WorldWideScience

Sample records for chiral soliton model

  1. Chiral String-Soliton Model for the light chiral baryons

    CERN Document Server

    Pavlovsky, Oleg

    2010-01-01

    The Chiral String-Soliton Model is a joining of the two notions about the light chiral baryons: the chiral soliton models (like the Skyrme model) and the Quark-Gluon String models. The ChSS model is based on the Effective Chiral Lagrangian which was proposed in [arXiv:hep-ph/0306216]. We have studied the physical properties of the light chiral baryon within the framework of this ChSS model.

  2. Solitons in nonlocal chiral quark models

    CERN Document Server

    Broniowski, W; Ripka, G; Broniowski, Wojciech; Golli, Bojan; Ripka, Georges

    2002-01-01

    Properties of hedgehog solitons in a chiral quark model with nonlocal regulators are described. We discuss the formation of the hedgehog soliton, the quantization of the baryon number, the energetic stability, the gauging and construction of Noether currents with help of path-ordered P-exponents, and the evaluation of observables. The issue of nonlocality is thoroughly discussed, with a focus on contributions to observables related to the Noether currents. It is shown that with typical model parameters the solitons are not far from the weak nonlocality limit. The methods developed are applicable to solitons in models with separable nonlocal four-fermion interactions.

  3. Cranking the chiral soliton bag model

    Energy Technology Data Exchange (ETDEWEB)

    Stern, J.; Bourenane, M.; Clement, G.

    1988-10-01

    The nucleon-delta mass difference is computed in the chiral soliton bag model with soft confinement of gluons by the cranking method. The resulting value of the effective strong fine structure constant is ..cap alpha../sub s/ approx. 0.7.

  4. Structure Functions from Chiral Soliton Models

    OpenAIRE

    Weigel, H.(Physics Department, Stellenbosch University, Matieland 7602, South Africa); Gamberg, L.(Department of Physics, Penn State University-Berks, Reading, PA, 19610, U.S.A.); Reinhardt, H.

    1997-01-01

    We study nucleon structure functions within the bosonized Nambu-Jona-Lasinio (NJL) model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron-nucleon scattering. A comparison with a low-scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions $g_{1}(x)$ and $g_{2}(x)$ in this model. We compa...

  5. Nucleon-antinucleon annihilation in chiral soliton model

    International Nuclear Information System (INIS)

    We investigate annihilation process of nucleons in chiral soliton model by path integral method. Soliton-antisoliton pair is shown to decay into pions at range of order of about 1 fm, defined by SS-bar potential. Contribution of annihilation channel into elastic scattering is discussed. (author). 14 refs, 1 fig

  6. Nucleon-antinucleon annihilation in chiral soliton model

    International Nuclear Information System (INIS)

    We investigate annihilation process of nucleons in the chiral soliton model by the path integral method. A soliton-antisoliton pair is shown to decay into mesons at range of about 1fm, defined by the S bar S potential. Contribution of the annihilation channel to the elastic scattering is discussed

  7. Chiral soliton model vs. pentaquark structure for (1540)

    Indian Academy of Sciences (India)

    R Ramachandran

    2005-09-01

    The exotic baryon + (1540 MeV) is visualized as an expected (iso) rotational excitation in the chiral soliton model. It is also argued as a pentaquark baryon state in a constituent quark model with strong diquark correlations. I contrast these two points of view; observe the similarities and differences between the two pictures. Collective excitation, the characteristic of chiral soliton model, points toward small mixing of representations in the wake of (3) breaking. In contrast, constituent quark models prefer near `ideal' mixing, similar to - mixing.

  8. The baryon number two system in the Chiral Soliton Model

    CERN Document Server

    Sarti, Valentina Mantovani; Vento, Vicente; Park, Byung-Yoon

    2012-01-01

    We study the interaction between two B = 1 states in a Chiral Soliton Model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.

  9. Nucleon Structure Functions within a Chiral Soliton Model

    OpenAIRE

    Gamberg, L.(Department of Physics, Penn State University-Berks, Reading, PA, 19610, U.S.A.); Reinhardt, H.; Weigel, H.(Physics Department, Stellenbosch University, Matieland 7602, South Africa)

    1997-01-01

    We study nucleon structure functions within the bosonized Nambu--Jona--Lasinio model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron--nucleon scattering. A comparison with a low--scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions $g_{1}(x)$ and $g_{2}(x)$ in this model. We compare...

  10. Studying the baryon properties through chiral soliton model at finite temperature and denstity

    OpenAIRE

    Shu, Song; Li, Jia-Rong

    2014-01-01

    We have studied the chiral soliton model in a thermal vacuum. The soliton equations are solved at finite temperature and density. The temperature or density dependent soliton solutions are presented. The physical properties of baryons are derived from the soliton solutions at finite temperature and density. The temperature or density dependent variation of the baryon properties are discussed.

  11. Nucleon Structure Functions within a Chiral Soliton Model

    CERN Document Server

    Gamberg, L P; Weigel, H

    1997-01-01

    We study nucleon structure functions within the bosonized Nambu--Jona--Lasinio model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron--nucleon scattering. A comparison with a low--scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions $g_{1}(x)$ and $g_{2}(x)$ in this model. We compare the model predictions on these structure functions with data from the E143 experiment by GLAP evolving them appropriately.

  12. Confined Chiral Solitons in the Spectral Quark Model

    CERN Document Server

    Ruiz-Arriola, E; Golli, B; Arriola, Enrique Ruiz; Broniowski, Wojciech; Golli, Bojan

    2006-01-01

    Chiral solitons with baryon number one are investigated in the spectral quark model. In this model the quark propagator is a superposition of complex mass propagators with a suitable spectral function. As a result, the constituent quark mass is identified with saddle points of the Dirac eigenvalues. Due to this feature the valence quarks never become unbound nor dive into the negative spectrum, hence providing stable solitons as absolute minima of the action. This a manifestation of the built-in analytic confinement in the spectral quark model. Self-consistent mean field hedgehog solutions are found and some of their properties determined. Our analysis constitutes an example of a treatment of a relativistic complex mass system.

  13. Solitons in a chiral quark model with non-local interactions

    CERN Document Server

    Golli, B; Ripka, G; Golli, Bojan; Broniowski, Wojciech; Ripka, Georges

    1998-01-01

    Hedgehog solitons are found in a chiral quark model with non-local interactions. The solitons are stable without the chiral-circle constraint for the meson fields, as was assumed in previous Nambu-Jona--Lasinio model with local interactions.

  14. The baryon mass calculation in the chiral soliton model at finite temperature and density

    International Nuclear Information System (INIS)

    In the mean-field approximation, we have studied the soliton which is embedded in a thermal medium within the chiral soliton model. The energy of the soliton or the baryon mass in the thermal medium has been carefully evaluated, in which we emphasize that the thermal effective potential in the soliton energy should be properly treated in order to derive a finite and well-defined baryon mass out of the thermal background. The result of the baryon mass at finite temperatures and densities in chiral soliton model are clearly presented. (author)

  15. Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model

    CERN Document Server

    Akiyama, S; Akiyama, Satoru; Futami, Yasuhiko

    2003-01-01

    In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the deformed soliton and the kaon.

  16. Chiral Quark Soliton Model and Nucleon Spin Structure Functions

    CERN Document Server

    Wakamatsu, M

    2009-01-01

    The chiral quark soliton model (CQSM) is one of the most successful models of baryons at quark level, which maximally incorporates the most important feature of low energy QCD, i.e. the chiral symmetry and its spontaneous breakdown. Basically, it is a relativistic mean-field theory with full account of infinitely many Dirac-sea quarks in a rotational-symmetry-breaking mean field of hedgehog shape. The numerical technique established so far enables us to make a nonperturbative evaluation of Casimir effects (i.e. effects of vacuum-polarized Dirac sea) on a variety of baryon observables. This incompatible feature of the model manifests most clearly in its predictions for parton distribution functions of the nucleon. In this talk, after briefly reviewing several basic features of the CQSM, we plan to demonstrate in various ways that this unique model of baryons provides us with an ideal tool for disentangling nonperturbative aspect of the internal partonic structure of the nucleon, especially the underlying spin ...

  17. Soliton Solutions of the Integrable Chiral Model in 2+1 Dimensions

    OpenAIRE

    Ioannidou, Theodora

    1997-01-01

    We present soliton and soliton-antisoliton solutions for the integrable chiral model in 2+1 dimensions with nontrivial (elastic) scattering. These solutions can be obtained either as the limiting cases of the ones already constructed by Ward or by adapting Uhlenbeck's method.

  18. On the Chiral Quark Soliton Model with Pauli-Villars Regularization

    OpenAIRE

    Kubota, T.; Wakamatsu, M.; Watabe, T.

    1999-01-01

    The Pauli-Villars regularization scheme is often used for evaluating parton distributions within the framework of the chiral quark soliton model with inclusion of the vacuum polarization effects. Its simplest version with a single subtraction term should however be taken with some caution, since it does not fully get rid of divergences contained in scalar and psuedoscalar quark densities appearing in the soliton equation of motion. To remedy this shortcoming, we propose here its natural exten...

  19. Non-local regularization of chiral quark models in the soliton sector

    CERN Document Server

    Ripka, G; Ripka, Georges; Golli, Bojan

    1999-01-01

    A chiral quark model is described which is regularized in terms of Lorentz invariant non-local interactions. The model is regularized to all loop orders and it ensures the proper quantization of the baryon number. It sustains bound hedgehog solitons which, after suitable centre of mass corrections, can adequately describe the nucleon.

