU(2) soliton. For partial waves l≥2 the model predicts correctly the quantum numbers and average excitation energies of most of the experimentally observed Λ and Σ resonances. Some disagreements are found for lower partial waves. (orig.)

  4. Laws of trigonometry on SU(3)

    International Nuclear Information System (INIS)

    Aslaksen, H.

    1988-01-01

    In this paper we will study triangles in SU(3). The orbit space of congruence classes of triangles in SU(3) has dimension 8. Each corner is made up of a pair of tangent vectors (X,Y), and we consider the 8 functions trX 2 , i trX 3 , trY 2 , i trY 3 , trXY, i trY 2 Y, i trXY 2 , trX 2 Y 2 which are invariant under the full isometry group of SU(3). We show that these 8 corner invariants determine the isometry class of the triangle. We give relations (laws of trigonometry) between the invariants at the different corners, enabling us to determine the invariants at the remaining corners, including the values of the remaining side and angles, if we know one set of corner invariants. The invariants that only depend on one tangent vector we will call side invariants, while those that depend on two tangent vectors will be called angular invariants. For each triangle we then have 6 side invariants and 12 angular invariants. Hence we need 18 - 8 = 10 laws of trigonometry. The basic tool for deriving these laws is a formula expressing tr(exp X exp Y) in terms of the corner invariants

  5. Recent Advances in Dynamic Kinetic Resolution by Chiral Bifunctional (Thio)urea- and Squaramide-Based Organocatalysts.

    Science.gov (United States)

    Li, Pan; Hu, Xinquan; Dong, Xiu-Qin; Zhang, Xumu

    2016-10-14

    The organocatalysis-based dynamic kinetic resolution (DKR) process has proved to be a powerful strategy for the construction of chiral compounds. In this feature review, we summarized recent progress on the DKR process, which was promoted by chiral bifunctional (thio)urea and squaramide catalysis via hydrogen-bonding interactions between substrates and catalysts. A wide range of asymmetric reactions involving DKR, such as asymmetric alcoholysis of azlactones, asymmetric Michael-Michael cascade reaction, and enantioselective selenocyclization, are reviewed and demonstrate the efficiency of this strategy. The (thio)urea and squaramide catalysts with dual activation would be efficient for more unmet challenges in dynamic kinetic resolution.

  6. Topological susceptibility and chiral condensate with Nf=2+1+1 dynamical flavors of maximally twisted mass fermions

    International Nuclear Information System (INIS)

    Cichy, K.

    2012-03-01

    We study the 'spectral projector' method for the computation of the chiral condensate and the topological susceptibility, using N f =2+1+1 dynamical flavors of maximally twisted mass Wilson fermions. In particular, we perform a study of the quark mass dependence of the chiral condensate Σ and topological susceptibility χ top in the range 270 MeV π top in the quenched approximation where we match the lattice spacing to the N f =2+1+1 dynamical simulations. Using the Kaon, η and η' meson masses computed on the N f =2+1+1 ensembles, we then perform a preliminary test of the Witten-Veneziano relation.

  7. Chiral Magnetic Spirals

    International Nuclear Information System (INIS)

    Basar, Goekce; Dunne, Gerald V.; Kharzeev, Dmitri E.

    2010-01-01

    We argue that the presence of a very strong magnetic field in the chirally broken phase induces inhomogeneous expectation values, of a spiral nature along the magnetic field axis, for the currents of charge and chirality, when there is finite baryon density or an imbalance between left and right chiralities. This 'chiral magnetic spiral' is a gapless excitation transporting the currents of (i) charge (at finite chirality), and (ii) chirality (at finite baryon density) along the direction of the magnetic field. In both cases it also induces in the transverse directions oscillating currents of charge and chirality. In heavy ion collisions, the chiral magnetic spiral possibly provides contributions both to the out-of-plane and the in-plane dynamical charge fluctuations recently observed at BNL RHIC.

  8. Quark Yukawa pattern from spontaneous breaking of flavour SU(3) 3

    Science.gov (United States)

    Nardi, Enrico

    2015-10-01

    A SU(3)Q × SU(3)u × SU(3)d invariant scalar potential breaking spontaneously the quark flavour symmetry can explain the Standard Model flavour puzzle. The approximate alignment in flavour space of the vacuum expectation values of the up and down 'Yukawa fields' results as a dynamical effect. The observed quark mixing angles, the weak CP violating phase, and hierarchical quark masses can be all reproduced at the cost of introducing additional (auxiliary) scalar multiplets, but without the need of introducing hierarchical parameters.

  9. Structure and dynamics of ion clusters in linear octupole traps: Phase diagrams, chirality, and melting mechanisms

    International Nuclear Information System (INIS)

    Yurtsever, E.; Onal, E. D.; Calvo, F.

    2011-01-01

    The stable structures and melting dynamics of clusters of identical ions bound by linear octupole radiofrequency traps are theoretically investigated by global optimization methods and molecular dynamics simulations. By varying the cluster sizes in the range of 10-1000 ions and the extent of trap anisotropy by more than one order of magnitude, we find a broad variety of stable structures based on multiple rings at small sizes evolving into tubular geometries at large sizes. The binding energy of these clusters is well represented by two contributions arising from isotropic linear and octupolar traps. The structures generally exhibit strong size effects, and chiral arrangements spontaneously emerge in many crystals. Sufficiently large clusters form nested, coaxial tubes with different thermal stabilities. As in isotropic octupolar clusters, the inner tubes melt at temperatures that are lower than the overall melting point.

  10. Simulating plasma instabilities in SU(3) gauge theory

    International Nuclear Information System (INIS)

    Berges, Juergen; Gelfand, Daniil; Scheffler, Sebastian; Sexty, Denes

    2009-01-01

    We compute nonequilibrium dynamics of plasma instabilities in classical-statistical lattice gauge theory in 3+1 dimensions. The simulations are done for the first time for the SU(3) gauge group relevant for quantum chromodynamics. We find a qualitatively similar behavior as compared to earlier investigations in SU(2) gauge theory. The characteristic growth rates are about 25% lower for given energy density, such that the isotropization process is slower. Measured in units of the characteristic screening mass, the primary growth rate is independent of the number of colors.

  11. Nonperturbative SU(3) thermodynamics and the phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Agasian, N.O. [Alikhanov Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University ' ' MEPhI' ' , Moscow (Russian Federation); Lukashov, M.S. [Alikhanov Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); Moscow Institute of Physics and Technology, Dolgoprudny (Russian Federation); Simonov, Yu.A. [Alikhanov Institute for Theoretical and Experimental Physics, Moscow (Russian Federation)

    2017-06-15

    The SU(3) equations of state (P(T),s(T),I(T)) are calculated within the Field Correlator Method both in the confined and the deconfined phases. The basic dynamics in our approach is contained in the vacuum correlators, both of the colorelectric (CE) and colormagnetic (CM) types, which ensure CE and CM confinement below T{sub c} and CM confinement and Polyakov loops above T{sub c}. The resulting values of T{sub c} and P(T),I(T),s(T) are in good agreement with lattice measurements. (orig.)

  12. The pion polarisability and more measurements on chiral dynamics at COMPASS

    CERN Document Server

    Friedrich, Jan

    2016-01-01

    Within the physics program of the COMPASS experiment at CERN pion-photon reactions are measured via the Primakoff effect, referring to processes in which high-energetic pions react with the quasi-real photon field that surrounds the target nuclei. The production of a single hard photon in such a pion scattering at lowest momentum transfer to the nucleus is related to pion Compton scattering. From the measured cross-section shape, the pion polarisability has been determined, a result that has been published meanwhile as a Physical Review Letter [ 1 ]. The COMPASS measurement is in tension with the earlier dedicated measurements, and rather in agreement with the theoretical expectation from chiral perturbation theory. The analysis of a more recent high-statistics data taking is underway. Reactions with neutral and more charged pions in the final state are measured and analyzed as well. At low energy in the pion-photon centre-of-momentum system, these reactions are governed by chiral dynamics and contain informa...

  13. Self-assembly, Dynamics and Chirality of Conformational Switches on Metal Surfaces Studied by UHV-STM

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli

    2013-01-01

    structures formed by the conformational switches and statistical analysis of conformational states, a detailed study of dynamic processes is performed by acquiring time-resolved STM data. Furthermore, one of the possible applications of conformational switches towards inducing chirality in surface assemblies...

  14. Bosonization of the generalized SU(3) Nambu-Jona-Lasinio model in the 1/N expansion; Bosonizacao do modelo de Nambu-Jona-Lasinio SU(3) generalizado na expansao 1/N

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Francisco Antonio Pena

    1995-12-31

    The present work consists in a 1/N expansion of extended version of the SU(3) Nambu-Jona-Lasinio model in the context of the Functional Integral. The gap equations, meson propagators, triangle diagram, etc, appear quite naturally as different orders in the expansion. The new features of this approach is the inclusion of high order corrections in the 1/N leading orders, which have never included in the previous one. The method also allows for the construction of a chiral Lagrangian of interacting mesons based on the SU(3) NJL model, here obtained for the first time. (author) 32 refs., 11 figs., 5 tabs.

  15. Scalar meson in dynamical and partially quenched two-flavor QCD: Lattice results and chiral loops

    International Nuclear Information System (INIS)

    Prelovsek, S.; Dawson, C.; Izubuchi, T.; Orginos, K.; Soni, A.

    2004-01-01

    This is an exploratory study of the lightest nonsinglet scalar qq state on the lattice with two dynamical quarks. Domain wall fermions are used for both sea and valence quarks on a 16 3 x32 lattice with an inverse lattice spacing of 1.7 GeV. We extract the scalar meson mass 1.58±0.34 GeV from the exponential time dependence of the dynamical correlators with m val =m sea and N f =2. Since this statistical error bar from dynamical correlators is rather large, we analyze also the partially quenched lattice correlators with m val ≠m sea . They are positive for m val ≥m sea and negative for m val sea . In order to understand this striking effect of partial quenching, we derive the scalar correlator within the partially quenched chiral perturbation theory (ChPT) and find it describes lattice correlators well. The leading unphysical contribution in partially quenched ChPT comes from the exchange of the two pseudoscalar fields and is also positive for m val ≥m sea and negative for m val sea at large t. After the subtraction of this unphysical contribution from the partially quenched lattice correlators, the correlators are positive and exponentially falling. The resulting scalar meson mass 1.51±0.19 GeV from the partially quenched correlators is consistent with the dynamical result and has an appreciably smaller error bar

  16. Broken SU(3) antidecuplet for Θ+ and Ξ3/2

    International Nuclear Information System (INIS)

    Pakvasa, Sandip; Suzuki, Mahiko

    2004-01-01

    If the narrow exotic baryon resonances Θ + (1540) and Ξ 3/2 are members of the J P = 1/2 + antidecuplet with N*(1710), the octet-antidecuplet mixing is required not only by the mass spectrum but also by the decay pattern of N*(1710). This casts doubt on validity of the Θ + mass prediction by the chiral soliton model. While all pieces of the existing experimental information point to a small octet-decuplet mixing, the magnitude of mixing required by the mass spectrum is not consistent with the value needed to account for the hadronic decay rates. The discrepancy is not resolved even after the large experimental uncertainty is taken into consideration. We fail to find an alternative SU(3) assignment even with different spin-parity assignment. When we extend the analysis to mixing with a higher SU(3) multiplet, we find one experimentally testable scenario in the case of mixing with a 27-plet

  17. Dark revelations of the [SU(3]3 and [SU(3]4 gauge extensions of the standard model

    Directory of Open Access Journals (Sweden)

    Corey Kownacki

    2018-02-01

    Full Text Available Two theoretically well-motivated gauge extensions of the standard model are SU(3SU(3SU(3R and SU(3SU(3SU(3SU(3R, where SU(3q is the same as SU(3C and SU(3l is its color leptonic counterpart. Each has three variations, according to how SU(3R is broken. It is shown here for the first time that a built-in dark U(1D gauge symmetry exists in all six versions. However, the corresponding symmetry breaking pattern does not reduce properly to that of the standard model, unless an additional Z2′ symmetry is defined, so that U(1D×Z2′ is broken to Z2 dark parity. The available dark matter candidates in each case include fermions, scalars, as well as vector gauge bosons. This work points to the possible unity of matter with dark matter, the origin of which may not be ad hoc.

  18. Dark revelations of the [SU(3)]3 and [SU(3)]4 gauge extensions of the standard model

    Science.gov (United States)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2018-02-01

    Two theoretically well-motivated gauge extensions of the standard model are SU(3)C × SU(3)L × SU(3)R and SU(3)q × SU(3)L × SU(3)l × SU(3)R, where SU(3)q is the same as SU(3)C and SU(3)l is its color leptonic counterpart. Each has three variations, according to how SU(3)R is broken. It is shown here for the first time that a built-in dark U(1)D gauge symmetry exists in all six versions. However, the corresponding symmetry breaking pattern does not reduce properly to that of the standard model, unless an additional Z2‧ symmetry is defined, so that U(1)D ×Z2‧ is broken to Z2 dark parity. The available dark matter candidates in each case include fermions, scalars, as well as vector gauge bosons. This work points to the possible unity of matter with dark matter, the origin of which may not be ad hoc.

  19. Field-driven chiral bubble dynamics analysed by a semi-analytical approach

    Science.gov (United States)

    Vandermeulen, J.; Leliaert, J.; Dupré, L.; Van Waeyenberge, B.

    2017-12-01

    Nowadays, field-driven chiral bubble dynamics in the presence of the Dzyaloshinskii-Moriya interaction are a topic of thorough investigation. In this paper, a semi-analytical approach is used to derive equations of motion that express the bubble wall (BW) velocity and the change in in-plane magnetization angle as function of the micromagnetic parameters of the involved interactions, thereby taking into account the two-dimensional nature of the bubble wall. It is demonstrated that the equations of motion enable an accurate description of the expanding and shrinking convex bubble dynamics and an expression for the transition field between shrinkage and expansion is derived. In addition, these equations of motion show that the BW velocity is not only dependent on the driving force, but also on the BW curvature. The absolute BW velocity increases for both a shrinking and an expanding bubble, but for different reasons: for expanding bubbles, it is due to the increasing importance of the driving force, while for shrinking bubbles, it is due to the increasing importance of contributions related to the BW curvature. Finally, using this approach we show how the recently proposed magnetic bubblecade memory can operate in the flow regime in the presence of a tilted sinusoidal magnetic field and at greatly reduced bubble sizes compared to the original device prototype.

  20. Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor

    NARCIS (Netherlands)

    Wang, Jiaobing; Feringa, B.L.

    2011-01-01

    Enzymes and synthetic chiral catalysts have found widespread application to produce single enantiomers, but in situ switching of the chiral preference of a catalytic system is very difficult to achieve. Here, we report on a light-driven molecular motor with integrated catalytic functions in which

  1. Hyperon decays and spectrum generating SU(3)

    International Nuclear Information System (INIS)

    Teese, R.B.; Boehm, A.

    1976-02-01

    The research program described in this review is aimed at describing the properties of relativistic one-hadron systems by an algebra of observables, in analogy to the nonrelativistic description of atoms. This formalism has recently been applied to the leptonic and semi-leptonic decays of pseudoscalar mesons, and was shown to be capable of predicting both the suppression of strangeness changing decays and the value of the form factor ratio xi in K/sub l 3 / decay. A preliminary description of the leptonic decays of hyperons indicates that second class matrix elements are predicted as a consequence of a precise formulation of SU(3) symmetry breaking. A chi 2 -fit to the experimental data indicates that this preliminary model is an improvement over the usual Cabibbo model, and points the way for further theoretical work. It is hoped that this program will lead to a model for the leptonic decays of hadrons which improves upon the results of the Cabibbo model and which explains some of the assumptions of that model

  2. The algebra and geometry of SU(3) matrices

    OpenAIRE

    Mallesh, KS; Mukunda, N

    1997-01-01

    We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real Linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of 'multiplying' two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed...

  3. Spin dynamics under local gauge fields in chiral spin-orbit coupling systems

    International Nuclear Information System (INIS)

    Tan, S.G.; Jalil, M.B.A.; Fujita, T.; Liu, X.J.

    2011-01-01

    Research highlights: → We derive a modified LLG equation in magnetic systems with spin-orbit coupling (SOC). → Our results are applied to magnetic multilayers, and DMS and magnetic Rashba systems. → SOC mediated magnetization switching is predicted in rare earth metals (large SOC). → The magnetization trajectory and frequency can be modulated by applied voltage. → This facilitates potential application as tunable microwave oscillators. - Abstract: We present a theoretical description of local spin dynamics in magnetic systems with a chiral spin texture and finite spin-orbit coupling (SOC). Spin precession about the relativistic effective magnetic field in a SOC system gives rise to a non-Abelian SU(2) gauge field reminiscent of the Yang-Mills field. In addition, the adiabatic relaxation of electron spin along the local spin yields an U(1) x U(1) topological gauge (Berry) field. We derive the corresponding equation of motion i.e. modified Landau-Lifshitz-Gilbert (LLG) equation, for the local spin under the influence of these effects. Focusing on the SU(2) gauge, we obtain the spin torque magnitude, and the amplitude and frequency of spin oscillations in this system. Our theoretical estimates indicate significant spin torque and oscillations in systems with large spin-orbit coupling, which may be utilized in technological applications such as current-induced magnetization-switching and tunable microwave oscillators.

  4. Nuclear energy density functional from chiral pion-nucleon dynamics revisited

    Science.gov (United States)

    Kaiser, N.; Weise, W.

    2010-05-01

    We use a recently improved density-matrix expansion to calculate the nuclear energy density functional in the framework of in-medium chiral perturbation theory. Our calculation treats systematically the effects from 1 π-exchange, iterated 1 π-exchange, and irreducible 2 π-exchange with intermediate Δ-isobar excitations, including Pauli-blocking corrections up to three-loop order. We find that the effective nucleon mass M(ρ) entering the energy density functional is identical to the one of Fermi-liquid theory when employing the improved density-matrix expansion. The strength F(ρ) of the ( surface-term as provided by the pion-exchange dynamics is in good agreement with that of phenomenological Skyrme forces in the density region ρ/2short-range spin-orbit interaction. The strength function F(ρ) multiplying the square of the spin-orbit density comes out much larger than in phenomenological Skyrme forces and it has a pronounced density dependence.

  5. Spin motive force driven by the magnetization dynamics in chiral magnets

    International Nuclear Information System (INIS)

    Ohe, Jun-ichiro; Shimada, Yuhki

    2015-01-01

    The magnetization dynamics induces the spin-dependent force on the conduction electrons via the s-d coupling. We have investigated numerically this force, so called 'spin-motive force', generated in chiral magnets forming the Skyrmion structure. We solve the Landau-Lifshitz-Gilbert equation and obtain the Skyrmion lattice structure (SkX) by introducing the Dzyaloshinskii-Moriya (DM) interaction. The corrective mode of the Skyrmion core is obtained by applying the in-plane AC magnetic field. The spin-motive force is generated perpendicular to the velocity of the Skyrmion core. The total voltage due to the spin-motive force is enhanced by the cascade effect of the voltage for each Skyrmion core. For the isolated magnetic disc system, the corrective mode of the Skyrmion lattice is modulated from that of the bulk system by the influence of the edge structure. The phase-locking motion of each Skyrmion core is obtained only in the lowest frequency mode in which the cascade effect of the spin-motive force still remain. (author)

  6. The SU(3)-Nambu-Jona-Lasinio soliton in the collective quantization formulation

    International Nuclear Information System (INIS)

    Blotz, A.; Goeke, K.; Diakonov, D.; Petrov, V.; Pobylitsa, P.V.; Park, N.W.

    1992-01-01

    On grounds of a semibosonized Nambu-Jona-Lasinio model, which has SU(3) R circle-times SU(3) L -symmetry in the chiral limit, mass splittings for spin 1/2 and spin 3/2 baryons are studied in the presence of an explicit chiral symmetry breaking strange quark mass. To this aim these strangeness carrying baryons are understood as SU(3)-rotational excitations of an SU(2)-embedded soliton solution. Therefore, within the framework of collective quantization, the fermion determinant with the strange quark mass is expanded up to the second order in the flavor rotation velocity and up to the first order in this quark mass. Besides the strange and non-strange moments of inertia, which have some counterparts within the Skyrme model, some so-called anomalous moments of inertia are obtained. These call be related to the imaginary part of the effective Euclidian action and contain among others the anomalous baryon current. This is shown in a gradient expansion up to the first non-vanishing order. Together with the Σ-commutator these are the solitonic ingredients of the collective hamiltonian, which is then diagonalized by means of strict perturbation theory in the strange quark mass and by the Yabu-Audo method. Both methods yield very good results for the masses of the spin 1/2 and 3/2 baryons. The former one reproduces some interesting mass formulas of Gell-Mann Okubo and Guadagnini and the latter one is able to describe the mass splittings up to a few MeV

  7. Unconstrained SU(2) and SU(3) Yang-Mills clasical mechanics

    International Nuclear Information System (INIS)

    Dahmen, B.; Raabe, B.

    1992-01-01

    A systematic study of constraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with vanishing spatial angular momenta they turn out to be non-holonomic. Using Dirac's constraint formalism we achieve a complete elimination of the unphysical gauge and rotational degrees of freedom. This leads to an effective unconstrained formulation both for the full SU(2) Yang-Mills classical mechanics and for the SU(3) case in the subspace of vanishing spatial angular momenta. We believe that our results are well suited for further explicit dynamical investigations. (orig.)

  8. Unconstrained SU(2) and SU(3) Yang-Mills classical mechanics

    International Nuclear Information System (INIS)

    Dahmen, B.; Raabe, B.

    1992-01-01

    A systematic study of contraints in SU(2) and SU(3) Yang-Mills classical mechanics is performed. Expect for the SU(2) case with spatial angular momenta they turn out to be nonholonomic. The complete elimination of the unphysical gauge and rotatinal degrees of freedom is achieved using Dirac's constraint formalism. We present an effective unconstrained formulation of the general SU(2) Yang-Mills classical mechanics as well as for SU(3) in the subspace of vanishing spatial angular momenta that is well suited for further explicit dynamical investigations. (orig.)

  9. Modular invariants for affine SU(3) theories at prime heights

    International Nuclear Information System (INIS)

    Ruelle, P.; Thiran, E.; Weyers, J.

    1990-01-01

    A proof is given for the existence of two and only two modular invariant partition functions in affine SU(3) k theories at heights n=k+3 which are prime numbers. Arithmetic properties of the ring of algabraic integers Z(ω) which is related to SU(3) weights are extensively used. (orig.)

  10. Evidence for SU(3) symmetry breaking from hyperon production

    International Nuclear Information System (INIS)

    Yang Jianjun

    2002-01-01

    We examine the SU(3) symmetry breaking in hyperon semileptonic decays (HSD) by considering two typical sets of quark contributions to the spin content of the octet baryons: set 1 with SU(3) flavor symmetry and set 2 with SU(3) flavor symmetry breaking in the HSD. The quark distributions of the octet baryons are calculated with a successful statistical model. Using an approximate relation between the quark fragmentation functions and the quark distributions, we predict the polarizations of the octet baryons produced in e + e - annihilation and semi-inclusive deep lepton-nucleon scattering in order to reveal the SU(3) symmetry breaking effect on the spin structure of the octet baryons. We find that the SU(3) symmetry breaking significantly affects the hyperon polarization. The available experimental data on the Λ polarization seem to favor the theoretical predictions with SU(3) symmetry breaking. We conclude that there is a possibility to get collateral evidence for SU(3) symmetry breaking from hyperon production. The theoretical errors for our predictions are discussed

  11. Effects of Composite Pions on the Chiral Condensate within the PNJL Model at Finite Temperature

    Science.gov (United States)

    Blaschke, D.; Dubinin, A.; Ebert, D.; Friesen, A. V.

    2018-05-01

    We investigate the effect of composite pions on the behaviour of the chiral condensate at finite temperature within the Polyakov-loop improved NJL model. To this end we treat quark-antiquark correlations in the pion channel (bound states and scattering continuum) within a Beth-Uhlenbeck approach that uses medium-dependent phase shifts. A striking medium effect is the Mott transition which occurs when the binding energy vanishes and the discrete pion bound state merges the continuum. This transition is triggered by the lowering of the continuum edge due to the chiral restoration transition. This in turn also entails a modification of the Polyakov-loop so that the SU(3) center symmetry gets broken at finite temperature and dynamical quarks (and gluons) appear in the system, taking over the role of the dominant degrees of freedom from the pions. At low temperatures our model reproduces the chiral perturbation theory result for the chiral condensate while at high temperatures the PNJL model result is recovered. The new aspect of the current work is a consistent treatment of the chiral restoration transition region within the Beth-Uhlenbeck approach on the basis of mesonic phase shifts for the treatment of the correlations.

  12. A SU(3) x U(1) model for electroweak interactions

    International Nuclear Information System (INIS)

    Pisano, F.; Pleitez, V.

    1992-01-01

    We consider a gauge model based on a SU(3) vector U(1) symmetry in which the lepton number is violated explicitly by charged scalar and gauge boson, including a vector field with double electric charge. (author)

  13. Computation of the chiral condensate using N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors of twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, E. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Forschungszentrum Juelich (Germany). IAS; Forschungszentrum Juelich (Germany). IKP; Forschungszentrum Juelich (Germany). JCHP; Collaboration: European Twisted Mass Collaboration

    2013-12-15

    We apply the spectral projector method, recently introduced by Giusti and Luescher, to compute the chiral condensate using N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the O(a) improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors.

  14. Hidden QCD in Chiral Gauge Theories

    DEFF Research Database (Denmark)

    Ryttov, Thomas; Sannino, Francesco

    2005-01-01

    The 't Hooft and Corrigan-Ramond limits of massless one-flavor QCD consider the two Weyl fermions to be respectively in the fundamental representation or the two index antisymmetric representation of the gauge group. We introduce a limit in which one of the two Weyl fermions is in the fundamental...... representation and the other in the two index antisymmetric representation of a generic SU(N) gauge group. This theory is chiral and to avoid gauge anomalies a more complicated chiral theory is needed. This is the generalized Georgi-Glashow model with one vector like fermion. We show that there is an interesting...... phase in which the considered chiral gauge theory, for any N, Higgses via a bilinear condensate: The gauge interactions break spontaneously to ordinary massless one-flavor SU(3) QCD. The additional elementary fermionic matter is uncharged under this SU(3) gauge theory. It is also seen that when...

  15. Gauge fixing conditions for the SU(3) gauge theory

    International Nuclear Information System (INIS)

    Ragiadakos, Ch.; Viswanathan, K.S.

    1979-01-01

    SU(3) gauge theory is quantized in the temporal gauge A 0 =0. Gauge fixing conditions are imposed completely on the electric field components, conjugate to the vector potential Ssub(i) that belongs to the subalgebra SO(3) of SU(3). The generating functional in terms of the independent variables is derived. It is ghost-free and may be regarded as a theory of (non-relativistic) spin-0, 1, 2, and 3 fields. (Auth.)

  16. θ-parameter evolution and topological-charge matching conditions in chiral-color theory

    International Nuclear Information System (INIS)

    Frampton, P.H.; Kephart, T.W.

    1991-01-01

    The θ parameter and topological charges are followed through spontaneous-symmetry-breaking phase transitions. The most interesting case is that of an irregular embedding of SU(3) C in a spontaneously broken larger group. The example of chiral color is shown to have no additional CP difficulties beyond the SU(3) C CP problem

  17. Nuclear energy density functional from chiral pion-nucleon dynamics revisited

    OpenAIRE

    Kaiser, N.; Weise, W.

    2009-01-01

    We use a recently improved density-matrix expansion to calculate the nuclear energy density functional in the framework of in-medium chiral perturbation theory. Our calculation treats systematically the effects from $1\\pi$-exchange, iterated $1\\pi$-exchange, and irreducible $2\\pi$-exchange with intermediate $\\Delta$-isobar excitations, including Pauli-blocking corrections up to three-loop order. We find that the effective nucleon mass $M^*(\\rho)$ entering the energy density functional is iden...

  18. The winding number of three complexes in SU(3)

    International Nuclear Information System (INIS)

    Lasher, G.

    1989-01-01

    The Phillip-Stone algorithm for the topological charge of a lattice gauge field requires the computation of the winding number of certain 3-complexes in the space of the group. The extension of the computational procedure for the SU(2) gauge group to SU(3) requires an understanding of the SU(3) geometry. An important issue is the behavior of a 3-cell in SU(3) as it approaches a critical configuration, i.e., one at which the cell is a discontinuous function of its vertices. A measure of the proximity of a cell to criticality is found and a method for computing its contribution to the winding number is recommended. (orig.)

  19. Dynamics of ultra-short electromagnetic pulses in the system of chiral carbon nanotube waveguides in the presence of external alternating electric field

    Energy Technology Data Exchange (ETDEWEB)

    Konobeeva, N.N., E-mail: yana_nn@inbox.ru [Volgograd State University, University Avenue 100, Volgograd 400062 (Russian Federation); Belonenko, M.B. [Volgograd Institute of Business, Uzhno-ukrainskaya str., Volgograd 400048 (Russian Federation)

    2014-04-01

    The paper addresses the propagation of ultra-short optical pulses in chiral carbon nanotubes in the presence of external alternating electric field. Following the assumption that the considered optical pulses are represented in the form of discrete solitons, we analyze the wave equation for the electromagnetic field and consider the dynamics of pulses in external field, their initial amplitudes and frequencies.

  20. SU(3) properties of semileptonic and nonleptonic decays of mesons

    International Nuclear Information System (INIS)

    Montvay, I.

    1977-11-01

    The recent discovery of charmed D and F mesons led to an accumulation of a lot of information on the weak decays of these particles. The facts known at present are generally consistent with the Glashow-Iliopoulos-Maiami scheme for the weak currents, which are predicted the fourth flavour of quarks, the charm. The weak decays of the charmed mesons are governed by SU(3) rules analogous to the Okubo-Zweig-Iizuka rule for strong decays. Such Su(3) rules are given for semileptonic and nonleptonic decays of strange and charmed mesons. These relations depend on the colour structure of currents in the nonleptonic case. (D.P.)

  1. Analytic study of SU(3) lattice gauge theory

    International Nuclear Information System (INIS)

    Zheng Xite; Xu Yong

    1989-01-01

    The variational-cumulant expansion method has been extended to the case of lattice SU(3) Wilson model. The plaquette energy as an order paramenter has been calculated to the 2nd order expansion. No 1st order phase transition in the D = 4 case is found which is in agreement with the monte Carlo results, and the 1st order phase transition in the d = 5 case is clearly seen. The method can be used in the study of problems in LGT with SU(3) gauge group

  2. Quantum critical spin-2 chain with emergent SU(3) symmetry.

    Science.gov (United States)

    Chen, Pochung; Xue, Zhi-Long; McCulloch, I P; Chung, Ming-Chiang; Huang, Chao-Chun; Yip, S-K

    2015-04-10

    We study the quantum critical phase of an SU(2) symmetric spin-2 chain obtained from spin-2 bosons in a one-dimensional lattice. We obtain the scaling of the finite-size energies and entanglement entropy by exact diagonalization and density-matrix renormalization group methods. From the numerical results of the energy spectra, central charge, and scaling dimension we identify the conformal field theory describing the whole critical phase to be the SU(3)_{1} Wess-Zumino-Witten model. We find that, while the Hamiltonian is only SU(2) invariant, in this critical phase there is an emergent SU(3) symmetry in the thermodynamic limit.

  3. sdg boson model in the SU(3) scheme

    International Nuclear Information System (INIS)

    Akiyama, Y.

    1985-01-01

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15)containsSU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the 168 Er nucleus. (orig.)

  4. sdg boson model in the SU(3) scheme

    Science.gov (United States)

    Akiyama, Yoshimi

    1985-02-01

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15) ⊃ SU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the 168Er nucleus.

  5. Sdg boson model in the SU(3) scheme

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Y.

    1985-02-11

    Basic properties of the interacting boson model with s-, d- and g-bosons are investigated in rotational nuclei. An SU(3)-seniority scheme is found for the classification of physically important states according to a group reduction chain U(15)containsSU(3). The capability of describing rotational bands increases enormously in comparison with the ordinary sd interacting boson model. The sdg boson model is shown to be able to describe the so-called anharmonicity effect recently observed in the /sup 168/Er nucleus.

  6. New Bessel-type function associated with SU(3) representation

    International Nuclear Information System (INIS)

    Tanimura, N.; Tanimura, O.

    1990-01-01

    A new set of functions that are given by the coefficients of the character expansion of the single-link action in the SU(3) lattice-gauge theory is studied. The function is specified by the indices λ and μ of the SU(3) representation of the Young tableau. From the Schwinger-Dyson variational method the recursion relations among the functions are derived. By combining the recursion relation and the relation of the differentiation, the linear differential equation of the sixth order for the function is derived. The properties of the function are discussed in detail in comparison with the functions in the SU(2) group

  7. Transfer and Dynamic Inversion of Coassembled Supramolecular Chirality through 2D-Sheet to Rolled-Up Tubular Structure.

    Science.gov (United States)

    Choi, Heekyoung; Cho, Kang Jin; Seo, Hyowon; Ahn, Junho; Liu, Jinying; Lee, Shim Sung; Kim, Hyungjun; Feng, Chuanliang; Jung, Jong Hwa

    2017-12-13

    Transfer and inversion of supramolecular chirality from chiral calix[4]arene analogs (3D and 3L) with an alanine moiety to an achiral bipyridine derivative (1) with glycine moieties in a coassembled hydrogel are demonstrated. Molecular chirality of 3D and 3L could transfer supramolecular chirality to an achiral bipyridine derivative 1. Moreover, addition of 0.6 equiv of 3D or 3L to 1 induced supramolecular chirality inversion of 1. More interestingly, the 2D-sheet structure of the coassembled hydrogels formed with 0.2 equiv of 3D or 3L changed to a rolled-up tubular structure in the presence of 0.6 equiv of 3D or 3L. The chirality inversion and morphology change are mainly mediated by intermolecular hydrogen-bonding interactions between the achiral and chiral molecules, which might be induced by reorientations of the assembled molecules, confirmed by density functional theory calculations.

  8. Symmetry breaking and asymptotic freedom in colour SU(3) gauge models

    International Nuclear Information System (INIS)

    Ma, E.

    1976-01-01

    A class of quark models based on the colour gauge group SU(3) is shown to be asymptotically free despite the complete breakdown of local symmetry to guarantee infrared stability. The symmetry breakdown is achieved by the presence of elementary scalar fields either through the Higgs mechanism or dynamically as first proposed by Coleman and Weinberg. Asymptotic freedom is preserved by imposing eigenvalue conditions on the coupling constants as first proposed by Chang. New quark species must be present, but below their production threshold, colour can still be a global symmetry which is approximate under SU(3), but exact under SU(2). Among the many implications of this class of models is the possibility of producing isolated quarks and gluons of non-zero mass without altering the short-distance behaviour of the superstrong interaction which binds them. (Auth.)

  9. Topological susceptibility in the SU(3) gauge theory

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Giusti, Leonardo; Pica, Claudio

    2004-01-01

    We compute the topological susceptibility for the SU(3) Yang--Mills theory by employing the expression of the topological charge density operator suggested by Neuberger's fermions. In the continuum limit we find r_0^4 chi = 0.059(3), which corresponds to chi=(191 +/- 5 MeV)^4 if F_K is used to set...

  10. W algebra in the SU(3) parafermion model

    International Nuclear Information System (INIS)

    Ding, X.; Fan, H.; Shi, K.; Wang, P.; Zhu, C.

    1993-01-01

    A construction of W 3 algebra for the SU(3) parafermion model is proposed, in which a Z algebra technique is used instead of the popular free-field realization. The central charge of the underlying algebra is different from known W algebras

  11. Topological susceptibility for the SU(3) Yang--Mills theory

    DEFF Research Database (Denmark)

    Del Debbio, Luigi; Giusti, Leonardo; Pica, Claudio

    2004-01-01

    We present the results of a computation of the topological susceptibility in the SU(3) Yang--Mills theory performed by employing the expression of the topological charge density operator suggested by Neuberger's fermions. In the continuum limit we find r_0^4 chi = 0.059(3), which corresponds to chi...

  12. The SU(3) beta function from numerical stochastic perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Perlt, H. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Bonn Univ. (Germany). Helmholtz Inst. fuer Strahlen- und Kernphysik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G.; Schiller, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-09-15

    The SU(3) beta function is derived from Wilson loops computed to 20th order in numerical stochastic perturbation theory. An attempt is made to include massless fermions, whose contribution is known analytically to 4th order. The question whether the theory admits an infrared stable fixed point is addressed.

  13. Gluon condensate from lattice caculations: SU(3) pure gauge theory

    International Nuclear Information System (INIS)

    Kripfganz, J.

    1981-01-01

    A short distance expansion of Wilson loops is used to define and isolate vacuum expectation values of composite gluon operators. It is applied to available lattice Monte Carlo data for SU(3) pure gauge theory. The value obtained for the gluon condensate is consistent with the ITEP estimate. (author)

  14. Sigma Terms and Strangeness Contents of Baryon Octet in Modified Chiral Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ya; L(U) Xiao-Fu

    2006-01-01

    In the frame work of chiral perturbation theory, a modified effective Lagrangian for meson-baryon system is constructed, where the SU(3) breaking effect for meson is considered. The difference between physical and chiral limit decay constants is taken into account. Calculated to one loop at O(p3), the sigma terms and strangeness contents of baryon octet are obtained.

  15. Denominator function for canonical SU(3) tensor operators

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Lohe, M.A.; Louck, J.D.

    1985-01-01

    The definition of a canonical unit SU(3) tensor operator is given in terms of its characteristic null space as determined by group-theoretic properties of the intertwining number. This definition is shown to imply the canonical splitting conditions used in earlier work for the explicit and unique (up to +- phases) construction of all SU(3) WCG coefficients (Wigner--Clebsch--Gordan). Using this construction, an explicit SU(3)-invariant denominator function characterizing completely the canonically defined WCG coefficients is obtained. It is shown that this denominator function (squared) is a product of linear factors which may be obtained explicitly from the characteristic null space times a ratio of polynomials. These polynomials, denoted G/sup t//sub q/, are defined over three (shift) parameters and three barycentric coordinates. The properties of these polynomials (hence, of the corresponding invariant denominator function) are developed in detail: These include a derivation of their degree, symmetries, and zeros. The symmetries are those induced on the shift parameters and barycentric coordinates by the transformations of a 3 x 3 array under row interchange, column interchange, and transposition (the group of 72 operations leaving a 3 x 3 determinant invariant). Remarkably, the zeros of the general G/sup t//sub q/ polynomial are in position and multiplicity exactly those of the SU(3) weight space associated with irreducible representation [q-1,t-1,0]. The results obtained are an essential step in the derivation of a fully explicit and comprehensible algebraic expression for all SU(3) WCG coefficients

  16. Hyperon decay form factors in chiral perturbation theory

    International Nuclear Information System (INIS)

    Lacour, Andre; Kubis, Bastian; Meissner, Ulf-G.

    2007-01-01

    We present a complete calculation of the SU(3)-breaking corrections to the hyperon vector form factors up to O(p 4 ) in covariant baryon chiral perturbation theory. Partial higher-order contributions are obtained, and we discuss chiral extrapolations of the vector form factor at zero momentum transfer. In addition we derive low-energy theorems for the subleading moments in hyperon decays, the weak Dirac radii and the weak anomalous magnetic moments, up to O(p 4 )

  17. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  18. Chiral dynamics and the reactions pp→dK+ anti K0 and pp→dπ+η

    International Nuclear Information System (INIS)

    Oset, E.; Oller, J.A.; Meissner, U.G.

    2001-01-01

    We perform a study of the final-state interactions of the K + anti K 0 and the anti K 0 d systems in the reactions pp→dK + anti K 0 and pp→dπ + η. Since the two-meson system couples strongly to the a 0 (980) resonance, these reactions are expected to be an additional source of information about the controversial scalar sector. We also show that these reactions present peculiar features which can shed additional light on the much debated meson-baryon scalar sector with strangeness -1. We deduce the general structure of the amplitudes close to the dK + anti K 0 threshold, allowing for primary K + anti K 0 as well as π + η production with the two mesons in relative S- or P-wave. The interactions of the mesons are accounted for by using chiral unitary techniques, which generate dynamically the a 0 (980) resonance, and the anti K 0 d interaction is also taken into account. General formulae are derived that allow to incorporate the final-state interactions in these systems for any model of the production mechanism. We illustrate this approach by considering two specific production mechanisms based on three flavor meson-baryon chiral perturbation theory. It is demonstrated that in this scenario the anti K 0 d interactions are very important and can change the cross-section by as much as one order of magnitude. The amount of π + η versus K + anti K 0 production is shown to depend critically on the primary mixture of the two mechanisms, with large interference effects due to final-state interactions. These effects are also shown to occur in the event distributions of invariant masses which are drastically modified by the final-state interactions of the two-meson or the anti Kd system. (orig.)

  19. Weak decays of doubly heavy baryons. SU(3) analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Xing, Zhi-Peng; Xu, Ji [Shanghai Jiao Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, School of Physics and Astronomy, Shanghai (China)

    2017-11-15

    Motivated by the recent LHCb observation of doubly charmed baryon Ξ{sub cc}{sup ++} in the Λ{sub c}{sup +}K{sup -}π{sup +}π{sup +} final state, we analyze the weak decays of doubly heavy baryons Ξ{sub cc}, Ω{sub cc}, Ξ{sub bc}, Ω{sub bc}, Ξ{sub bb} and Ω{sub bb} under the flavor SU(3) symmetry. The decay amplitudes for various semileptonic and nonleptonic decays are parametrized in terms of a few SU(3) irreducible amplitudes. We find a number of relations or sum rules between decay widths and CP asymmetries, which can be examined in future measurements at experimental facilities like LHC, Belle II and CEPC. Moreover, once a few decay branching fractions have been measured in the future, some of these relations may provide hints for exploration of new decay modes. (orig.)

  20. Charmless B→VP decays using flavor SU(3) symmetry

    International Nuclear Information System (INIS)

    Chiang Chengwei; Gronau, Michael; Luo Zumin; Rosner, Jonathan L.; Suprun, Denis A.

    2004-01-01

    The decays of B mesons to a charmless vector (V) and pseudoscalar (P) meson are analyzed within a framework of flavor SU(3) in which symmetry breaking is taken into account through ratios of decay constants in tree (T) amplitudes but exact SU(3) is assumed for color-suppressed and penguin amplitudes. The magnitudes and relative phases of tree and penguin amplitudes are extracted from data, the symmetry assumption is tested, and predictions are made for rates and CP asymmetries in as-yet-unseen decay modes. A key assumption for which we perform some tests and suggest others is a relation between penguin amplitudes in which the spectator quark is incorporated into either a pseudoscalar meson or a vector meson. Values of γ slightly restricting the range currently allowed by fits to other data are favored, but outside this range there remain acceptable solutions which cannot be excluded solely on the basis of present B→VP experiments

  1. Implementation and statistical analysis of Metropolis algorithm for SU(3)

    International Nuclear Information System (INIS)

    Katznelson, E.; Nobile, A.

    1984-12-01

    In this paper we study the statistical properties of an implementation of the Metropolis algorithm for SU(3) gauge theory. It is shown that the results have normal distribution. We demonstrate that in this case error analysis can be carried on in a simple way and we show that applying it to both the measurement strategy and the output data analysis has an important influence on the performance and reliability of the simulation. (author)

  2. SU(3) lattice gauge fixing with overrelaxation and Gribov copies

    Energy Technology Data Exchange (ETDEWEB)

    Paciello, M.L.; Taglienti, B. (INFN La Sapienza, Rome (Italy)); Parrinello, C. (Physics Dept., New York Univ., NY (United States)); Petrarca, S. (Theory Div., CERN, Geneva (Switzerland)); Vladikas, A. (Dipt. di Fisica, Univ. Tor Vergata, Rome (Italy) INFN Tor Vergata, Rome (Italy))

    1992-02-06

    We report on the phenomenology of SU(3) lattice Landau gauge fixing as obtained by using an overrelaxation algorithm. An interesting result obtained using this very efficient algorithm is that distinct Gribov copies are generated by simply modifying the value {omega} of the overrelaxation parameter for a fixed starting configuration. By generating random gauge equivalent configurations, we study the variation of the number of copies with the lattice volume and gauge coupling. (orig.).

  3. On some properties of SU(3 fusion coefficients

    Directory of Open Access Journals (Sweden)

    Robert Coquereaux

    2016-11-01

    Full Text Available Three aspects of the SU(3 fusion coefficients are revisited: the generating polynomials of fusion coefficients are written explicitly; some curious identities generalizing the classical Freudenthal–de Vries formula are derived; and the properties of the fusion coefficients under conjugation of one of the factors, previously analyzed in the classical case, are extended to the affine algebra suˆ(3 at finite level.

  4. Non-perturbative plaquette in 3d pure SU(3)

    CERN Document Server

    Hietanen, A; Laine, Mikko; Rummukainen, K; Schröder, Y

    2005-01-01

    We present a determination of the elementary plaquette and, after the subsequent ultraviolet subtractions, of the finite part of the gluon condensate, in lattice regularization in three-dimensional pure SU(3) gauge theory. Through a change of regularization scheme to MSbar and a matching back to full four-dimensional QCD, this result determines the first non-perturbative contribution in the weak-coupling expansion of hot QCD pressure.

  5. Switching of chirality by light

    NARCIS (Netherlands)

    Feringa, B.L.; Schoevaars, A.M; Jager, W.F.; de Lange, B.; Huck, N.P.M.

    1996-01-01

    Optically active photoresponsive molecules are described by which control of chirality is achieved by light. These chiroptical molecular switches are based on inherently dissymmetric overcrowded alkenes and the synthesis, resolution and dynamic stereochemical properties are discussed. Introduction

  6. Charge radii of octet and decuplet baryons in chiral constituent ...

    Indian Academy of Sciences (India)

    in electron–baryon scattering experiments [4,5] giving rp = 0.877 ± 0.007 fm ... breaking of the SU(3) symmetry and a non-vanishing neutron charge mean square radius ... QCD Lagrangian is not invariant under the chiral transformation. ... of a constituent quark GBs [34–37], successfully explains the 'proton spin problem'.

  7. Phenomenology of the SU(3)cxSU(3)LxU(1)X model with exotic charged leptons

    International Nuclear Information System (INIS)

    Salazar, Juan C.; Ponce, William A.; Gutierrez, Diego A.

    2007-01-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3) c xSU(3) L xU(1) X with exotic charged leptons, is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produce quark and charged lepton mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions to achieve a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model

  8. Phenomenology of the SU(3)c x SU(3)L x U(1)X model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Gutierrez, D.A.; Ponce, W.A.; Sanchez, L.A.

    2006-01-01

    A phenomenological analysis of the three-family model based on the local gauge group SU(3) c x SU(3) L x U(1) X with right-handed neutrinos is carried out. Instead of using the minimal scalar sector able to break the symmetry in a proper way, we introduce an alternative set of four Higgs scalar triplets, which combined with an anomaly-free discrete symmetry, produces a quark mass spectrum without hierarchies in the Yukawa coupling constants. We also embed the structure into a simple gauge group and show some conditions for achieving a low energy gauge coupling unification, avoiding possible conflict with proton decay bounds. By using experimental results from the CERN-LEP, SLAC linear collider, and atomic parity violation data, we update constraints on several parameters of the model. (orig.)

  9. QCD topological susceptibility from the nonlocal chiral quark model

    Science.gov (United States)

    Nam, Seung-Il; Kao, Chung-Wen

    2017-06-01

    We investigate the quantum chromodynamics (QCD) topological susceptibility χ by using the semi-bosonized nonlocal chiral-quark model (SB-NLχQM) for the leading large- N c contributions. This model is based on the liquid-instanton QCD-vacuum configuration, in which SU(3) flavor symmetry is explicitly broken by the finite current-quark mass ( m u,d, m s) ≈ (5, 135) MeV. To compute χ, we derive the local topological charge-density operator Q t( x) from the effective action of SB-NLχQM. We verify that the derived expression for χ in our model satisfies the Witten- Veneziano (WV) and the Leutwyler-Smilga (LS) formulae, and the Crewther theorem in the chiral limit by construction. Once the average instanton size and the inter-instanton distance are fixed with ρ¯ = 1/3 fm and R¯ = 1 fm, respectively, all the other parameters are determined self-consistently within the model. We obtain χ = (167.67MeV)4, which is comparable with the empirical value χ = (175±5MeV)4 whereas it turns out that χ QL = (194.30MeV)4 in the quenched limit. Thus, we conclude that the value of χ will be reduced around 10 20% by the dynamical-quark contribution.

  10. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  11. The SU(3) running coupling from lattice gluons

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, C. [Edinburgh Univ. (United Kingdom). Dept. of Phys. and Astron.; UKQCD Collaboration

    1995-04-01

    We provide numerical results for the running coupling in SU(3) Yang-Mills theory as determined from an analysis of lattice two and three-point gluon correlation functions. The coupling is evaluated directly, from first principles, by defining suitable renormalisation constants from the lattice triple gluon vertex and gluon propagator. For momenta larger than 2GeV, the coupling is found to run according to the 2-loop asymptotic formula. The influence of lattice artifacts on the results appears negligible within the precision of our measurements, although further work on this point is in progress. ((orig.)).

  12. SU(3) flavour symmetry breaking and charmed states

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Najjar, J. [Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Hyogo (Japan); Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Pleiter, D. [Forschungszentrum Juelich GmbH (Germany). Juelich Supercomputing Centre (JSC); Regensburg Univ. (Germany). Institut fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Zanotti, J.M. [Adelaide Univ. (Australia). CSSM, School of Chemistry and Physics; Collaboration: QCDSF-UKQCD Collaborations

    2013-11-15

    By extending the SU(3) flavour symmetry breaking expansion from up, down and strange sea quark masses to partially quenched valence quark masses we propose a method to determine charmed quark hadron masses including possible QCD isospin breaking effects. Initial results for some open charmed pseudoscalar meson states and singly and doubly charmed baryon states are encouraging and demonstrate the potential of the procedure. Essential for the method is the determination of the scale using singlet quantities, and to this end we also give here a preliminary estimation of the recently introduced Wilson flow scales.

  13. On classical solutions of SU(3) gauge field equations

    International Nuclear Information System (INIS)

    Chakrabarti, A.

    1975-01-01

    Static classical solutions of SU(3) gauge field equations are studied. The roles of the O(3) subgroup and of the quadrupole generators are discussed systematically. The general form thus obtained leads, through-out, to a high degree of symmetry in the results. This brings in some simplifying features. An octet of scalar mesons is finally added. Certain classes of exact solutions are given that are singular at the origin. A generalized gauge condition is pointed out. The relation of the general form to known particular cases is discussed [fr

  14. SU(3) versus deformed Hartree-Fock state

    International Nuclear Information System (INIS)

    Johnson, Calvin W.; Stetcu, Ionel; Draayer, J.P.

    2002-01-01

    Deformation is fundamental to understanding nuclear structure. We compare two ways to efficiently realize deformation for many-fermion wave functions, the leading SU(3) irreducible representation and the angular-momentum-projected Hartree-Fock state. In the absence of single-particle spin-orbit splitting the two are nearly identical. With realistic forces, however, the difference between the two is nontrivial, with the angular-momentum-projected Hartree-Fock state better approximating an 'exact' wave function calculated in the fully interacting shell model. The difference is driven almost entirely by the single-particle spin-orbit splitting

  15. Non-Gaussianities in the topological charge distribution of the SU(3) Yang-Mills theory

    Science.gov (United States)

    Cè, Marco; Consonni, Cristian; Engel, Georg P.; Giusti, Leonardo

    2015-10-01

    We study the topological charge distribution of the SU(3) Yang-Mills theory with high precision in order to be able to detect deviations from Gaussianity. The computation is carried out on the lattice with high statistics Monte Carlo simulations by implementing a naive discretization of the topological charge evolved with the Yang-Mills gradient flow. This definition is far less demanding than the one suggested from Neuberger's fermions and, as shown in this paper, in the continuum limit its cumulants coincide with those of the universal definition appearing in the chiral Ward identities. Thanks to the range of lattice volumes and spacings considered, we can extrapolate the results for the second and fourth cumulant of the topological charge distribution to the continuum limit with confidence by keeping finite volume effects negligible with respect to the statistical errors. Our best results for the topological susceptibility is t02χ =6.67 (7 )×1 0-4 , where t0 is a standard reference scale, while for the ratio of the fourth cumulant over the second, we obtain R =0.233 (45 ). The latter is compatible with the expectations from the large Nc expansion, while it rules out the θ behavior of the vacuum energy predicted by the dilute instanton model. Its large distance from 1 implies that, in the ensemble of gauge configurations that dominate the path integral, the fluctuations of the topological charge are of quantum nonperturbative nature.

  16. Weak mixing angle and the SU(3)CxSU(3) model on M4xS1/(Z2xZ'2)

    International Nuclear Information System (INIS)

    Li Tianjun; Wei Liao

    2002-05-01

    We show that the desirable weak mixing angle sin 2 θ W =0.2312 at m Z scale can be generated naturally in the SU(3) C xSU(3) model on M 4 xS 1 /(Z 2 x Z 2 ') where the gauge symmetry SU(3) is broken down to SU(2) L xU(1) Y by orbifold projection. For a supersymmetric model with a TeV scale extra dimension, the SU(3) unification scale is about hundreds of TeVs at which the gauge couplings for SU(3) C and SU(3) can also be equal in the mean time. For the non-supersymmetric model, SU(2) L xU(1) Y are unified at order of 10 TeV. These models may serve as good candidates for physics beyond the SM or MSSM. (author)

  17. The role of resonances in chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.; Rafael, E. de

    1988-09-01

    The strong interactions of low-lying meson resonances (spin ≤ 1) with the octet of pseudoscalar mesons (π,Κ,η) are considered to lowest order in the derivative expansion of chiral SU(3). The resonance contributions to the coupling constants of the O(p 4 ) effective chiral lagrangian involving pseudoscalar fields only are determined. These low-energy coupling constants are found to be dominated by the resonance contributions. Although we do not treat the vector and axial-vector mesons as gauge bosons of local chiral symmetry, vector meson dominance emerges as a prominent result of our analysis. As a further application of chiral resonance couplings, we calculate the electromagnetic pion mass difference to lowest order in chiral perturbation theory with explicit resonance fields. 29 refs., 2 figs., 5 tabs. (Author)

  18. Structural properties of the self-conjugate SU(3) tensor operators

    International Nuclear Information System (INIS)

    Lohe, M.A.; Biedenharn, L.C.; Louck, J.D.

    1977-01-01

    Denominator functions for the set of self-conjugate SU(3) tensor operators are explicitly obtained and shown to be uniquely related to SU(3) -invariant structural properties. This relationship becomes manifest through the appearance of zeroes of the denominator functions which thereby express the fundamental null space properties of SU(3) tensor operators. It is demonstrated that there exist characteristic denominator functions whose zeroes, in position and multiplicity, possess the interesting, and unexpected, property of forming SU(3) weight space patterns

  19. Phase-structure of SU(3) lattice gauge-higgs model

    International Nuclear Information System (INIS)

    Gerdt, V.P.; Mitrjushkin, V.K.; Zadorozhny, A.M.

    1985-01-01

    Phase structure is investigated of SU(3) symmetric gauge-Higgs theory with a defrost radial mode. The Higgs fields are considered in the fundamental representation of SU(3) group. It is shown that the phase structures of SU(3) and SU(2) symmetric coincide qualitatively

  20. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer.

    Science.gov (United States)

    Baker, Matthew B; Albertazzi, Lorenzo; Voets, Ilja K; Leenders, Christianus M A; Palmans, Anja R A; Pavan, Giovanni M; Meijer, E W

    2015-02-20

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  1. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    Science.gov (United States)

    Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M. A.; Palmans, Anja R. A.; Pavan, Giovanni M.; Meijer, E. W.

    2015-02-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  2. IR fixed points in SU(3 gauge theories

    Directory of Open Access Journals (Sweden)

    K.-I. Ishikawa

    2015-09-01

    Full Text Available We propose a novel RG method to specify the location of the IR fixed point in lattice gauge theories and apply it to the SU(3 gauge theories with Nf fundamental fermions. It is based on the scaling behavior of the propagator through the RG analysis with a finite IR cutoff, which we cannot remove in the conformal field theories in sharp contrast to the confining theories. The method also enables us to estimate the anomalous mass dimension in the continuum limit at the IR fixed point. We perform the program for Nf=16,12,8 and Nf=7 and indeed identify the location of the IR fixed points in all cases.

  3. Topological susceptibility near Tc in SU(3 gauge theory

    Directory of Open Access Journals (Sweden)

    Guang-Yi Xiong

    2016-01-01

    Full Text Available Topological charge susceptibility χt for pure gauge SU(3 theory at finite temperature is studied using anisotropic lattices. The over-improved stout-link smoothing method is utilized to calculate the topological charge. Near the phase transition point we find a rapid declining behavior for χt with values decreasing from (188(1 MeV4 to (67(3 MeV4 as the temperature increased from zero temperature to 1.9Tc which demonstrates the existence of topological excitations far above Tc. The 4th order cumulant c4 of topological charge, as well as the ratio c4/χt is also investigated. Results of c4 show step-like behavior near Tc while the ratio at high temperature agrees with the value as predicted by the diluted instanton gas model.

  4. Design, preparation and application of a Pirkle-type chiral stationary phase for enantioseparation of some racemic organic acids and molecular dynamics studies

    Directory of Open Access Journals (Sweden)

    Reşit Çakmak

    2017-08-01

    Full Text Available This study consists of two parts. In the first part of the study; a Pirkle-type chiral stationary phase was prepared by synthesizing an aromatic amine derivative of (R-2-amino-1-butanol as a chiral selectorand binding to L- tyrosine -modified cyanogen bromide (CNBr-activated Sepharose 4B and then, packed into the separation column. T he chromatographic performance of the separation column was evaluated w ith racemic mandelic acid and 2-phenylpropionic acid by using phosphate buffers at three different pHs as mobile phase. In the resolution processes, t he prepared solutions were loaded onto the separation column at two different concentrations and at three different pHs for each racemic organic acid, separately. Enantiomeric excess (ee % of the eluates was determined on CHIRALPAK AD-H chiral analytical column by HPLC. The maximum ee% for mandelic acid and 2-phenylpropionic acid was determined to be 60.84 and 27.4, respectively. Separation factors (k 1 ’, k 2 ’, α, and Rs were calculated for each acid. The structures of the obtained compounds were characterized using the spectroscopic methods (NMR, and elemental analysis. In the second part of the study; enantioselective interactions between the prepared CSP and the analytes have been widely studied by docking, molecular dynamics simulation and quantum mechanical computation methods. The reason of column eluation of rac-2-phenylpropionic acid with lower enantiomeric yield was explained by these techniques.

  5. Self-interacting dark matter and Higgs bosons in the SU(3)C x SU(3)L x U(1)N model with right-handed neutrinos

    International Nuclear Information System (INIS)

    Hoang Ngoc Long; Nguyen Quynh Lan

    2003-05-01

    We show that the SU(3) C x SU(3) L x U(1) N (3-3-1) model with right-handed neutrinos can provide candidates for self-interacting dark matter, namely they are the CP-even and odd Higgs bosons. These dark matters are stable without imposing of new symmetry and should be weak-interacting. (author)

  6. Chirality invariance and 'chiral' fields

    International Nuclear Information System (INIS)

    Ziino, G.

    1978-01-01

    The new field model derived in the present paper actually gives a definite answer to three fundamental questions concerning elementary-particle physics: 1) The phenomenological dualism between parity and chirality invariance: it would be only an apparent display of a general 'duality' principle underlying the intrinsic nature itself of (spin 1/2) fermions and expressed by the anticommutativity property between scalar and pseudoscalar charges. 2) The real physical meaning of V - A current structure: it would exclusively be connected to the one (just pointed out) of chiral fields themselves. 3) The unjustified apparent oddness shown by Nature in weak interactions, for the fact of picking out only one of the two (left- and right-handed) fermion 'chiral' projections: the key to such a 'mystery' would just be provided by the consequences of the dual and partial character of the two fermion-antifermion field bases. (Auth.)

  7. Supersymmetry and the chiral Schwinger model

    International Nuclear Information System (INIS)

    Amorim, R.; Das, A.

    1998-01-01

    We have constructed the N= (1) /(2) supersymmetric general Abelian model with asymmetric chiral couplings. This leads to a N= (1) /(2) supersymmetrization of the Schwinger model. We show that the supersymmetric general model is plagued with problems of infrared divergence. Only the supersymmetric chiral Schwinger model is free from such problems and is dynamically equivalent to the chiral Schwinger model because of the peculiar structure of the N= (1) /(2) multiplets. copyright 1998 The American Physical Society

  8. Dynamics and morphology of chiral magnetic bubbles in perpendicularly magnetized ultra-thin films

    Science.gov (United States)

    Sarma, Bhaskarjyoti; Garcia-Sanchez, Felipe; Nasseri, S. Ali; Casiraghi, Arianna; Durin, Gianfranco

    2018-06-01

    We study bubble domain wall dynamics using micromagnetic simulations in perpendicularly magnetized ultra-thin films with disorder and Dzyaloshinskii-Moriya interaction. Disorder is incorporated into the material as grains with randomly distributed sizes and varying exchange constant at the edges. As expected, magnetic bubbles expand asymmetrically along the axis of the in-plane field under the simultaneous application of out-of-plane and in-plane fields. Remarkably, the shape of the bubble has a ripple-like part which causes a kink-like (steep decrease) feature in the velocity versus in-plane field curve. We show that these ripples originate due to the nucleation and interaction of vertical Bloch lines. Furthermore, we show that the Dzyaloshinskii-Moriya interaction field is not constant but rather depends on the in-plane field. We also extend the collective coordinate model for domain wall motion to a magnetic bubble and compare it with the results of micromagnetic simulations.

  9. The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules as probes of constraints from analyticity and chiral symmetry in dynamical models for pion-nucleon scattering

    International Nuclear Information System (INIS)

    Kondratyuk, S.; Kubodera, K.; Myhrer, F.; Scholten, O.

    2004-01-01

    The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: (1) by evaluating the scattering amplitude at the corresponding low-energy kinematics and (2) by evaluating the sum-rule integrals with the calculated total cross section. The discrepancy between the results of the two methods provides a measure of the breaking of analyticity and chiral symmetry in the model. The contribution of the Δ resonance, including its dressing with meson loops, is discussed in some detail and found to be small

  10. Analysis of η,KL→π+π-γ using chiral models

    International Nuclear Information System (INIS)

    Picciotto, C.

    1992-01-01

    The decay η→π + π - γ is analyzed using two different approaches that incorporate vector mesons in the chiral Lagrangian, one which treats vector mesons as massive Yang-Mills bosons and one which treats them as dynamical gauge bosons of a hidden symmetry. From these approaches a common way of adding vector mesons to that decay emerges. A rate and photon spectrum are generated which compare reasonably to the experimental data. The procedure is then adapted into a simple pole model and used to calculate the more complicated decay K L →π + π - γ. Notwithstanding some uncertainties in the model, a rate that matches the experimental one is obtained with reasonable values of SU(3)-breaking parameters

  11. Instantons and chiral symmetry breaking

    International Nuclear Information System (INIS)

    Carneiro, C.E.I.; McDougall, N.A.

    1984-01-01

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)

  12. Instantons and chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Carneiro, C.E.I.; McDougall, N.A. (Oxford Univ. (UK). Dept. of Theoretical Physics)

    1984-10-22

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation.

  13. Photoexcitation circular dichroism in chiral molecules

    Science.gov (United States)

    Beaulieu, S.; Comby, A.; Descamps, D.; Fabre, B.; Garcia, G. A.; Géneaux, R.; Harvey, A. G.; Légaré, F.; Mašín, Z.; Nahon, L.; Ordonez, A. F.; Petit, S.; Pons, B.; Mairesse, Y.; Smirnova, O.; Blanchet, V.

    2018-05-01

    Chiral effects appear in a wide variety of natural phenomena and are of fundamental importance in science, from particle physics to metamaterials. The standard technique of chiral discrimination—photoabsorption circular dichroism—relies on the magnetic properties of a chiral medium and yields an extremely weak chiral response. Here, we propose and demonstrate an orders of magnitude more sensitive type of circular dichroism in neutral molecules: photoexcitation circular dichroism. This technique does not rely on weak magnetic effects, but takes advantage of the coherent helical motion of bound electrons excited by ultrashort circularly polarized light. It results in an ultrafast chiral response and the efficient excitation of a macroscopic chiral density in an initially isotropic ensemble of randomly oriented chiral molecules. We probe this excitation using linearly polarized laser pulses, without the aid of further chiral interactions. Our time-resolved study of vibronic chiral dynamics opens a way to the efficient initiation, control and monitoring of chiral chemical change in neutral molecules at the level of electrons.

  14. Axions from chiral family symmetry

    International Nuclear Information System (INIS)

    Chang, D.; Pal, P.B.; Maryland Univ., College Park; Senjanovic, G.

    1985-01-01

    We investigate the possibility that family symmetry, Gsub(F), is spontaneously broken chiral global symmetry. We classify the interesting cases when family symmetry can result in an automatic Peccei-Quinn symmetry U(1)sub(PQ) and thus provide a solution to the strong CP problem. The result disfavors having two or four families. For more than four families, U(1)sub(PQ) is in general automatic. In the case of three families, a unique Higgs sector allows U(1)sub(PQ) in the simplest case of Gsub(F)=[SU(3)] 3 . Cosmological consideration also puts strong constraint on the number of families. For Gsub(F)=[SU(N)] 3 cosmology singles out the three-family (N=3) case as a unique solution if there are three light neutrinos. Possible implication of decoupling theorem as applied to family symmetry breaking is also discussed. (orig.)

  15. A new perspective on the Faddeev equations and the K{sup Macron}NN system from chiral dynamics and unitarity in coupled channels

    Energy Technology Data Exchange (ETDEWEB)

    Oset, E. [Instituto de Fisica Corpuscular (centro mixto CSIC-UV), Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Jido, D. [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Sekihara, T. [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan); Martinez Torres, A. [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Khemchandani, K.P. [Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047 (Japan); Bayar, M., E-mail: melahat@ific.uv.es [Instituto de Fisica Corpuscular (centro mixto CSIC-UV), Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Department of Physics, Kocaeli University, 41380 Izmit (Turkey); Yamagata-Sekihara, J. [Instituto de Fisica Corpuscular (centro mixto CSIC-UV), Institutos de Investigacion de Paterna, Aptdo. 22085, 46071 Valencia (Spain); Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

    2012-05-01

    We review recent work concerning the K{sup Macron}N interaction and Faddeev equations with chiral dynamics which allow us to look at the K{sup Macron}NN from a different perspective and pay attention to problems that have been posed in previous studies on the subject. We then show results which provide extra experimental evidence on the existence of two {Lambda}(1405) states. Then show the findings of a recent approach to Faddeev equations using chiral unitary dynamics, where an explicit cancellation of the two-body off-shell amplitude with three-body forces stemming from the same chiral Lagrangians takes place. This removal of the unphysical off-shell part of the amplitudes is most welcome and renders the approach unambiguous, showing that only on-shell two-body amplitudes need to be used. With this information in mind we use an approximation to the Faddeev equations within the fixed center approximation to study the K{sup Macron}NN system, providing answers within this approximation to questions that have been brought before and evaluating binding energies and widths of this three-body system. As a novelty with respect to recent work on the topic we find a bound state of the system with spin S=1, like a bound state of K{sup Macron}-deuteron, less bound that the one of S=0, where all recent efforts have been devoted. The width is relatively large in this case, suggesting problems in a possible experimental observation.

  16. Dyons near the transition temperature in SU(3) lattice gluodynamics

    Science.gov (United States)

    Bornyakov, V. G.; Ilgenfritz, E.-M.; Martemyanov, B. V.

    2018-05-01

    We study the topological structure of SU(3) lattice gluodynamics by cluster analysis. This methodological study is meant as preparation for full QCD. The topological charge density is becoming visible in the process of over-improved gradient flow, which is monitored by means of the inverse participation ratio. The flow is stopped at the moment when calorons dissociate into dyons due to the over-improved character of the underlying action. This gives the possibility to simultaneously detect all three dyonic constituents of KvBLL calorons in the gluonic field. The behavior of the average Polyakov loop (PL) under (over-improved) gradient flow could also serve as a diagnostics for the actual phase the configuration is belonging to. Time-like Abelian monopole currents and specific patterns of the local PL are correlated with the topological clusters. The spectrum of reconstructed cluster charges Q cl corresponds to the phases. It is scattered around Q cl ≈ ±1/3 in the confined phase, whereas it is Q cl ≈ ±(0.5 ÷ 0.7) for heavy dyons and | {Q}{{cl}}| memory of Michael Müller-Preussker who was a member of our research group for more than twenty years.

  17. Nonperturbative β function of eight-flavor SU(3) gauge theory

    Science.gov (United States)

    Hasenfratz, Anna; Schaich, David; Veernala, Aarti

    2015-06-01

    We present a new lattice study of the discrete β function for SU(3) gauge theory with N f = 8 massless flavors of fermions in the fundamental representation. Using the gradient flow running coupling, and comparing two different nHYP-smeared staggered lattice actions, we calculate the 8-flavor step-scaling function at significantly stronger couplings than were previously accessible. Our continuum-extrapolated results for the discrete β function show no sign of an IR fixed point up to couplings of g 2 ≈ 14. At the same time, we find that the gradient flow coupling runs much more slowly than predicted by two-loop perturbation theory, reinforcing previous indications that the 8-flavor system possesses nontrivial strongly coupled IR dynamics with relevance to BSM phenomenology.

  18. On meson resonances and chiral symmetry

    International Nuclear Information System (INIS)

    Lutz, M.F.M.