  20. Quantum solitons of the nonlinear sigma-model with broken chiral symmetry

    CERN Document Server

    Kostyuk, A P; Chepilko, N M; Okazaki, T

    1995-01-01

    It is proved that the quantum-mechanical consideration of global breathing of a hedgehog-like field configuration leads to the dynamically stable soliton solutions in the nonlinear sigma-model without the Skyrme term. Such solutions exist only when chiral symmetry of the model is broken.

  1. The B=2 system in the chiral quark-soliton model with broken scale invariance

    CERN Document Server

    Sarti, Valentina Mantovani; Vento, Vicente

    2013-01-01

    We study the interaction between two B=1 states in the Chiral-Dilaton Model with scale invariance where baryons are described as non-topological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for the B=1 states we construct, via a product ansatz, three possible B=2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics. We investigate the behaviour of these solutions in the range of long and intermediate distances between the two solitons. Since the product ansatz breaks down as the two solitons get close, we explore the short range distances regime by building up a six quarks bag and by evaluating the interaction energy as a function of the inter-soliton separation. We calculate the interaction energy as a function of the inter-soliton distance for the B=2 system and we show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations conne...

  2. Chiral solitons a review volume

    CERN Document Server

    1987-01-01

    This review volume on topological and nontopological chiral solitons presents a global view on the current developments of this field in particle and nuclear physics. The book addresses problems in quantization, restoration of translational and rotational symmetry, and the field theoretical approach to solitons which are common problems in the field of solitons. Primarily aimed for graduate students and the novice in the field, the collected articless cover a broad spectrum of topics in formalism as well as phenomenology.

  3. The projected chiral soliton model with vector mesons

    International Nuclear Information System (INIS)

    We investigate the solitonic sector of the massive Yang-Mills Lagrangian including σ-, π-, ω-, ρ-, A-mesons as well as valence quarks and apply it to the calculation of some baryonic properties. We perform the canonical quantization which requires the explicit elimination of the time-like components of the vector fields. A mean-field Fock state with hedgehog symmetry is defined as a product of a Slater determinant for the quarks in a 1s-state and coherent states for the mesons. We project this mean-field Fock state onto good spin and isospin by means of Peierls-Yoccoz operators and obtain, after fitting the nucleon mass, a NΔ splitting which is about 80% of the experimental value. A good description of electromagnetic and axial static properties as well as form factors of the nucleon is achieved. Furthermore, the spin content of the nucleon is analyzed in terms of the flavor singlet axial vector coupling constant giving g0A similar 0.44 independently of the input parameters. Finally, the proton-neutron hadronic mass spitting is estimated in the model giving Mn-Mp=2.38±0.55 MeV, the errors reflecting the uncertainty in the up and down quark masses. (orig.)

  4. Energy-Momentum Tensor Form Factors of the Nucleon in Nuclear Matter in the Chiral Soliton Model

    Science.gov (United States)

    Yakhshiev, Ulugbek; Kim, Hyun-Chul; Schweitzer, Peter

    2013-08-01

    In the present talk, we report a recent investigation on the nucleon form factors of the energy-momentum tensor in nuclear matter, based on the in-medium modified chiral soliton model. The results in free space are in agreement with those from other approaches. We have discussed the changes of the energy-momentum tensor form factors in nuclear matter and the modification of the soliton structure due to the surrounding nuclear environment.

  5. Form factors, medium effects and vector mesons in the projected chiral soliton model

    International Nuclear Information System (INIS)

    The main goal of the present work has been the evaluation of baryonic form factors by means of the projected chiralquark-meson soliton model and various generalizations of it. In first place we have studied the Nambu-Jona-Lasinio model in the Hartree approximation for classical non-strange scalar and pseudoscalar couplings in the vacuum sector. In doing so, we have first bosonized the Lagrangian and applied three regularization schemes in order to render the theory finite. We have found that at least two physical quantities as the quark mass and the quark condensate are very sensitive to the actual scheme used. The procedures which allow to reproduce best the experimental values are both sharp cut-off methods. We have also shown that the chiral soliton model with explicit valence quarks can be considered as an approximation to the Hartree solution of the Nambu-Jona-lasinio model for quarks. In the framework of the linear chiral sigma model with quarks, sigma-, and pi-mesons we have discussed several nucleon form factors such as electromagnetic, axial and that for the pion-nucleon interaction. (orig./HSI)

  6. Nucleon Structure Functions from a Chiral Soliton

    OpenAIRE

    Weigel, H.(Physics Department, Stellenbosch University, Matieland 7602, South Africa); Gamberg, L.(Department of Physics, Penn State University-Berks, Reading, PA, 19610, U.S.A.); Reinhardt, H.

    1996-01-01

    Nucleon structure functions are studied within the chiral soliton approach to the bosonized Nambu-Jona-Lasinio model. The valence quark approximation is employed which is justified for moderate constituent quark masses ($\\sim$ 400 MeV) as the contribution of the valence quark level dominates the predictions of nucleon properties. As examples the unpolarized structure functions for the ${\

  7. Quantum corrections to the masses of the octet and decuplet baryons in the SU(3) chiral quark soliton model

    CERN Document Server

    Akiyama, S; Akiyama, Satoru; Futami, Yasuhiko

    2006-01-01

    Mesonic fluctuations around the chiral solitons are investigated in the SU(3) chiral quark soliton model. Since the soliton takes the non-hedgehog shape for the hyperons and the hedgehog one for the non-hedgehog baryons in our approach, the fluctuations also change according to the baryonic state. The quantum corrections to the masses (the Casimir energies) are estimated for the octet and decuplet baryons. The lack of the confinement in this model demands the cutoff on the energy of the fluctuations. Under the assumption that the value of the cutoff energy is $2\\times$(the lightest constituent quark mass), these calculation reproduces the masses of the baryons within 15 % error.

  8. On Exotic Systems of Baryons in Chiral Soliton Models

    CERN Document Server

    Kopeliovich, Vladimir

    2016-01-01

    The role of zero mode quantum corrections to the energy of baryonic systems with exotic quantum numbers (strangeness) is discussed. A simple expression for the contribution depending on strange inertia is obtained in the $SU(3)-$collective coordinate quantization approach, and it is shown that this correction stabilizes the systems the stronger the greater their baryon number is. Furthemore, systems are considered which could be interpreted in the quark model language as containing additional $q\\bar q-$pairs. It is argued that a strange skyrmion crystal should have additional binding in comparison with the $SU(2)-$quantized neutron crystal.

  9. Sensitivity to properties of the phi-meson in the nucleon structure in the chiral soliton model

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.; Zhang, L. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The influence of the {phi}-meson on the nucleon properties in the chiral soliton model is discussed. Properties of the {phi}-meson and its photo- and electroproduction are of fundamental interest to CEBAF and its possible future extension. The quark model assigns {phi} an s{bar s} structure, thus forbidding the radiative decay {phi}{yields}{pi}{sup 0}{gamma}. Experimentally it is also found to be suppressed, yielding a branching fraction of 1.3{times}10{sup {minus}3}. However, {phi}{yields}{rho}{pi} and {phi}{yields}{pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} are not suppressed at all. Thus, it is possible to incorporate the widths of these decays into the framework of the chiral soliton model, by making use of a specific model for the compliance with OZI rule. Such a model is for example, the {omega}-{phi} mixing model. Consequence of this in the context of a chiral soliton model, which builds on the {pi}{rho}{omega}a{sub 1}(f{sub 1}) meson effective Lagrangian, is the context of this report.

  10. The role of the Delta isobar in chiral perturbation theory and hedgehog soliton models

    OpenAIRE

    Cohen, Thomas D.; Broniowski, Wojciech

    1992-01-01

    Hedgehog model predictions for the leading nonanalytic behavior (in $m^{2}_{\\pi }$) of certain observables are shown to agree with the predictions of chiral perturbation theory up to an overall factor which depends on the operator. This factor can be understood in terms of contributions of the $\\Delta$ isobar in chiral loops. These physically motivated contributions are analyzed in an expansion in which both $m_{\\pi}$ and $M_{\\Delta}-M_N$ are taken as small parameters, and are shown to yield ...

  11. Gluonic contribution to the nucleon-delta mass difference in a chiral soliton bag model

    Energy Technology Data Exchange (ETDEWEB)

    Bourenane, M.; Stern, J.; Clement, G.

    1988-05-01

    A generalization of the Friedberg-Lee model, which minimally incorporates soft confinement of quarks and gluons and approximate chiral symmetry, is presented and applied to the computation of the gluonic contribution to the nucleon-delta mass difference. The value of the effective strong fine structure constant is estimated to be ..cap alpha../sub s/=0.65.