    2003-07-01

    We study meson resonances with quantum numbers J P = 1 + in terms of the chiral SU(3) Lagrangian. At leading order a parameter-free prediction is obtained for the scattering of Goldstone bosons off vector mesons with J P = 1 - once we insist on approximate crossing symmetry of the unitarized scattering amplitude. A resonance spectrum arises that is remarkably close to the empirical pattern. In particular, we find that the strangeness-zero resonances h 1 (1380), f 1 (1285) and b 1 (1235) are formed due to strong K anti K μ and K K μ channels. This leads to large coupling constants of those resonances to the latter states. (orig.)

  19. Chiral polarization scale of QCD vacuum and spontaneous chiral symmetry breaking

    International Nuclear Information System (INIS)

    Alexandru, Andrei; Horv, Ivan

    2013-01-01

    It has recently been found that dynamics of pure glue QCD supports the low energy band of Dirac modes with local chiral properties qualitatively different from that of a bulk: while bulk modes suppress chirality relative to statistical independence between left and right, the band modes enhance it. The width of such chirally polarized zone – chiral polarization scale bigwedge ch – has been shown to be finite in the continuum limit at fixed physical volume. Here we present evidence that bigwedge ch remains non-zero also in the infinite volume, and is therefore a dynamical scale in the theory. Our experiments in N f = 2+1 QCD support the proposition that the same holds in the massless limit, connecting bigwedge ch to spontaneous chiral symmetry breaking. In addition, our results suggest that thermal agitation in quenched QCD destroys both chiral polarization and condensation of Dirac modes at the same temperature T ch > T c .

  20. Chiral perturbation theory approach to hadronic weak amplitudes

    International Nuclear Information System (INIS)

    Rafael, E. de

    1989-01-01

    We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing ΔS=1 and ΔS=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3) Left xSU(3) Right rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI)

  1. Creation and annihilation operators for SU(3) in an SO(6,2) model

    International Nuclear Information System (INIS)

    Bracken, A.J.; MacGibbon, J.H.

    1984-01-01

    Creation and annihilation operators are defined which are Wigner operators (tensor shift operators) for SU(3). While the annihilation operators are simply boson operators, the creation operators are cubic polynomials in boson operators. Together they generate under commutation the Lie algebra of SO(6,2). A model for SU(3) is defined. The different SU(3) irreducible representations appear explicitly as manifestly covariant, irreducible tensors, whose orthogonality and normalisation properties are examined. Other Wigner operators for SU(3) can be constructed simply as products of the new creation and annihilation operators, or sums of such products. (author)

  2. Scattering of decuplet baryons in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Haidenbauer, J. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Petschauer, S.; Kaiser, N.; Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Institute for Advanced Simulation and Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany)

    2017-11-15

    A formalism for treating the scattering of decuplet baryons in chiral effective field theory is developed. The minimal Lagrangian and potentials in leading-order SU(3) chiral effective field theory for the interactions of octet baryons (B) and decuplet baryons (D) for the transitions BB → BB, BB <-> DB, DB → DB, BB <-> DD, DB <-> DD, and DD → DD are provided. As an application of the formalism we compare with results from lattice QCD simulations for ΩΩ and NΩ scattering. Implications of our results pertinent to the quest for dibaryons are discussed. (orig.)

  3. Chiral-symmetry restoration in baryon-rich environments

    International Nuclear Information System (INIS)

    Kogut, J.; Matsuoka, H.; Stone, M.; Wyld, H.W.; Shenker, S.; Shigemitsu, J.; Sinclair, D.K.

    1983-04-01

    Chiral symmetry restoration in an environment rich in baryons is studied by computer simulation methods in SU(2) and SU(3) gauge theories in the quenched approximation. The basic theory of symmetry restoration as a function of chemical potential is illustrated and the implementation of the ideas on a lattice is made explicit. A simple mean field model is presented to guide one's expectations. The second order conjugate-gradient iterative method and the pseudo-fermion Monte Carlo procedure are convergent methods of calculating the fermion propagator in an environment rich in baryons. Computer simulations of SU(3) gauge theory show an abrupt chiral symmetry restoring transition and the critical chemical potential and induced baryon density are estimated crudely. A smoother transition is observed for the color group SU(2)

  4. SU(3)味极限附近色味连锁型超导体中的束缚双夸克态%Bound Diquark States in Color-Flavor-Locked Type Superconductor near the SU(3) Flavor Limit

    Institute of Scientific and Technical Information of China (English)

    任春福; 张一; 张小兵

    2011-01-01

    Starting from the ideal color-flavor locked phase, an approximate description for three-flavor quark superconductor is proposed near the SU (3) flavor limit. Under the physical influence from explicitly chiral-symmetry-breaking, we investigate the behaviors for two species of diquark states and the formations of bound diquark states at the mean-field level. In strongly coupling density regime, a theoretical possibility is pointed out at the first time,that Bose-Einstein condensation of light-flavor diquark states occur in the environment where all three-flavor and three-color quarks participate the Bardeen-Cooper-Schrieffer pairing.%从理想的色味连锁相出发,在SU(3)味极限附近,给出了一个3味夸克超导体的近似描述.在手征对称性明显破缺的物理影响下,运用Nambu-Jona-Lasinio(NJL)模型在平均场层次上研究了两种双夸克态和束缚双夸克态的形成.当夸克之间的相互作用非常强时,首次指出了在3色和3味夸克参与Bardeen-Cooper-Schrieffer配对的环境下,轻味双夸克态发生玻色-爱因斯坦凝聚的可能性.

  5. Notes on TQFT wire models and coherence equations for SU(3) triangular cells

    CERN Document Server

    Coquereaux, R.; Schieber, G.

    2010-01-01

    After a summary of the TQFT wire model formalism we bridge the gap from Kuperberg equations for SU(3) spiders to Ocneanu coherence equations for systems of triangular cells on fusion graphs that describe modules associated with the fusion category of SU(3) at level k. We show how to solve these equations in a number of examples.

  6. Protein O-Mannosyltransferases Affect Sensory Axon Wiring and Dynamic Chirality of Body Posture in the Drosophila Embryo.

    Science.gov (United States)

    Baker, Ryan; Nakamura, Naosuke; Chandel, Ishita; Howell, Brooke; Lyalin, Dmitry; Panin, Vladislav M

    2018-02-14

    Genetic defects in protein O-mannosyltransferase 1 (POMT1) and POMT2 underlie severe muscular dystrophies. POMT genes are evolutionarily conserved in metazoan organisms. In Drosophila , both male and female POMT mutants show a clockwise rotation of adult abdominal segments, suggesting a chirality of underlying pathogenic mechanisms. Here we described and analyzed a similar phenotype in POMT mutant embryos that shows left-handed body torsion. Our experiments demonstrated that coordinated muscle contraction waves are associated with asymmetric embryo rolling, unveiling a new chirality marker in Drosophila development. Using genetic and live-imaging approaches, we revealed that the torsion phenotype results from differential rolling and aberrant patterning of peristaltic waves of muscle contractions. Our results demonstrated that peripheral sensory neurons are required for normal contractions that prevent the accumulation of torsion. We found that POMT mutants show abnormal axonal connections of sensory neurons. POMT transgenic expression limited to sensory neurons significantly rescued the torsion phenotype, axonal connectivity defects, and abnormal contractions in POMT mutant embryos. Together, our data suggested that protein O-mannosylation is required for normal sensory feedback to control coordinated muscle contractions and body posture. This mechanism may shed light on analogous functions of POMT genes in mammals and help to elucidate the etiology of neurological defects in muscular dystrophies. SIGNIFICANCE STATEMENT Protein O-mannosyltransferases (POMTs) are evolutionarily conserved in metazoans. Mutations in POMTs cause severe muscular dystrophies associated with pronounced neurological defects. However, neurological functions of POMTs remain poorly understood. We demonstrated that POMT mutations in Drosophila result in abnormal muscle contractions and cause embryo torsion. Our experiments uncovered a chirality of embryo movements and a unique POMT -dependent

  7. Covariant meson-baryon scattering with chiral and large Nc constraints

    International Nuclear Information System (INIS)

    Lutz, M.F.M.; Kolomeitsev, E.E.

    2001-05-01

    We give a review of recent progress on the application of the relativistic chiral SU(3) Lagrangian to meson-baryon scattering. It is shown that a combined chiral and 1/N c expansion of the Bethe-Salpeter interaction kernel leads to a good description of the kaon-nucleon, antikaon-nucleon and pion-nucleon scattering data typically up to laboratory momenta of p lab ≅ 500 MeV. We solve the covariant coupled channel Bethe-Salpeter equation with the interaction kernel truncated to chiral order Q 3 where we include only those terms which are leading in the large N c limit of QCD. (orig.)

  8. Toy model for two chiral nonets

    International Nuclear Information System (INIS)

    Fariborz, Amir H.; Jora, Renata; Schechter, Joseph

    2005-01-01

    Motivated by the possibility that nonets of scalar mesons might be described as mixtures of 'two quark' and 'four quark' components, we further study a toy model in which corresponding chiral nonets (containing also the pseudoscalar partners) interact with each other. Although the 'two quark' and 'four quark' chiral fields transform identically under SU(3) L xSU(3) R transformations, they transform differently under the U(1) A transformation which essentially counts total (quark+antiquark) content of the mesons. To implement this, we formulate an effective Lagrangian which mocks up the U(1) A behavior of the underlying QCD. We derive generating equations which yield Ward identity type relations based only on the assumed symmetry structure. This is applied to the mass spectrum of the low lying pseudoscalars and scalars, as well as their 'excitations'. Assuming isotopic spin invariance, it is possible to disentangle the amount of 'two quark' vs 'four quark' content in the pseudoscalar π,K,η-type states and in the scalar κ-type states. It is found that a small 'four quark' content in the lightest pseudoscalars is consistent with a large 'four quark' content in the lightest of the scalar κ mesons. The present toy model also allows one to easily estimate the strength of a 'four quark' vacuum condensate. There seems to be a rich and interesting structure

  9. Chiral mirrors

    International Nuclear Information System (INIS)

    Plum, Eric; Zheludev, Nikolay I.

    2015-01-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media

  10. Physics of chiral symmetry breaking

    International Nuclear Information System (INIS)

    Shuryak, E.V.

    1991-01-01

    This subsection of the 'Modeling QCD' Workshop has included five talks. E. Shuryak spoke on 'Recent Progress in Understanding Chiral Symmetry Breaking'; below it is split into two parts: (i) a mini-review of the field and (ii) a brief presentation of the status of the theory of interacting instantons. The next sections correspond to the following talks: (iii) K. Goeke et al., 'Chiral Restoration and Medium Corrections to Nucleon in the NJL Model'; (iv) M. Takizawa and K. Kubodera, 'Study of Meson Properties and Quark Condensates in the NJL Model with Instanton Effects'; (v) G. Klein and A. G. Williams, 'Dynamical Chiral Symmetry Breaking in Dual QCD'; and (vi) R. D. Ball, 'Skyrmions and Baryons.' (orig.)

  11. Chiral interaction and biomolecular evolution

    International Nuclear Information System (INIS)

    Gilat, G.

    1992-01-01

    Recent developments in the concept of chiral interaction open now new options and dynamical possibilities for biomolecules which have so far been overlooked. A few of these possibilities are mentioned, such as the control mechanism of enzymatic activity and the role played by non-ergodicity in evolutionary processes. It is shown that chiral interaction, being a surface phenomenon, does not obey Barron's symmetry constraints, which are suitable for force fields present in bulk interactions. In particular, the situation at the ocean-air surface in the prebiotic era is described, as well as the possible role played by chiral interaction in conjunction with the terrestrial magnetic field normal to the ocean surface, which could have lead to a process of deracernization at the ocean-air interface. (author)

  12. The SU(3) structure of rotational states in heavy deformed nuclei

    International Nuclear Information System (INIS)

    Jarrio, M.; Wood, J.L.; Rowe, D.J.

    1991-01-01

    The SU(3) coupling scheme provides an informative basis for the expansion of shell-model wave functions and their interpretation in collective-model terms. We show in this paper that it is possible, using the coupled-rotor-vibrator model, to infer averages of the distributions of SU(3) representation labels in heavy rotational nuclei by direct interpretation of physically observed E2 transition rates and quadrupole moments. We find that the distributions of SU(3) representation labels have nearly constant average values for states belonging to some well-defined rotational bands. These are bands of states having B(E2) values and quadrupole moments that follow the predictions of the rotor model. Such bands are interpreted as soft SU(3) bands in parallel with the concept of a soft rotor band with vibrational-shape fluctuations. The concept of a soft SU(3) band and its implications for beta-vibrational excited bands is developed. The average SU(3) representation labels inferred from experiment are interpreted by calculating those implied by the Nilsson model. An analysis of the SU(3) content of Nilsson wave functions also leads to two remarkable predictions. The first is that, in the asymptotic limit, the Nilsson model implies intrinsic states for a rotor band that are beta rigid. The second is that, although the intrinsic Nilsson state is axially symmetric, it generates a sequence of K=0, 2, 4,...bands. (orig.)

  13. Strong coupling and quasispinor representations of the SU(3) rotor model

    International Nuclear Information System (INIS)

    Rowe, D.J.; De Guise, H.

    1992-01-01

    We define a coupling scheme, in close parallel to the coupling scheme of Elliott and Wilsdon, in which nucleonic intrinsic spins are strongly coupled to SU(3) spatial wave functions. The scheme is proposed for shell-model calculations in strongly deformed nuclei and for semimicroscopic analyses of rotations in odd-mass nuclei and other nuclei for which the spin-orbit interaction is believed to play an important role. The coupling scheme extends the domain of utility of the SU(3) model, and the symplectic model, to heavy nuclei and odd-mass nuclei. It is based on the observation that the low angular-momentum states of an SU(3) irrep have properties that mimic those of a corresponding irrep of the rotor algebra. Thus, we show that strongly coupled spin-SU(3) bands behave like strongly coupled rotor bands with properties that approach those of irreducible representations of the rigid-rotor algebra in the limit of large SU(3) quantum numbers. Moreover, we determine that the low angular-momentum states of a strongly coupled band of states of half-odd integer angular momentum behave to a high degree of accuracy as if they belonged to an SU(3) irrep. These are the quasispinor SU(3) irreps referred to in the title. (orig.)

  14. sdg interacting-boson model in the SU(3) scheme and its application to 168Er

    Science.gov (United States)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1988-07-01

    The sdg interacting-boson model is presented in the SU(3) tensor formalism. The interactions are decomposed according to their SU(3) tensor character. The existence of the SU(3)-seniority preserving operator is found to be important. The model is applied to 168Er. Energy levels and electromagnetic transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first Kπ=4+ band relative to that of the first Kπ=2+ one. E4 transitions are calculated to give different predictions from those by the quasiparticle-phonon nuclear model.

  15. Helical Polyacetylenes Induced via Noncovalent Chiral Interactions and Their Applications as Chiral Materials.

    Science.gov (United States)

    Maeda, Katsuhiro; Yashima, Eiji

    2017-08-01

    Construction of predominantly one-handed helical polyacetylenes with a desired helix sense utilizing noncovalent chiral interactions with nonracemic chiral guest compounds based on a supramolecular approach is described. As with the conventional dynamic helical polymers possessing optically active pendant groups covalently bonded to the polymer chains, this noncovalent helicity induction system can show significant chiral amplification phenomena, in which the chiral information of the nonracemic guests can transfer with high cooperativity through noncovalent bonding interactions to induce an almost single-handed helical conformation in the polymer backbone. An intriguing "memory effect" of the induced macromolecular helicity is observed for some polyacetylenes, which means that the helical conformations induced in dynamic helical polyacetylene can be transformed into metastable static ones by tuning their helix-inversion barriers. Potential applications of helical polyacetylenes with controlled helix sense constructed by the "noncovalent helicity induction and/or memory effect" as chiral materials are also described.

  16. Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations.

    Directory of Open Access Journals (Sweden)

    Yuzhen Niu

    Full Text Available As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1 protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S-crizotinib against MTH1 is about 20 times over that of (R-crizotinib. But the detailed molecular mechanism remains unclear. In this study, molecular dynamics (MD simulations and free energy calculations were used to elucidate the mechanism about the effect of chirality of crizotinib on the inhibitory activity against MTH1. The binding free energy of (S-crizotinib predicted by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA and Adaptive biasing force (ABF methodologies is much lower than that of (R-crizotinib, which is consistent with the experimental data. The analysis of the individual energy terms suggests that the van der Waals interactions are important for distinguishing the binding of (S-crizotinib and (R-crizotinib. The binding free energy decomposition analysis illustrated that residues Tyr7, Phe27, Phe72 and Trp117 were important for the selective binding of (S-crizotinib to MTH1. The adaptive biasing force (ABF method was further employed to elucidate the unbinding process of (S-crizotinib and (R-crizotinib from the binding pocket of MTH1. ABF simulation results suggest that the reaction coordinates of the (S-crizotinib from the binding pocket is different from (R-crizotinib. The results from our study can reveal the details about the effect of chirality on the inhibition activity of crizotinib to MTH1 and provide valuable information for the design of more potent inhibitors.

  17. Poincare group, SU(3) and V-A in leptonic decay

    International Nuclear Information System (INIS)

    Boehm, A.

    1975-07-01

    From as few assumptions as possible about the relations between the Poincare group, the particle classifying SU(3) and V-A we derive properties of the K/sub l 3 / and K/sub L 2 / decays. From the assumed relation between SU(3) and the Poincare group and the first class condition it follows that the formfactor ratio Xi of K/sub l 3 / decay is Xi = --0.57, and that a value of Xi = 0 is in disagreement with very general and well accepted theoretical assumptions. Assuming universality of V-A, the Cabibbo suppression is derived from the relations between SU(3) and V-A as a consequence of the brokenness of SU(3). (U.S.)

  18. Identity of the SU(3) model phenomenological hamiltonian and the hamiltonian of nonaxial rotator

    International Nuclear Information System (INIS)

    Filippov, G.F.; Avramenko, V.I.; Sokolov, A.M.

    1984-01-01

    Interpretation of nonspheric atomic nuclei spectra on the basis of phenomenological hamiltonians of SU(3) model showed satisfactory agreement of simulation calculations with experimental data. Meanwhile physical sense of phenomenological hamiltonians was not yet discussed. It is shown that phenomenological hamiltonians of SU(3) model are reduced to hamiltonian of nonaxial rotator but with additional items of the third and fourth powers angular momentum operator of rotator

  19. Kink-induced symmetry breaking patterns in brane-world SU(3)^3 trinification models

    OpenAIRE

    Demaria, Alison; Volkas, Raymond R.

    2005-01-01

    The trinification grand unified theory (GUT) has gauge group SU(3)^3 and a discrete symmetry permuting the SU(3) factors. In common with other GUTs, the attractive nature of the fermionic multiplet assignments is obviated by the complicated multi-parameter Higgs potential apparently needed for phenomenological reasons, and also by vacuum expectation value (VEV) hierarchies within a given multiplet. This motivates the rigorous consideration of Higgs potentials, symmetry breaking patterns and a...

  20. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  1. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    Koch, V.

    1996-01-01

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  2. Chiral discotics; expression and amplification of chirality

    NARCIS (Netherlands)

    Brunsveld, L.; Meijer, E.W.; Rowan, A.E.; Nolte, R.J.M.; Denmark, S.E.; Nolte, R.J.M.; Meijer, E.W.

    2003-01-01

    In this contribution, chirality and discotic liquid crystals are discussed as a tool for studying the self-assembly of these molecules, both in solution and in the solid state. Therefore, the objective of this chapter is to summarize and elucidate how molecular chirality can be expressed in discotic

  3. Lattice quantum chromodynamics with approximately chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hierl, Dieter

    2008-05-15

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  4. Lattice quantum chromodynamics with approximately chiral fermions

    International Nuclear Information System (INIS)

    Hierl, Dieter

    2008-05-01

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ + pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  5. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Directory of Open Access Journals (Sweden)

    Hironori Izawa

    2010-07-01

    Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  6. Chiral dynamics, S-wave contributions and angular analysis in D → ππl anti ν

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yu-Ji; Wang, Wei; Zhao, Shuai [Shanghai Jiao-Tong University, INPAC, Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai (China)

    2017-07-15

    We present a theoretical analysis of the D{sup -} → π{sup +}π{sup -}l anti ν and anti D{sup 0} → π{sup +}π{sup 0}l anti ν decays. We construct a general angular distribution which can include arbitrary partial waves of ππ. Retaining the S-wave and P-wave contributions we study the branching ratios, forward-backward asymmetries and a few other observables. The P-wave contribution is dominated by ρ{sup 0} resonance, and the S-wave contribution is analyzed using the unitarized chiral perturbation theory. The obtained branching fraction for D → ρlν, at the order 10{sup -3}, is consistent with the available experimental data. The S-wave contribution has a branching ratio at the order of 10{sup -4}, and this prediction can be tested by experiments like BESIII and LHCb. Future measurements can also be used to examine the π-π scattering phase shift. (orig.)

  7. Unified description of ^{6}Li structure and deuterium-^{4}He dynamics with chiral two- and three-nucleon forces.

    Science.gov (United States)

    Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr

    2015-05-29

    We provide a unified ab initio description of the ^{6}Li ground state and elastic scattering of deuterium (d) on ^{4}He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying spectrum of ^{6}Li. The calculation reproduces the empirical binding energy of ^{6}Li, yielding an asymptotic D- to S-state ratio of the ^{6}Li wave function in the d+α configuration of -0.027, in agreement with a determination from ^{6}Li-^{4}He elastic scattering, but overestimates the excitation energy of the 3^{+} state by 350 keV. The bulk of the computed differential cross section is in good agreement with data. These results endorse the application of the present approach to the evaluation of the ^{2}H(α,γ)^{6}Li radiative capture, responsible for the big-bang nucleosynthesis of ^{6}Li.

  8. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  9. On chiral and non chiral 1D supermultiplets

    International Nuclear Information System (INIS)

    Toppan, Francesco

    2011-01-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  10. Effects of dynamic diffraction conditions on magnetic parameter determination in a double perovskite Sr_2FeMoO_6 using electron energy-loss magnetic chiral dichroism

    International Nuclear Information System (INIS)

    Wang, Z.C.; Zhong, X.Y.; Jin, L.; Chen, X.F.; Moritomo, Y.; Mayer, J.

    2017-01-01

    Electron energy-loss magnetic chiral dichroism (EMCD) spectroscopy, which is similar to the well-established X-ray magnetic circular dichroism spectroscopy (XMCD), can determine the quantitative magnetic parameters of materials with high spatial resolution. One of the major obstacles in quantitative analysis using the EMCD technique is the relatively poor signal-to-noise ratio (SNR), compared to XMCD. Here, in the example of a double perovskite Sr_2FeMoO_6, we predicted the optimal dynamical diffraction conditions such as sample thickness, crystallographic orientation and detection aperture position by theoretical simulations. By using the optimized conditions, we showed that the SNR of experimental EMCD spectra can be significantly improved and the error of quantitative magnetic parameter determined by EMCD technique can be remarkably lowered. Our results demonstrate that, with enhanced SNR, the EMCD technique can be a unique tool to understand the structure-property relationship of magnetic materials particularly in the high-density magnetic recording and spintronic devices by quantitatively determining magnetic structure and properties at the nanometer scale. - Highlights: • We demonstrate how to choose the optimal experimental conditions by using dynamical diffraction calculations in Sr_2FeMoO_6. • With optimized diffraction conditions, the signal-to-noise ratio of experimental EMCD spectra has been significantly improved. • We have determined orbital to spin magnetic moment ratio of Sr_2FeMoO_6 quantitatively. • We have discussed the effects of dynamical diffraction conditions on the error bar of quantitative magnetic parameters.

  11. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2001-01-01

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of 20,22 Ne, 24 Mg and 28 Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed

  12. Quasi-SU(3) truncation scheme for even-even sd-shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, C.E. E-mail: cvargas@fis.cinvestav.mx; Hirsch, J.G. E-mail: hirsch@nuclecu.unam.mx; Draayer, J.P. E-mail: draayer@lsu.edu

    2001-07-30

    The quasi-SU(3) symmetry was uncovered in full pf and sdg shell-model calculations for both even-even and odd-even nuclei. It manifests itself through a dominance of single-particle and quadrupole-quadrupole terms in a Hamiltonian used to describe well-deformed nuclei. A practical consequence of the quasi-SU(3) symmetry is an efficient basis truncation scheme. In [C.E. Vargas et al., Phys. Rev. C 58 (1998) 1488] it is shown that when this type of Hamiltonian is diagonalized in an SU(3) basis, only a few irreducible representations (irreps) of SU(3) are needed to describe the yrast band, the leading S=0 irrep augmented with the leading S=1 irreps in the proton and neutron subspaces. In the present article the quasi-SU(3) truncation scheme is used, in conjunction with a 'realistic but schematic' Hamiltonian that includes the most important multipole terms, to describe the energy spectra and B(E2) transition strengths of {sup 20,22}Ne, {sup 24}Mg and {sup 28}Si. The effect of the size of the Hilbert space on both sets of observables is discussed, as well as the structure of the yrast band and the importance of the various terms in the Hamiltonian. The limitations of the model are explicitly discussed.

  13. More flavor SU(3) tests for new physics in CP violating B decays

    Energy Technology Data Exchange (ETDEWEB)

    Grossman, Yuval [Laboratory for Elementary-Particle Physics, Cornell University,Ithaca, N.Y. (United States); Ligeti, Zoltan [Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Robinson, Dean J. [Laboratory for Elementary-Particle Physics, Cornell University,Ithaca, N.Y. (United States); Ernest Orlando Lawrence Berkeley National Laboratory, University of California,Berkeley, CA 94720 (United States); Department of Physics, University of California,Berkeley, CA 94720 (United States)

    2014-01-15

    The recent LHCb measurements of the B{sub s}→K{sup −}π{sup +} and B{sub s}→K{sup +}K{sup −} rates and CP asymmetries are in agreement with U-spin expectations from B{sub d}→K{sup +}π{sup −} and B{sub d}→π{sup +}π{sup −} results. We derive the complete set of isospin, U-spin, and SU(3) relations among the CP asymmetries in two-body charmless B→PP and B→PV decays, some of which are novel. To go beyond the unbroken SU(3) limit, we present relations which are properly defined and normalized to allow incorporation of SU(3) breaking in the simplest manner. We show that there are no CP relations beyond first order in SU(3) and isospin breaking. We also consider the corresponding relations for charm decays. Comparing parametrizations of the leading order sum rules with data can shed light on the applicability and limitations of both the flavor symmetry and factorization-based descriptions of SU(3) breaking. Two factorization relations can already be tested, and we show they agree with current data.

  14. Chiral anomalies and constraints on the gauge group in higher-dimensional supersymmetric Yang-Mills theories

    International Nuclear Information System (INIS)

    Townsend, P.K.; Sierra, G.

    1983-01-01

    Chiral anomalies for gauge theories in any even dimension are computed and the results applied to supersymmetric theories in D=6, 8 and 10. For D=8 there is an anomalous chiral U(1) invariance, just as in D=4, except for certain special groups. For D=6 and D=10 there is no anomalous chiral U(1) symmetry, but the gauge current is anomalous except for certain ''anomaly-free'' groups. For D=6 the group is thereby constrained to be one of [SU(2), SU(3), exceptional], while for D=10 it is constrained to be one of [SU(n)n 8 ]. (orig.)

  15. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    Science.gov (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  16. Mechanical separation of chiral dipoles by chiral light

    International Nuclear Information System (INIS)

    Canaguier-Durand, Antoine; Hutchison, James A; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    We calculate optical forces and torques exerted on a chiral dipole by chiral light fields and reveal genuine chiral forces in combining the chiral contents of both light field and dipolar matter. Here, the optical chirality is characterized in a general way through the definition of optical chirality density and chirality flow. We show, in particular, that both terms have mechanical effects associated, respectively, with reactive and dissipative components of the chiral forces. Remarkably, these chiral force components are directly related to standard observables: optical rotation for the reactive component and circular dichroism for the dissipative one. As a consequence, the resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This suggests promising strategies for using chiral light forces to mechanically separate chiral objects according to their enantiomeric form. (paper)

  17. Two-color QCD with non-zero chiral chemical potential

    Energy Technology Data Exchange (ETDEWEB)

    Braguta, V.V. [Institute for High Energy Physics NRC “Kurchatov Institute' ,142281 Protvino (Russian Federation); Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Goy, V.A. [Far Eastern Federal University, School of Natural Sciences,690950 Vladivostok (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Research,BLTP, 141980 Dubna (Russian Federation); Kotov, A.Yu. [Institute of Theoretical and Experimental Physics,117259 Moscow (Russian Federation); Molochkov, A.V. [Far Eastern Federal University, School of Biomedicine,690950 Vladivostok (Russian Federation); Müller-Preussker, M.; Petersson, B. [Humboldt-Universität zu Berlin, Institut für Physik,12489 Berlin (Germany)

    2015-06-16

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  18. Chiral symmetry breaking in finite quantum electrodynamics

    International Nuclear Information System (INIS)

    Montero, J.C.; Pleitez, V.

    1987-01-01

    The dynamical breakdown of chiral symmetry in a finite Abelian gauge theory using a variational approach for the effective potential for composite operators is discussed. It is shown that, at least in a variational approach, the fermion either remains massless or gets a dynamical mass for every non-zero coupling constant. (Author) [pt

  19. A representation basis for the quantum integrable spin chain associated with the su(3) algebra

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Kun [Institute of Modern Physics, Northwest University, Xian 710069 (China); Cao, Junpeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China); Li, Guang-Liang [Department of Applied Physics, Xian Jiaotong University, Xian 710049 (China); Yang, Wen-Li [Institute of Modern Physics, Northwest University, Xian 710069 (China); Beijing Center for Mathematics and Information Interdisciplinary Sciences, Beijing 100048 (China); Shi, Kangjie [Institute of Modern Physics, Northwest University, Xian 710069 (China); Wang, Yupeng [Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Collaborative Innovation Center of Quantum Matter, Beijing (China)

    2016-05-20

    An orthogonal basis of the Hilbert space for the quantum spin chain associated with the su(3) algebra is introduced. Such kind of basis could be treated as a nested generalization of separation of variables (SoV) basis for high-rank quantum integrable models. It is found that all the monodromy-matrix elements acting on a basis vector take simple forms. With the help of the basis, we construct eigenstates of the su(3) inhomogeneous spin torus (the trigonometric su(3) spin chain with antiperiodic boundary condition) from its spectrum obtained via the off-diagonal Bethe Ansatz (ODBA). Based on small sites (i.e. N=2) check, it is conjectured that the homogeneous limit of the eigenstates exists, which gives rise to the corresponding eigenstates of the homogenous model.

  20. Alternative [SU(3]4 model of leptonic color and dark matter

    Directory of Open Access Journals (Sweden)

    Corey Kownacki

    2018-03-01

    Full Text Available The alternative [SU(3]4 model of leptonic color and dark matter is discussed. It unifies at MU∼1014 GeV and has the low-energy subgroup SU(3q×SU(2l×SU(2L×SU(2R×U(1X with (u,hR instead of (u,dR as doublets under SU(2R. It has the built-in global U(1 dark symmetry which is generalized B–L. In analogy to SU(3q quark triplets, it has SU(2l hemion doublets which have half-integral charges and are confined by SU(2l gauge bosons (stickons. In analogy to quarkonia, their vector bound states (hemionia are uniquely suited for exploration at a future e−e+ collider.

  1. The Polyakov loop and its correlators in higher representations of SU(3) at finite temperature

    International Nuclear Information System (INIS)

    Huebner, K.A.

    2006-09-01

    We have calculated the Polyakov loop in representations D=3,6,8,10,15,15',24,27 and diquark and baryonic Polyakov loop correlation functions with fundamental sources in SU(3) pure gauge theory and 2-flavour QCD with staggered quarks and Q anti Q-singlet correlation functions with sources in the fundamental and adjoint representation in SU(3) pure gauge theory. We have tested a new renormalisation procedure for the Polyakov loop and extracted the adjoint Polyakov loop below T c , binding energy of the gluelump and string breaking distances. Moreover, we could show Casimir scaling for the Polyakov loop in different representations in SU(3) pure gauge theory above T c . Diquark antitriplet and baryonic singlet free energies are related to the Q anti Q-singlet free energies by the Casimir as well. (orig.)

  2. The Polyakov loop and its correlators in higher representations of SU(3) at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, K.A.

    2006-09-15

    We have calculated the Polyakov loop in representations D=3,6,8,10,15,15',24,27 and diquark and baryonic Polyakov loop correlation functions with fundamental sources in SU(3) pure gauge theory and 2-flavour QCD with staggered quarks and Q anti Q-singlet correlation functions with sources in the fundamental and adjoint representation in SU(3) pure gauge theory. We have tested a new renormalisation procedure for the Polyakov loop and extracted the adjoint Polyakov loop below T{sub c}, binding energy of the gluelump and string breaking distances. Moreover, we could show Casimir scaling for the Polyakov loop in different representations in SU(3) pure gauge theory above T{sub c}. Diquark antitriplet and baryonic singlet free energies are related to the Q anti Q-singlet free energies by the Casimir as well. (orig.)

  3. Alternative [SU(3)]4 model of leptonic color and dark matter

    Science.gov (United States)

    Kownacki, Corey; Ma, Ernest; Pollard, Nicholas; Popov, Oleg; Zakeri, Mohammadreza

    2018-03-01

    The alternative [ SU (3) ] 4 model of leptonic color and dark matter is discussed. It unifies at MU ∼1014 GeV and has the low-energy subgroup SU(3)q × SU(2)l × SU(2)L × SU(2)R × U(1)X with (u , h) R instead of (u , d) R as doublets under SU(2)R. It has the built-in global U (1) dark symmetry which is generalized B- L. In analogy to SU(3)q quark triplets, it has SU(2)l hemion doublets which have half-integral charges and are confined by SU(2)l gauge bosons (stickons). In analogy to quarkonia, their vector bound states (hemionia) are uniquely suited for exploration at a future e-e+ collider.

  4. Significant Enhancement of the Chiral Correlation Length in Nematic Liquid Crystals by Gold Nanoparticle Surfaces Featuring Axially Chiral Binaphthyl Ligands.

    Science.gov (United States)

    Mori, Taizo; Sharma, Anshul; Hegmann, Torsten

    2016-01-26

    Chirality is a fundamental scientific concept best described by the absence of mirror symmetry and the inability to superimpose an object onto its mirror image by translation and rotation. Chirality is expressed at almost all molecular levels, from single molecules to supramolecular systems, and present virtually everywhere in nature. Here, to explore how chirality propagates from a chiral nanoscale surface, we study gold nanoparticles functionalized with axially chiral binaphthyl molecules. In particular, we synthesized three enantiomeric pairs of chiral ligand-capped gold nanoparticles differing in size, curvature, and ligand density to tune the chirality transfer from nanoscale solid surfaces to a bulk anisotropic liquid crystal medium. Ultimately, we are examining how far the chirality from a nanoparticle surface reaches into a bulk material. Circular dichroism spectra of the gold nanoparticles decorated with binaphthyl thiols confirmed that the binaphthyl moieties form a cisoid conformation in isotropic organic solvents. In the chiral nematic liquid crystal phase, induced by dispersing the gold nanoparticles into an achiral anisotropic nematic liquid crystal solvent, the binaphthyl moieties on the nanoparticle surface form a transoid conformation as determined by imaging the helical twist direction of the induced cholesteric phase. This suggests that the ligand density on the nanoscale metal surfaces provides a dynamic space to alter and adjust the helicity of binaphthyl derivatives in response to the ordering of the surrounding medium. The helical pitch values of the induced chiral nematic phase were determined, and the helical twisting power (HTP) of the chiral gold nanoparticles calculated to elucidate the chirality transfer efficiency of the binaphthyl ligand capped gold nanoparticles. Remarkably, the HTP increases with increasing diameter of the particles, that is, the efficiency of the chirality transfer of the binaphthyl units bound to the nanoparticle

  5. Chiral corrections to the Adler-Weisberger sum rule

    Science.gov (United States)

    Beane, Silas R.; Klco, Natalie

    2016-12-01

    The Adler-Weisberger sum rule for the nucleon axial-vector charge, gA , offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking—as exploited using chiral perturbation theory—which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to nonvanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy constants, the Adler-Weisberger sum rule is confronted with experimental data. With uncertainty estimates associated with the cross-section parametrization, the Goldberger-Treimann discrepancy, and the truncation of the sum rule at O (Mπ4) in the chiral expansion, this work finds gA=1.248 ±0.010 ±0.007 ±0.013 .