  12. Chiral solitons in a coupled double Peierls chain.

    Science.gov (United States)

    Cheon, Sangmo; Kim, Tae-Hwan; Lee, Sung-Hoon; Yeom, Han Woong

    2015-10-01

    Chiral edge states are the hallmark of two- and three-dimensional topological materials, but their one-dimensional (1D) analog has not yet been found. We report that the 1D topological edge states, solitons, of the charge density wave system of indium atomic wires self-assembled on a silicon surface have chirality. The system is described by a coupled double Peierls-dimerized atomic chain, where the interchain coupling induces dynamical sublattice symmetry breaking. This changes its topological symmetry from Z₂× Z₂to Z₄ and endows solitons with a chiral degree of freedom. Chiral solitons can produce quantized charge transport across the chain that is topologically protected and controllable by the soliton's chirality. Individual right- and left-chiral solitons in indium wires are directly identified by scanning tunneling microscopy. PMID:26450206

  13. A chiral soliton model constrained by gA/gV

    International Nuclear Information System (INIS)

    We present one example of a smooth chiral confinement model of the nucleon constrained (within a mean-field theory) by the measured gA/gV of the neutron. The resulting confining scalar potential for the quarks inside the nucleon has a maximum in the surface and approaches its asymptotic value from above. Low-energy properties of the nucleon (three quarks in their ground state) are not spoiled by this peculiar surface behaviour. The 'helicity argument' (only spin-carrying fields inside the nucleon contribute to gA/gV) we employed here further, sheds new light on the modelling of the hadrons in terms of hybrid skyrmions and on the description of the Nπ decay mode of excited baryon states

  14. $\\Delta$(1232) electroproduction amplitudes in chiral soliton models of the nucleon

    CERN Document Server

    Amoreira, L; Fiolhais, M; Amoreira, Luis; Alberto, Pedro; Fiolhais, Manuel

    2000-01-01

    The multipole amplitudes for the N - Delta electromagnetic transition are computed in the framework of the linear sigma model and the chiral chromodielectric model for small and moderate photon virtualities. The models include quark and meson degrees of freedom and the nucleon and the delta are clusters of three valence hedgehog quarks surrounded by meson clouds described by coherent states. Angular momentum and isospin projections are performed to endow model states representing the nucleon and the delta with proper quantum numbers. Recoil corrections involved in the process $\\gamma_{\\rm v} N \\to \\Delta$ are taken into account by performing linear momentum projection of the initial and final baryon states. The ratios $E2/M1$ and $C2/M1$ are in good agreement with the data in the two models, but the magnetic amplitude is better reproduced in the Linear Sigma Model. The ratios show little dependence with the model parameters. Both in the Linear Sigma Model and in the Chromodielectric Model the charged pions ar...

  15. Quantum stabilization of the chiral soliton

    International Nuclear Information System (INIS)

    The SU(2)xSU(2) nonlinear σ-model soliton, stabilized by quantum fluctuations alone, is analyzed by variational calculations. The magnetic moments and gA of the nucleon are calculated and the results are as good as, or better than, with the conventional Skyrmion. It is also pointed out, however, that the model has the wrong Nc dependence for the mass and the size of the soliton, which collapses as the number of colors Nc→∞

  16. Scaling behaviour of the effective chiral action and stability of the chiral soliton

    International Nuclear Information System (INIS)

    The effective chiral action is evaluated within a novel improved heat-kernel expansion, which includes gradients of the chiral field in a non-perturbative way. The exact scaling behaviour of the effective action of a localized chiral field with respect to changing its spatial size is found. From this it is proved that the radiatively induced derivative terms cannot absolutely stabilize the chiral soliton against collapsing. The collapsing of the soliton is, however, accompanied by a vanishing of the baryon charge. It is argued that the effective chiral action constrained to a fixed baryon number may still admit stable soliton configurations. (orig.)

  17. Chiral quark model

    Indian Academy of Sciences (India)

    H Weigel

    2003-11-01

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.

  18. Quasi two-dimensional astigmatic solitons in soft chiral metastructures.

    Science.gov (United States)

    Laudyn, Urszula A; Jung, Paweł S; Karpierz, Mirosław A; Assanto, Gaetano

    2016-01-01

    We investigate a non-homogeneous layered structure encompassing dual spatial dispersion: continuous diffraction in one transverse dimension and discrete diffraction in the orthogonal one. Such dual diffraction can be balanced out by one and the same nonlinear response, giving rise to light self-confinement into astigmatic spatial solitons: self-focusing can compensate for the spreading of a bell-shaped beam, leading to quasi-2D solitary wavepackets which result from 1D transverse self-localization combined with a discrete soliton. We demonstrate such intensity-dependent beam trapping in chiral soft matter, exhibiting one-dimensional discrete diffraction along the helical axis and one-dimensional continuous diffraction in the orthogonal plane. In nematic liquid crystals with suitable birefringence and chiral arrangement, the reorientational nonlinearity is shown to support bell-shaped solitary waves with simple astigmatism dependent on the medium birefringence as well as on the dual diffraction of the input wavepacket. The observations are in agreement with a nonlinear nonlocal model for the all-optical response. PMID:26975651

  19. Quasi two-dimensional astigmatic solitons in soft chiral metastructures

    Science.gov (United States)

    Laudyn, Urszula A.; Jung, Paweł S.; Karpierz, Mirosław A.; Assanto, Gaetano

    2016-03-01

    We investigate a non-homogeneous layered structure encompassing dual spatial dispersion: continuous diffraction in one transverse dimension and discrete diffraction in the orthogonal one. Such dual diffraction can be balanced out by one and the same nonlinear response, giving rise to light self-confinement into astigmatic spatial solitons: self-focusing can compensate for the spreading of a bell-shaped beam, leading to quasi-2D solitary wavepackets which result from 1D transverse self-localization combined with a discrete soliton. We demonstrate such intensity-dependent beam trapping in chiral soft matter, exhibiting one-dimensional discrete diffraction along the helical axis and one-dimensional continuous diffraction in the orthogonal plane. In nematic liquid crystals with suitable birefringence and chiral arrangement, the reorientational nonlinearity is shown to support bell-shaped solitary waves with simple astigmatism dependent on the medium birefringence as well as on the dual diffraction of the input wavepacket. The observations are in agreement with a nonlinear nonlocal model for the all-optical response.

  20. Parity-violating aysmmetries in elastic $\\vec{e}p$ scattering in the chiral quark-soliton model: Comparison with A4, G0, HAPPEX and SAMPLE

    CERN Document Server

    Silva, A; Kim, H C; Urbano, D; Goeke, Klaus; Kim, Hyun-Chul; Silva, Antonio; Urbano, Diana

    2006-01-01

    We investigate parity-violating electroweak asymmetries in the elastic scattering of polarized electrons off protons within the framework of the chiral quark-soliton model ($\\chi$QSM). We use as input the former results of the electromagnetic and strange form factors and newly calculated SU(3) axial-vector form factors, all evaluated with the same set of four parameters adjusted several years ago to general mesonic and baryonic properties. Based on this scheme, which yields positive electric and magnetic strange form factors with a $\\mu_s=(0.08-0.13)\\mu_N$, we determine the parity-violating asymmetries of elastic polarized electron-proton scattering. The results are in a good agreement with the data of the A4, HAPPEX, and SAMPLE experiments and reproduce the full $Q^2$-range of the G0-data. We also predict the parity-violating asymmetries for the backward G0 experiment.

  1. Three-Dimensional Topological Solitons in Chiral Liquid Crystals and Ferromagnetic Colloids

    Science.gov (United States)

    Smalyukh, Ivan

    Three-dimensional knotted solitons - often called ``hopfions'' - have continuous physical fields classified by the Hopf index topological invariant and behave like particles. These hopfions arise in theories in many branches of physics, but their structure and stability are rarely accessible to direct experimental studies. We realize and characterize such static solitons in the molecular alignment fields of chiral liquid crystals and in the magnetization field of colloids with long-range ferromagnetic ordering. Our experiments agree with predictions of numerical modeling based on free energy minimization. By exploiting facile response of the soft matter host media, we demonstrate exquisite control of structure and tunable self-assembly of such solitonic ``particles''. This lecture will discuss how liquid crystals and colloids can serve as soft matter model systems in studies of structure, topology and dynamics of three-dimensional topological solitons. Gsoft Early Career.

  2. Gravitating $\\sigma$ Model Solitons

    CERN Document Server

    Kim, Y; Kim, Yoonbai; Moon, Sei-Hoon

    1998-01-01

    We study axially symmetric static solitons of O(3) nonlinear $\\sigma$ model coupled to (2+1)-dimensional anti-de Sitter gravity. The obtained solutions are not self-dual under static metric. The usual regular topological lump solution cannot form a black hole even though the scale of symmetry breaking is increased. There exist nontopological solitons of half integral winding in a given model, and the corresponding spacetimes involve charged Ba$\\tilde n$ados-Teitelboim-Zanelli black holes without non-Abelian scalar hair.

  3. Chiral symmetry restoration in effective Lagrangian models

    International Nuclear Information System (INIS)

    The restoration is studied of chiral symmetry in dense baryon matter using effective lagrangian models of QCD, in which baryons are described as topological solitons. Starting from the breaking of scale invariance and chiral symmetry in the QCD vacuum, the foundations are discussed of effective lagrangians and their relevance for applications to dense matter. Soliton models, such a the Skyrme model, show a phase transition at high densities, whose order parameter is the average scalar field. The properties are investigated of the two phases of the effective theory and show that the phase transition corresponds to the restoration of the chiral symmetry of QCD. It is argued that it should not be understood as deconfinement. The author then considers this phase transition in the context of the Cheshire Cat principle, which provides the link to the underlying quarks of QCD. An analogue of the Cheshire Cat property of this chiral bag model for baryons is found in solitons of effective lagrangians with a scalar glueball field. The Cheshire Cat interpretation of the results of effective lagrangians provides a consistent picture of chiral symmetry restoration at high densities. To verify this interpretation explicitly, the author finally generalizes the effective lagrangian approach to dense matter to a chiral bag model description with quark degrees of freedom

  4. Soliton bag models

    International Nuclear Information System (INIS)

    Soliton models are well-suited for dynamical calculations, such as hadron-hadron interactions and collisions, since for each variable in the Lagrangian the time derivative of that variable also appears. For such models, constrained (deformed) mean field solutions provide a basis for generator coordinate dynamical calculations. This requires the solution of a large number of coupled, nonlinear, differential equations involving the quark and scalar fields. The Henyey-Wilets method reduces the problem to the solution of a set of coupled, linear, inhomogeneous, differential equations to be iterated. In the chromodielectric model, color confinement is effected by the self and mutual interactios of the quarks through the chromelectric field. This requires the self-consistent calculation of the gluon propagator in a spatially varying dielectric function. This now involves the solution of a set of coupled, nonlinear integro-differential equations, which can be linearized and solved by iterations. The problem is computation intensive. 20 refs

  5. Baryon resonances without quarks: A chiral soliton perspective

    Energy Technology Data Exchange (ETDEWEB)

    Karliner, M.

    1987-03-01

    In many processes involving low momentum transfer it is fruitful to regard the nucleon as a soliton or ''monopole-like'' configuration of the pion field. In particular, within this framework it is possible to obtain detailed predictions for pion-nucleon scattering amplitudes and for properties of baryon resonances. One can also derive model-independent linear relations between scattering amplitudes, such as ..pi..N and anti KN. A short survey of some recent results is given, including comparison with experimental data.

  6. Soliton-soliton and wave-soliton collisions in Skyrme-like [sigma]-models

    Energy Technology Data Exchange (ETDEWEB)

    Kudryavtsev, A. (Dept. of Mathematical Sciences, Durham Univ. (United Kingdom)); Piette, B. (Dept. of Mathematical Sciences, Durham Univ. (United Kingdom)); Zakrzewski, W.J. (Dept. of Mathematical Sciences, Durham Univ. (United Kingdom))

    1993-12-01

    A skyrme-like inversion of the (2+1)-dimensional classical [sigma]-model is considered. Some aspects of soliton-soliton collisions are studied using both the numerical and phenomenological approaches. In particular, the problem of 90 scattering of solitons in the head-on collisions is analyzed. Properties of the two-soliton configurations for v[proportional to]v[sub cr] are discussed in terms of a specific solution, which may be called a 'disoliton'. This solution corresponds to a saddle point in the space of field configurations and is unstable with respect to the decay into two well separated solitons. Different classes of field configurations, which may be called 'one-dimensional' wave packets, are also studied as well as the interaction of these wave packets with a soliton. (orig.)

  7. Macroscopic dynamics of incoherent soliton ensembles: soliton-gas kinetics and direct numerical modeling : Incoherent soliton ensembles

    OpenAIRE

    Carbone, Francesco; Dutykh, Denys; El, Gennady

    2015-01-01

    We undertake a detailed comparison of the results of direct numerical simulations of the integrable soliton gas dynamics with the analytical predictions inferred from the exact solutions of the relevant kinetic equation for solitons. We use the KdV soliton gas as a simplest analytically accessible model yielding major insight into the general properties of soliton gases in integrable systems. Two model problems are considered: (i) the propagation of a `trial' soliton through a one-component `...

  8. Macroscopic dynamics of incoherent soliton ensembles: soliton-gas kinetics and direct numerical modeling

    CERN Document Server

    Carbone, Francesco; El, Gennady

    2015-01-01

    We undertake a detailed comparison of the results of direct numerical simulations of the integrable soliton gas dynamics with the analytical predictions inferred from the exact solutions of the relevant kinetic equation for solitons. We use the KdV soliton gas as a simplest analytically accessible model yielding major insight into the general properties of soliton gases in integrable systems. Two model problems are considered: (i) the propagation of a `trial' soliton through a one-component `cold' soliton gas consisting of randomly distributed solitons of approximately the same amplitude; and (ii) collision of two cold soliton gases of different amplitudes (soliton gas shock tube problem) leading to the formation of an incoherend dispersive shock wave. In both cases excellent agreement is observed between the analytical predictions of the soliton gas kinetics and the direct numerical simulations. Our results confirm relevance of the kinetic equation for solitons as a quantitatively accurate model for macrosco...

  9. Vector transition form factors of the $N K^*\\to\\Theta^+ $ and $N \\bar{K}^*\\to \\Sigma_{\\bar{10}}^{*-}$ in the SU(3) chiral quark-soliton model

    CERN Document Server

    Ledwig, Tim; Goeke, Klaus

    2008-01-01

    We investigate the vector transition form factors of the nucleon and vector meson $K^*$ to the pentaquark baryon $\\Theta^+$ within the framework of the SU(3) chiral quark-soliton model. We take into account the rotational $1/N_c$ and linear $m_{\\rm s}$ corrections, assuming isospin symmetry and employing the symmetry-conserving quantization. It turns out that the leading-order contributions to the form factors are almost cancelled by the rotational corrections. Because of this, the flavor SU(3) symmetry-breaking terms yield sizeable effects on the transition form factors. In particular, the main contribution to the electric transition form factor comes from the wave-function corrections, which is a consequence of the generalized Ademollo-Gatto theorem derived in the present work. We estimate with the help of the vector meson dominance the $K^*$ vector and tensor coupling constants for the $\\Theta^+$: $g_{K^{*}N\\Theta}=0.74 - 0.87$ and $f_{K^{*}N\\Theta}=0.53 - 1.16$. We argue that the outcome of the present wo...

  10. Generalized simplicial chiral models

    International Nuclear Information System (INIS)

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, the simplicial chiral models are generalized through replacing the term Tr(AA†) in the Lagrangian of these models by an arbitrary class function of AA†; V(AA†). This is the same method used in defining the generalized two-dimensional Yang-Mills theories (gYM2) from ordinary YM2. We call these models the 'generalized simplicial chiral models'. Using the results of the one-link integral over a U(N) matrix, the large-N saddle-point equations for eigenvalue density function ρ(z) in the weak (β>βc) and strong (βc) regions are computed. In d=2, where the model is in some sense related to the gYM2 theory, the saddle-point equations are solved for ρ(z) in the two regions, and the explicit value of critical point βc is calculated for V(B)=Tr Bn (B=AA†). For V(B)=Tr B2,Tr B3, and TrB4, the critical behaviour of the model at d=2 is studied, and by calculating the internal energy, it is shown that these models have a third order phase transition

  11. Generalized simplicial chiral models

    CERN Document Server

    Alimohammadi, M

    2000-01-01

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, we generalize the simplicial chiral models by replacing the term Tr$(AA^{\\d})$ in the Lagrangian of these models, by an arbitrary class function of $AA^{\\d}; V(AA^{\\d})$. This is the same method that has been used in defining the generalized two-dimensional Yang-Mills theories (gYM_2) from ordinary YM_2. We call these models, the " generalized simplicial chiral models ". With the help of the results of one-link integral over a U(N) matrix, we compute the large-N saddle-point equations for eigenvalue density function $\\ro (z)$ in the weak ($\\b >\\b_c$) and strong ($\\b <\\b_c$) regions. In d=2, where the model somehow relates to gYM_2 theory, we solve the saddle-point equations and find $\\ro (z)$ in two region, and calculate the explicit value of critical point $\\b_c$ for $V(B)=TrB^n (B=AA^{\\d})$. For $V(B)=Tr B^2,Tr B^3$ and Tr$B^4$, we study the critical behaviour of the model at d=2, and by calculating t...

  12. Inelastic soliton-soliton interaction in coninin models

    International Nuclear Information System (INIS)

    The field equations with nonlinearity proportional to |PSI|sup(-α)PSI, α>0 (model 1 of Simonov-Tjon) are solved in one spatial dimension with initial conditions corresponding to two colliding solitons. One or several breathers are generated during the collision process and the solitons remain stable after collision. An extensive study is done of the collision process and the breather generation for different values of the interaction parameter α, velocities and relative phase in the initial state. In addition the collision of two breathers is considered. Some comparative study of one dimensional model of the Werle type is also done

  13. Baryons with Two Heavy Quarks as Solitons

    OpenAIRE

    Bander, Myron; Subbaraman, Anand

    1994-01-01

    Using the chiral soliton model and heavy quark symmetry we study baryons containing two heavy quarks. If there exists a stable (under strong interactions) meson consisting of two heavy quarks and two light ones, then we find that there always exists a state of this meson bound to a chiral soliton and to a chiral anti-soliton, corresponding to a two heavy quark baryon and a baryon containing two heavy anti-quarks and five light quarks, or a ``heptaquark".

  14. Scattering in Soliton Models and the Bosonic Exchange description

    OpenAIRE

    Coriano, Claudio; Parwani, Rajesh R.; YAMAGISHI, HIDENAGA; Zahed, Ismail

    1992-01-01

    We argue that the description of meson-nucleon dynamics based on the boson-exchange approach, is compatible with the description of the nucleon as a soliton in the nonrelativistic limit. Our arguments are based on an analysis of the meson-soliton form factor and the exact meson-soliton and soliton-soliton scattering amplitudes in the Sine-Gordon model.

  15. Hopf solitons in the AFZ model

    International Nuclear Information System (INIS)

    The Aratyn–Ferreira–Zimerman (AFZ) model is a conformal field theory in three-dimensional space. It has solutions that are topological solitons classified by an integer-valued Hopf index. There exist infinitely many axial solutions which have been found analytically. Static axial, knot and linked solitons are found numerically using a modified volume preserving flow for Hopf index one to eight, allowing for comparison with other Hopf soliton models. Solutions include a static trefoil knot at Hopf index five. A one-parameter family of conformal Skyrme–Faddeev models, consisting of linear combinations of the Nicole and AFZ models, are also investigated numerically. The transition of solutions for Hopf index four is mapped across these models. A topological change between linked and axial solutions occurs, with fewer models (or a limited range of parameter values) permitting axial solitons than linked solitons at Hopf index four

  16. Heavy Quark Solitons in the Nambu--Jona-Lasinio Model

    OpenAIRE

    Gamberg, L.(Department of Physics, Penn State University-Berks, Reading, PA, 19610, U.S.A.); Weigel, H.(Physics Department, Stellenbosch University, Matieland 7602, South Africa); Z{ü}ckert, U.; Reinhardt, H.