  6. SU(3) limit of the IBM as a 1/N expansion

    International Nuclear Information System (INIS)

    Kuyucak, S.; Morrison, I.

    1990-01-01

    The SU(3) limit of the interacting boson model is considered from the perspective of the 1/N expansion. It is shown that truncation of the E2 matrix elements in the spirit of the 1/N expansion and the Mikhailov plots greatly simplifies the complicated exact results and leads to some new insights. A list of E2 transitions among the ground, β and γ bands, both in the SU(3) limit and in more general cases, is given, and some errors in the previous literature are pointed out. 13 refs

  7. SU(3) techniques for angular momentum projected matrix elements in multi-cluster problems

    International Nuclear Information System (INIS)

    Hecht, K.T.; Zahn, W.

    1978-01-01

    In the theory of integral transforms for the evaluation of the resonating group kernels needed for cluster model calculations, the evaluation of matrix elements in an angular momentum coupled basis has proved to be difficult for cluster problems involving more than two fragments. For multi-cluster wave functions SU(3) coupling and recoupling techniques can furnish a tool for the practical evaluation matrix elements in an angular momentum coupled basis if the several relative motion harmonic oscillator functions in Bargmann space have simple SU(3) coupling properties. The method is illustrated by a three-cluster problem, such as 12 C = α + α + α, involving three 1 S clusters. 2 references

  8. Active chiral fluids.

    Science.gov (United States)

    Fürthauer, S; Strempel, M; Grill, S W; Jülicher, F

    2012-09-01

    Active processes in biological systems often exhibit chiral asymmetries. Examples are the chirality of cytoskeletal filaments which interact with motor proteins, the chirality of the beat of cilia and flagella as well as the helical trajectories of many biological microswimmers. Here, we derive constitutive material equations for active fluids which account for the effects of active chiral processes. We identify active contributions to the antisymmetric part of the stress as well as active angular momentum fluxes. We discuss four types of elementary chiral motors and their effects on a surrounding fluid. We show that large-scale chiral flows can result from the collective behavior of such motors even in cases where isolated motors do not create a hydrodynamic far field.

  9. Some remarks on chiral symmetry in dense matter

    International Nuclear Information System (INIS)

    Kaellman, C.G.; Montonen, C.

    1982-01-01

    The restoration of chiral symmetry in quantum chromodynamics as the temperature T and the chemical potential vertical stroke μ vertical stroke are increased is discussed qualitatively and using effective field theories. The latter are shown not to give reliable quantitative estimates. It is argued that a dilute gas of instantons cannot be the main dynamical agent responsible for the breakdown of chiral symmetry. (orig.)

  10. Asymptotically safe and free chiral theories with and without scalars

    DEFF Research Database (Denmark)

    Mølgaard, E.; Sannino, Francesco

    2017-01-01

    We unveil the dynamics of four-dimensional chiral gauge-Yukawa theories featuring several scalar degrees of freedom transforming according to distinct representations of the underlying gauge group. We consider generalized Georgi-Glashow and Bars-Yankielowicz theories. We determine, to the maximum...... of chiral gauge theories with scalars....

  11. Low-energy meson physics (chiral theory)

    International Nuclear Information System (INIS)

    Volkov, M.K.; Pervushin, V.N.

    1976-01-01

    A quantum chiral theory which allows to obtain low-energy expansions of various hadron processes without introducing arbitrary parameters into the theory with the exception of hadron masses and interaction constants is presented. A hypothesis about the dynamic symmetry of strong interactions is suggested. The interaction lagrangian is derived which satisfies conditions of the dynamic symmetry. Examples of the use of the quantum chiral theory for describing low-energy processes of meson interaction are given. It is noted that the results obtained reproduce the actual qualitative pattern of various physical processes and in most cases result in good quantitative agreement with experiments

  12. Patterns of symmetry breaking in chiral QCD

    Science.gov (United States)

    Bolognesi, Stefano; Konishi, Kenichi; Shifman, Mikhail

    2018-05-01

    We consider S U (N ) Yang-Mills theory with massless chiral fermions in a complex representation of the gauge group. The main emphasis is on the so-called hybrid ψ χ η model. The possible patterns of realization of the continuous chiral flavor symmetry are discussed. We argue that the chiral symmetry is broken in conjunction with a dynamical Higgsing of the gauge group (complete or partial) by bifermion condensates. As a result a color-flavor locked symmetry is preserved. The 't Hooft anomaly matching proceeds via saturation of triangles by massless composite fermions or, in a mixed mode, i.e. also by the "weakly" coupled fermions associated with dynamical Abelianization, supplemented by a number of Nambu-Goldstone mesons. Gauge-singlet condensates are of the multifermion type and, though it cannot be excluded, the chiral symmetry realization via such gauge invariant condensates is more contrived (requires a number of four-fermion condensates simultaneously and, even so, problems remain) and less plausible. We conclude that in the model at hand, chiral flavor symmetry implies dynamical Higgsing by bifermion condensates.

  13. On integral representation of the Clebsh-Gordan coefficients of SU(3) group

    International Nuclear Information System (INIS)

    Mal'tsev, V.M.

    1985-01-01

    The projection of arbitrary quark-gluon state on a singlet representation of SU(3) group is considered. It is given by an integral on the group. In this case the square of a Clebsch-Gordan coefficient is evaluated as the eight-fold integral over corresponding Eulerian angles

  14. Computation of hybrid static potentials in SU(3 lattice gauge theory

    Directory of Open Access Journals (Sweden)

    Reisinger Christian

    2018-01-01

    Full Text Available We compute hybrid static potentials in SU(3 lattice gauge theory. We present a method to automatically generate a large set of suitable creation operators with defined quantum numbers from elementary building blocks. We show preliminary results for several channels and discuss, which structures of the gluonic flux tube seem to be realized by the ground states in these channels.

  15. Electromagnetic mass differences in the SU(3) x U(1) gauge model

    International Nuclear Information System (INIS)

    Maharana, K.; Sastry, C.V.

    1975-01-01

    In this note we point out that the electromagnetic mass differences of the pion and kaon in the SU(3) times U(1) model are the same as in Weinberg's model except for the differences in the masses of the gauge bosons

  16. Splitting the spectral flow and the SU(3) Casson invariant for spliced sums

    DEFF Research Database (Denmark)

    Boden, Hans U.; Himpel, Benjamin

    2009-01-01

    We show that the SU(3) Casson invariant for spliced sums along certain torus knots equals 16 times the product of their SU(2) Casson knot invariants. The key step is a splitting formula for su(n) spectral flow for closed 3–manifolds split along a torus....

  17. Deep-inelastic lepton scattering in an SU(3) x U(1) gauge model

    International Nuclear Information System (INIS)

    Maharana, K.; Sastry, C.V.

    1976-01-01

    Linear relations and sum rules for deep-inelastic lepton scattering are derived in the light-cone algebra approach from a set of weak, neutral, and electromagnetic currents based on an SU(3) x U(1) gauge model proposed by Schechter and Ueda

  18. Phase structure of lattice gauge theories for non-abelian subgroups of SU(3)

    International Nuclear Information System (INIS)

    Grosse, H.; Kuehnelt, H.

    1981-01-01

    The authors study the phase structure of Euclidean lattice gauge theories in four dimensions for certain non-abelian subgroups of SU(3) by using Monte-Carlo simulations and strong coupling expansions. As the order of the group increases a splitting of one phase transition into two is observed. (Auth.)

  19. Static, self-dual, finite action SU(3) gauge fields in the de Sitter space

    International Nuclear Information System (INIS)

    Chakrabarti, A.; Comtet, A.; Viswanathan, K.S.; Simon Fraser Univ., Burnaby, British Columbia

    1980-01-01

    Static, self-dual, finite action SU(3) gauge fields are constructed on the euclidean section of the positive curvature de Sitter metric with periodic time. Their relation to known time dependent flat space solutions is pointed out. Their significances and possible applications are indicated. (orig.)

  20. Closing the SU(3)LxU(1)X symmetry at the electroweak scale

    International Nuclear Information System (INIS)

    Dias, Alex G.; Montero, J. C.; Pleitez, V.

    2006-01-01

    We show that some models with SU(3) C xSU(3) L xU(1) X gauge symmetry can be realized at the electroweak scale and that this is a consequence of an approximate global SU(2) L+R symmetry. This symmetry implies a condition among the vacuum expectation value of one of the neutral Higgs scalars, the U(1) X 's coupling constant, g X , the sine of the weak mixing angle sinθ W , and the mass of the W boson, M W . In the limit in which this symmetry is valid it avoids the tree level mixing of the Z boson of the standard model with the extra Z ' boson. We have verified that the oblique T parameter is within the allowed range indicating that the radiative corrections that induce such a mixing at the 1-loop level are small. We also show that a SU(3) L+R custodial symmetry implies that in some of the models we have to include sterile (singlets of the 3-3-1 symmetry) right-handed neutrinos with Majorana masses, since the seesaw mechanism is mandatory to obtain light active neutrinos. Moreover, the approximate SU(2) L+R subset of SU(3) L+R symmetry implies that the extra nonstandard particles of these 3-3-1 models can be considerably lighter than it had been thought before so that new physics can be really just around the corner

  1. SU(3) breaking and the pseudo-scalar spectrum in multi-taste QCD

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, Michael

    2017-06-18

    Using the Sigma model to explore the lowest order pseudo-scalar spectrum with SU(3) breaking, this talk considers an additional exact "taste" symmetry to mimic species doubling. Rooting replicas of a valid approach such as Wilson fermions reproduces the desired physical spectrum. In contrast, extra symmetries of the rooted staggered approach leave spurious states and a flavor dependent taste multiplicity.

  2. Chiral symmetry breaking parameters from QCD sum rules

    Energy Technology Data Exchange (ETDEWEB)

    Mallik, S [Karlsruhe Univ. (T.H.) (Germany, F.R.). Inst. fuer Theoretische Kernphysik; Bern Univ. (Switzerland). Inst. fuer Theoretische Physik)

    1982-10-04

    We obtain new QCD sum rules by considering vacuum expectation values of two-point functions, taking all the five quark bilinears into account. These sum rules are employed to extract values of different chiral symmetry breaking parameters in QCD theory. We find masses of light quarks, m=1/2msub(u)+msub(d)=8.4+-1.2 MeV, msub(s)=205+-65 MeV. Further, we obtain corrections to certain soft pion (kaon) PCAC relations and the violation of SU(3) flavour symmetry by the non-strange and strange quark-antiquark vacuum condensate.

  3. Hirschegg '95: Dynamical properties of hadrons in nuclear matter. Proceedings

    International Nuclear Information System (INIS)

    Feldmeier, H.; Noerenberg, W.

    1995-01-01

    The following topics were dealt with: Chiral symmetry, chiral condensates, in-medium effective chiral Lagrangians, Δ's in nuclei, nonperturbative QCD, electron scattering from nuclear matter, nuclear shadowing, QCD sum rules, deconfinement, ultrarelativistic heavy ion collisions, nuclear dimuon and electron pair production, photoproduction from nuclei, subthreshold K + production, kaon polarization in nuclear matter, charged pion production in relativistic heavy ion collisions, the Nambu-Jona-Lasinio model, the SU(3) L xSU(3) R sigma model, nonequilibrium dense nuclear matter, pion pair production at finite temperature. (HSI)

  4. Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model

    OpenAIRE

    Akiyama, Satoru; Futami, Yasuhiko

    2003-01-01

    In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the...

  5. Broken chiral symmetry and the structure of hadrons

    International Nuclear Information System (INIS)

    Spence, W.L.

    1982-01-01

    The spontaneous breaking of chiral symmetry plays a decisive role in the structure of hadrons composed of light quarks. The formalism by which the dynamics of chiral symmetry breaking and its implications for hadronic structure can be explored in a simplified world in which fully relativistic zero-bare-mass quarks interact through a chirally symmetric instantaneous confining potential is presented. By thus modeling the essentials of the chiral limit-N/sub c/ infinity limit of QCD contact is made with the successes of existent semiphenomenological models of hadrons but post assumptions which explicitly violate chiral symetry are avoided. This revised approach then makes possible a unification of the dynamics of hadron structure with the mechanism of spontaneous chiral breaking and guarantees the appearance of the correct Goldstone excitations. The chiral breaking order parameter (absolute value anti psi psi), effective quark mass, and Goldstone boson wave function are obtainable by solving a single non-linear integral equation once a potential has been prescribed. The stability of the chiral asymmetric vacuum must then be established by studying the linear eigenvalue problem which determines the spectrum of states with vacuum quantum numbers. The nature of the instability of the chiral symmetric vacuum that leads to spontaneous symmetry breaking is explained and its apparent contingency on details of the dynamics is emphasized. It is argued that a single massless fermion in a chirally symmetric potential does form bound states for which a semi-classical description is given. Coupling to vacuum pairs of such bound states occasions the possibility of chiral symmetry breakdown

  6. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality.

    Science.gov (United States)

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-11-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction-mediated chirality induction and the intrinsic stereogenic center-controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, ( S )-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction-mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.

  7. Siegel's chiral boson and the chiral Schwinger model

    International Nuclear Information System (INIS)

    Berger, T.

    1992-01-01

    In this paper Siegel's proposal for a Lagrangian formulation of a chiral boson is analyzed by applying recent results on 2d chiral quantum gravity. A model is derived whose solution consists of a massive scalar and two massless chiral scalars. Therefore it is a minimally bosonized two-fermion chiral Schwinger model

  8. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu; Yi, Jun; Li, Ming-yang; Xiao, Jun; Zhang, Lifa; Yang, Chih-Wen; Kaindl, Robert A.; Li, Lain-Jong; Wang, Yuan; Zhang, Xiang

    2018-01-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  9. Observation of chiral phonons

    KAUST Repository

    Zhu, Hanyu

    2018-02-01

    Chirality reveals symmetry breaking of the fundamental interaction of elementary particles. In condensed matter, for example, the chirality of electrons governs many unconventional transport phenomena such as the quantum Hall effect. Here we show that phonons can exhibit intrinsic chirality in monolayer tungsten diselenide. The broken inversion symmetry of the lattice lifts the degeneracy of clockwise and counterclockwise phonon modes at the corners of the Brillouin zone. We identified the phonons by the intervalley transfer of holes through hole-phonon interactions during the indirect infrared absorption, and we confirmed their chirality by the infrared circular dichroism arising from pseudoangular momentum conservation. The chiral phonons are important for electron-phonon coupling in solids, phonon-driven topological states, and energy-efficient information processing.

  10. Dimensional reduction of exceptional E6,E8 gauge groups and flavour chirality

    International Nuclear Information System (INIS)

    Koca, M.

    1984-01-01

    Ten-dimensional Yang - Mills gauge theories based on the exceptional groups E 6 and E 8 are reduced to four-dimensional flavour-chiral Yang - Mills - Higgs theories where the extra six dimensions are identified with the compact G 2 /SU(3) and SO(7)/SO(6) coset spaces. A ten-dimensional E 8 theory leads to three families of SU(5), one of which lies in the 144-dimensional representation of SO(10)

  11. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    Energy Technology Data Exchange (ETDEWEB)

    Rogachevskii, Igor; Kleeorin, Nathan [Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Ruchayskiy, Oleg [Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Boyarsky, Alexey [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Fröhlich, Jürg [Institute of Theoretical Physics, ETH Hönggerberg, CH-8093 Zurich (Switzerland); Brandenburg, Axel; Schober, Jennifer, E-mail: gary@bgu.ac.il [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2017-09-10

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  12. Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory

    International Nuclear Information System (INIS)

    Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg; Boyarsky, Alexey; Fröhlich, Jürg; Brandenburg, Axel; Schober, Jennifer

    2017-01-01

    The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.

  13. Chiral Spirals from Discontinuous Chiral Symmetry

    Science.gov (United States)

    Kojo, Toru

    2014-09-01

    Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. Recently phases of the inhomongeneous chiral condensates (IChC) attract renewed attentions in quark matter context. A number of theoretical studies have suggested that in some domain of moderate quark density the IChC phases are energetically more favored than the normal, chiral symmetric phase. In particular, the NJL-type model studies indicate that the phase of IChCs may mask the usual 1st order chiral phase transition line and its critical end point, and might change the conventional wisdom. In this talk, I will discuss characteristic features of the IChC phases and their potential impacts on the compact star physics. In particular, some of the IChC phases open gaps near the quark Fermi surface, suppressing back-reaction from the quark to gluon sectors. This mechanism delays the chiral restoration in the strange quark sector, forbids the emergence of the large bag constant, and as a consequence, makes the quark matter EOS very stiff. NSF Grants PHY09-69790, PHY13-05891.

  14. Geometrical approach to central molecular chirality: a chirality selection rule

    OpenAIRE

    Capozziello, S.; Lattanzi, A.

    2004-01-01

    Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...

  15. Cell chirality: its origin and roles in left-right asymmetric development.

    Science.gov (United States)

    Inaki, Mikiko; Liu, Jingyang; Matsuno, Kenji

    2016-12-19

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by 'cortical inheritance'. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left-right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla.This article is part of the themed issue 'Provocative questions in left-right asymmetry'. © 2016 The Authors.

  16. Cell chirality: its origin and roles in left–right asymmetric development

    Science.gov (United States)

    Inaki, Mikiko; Liu, Jingyang

    2016-01-01

    An item is chiral if it cannot be superimposed on its mirror image. Most biological molecules are chiral. The homochirality of amino acids ensures that proteins are chiral, which is essential for their functions. Chirality also occurs at the whole-cell level, which was first studied mostly in ciliates, single-celled protozoans. Ciliates show chirality in their cortical structures, which is not determined by genetics, but by ‘cortical inheritance’. These studies suggested that molecular chirality directs whole-cell chirality. Intriguingly, chirality in cellular structures and functions is also found in metazoans. In Drosophila, intrinsic cell chirality is observed in various left–right (LR) asymmetric tissues, and appears to be responsible for their LR asymmetric morphogenesis. In other invertebrates, such as snails and Caenorhabditis elegans, blastomere chirality is responsible for subsequent LR asymmetric development. Various cultured cells of vertebrates also show intrinsic chirality in their cellular behaviours and intracellular structural dynamics. Thus, cell chirality may be a general property of eukaryotic cells. In Drosophila, cell chirality drives the LR asymmetric development of individual organs, without establishing the LR axis of the whole embryo. Considering that organ-intrinsic LR asymmetry is also reported in vertebrates, this mechanism may contribute to LR asymmetric development across phyla. This article is part of the themed issue ‘Provocative questions in left–right asymmetry’. PMID:27821533

  17. Applications of chiral symmetry

    International Nuclear Information System (INIS)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T χ implies that the ρ and a 1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, m ρ (T χ ) > m ρ (0). The author conjectures that at T χ the thermal ρ - a 1 , peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by T χ . The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates

  18. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    amit@fs.rri.local.net (Amit Kumar Agarwal)

    our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic ... In the vicinity of the direct beam for a sample aligned in the Bragg mode and. 297 ... experimental investigations on these modes. Duke and Du ..... scattering volume is not true in practice. In an actual ...

  19. Entanglement properties of the two-dimensional SU(3) Affleck-Kennedy-Lieb-Tasaki state

    Science.gov (United States)

    Gauthé, Olivier; Poilblanc, Didier

    2017-09-01

    Two-dimensional (spin-2) Affleck-Kennedy-Lieb-Tasaki (AKLT) type valence bond solids on a square lattice are known to be symmetry-protected topological (SPT) gapped spin liquids [S. Takayoshi, P. Pujol, and A. Tanaka Phys. Rev. B 94, 235159 (2016), 10.1103/PhysRevB.94.235159]. Using the projected entangled pair state framework, we extend the construction of the AKLT state to the case of SU(3 ) , relevant for cold atom systems. The entanglement spectrum is shown to be described by an alternating SU(3 ) chain of "quarks" and "antiquarks", subject to exponentially decaying (with distance) Heisenberg interactions, in close similarity with its SU(2 ) analog. We discuss the SPT feature of the state.

  20. Heterotic and type II orientifold compactifications on SU(3) structure manifolds

    International Nuclear Information System (INIS)

    Benmachiche, I.

    2006-07-01

    We study the four-dimensional N=1 effective theories of generic SU(3) structure compactifications in the presence of background fluxes. For heterotic and type IIA/B orientifold theories, the N=1 characteristic data are determined by a Kaluza-Klein reduction of the fermionic actions. The Kaehler potentials, superpotentials and the D-terms are entirely encoded by geometrical data of the internal manifold. The background flux and the intrinsic torsion of the SU(3) structure manifold, gives rise to contributions to the four-dimensional F-terms. The corresponding superpotentials generalize the Gukov-Vafa-Witten superpotential. For the heterotic compactification, the four-dimensional fermionic supersymmetry variations, as well as the conditions on supersymmetric vacua, are determined. The Yukawa couplings of the theory turn out to be similar to their Calabi-Yau counterparts. (Orig.)

  1. The SU(3)xU(1) invariant breaking of gauged N=8 supergravity

    International Nuclear Information System (INIS)

    Nicolai, H.; Warner, N.P.

    1985-01-01

    The SU(3) x U(1) invariant stationary point of N=8 supergravity is described in some detail. This vacuum has N=2 supersymmetry, and it is shown how the fields of N=8 supergravity may be collected into multiplets of SU(3) x Osp(2, 4). A new kind of shortened massive multiplet is described, and the multiplet shortening conditions for this and other multiplets are used to determine, by the use of group theory alone, the masses of many of the fields in the vacuum. The remaining masses are determined by explicit calculation. The critical point realizes Gell-Mann's scheme for relating the spin-1/2 fermions of the theory to the observed quarks and leptons. (orig.)

  2. Particle-hole excitations in the interacting boson model; 4, the U(5)-SU(3) coupling

    CERN Document Server

    De Coster, C; Heyde, Kris L G; Jolie, J; Lehmann, H; Wood, J L

    1999-01-01

    In the extended interacting boson model (EIBM) both particle- and hole-like bosons are incorporated to encompass multi-particle-multi-hole excitations at and near to closed shells.We apply the group theoretical concepts of the EIBM to the particular case of two coexisting systems in the same nucleus exhibiting a U(5) (for the regular configurations) and an SU(3) symmetry (for the intruder configurations).Besides the description of ``global'' symmetry aspects in terms of I-spin , also the very specific local mixing effects characteristic for the U(5)-SU(3) symmetry coupling are studied.The model is applied to the Po isotopes and a comparison with a morerealistic calculation is made.

  3. Nuclear forces and chiral theories

    International Nuclear Information System (INIS)

    Friar, J.L.; Washington Univ., Seattle, WA

    1995-01-01

    Recent successes in ab initio calculations of light nuclei (A=2-6) will be reviewed and correlated with the dynamical consequences of chiral symmetry. The tractability of nuclear physics evinced by these results is evidence for that symmetry. The relative importance of three-nucleon forces, four-nucleon forces, multi-pion exchanges, and relativistic corrections will be discussed in the context of effective field theories and dimensional power counting. Isospin violation in the nuclear force will also be discussed in this context

  4. Hyperon interaction in free space and nuclear matter within a SU(3) based meson exchange model

    Energy Technology Data Exchange (ETDEWEB)

    Dhar, Madhumita

    2016-06-15

    To establish the connection between free space and in-medium hyperon-nucleon interactions is the central issue of this thesis. The guiding principle is flavor SU(3) symmetry which is exploited at various levels. In first step hyperon-nucleon and hyperon- hyperon interaction boson exchange potential in free space are introduced. A new parameter set applicable for the complete baryon octet has been derived leading to an updated one-boson- exchange model, utilizing SU(3) flavor symmetry, optimizing the number of free parameters involved, and revising the set of mesons included. The scalar, pseudoscalar, and vector SU(3) meson octets are taken into account. T-matrices are calculated by solving numerically coupled linear systems of Lippmann-Schwinger equations obtained from a 3-D reduced Bethe-Salpeter equation. Coupling constants were determined by χ{sup 2} fits to the world set of scattering data. A good description of the few available data is achieved within the imposed SU(3) constraints. Having at hand a consistently derived vacuum interaction we extend the approach next to investigations of the in-medium properties of hyperon interaction, avoiding any further adjustments. Medium effect in infinite nuclear matter are treated microscopically by recalculating T-matrices by an medium-modified system of Lippmann-Schwinger equations. A particular important role is played by the Pauli projector accounting for the exclusion principle. The presence of a background medium induces a weakening of the vacuum interaction amplitudes. Especially coupled channel mixing is found to be affected sensitively by medium. Investigation on scattering lengths and effective range parameters are revealing the density dependence of the interaction on a quantitative level.

  5. A preliminary study of the Gribov ambiguity in lattice SU(3) Coulomb gauge

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, C. (Physics Dept., New York Univ., NY (United States)); Petrarca, S. (Dipt. di Fisica, Rome-1 Univ. (Italy) INFN, Rome (Italy)); Vladikas, A. (Dipt. di Fisica, Rome-2 Univ. (Italy) INFN, Rome (Italy))

    1991-10-10

    We report on simulations of pure SU(3) gauge theory on a 10{sup 3}x20 lattice at {beta}=6.0 in the Coulomb gauge, from which the Gribov ambiguity appears to be maximal, in the sense that the gauge-fixing process is highly unstable with respect to variations of the starting configuration via random gauge transformations. We give a heuristic explanation of the larger number of Gribov copies in such a gauge with respect to the Landau gauge. (orig.).

  6. Heavy charged leptons in an SU(3)L x U(1)N model

    International Nuclear Information System (INIS)

    Pleitez, V.; Tonasse, M.D.

    1992-12-01

    An SU(3) L x U(1) N model for the electroweak interactions which includes additional heavy charged leptons is considered. These leptons have not strong constraints on their masses since they do not couple in the same way as the lightest leptons to the neutral-currents and also because new contributions to the muon g-2 factor already suppressed because of the massive new vector boson present in this model. (author)

  7. Pseudo SU(3) shell model: Normal parity bands in odd-mass nuclei

    International Nuclear Information System (INIS)

    Vargas, C.E.; Hirsch, J.G.; Draayer, J.P.

    2000-01-01

    A pseudo shell SU(3) model description of normal parity bands in 159 Tb is presented. The Hamiltonian includes spherical Nilsson single-particle energies, the quadrupole-quadrupole and pairing interactions, as well as three rotor terms. A systematic parametrization is introduced, accompanied by a detailed discussion of the effect each term in the Hamiltonian has on the energy spectrum. Yrast and excited band wavefunctions are analyzed together with their B(E2) values

  8. Vacuum structure of the SU(3) gauge field theory in the Coulomb gauge

    International Nuclear Information System (INIS)

    Yee, J.H.; Viswanathan, K.S.

    1978-01-01

    The SU(3) gauge field is studied in the Coulomb gauge. The Gribov ambiguities arising in the Coulomb gauge are analysed. Restricting to a class of spherically symmetric vacua it is shown that there exist non-trivial vacua characterized by a topological number eta=0, +-1/2, and +-2. This must be contrasted with the spherically symmetric SU(2) vacua which are characterized by eta=0, +-1/2. (Auth.)

  9. Neutrinoless double beta decay in an SU(3)L x U(1)N model

    International Nuclear Information System (INIS)

    Pleitez, V.; Tonasse, M.D.

    1993-01-01

    A model for the electroweak interactions with SU (3) L x U(1) N gauge symmetry is considered. It is shown that, it is the conservation of F = L + B which forbids massive neutrinos and the neutrinoless double beta decay, (β β) On u. Explicit and spontaneous breaking of F imply that the neutrinos have an arbitrary mass and (β β) On u proceeds also with some contributions that do not depend explicitly on the neutrino mass. (author)

  10. Isospin Mass Splittings and the $\\ms$ Corrections in the Semibosonized SU(3)-NJL-Model

    OpenAIRE

    Blotz, Andree; Goeke, K.; Praszalowicz, M.

    1994-01-01

    The mass splittings of hyperons including the isospin splittings are calculated with $O(\\ms^2)$ and $O(\\ms \\dm)$ accuracy respectively within the semibosonized SU(3)-NJL model. The pattern of the isospin splittings is not spoiled by the terms of the order $O(\\ms \\dm)$, and both splittings between the different isospin multiplets and within the same multiplet are well reproduced for acceptable values of $\\ms$ and $\\dm$.

  11. The spin-orbit interaction and SU(3) generators in superdeformation

    Energy Technology Data Exchange (ETDEWEB)

    Sugawara-Tanabe, K [School of Social Information, Otsuma Women` s University, Tokyo (Japan); Arima, A [Tokyo Univ. (Japan). Dept. of Physics

    1992-08-01

    The authors found that the effect of spin-orbit coupling becomes smaller for the parity doublet level and for some other levels around superdeformation. This is because of the strongly deformed quadrupole field, which indicates the L-S coupling scheme is recovered for these levels. These levels can be described by an SU-3 group with eight generators and a Casimir operator. 6 refs., 3 figs.

  12. Chiral bag model

    International Nuclear Information System (INIS)

    Musakhanov, M.M.

    1980-01-01

    The chiral bag model is considered. It is suggested that pions interact only with the surface of a quark ''bag'' and do not penetrate inside. In the case of a large bag the pion field is rather weak and goes to the linearized chiral bag model. Within that model the baryon mass spectrum, β decay axial constant, magnetic moments of baryons, pion-baryon coupling constants and their form factors are calculated. It is shown that pion corrections to the calculations according to the chiral bag model is essential. The obtained results are found to be in a reasonable agreement with the experimental data

  13. The covariant chiral ring

    Energy Technology Data Exchange (ETDEWEB)

    Bourget, Antoine; Troost, Jan [Laboratoire de Physique Théorique, École Normale Supérieure, 24 rue Lhomond, 75005 Paris (France)

    2016-03-23

    We construct a covariant generating function for the spectrum of chiral primaries of symmetric orbifold conformal field theories with N=(4,4) supersymmetry in two dimensions. For seed target spaces K3 and T{sup 4}, the generating functions capture the SO(21) and SO(5) representation theoretic content of the chiral ring respectively. Via string dualities, we relate the transformation properties of the chiral ring under these isometries of the moduli space to the Lorentz covariance of perturbative string partition functions in flat space.

  14. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  15. Chiral near-fields around chiral dolmen nanostructure

    International Nuclear Information System (INIS)

    Fu, Tong; Wang, Tiankun; Chen, Yuyan; Wang, Yongkai; Qu, Yu; Zhang, Zhongyue

    2017-01-01

    Discriminating the handedness of the chiral molecule is of great importance in the field of pharmacology and biomedicine. Enhancing the chiral near-field is one way to increase the chiral signal of chiral molecules. In this paper, the chiral dolmen nanostructure (CDN) is proposed to enhance the chiral near-field. Numerical results show that the CDN can increase the optical chirality of the near-field by almost two orders of magnitude compared to that of a circularly polarized incident wave. In addition, the optical chirality of the near-field of the bonding mode is enhanced more than that of the antibonding mode. These results provide an effective method for tailoring the chiral near-field for biophotonics sensors. (paper)

  16. Preface to the Special Issue: Chiral Symmetry in Hadrons and Nuclei

    International Nuclear Information System (INIS)

    Geng, Lisheng; Meng, Jie; Zhao, Qiang; Zou, Bingsong

    2014-01-01

    The recent past years have seen a remarkable progress towards a unified description of nonperturbative strong interaction phenomena based on the fundamental theory of the strong interaction, quantum chromodynamics, and effective field theories. The papers collected in this special issue focus on the recent progress in hadron and nuclear physics related to the chiral symmetry. They are written based on presentations at the Seventh International Symposium on Chiral Symmetry in Hadron and Nuclei which took place at Beihang University, Beijing, 27-30 October 2013. The sub-topics discussed in these papers include chiral and heavy-quark spin symmetry; chiral dynamics of few-body hadron systems; chiral symmetry and hadrons in a nuclear medium; chiral dynamics in nucleon-nucleon interaction and atomic nuclei; chiral symmetry in rotating nuclei; hadron structure and interactions; exotic hadrons, heavy flavor hadrons and nuclei; mesonic atoms and nuclei

  17. Chiral Gold Nanoclusters: Atomic Level Origins of Chirality.

    Science.gov (United States)

    Zeng, Chenjie; Jin, Rongchao

    2017-08-04

    Chiral nanomaterials have received wide interest in many areas, but the exact origin of chirality at the atomic level remains elusive in many cases. With recent significant progress in atomically precise gold nanoclusters (e.g., thiolate-protected Au n (SR) m ), several origins of chirality have been unveiled based upon atomic structures determined by using single-crystal X-ray crystallography. The reported chiral Au n (SR) m structures explicitly reveal a predominant origin of chirality that arises from the Au-S chiral patterns at the metal-ligand interface, as opposed to the chiral arrangement of metal atoms in the inner core (i.e. kernel). In addition, chirality can also be introduced by a chiral ligand, manifested in the circular dichroism response from metal-based electronic transitions other than the ligand's own transition(s). Lastly, the chiral arrangement of carbon tails of the ligands has also been discovered in a very recent work on chiral Au 133 (SR) 52 and Au 246 (SR) 80 nanoclusters. Overall, the origins of chirality discovered in Au n (SR) m nanoclusters may provide models for the understanding of chirality origins in other types of nanomaterials and also constitute the basis for the development of various applications of chiral nanoparticles. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Attosecond-resolved photoionization of chiral molecules.