    1995-01-01

    The Nambu--Jona-Lasinio model (NJL) is extended to incorporate heavy quark spin-symmetry. In this model baryons containing one heavy quark are analyzed as bound-states of light baryons, represented as chiral solitons, and mesons containing one heavy quark. From related studies in Skyrme type models, the ground-state heavy baryon is known to arise for the heavy meson in a P--wave configuration. In the limit of an infinitely large quark mass the heavy meson wave-function is sharply peaked at th...

  17. Soliton solutions of Chiral Born-Infeld Theory and baryons

    OpenAIRE

    Pavlovsky, Oleg V.

    2003-01-01

    Finite-energy topological spherically symmetrical solutions of Chiral Born-Infeld Theory are studied. Properties of these solution are obtained, and a possible physical interpretation is also given. We compute static properties of baryons (mass,main radius, magnetic main radius, axial coupling constant) whose solutions can be interpreted as the baryons of QCD.

  18. Dirac brackets for the chiral Schwinger model with chiral constraint

    International Nuclear Information System (INIS)

    Dirac brackets for the chiral Schwinger model with chiral constraint are derived perturbatively from the correlation function by the BJL limit method. The results show that the Poissons brackets are not consistent in this theory. (author)

  19. Stationary dissipative solitons of Model G

    Science.gov (United States)

    Pulver, Matthew; LaViolette, Paul A.

    2013-07-01

    Model G, the earliest reaction-diffusion system proposed to support the existence of solitons is shown to do so under distant steady-state boundary conditions. Subatomic particle physics phenomenology, including multi-particle bonding, movement in concentration gradients, and a particle structure matching Kelly's charge distribution model of the nucleon, are observed. Lastly, it is shown how a three-variable reversible Brusselator, a close relative of Model G, can also support solitons.

  20. Noncommutative Solitons

    International Nuclear Information System (INIS)

    Solitonic objects play a central role in gauge and string theory (as, e.g., monopoles, black holes, D-branes, etc.). Certain string backgrounds produce a noncommutative deformation of the low-energy effective field theory, which allows for new types of solitonic solutions. I present the construction, moduli spaces and dynamics of Moyal-deformed solitons, exemplified in the 2+1 dimensional Yang-Mills-Higgs theory and its Bogomolny system, which is gauge-fixed to an integrable chiral sigma model (the Ward model). Noncommutative solitons for various 1+1 dimensional integrable systems (such as sine-Gordon) easily follow by dimensional and algebraic reduction. Supersymmetric extensions exist as well and are related to twistor string theory

  1. Solitons in the one-dimensional forest fire model

    OpenAIRE

    Bak, Per; Chen, Kan; Paczuski, Maya

    2000-01-01

    Fires in the one-dimensional Bak-Chen-Tang forest fire model propagate as solitons, resembling shocks in Burgers turbulence. The branching of solitons, creating new fires, is balanced by the pair-wise annihilation of oppositely moving solitons. Two distinct, diverging length scales appear in the limit where the growth rate of trees, $p$, vanishes. The width of the solitons, $w$, diverges as a power law, $1/p$, while the average distance between solitons diverges much faster as $ d \\sim \\exp({...

  2. Soliton models for thick branes

    Science.gov (United States)

    Peyravi, Marzieh; Riazi, Nematollah; Lobo, Francisco S. N.

    2016-05-01

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ 4 and φ 6 scalar fields, which have broken Z2 symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w^2 term in the expansion of the potential for the resulting Schrödinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ ^4 brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ ^6 branes.

  3. Soliton models for thick branes

    CERN Document Server

    Peyravi, Marzieh; Lobo, Francisco S N

    2015-01-01

    In this work, we present new soliton solutions for thick branes in $4+1$ dimensions. In particular, we consider brane models based on the sine-Gordon ($SG$), $\\varphi^{4}$ and $\\varphi^{6}$ scalar fields, which have broken $Z_{2}$ symmetry in some cases, and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacuua. These vacuua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighbourhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the $w^2$ term in the expansion of the potential for the resulting Schrodinger-like equation, where $w$ is the 5-dimensional coordinate. It turns out that the $\\phi^4$ brane is stable, while there are unstable modes for certain ranges of the model param...

  4. Chiral Thirring-Wess Model

    CERN Document Server

    Rahaman, Anisur

    2015-01-01

    The vector type of interaction of the Thirring-Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring-Wess model in \\cite{THAR}. The model was studied there with a Faddeevian class of regularization that contained few ambiguity parameters with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring-Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remain exactly solvable but also does not loose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model has been determined in the present scenario through Dirac's method of quantization of constraint system. The theoretical spectrum is found to ...

  5. The stability of the classical Skyrme model SU(2) hedgehog soliton

    International Nuclear Information System (INIS)

    It is presented the exact power series solution at the origin for the classical SU(2) Skyrme model lagrangean with a hedgehog ansatz. The analogous solution at infinity is also considered, and the dependence of the chiral angle on two dimensionless variable is exhibited (a consequence of having two completely arbitrary parameters). The classical Skyrme model soliton turns out to be as unstable as the pure non-linear sigmahe Skyrme parameter is fixed, breaking the scale invariance on both variables, the mass of the soliton has a stable minimum. (author)

  6. Solitonic axion condensates modeling dark matter halos

    Energy Technology Data Exchange (ETDEWEB)

    Castañeda Valle, David, E-mail: casvada@gmail.com; Mielke, Eckehard W., E-mail: ekke@xanum.uam.mx

    2013-09-15

    Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose–Einstein type condensates could provide a viable soliton type interpretation of the DM ‘bullets’ observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein–Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two ‘lump’ type solitons. -- Highlights: •An axion model of dark matter is considered. •Collision of axion type solitons are studied in a two dimensional toy model. •Relations to dark matter collisions in galaxy clusters are proposed.

  7. Cranking the chiral soliton bag model

    Energy Technology Data Exchange (ETDEWEB)

    Clement, G.; Stern, J.

    1988-10-01

    The generation of physical states from mean field hedgehogs by cranking is extended to coherent hedgehogs, thus improving the agreement between the cranking and coherent state projection methods, and enabling us to correct simultaneously for translational and rotational fluctuations. These corrections lead to a drastic reduction in the mean nucleon-delta mass which, for the physical values of m/sub ..pi../ and F/sub ..pi../, is lower than, or approximately equal to, the experimental value.

  8. Model with solitons in (2+1) dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Izquierdo, J.M.; Rashid, M.S.; Piette, B.; Zakrzewski, W.J. (Durham Univ. (United Kingdom). Dept. of Mathematics)

    1992-01-01

    We consider various models in (2+1) dimensions which possess soliton-like solutions. We discuss the additional terms that must be added to the conventional S{sup 2} model in order that its solutions are stable and so can be treated as solitons. The role of various terms is analysed and some properties of the solitonic solutions are discussed. (orig.).

  9. Solitonic axion condensates modeling dark matter halos

    Science.gov (United States)

    Castañeda Valle, David; Mielke, Eckehard W.

    2013-09-01

    Instead of fluid type dark matter (DM), axion-like scalar fields with a periodic self-interaction or some truncations of it are analyzed as a model of galaxy halos. It is probed if such cold Bose-Einstein type condensates could provide a viable soliton type interpretation of the DM 'bullets' observed by means of gravitational lensing in merging galaxy clusters. We study solitary waves for two self-interacting potentials in the relativistic Klein-Gordon equation, mainly in lower dimensions, and visualize the approximately shape-invariant collisions of two 'lump' type solitons.

  10. Solutions of ward's modified chiral model

    International Nuclear Information System (INIS)

    We discuss the adaptation of Uhlenbeck's method of solving the chiral model in 2 Euclidean dimensions to Ward's modified chiral model in (2+1) dimensions. We show that the method reduces the problem of solving the second-order partial differential equations for the chiral field to solving a sequence of first-order partial differential equations for time dependent projector valued fields

  11. Nucleon electric polarizability in soliton models and the role of the seagull terms

    OpenAIRE

    Scoccola, Norberto N.; Cohen, Thomas D.

    1995-01-01

    The full Hamiltonian of the soliton models contains no electric seagull terms. Here it is shown that if one restricts the fields to the collective subspace then electric seagull terms are induced in the effective Hamiltonian. These effective seagull contributions are consistent with gauge invariance. They also reproduce the leading nonanalytic behavior of a large $N_c$ chiral perturbation theory calculation of the electric polarizability.

  12. Chiral Cosmological Models: Dark Sector Fields Description

    CERN Document Server

    Chervon, S V

    2014-01-01

    The present review is devoted to a Chiral Cosmological Model as the self-gravitating nonlinear sigma model with the potential of (self)interactions employed in cosmology. The chiral cosmological model has successive applications in descriptions of the inflationary epoch of the Universe evolution; the present accelerated expansion of the Universe also can be described by the chiral fields multiplet as the dark energy in wide sense. To be more illustrative we are often addressed to the two-component chiral cosmological model. Namely, the two-component chiral cosmological model describing the phantom field with interaction to a canonical scalar field is analyzed in details. New generalized model of quintom character is proposed and exact solutions are founded out. In the review we represented the perturbation theory for chiral cosmological model with the aim to describe the structure formation using the progress achieved in the inflation theory. It was shown that cosmological perturbations from chiral fields can...

  13. Chiral magnetic effect in the PNJL model

    CERN Document Server

    Fukushima, Kenji; Gatto, Raoul

    2010-01-01

    We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential $\\mu_5$ which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of $\\mu_5$ on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.

  14. Non-topological soliton bag model

    International Nuclear Information System (INIS)

    The Friedberg-Lee soliton model, which effects confinement by a quantal scalar field, is discussed. The Lagrangian for the non-topological soliton model is the usual QCD Lagrangian supplemented by a non-linear scalar sigma field term. Static solutions to the field equations are considered in the mean field approximation. Small amplitude oscillations are discussed. Quantum alternatives to the mean field approximation are also considered. Methods of momentum projection and Lorentz boost are described, and the generator coordinate method is discussed. Calculations of the N-N interaction are reviewed briefly. Also discussed is one-gluon exchange, as well as the pion and dressing of the baryons. The hadron states are summarized. One loop quantum corrections are discussed briefly. Work in progress is mentioned in the areas of N-anti N annihilation, the many bag problem, and a Pauli equation for the nucleon. 31 refs

  15. Non-topological soliton bag model

    Energy Technology Data Exchange (ETDEWEB)

    Wilets, L.

    1986-01-01

    The Friedberg-Lee soliton model, which effects confinement by a quantal scalar field, is discussed. The Lagrangian for the non-topological soliton model is the usual QCD Lagrangian supplemented by a non-linear scalar sigma field term. Static solutions to the field equations are considered in the mean field approximation. Small amplitude oscillations are discussed. Quantum alternatives to the mean field approximation are also considered. Methods of momentum projection and Lorentz boost are described, and the generator coordinate method is discussed. Calculations of the N-N interaction are reviewed briefly. Also discussed is one-gluon exchange, as well as the pion and dressing of the baryons. The hadron states are summarized. One loop quantum corrections are discussed briefly. Work in progress is mentioned in the areas of N-anti N annihilation, the many bag problem, and a Pauli equation for the nucleon. 31 refs. (LEW)

  16. Topological solitons in the supersymmetric Skyrme model

    CERN Document Server

    Gudnason, Sven Bjarke; Sasaki, Shin

    2016-01-01

    A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.

  17. Chiral sine-Gordon model

    Science.gov (United States)

    Yanagisawa, Takashi

    2016-02-01

    We investigate the chiral sine-Gordon model using the renormalization group method. The chiral sine-Gordon model is a model for G-valued fields and describes a new class of phase transitions, where G is a compact Lie group. We show that the model is renormalizable by means of a perturbation expansion and we derive beta functions of the renormalization group theory. The coefficients of beta functions are represented by the Casimir invariants. The model contains both asymptotically free and ultraviolet strong-coupling regions. The beta functions have a zero which is a bifurcation point that divides the parameter space into two regions; they are the weak-coupling region and the strong-coupling region. A large-N model is also considered. This model is reduced to the conventional sine-Gordon model that describes the Kosterlitz-Thouless transition near the fixed point. In the strong-coupling limit, the model is reduced to a U(N) matrix model.

  18. Chiral sine-Gordon model

    CERN Document Server

    Yanagisawa, Takashi

    2016-01-01

    We investigate the chiral sine-Gordon model using the renormalization group method. The chiral sine-Gordon model is a model for $G$-valued fields and describes a new class of phase transitions, where $G$ is a compact Lie group. We show that the model is renormalizable by means of a perturbation expansion and we derive beta functions of the renormalization group theory. The coefficients of beta functions are represented by the Casimir invariants. The model contains both asymptotically free and ultraviolet strong coupling regions. The beta functions have a zero which is a bifurcation point that divides the parameter space into two regions; they are the weak coupling region and the strong coupling region. A large-$N$ model is also considered. This model is reduced to the conventional sine-Gordon model that describes the Kosterlitz-Thouless transition near the fixed point. In the strong-coupling limit, the model is reduced to a $U(N)$ matrix model.

  19. Principal chiral model on superspheres

    International Nuclear Information System (INIS)

    We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S3verticalstroke2, we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)

  20. Principal chiral model on superspheres

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, V.; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quella, T. [Amsterdam Univ. (Netherlands). Inst. for Theoretical Physics

    2008-09-15

    We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S{sup 3} {sup vertical} {sup stroke} {sup 2}, we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)

  1. A Statistical Model for Soliton Particle Interaction in Plasmas

    DEFF Research Database (Denmark)

    Dysthe, K. B.; Pécseli, Hans; Truelsen, J.

    1986-01-01

    A statistical model for soliton-particle interaction is presented. A master equation is derived for the time evolution of the particle velocity distribution as induced by resonant interaction with Korteweg-de Vries solitons. The detailed energy balance during the interaction subsequently determines...... the evolution of the soliton amplitude distribution. The analysis applies equally well for weakly nonlinear plasma waves in a strongly magnetized waveguide, or for ion acoustic waves propagating in one-dimensional systems....

  2. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  3. Soliton model of a photon propagating in dielectrics

    Science.gov (United States)

    Bersons, I.; Veilande, R.; Balcers, O.

    2016-06-01

    The previously proposed three-dimensional soliton model of a photon propagating in vacuum is modified to describe its propagation in a homogeneous linear dielectric medium. The one-soliton solution of the derived nonlinear equation correctly predicts the energy and the Abraham and Minkowski momenta of the photon in dielectrics. A new nonlinear equation is proposed, which has a one-soliton solution that at every point oscillates with the same frequency and falls exponentially in the longitudinal, as well as in the transverse direction from the centre of the soliton.

  4. Solitons

    International Nuclear Information System (INIS)

    Solitons are mathematical objects which arise as solutions of certain non-linear dispersive wave equations like the Korteweg-de Vries (KdV), the non-linear Schroedinger (NLS) and the self-induced transparency (SIT) and sine-Gordon (s-G) equations. These govern, respectively, ion acoustic waves in plasmas, the self-steepening of optical pulses and the formation of optical filaments by intense laser light, and the propagation of approximately -9s optical pulses in resonant media, for example. The equations and applications are very different, yet solitons have many features in common: they collide like particles and, for example, the break-up of coherent 10-9s optical pulses of 'area' 6π into three 2π pulses is a break-up into three solitons. The KdV, NLS and s-G equations are introduced and some single and multi-soliton solutions displayed. As one example of an application in non-linear physics the KdV equation is derived in detail for ion acoustic waves. Next the relevance of the KdV to recurrence phenomena in non-linear lattices (the Fermi-Pasta-Ulam problem) is noted. The theory of SIT in non-degenerate media is developed and used as a physical example of the s-G equation. A double s-G is then derived for SIT in degenerate media. It is shown that soliton-like behaviour is now established by 'wobbling' 4π pulses. SIT for the 2Ssub(1/2)(F=2)→2Psub(1/2)(F=1,2)D1 transitions in sodium vapour is treated. Applications of solitons to Josephson junctions, to optical filaments and to other non-linear physics (plasmas, lattices, particle physics) are briefly sketched. (author)

  5. Role of structural factors in formation of chiral magnetic soliton lattice in Cr1/3NbS2

    International Nuclear Information System (INIS)

    The sign and strength of magnetic interactions not only between nearest neighbors, but also for longer-range neighbors in the Cr1/3NbS2 intercalation compound have been calculated on the basis of structural data. It has been found that left-handed spin helices in Cr1/3NbS2 are formed from strength-dominant at low temperatures antiferromagnetic (AFM) interactions between triangular planes of Cr3+ ions through the plane of just one of two crystallographically equivalent diagonals of side faces of embedded into each other trigonal prisms building up the crystal lattice of magnetic Cr3+ ions. These helices are oriented along the c axis and packed into two-dimensional triangular lattices in planes perpendicular to these helices directions and lay one upon each other with a displacement. The competition of the above AFM helices with weaker inter-helix AFM interactions could promote the emergence of a long-period helical spin structure. One can assume that in this case, the role of Dzyaloshinskii-Moriya interaction consists of final ordering and stabilization of chiral spin helices into a chiral magnetic soliton lattice. The possibility of emergence of solitons in M1/3NbX2 and M1/3TaX2 (M = Cr, V, Ti, Rh, Ni, Co, Fe, and Mn; X = S and Se) intercalate compounds has been examined. Two important factors caused by the crystal structure (predominant chiral magnetic helices and their competition with weaker inter-helix interactions not destructing the system quasi-one-dimensional character) can be used for the crystal chemistry search of solitons.

  6. Spatiotemporal Chaos of Soliton in a Generalized Skyrme Model with the Modified Symmetrybreaking Term

    CERN Document Server

    Tho, N V; Tho, Nguyen Vien; Hoa, Phu Chi

    2000-01-01

    The chiral symmetry-breaking term of the Skyrme model with massive pion is modified to obtain the hedgehog profile function which is in best coincidence with the kink-like profile function. For the modified Lagrangian, the minimum of the energy of the B=2 twisty skyrmion configuration is lower than the values for both the cases of the Skyrme Lagrangian with and without the non-modified symmetry-breaking term. The equations of motion for the time-dependent hedgehog of this model and for a generalizated Skyrme model including sixth-order stabilizing term are derived and integrated nummerically. The time evolution of soliton is obtained. We have observed the seft-exitation of soliton because of the fast developement of fluctuation.