    Science.gov (United States)

    Beaulieu, S; Comby, A; Clergerie, A; Caillat, J; Descamps, D; Dudovich, N; Fabre, B; Géneaux, R; Légaré, F; Petit, S; Pons, B; Porat, G; Ruchon, T; Taïeb, R; Blanchet, V; Mairesse, Y

    2017-12-08

    Chiral light-matter interactions have been investigated for two centuries, leading to the discovery of many chiroptical processes used for discrimination of enantiomers. Whereas most chiroptical effects result from a response of bound electrons, photoionization can produce much stronger chiral signals that manifest as asymmetries in the angular distribution of the photoelectrons along the light-propagation axis. We implemented self-referenced attosecond photoelectron interferometry to measure the temporal profile of the forward and backward electron wave packets emitted upon photoionization of camphor by circularly polarized laser pulses. We measured a delay between electrons ejected forward and backward, which depends on the ejection angle and reaches 24 attoseconds. The asymmetric temporal shape of electron wave packets emitted through an autoionizing state further reveals the chiral character of strongly correlated electronic dynamics. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  19. Analysis of chiral symmetry breaking mechanism

    International Nuclear Information System (INIS)

    Guo, X. H.; Academia Sinica, Beijing; Huang, T.; CCAST

    1997-01-01

    The renormalization group invariant quark condensate μ is determined both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like δ (q) which is associated with the gluon condensate. The solutions of μ in these two equations are consistent. The authors also obtain the critical strong coupling constant α c above which chiral symmetry breaks in these two approaches. The nonperturbative kernel of the SD equation makes α c smaller and μ bigger. An intuitive picture of the condensation above α c is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity they derive the equations for the nonperturbative quark propagator from the SD equation in the presence of the intermediate range force and find that the intermediate-range force is also responsible for dynamical chiral symmetry breaking

  20. Chiral crossover transition in a finite volume

    Science.gov (United States)

    Shi, Chao; Jia, Wenbao; Sun, An; Zhang, Liping; Zong, Hongshi

    2018-02-01

    Finite volume effects on the chiral crossover transition of strong interactions at finite temperature are studied by solving the quark gap equation within a cubic volume of finite size L. With the anti-periodic boundary condition, our calculation shows the chiral quark condensate, which characterizes the strength of dynamical chiral symmetry breaking, decreases as L decreases below 2.5 fm. We further study the finite volume effects on the pseudo-transition temperature {T}{{c}} of the crossover, showing a significant decrease in {T}{{c}} as L decreases below 3 fm. Supported by National Natural Science Foundation of China (11475085, 11535005, 11690030, 51405027), the Fundamental Research Funds for the Central Universities (020414380074), China Postdoctoral Science Foundation (2016M591808) and Open Research Foundation of State Key Lab. of Digital Manufacturing Equipment & Technology in Huazhong University of Science & Technology (DMETKF2015015)

  1. Critical constraints on chiral hierarchies

    International Nuclear Information System (INIS)

    Chivukula, R.S.; Golden, M.; Simmons, E.H.

    1993-01-01

    Critical dynamics constrains models of dynamical electroweak symmetry breaking in which the scale of high-energy physics is far above 1 TeV. A big hierarchy requires the high-energy theory to have a second-order chiral phase transition, near which the theory is described by a low-energy effective Lagrangian with composite ''Higgs'' scalars. As scalar theories with more than one Φ 4 coupling can have a Coleman-Weinberg instability and a first-order transition, such dynamical EWSB models cannot always support a large hierarchy. If the large-N c Nambu--Jona-Lasinio model is a good approximation to the top-condensate and strong extended technicolor models, they will not produce acceptable EWSB

  2. Probing molecular chirality by coherent optical absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Jia, W. Z. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); Wei, L. F. [Quantum Optoelectronics Laboratory, School of Physics and Technology, Southwest Jiaotong University, Chengdu 610031 (China); State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275 (China)

    2011-11-15

    We propose an approach to sensitively probe the chirality of molecules by measuring their coherent optical-absorption spectra. It is shown that quantum dynamics of the cyclic three-level chiral molecules driven by appropriately designed external fields is total-phase dependent. This will result in chirality-dependent absorption spectra for the probe field. As a consequence, the charality-dependent information in the spectra (such as the locations and relative heights of the characteristic absorption peaks) can be utilized to identify molecular chirality and determinate enantiomer excess (i.e., the percentages of different enantiomers). The feasibility of the proposal with chiral molecules confined in hollow-core photonic crystal fiber is also discussed.

  3. Correlation analysis of quantum fluctuations and repulsion effects of classical dynamics in SU(3) model

    International Nuclear Information System (INIS)

    Fujiwara, Shigeyasu; Sakata, Fumihiko

    2003-01-01

    In many quantum systems, random matrix theory has been used to characterize quantum level fluctuations, which is known to be a quantum correspondent to a regular-to-chaos transition in classical systems. We present a new qualitative analysis of quantum and classical fluctuation properties by exploiting correlation coefficients and variances. It is shown that the correlation coefficient of the quantum level density is roughly inversely proportional relation to the variance of consecutive phase-space point spacings on the Poincare section plane. (author)

  4. Pure chiral optical fibres.

    Science.gov (United States)

    Poladian, L; Straton, M; Docherty, A; Argyros, A

    2011-01-17

    We investigate the properties of optical fibres made from chiral materials, in which a contrast in optical activity forms the waveguide, rather than a contrast in the refractive index; we refer to such structures as pure chiral fibres. We present a mathematical formulation for solving the modes of circularly symmetric examples of such fibres and examine the guidance and polarisation properties of pure chiral step-index, Bragg and photonic crystal fibre designs. Their behaviour is shown to differ for left- and right-hand circular polarisation, allowing circular polarisations to be isolated and/or guided by different mechanisms, as well as differing from equivalent non-chiral fibres. The strength of optical activity required in each case is quantified.

  5. Relativistic Chiral Kinetic Theory

    International Nuclear Information System (INIS)

    Stephanov, Mikhail

    2016-01-01

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  6. Relativistic Chiral Kinetic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Stephanov, Mikhail

    2016-12-15

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  7. Generalized chiral perturbation theory

    International Nuclear Information System (INIS)

    Knecht, M.; Stern, J.

    1994-01-01

    The Generalized Chiral Perturbation Theory enlarges the framework of the standard χPT (Chiral Perturbation Theory), relaxing certain assumptions which do not necessarily follow from QCD or from experiment, and which are crucial for the usual formulation of the low energy expansion. In this way, experimental tests of the foundations of the standard χPT become possible. Emphasis is put on physical aspects rather than on formal developments of GχPT. (author). 31 refs

  8. Quenched chiral logarithms

    International Nuclear Information System (INIS)

    Sharpe, S.R.

    1992-04-01

    I develop a diagrammatic method for calculating chiral logarithms in the quenched approximation. While not rigorous, the method is based on physically reasonable assumptions, which can be tested by numerical simulations. The main results are that, at leading order in the chiral expansion, (a) there are no chiral logarithms in quenched f π m u = m d ; (b) the chiral logarithms in B K and related kaon B-parameters are, for m d = m s the same in the quenched approximation as in the full theory (c) for m π and the condensate, there are extra chiral logarithms due to loops containing the η', which lead to a peculiar non-analytic dependence of these quantities on the bare quark mass. Following the work of Gasser and Leutwyler, I discuss how there is a predictable finite volume dependence associated with each chiral logarithm. I compare the resulting predictions with numerical results: for most quantities the expected volume dependence is smaller than the errors. but for B V and B A there is an observed dependence which is consistent with the predictions

  9. Intersecting branes, Higgs sector, and chirality from N = 4 SYM with soft SUSY breaking

    Science.gov (United States)

    Sperling, Marcus; Steinacker, Harold C.

    2018-04-01

    We consider SU( N ) N = 4 super Yang-Mills with cubic and quadratic soft SUSY breaking potential, such that the global SU(4) R is broken to SU(3) or further. As shown recently, this set-up supports a rich set of non-trivial vacua with the geometry of self-intersecting SU(3) branes in 6 extra dimensions. The zero modes on these branes can be interpreted as 3 generations of bosonic and chiral fermionic strings connecting the branes at their intersections. Here, we uncover a large class of exact solutions consisting of branes connected by Higgs condensates, leading to Yukawa couplings between the chiral fermionic zero modes. Under certain decoupling conditions, the backreaction of the Higgs on the branes vanishes exactly. The resulting physics is that of a spontaneously broken chiral gauge theory on branes with fluxes. In particular, we identify combined brane plus Higgs configurations which lead to gauge fields that couple to chiral fermions at low energy. This turns out to be quite close to the Standard Model and its constructions via branes in string theory. As a by-product, we construct a G 2-brane solution corresponding to a squashed fuzzy coadjoint orbit of G 2.

  10. Towards a determination of the chiral couplings at NLO in 1/NC: L8r(μ) and C38r(μ)

    International Nuclear Information System (INIS)

    Rosell, Ignasi; Pich, Antonio; Sanz-Cillero, Juan Jose

    2007-01-01

    We present a dispersive method which allows to investigate the low-energy couplings of chiral perturbation theory at the next-to-leading order (NLO) in the 1/N C expansion, keeping full control of their renormalization scale dependence. Using the resonance chiral theory Lagrangian, we perform a NLO calculation of the scalar and pseudoscalar two-point functions, within the single-resonance approximation. Imposing the correct QCD short-distance constraints, one determines their difference Π(t)≡Π S (t)-Π P (t) in terms of the pion decay constant and resonance masses. Its low momentum expansion fixes then the low-energy chiral couplings L 8 and C 38 . At μ 0 = 0.77 GeV, we obtain L 8 r (μ 0 ) SU(3) (0.6±0.4).10 -3 and C 38 r (μ 0 ) SU(3) = (2±6).10 -6

  11. Enantiomeric Separation of 1-(Benzofuran-2-yl)alkylamines on Chiral Stationary Phases Based on Chiral Crown Ethers

    International Nuclear Information System (INIS)

    Park, Soohyun; Kim, Sang Jun; Hyun, Myung Ho

    2012-01-01

    Optically active chiral amines are important as building blocks for pharmaceuticals and as scaffolds for chiral ligands and, consequently, many efforts have been devoted to the development of efficient methods for their preparation. For example, reduction of amine precursors with chiral catalysts, enzymatic kinetic resolution or dynamic kinetic resolution of racemic amines and the direct amination of ketones with transaminases have been developed as the efficient methods for the preparation of optically active chiral amines. During the process of developing or utilizing optically active chiral amines, the methods for the determination of their enantiomeric composition are essential. Among various methods, liquid chromatographic resolution of enantiomers on chiral stationary phases (CSPs) have been known to be one of the most accurate and economic means for the determination of the enantiomeric composition of optically active chiral compounds. Especially, CSPs based on chiral crown ethers have been successfully used for the resolution of racemic primary amines. For example, CSPs based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (CSP 1, Figure 1) or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 (CSP 2 and CSP 3, Figure 1) have been known to be quite effective for the resolution of cyclic and non-cyclic amines, various fluoroquinolone antibacterials containing a primary amino group, tocainide (antiarrhythmic agent) and its analogues, aryl-a-amino ketones and 3-amino-1,4-benzodiazepin-2-ones

  12. Sdg interacting-boson model in the SU(3) scheme and its application to /sup 168/Er

    International Nuclear Information System (INIS)

    Yoshinaga, N.; Akiyama, Y.; Arima, A.

    1988-01-01

    The sdg interacting-boson model is presented in the SU(3) tensor formalism. The interactions are decomposed according to their SU(3) tensor character. The existence of the SU(3)-seniority preserving operator is found to be important. The model is applied to /sup 168/Er. Energy levels and electromagnetic transitions are calculated. This model is shown to solve the problem of anharmonicity regarding the excitation energy of the first K/sup π/ = 4 + band relative to that of the first K/sup π/ = 2 + one. E4 transitions are calculated to give different predictions from those by the quasiparticle-phonon nuclear model

  13. Minimally doubled fermions and spontaneous chiral symmetry breaking

    Directory of Open Access Journals (Sweden)

    Osmanaj (Zeqirllari Rudina

    2018-01-01

    Full Text Available Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks – Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss – Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.

  14. Minimally doubled fermions and spontaneous chiral symmetry breaking

    Science.gov (United States)

    Osmanaj (Zeqirllari), Rudina; Hyka (Xhako), Dafina

    2018-03-01

    Chiral symmetry breaking in massless QCD is a very important feature in the current understanding of low energy physics. Low - lying Dirac modes are suitable to help us understand the spontaneous chiral symmetry breaking, since the formation of a non zero chiral condensate is an effect of their accumulation near zero. The Banks - Casher relation links the spectral density of the Dirac operator to the condensate with an identity that can be read in both directions. In this work we propose a spectral method to achieve a reliable determination of the density of eigenvalues of Dirac operator near zero using the Gauss - Lanczos quadrature. In order to understand better the dynamical chiral symmetry breaking and use the method we propose, we have chosen to work with minimally doubled fermions. These kind of fermions have been proposed as a strictly local discretization of the QCD fermions action, which preserves chiral symmetry at finite cut-off. Being chiral fermions, is easier to work with them and their low - lying Dirac modes and to understand the dynamical spontaneous chiral symmetry breaking.

  15. Bethe states of the trigonometric SU(3) spin chain with generic open boundaries

    Science.gov (United States)

    Sun, Pei; Xin, Zhirong; Qiao, Yi; Wen, Fakai; Hao, Kun; Cao, Junpeng; Li, Guang-Liang; Yang, Tao; Yang, Wen-Li; Shi, Kangjie

    2018-06-01

    By combining the algebraic Bethe ansatz and the off-diagonal Bethe ansatz, we investigate the trigonometric SU (3) model with generic open boundaries. The eigenvalues of the transfer matrix are given in terms of an inhomogeneous T - Q relation, and the corresponding eigenstates are expressed in terms of nested Bethe-type eigenstates which have well-defined homogeneous limit. This exact solution provides a basis for further analyzing the thermodynamic properties and correlation functions of the anisotropic models associated with higher rank algebras.

  16. Towards a precise determination of the topological susceptibility in the SU(3) Yang-Mills theory

    CERN Document Server

    Giusti, Leonardo; Petrarca, Silvano

    2009-01-01

    An ongoing effort to compute the topological susceptibility for the SU(3) Yang-Mills theory in the continuum limit with a precison of about 2% is reported. The susceptibility is computed by using the definition of the charge suggested by Neuberger fermions for two values of the negative mass parameter s. Finite volume and discretization effects are estimated to meet this level of precision. The large statistics required has been obtained by using PCs of the INFN-GRID. Simulations with larger lattice volumes are necessary in order to better understanding the continuum limit at small lattice spacing values.

  17. On the topological structure of the vacuum in SU(2) and SU(3) lattice gauge theories

    International Nuclear Information System (INIS)

    Ishikawa, K.; Schierholz, G.; Schneider, H.; Teper, M.

    1983-01-01

    We present Monte Carlo measurements of the net topological charge of the vacuum in SU(2) and SU(3) lattice gauge theories. In both cases there is no evidence of any topological structure, and the values obtained are a factor of 0(100) smaller than expectations based on analyses of the U(1) problem. Moreover we find a strong sensitivity to the lattice size and to the boundary conditions imposed on the lattice. We comment on the physical significance of these results, establish criteria for the reliable performance of such calculations, and remark on the possibly detrimental impact of these findings on the calculation of hadron spectra

  18. Efficient multitasking of the SU(3) lattice gauge theory algorithm on the CRAY X-MP

    International Nuclear Information System (INIS)

    Kuba, D.W.; Moriarty, K.J.M.

    1985-01-01

    The Monte Carlo lattice gauge theory algorithm with the Metropolis et.al. updating procedure is vectorized and multitasked on the four processor CRAY X-MP and results in a code with a link-update-time, in 64-bit arithmetic and 10 hits-per-link, of 11.0 μs on a 16 4 lattice, the fastest link-update-time so far achieved. The program calculates the Wilson loops of size up to L/2.L/2 for an L 4 lattice for SU(3) gauge theory. (orig./HSI)

  19. Three particle Poincare states and SU(6) x SU(3) as a classification group for baryons

    International Nuclear Information System (INIS)

    Buccella, F.; Sciarrino, A.; Sorba, P.

    1975-05-01

    A complete set of democratic quantum numbers is introduced to classify the states of an irreducible unitary representation (IUR) of the Poincare group obtained from the decomposition of the direct products of three I.U.R. Such states are identified with the baryon states constituted of three free relativistic quarks. The transformation from current to constituent quarks is then easily reobtained. Moreover, the group SU(6) x SU(3) appears naturally as a collinear classification group for baryons. Results similar to those of the symmetric harmonic oscillator quark model are obtained [fr

  20. Topology and the eta' mass in SU(3) lattice gauge theory

    International Nuclear Information System (INIS)

    Hock, Jaap; Teper, M.; Waterhouse, J.

    1986-06-01

    The topological charge density of the (Monte Carlo generated) SU(3) vacuum is measured. The algorithm is designed to be robust against lattice artifacts. The resulting topological susceptibility is found to vary with g 2 like the string tension (within errors) which allows one to extract a value in physical units: Xsub(t) approx. = (190 +-10 MeV) 4 in good agreement with the Witten-Veneziano mass formula. The topological susceptibility is found to be strongly suppressed as the temperature is raised through the deconfining transition: the quantum Usub(A)(1) symmetry is effectively restored in the deconfined phase. (author)

  1. Analysis on B → VV with the Flavour SU(3) Symmetry

    International Nuclear Information System (INIS)

    Shao-Min, Liu; Hong-Ying, Jin; Xue-Qian, Li

    2008-01-01

    It is noted that the rescattering and annihilation effects are significant in the penguin-dominant B → VV decays. In this work, we suggest to use a unique operator at the quark level to describe all the rescattering and the penguin-induced annihilation effects in B → φK * , and the coefficient of the operator depends on the polarizations of the produced mesons. By the flavour SU(3) symmetry, we apply the same scenario to all the penguin-dominant B → VV modes. (the physics of elementary particles and fields)

  2. Screening masses in the SU(3) pure gauge theory and universality

    International Nuclear Information System (INIS)

    Falcone, R.; Fiore, R.; Gravina, M.; Papa, A.

    2007-01-01

    We determine from Polyakov loop correlators the screening masses in the deconfined phase of the (3+1)d SU(3) pure gauge theory at finite temperature near the transition, for two different channels of angular momentum and parity. Their ratio is compared with that of the massive excitations with the same quantum numbers in the 3d 3-state Potts model in the broken phase near the transition point at zero magnetic field. Moreover we study the inverse decay length of the correlation between the real parts and between the imaginary parts of the Polyakov loop and compare the results with expectations from perturbation theory and mean-field Polyakov loop models

  3. A massive quasi-particle model of the SU(3) gluon plasma

    International Nuclear Information System (INIS)

    Peshier, A.; Technische Univ. Dresden; Kaempfer, B.; Technische Univ. Dresden; Pavlenko, O.P.; AN Ukrainskoj SSR, Kiev; Soff, G.

    1995-09-01

    Recent SU(3) gauge field lattice data for the equation of state are interpreted by a quasi-particle model with effective thermal gluon masses. The model is motivated by lowest-order perturbative QCD and describes very well the data. The proposed quasi-particle approach can be applied to study color excitations in the non-perturbative regime. As an example we estimate the temperature dependence of the Debye screening mass and find that it declines sharply when approaching the confinement temperature from above, while the thermal mass continuously rises. (orig.)

  4. Generalization of trinification to theories with 3N SU(3) gauge groups

    International Nuclear Information System (INIS)

    Carone, Christopher D.

    2005-01-01

    We consider a natural generalization of trinification to theories with 3N SU(3) gauge groups. These theories have a simple moose representation and a gauge boson spectrum that can be interpreted via the deconstruction of a 5D theory with unified symmetry broken on a boundary. Although the matter and Higgs sectors of the theory have no simple extra-dimensional analog, gauge unification retains features characteristic of the 5D theory. We determine possible assignments of the matter and Higgs fields to unified multiplets and present theories that are viable alternatives to minimal trinified GUTs

  5. Experimental consequences of SU(3) symmetry in an sdg boson model

    International Nuclear Information System (INIS)

    Akiyama, Y.; Brentano, P. von; Gelberg, A.

    1987-01-01

    Energies of collective levels in 178 Hf and 234 U are compared wth predictions of the SU(3) limiz of the sdg interacting boson model. All known positive parity states of 178 Hf below 1.8 MeV (with the expection of a 0 + band) have been satisfactorily reproduced. Most of the bands in 234 U are also described by the model. However, a few predicted states have no experimental counterpart. The introduction of the g-basons strongly reduces the previously observed discrepancies between experimental B(E2)'s in 238 U and the sd-IBM calculation. (orig.)

  6. Experimental consequences of SU(3) symmetry in an sdg boson model

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, Y.; Brentano, P. von; Gelberg, A.

    1987-05-01

    Energies of collective levels in /sup 178/Hf and /sup 234/U are compared wth predictions of the SU(3) limiz of the sdg interacting boson model. All known positive parity states of /sup 178/Hf below 1.8 MeV (with the expection of a 0/sup +/ band) have been satisfactorily reproduced. Most of the bands in /sup 234/U are also described by the model. However, a few predicted states have no experimental counterpart. The introduction of the g-basons strongly reduces the previously observed discrepancies between experimental B(E2)'s in /sup 238/U and the sd-IBM calculation.

  7. Zero of the discrete beta function in SU(3) lattice gauge theory with color sextet fermions

    International Nuclear Information System (INIS)

    Shamir, Yigal; Svetitsky, Benjamin; DeGrand, Thomas

    2008-01-01

    We have carried out a Schrodinger functional calculation for the SU(3) lattice gauge theory with two flavors of Wilson fermions in the sextet representation of the gauge group. We find that the discrete beta function, which governs the change in the running coupling under a discrete change of spatial scale, changes sign when the Schrodinger functional renormalized coupling is in the neighborhood of g 2 =2.0. The simplest explanation is that the theory has an infrared-attractive fixed point, but more complicated possibilities are allowed by the data. While we compare rescalings by factors of 2 and 4/3, we work at a single lattice spacing.

  8. Autoamplification of molecular chirality through the induction of supramolecular chirality

    NARCIS (Netherlands)

    van Dijken, Derk Jan; Beierle, John M.; Stuart, Marc C. A.; Szymanski, Wiktor; Browne, Wesley R.; Feringa, Ben L.

    2014-01-01

    The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring-open diarylethenes is doped with a small amount of their chiral, ring-closed counterpart. The

  9. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    Chiral anomalies; gauge theories; bundles; connections; quantum field ... The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. ... Current Issue : Vol.

  10. Silver Films with Hierarchical Chirality.

    Science.gov (United States)

    Ma, Liguo; Cao, Yuanyuan; Duan, Yingying; Han, Lu; Che, Shunai

    2017-07-17

    Physical fabrication of chiral metallic films usually results in singular or large-sized chirality, restricting the optical asymmetric responses to long electromagnetic wavelengths. The chiral molecule-induced formation of silver films prepared chemically on a copper substrate through a redox reaction is presented. Three levels of chirality were identified: primary twisted nanoflakes with atomic crystal lattices, secondary helical stacking of these nanoflakes to form nanoplates, and tertiary micrometer-sized circinates consisting of chiral arranged nanoplates. The chiral Ag films exhibited multiple plasmonic absorption- and scattering-based optical activities at UV/Vis wavelengths based on their hierarchical chirality. The Ag films showed chiral selectivity for amino acids in catalytic electrochemical reactions, which originated from their primary atomic crystal lattices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Chiral anomalies and differential geometry

    International Nuclear Information System (INIS)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references

  12. Analysis of correlation functions in Toda theory and the Alday-Gaiotto-Tachikawa-Wyllard relation for SU(3) quiver

    International Nuclear Information System (INIS)

    Kanno, Shoichi; Matsuo, Yutaka; Shiba, Shotaro

    2010-01-01

    We give some evidences of the Alday-Gaiotto-Tachikawa-Wyllard relation between SU(3) quiver gauge theories and A 2 Toda theory. In particular, we derive the explicit form of 5-point correlation functions in the lower orders and confirm the agreement with Nekrasov's partition function for SU(3)xSU(3) quiver gauge theory. The algorithm to derive the correlation functions can be applied to a general n-point function in A 2 Toda theory, which will be useful to establish the relation for more generic quivers. Partial analysis is also given for the SU(3)xSU(2) case, and we comment on some technical issues that need clarification before establishing the relation.

  13. Chiral Synthons in Pesticide Syntheses

    NARCIS (Netherlands)

    Feringa, Bernard

    1988-01-01

    The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the

  14. Kink-induced symmetry breaking patterns in brane-world SU(3)3 trinification models

    International Nuclear Information System (INIS)

    Demaria, Alison; Volkas, Raymond R.

    2005-01-01

    The trinification grand unified theory (GUT) has gauge group SU(3) 3 and a discrete symmetry permuting the SU(3) factors. In common with other GUTs, the attractive nature of the fermionic multiplet assignments is obviated by the complicated multiparameter Higgs potential apparently needed for phenomenological reasons, and also by vacuum expectation value (VEV) hierarchies within a given multiplet. This motivates the rigorous consideration of Higgs potentials, symmetry breaking patterns, and alternative symmetry breaking mechanisms in models with this gauge group. Specifically, we study the recently proposed 'clash of symmetries' brane-world mechanism to see if it can help with the symmetry breaking conundrum. This requires a detailed analysis of Higgs potential global minima and kink or domain wall solutions interpolating between the disconnected global minima created through spontaneous discrete symmetry breaking. Sufficiently long-lived metastable kinks can also be considered. We develop what we think is an interesting, albeit speculative, brane-world scheme whereby the hierarchical symmetry breaking cascade, trinification to left-right symmetry to the standard model to color cross electromagnetism, may be induced without an initial hierarchy in vacuum expectation values. Another motivation for this paper is simply to continue the exploration of the rich class of kinks arising in models that are invariant under both discrete and continuous symmetries

  15. Exact boson mappings for nuclear neutron (proton) shell-model algebras having SU(3) subalgebras

    International Nuclear Information System (INIS)

    Bonatsos, D.; Klein, A.

    1986-01-01

    In this paper the commutation relations of the fermion pair operators of identical nucleons coupled to spin zero are given for the general nuclear major shell in LST coupling. The associated Lie algebras are the unitary symplectic algebras Sp(2M). The corresponding multipole subalgebras are the unitary algebras U(M), which possess SU(3) subalgebras. Number conserving exact boson mappings of both the Dyson and hermitian form are given for the nuclear neutron (proton) s--d, p--f, s--d--g, and p--f--h shells, and their group theoretical structure is emphasized. The results are directly applicable in the case of the s--d shell, while in higher shells the experimentally plausible pseudo-SU(3) symmetry makes them applicable. The final purpose of this work is to provide a link between the shell model and the Interacting Boson Model (IBM) in the deformed limit. As already implied in the work of Draayer and Hecht, it is difficult to associate the boson model developed here with the conventional IBM model. The differences between the two approaches (due mainly to the effects of the Pauli principle) as well as their physical implications are extensively discussed

  16. Multiple multi-orbit fermionic and bosonic pairing and rotational SU(3) algebras

    International Nuclear Information System (INIS)

    Kota, V.K.B.

    2017-01-01

    In nuclei with valence nucleons that are identical nucleons and occupy r number of j-orbits, there will be 2 r-1 number of multiple pairing (quasi-spin) SU(2) algebras with the generalized pair creation operator S + being a sum of single-j pair creation operators with arbitrary phases. Also, for each set of phases there will be a corresponding Sp(2Ω) algebra in U(2Ω) ⊃ Sp(2Ω); Ω = ∑ (2j+1)/2. Using this correspondence, derived is the condition for a general one-body operator of angular momentum rank k to be a quasi-spin scalar or a vector vis-a-vis the phases in S + . These will give special seniority selection rules for electromagnetic transitions. We found that the phase choice advocated by Arvieu and Moszkowski gives pairing Hamiltonians having maximum correlation with well known effective interactions. All the results derived for identical fermion systems are shown to extend to identical boson systems such as sd, sp, sdg and sdpf interacting boson models (IBM's) with SU(2) → SU(1,1) and Sp(2/Omega) → SO(2Ω). Going beyond pairing, for a given set of oscillator orbits, there are multiple rotational SU(3) algebras both in shell model and IBM's. Different SU(3) algebras in IBM's are shown, using sdg IBM as an example, to give different geometric shapes.

  17. Temperature dependence of shear viscosity of SU(3)-gluodynamics within lattice simulation

    Energy Technology Data Exchange (ETDEWEB)

    Astrakhantsev, N.Yu. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation); Moscow Institute of Physics and Technology,9 Institutskii per., 141700, Dolgoprudny (Russian Federation); Braguta, V.V. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation); Institute for High Energy Physics NRC “Kurchatov Institute”,1 Pobedy St., Protvino, 142281 (Russian Federation); School of Biomedicine, Far Eastern Federal University,8 Sukhanova St., 690950, Vladivostok (Russian Federation); Kotov, A.Yu. [Institute for Theoretical and Experimental Physics,25 B. Cheremushkinskaya St., 117218, Moscow (Russian Federation)

    2017-04-18

    In this paper we study the SU(3)-gluodynamics shear viscosity temperature dependence on the lattice. To do so, we measure the correlation functions of the energy-momentum tensor in the range of temperatures T/T{sub c}∈[0.9,1.5]. To extract the shear viscosity we used two approaches. The first one is to fit the lattice data with a physically motivated ansatz for the spectral function with unknown parameters and then determine the shear viscosity. The second approach is to apply the Backus-Gilbert method allowing to extract the shear viscosity from the lattice data nonparametrically. The results obtained within both approaches agree with each other. Our results allow us to conclude that within the range T/T{sub c}∈[0.9,1.5] the SU(3)-gluodynamics reveals the properties of a strongly interacting system, which cannot be described perturbatively, and has the ratio η/s close to the value 1/4π of the N=4 Supersymmetric Yang-Mills theory.

  18. Thermal Conductivity of Nanotubes: Effects of Chirality and Isotope Impurity

    OpenAIRE

    Gang, Zhang; Li, Baowen

    2005-01-01

    We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality and isotope impurity by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also study the dependence of thermal conductivity on tube length for t...

  19. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    Kim, Keun-Young; Sahoo, Bindusar; Yee, Ho-Ung

    2010-06-01

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  20. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-06-01

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  1. Chirality: from QCD to condensed matter

    International Nuclear Information System (INIS)

    Kharzeev, D.

    2015-01-01

    This lecture is about chirality and consists of 4 parts. In the first part a general introduction of chirality is given and its implementation in nuclear and particle physics, in particular the chiral magnetic effect, as well as Chirality in quantum materials (CME, optoelectronics, photonics) are discussed. The 2nd lecture is about the chiral magnetic effect. The 3rd lecture deals with the chiral magnetic effect and hydrodynamics and the last part with chirality and light. (nowak)

  2. Chiral algebras for trinion theories

    International Nuclear Information System (INIS)

    Lemos, Madalena; Peelaers, Wolfger

    2015-01-01

    It was recently understood that one can identify a chiral algebra in any four-dimensional N=2 superconformal theory. In this note, we conjecture the full set of generators of the chiral algebras associated with the T n theories. The conjecture is motivated by making manifest the critical affine module structure in the graded partition function of the chiral algebras, which is computed by the Schur limit of the superconformal index for T n theories. We also explicitly construct the chiral algebra arising from the T 4 theory. Its null relations give rise to new T 4 Higgs branch chiral ring relations.

  3. Fortran code for SU(3) lattice gauge theory with and without MPI checkerboard parallelization

    Science.gov (United States)

    Berg, Bernd A.; Wu, Hao

    2012-10-01

    We document plain Fortran and Fortran MPI checkerboard code for Markov chain Monte Carlo simulations of pure SU(3) lattice gauge theory with the Wilson action in D dimensions. The Fortran code uses periodic boundary conditions and is suitable for pedagogical purposes and small scale simulations. For the Fortran MPI code two geometries are covered: the usual torus with periodic boundary conditions and the double-layered torus as defined in the paper. Parallel computing is performed on checkerboards of sublattices, which partition the full lattice in one, two, and so on, up to D directions (depending on the parameters set). For updating, the Cabibbo-Marinari heatbath algorithm is used. We present validations and test runs of the code. Performance is reported for a number of currently used Fortran compilers and, when applicable, MPI versions. For the parallelized code, performance is studied as a function of the number of processors. Program summary Program title: STMC2LSU3MPI Catalogue identifier: AEMJ_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMJ_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 26666 No. of bytes in distributed program, including test data, etc.: 233126 Distribution format: tar.gz Programming language: Fortran 77 compatible with the use of Fortran 90/95 compilers, in part with MPI extensions. Computer: Any capable of compiling and executing Fortran 77 or Fortran 90/95, when needed with MPI extensions. Operating system: Red Hat Enterprise Linux Server 6.1 with OpenMPI + pgf77 11.8-0, Centos 5.3 with OpenMPI + gfortran 4.1.2, Cray XT4 with MPICH2 + pgf90 11.2-0. Has the code been vectorised or parallelized?: Yes, parallelized using MPI extensions. Number of processors used: 2 to 11664 RAM: 200 Mega bytes per process. Classification: 11

  4. The baryon vector current in the combined chiral and 1/Nc expansions

    Energy Technology Data Exchange (ETDEWEB)

    Flores-Mendieta, Ruben; Goity, Jose L [JLAB

    2014-12-01

    The baryon vector current is computed at one-loop order in large-Nc baryon chiral perturbation theory, where Nc is the number of colors. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis and the effects of the decuplet-octet mass difference and SU(3) flavor symmetry breaking are accounted for. There are large-Nc cancellations between different one-loop graphs as a consequence of the large-Nc spin-flavor symmetry of QCD baryons. The results are compared against the available experimental data through several fits in order to extract information about the unknown parameters. The large-Nc baryon chiral perturbation theory predictions are in very good agreement both with the expectations from the 1/Nc expansion and with the experimental data. The effect of SU(3) flavor symmetry breaking for the |Delta S|=1 vector current form factors f1(0) results in a reduction by a few percent with respect to the corresponding SU(3) symmetric values.

  5. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué , Emilie; Safeer, C.  K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2015-01-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  6. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué, Emilie

    2015-12-21

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  7. Stochastic Field evolution of disoriented chiral condensates

    International Nuclear Information System (INIS)

    Bettencourt, Luis M.A.

    2003-01-01

    I present a summary of recent work [1] where we describe the time-evolution of a region of disoriented chiral condensate via Langevin field equations for the linear σ model. We analyze the model in equilibrium, paying attention to subtracting ultraviolet divergent classical terms and replacing them by their finite quantum counter-parts. We use results from lattice gauge theory and chiral perturbation theory to fix nonuniversal constants. The result is a ultraviolet cutoff independent theory that reproduces quantitatively the expected equilibrium behavior of pion and σ quantum fields. We also estimate the viscosity η(T), which controls the dynamical timescale in the Langevin equation, so that the near equilibrium dynamical response agrees with theoretical expectations

  8. Chiral forces and molecular dissymmetry

    International Nuclear Information System (INIS)

    Mohan, R.

    1992-01-01

    Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected

  9. Insight into the chiral induction in supramolecular stacks through preferential chiral salvation

    NARCIS (Netherlands)

    George, S.J.; Tomovic, Z.; Schenning, A.P.H.J.; Meijer, E.W.

    2011-01-01

    Preferred handedness in the supramolecular chirality of self-assembled achiral oligo(p-phenylenevinylene) (OPV) derivatives is induced by chiral solvents and spectroscopic probing provides insight into the mechanistic aspects of this chiral induction through chiral solvation

  10. Spontaneous chiral symmetry breaking and effective quark masses in quantum chromodynamics

    International Nuclear Information System (INIS)

    Miransky, V.A.

    1982-01-01

    The ultraviolet asymptotics of the dynamical effective quark mass is determined directly from the equation for the fermion mass function. The indications about the character of the dynamics of the spontaneous chiral symmetry breaking in QCD are obtained

  11. SU(6) quadrupole phonon model for even and odd nuclei and the SU(3) limit

    Energy Technology Data Exchange (ETDEWEB)

    Paar, V; Brant, S [Zagreb Univ. (Yugoslavia). Prirodoslovno Matematicki Fakultet; Canto, L F [Rio de Janeiro Univ. (Brazil). Inst. de Fisica; Leander, G [Lund Inst. of Tech. (Sweden). Dept. of Mathematical Physics; Oak Ridge National Lab., TN (USA)); Vouk, M [Zagreb Univ. (Yugoslavia). Computing Centre SRCE

    1982-04-05

    Analogous to the equivalence between the SU(6) quadrupole-phonon model (TQM) and the interacting boson model (IBM), the equivalence is pointed out for odd systems between the SU(6) particle quadrupole-phonon coupling model (PTQM) and the interacting boson-fermion model (IBFM). PTQM is formulated starting from the Dyson representation for the odd system. Different aspects of the SU(3) limit of TQM and PTQM are studied; the quadrupole-phonon block structure of rotational bands in even and odd nuclei and analytic expressions based on the coherent state; signature effects generated in PTQM; electromagnetic properties and correction factors for PTQM; overlaps of the PTQM analogs of Nilsson states with Coriolis-coupled Nilsson states and the relation to the rotational model representation.

  12. Heavy quark spin symmetry and SU(3)-flavour partners of the X(3872)

    Energy Technology Data Exchange (ETDEWEB)

    Hidalgo-Duque, C., E-mail: carloshd@ific.uv.es [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, E-46071 Valencia (Spain); Nieves, J. [Instituto de Física Corpuscular (IFIC), Centro Mixto CSIC-Universidad de Valencia, Institutos de Investigación de Paterna, Aptd. 22085, E-46071 Valencia (Spain); Pavón Valderrama, M. [Institut de Physique Nucléaire, Université Paris-Sud, IN2P3/CNRS, F-91406 Orsay Cedex (France)

    2013-09-20

    In this work, an Effective Field Theory (EFT) incorporating light SU(3)-flavour and heavy quark spin symmetries is used to describe charmed meson–antimeson bound states. At Lowest Order (LO), this means that only contact range interactions among the heavy meson and antimeson fields are involved. Besides, the isospin violating decays of the X(3872) will be used to constrain the interaction between the D and a D{sup ¯⁎} mesons in the isovector channel. Finally, assuming that the X(3915) and Y(4140) resonances are D{sup ⁎}D{sup ¯⁎} and D{sub s}{sup ⁎}D{sup ¯}{sub s}{sup ⁎} molecular states, we can determine the four Low Energy Constants (LECs) of the EFT that appear at LO and, therefore, the full spectrum of molecular states with isospin I=0, 1/2 and 1.

  13. Reconstructing ATLAS SU3 in the CMSSM and relaxed phenomenological supersymmetry models

    CERN Document Server

    Fowlie, Andrew

    2011-01-01

    Assuming that the LHC makes a positive end-point measurement indicative of low-energy supersymmetry, we examine the prospects of reconstructing the parameter values of a typical low-mass point in the framework of the Constrained MSSM and in several other supersymmetry models that have more free parameters and fewer assumptions than the CMSSM. As a case study, we consider the ATLAS SU3 benchmark point with a Bayesian approach and with a Gaussian approximation to the likelihood for the measured masses and mass differences. First we investigate the impact of the hypothetical ATLAS measurement alone and show that it significantly narrows the confidence intervals of relevant, otherwise fairly unrestricted, model parameters. Next we add information about the relic density of neutralino dark matter to the likelihood and show that this further narrows the confidence intervals. We confirm that the CMSSM has the best prospects for parameter reconstruction; its results had little dependence on our choice of prior, in co...

  14. Electric dipole moments from spontaneous CP violation in SU(3)-flavoured SUSY

    International Nuclear Information System (INIS)

    Jones Perez, J

    2009-01-01

    The SUSY flavour problem is deeply related to the origin of flavour and hence to the origin of the SM Yukawa couplings themselves. Since all CP-violation in the SM is restricted to the flavour sector, it is possible that the SUSY CP problem is related to the origin of flavour as well. In this work, we present three variations of an SU(3) flavour model with spontaneous CP violation. Such models explain the hierarchy in the fermion masses and mixings, and predict the structure of the flavoured soft SUSY breaking terms. In such a situation, both SUSY flavour and CP problems do not exist. We use electric dipole moments and lepton flavour violation processes to distinguish between these models, and place constraints on the SUSY parameter space.

  15. Magnetic polarizabilities of light mesons in SU(3 lattice gauge theory

    Directory of Open Access Journals (Sweden)

    E.V. Luschevskaya

    2015-09-01

    Full Text Available We investigate the ground state energies of neutral pseudoscalar and vector meson in SU(3 lattice gauge theory in the strong abelian magnetic field. The energy of ρ0 meson with zero spin projection sz=0 on the axis of the external magnetic field decreases, while the energies with non-zero spins sz=−1 and +1 increase with the field. The energy of π0 meson decreases as a function of the magnetic field. We calculate the magnetic polarizabilities of pseudoscalar and vector mesons for lattice volume 184. For ρ0 with spin |sz|=1 and π0 meson the polarizabilities in the continuum limit have been evaluated. We do not observe any evidence in favour of tachyonic mode existence.

  16. Heavy-heavy-light quark potential in SU(3) lattice QCD

    International Nuclear Information System (INIS)

    Yamamoto, Arata; Suganuma, Hideo; Iida, Hideaki

    2008-01-01

    We perform the first study for the heavy-heavy-light quark (QQq) potential in SU(3) quenched lattice QCD with the Coulomb gauge. The calculations are done with the standard gauge and O(a)-improved Wilson fermion action on the 16 4 lattice at β=6.0. We calculate the energy of QQq systems as the function of the distance R between the two heavy quarks, and find that the QQq potential is well described with a Coulomb plus linear potential form up to the intermediate distance R≤0.8 fm. Compared to the static three-quark case, the effective string tension between the heavy quarks is significantly reduced by the finite-mass valence quark effect. This reduction is considered to be a general property for baryons

  17. Color fields of the static pentaquark system computed in SU(3) lattice QCD

    Science.gov (United States)

    Cardoso, Nuno; Bicudo, Pedro

    2013-02-01

    We compute the color fields of SU(3) lattice QCD created by static pentaquark systems, in a 243×48 lattice at β=6.2 corresponding to a lattice spacing a=0.07261(85)fm. We find that the pentaquark color fields are well described by a multi-Y-type shaped flux tube. The flux tube junction points are compatible with Fermat-Steiner points minimizing the total flux tube length. We also compare the pentaquark flux tube profile with the diquark-diantiquark central flux tube profile in the tetraquark and the quark-antiquark fundamental flux tube profile in the meson, and they match, thus showing that the pentaquark flux tubes are composed of fundamental flux tubes.

  18. Color fields computed in SU(3) lattice QCD for the static tetraquark system

    International Nuclear Information System (INIS)

    Cardoso, Nuno; Cardoso, Marco; Bicudo, Pedro

    2011-01-01

    The color fields created by the static tetraquark system are computed in quenched SU(3) lattice QCD, in a 24 3 x48 lattice at β=6.2 corresponding to a lattice spacing a=0.07261(85) fm. We find that the tetraquark color fields are well described by a double-Y, or butterfly, shaped flux tube. The two flux-tube junction points are compatible with Fermat points minimizing the total flux-tube length. We also compare the diquark-diantiquark central flux-tube profile in the tetraquark with the quark-antiquark fundamental flux-tube profile in the meson, and they match, thus showing that the tetraquark flux tubes are composed of fundamental flux tubes.

  19. Application of cinchona-sulfonate-based chiral zwitterionic ion exchangers for the separation of proline-containing dipeptide rotamers and determination of on-column isomerization parameters from dynamic elution profiles.

    Science.gov (United States)

    Wernisch, Stefanie; Trapp, Oliver; Lindner, Wolfgang

    2013-09-17

    The interconversion of cis and trans isomers of dipeptides containing C-terminal proline was studied by dynamic chromatography on zwitterionic chiral stationary phases at temperatures ranging from -15°C to +45°C The cis-trans isomers could be separated below 0°C and above 0-10°C plateau formation and peak coalescence phenomena occurred, which is characteristic for a dynamic process at the time-scale of partitioning. At and above room temperature, full coalescence was observed, which allowed separations of enantiomers without interference from interconversion effects. Analysis of the dynamic elution profiles of the interconverting peptides allowed the determination of isomerization rate constants and thermodynamic activation parameters (isomerization enthalpy, entropy and activation energy). In accordance with established results, isomerization rates and thermodynamic parameters were found to depend on the nature of the N-terminal amino acid. Isomerization barriers were only slightly lower than values determined with other methods but significant differences in the relative contributions of the activation enthalpy and entropy as well as isomerization rates pointed toward selector-moderated isomerization dynamics. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Traces of chiral symmetry on light planes

    International Nuclear Information System (INIS)

    Sazdjian, Hagop.

    1975-01-01

    The possibility of a description of the hadronic world by field theories defined on light planes and formulated in terms of three interacting quark field variables has been investigated. The framework of models where the chiral symmetry breaking is produced by the only mechanical masses of quarks has been considered. The hypothesis that the light plane charges generate in the real world approximate symmetries of one particle states has also been emitted. The projection of the algebraic structure of the observables in the space of physical states have yielded various relations in terms of the masses and couplings of the low lying mesons. They seem to be in agreement with experimental data, and suggest the consistency of the adopted model to describe symmetry breaking phenomena. The quark mechanical masses m(u) approximately 30MeV and m(s) approximately 200MeV have also been estimated. The smallness of these masses in respect to those of hadrons seems to indicate that they do not constitute the only mass scale of the hadronic world, but that there should exist another scale parameter, independent of the quark mechanical masses, and symmetric of SU(3) [fr

  1. Detecting the chirality for coupled quantum dots

    International Nuclear Information System (INIS)

    Cao Huijuan; Hu Lian

    2008-01-01

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots

  2. Non-perturbative chiral corrections for lattice QCD

    International Nuclear Information System (INIS)

    Thomas, A.W.; Leinweber, D.B.; Lu, D.H.

    2002-01-01

    We explore the chiral aspects of extrapolation of observables calculated within lattice QCD, using the nucleon magnetic moments as an example. Our analysis shows that the biggest effects of chiral dynamics occur for quark masses corresponding to a pion mass below 600 MeV. In this limited range chiral perturbation theory is not rapidly convergent, but we can develop some understanding of the behaviour through chiral quark models. This model dependent analysis leads us to a simple Pade approximant which builds in both the limits m π → 0 and m π → ∞ correctly and permits a consistent, model independent extrapolation to the physical pion mass which should be extremely reliable. (author)

  3. An analytic analysis of the pion decay constant in three-flavoured chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Ananthanarayan, B.; Ghosh, Shayan [Indian Institute of Science, Centre for High Energy Physics, Bangalore, Karnataka (India); Bijnens, Johan [Lund University, Department of Astronomy and Theoretical Physics, Lund (Sweden)

    2017-07-15

    A representation of the two-loop contribution to the pion decay constant in SU(3) chiral perturbation theory is presented. The result is analytic up to the contribution of the three (different) mass sunset integrals, for which an expansion in their external momentum has been taken. We also give an analytic expression for the two-loop contribution to the pion mass based on a renormalized representation and in terms of the physical eta mass. We find an expansion of F{sub π} and M{sub π}{sup 2} in the strange-quark mass in the isospin limit, and we perform the matching of the chiral SU(2) and SU(3) low-energy constants. A numerical analysis demonstrates the high accuracy of our representation, and the strong dependence of the pion decay constant upon the values of the low-energy constants, especially in the chiral limit. Finally, we present a simplified representation that is particularly suitable for fitting with available lattice data. (orig.)

  4. Evaporation rate-based selection of supramolecular chirality.

    Science.gov (United States)

    Hattori, Shingo; Vandendriessche, Stefaan; Koeckelberghs, Guy; Verbiest, Thierry; Ishii, Kazuyuki

    2017-03-09

    We demonstrate the evaporation rate-based selection of supramolecular chirality for the first time. P-type aggregates prepared by fast evaporation, and M-type aggregates prepared by slow evaporation are kinetic and thermodynamic products under dynamic reaction conditions, respectively. These findings provide a novel solution reaction chemistry under the dynamic reaction conditions.

  5. Non-uniform chiral phase in effective chiral quark models

    International Nuclear Information System (INIS)

    Sadzikowski, M.; Broniowski, W.

    2000-01-01

    We analyze the phase diagram in effective chiral quark models (the Nambu-Jona-Lasinio model, the σ-model with quarks) and show that at the mean-field level a phase with a periodically-modulated chiral fields separates the usual phases with broken and restored chiral symmetry. A possible signal of such a phase is the production of multipion jets travelling in opposite directions, with individual pions having momenta of the order of several hundred MeV. This signal can be interpreted in terms of disoriented chiral condensates. (author)

  6. q-deformed charged fermion coherent states and SU(3) charged, Hyper-charged fermion coherent states

    International Nuclear Information System (INIS)

    Hao Sanru; Li Guanghua; Long Junyan

    1994-01-01

    By virtue of the algebra of the q-deformed fermion oscillators, the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are discussed. The explicit forms of the two kinds of coherent states mentioned above are obtained by making use of the completeness of base vectors in the q-fermion Fock space. By comparing the q-deformed results with the ordinary results, it is found that the q-deformed charged fermion coherent states and SU(3) charged, hyper-charged fermion coherent states are automatically reduced to the ordinary charged fermion coherent states and SU(3) charged hyper-charged fermion coherent states if the deformed parameter q→1

  7. Confining strings in the Abelian-projected SU(3)-gluodynamics. Pt. 2. 4D case with θ-term

    International Nuclear Information System (INIS)

    Antonov, D.

    2001-01-01

    The generalization of 4D confining string theory to the SU(3)-inspired case is derived. It describes string representation of the Wilson loop in the SU(3) analogue of compact QED extended by the θ-term. It is shown that although the obtained theory of confining strings differs from that of compact QED, their low-energy limits have the same functional form. This fact leads to the appearance of the string θ-term in the low-energy limit of the SU(3)-inspired confining string theory. In particular, it is shown that in the extreme strong-coupling regime, the crumpling of string world sheets could disappear owing to the string θ-term at θ = π/12. Finally, some characteristic features of the SU(N) case are pointed out. (orig.)

  8. Chiral magnetic effect of light

    Science.gov (United States)

    Hayata, Tomoya

    2018-05-01

    We study a photonic analog of the chiral magnetic (vortical) effect. We discuss that the vector component of magnetoelectric tensors plays a role of "vector potential," and its rotation is understood as "magnetic field" of a light. Using the geometrical optics approximation, we show that "magnetic fields" cause an anomalous shift of a wave packet of a light through an interplay with the Berry curvature of photons. The mechanism is the same as that of the chiral magnetic (vortical) effect of a chiral fermion, so that we term the anomalous shift "chiral magnetic effect of a light." We further study the chiral magnetic effect of a light beyond geometric optics by directly solving the transmission problem of a wave packet at a surface of a magnetoelectric material. We show that the experimental signal of the chiral magnetic effect of a light is the nonvanishing of transverse displacements for the beam normally incident to a magnetoelectric material.

  9. Chiral Responsive Liquid Quantum Dots.

    Science.gov (United States)

    Zhang, Jin; Ma, Junkai; Shi, Fangdan; Tian, Demei; Li, Haibing

    2017-08-01

    How to convert the weak chiral-interaction into the macroscopic properties of materials remains a huge challenge. Here, this study develops highly fluorescent, selectively chiral-responsive liquid quantum dots (liquid QDs) based on the hydrophobic interaction between the chiral chains and the oleic acid-stabilized QDs, which have been designated as (S)-1810-QDs. The fluorescence spectrum and liquidity of thermal control demonstrate the fluorescence properties and the fluidic behavior of (S)-1810-QDs in the solvent-free state. Especially, (S)-1810-QDs exhibit a highly chiral-selective response toward (1R, 2S)-2-amino-1,2-diphenyl ethanol. It is anticipated that this study will facilitate the construction of smart chiral fluidic sensors. More importantly, (S)-1810-QDs can become an attractive material for chiral separation. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chiral colour and axigluons

    International Nuclear Information System (INIS)

    Cuypers, F.

    1989-01-01

    The authors studies the phenomenological implications of the Chiral Colour model which allow him to derive experimental bounds on the axigluon mass or to predict deviations from the Standard Model. After a short introduction to the theory, the author examines the way it modifies the standard decay of quarkonium. Comparison with the observed lifetime of the upsilon allows him to exclude the existence of axigluons lighter than 9 GeV. (Others have since extended the work and were able to increase this limit to 25 GeV.) He then studies the Chiral Colour contribution to the hadronic cross-section in the electron-positron scattering and derive a conservative lower bound of 50 GeV for the axigluon mass. Finally, he predicts observable enhancements of the lifetime and rare decay channels of the Z O in the presence of light axigluons

  11. Finite nuclei in relativistic models with a light chiral scalar meson

    International Nuclear Information System (INIS)

    Serot, B.D.; Furnstahl, R.J.

    1993-01-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed

  12. Chiral Biomarkers in Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  13. On chiral bosonization

    International Nuclear Information System (INIS)

    Bastianelli, F.

    1991-01-01

    We examine the bosonization of chiral fermions in a gravitational background, using a path integral approach. The bosonic model is given by an action proposed some time ago by Floreanini and Jackiw, suitably coupled to gravity. We use a regulator for the path integral measure obtained from the general construction of Diaz, Hatsuda, Troost, van Nieuwenhuizen and Van Proeyen. We show that the effective actions are identical. (orig.)

  14. Minimal Regge model for meson--baryon scattering: duality, SU(3) and phase-modified absorptive cuts

    International Nuclear Information System (INIS)

    Egli, S.E.

    1975-10-01

    A model is presented which incorporates economically all of the modifications to simple SU(3)-symmetric dual Regge pole theory which are required by existing data on 0 -1 / 2 + → -1 / 2 + processes. The basic assumptions are no-exotics duality, minimally broken SU(3) symmetry, and absorptive Regge cuts phase-modified by the Ringland prescription. First it is described qualitatively how these assumptions suffice for the description of all measured reactions, and then the results of a detailed fit to 1987 data points are presented for 18 different reactions. (auth)

  15. Identifying chiral bands in real nuclei

    International Nuclear Information System (INIS)

    Shirinda, O.; Lawrie, E.A.

    2012-01-01

    The application of the presently used fingerprints of chiral bands (originally derived for strongly broken chirality) is investigated for real chiral systems. In particular the chiral fingerprints concerning the B(M1) staggering patterns and the energy staggering are studied. It is found that both fingerprints show considerable changes for real chiral systems, a behaviour that creates a significant risk for misinterpretation of the experimental data and can lead to a failure to identify real chiral systems. (orig.)

  16. Chiral fermions in asymptotically safe quantum gravity.

    Science.gov (United States)

    Meibohm, J; Pawlowski, J M

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  17. Chiral algebras of class S

    CERN Document Server

    Beem, Christopher; Rastelli, Leonardo; van Rees, Balt C.

    2015-01-01

    Four-dimensional N=2 superconformal field theories have families of protected correlation functions that possess the structure of two-dimensional chiral algebras. In this paper, we explore the chiral algebras that arise in this manner in the context of theories of class S. The class S duality web implies nontrivial associativity properties for the corresponding chiral algebras, the structure of which is best summarized in the language of generalized topological quantum field theory. We make a number of conjectures regarding the chiral algebras associated to various strongly coupled fixed points.

  18. Chiral doublet bands in odd-A nuclei 103,105Rh

    International Nuclear Information System (INIS)

    Qi Bin; Wang Shouyu; Zhang Shuangquan; Meng Jie

    2010-01-01

    Spontaneous chiral symmetry breaking is a phenomenon of general interest in chemistry, biology and particle physics. Since the pioneering work of nuclear chirality in 1997 [1] , much effort has been devoted to further explore this interesting phenomenon. Following the observation of chiral doublet bands in N = 75 isotones [2] more candidates have been reported over more than 20 nuclei experimentally in A∼100, 130 and 190 mass regions including odd-odd, odd-A and even-even nuclei. However, the identification and the intrinsic mechanism of candidate chiral doublet bands are still under debate. Although various versions of particle rotor model (PRM) and titled axis cranking model (TAC) had been applied to study chiral bands, the essential starting point for understanding their properties is based on the ideal picture, i.e. one particle and one hole coupled with a γ = 30 rigid triaxial rotor. On the other hand, from the investigation of semiclassical TAC based on the mean field, it is shown that the chiral doublet bands in the real nuclei are not always consistent with the static chirality, but mixed with the character of dynamic chirality. Thus it is necessary to construct a fully quantal model for the description of chiral doublet bands in the real nuclei, which is aimed to understand the properties of chiral doublet bands in real nuclei, and to present clearly the picture and character of chiral motion [3] . Recently, we have developed the multi-particle multi-hole coupled with the triaxial rotor model, which is able to describe the nuclear rotation related to many valence nucleons. Adopting this model, chirality in odd-A nuclei 103,105 Rh with πg 9/2 -1 ⊗νh 11/2 2 configuration and in odd-A nucleus 135 Nd with πh 11/2 2 ⊗νh 11/2 1 configuration [4] are studied in a fully quantal approach. For the chiral doublet bands, the observed energies and the B(M1) and B(E2) values are reproduced very well. Root mean square values of the angular momentum components

  19. Chiral condensate from the twisted mass Dirac operator spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration

    2013-03-15

    We present the results of our computation of the chiral condensate with N{sub f}=2 and N{sub f}=2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavours.

  20. Chiral condensate from the twisted mass Dirac operator spectrum

    International Nuclear Information System (INIS)

    Cichy, Krzysztof; Jansen, Karl; Cyprus Univ., Nicosia

    2013-03-01

    We present the results of our computation of the chiral condensate with N f =2 and N f =2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N f =2 and N f =2+1+1 dynamical flavours.

  1. Evaluation of physical constants and operators in the SU(2) and SU(3) lattice gauge theory

    International Nuclear Information System (INIS)

    Tsuchida, R.H.

    1987-01-01

    Wilson loops and Wilson lines in the fundamental and the adjoint representations of SU(2) on the lattice are measured using the icosahedral subgroup and a noise reduction technique. The string tension was evaluated by fitting the expectation value of loops of all sizes to a 6-parameter curve. From the Wilson lines in the adjoint representation of SU(2), two kinds of gluon potentials were measured: the gluon-gluon interaction potential and the gluon-image interaction potential. The effective mass of the gluon was evaluated on each of those potentials and compared. In SU(3), the contribution of s anti σ/sub μnu/F/sub μnu/d operator to the correction of effective weak four-quark operator in the measurement of ΔI = 1/2 amplitude of kaon decay is examined. The renormalization of the critical hopping parameter is calculated perturbatively and compared with the Monte Carlo results. The VEV of psi anti psi operator is measured on the lattice. In the hopping parameter renormalization calculation and the psi anti psi measurements, the effects of expanding of Feynman diagrams in power of a, the lattice spacing, are examined

  2. Sum Rules of Charm CP Asymmetries beyond the SU(3)_{F} Limit.

    Science.gov (United States)

    Müller, Sarah; Nierste, Ulrich; Schacht, Stefan

    2015-12-18

    We find new sum rules between direct CP asymmetries in D meson decays with coefficients that can be determined from a global fit to branching ratio data. Our sum rules eliminate the penguin topologies P and PA, which cannot be determined from branching ratios. In this way, we can make predictions about direct CP asymmetries in the standard model without ad hoc assumptions on the sizes of penguin diagrams. We consistently include first-order SU(3)_{F} breaking in the topological amplitudes extracted from the branching ratios. By confronting our sum rules with future precise data from LHCb and Belle II, one will identify or constrain new-physics contributions to P or PA. The first sum rule correlates the CP asymmetries a_{CP}^{dir} in D^{0}→K^{+}K^{-}, D^{0}→π^{+}π^{-}, and D^{0}→π^{0}π^{0}. We study the region of the a_{CP}^{dir}(D^{0}→π^{+}π^{-})-a_{CP}^{dir}(D^{0}→π^{0}π^{0}) plane allowed by current data and find that our sum rule excludes more than half of the allowed region at 95% C.L. Our second sum rule correlates the direct CP asymmetries in D^{+}→K[over ¯]^{0}K^{+}, D_{s}^{+}→K^{0}π^{+}, and D_{s}^{+}→K^{+}π^{0}.

  3. Developing and testing the density of states FFA method in the SU(3) spin model

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, Mario; Gattringer, Christof, E-mail: christof.gattringer@uni-graz.at; Törek, Pascal

    2016-12-15

    The Density of States Functional Fit Approach (DoS FFA) is a recently proposed modern density of states technique suitable for calculations in lattice field theories with a complex action problem. In this article we present an exploratory implementation of DoS FFA for the SU(3) spin system at finite chemical potential μ – an effective theory for the Polyakov loop. This model has a complex action problem similar to the one of QCD but also allows for a dual simulation in terms of worldlines where the complex action problem is solved. Thus we can compare the DoS FFA results to the reference data from the dual simulation and assess the performance of the new approach. We find that the method reproduces the observables from the dual simulation for a large range of μ values, including also phase transitions, illustrating that DoS FFA is an interesting approach for exploring phase diagrams of lattice field theories with a complex action problem.

  4. Simplified chiral superfield propagators for chiral constant mass superfields

    International Nuclear Information System (INIS)

    Srivastava, P.P.

    1983-01-01

    Unconstrained superfield potentials are introduced to derive Feynman rules for chiral superfields following conventional procedure which is easy and instructive. Propagators for the case when the mass parameters are constant chiral superfields are derived. The propagators reported here are very simple compared to those available in literature and allow a manageable calculation of higher loops. (Author) [pt

  5. Analysis of enantiomeric and non-enantiomeric monoterpenes in plant emissions using portable dynamic air sampling/solid-phase microextraction (PDAS-SPME) and chiral gas chromatography/mass spectrometry

    Science.gov (United States)

    Yassaa, Noureddine; Williams, Jonathan

    A portable dynamic air sampler (PDAS) using a porous polymer solid-phase microextraction (SPME) fibre has been validated for the determination of biogenic enantiomeric and non-enantiomeric monoterpenes in air. These compounds were adsorbed in the field, and then thermally desorbed at 250 °C in a gas chromatograph injector port connected via a β-cyclodextrin capillary separating column to a mass spectrometer. The optimized method has been applied for investigating the emissions of enantiomeric monoterpenes from Pseudotsuga menziesii (Douglas-fir), Rosmarinus officinalis (Rosemary) and Lavandula lanata (Lavender) which were selected as representative of coniferous trees and aromatic plants, respectively. The enantiomers of α-pinene, sabinene, camphene, δ-3-carene, β-pinene, limonene, β-phellandrene, 4-carene and camphor were successfully determined in the emissions from the three plants. While Douglas-fir showed a strong predominance toward (-)-enantiomers, Rosemary and Lavender demonstrated a large variation in enantiomeric distribution of monoterpenes. The simplicity, rapidity and sensitivity of dynamic sampling with porous polymer coated SPME fibres coupled to chiral capillary gas chromatography/mass spectrometry (GC/MS) makes this method potentially useful for in-field investigations of atmosphere-biosphere interactions and studies of optically explicit atmospheric chemistry.

  6. Chiral nanophotonics chiral optical properties of plasmonic systems

    CERN Document Server

    Schäferling, Martin

    2017-01-01

    This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .

  7. Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry

    Directory of Open Access Journals (Sweden)

    Michiya Fujiki

    2014-08-01

    Full Text Available Controlled mirror symmetry breaking arising from chemical and physical origin is currently one of the hottest issues in the field of supramolecular chirality. The dynamic twisting abilities of solvent molecules are often ignored and unknown, although the targeted molecules and polymers in a fluid solution are surrounded by solvent molecules. We should pay more attention to the facts that mostly all of the chemical and physical properties of these molecules and polymers in the ground and photoexcited states are significantly influenced by the surrounding solvent molecules with much conformational freedom through non-covalent supramolecular interactions between these substances and solvent molecules. This review highlights a series of studies that include: (i historical background, covering chiral NaClO3 crystallization in the presence of d-sugars in the late 19th century; (ii early solvent chirality effects for optically inactive chromophores/fluorophores in the 1960s–1980s; and (iii the recent development of mirror symmetry breaking from the corresponding achiral or optically inactive molecules and polymers with the help of molecular chirality as the solvent use quantity.

  8. Remark on the higher order perturbative studies of flavor breaking in the standard SU(3) skyrmion quantum mechanics

    International Nuclear Information System (INIS)

    Li Jinping; Yan Mulin

    1997-01-01

    A quantitative criterion is proposed for testing the rationality of an effective QCD baryon theory. The higher order corrections of the standard SU(3) Skyrme model to the Gell-Mann-Okubo relations for baryons are studied according to the criterion, and some interesting results are presented. A possible prescription is recommended

  9. Signature effect in the SU(3) limit of SU(6) particle-quadrupole phonon coupling model (PTQM)

    International Nuclear Information System (INIS)

    Paar, V.; Brant, S.

    1981-09-01

    Systematic deviations from the J(J + 1) energy rule in the SU(3) limit of PTQM are studied and interpreted in terms of signature from the rotational model. The signature effect, which is in the rotational mode introduced via the Coriolis force, is generated here by the correlation of PTQM. (author)

  10. Chiral Cliffs: Investigating the Influence of Chirality on Binding Affinity.

    Science.gov (United States)

    Schneider, Nadine; Lewis, Richard A; Fechner, Nikolas; Ertl, Peter

    2018-05-11

    Chirality is understood by many as a binary concept: a molecule is either chiral or it is not. In terms of the action of a structure on polarized light, this is indeed true. When examined through the prism of molecular recognition, the answer becomes more nuanced. In this work, we investigated chiral behavior on protein-ligand binding: when does chirality make a difference in binding activity? Chirality is a property of the 3D structure, so recognition also requires an appreciation of the conformation. In many situations, the bioactive conformation is undefined. We set out to address this by defining and using several novel 2D descriptors to capture general characteristic features of the chiral center. Using machine-learning methods, we built different predictive models to estimate if a chiral pair (a set of two enantiomers) might exhibit a chiral cliff in a binding assay. A set of about 3800 chiral pairs extracted from the ChEMBL23 database was used to train and test our models. By achieving an accuracy of up to 75 %, our models provide good performance in discriminating chiral cliffs from non-cliffs. More importantly, we were able to derive some simple guidelines for when one can reasonably use a racemate and when an enantiopure compound is needed in an assay. We critically discuss our results and show detailed examples of using our guidelines. Along with this publication we provide our dataset, our novel descriptors, and the Python code to rebuild the predictive models. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Lowest-lying even-parity anti B{sub s} mesons: heavy-quark spin-flavor symmetry, chiral dynamics, and constituent quark-model bare masses

    Energy Technology Data Exchange (ETDEWEB)

    Albaladejo, M.; Fernandez-Soler, P.; Nieves, J.; Ortega, P.G. [Centro Mixto CSIC-Universidad de Valencia, Instituto de Fisica Corpuscular (IFIC), Institutos de Investigacion de Paterna, Aptd. 22085, Valencia (Spain)

    2017-03-15

    The discovery of the D{sup *}{sub s0}(2317) and D{sub s1}(2460) resonances in the charmed-strange meson spectra revealed that formerly successful constituent quark models lose predictability in the vicinity of two-meson thresholds. The emergence of non-negligible effects due to meson loops requires an explicit evaluation of the interplay between Q anti q and (Q anti q)(q anti q) Fock components. In contrast to the c anti s sector, there is no experimental evidence of J{sup P} = 0{sup +}, 1{sup +} bottom-strange states yet. Motivated by recent lattice studies, in this work the heavy-quark partners of the D{sub s0}{sup *}(2317) and D{sub s1}(2460) states are analyzed within a heavy meson chiral unitary scheme. As a novelty, the coupling between the constituent quark-model P-wave anti B{sub s} scalar and axial mesons and the anti B{sup (*)}K channels is incorporated employing an effective interaction, consistent with heavy-quark spin symmetry, constrained by the lattice energy levels. (orig.)

  12. Lattice regularized chiral perturbation theory

    International Nuclear Information System (INIS)

    Borasoy, Bugra; Lewis, Randy; Ouimet, Pierre-Philippe A.

    2004-01-01

    Chiral perturbation theory can be defined and regularized on a spacetime lattice. A few motivations are discussed here, and an explicit lattice Lagrangian is reviewed. A particular aspect of the connection between lattice chiral perturbation theory and lattice QCD is explored through a study of the Wess-Zumino-Witten term

  13. Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities.

  14. Chiral analysis of baryon form factors

    Energy Technology Data Exchange (ETDEWEB)

    Gail, T.A.

    2007-11-08

    This work presents an extensive theoretical investigation of the structure of the nucleon within the standard model of elementary particle physics. In particular, the long range contributions to a number of various form factors parametrizing the interactions of the nucleon with an electromagnetic probe are calculated. The theoretical framework for those calculations is chiral perturbation theory, the exact low energy limit of Quantum Chromo Dynamics, which describes such long range contributions in terms of a pion-cloud. In this theory, a nonrelativistic leading one loop order calculation of the form factors parametrizing the vector transition of a nucleon to its lowest lying resonance, the {delta}, a covariant calculation of the isovector and isoscalar vector form factors of the nucleon at next to leading one loop order and a covariant calculation of the isoscalar and isovector generalized vector form factors of the nucleon at leading one loop order are performed. In order to perform consistent loop calculations in the covariant formulation of chiral perturbation theory an appropriate renormalization scheme is defined in this work. All theoretical predictions are compared to phenomenology and results from lattice QCD simulations. These comparisons allow for a determination of the low energy constants of the theory. Furthermore, the possibility of chiral extrapolation, i.e. the extrapolation of lattice data from simulations at large pion masses down to the small physical pion mass is studied in detail. Statistical as well as systematic uncertainties are estimated for all results throughout this work. (orig.)

  15. Flatspace chiral supergravity

    Science.gov (United States)

    Bagchi, Arjun; Basu, Rudranil; Detournary, Stéphane; Parekh, Pulastya

    2018-05-01

    We propose a holographic duality between a 2 dimensional (2d) chiral superconformal field theory and a certain theory of supergravity in 3d with flatspace boundary conditions that is obtained as a double scaling limit of a parity breaking theory of supergravity. We show how the asymptotic symmetries of the bulk theory reduce from the "despotic" super Bondi-Metzner-Sachs algebra (or equivalently the inhomogeneous super Galilean conformal algebra) to a single copy of the super-Virasoro algebra in this limit and also reproduce the same reduction from a study of null vectors in the putative 2d dual field theory.