  7. Solitonic field configurations of the Nambu-Jona-Lasinio model in the medium

    International Nuclear Information System (INIS)

    In this thesis the properties of a SU(2) NJL soliton were studied, which is embedded in a gas consisting of constituent quarks with a self-consistently determined constituent quark mass. It serves as model for a nucleon surrounded by hadronic matter and yields statements on the properties of the nucleon in dependence on temperature and density of the surrounding matter. The four-quark point interaction of the NJL model is treated in the mean-field approximation constrained to hedgehog configurations and chiral circles

  8. Chiral Schwinger model at finite temperature

    International Nuclear Information System (INIS)

    We discuss the chiral Schwinger model at finite temperature using Fujikawa's method. We solve this model exactly and show that the axial anomaly and the dynamically generated mass for the gauge field are temperature independent. (author). 20 refs

  9. Ising models and soliton equations

    International Nuclear Information System (INIS)

    Several new results for the critical point of correlation functions of the Hirota equation are derived within the two-dimensional Ising model. The recent success of the conformal-invariance approach in the determination of a critical two-spin correration function is analyzed. The two-spin correlation function is predicted to be rotationally invariant and to decay with a power law in this approach. In the approach suggested here systematic corrections due to the underlying lattice breaking the rotational invariance are obtained

  10. Solitons in spiraling systems: a continuum model for dynamical phyllotaxis

    Energy Technology Data Exchange (ETDEWEB)

    Nisoli, Cristiano [Los Alamos National Laboratory

    2009-01-01

    A novel, protean, topological soliton has been shown to emerge in systems of repulsive particles in cylindrical geometries, whose statics is described by the number-theoretical objects of Phyllotaxis. We present a minimal and local continuum model that can explain many of the features of the phyllotactic soliton, such as speed, screw shift, energy transport and, for Wigner crystal on a nanotube, charge. The treatment applies just as well in general to solitons in spiraling systems. Unlike e.g. Sine-Gornon-like solitons, our soliton can exist between non degenerate structure, implies a power flow through the system, dynamics of the domains it separates, and possesses pulses, both static and dynamic. Its applications include from charge transfer in Wigner Crystals on nanotubes or A to B-DNA transitions.

  11. Chiral Lagrangian and chiral quark model from confinement in QCD

    CERN Document Server

    Simonov, Yu A

    2015-01-01

    The effective chiral Lagrangian in both nonlocal form $L_{ECCL}$ and standard local form $L_{ECL}$ are derived in QCD using the confining kernel, obtained in the vacuum correlator formalism. As a result all coefficients of $L_{ECL}$ can be computed via $q\\bar q$ Green's functions. In the $p^2$ order of $L_{ECL}$ one obtains GOR relations and quark decay constants $f_a$ are calculated $a=1,...8$, while in the $p^4$ order the coefficients $L_1, L_2, L_3,L_4, L_5, L_6$ are obtained in good agreement with the values given by data. The chiral quark model is shown to be a simple consequence of $L_{ECCL}$ with defined coefficients. It is demonstrated that $L_{ECCL}$ gives an extension of the limiting low-energy Lagrangian $L_{ECL}$ to arbitrary momenta.

  12. The theta^+ baryon in soliton models: large Nc QCD and the validity of rigid-rotor quantization

    OpenAIRE

    Cohen, Thomas D.

    2003-01-01

    A light collective theta+ baryon state (with strangeness +1) was predicted via rigid-rotor collective quantization of SU(3) chiral soliton models. This paper explores the validity of this treatment. A number of rather general analyses suggest that predictions of exotic baryon properties based on this approximation do not follow from large Nc QCD. These include an analysis of the baryon's width, a comparison of the predictions with general large Nc consistency conditions of the Gervais-Sakita-...

  13. Soliton models in resonant and nonresonant optical fibers

    Indian Academy of Sciences (India)

    K Porsezian

    2001-11-01

    In this review, considering the important linear and nonlinear optical effects like group velocity dispersion, higher order dispersion, Kerr nonlinearity, self-steepening, stimulated Raman scattering, birefringence, self-induced transparency and various inhomogeneous effects in fibers, the completely integrable concept and bright, dark and self-induced transparency soliton models in nonlinear fiber optics are discussed. Considering the above important optical effects, the different completely integrable soliton models in the form of nonlinear Schrödinger (NLS), NLS-MaxwellBloch (MB) type equations reported in the literature are discussed. Finally, solitons in stimulated Raman scattering (SRS) system is briefly discussed.

  14. Can plane wave modes be physical modes in soliton models?

    CERN Document Server

    Aldabe, F

    1995-01-01

    I show that plane waves may not be used as asymptotic states in soliton models because they describe unphysical states. When asymptotic states are taken to be physical there is no T-matrix of \\cO(1).

  15. Effective action in general chiral superfield model

    OpenAIRE

    Petrov, A. Yu.

    2000-01-01

    The effective action in general chiral superfield model with arbitrary k\\"{a}hlerian potential $K(\\bar{\\Phi},\\Phi)$ and chiral (holomorphic) potential $W(\\Phi)$ is considered. The one-loop and two-loop contributions to k\\"{a}hlerian effective potential and two-loop (first non-zero) contribution to chiral effective potential are found for arbitrary form of functions $K(\\bar{\\Phi},\\Phi)$ and $W(\\Phi)$. It is found that despite the theory is non-renormalizable in general case two-loop contributi...

  16. Soliton ratchets

    OpenAIRE

    Salerno, Mario; Rodríguez Quintero, Niurka

    2002-01-01

    The mechanism underlying the soliton ratchet, both in absence and in presence of noise, is investigated. We show the existence of an asymmetric internal mode on the soliton profile that couples, through the damping in the system, to the soliton translational mode. Effective soliton transport is achieved when the internal mode and the external force are phase locked. We use as a working model a generalized double sine-Gordon equation. The phenomenon is expected to be valid for generic soliton ...

  17. Parity doublers in chiral potential quark models

    International Nuclear Information System (INIS)

    The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated

  18. Chiral effective model with the Polyakov loop

    OpenAIRE

    Fukushima, Kenji

    2003-01-01

    We discuss how the simultaneous crossovers of deconfinement and chiral restoration can be realized. We propose a dynamical mechanism assuming that the effective potential gives a finite value of the chiral condensate if the Polyakov loop vanishes. Using a simple model, we demonstrate that our idea works well for small quark mass, though there should be further constraints to reach the perfect locking of two phenomena.

  19. SOLITONS: Dynamics of solitons in the model of nonlinear Schrödinger equation with an external harmonic potential: I. Bright solitons

    Science.gov (United States)

    Hernandez Tenorio, C.; Villagran Vargas, E.; Serkin, Vladimir N.; Aguero Granados, M.; Belyaeva, T. L.; Pena Moreno, R.; Morales Lara, L.

    2005-09-01

    The dynamics of nonlinear solitary waves is studied by using the model of nonlinear Schrödinger equation (NSE) with an external harmonic potential. The model allows one to analyse on the general basis a variety of nonlinear phenomena appearing both in a Bose—Einstein condensate in a magnetic trap, whose profile is described by a quadratic function of coordinates, and in nonlinear optics, physics of lasers, and biophysics. It is shown that exact solutions for a quantum-mechanical particle in a harmonic potential and solutions obtained within the framework of the adiabatic perturbation theory for bright solitons in a parabolic trap are completely identical. This fact not only proves once more that solitons behave like particles but also that they can preserve such properties in different traps for which the parabolic approximation is valid near potential energy minima. The conditions are found for formation of stable stationary states of antiphase solitons in a harmonic potential. The interaction dynamics of solitons in nonstationary potentials is studied and the possibility of the appearance of a soliton parametric resonance at which the amplitude of soliton oscillations in a trap exponentially increases with time is shown. It is shown that exact solutions of the problem found using the Miura transformation open up the possibility to control the dynamics of solitons. New effects are predicted, which are called the reversible and irreversible denaturation of solitons in a nonstationary harmonic potential.

  20. Young's experiment scheme modification for a possible observation of "soliton" interference model

    OpenAIRE

    Ekomasov, E. G.; Salimov, R. K.

    2015-01-01

    We consider the "soliton" interference model that complements the usual wave and corpuscular models of two-slit interference. The scheme of the experiment to verify such "soliton" interference model has been suggested.

  1. SOLITONS: Dynamics of solitons in the model of nonlinear Schrödinger equation with an external harmonic potential: II. Dark Solitons

    Science.gov (United States)

    Hernandez Tenorio, C.; Villagran Vargas, E.; Serkin, Vladimir N.; Aguero Granados, M.; Belyaeva, T. L.; Pena Moreno, R.; Morales Lara, L.

    2005-10-01

    The dynamics of dark solitons is studied within the framework of the mathematical model of nonlinear Schrödinger equation (NSE) with an external harmonic potential. A comparative analysis of the solutions of nonstationary problems is performed for a linear harmonic oscillator and the NSE model with a harmonic potential for different signs of the self-action potential. It is shown that the main specific feature of the dynamics of dark NSE solitons in a parabolic trap is the formation of solitons with dynamically changing form factors producing the periodic variation in the modulation depth (the degree of 'blackness') of dark solitons. The oscillation period of the dark soliton does not coincide with the oscillation period of a linear quantum-mechanical oscillator, which is caused by the periodic transformation of the black soliton to the grey one and vice versa. The conditions of applicability of the method of inverse scattering problem are presented, the generalised Lax pair is found, and exact soliton solutions are given for the mathematical NSE model with an external harmonic potential.