  16. Effects of dynamic diffraction conditions on magnetic parameter determination in a double perovskite Sr{sub 2}FeMoO{sub 6} using electron energy-loss magnetic chiral dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.C. [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhong, X.Y., E-mail: xyzhong@mail.tsinghua.edu.cn [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Jin, L. [Peter Grünberg Institute and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, 52425 Jülich (Germany); Chen, X.F. [National Center for Electron Microscopy in Beijing, Key Laboratory of Advanced Materials (MOE), The State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Moritomo, Y. [Graduate School of Pure & Applied Science and Faculty of Pure & Applied Science, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-7571 (Japan); Mayer, J. [Peter Grünberg Institute and Ernst Ruska-Centre for Microscopy and Spectroscopy with Electrons (ER-C), Forschungszentrum Jülich, 52425 Jülich (Germany); Central Facility for Electron Microscopy, RWTH Aachen University, 52074 Aachen (Germany)

    2017-05-15

    Electron energy-loss magnetic chiral dichroism (EMCD) spectroscopy, which is similar to the well-established X-ray magnetic circular dichroism spectroscopy (XMCD), can determine the quantitative magnetic parameters of materials with high spatial resolution. One of the major obstacles in quantitative analysis using the EMCD technique is the relatively poor signal-to-noise ratio (SNR), compared to XMCD. Here, in the example of a double perovskite Sr{sub 2}FeMoO{sub 6}, we predicted the optimal dynamical diffraction conditions such as sample thickness, crystallographic orientation and detection aperture position by theoretical simulations. By using the optimized conditions, we showed that the SNR of experimental EMCD spectra can be significantly improved and the error of quantitative magnetic parameter determined by EMCD technique can be remarkably lowered. Our results demonstrate that, with enhanced SNR, the EMCD technique can be a unique tool to understand the structure-property relationship of magnetic materials particularly in the high-density magnetic recording and spintronic devices by quantitatively determining magnetic structure and properties at the nanometer scale. - Highlights: • We demonstrate how to choose the optimal experimental conditions by using dynamical diffraction calculations in Sr{sub 2}FeMoO{sub 6}. • With optimized diffraction conditions, the signal-to-noise ratio of experimental EMCD spectra has been significantly improved. • We have determined orbital to spin magnetic moment ratio of Sr{sub 2}FeMoO{sub 6} quantitatively. • We have discussed the effects of dynamical diffraction conditions on the error bar of quantitative magnetic parameters.

  17. Nanoscale chirality in metal and semiconductor nanoparticles.

    Science.gov (United States)

    Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M

    2016-10-18

    The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.

  18. Chiral perturbation theory

    International Nuclear Information System (INIS)

    Harada, Masayasu

    2009-01-01

    Chiral perturbation theory has been used for great number of phenomenological analyses in low energy QCD as well as the lattice QCD analyses since the creation of the theory by Weinberg in 1979 followed by its consolidation by Gasser and Leutwyler in 1984 and 85. The theory is now the highly established one as the approach based on the effective field theory to search for Green function including quantum correlations in the frame of the systematic expansion technique using Lagrangian which includes all of the terms allowed by the symmetry. This review has been intended to describe how systematically physical quantities are calculated in the framework of the chiral symmetry. Consequently many of the various phenomenological analyses are not taken up here for which other reports are to be referred. Further views are foreseen to be developed based on the theory in addition to numbers of results reported up to the present. Finally π-π scattering is taken up to discuss to what energy scale the theory is available. (S. Funahashi)

  19. Chiral quantum optics.

    Science.gov (United States)

    Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter

    2017-01-25

    Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.

  20. Chiral Lagrangian calculation of nucleon branching ratios in the supersymmetric SU(5) model

    International Nuclear Information System (INIS)

    Chadha, S.; Daniel, M.

    1983-12-01

    The branching ratios are calculated for the two body nucleon decay modes involving pseudoscalars in the minimal SU(5) supersymmetric model with three generations using the techniques of chiral dynamics. (author)

  1. Moments of unpolarized nucleon structure functions in chirally improved lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Goeckeler, Meinulf; Maurer, Thilo; Schaefer, Andreas [University of Regensburg (Germany); Lang, Christian B.; Limmer, Markus [University of Graz (Austria)

    2008-07-01

    We present our results for the lowest moments of unpolarized nucleon structure functions at leading twist. We employ lattice quantum chromodynamics using chirally improved fermions in quenched as well as dynamical simulations.

  2. Chiral perturbation theory with nucleons

    International Nuclear Information System (INIS)

    Meissner, U.G.

    1991-09-01

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon

  3. Chiral Paramagnetic Skyrmion-like Phase in MnSi

    NARCIS (Netherlands)

    Pappas, C.; Lelièvre-Berna, E.; Falus, P.; Bentley, P.M.; Moskvin, E.; Grigoriev, S.; Fouquet, P.; Farago, B.

    2009-01-01

    We present a comprehensive study of chiral fluctuations in the reference helimagnet MnSi by polarized neutron scattering and neutron spin echo spectroscopy, which reveals the existence of a completely left-handed and dynamically disordered phase. This phase may be identified as a spontaneous

  4. Baryon axial charges from chirally improved fermions - first results

    Science.gov (United States)

    Engel, G.; Gattringer, C.; Glozman, L. Y.; Lang, C. B.; Limmer, M.; Mohler, D.; Schäfer, A.

    We present first results from dynamical Chirally Improved (CI) fermion simulations for the axial charge $G_A$ of various hadrons. We work with 16^3x32 lattices of spatial extent 2.4 fm and use the variational method with a suitable basis of Jacobi-smeared interpolators to suppress contaminations from excited states.

  5. Chiral recognition in separation science: an overview.

    Science.gov (United States)

    Scriba, Gerhard K E

    2013-01-01

    Chiral recognition phenomena play an important role in nature as well as analytical separation sciences. In separation sciences such as chromatography and capillary electrophoresis, enantiospecific interactions between the enantiomers of an analyte and the chiral selector are required in order to observe enantioseparations. Due to the large structural variety of chiral selectors applied, different mechanisms and structural features contribute to the chiral recognition process. This chapter briefly illustrates the current models of the enantiospecific recognition on the structural basics of various chiral selectors.

  6. New remarks on chiral bosonization

    International Nuclear Information System (INIS)

    Souza Dutra, A. de

    1992-01-01

    We discuss a certain duality between the constraints appearing in ordinary Lagrangian density and its first order counterpart for the gauged Siegel chiral boson. It is demonstrated the equivalence, at the classical level, of the two versions of the gauged Siegel chiral boson to its corresponding gauged Floreanini-Jackiw chiral bosons. It is also argued that the most general constrained Lagrangian density, that leads to a bosonic field obeying a first order differential equation of motion and preserve simultaneously Lorentz invariance, is just the Floreanini-Jackiw one. (author)

  7. Vector mesons and chiral symmetry

    International Nuclear Information System (INIS)

    Ecker, G.

    1989-01-01

    The ambiguities in the off-shell behaviour of spin-1 exchange can be resolved to O(p 4 ) in the chiral low-energy expansion if the asymptotic behaviour of QCD is properly incorporated. As a consequence, the chiral version of vector (and axial-vector) meson dominance is model independent. Additional high-energy constraints motivated by QCD determine the V,A resonance couplings uniquely. In particular, QCD in its effective chiral realization sucessfully predicts Γ(ρ→2π). 10 refs. (Author)

  8. Nonlinear spectroscopic studies of chiral media

    International Nuclear Information System (INIS)

    Belkin, Mikhail Alexandrovich

    2004-01-01

    Molecular chirality plays an important role in chemistry, biology, and medicine. Traditional optical techniques for probing chirality, such as circular dichroism and Raman optical activity rely on electric-dipole forbidden transitions. As a result, their intrinsic low sensitivity limits their use to probe bulk chirality rather than chiral surfaces, monolayers or thin films often important for chemical or biological systems. Contrary to the traditional chirality probes, chiral signal in sum-frequency generation (SFG) is electric-dipole allowed both on chiral surface and in chiral bulk making it a much more promising tool for probing molecular chirality. SFG from a chiral medium was first proposed in 1965, but had never been experimentally confirmed until this thesis work was performed. This thesis describes a set of experiments successfully demonstrating that chiral SFG responses from chiral monolayers and liquids are observable. It shows that, with tunable inputs, SFG can be used as a sensitive spectroscopic tool to probe chirality in both electronic and vibrational resonances of chiral molecules. The monolayer sensitivity is feasible in both cases. It also discusses the relevant theoretical models explaining the origin and the strength of the chiral signal in vibrational and electronic SFG spectroscopies

  9. Chiral and continuum extrapolation of partially-quenched hadron masses

    International Nuclear Information System (INIS)

    Chris Allton; Wes Armour; Derek Leinweber; Anthony Thomas; Ross Young

    2005-01-01

    Using the finite-range regularization (FRR) of chiral effective field theory, the chiral extrapolation formula for the vector meson mass is derived for the case of partially-quenched QCD. We re-analyze the dynamical fermion QCD data for the vector meson mass from the CP-PACS collaboration. A global fit, including finite lattice spacing effects, of all 16 of their ensembles is performed. We study the FRR method together with a naive polynomial approach and find excellent agreement (∼1%) with the experimental value of M ρ from the former approach. These results are extended to the case of the nucleon mass

  10. Chiral and continuum extrapolation of partially-quenched hadron masses

    Energy Technology Data Exchange (ETDEWEB)

    Chris Allton; Wes Armour; Derek Leinweber; Anthony Thomas; Ross Young

    2005-09-29

    Using the finite-range regularization (FRR) of chiral effective field theory, the chiral extrapolation formula for the vector meson mass is derived for the case of partially-quenched QCD. We re-analyze the dynamical fermion QCD data for the vector meson mass from the CP-PACS collaboration. A global fit, including finite lattice spacing effects, of all 16 of their ensembles is performed. We study the FRR method together with a naive polynomial approach and find excellent agreement ({approx}1%) with the experimental value of M{sub {rho}} from the former approach. These results are extended to the case of the nucleon mass.

  11. Chiral symmetry breaking in a semilocalized magnetic field

    Science.gov (United States)

    Cao, Gaoqing

    2018-03-01

    In this work, we explore the pattern of chiral symmetry breaking and restoration in a solvable magnetic field configuration within the Nambu-Jona-Lasinio model. The special semilocalized static magnetic field can roughly mimic the realistic situation in peripheral heavy ion collisions; thus, the study is important for the dynamical evolution of quark matter. We find that the magnetic-field-dependent contribution from discrete spectra usually dominates over the contribution from continuum spectra and chiral symmetry breaking is locally catalyzed by both the magnitude and scale of the magnetic field. The study is finally extended to the case with finite temperature or chemical potential.

  12. Semidirect product gauge group [SU(3)cxSU(2)L]xU(1)Y and quantization of hypercharge

    International Nuclear Information System (INIS)

    Hattori, Chuichiro; Matsunaga, Mamoru; Matsuoka, Takeo

    2011-01-01

    In the standard model the hypercharges of quarks and leptons are not determined by the gauge group SU(3) c xSU(2) L xU(1) Y alone. We show that, if we choose the semidirect product group [SU(3) c xSU(2) L ]xU(1) Y as its gauge group, the hyperchages are settled to be n/6 mod Z(n=0,1,3,4). In addition, the conditions for gauge-anomaly cancellation give strong constraints. As a result, the ratios of the hypercharges are uniquely determined and the gravitational anomaly is automatically canceled. The standard charge assignment to quarks and leptons can be properly reproduced. For exotic matter fields their hypercharges are also discussed.

  13. Lanthanide tris(β-diketonates) as useful probes for chirality determination of biological amino alcohols in vibrational circular dichroism: ligand to ligand chirality transfer in lanthanide coordination sphere.

    Science.gov (United States)

    Miyake, Hiroyuki; Terada, Keiko; Tsukube, Hiroshi

    2014-06-01

    A series of lanthanide tris(β-diketonates) functioned as useful chirality probes in the vibrational circular dichroism (VCD) characterization of biological amino alcohols. Various chiral amino alcohols induced intense VCD signals upon ternary complexation with racemic lanthanide tris(β-diketonates). The VCD signals observed around 1500 cm(-1) (β-diketonate IR absorption region) correlated well with the stereochemistry and enantiomeric purity of the targeted amino alcohol, while the corresponding monoalcohol, monoamine, and diol substrates induced very weak VCD signals. The high-coordination number and dynamic property of the lanthanide complex offer an effective chirality VCD probing of biological substrates. © 2014 Wiley Periodicals, Inc.

  14. The light bound states of N=1 supersymmetric SU(3) Yang-Mills theory on the lattice

    Science.gov (United States)

    Ali, Sajid; Bergner, Georg; Gerber, Henning; Giudice, Pietro; Montvay, Istvan; Münster, Gernot; Piemonte, Stefano; Scior, Philipp

    2018-03-01

    In this article we summarise our results from numerical simulations of N=1 supersymmetric Yang-Mills theory with gauge group SU(3). We use the formulation of Curci and Veneziano with clover-improved Wilson fermions. The masses of various bound states have been obtained at different values of the gluino mass and gauge coupling. Extrapolations to the limit of vanishing gluino mass indicate that the bound states form mass-degenerate supermultiplets.

  15. Pushing the pseudo-SU(3) model towards its limits: Excited bands in even-even Dy isotopes

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Hirsch, Jorge G.

    2004-01-01

    The energetics of states belonging to normal parity bands in even-even dysprosium isotopes, and their B(E2) transition strengths, are studied using an extended pseudo-SU(3) shell model. States with pseudospin 1 are added to the standard pseudospin 0 space, allowing for a proper description of known excited normal parity bands. A realistic Hamiltonian is employed. Both the success of model and its limitations are discussed

  16. Phenomenology of the spontaneous C P violation in SU(3)L x U(1)Y electroweak models

    International Nuclear Information System (INIS)

    Epele, Luis N.; Gomez Dumm, Daniel A.

    1994-01-01

    This work studies the phenomenological consequence of the spontaneous C P violation in a SU(3) L x U(1) Y model with three Higgs triplets and one sextuplet, which has been recently proposed. Since this C P-violating effects are due to the presence of complex vacuum expectation values in the Higgs sector, our analysis requires a detailed study of the enlarged potential

  17. Deformed chiral nucleons

    Energy Technology Data Exchange (ETDEWEB)

    Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics

    1991-04-18

    We compute properties of the nucleon in a hybrid chiral model based on the linear {sigma}-model with quark degrees of freedom treated explicity. In contrast to previous calculations, we do not use the hedgehog ansatz. Instead we solve self-consistently for a state with well defined spin and isospin projections. We allow this state to be deformed and find that, although d- and g-state admixtures in the predominantly s-state single quark wave functions are not large, they have profound effects on many nucleon properties including magnetic moments and g{sub A}. Our best fit parameters provide excellent agreement with experiment but are much different from those determined in hedgehog calculations. (orig.).

  18. Amino Acids and Chirality

    Science.gov (United States)

    Cook, Jamie E.

    2012-01-01

    Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.

  19. Disoriented Chiral Condensates in High-Energy Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Randrup, Jorgen

    2000-10-18

    This brief lecture series discusses how our current understanding of chiral symmetry may be tested more globally in high-energy nuclear collisions by suitable extraction of pionic observables. After briefly recalling the general features of chiral symmetry, we focus on the SU(2) linear sigma model and show how a semi-classical mean-field treatment makes it possible to calculate its statistical properties, including the chiral phase diagram. Subsequently, we consider scenarios of relevance to high-energy collisions and discuss the features of the ensuing non-equilibrium dynamics and the associated characteristic signals. Finally, we illustrate how the presence of vacuum fluctuations or the inclusion of strangeness may affect the results quantitatively.

  20. Hamiltonian lattice studies of chiral meson field theories

    International Nuclear Information System (INIS)

    Chin, S.A.

    1998-01-01

    The latticization of the non-linear sigma model reduces a chiral meson field theory to an O(4) spin lattice system with quantum fluctuations. The result is an interesting marriage between quantum many-body theory and classical spin systems. By solving the resulting lattice Hamiltonian by Monte Carlo methods, the dynamics and thermodynamics of pions can be determined non-perturbatively. In a variational 16 3 lattice study, the ground state chiral phase transition is shown to be first order. Moreover, as the chiral phase transition is approached, the mass gap of pionic collective modes with quantum number of the ω vector meson drops toward zero. (Copyright (1998) World Scientific Publishing Co. Pte. Ltd)

  1. Spontaneous chiral symmetry breaking in early molecular networks

    Directory of Open Access Journals (Sweden)

    Markovitch Omer

    2010-05-01

    Full Text Available Abstract Background An important facet of early biological evolution is the selection of chiral enantiomers for molecules such as amino acids and sugars. The origin of this symmetry breaking is a long-standing question in molecular evolution. Previous models addressing this question include particular kinetic properties such as autocatalysis or negative cross catalysis. Results We propose here a more general kinetic formalism for early enantioselection, based on our previously described Graded Autocatalysis Replication Domain (GARD model for prebiotic evolution in molecular assemblies. This model is adapted here to the case of chiral molecules by applying symmetry constraints to mutual molecular recognition within the assembly. The ensuing dynamics shows spontaneous chiral symmetry breaking, with transitions towards stationary compositional states (composomes enriched with one of the two enantiomers for some of the constituent molecule types. Furthermore, one or the other of the two antipodal compositional states of the assembly also shows time-dependent selection. Conclusion It follows that chiral selection may be an emergent consequence of early catalytic molecular networks rather than a prerequisite for the initiation of primeval life processes. Elaborations of this model could help explain the prevalent chiral homogeneity in present-day living cells. Reviewers This article was reviewed by Boris Rubinstein (nominated by Arcady Mushegian, Arcady Mushegian, Meir Lahav (nominated by Yitzhak Pilpel and Sergei Maslov.

  2. Chiral superfluidity of the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2012-08-15

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T{sub c}dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  3. Chiral symmetry breaking and the spin content of hadrons

    Science.gov (United States)

    Glozman, L. Ya.; Lang, C. B.; Limmer, M.

    2012-04-01

    From the parton distributions in the infinite momentum frame, one finds that only about 30% of the nucleon spin is carried by spins of the valence quarks, which gave rise to the term “spin crisis”. Similar results hold for the lowest mesons, as it follows from the lattice simulations. We define the spin content of a meson in the rest frame and use a complete and orthogonal q¯q chiral basis and a unitary transformation from the chiral basis to the 2LJ basis. Then, given a mixture of different allowed chiral representations in the meson wave function at a given resolution scale, one can obtain its spin content at this scale. To obtain the mixture of the chiral representations in the meson, we measure in dynamical lattice simulations a ratio of couplings of interpolators with different chiral structure. For the ρ meson, we obtain practically the 3S1 state with no trace of the spin crisis. Then a natural question arises: which definition does reflect the spin content of a hadron?

  4. Chiral superfluidity of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Kalaydzhyan, Tigran

    2012-08-01

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T c c ) using lattice (overlap) fermions and observe a gap between near-zero modes and the bulk of the spectrum. Second, we use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  5. Loading direction-dependent shear behavior at different temperatures of single-layer chiral graphene sheets

    Science.gov (United States)

    Zhao, Yang; Dong, Shuhong; Yu, Peishi; Zhao, Junhua

    2018-06-01

    The loading direction-dependent shear behavior of single-layer chiral graphene sheets at different temperatures is studied by molecular dynamics (MD) simulations. Our results show that the shear properties (such as shear stress-strain curves, buckling strains, and failure strains) of chiral graphene sheets strongly depend on the loading direction due to the structural asymmetry. The maximum values of both the critical buckling shear strain and the failure strain under positive shear deformation can be around 1.4 times higher than those under negative shear deformation. For a given chiral graphene sheet, both its failure strain and failure stress decrease with increasing temperature. In particular, the amplitude to wavelength ratio of wrinkles for different chiral graphene sheets under shear deformation using present MD simulations agrees well with that from the existing theory. These findings provide physical insights into the origins of the loading direction-dependent shear behavior of chiral graphene sheets and their potential applications in nanodevices.

  6. Chiral fermions on the lattice

    International Nuclear Information System (INIS)

    Randjbar Daemi, S.; Strathdee, J.

    1995-01-01

    The overlap approach to chiral gauge theories on arbitrary D-dimensional lattices is studied. The doubling problem and its relation to chiral anomalies for D = 2 and 4 is examined. In each case it is shown that the doublers can be eliminated and the well known perturbative results for chiral anomalies can be recovered. We also consider the multi-flavour case and give the general criteria for the construction of anomaly free chiral gauge theories on arbitrary lattices. We calculate the second order terms in a continuum approximation to the overlap formula in D dimensions and show that they coincide with the bilinear part of the effective action of D-dimensional Weyl fermions coupled to a background gauge field. Finally, using the same formalism we reproduce the correct Lorentz, diffeomorphism and gauge anomalies in the coupling of a Weyl fermion to 2-dimensional gravitation and Maxwell fields. (author). 15 refs

  7. Chiral topological insulator of magnons

    Science.gov (United States)

    Li, Bo; Kovalev, Alexey A.

    2018-05-01

    We propose a magnon realization of 3D topological insulator in the AIII (chiral symmetry) topological class. The topological magnon gap opens due to the presence of Dzyaloshinskii-Moriya interactions. The existence of the topological invariant is established by calculating the bulk winding number of the system. Within our model, the surface magnon Dirac cone is protected by the sublattice chiral symmetry. By analyzing the magnon surface modes, we confirm that the backscattering is prohibited. By weakly breaking the chiral symmetry, we observe the magnon Hall response on the surface due to opening of the gap. Finally, we show that by changing certain parameters, the system can be tuned between the chiral topological insulator, three-dimensional magnon anomalous Hall, and Weyl magnon phases.

  8. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    Abstract. A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  9. Chirality-controlled crystallization via screw dislocations.

    Science.gov (United States)

    Sung, Baeckkyoung; de la Cotte, Alexis; Grelet, Eric

    2018-04-11

    Chirality plays an important role in science from enantiomeric separation in chemistry to chiral plasmonics in nanotechnology. However, the understanding of chirality amplification from chiral building blocks to ordered helical superstructures remains a challenge. Here, we demonstrate that topological defects, such as screw dislocations, can drive the chirality transfer from particle to supramolecular structure level during the crystallization process. By using a model system of chiral particles, which enables direct imaging of single particle incorporation into growing crystals, we show that the crystallization kinetic pathway is the key parameter for monitoring, via the defects, the chirality amplification of the crystalline structures from racemic to predominantly homohelical. We provide an explanation based on the interplay between geometrical frustration, racemization induced by thermal fluctuations, and particle chirality. Our results demonstrate that screw dislocations not only promote the growth, but also control the chiral morphology and therefore the functionality of crystalline states.

  10. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  11. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  12. Chiral thermodynamics of nuclear matter

    International Nuclear Information System (INIS)

    Fiorilla, Salvatore

    2012-01-01

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  13. Flavor structure of the nucleon electromagnetic form factors and transverse charge densities in the chiral quark-soliton model

    Science.gov (United States)

    Silva, António; Urbano, Diana; Kim, Hyun-Chul

    2018-02-01

    We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model (χQSM) with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (ms) corrections. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). Finally, we discuss the transverse charge densities for both unpolarized and polarized nucleons. The transverse charge density inside a neutron turns out to be negative in the vicinity of the center within the SU(3) χQSM, which can be explained by the contribution of the strange quark.

  14. Macdonald index and chiral algebra

    Science.gov (United States)

    Song, Jaewon

    2017-08-01

    For any 4d N = 2 SCFT, there is a subsector described by a 2d chiral algebra. The vacuum character of the chiral algebra reproduces the Schur index of the corresponding 4d theory. The Macdonald index counts the same set of operators as the Schur index, but the former has one more fugacity than the latter. We conjecture a prescription to obtain the Macdonald index from the chiral algebra. The vacuum module admits a filtration, from which we construct an associated graded vector space. From this grading, we conjecture a notion of refined character for the vacuum module of a chiral algebra, which reproduces the Macdonald index. We test this prescription for the Argyres-Douglas theories of type ( A 1 , A 2 n ) and ( A 1 , D 2 n+1) where the chiral algebras are given by Virasoro and \\widehat{su}(2) affine Kac-Moody algebra. When the chiral algebra has more than one family of generators, our prescription requires a knowledge of the generators from the 4d.

  15. Examination of the Potential for Adaptive Chirality of the Nitrogen Chiral Center in Aza-Aspartame

    Directory of Open Access Journals (Sweden)

    Samir H. Bouayad-Gervais

    2013-11-01

    Full Text Available The potential for dynamic chirality of an azapeptide nitrogen was examined by substitution of nitrogen for the α-carbon of the aspartate residue in the sweetener S,S-aspartame. Considering that S,S- and R,S-aspartame possess sweet and bitter tastes, respectively, a bitter-sweet taste of aza-aspartame 9 could be indicative of a low isomerization barrier for nitrogen chirality inter-conversion. Aza-aspartame 9 was synthesized by a combination of hydrazine and peptide chemistry. Crystallization of 9 indicated a R,S-configuration in the solid state; however, the aza-residue chiral center was considerably flattened relative to its natural amino acid counterpart. On tasting, the authors considered aza-aspartame 9 to be slightly bitter or tasteless. The lack of bitter sweet taste of aza-aspartame 9 may be due to flattening from sp2 hybridization in the urea as well as a high barrier for sp3 nitrogen inter-conversion, both of which may interfere with recognition by taste receptors.

  16. Examination of the potential for adaptive chirality of the nitrogen chiral center in aza-aspartame.

    Science.gov (United States)

    Bouayad-Gervais, Samir H; Lubell, William D

    2013-11-28

    The potential for dynamic chirality of an azapeptide nitrogen was examined by substitution of nitrogen for the α-carbon of the aspartate residue in the sweetener S,S-aspartame. Considering that S,S- and R,S-aspartame possess sweet and bitter tastes, respectively, a bitter-sweet taste of aza-aspartame 9 could be indicative of a low isomerization barrier for nitrogen chirality inter-conversion. Aza-aspartame 9 was synthesized by a combination of hydrazine and peptide chemistry. Crystallization of 9 indicated a R,S-configuration in the solid state; however, the aza-residue chiral center was considerably flattened relative to its natural amino acid counterpart. On tasting, the authors considered aza-aspartame 9 to be slightly bitter or tasteless. The lack of bitter sweet taste of aza-aspartame 9 may be due to flattening from sp2 hybridization in the urea as well as a high barrier for sp3 nitrogen inter-conversion, both of which may interfere with recognition by taste receptors.

  17. Chirality in adsorption on solid surfaces.

    Science.gov (United States)

    Zaera, Francisco

    2017-12-07

    In the present review we survey the main advances made in recent years on the understanding of chemical chirality at solid surfaces. Chirality is an important topic, made particularly relevant by the homochiral nature of the biochemistry of life on Earth, and many chiral chemical reactions involve solid surfaces. Here we start our discussion with a description of surface chirality and of the different ways that chirality can be bestowed on solid surfaces. We then expand on the studies carried out to date to understand the adsorption of chiral compounds at a molecular level. We summarize the work published on the adsorption of pure enantiomers, of enantiomeric mixtures, and of prochiral molecules on chiral and achiral model surfaces, especially on well-defined metal single crystals but also on other flat substrates such as highly ordered pyrolytic graphite. Several phenomena are identified, including surface reconstruction and chiral imprinting upon adsorption of chiral agents, and the enhancement or suppression of enantioselectivity seen in some cases upon adsorption of enantiomixtures of chiral compounds. The possibility of enhancing the enantiopurity of adsorbed layers upon the addition of chiral seeds and the so-called "sergeants and soldiers" phenomenon are presented. Examples are provided where the chiral behavior has been associated with either thermodynamic or kinetic driving forces. Two main approaches to the creation of enantioselective surface sites are discussed, namely, via the formation of supramolecular chiral ensembles made out of small chiral adsorbates, and by adsorption of more complex chiral molecules capable of providing suitable chiral environments for reactants by themselves, via the formation of individual adsorbate:modifier adducts on the surface. Finally, a discussion is offered on the additional effects generated by the presence of the liquid phase often required in practical applications such as enantioselective crystallization, chiral

  18. An Anderson-like model of the QCD chiral transition

    International Nuclear Information System (INIS)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian (“Dirac-Anderson Hamiltonian”) carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  19. Chiral memory via chiral amplification and selective depolymerization of porphyrin aggregates

    NARCIS (Netherlands)

    Helmich, F.A.; Lee, C.C.; Schenning, A.P.H.J.; Meijer, E.W.

    2010-01-01

    Chiral memory at the supramolecular level is obtained via a new approach using chiral Zn porphrins and achiral Cu porphyrins. In a "sergeant-and-soldiers" experiment, the Zn "sergeant" transfers its own chirality to Cu "soldiers" and, after chiral amplification, the "sergeant" is removed from the

  20. Chiral Magnetic Effect and Anomalous Transport from Real-Time Lattice Simulations

    International Nuclear Information System (INIS)

    Müller, Niklas; Schlichting, Sören; Sharma, Sayantan

    2016-01-01

    Here, we present a first-principles study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian S U (N _c) and Abelian U (1) gauge fields. By investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the chiral magnetic and chiral separation effect leads to the formation of a propagating wave. Furthermore, we analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark masses.

  1. Chirality and grain boundary effects on indentation mechanical properties of graphene coated on nickel foil

    Science.gov (United States)

    Yan, Yuping; Lv, Jiajiang; Liu, Sheng

    2018-04-01

    We investigate chirality and grain boundary (GB) effects on indentation mechanical properties of graphene coated on nickel foil using molecular dynamics simulations. The models of graphene with different chirality angles, different numbers of layers and tilt GBs were established. It was found that the chirality angle of few-layer graphene had a significant effect on the load bearing capacity of graphene/nickel systems, and this turns out to be more significant when the number of layers is greater than one. The enhancement to the contact stiffness, elastic capacity and the load bearing capacity of graphene with tilt GBs was lower than that of pristine graphene.

  2. Anomalies of hidden local chiral symmetries in sigma-models and extended supergravities

    International Nuclear Information System (INIS)

    Vecchia, P. di; Ferrara, S.; Girardello, L.

    1985-01-01

    Non-linear sigma-models with hidden gauge symmetries are anomalous, at the quantum level, when coupled to chiral fermions in not anomaly free representations of the hidden chiral symmetry. These considerations generally apply to supersymmetric kaehlerian sigma-models on coset spaces with hidden chiral symmetries as well as to extended supergravities in four dimensions with local SU(N) symmetry. The presence of the anomaly implies that the scenario of dynamical generation of gauge vector bosons has to be reconsidered in these theories. (orig.)

  3. Properties of the twisted Polyakov loop coupling and the infrared fixed point in the SU(3) gauge theories

    Science.gov (United States)

    Itou, Etsuko

    2013-08-01

    We report the nonperturbative behavior of the twisted Polyakov loop (TPL) coupling constant for the SU(3) gauge theories defined by the ratio of Polyakov loop correlators in finite volume with twisted boundary condition. We reveal the vacuum structures and the phase structure for the lattice gauge theory with the twisted boundary condition. Carrying out the numerical simulations, we determine the nonperturbative running coupling constant in this renormalization scheme for the quenched QCD and N_f=12 SU(3) gauge theories. First, we study the quenched QCD theory using the plaquette gauge action. The TPL coupling constant has a fake fixed point in the confinement phase. We discuss this fake fixed point of the TPL scheme and obtain the nonperturbative running coupling constant in the deconfinement phase, where the magnitude of the Polyakov loop shows the nonzero values. We also investigate the system coupled to fundamental fermions. Since we use the naive staggered fermion with the twisted boundary condition in our simulation, only multiples of 12 are allowed for the number of flavors. According to the perturbative two-loop analysis, the N_f=12 SU(3) gauge theory might have a conformal fixed point in the infrared region. However, recent lattice studies show controversial results for the existence of the fixed point. We point out possible problems in previous work, and present our careful study. Finally, we find the infrared fixed point (IRFP) and discuss the robustness of the nontrivial IRFP of a many-flavor system under the change of the analysis method. Some preliminary results were reported in the proceedings [E. Bilgici et al., PoS(Lattice 2009), 063 (2009); Itou et al., PoS(Lattice 2010), 054 (2010)] and the letter paper [T. Aoyama et al., arXiv:1109.5806 [hep-lat

  4. Effects of chirality and surface stresses on the bending and buckling of chiral nanowires

    International Nuclear Information System (INIS)

    Wang, Jian-Shan; Shimada, Takahiro; Kitamura, Takayuki; Wang, Gang-Feng

    2014-01-01

    Due to their superior optical, elastic and electrical properties, chiral nanowires have many applications as sensors, probes, and building blocks of nanoelectromechanical systems. In this paper, we develop a refined Euler–Bernoulli beam model for chiral nanowires with surface effects and material chirality incorporated. This refined model is employed to investigate the bending and buckling of chiral nanowires. It is found that surface effects and material chirality significantly affect the elastic behaviour of chiral nanowires. This study is helpful not only for understanding the size-dependent behaviour of chiral nanowires, but also for characterizing their mechanical properties. (paper)

  5. Classical local SU(3 gauge invariance in Weyl 2-spinor language and quark–gluon plasma equations of motion

    Directory of Open Access Journals (Sweden)

    J. Buitrago

    Full Text Available In a new classical Weyl 2-spinor approach to non abelian gauge theories, starting with the U(1 gauge group in a previous work, we study now the SU(3 case corresponding to quarks (antiquarks interacting with color fields. The principal difference with the conventional approach is that particle-field interactions are not described by means of potentials but by the field strength magnitudes. Some analytical expressions showing similarities with electrodynamics are obtained. Classical equations that describe the behavior of quarks under gluon fields might be in principle applied to the quark–gluon plasma phase existing during the first instants of the Universe.

  6. Chiral Thirring–Wess model

    Energy Technology Data Exchange (ETDEWEB)

    Rahaman, Anisur, E-mail: anisur.rahman@saha.ac.in

    2015-10-15

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.

  7. Chiral Thirring–Wess model

    International Nuclear Information System (INIS)

    Rahaman, Anisur

    2015-01-01

    The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson

  8. Chiral symmetry breaking and nonperturbative scale anomaly in gauge field theories

    International Nuclear Information System (INIS)

    Miranskij, V.A.; Gusynin, V.P.

    1987-01-01

    The nonperturbative dynamics of chiral and scale symmetry breaking in asymtotically free and non-asymptotically free (with an ultraviolet stable fixed point) vector-like gauge theories is investigated. In the two-loop approximation analytical expressions for the chiral and gluon condensates are obtained. The hypothesis about a soft behaviour at small distances of composite operators in non-asymptotically free gauge theories with a fixed point is put forward and substantiated. It is shown that in these theories the form of the scale anomaly depends on the type of the phase in coupling constant to which it relates. A new dilaton effective lagrangian for glueball and chiral fields is suggested. The mass relation for the single scalar fermion-antifermion bound state is obtained. The important ingredient of this approach is a large (d≅ 2) dynamical dimension of composite chiral fields. The application of this approach to QCD and technicolour models is discussed

  9. What's wrong with anomalous chiral gauge theory?

    International Nuclear Information System (INIS)

    Kieu, T.D.

    1994-05-01

    It is argued on general ground and demonstrated in the particular example of the Chiral Schwinger Model that there is nothing wrong with apparently anomalous chiral gauge theory. If quantised correctly, there should be no gauge anomaly and chiral gauge theory should be renormalisable and unitary, even in higher dimensions and with non-Abelian gauge groups. Furthermore, it is claimed that mass terms for gauge bosons and chiral fermions can be generated without spoiling the gauge invariance. 19 refs

  10. Chirality: a relational geometric-physical property.

    Science.gov (United States)

    Gerlach, Hans

    2013-11-01

    The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term. © 2013 Wiley Periodicals, Inc.

  11. Extreme chirality in Swiss roll metamaterials

    International Nuclear Information System (INIS)

    Demetriadou, A; Pendry, J B

    2009-01-01

    The chiral Swiss roll metamaterial is a resonant, magnetic medium that exhibits a negative refractive band for one-wave polarization. Its unique structure facilitates huge chiral effects: a plane polarized wave propagating through this system can change its polarization by 90 deg. in less than a wavelength. Such chirality is at least 100 times greater than previous structures have achieved. In this paper, we discuss this extreme chiral behaviour with both numerical and analytical results.

  12. Chiral measurements with the Fixed-Point Dirac operator and construction of chiral currents

    International Nuclear Information System (INIS)

    Hasenfratz, P.; Hauswirth, S.; Holland, K.; Joerg, T.; Niedermayer, F.

    2002-01-01

    In this preliminary study, we examine the chiral properties of the parametrized Fixed-Point Dirac operator D FP , see how to improve its chirality via the Overlap construction, measure the renormalized quark condensate Σ-circumflex and the topological susceptibility χ t , and investigate local chirality of near zero modes of the Dirac operator. We also give a general construction of chiral currents and densities for chiral lattice actions

  13. On the twisted chiral potential in 2d and the analogue of rigid special geometry for 4-folds

    CERN Document Server

    Kaste, P

    1999-01-01

    We discuss how to obtain an N=(2,2) supersymmetric SU(3) gauge theory in two dimensions via geometric engineering from a Calabi-Yau 4-fold and compute its non-perturbative twisted chiral potential. The relevant compact part of the 4-fold geometry consists of two intersecting P^1's fibered over P^2. The rigid limit of the local mirror of this geometry is a complex surface that generalizes the Seiberg-Witten curve and on which there exist two holomorphic 2-forms. These stem from the same meromorphic 2-form as derivatives w.r.t. the two moduli, respectively. The middle periods of this meromorphic form give directly the twisted chiral potential. The explicit computation of these and of the four-point Yukawa couplings allows for a non-trivial test of the analogue of rigid special geometry for a 4-fold with several moduli.

  14. Pion polarizability in a chiral quark model

    International Nuclear Information System (INIS)

    Volkov, M.K.; Ehbert, D.

    1980-01-01

    The pion polarizability is calculated in a chiral meson-quark model at the one-loop level. The results are in complete agreement with earlier ones obtained within a chiral meson-baryon theory. A critical discussion of a recent paper by Lanta and Tarrach is given. The results of the paper give evidence to the nonlinear chiral Lagrangian favour

  15. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral

  16. Variational approach to chiral quark models

    Energy Technology Data Exchange (ETDEWEB)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira

    1987-03-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation.

  17. A variational approach to chiral quark models

    International Nuclear Information System (INIS)

    Futami, Yasuhiko; Odajima, Yasuhiko; Suzuki, Akira.

    1987-01-01

    A variational approach is applied to a chiral quark model to test the validity of the perturbative treatment of the pion-quark interaction based on the chiral symmetry principle. It is indispensably related to the chiral symmetry breaking radius if the pion-quark interaction can be regarded as a perturbation. (author)

  18. Chirality plays important roles in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Shen Yumei

    2006-01-01

    The paper introduces the basic concept of chirality, target specific selectivity and their relationship in radiopharmaceuticals. If the ligands labeled by radionuclides have chiral center, the enantiomers must be separated, or the target specific selectivity will not be good. Chirality is one of the most important factors which must be considered in the study of the structure-activity relationship of radiopharmaceuticals. (authors)

  19. Thermal Conductivity of Nanotubes Revisited: Effects of Chirality, Isotope Impurity, Tube Length, and Temperature

    OpenAIRE

    Zhang, Gang; Li, Baowen

    2004-01-01

    We study the dependence of thermal conductivity of single walled nanotubes (SWNT) on chirality, isotope impurity, tube length and temperature by nonequilibrium molecular dynamics method with accurate potentials. It is found that, contrary to electronic conductivity, the thermal conductivity is insensitive to the chirality. The isotope impurity, however, can reduce the thermal conductivity up to 60% and change the temperature dependence behavior. We also found that the tube length dependence o...

  20. Stability of racemic and chiral steady states in open and closed chemical systems

    Energy Technology Data Exchange (ETDEWEB)

    Ribo, Josep M. [Departament de Quimica Organica, Universitat de Barcelona, c. Marti i Franques 1, Barcelona (Spain); Hochberg, David [Centro de Astrobiologia (CSIC-INTA), Ctra. Ajalvir Km. 4, 28850 Torrejon de Ardoz, Madrid (Spain)], E-mail: hochbergd@inta.es

    2008-12-22

    The stability properties of models of spontaneous mirror symmetry breaking in chemistry are characterized algebraically. The models considered here all derive either from the Frank model or from autocatalysis with limited enantioselectivity. Emphasis is given to identifying the critical parameter controlling the chiral symmetry breaking transition from racemic to chiral steady-state solutions. This parameter is identified in each case, and the constraints on the chemical rate constants determined from dynamic stability are derived.

  1. Stability of racemic and chiral steady states in open and closed chemical systems

    International Nuclear Information System (INIS)

    Ribo, Josep M.; Hochberg, David

    2008-01-01

    The stability properties of models of spontaneous mirror symmetry breaking in chemistry are characterized algebraically. The models considered here all derive either from the Frank model or from autocatalysis with limited enantioselectivity. Emphasis is given to identifying the critical parameter controlling the chiral symmetry breaking transition from racemic to chiral steady-state solutions. This parameter is identified in each case, and the constraints on the chemical rate constants determined from dynamic stability are derived

  2. Pions and the chiral bag

    International Nuclear Information System (INIS)

    Rho, M.

    1982-01-01

    As an aid to discussing the structure of nucleons and nuclei conceptual framework, heuristic arguments are presented which indicate that a hadron can be considered as a bag consisting of two different phases. The chiral structure of the phase outside the bag is discussed in terms of effective field theories and it is shown to what extent experiments in nuclei can constrain the structure of such theories. Results thus obtained are then combined to set up a set of equations for the bag structure of u and d hadrons, incorporating asymptotic freedom in the phase inside of the bag confinement of quarks and gluons by boundary conditions and spontaneously broken chiral symmetry in the outside. This set of equations which represent a chirally invariant generalization of the M.I.T. bag model is then solved. (U.K.)

  3. Fusion rules of chiral algebras

    International Nuclear Information System (INIS)

    Gaberdiel, M.

    1994-01-01

    Recently we showed that for the case of the WZW and the minimal models fusion can be understood as a certain ring-like tensor product of the symmetry algebra. In this paper we generalize this analysis to arbitrary chiral algebras. We define the tensor product of conformal field theory in the general case and prove that it is associative and symmetric up to equivalence. We also determine explicitly the action of the chiral algebra on this tensor product. In the second part of the paper we demonstrate that this framework provides a powerful tool for calculating restrictions for the fusion rules of chiral algebras. We exhibit this for the case of the W 3 algebra and the N=1 and N=2 NS superconformal algebras. (orig.)

  4. Chirality and gravitational parity violation.

    Science.gov (United States)

    Bargueño, Pedro

    2015-06-01

    In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented. © 2015 Wiley Periodicals, Inc.

  5. More dynamical supersymmetry breaking

    International Nuclear Information System (INIS)

    Csaki, C.; Randall, L.; Skiba, W.

    1996-01-01

    In this paper we introduce a new class of theories which dynamically break supersymmetry based on the gauge group SU(n) x SU(3) x U(1) for even n. These theories are interesting in that no dynamical superpotential is generated in the absence of perturbations. For the example SU(4) x SU(3) x U(1) we explicitly demonstrate that all flat directions can be lifted through a renormalizable superpotential and that supersymmetry is dynamically broken. We derive the exact superpotential for this theory, which exhibits new and interesting dynamical phenomena. For example, modifications to classical constraints can be field dependent. We also consider the generalization to SU(n) x SU(3) x U(1) models (with even n>4). We present a renormalizable superpotential which lifts all flat directions. Because SU(3) is not confining in the absence of perturbations, the analysis of supersymmetry breaking is very different in these theories from the n=4 example. When the SU(n) gauge group confines, the Yukawa couplings drive the SU(3) theory into a regime with a dynamically generated superpotential. By considering a simplified version of these theories we argue that supersymmetry is probably broken. (orig.)

  6. Phenomenology of strongly coupled chiral gauge theories

    International Nuclear Information System (INIS)

    Bai, Yang; Berger, Joshua; Osborne, James; Stefanek, Ben A.

    2016-01-01

    A sector with QCD-like strong dynamics is common in models of non-standard physics. Such a model could be accessible in LHC searches if both confinement and big-quarks charged under the confining group are at the TeV scale. Big-quark masses at this scale can be explained if the new fermions are chiral under a new U(1) ′ gauge symmetry such that their bare masses are related to the U(1) ′ -breaking and new confinement scales. Here we present a study of a minimal GUT-motivated and gauge anomaly-free model with implications for the LHC Run 2 searches. We find that the first signatures of such models could appear as two gauge boson resonances. The chiral nature of the model could be confirmed by observation of a Z ′ γ resonance, where the Z ′ naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson.

  7. Electromagnetic properties in {sup 160-170}Dy nuclei. A microscopic description by the pseudo-SU(3) shell model

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Carlos E.; Bagatella-Flores, Norma [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Velazquez, Victor [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Mexico D.F. (Mexico); Lerma-Hernandez, Sergio [Universidad Veracruzana, Facultad de Fisica, Veracruz (Mexico); Universidad Nacional Autonoma de Mexico, Instituto de Ciencias Nucleares, Mexico D.F. (Mexico)

    2017-04-15

    The large collectivity observed in the rare-earth region of the nuclear landscape is well known. The microscopic studies are difficult to perform in this region due to the enormous size of the valence spaces, a problem that can be avoided by means of the use of symmetry-based models. Here we present calculations for electromagnetic properties of {sup 160-170}Dy nuclei within the pseudo-SU(3) scheme. The model Hamiltonian includes the preserving symmetry Q.Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized for all members of the chain. The model is used to calculate B(E2) and B(M1) inter-band transition strengths between the ground state, γ and β-bands. In addition, we present results for quadrupole moments and g factors in these rotational bands. The results show that the pseudo-SU(3) shell model is a powerful microscopic theory for a description of electromagnetic properties of states in the normal parity sector in heavy deformed nuclei. (orig.)

  8. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    Energy Technology Data Exchange (ETDEWEB)

    Yao, De-Liang [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Siemens, D. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Bernard, V. [Groupe de Physique Théorique, Institut de Physique Nucléaire, UMR 8606,CNRS, University Paris-Sud, Université Paris-Saclay, 91405 Orsay Cedex (France); Epelbaum, E. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Gasparyan, A.M. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); SSC RF ITEP, Bolshaya Cheremushkinskaya 25, 117218 Moscow (Russian Federation); Gegelia, J. [Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany); Tbilisi State University, 0186 Tbilisi (Georgia); Krebs, H. [Institut für Theoretische Physik II, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Meißner, Ulf-G. [Helmholtz Institut für Strahlen- und Kernphysik andBethe Center for Theoretical Physics, Universität Bonn, D-53115 Bonn (Germany); Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron Physics,Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-05-05

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P-partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  9. Chiral soliton models for baryons

    International Nuclear Information System (INIS)

    Weigel, H.

    2008-01-01

    This concise research monograph introduces and reviews the concept of chiral soliton models for baryons. In these models, baryons emerge as (topological) defects of the chiral field. The many applications shed light on a number of baryon properties, ranging from static properties via nucleon resonances and deep inelastic scattering to even heavy ion collisions. As far as possible, the theoretical investigations are confronted with experiment. Conceived to bridge the gap between advanced graduate textbooks and the research literature, this volume also features a number of appendices to help nonspecialist readers to follow in more detail some of the calculations in the main text. (orig.)

  10. Surface defects and chiral algebras

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States); Gaiotto, Davide [Perimeter Institute for Theoretical Physics,31 Caroline St N, Waterloo, ON N2L 2Y5 (Canada); Shao, Shu-Heng [School of Natural Sciences, Institute for Advanced Study,1 Einstein Dr, Princeton, NJ 08540 (United States)

    2017-05-26

    We investigate superconformal surface defects in four-dimensional N=2 superconformal theories. Each such defect gives rise to a module of the associated chiral algebra and the surface defect Schur index is the character of this module. Various natural chiral algebra operations such as Drinfeld-Sokolov reduction and spectral flow can be interpreted as constructions involving four-dimensional surface defects. We compute the index of these defects in the free hypermultiplet theory and Argyres-Douglas theories, using both infrared techniques involving BPS states, as well as renormalization group flows onto Higgs branches. In each case we find perfect agreement with the predicted characters.

  11. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the b......A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines...

  12. Chiral symmetry on the lattice

    International Nuclear Information System (INIS)

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model

  13. Reversible optical transcription of supramolecular chirality into molecular chirality

    NARCIS (Netherlands)

    Jong, Jaap J.D. de; Lucas, Linda N.; Kellogg, Richard M.; Esch, Jan H. van; Feringa, Bernard

    2004-01-01

    In nature, key molecular processes such as communication, replication, and enzyme catalysis all rely on a delicate balance between molecular and supramolecular chirality. Here we report the design, synthesis, and operation of a reversible, photoresponsive, self-assembling molecular system in which

  14. Oscillation damping of chiral string loops

    International Nuclear Information System (INIS)

    Babichev, Eugeny; Dokuchaev, Vyacheslav

    2002-01-01

    Chiral cosmic string loops tend to the stationary (vorton) configuration due to energy loss into gravitational and electromagnetic radiation. We describe the asymptotic behavior of near stationary chiral loops and their fading to vortons. General limits on the gravitational and electromagnetic energy losses by near stationary chiral loops are found. For these loops we estimate the oscillation damping time. We present solvable examples of gravitational radiation energy loss by some chiral loop configurations. The analytical dependence of string energy with time is found in the case of the chiral ring with small amplitude radial oscillations

  15. Quantum Hall bilayers and the chiral sine-Gordon equation

    International Nuclear Information System (INIS)

    Naud, J.D.; Pryadko, Leonid P.; Sondhi, S.L.

    2000-01-01

    The edge state theory of a class of symmetric double-layer quantum Hall systems with interlayer electron tunneling reduces to the sum of a free field theory and a field theory of a chiral Bose field with a self-interaction of the sine-Gordon form. We argue that the perturbative renormalization group flow of this chiral sine-Gordon theory is distinct from the standard (non-chiral) sine-Gordon theory, contrary to a previous assertion by Renn, and that the theory is manifestly sensible only at a discrete set of values of the inverse period of the cosine interaction (β-circumflex). We obtain exact solutions for the spectra and correlation functions of the chiral sine-Gordon theory at the two values of β-circumflex at which electron tunneling in bilayers is not irrelevant. Of these, the marginal case (β-circumflex 2 =4) is of greatest interest: the spectrum of the interacting theory is that of two Majorana fermions with different, dynamically generated, velocities. For the experimentally observed bilayer 331 state at filling factor 1/2, this implies the trifurcation of electrons added to the edge. We also present a method for fermionizing the theory at the discrete points (β-circumflex 2 is an element of Z + ) by the introduction of auxiliary degrees of freedom that could prove useful in other problems involving quantum Hall multi-layers

  16. Spin-orbit beams for optical chirality measurement

    Science.gov (United States)

    Samlan, C. T.; Suna, Rashmi Ranjan; Naik, Dinesh N.; Viswanathan, Nirmal K.

    2018-01-01

    Accurate measurement of chirality is essential for the advancement of natural and pharmaceutical sciences. We report here a method to measure chirality using non-separable states of light with geometric phase-gradient in the circular polarization basis, which we refer to as spin-orbit beams. A modified polarization Sagnac interferometer is used to generate spin-orbit beams wherein the spin and orbital angular momentum of the input Gaussian beam are coupled. The out-of-phase interference between counter-propagating Gaussian beams with orthogonal spin states and lateral-shear or/and linear-phase difference between them results in spin-orbit beams with linear and azimuthal phase gradient. The spin-orbit beams interact efficiently with the chiral medium, inducing a measurable change in the center-of-mass of the beam, using the polarization rotation angle and hence the chirality of the medium are accurately calculated. Tunable dynamic range of measurement and flexibility to introduce large values of orbital angular momentum for the spin-orbit beam, to improve the measurement sensitivity, highlight the techniques' versatility.

  17. Chiral Recognition and Separation by Chirality-Enriched Metal-Organic Frameworks.

    Science.gov (United States)

    Das, Saikat; Xu, Shixian; Ben, Teng; Qiu, Shilun

    2018-05-16

    Endowed with chiral channels and pores, chiral metal-organic frameworks (MOFs) are highly useful; however, their synthesis remains a challenge given that most chiral building blocks are expensive. Although MOFs with induced chirality have been reported to avoid this shortcoming, no study providing evidence for the ee value of such MOFs has yet been reported. We herein describe the first study on the efficiency of chiral induction in MOFs using inexpensive achiral building blocks and fully recoverable chiral dopants to control the handedness of racemic MOFs. This method yielded chirality-enriched MOFs with accessible pores. The ability of the materials to form host-guest complexes was probed with enantiomers of varying size and coordination and in solvents with varying polarity. Furthermore, mixed-matrix membranes (MMMs) composed of chirality-enriched MOF particles dispersed in a polymer matrix demonstrated a new route for chiral separation. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Chiral Induction with Chiral Conformational Switches in the Limit of Low "Sergeants to Soldiers" Ratio

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli; Bombis, Christian; Knudsen, Martin Markvard

    2014-01-01

    Molecular-level insights into chiral adsorption phenomena are highly relevant within the fields of asymmetric heterogeneous catalysis or chiral separation and may contribute to understand the origins of homochirality in nature. Here, we investigate chiral induction by the "sergeants and soldiers......" mechanism for an oligo(phenylene ethynylene) based chiral conformational switch by coadsorbing it with an intrinsically chiral seed on Au(111). Through statistical analysis of scanning tunneling microscopy (STM) data we demonstrate successful chiral induction with a very low concentration of seeding...... molecules down to 3%. The microscopic mechanism for the observed chiral induction is suggested to involve nucleation of the intrinsically chiral seeds, allowing for effective transfer and amplification of chirality to large numbers of soldier target molecules....

  19. A chiral covariant approach to ρρ scattering

    Energy Technology Data Exchange (ETDEWEB)

    Guelmez, D. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Meissner, U.G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institut fuer Kernphysik and Juelich Center for Hadron Physics, Institute for Advanced Simulation, Juelich (Germany); Oller, J.A. [Universidad de Murcia, Departamento de Fisica, Murcia (Spain)

    2017-07-15

    We analyze vector meson-vector meson scattering in a unitarized chiral theory based on a chiral covariant framework restricted to ρρ intermediate states. We show that a pole assigned to the scalar meson f{sub 0}(1370) can be dynamically generated from the ρρ interaction, while this is not the case for the tensor meson f{sub 2}(1270) as found in earlier work. We show that the generation of the tensor state is untenable due to the extreme non-relativistic kinematics used before. We further consider the effects arising from the coupling of channels with different orbital angular momenta which are also important. We suggest to use the formalism outlined here to obtain more reliable results for the dynamical generation of resonances in the vector-vector interaction. (orig.)

  20. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    Long Wen

    2012-01-01

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  1. No chiral truncation of quantum log gravity?

    Science.gov (United States)

    Andrade, Tomás; Marolf, Donald

    2010-03-01

    At the classical level, chiral gravity may be constructed as a consistent truncation of a larger theory called log gravity by requiring that left-moving charges vanish. In turn, log gravity is the limit of topologically massive gravity (TMG) at a special value of the coupling (the chiral point). We study the situation at the level of linearized quantum fields, focussing on a unitary quantization. While the TMG Hilbert space is continuous at the chiral point, the left-moving Virasoro generators become ill-defined and cannot be used to define a chiral truncation. In a sense, the left-moving asymptotic symmetries are spontaneously broken at the chiral point. In contrast, in a non-unitary quantization of TMG, both the Hilbert space and charges are continuous at the chiral point and define a unitary theory of chiral gravity at the linearized level.

  2. GOE-TYPE ENERGY-LEVEL STATISTICS AND REGULAR CLASSICAL DYNAMICS FOR ROTATIONAL NUCLEI IN THE INTERACTING BOSON MODEL

    NARCIS (Netherlands)

    PAAR, [No Value; VORKAPIC, D; DIERPERINK, AEL

    1992-01-01

    We study the fluctuation properties of 0+ levels in rotational nuclei using the framework of SU(3) dynamical symmetry of the interacting boson model. Computations of Poincare sections for SU(3) dynamical symmetry and its breaking confirm the expected relation between dynamical symmetry and classical

  3. A New Twist on Chirality

    NARCIS (Netherlands)

    Feringa, Bernard

    2001-01-01

    One of the great mysteries in science is the homochirality (single handedness) of the essential molecules of life. Natural sugars are almost exclusively right-handed; natural amino acids are almost exclusively left-handed. Current life forms could not exist without the uniform chirality of these

  4. Status of chiral perturbation theory

    International Nuclear Information System (INIS)

    Ecker, G.

    1996-10-01

    A survey is made of semileptonic and nonleptonic kaon decays in the framework of chiral perturbation theory. The emphasis is on what has been done rather than how it was done. The theoretical predictions are compared with available experimental results. (author)

  5. Principles of chiral perturbation theory

    International Nuclear Information System (INIS)

    Leutwyler, H.

    1995-01-01

    An elementary discussion of the main concepts used in chiral perturbation theory is given in textbooks and a more detailed picture of the applications may be obtained from the reviews. Concerning the foundations of the method, the literature is comparatively scarce. So, I will concentrate on the basic concepts and explain why the method works. (author)

  6. Chiral symmetry in perturbative QCD

    International Nuclear Information System (INIS)

    Trueman, T.L.

    1979-04-01

    The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant

  7. Descendants of the Chiral Anomaly

    OpenAIRE

    Jackiw, R.

    2000-01-01

    Chern-Simons terms are well-known descendants of chiral anomalies, when the latter are presented as total derivatives. Here I explain that also Chern-Simons terms, when defined on a 3-manifold, may be expressed as total derivatives.

  8. Chiral symmetry breaking in gauge theories from Reggeon diagram analysis

    International Nuclear Information System (INIS)

    White, A.R.

    1991-01-01

    It is argued that reggeon diagrams can be used to study dynamical properties of gauge theories containing a large number of massless fermions. SU(2) gauge theory is studied in detail and it is argued that there is a high energy solution which is analogous to the solution of the massless Schwinger model. A generalized winding-number condensate produces the massless pseudoscalar spectrum associated with chiral symmetry breaking and a ''trivial'' S-Matrix

  9. Excited meson spectroscopy with two chirally improved quarks

    Science.gov (United States)

    Engel, G.; Lang, C. B.; Mohler, D.; Limmer, M.; Schäfer, A.

    The excited isovector meson spectrum is explored using two chirally improved dynamical quarks. Seven ensembles, with pion masses down to \\approx 250 MeV are discussed and used for extrapolations to the physical point. Strange mesons are investigated using partially quenched s-quarks. Using the variational method, we extract excited states in several channels and most of the results are in good agreement with experiment.

  10. Effective Chiral Lagrangians and Lattice QCD

    CERN Document Server

    Heitger, J; Wittig, H; Heitger, Jochen; Sommer, Rainer; Wittig, Hartmut

    2000-01-01

    We propose a general method to obtain accurate estimates for some of the "low-energy constants" in the one-loop effective chiral Lagrangian by means of simulating lattice QCD. In particular, the method is sensitive to those constants whose values are required to test the hypothesis of a massless up-quark. Initial tests performed in the quenched approximation confirm that good statistical precision can be achieved. As a byproduct we obtain an accurate estimate for the ratio of pseudoscalar decay constants, F_K/F_pi, in the quenched approximation, which lies 10% below the experimental result. The quantities that serve to extract the low-energy constants also allow a test of the scaling behaviour of different discretizations of QCD and a search for the effects of dynamical quarks.

  11. Kinetics of the chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Hees, Hendrik van [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany); Frankfurt Institute for Advanced Studies (FIAS), Frankfurt (Germany); Wesp, Christian; Meistrenko, Alex; Greiner, Carsten [Johann-Wolfgang-Goethe-Universitaet Frankfurt, Institut fuer Theoretische Physik, Frankfurt (Germany)

    2016-07-01

    We simulate the kinetics of the chiral phase transition in hot and dense strongly interacting matter within a novel kinetic-theory approach. Employing an effective linear σ model for quarks, σ mesons, and pions we treat the quarks within a test-particle ansatz for solving the Boltzmann transport equation and the mesons in terms of classical fields. The decay-recombination processes like σ <-> anti q+q are treated using a kind of wave-particle dualism using the exact conservation of energy and momentum. After demonstrating the correct thermodynamic limit for particles and fields in a ''box calculation'' we apply the simulation to the dynamics of an expanding fireball similar to the medium created in ultrarelativistic heavy-ion collisions.

  12. Possible identification of quarks with leptons in Lie-isotopic SU(3) theory

    International Nuclear Information System (INIS)

    Animalu, A.O.E.

    1984-01-01

    A possible identification of the six quarks (d,s,c;u,t,b) with the corresponding leptons (e - ,μ - ,tau - ;v/sub e/,v/sub μ/,v/sub tau/) is attempted via the corrspondence principle, dapprox.(uv-bar/sub e/)e - , sapprox.(tv-bar/sub μ/)μ - , c(bv-bar/sub t/)t - ,uapprox.(uv/sub e/) v/sub e/,..., and its inverse, which are formally represented by a non-unitary integral transformation (with kernel P) and its inverse or dual (with kernel Q), connecting the quark and lepton fields. It is shown that PQ and QP may be interpreted as hadronic and leptonic density matrix operators which obey the quantum mechanical analog of the Liouville equation of conservation from which a Lie-isotopic generalization of Heisenberg's equation of motion is abstracted. P and Q form iso-canonically conjugate dynamical veriables, i.e., Q is the isotpic element for the isoassociative product H*Q = HPQ in the equation of motion for Q. It is also shown that PQ and QP, being idempotent operators, have eigenvalues 0 or 1, which imply that both P and Q can be singular, leading to a further differentiation of ''hadronic mechanics'' into the conventional ''isotopic'' theory in which the isotopic element (g) in the isoassociative product A*B = AgB is non-singular and Hermitian, and a new ''homotopic'' theory in which g is singular and non-Hermitian A Lie-admissible generalization is also obained, and SU(2)-spin realizations are indicated

  13. Spectral sum for the color-Coulomb potential in SU(3) Coulomb gauge lattice Yang-Mills theory

    International Nuclear Information System (INIS)

    Nakagawa, Y.; Nakamura, A.; Saito, T.; Toki, H.

    2010-01-01

    We discuss the essential role of the low-lying eigenmodes of the Faddeev-Popov (FP) ghost operator on the confining color-Coulomb potential using SU(3) quenched lattice simulations in the Coulomb gauge. The color-Coulomb potential is expressed as a spectral sum of the FP ghost operator and has been explored by partially summing the FP eigenmodes. We take into account the Gribov copy effects that have a great impact on the FP eigenvalues and the color-Coulomb potential. We observe that the lowest eigenvalue vanishes in the thermodynamic limit much faster than that in the Landau gauge. The color-Coulomb potential at large distances is governed by the near-zero FP eigenmodes; in particular, the lowest one accounts for a substantial portion of the color-Coulomb string tension comparable to the Wilson string tension.

  14. Scheme-Independent Calculation of $γ_{\\barψψ,IR}$ for an SU(3) Gauge Theory

    DEFF Research Database (Denmark)

    Ryttov, Thomas A.; Shrock, Robert

    2016-01-01

    We present a scheme-independent calculation of the infrared value of the anomalous dimension of the fermion bilinear, $\\gamma_{\\bar\\psi\\psi,IR}$ in an SU(3) gauge theory as a function of the number of fermions, $N_f$, via a series expansion in powers of $\\Delta_f$, where $\\Delta_f=(16.5-N......_f)$, to order $\\Delta_f^4$. We perform an extrapolation to obtain the first determination of the exact $\\gamma_{\\bar\\psi\\psi,IR}$ from continuum field theory. The results are compared with calculations of the $n$-loop values of this anomalous dimension from series in powers of the coupling and from lattice...

  15. Efficacy of the SU(3) scheme for ab initio large-scale calculations beyond the lightest nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dytrych, T. [Academy of Sciences of the Czech Republic (ASCR), Prague (Czech Republic); Louisiana State Univ., Baton Rouge, LA (United States); Maris, Pieter [Iowa State Univ., Ames, IA (United States); Launey, K. D. [Louisiana State Univ., Baton Rouge, LA (United States); Draayer, J. P. [Louisiana State Univ., Baton Rouge, LA (United States); Vary, James [Iowa State Univ., Ames, IA (United States); Langr, D. [Czech Technical Univ., Prague (Czech Republic); Aerospace Research and Test Establishment, Prague (Czech Republic); Saule, E. [Univ. of North Carolina, Charlotte, NC (United States); Caprio, M. A. [Univ. of Notre Dame, IN (United States); Catalyurek, U. [The Ohio State Univ., Columbus, OH (United States). Dept. of Electrical and Computer Engineering; Sosonkina, M. [Old Dominion Univ., Norfolk, VA (United States)

    2016-06-09

    We report on the computational characteristics of ab initio nuclear structure calculations in a symmetry-adapted no-core shell model (SA-NCSM) framework. We examine the computational complexity of the current implementation of the SA-NCSM approach, dubbed LSU3shell, by analyzing ab initio results for 6Li and 12C in large harmonic oscillator model spaces and SU(3)-selected subspaces. We demonstrate LSU3shell's strong-scaling properties achieved with highly-parallel methods for computing the many-body matrix elements. Results compare favorably with complete model space calculations and signi cant memory savings are achieved in physically important applications. In particular, a well-chosen symmetry-adapted basis a ords memory savings in calculations of states with a fixed total angular momentum in large model spaces while exactly preserving translational invariance.

  16. Four-loop result in SU(3) lattice gauge theory by a stochastic method: lattice correction to the condensate

    International Nuclear Information System (INIS)

    Di Renzo, F.; Onofri, E.; Marchesini, G.; Marenzoni, P.

    1994-01-01

    We describe a stochastic technique which allows one to compute numerically the coefficients of the weak-coupling perturbative expansion of any observable in Lattice Gauge Theory. The idea is to insert the exponential representation of the link variables U μ (x) →exp {A μ (x)/√(β)} into the Langevin algorithm and the observables and to perform the expansion in β -1/2 . The Langevin algorithm is converted into an infinite hierarchy of maps which can be exactly truncated at any order. We give the result for the simple plaquette of SU(3) up to fourth loop order (β -4 ) which extends by one loop the previously known series. ((orig.))

  17. Emergent Chiral Spin State in the Mott Phase of a Bosonic Kane-Mele-Hubbard Model

    Science.gov (United States)

    Plekhanov, Kirill; Vasić, Ivana; Petrescu, Alexandru; Nirwan, Rajbir; Roux, Guillaume; Hofstetter, Walter; Le Hur, Karyn

    2018-04-01

    Recently, the frustrated X Y model for spins 1 /2 on the honeycomb lattice has attracted a lot of attention in relation with the possibility to realize a chiral spin liquid state. This model is relevant to the physics of some quantum magnets. Using the flexibility of ultracold atom setups, we propose an alternative way to realize this model through the Mott regime of the bosonic Kane-Mele-Hubbard model. The phase diagram of this model is derived using bosonic dynamical mean-field theory. Focusing on the Mott phase, we investigate its magnetic properties as a function of frustration. We do find an emergent chiral spin state in the intermediate frustration regime. Using exact diagonalization we study more closely the physics of the effective frustrated X Y model and the properties of the chiral spin state. This gapped phase displays a chiral order, breaking time-reversal and parity symmetry, but is not topologically ordered (the Chern number is zero).

  18. A Langevin Canonical Approach to the Study of Quantum Stochastic Resonance in Chiral Molecules

    Directory of Open Access Journals (Sweden)

    Germán Rojas-Lorenzo

    2016-09-01

    Full Text Available A Langevin canonical framework for a chiral two-level system coupled to a bath of harmonic oscillators is used within a coupling scheme different from the well-known spin-boson model to study the quantum stochastic resonance for chiral molecules. This process refers to the amplification of the response to an external periodic signal at a certain value of the noise strength, being a cooperative effect of friction, noise, and periodic driving occurring in a bistable system. Furthermore, from this stochastic dynamics within the Markovian regime and Ohmic friction, the competing process between tunneling and the parity violating energy difference present in this type of chiral systems plays a fundamental role. This mechanism is finally proposed to observe the so-far elusive parity-violating energy difference in chiral molecules.

  19. Abelian Duality, Confinement, and Chiral-Symmetry Breaking in a SU(2) QCD-Like Theory

    International Nuclear Information System (INIS)

    Uensal, Mithat

    2008-01-01

    We analyze the vacuum structure of SU(2) QCD with multiple massless adjoint representation fermions formulated on a small spatial S 1 xR 3 . The absence of thermal fluctuations, and the fact that quantum fluctuations favor the vacuum with unbroken center symmetry in a weakly coupled regime, renders the interesting dynamics of these theories analytically calculable. Confinement and the generation of the mass gap in the gluonic sector are shown analytically. In this regime, theory exhibits confinement without continuous chiral-symmetry breaking. However, a flavor singlet chiral condensate (which breaks a discrete chiral symmetry) persists at arbitrarily small S 1 . Under certain reasonable assumptions, we show that the theory exhibits a zero temperature chiral phase transition in the absence of any change in spatial center symmetry realizations

  20. On Yang--Mills Theories with Chiral Matter at Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Shifman, M.; /Minnesota U., Theor. Phys. Inst. /Saclay, SPhT; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.

    2008-08-20

    Strong coupling dynamics of Yang-Mills theories with chiral fermion content remained largely elusive despite much effort over the years. In this work, we propose a dynamical framework in which we can address non-perturbative properties of chiral, non-supersymmetric gauge theories, in particular, chiral quiver theories on S{sub 1} x R{sub 3}. Double-trace deformations are used to stabilize the center-symmetric vacuum. This allows one to smoothly connect smaller(S{sub 1}) to larger(S{sub 1}) physics (R{sub 4} is the limiting case) where the double-trace deformations are switched off. In particular, occurrence of the mass gap in the gauge sector and linear confinement due to bions are analytically demonstrated. We find the pattern of the chiral symmetry realization which depends on the structure of the ring operators, a novel class of topological excitations. The deformed chiral theory, unlike the undeformed one, satisfies volume independence down to arbitrarily small volumes (a working Eguchi-Kawai reduction) in the large N limit. This equivalence, may open new perspectives on strong coupling chiral gauge theories on R{sub 4}.