  2. Two chiral nonet model with massless quarks

    CERN Document Server

    Fariborz, Amir H; Schechter, Joseph

    2007-01-01

    We present a detailed study of a linear sigma model containing one chiral nonet transforming under U(1)$_A$ as a quark-antiquark composite and another chiral nonet transforming as a diquark-anti diquark composite (or, equivalently from a symmetry point of view, as a two meson molecule). The model provides an intuitive explanation of a current puzzle in low energy QCD: Recent work has suggested the existence of a lighter than 1 GeV nonet of scalar mesons which behave like four quark composites. On the other hand, the validity of a spontaneously broken chiral symmetric description would suggest that these states be chiral partners of the light pseudoscalar mesons, which are two quark composites. The model solves the problem by starting with the two chiral nonets mentioned and allowing them to mix with each other. The input of physical masses in the SU(3) invariant limit for two scalar octets and an "excited" pion octet results in a mixing pattern wherein the light scalars have a large four quark content while t...

  3. Two chiral nonet model with massless quarks

    International Nuclear Information System (INIS)

    We present a detailed study of a linear sigma model containing one chiral nonet transforming under U(1)A as a quark-antiquark composite and another chiral nonet transforming as a diquark-antidiquark composite (or, equivalently from a symmetry point of view, as a two meson molecule). The model provides an intuitive explanation of a current puzzle in low energy QCD: Recent work has suggested the existence of a lighter than 1 GeV nonet of scalar mesons which behave like four quark composites. On the other hand, the validity of a spontaneously broken chiral symmetric description would suggest that these states be chiral partners of the light pseudoscalar mesons, which are two quark composites. The model solves the problem by starting with the two chiral nonets mentioned and allowing them to mix with each other. The input of physical masses in the SU(3) invariant limit for two scalar octets and an excited pion octet results in a mixing pattern wherein the light scalars have a large four quark content while the light pseudoscalars have a large two quark content. One light isosinglet scalar is exceptionally light. In addition, the pion pion scattering is also studied and the current algebra theorem is verified for massless pions which contain some four quark admixture

  4. Chiral symmetry breaking in brane models

    International Nuclear Information System (INIS)

    We discuss the chiral symmetry breaking in general intersecting Dq/Dp brane models consisting of Nc Dq-branes and a single Dp-brane with an s-dimensional intersection. There exists a QCD-like theory localized at the intersection and the Dq/Dp model gives a holographic description of it. The rotational symmetry of directions transverse to both of the Dq and Dp-branes can be identified with a chiral symmetry, which is non-Abelian for certain cases. The asymptotic distance between the Dq-branes and the Dp-brane corresponds to a quark mass. By studying the probe Dp-brane dynamics in a Dq-brane background in the near horizon and large Nc limit we find that the chiral symmetry is spontaneously broken and there appear (pseudo-)Nambu-Goldstone bosons. We also discuss the models at finite temperature

  5. Pentaquarks in chiral color dielectric model

    Indian Academy of Sciences (India)

    S C Pathak

    2006-04-01

    Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV. I find that the mass of the state can be fitted to the experimentally observed mass by invoking a color neutral vector field and its interaction with the quarks.

  6. A Note on Ward's Chiral Model

    OpenAIRE

    Ioannidou, Theodora; Zakrzewski, Wojtek

    1998-01-01

    A one parameter generalization of Ward's chiral model in 2+1 dimensions is given. Like the original model the present one is integrable and possesses a positive-definite and conserved energy and $y$-momentum. The details of the scattering depend on the value of the parameter of the generalisation.

  7. Studies on phenomenological hadron models with chiral symmetry

    International Nuclear Information System (INIS)

    In this report we consider, in the context of phenomenological models for hadrons, several aspects of Skyrme-type and hybrid bag models. In the first of the two central parts we discuss two qualitatively different generalizations of the minimal SU(2) Skyrme model. One of these consists in adding to the Lagrangian density a symmetric term of fourth order in the field derivatives. Its consequences are determined for solutions and observables by analytical and numerical investigations. In the other we propose a contribution for explicit isospin symmetry breaking in the mesonic as well as the baryonic sector. Together with the standard nonlinear σ-model term it allows for exact time-dependent classical soliton solutions. Their quantization leads to a quantitative connection between the hadronic isospin mass differenced of pions and nucleons. The second main part of this report is devoted to the generalization of SU(2) bag models under the aspect of chiral symmetry. We first show that the construction of appropriate surface terms in the Lagrangian density necessitates the introduction of dynamical bosonic degrees of freedom. This allows for a variety of bag scenarios (including the 'endopionic' bag). We then consider explicit isospin symmetry breaking for hybrid bag models with a nonlinear mesonic sector. An intimate relationship is revealed between the effects of a quark mass difference and the time-dependent bosonic solutions found for the purely mesonic case. It is reflected in a nontrivial interdependence between quark and meson masses, bag radius and chiral angle. We provide an especially extensive list of references for the topics discussed in this report. (orig.)

  8. Observation of the topological soliton state in the Su-Schrieffer-Heeger model

    CERN Document Server

    Meier, Eric J; Gadway, Bryce

    2016-01-01

    The Su-Schrieffer-Heeger (SSH) model, which captures the most striking transport properties of the conductive organic polymer $trans$-polyacetylene, provides perhaps the most basic model system supporting topological excitations. The alternating bond pattern of polyacetylene chains is captured by the bipartite sublattice structure of the SSH model, emblematic of one-dimensional chiral symmetric topological insulators. This structure supports two distinct nontrivial topological phases, which, when interfaced with one another or with a topologically trivial phase, give rise to topologically-protected, dispersionless boundary states. Using $^{87}$Rb atoms in a momentum-space lattice, we realize fully-tunable condensed matter Hamiltonians, allowing us to probe the dynamics and equilibrium properties of the SSH model. We report on the experimental quantum simulation of this model and observation of the localized topological soliton state through quench dynamics, phase-sensitive injection, and adiabatic preparation...

  9. Soliton scattering in the O(3) model on a torus

    OpenAIRE

    Cova, R. J.; Zakrzewski, W. J.

    1997-01-01

    Using numerical simulations, the stability and scattering properties of the O(3) model on a two-dimensional torus are studied. Its solitons are found to be unstable but can be stabilized by the addition of a Skyrme term to the Lagrangian. Scattering at right angles with respect to the initial direction of motion is observed in all cases considered. The model has no solutions of degree one, so when a field configuration that resembles a soliton is considered, it shrinks to become infinitely th...

  10. About chiral models of dense matter and its magnetic properties

    International Nuclear Information System (INIS)

    The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)

  11. Solitons in graphene

    OpenAIRE

    Cheh, Jigger; Zhao, Hong

    2011-01-01

    In this paper we demonstrate the direct evidence of solitons in graphene by means of molecular dynamics simulations and mathematical analysis. It shows various solitons emerge in the graphene flakes with two different chiralities by cooling procedures. They are in-plane longitudinal and transverse solitons. Their propagations and collisions are studied in details. A soliton solution is derived by making several valid simplifications. We hope it shed light on understanding the unusual thermal ...

  12. Knot Solitons

    OpenAIRE

    Govindarajan, T. R.

    1998-01-01

    The existence of ring-like and knotted solitons in O(3) non-linear sigma model is analysed. The role of isotopy of knots/links in classifying such solitons is pointed out. Appearance of torus knot solitons is seen.

  13. Soliton laser: A computational two-cavity model

    DEFF Research Database (Denmark)

    Berg, P.; If, F.; Christiansen, Peter Leth;

    1987-01-01

    An improved computational two-cavity model of the soliton laser proposed and designed by Mollenauer and Stolen [Opt. Lett. 9, 13 (1984)] is obtained through refinements of (i) the laser cavity model, (ii) the pulse propagation in the fiber cavity, and (iii) the coupling between the two cavities. As...

  14. Quantized Solitons in the Extended Skyrme-Faddeev Model

    Directory of Open Access Journals (Sweden)

    L. A. Ferreira

    2011-01-01

    Full Text Available The construction of axially symmetric soliton solutions with non-zero Hopf topological charges according to a theory known as the extended Skyrme-Faddeev model, was performed in [1]. In this paper we show how masses of glueballs are predicted within this model.

  15. Toroidal halos in a nontopological soliton model of dark matter

    International Nuclear Information System (INIS)

    Soliton type solutions of an axionlike scalar model with self-interaction are analyzed further as a toy model of dark matter halos. For a 'nonlinear superposition' of round and flattened configurations we found ringlike substructures in the density profile similarly as has been inferred for our Galaxy from the observed excess of the diffuse component of cosmic gamma rays

  16. Lectures on the soliton theory of nucleons

    International Nuclear Information System (INIS)

    In these lectures we describe models in which the pion field or, more precisely, the chiral fields, are responsible for the binding of quarks in the nucleon. Such bound states in which the quarks constitute a source for the chiral fields, which, in turn, bind the quarks to each other, are called solitons. The starting point for such theories or models are chiral invariant lagrangians. They are not derived from QCD. The Skyrme lagrangian is simpler in that it involves only chiral fields and no quarks. However it may be understood as an effective lagrangian from which the quark degrees of freedom have been integrated out. It is not yet clear to what extent various models are equivalent. The description of the nucleon in these lectures may be viewed as an extension of the T.D. Lee solitons so as to include the pionic degree of freedom

  17. Nuclei as superposition of topological solitons

    International Nuclear Information System (INIS)

    The rational map approximation provides an opportunity to describe light nuclei as classical solitons with baryon number B > 1 in the framework of the Skyrme model. The rational map ansatz yields a possibility of factorization of S3 baryon charge into S1 and S2 parts, the phenomenology of the model being strongly affected by the chosen factorization. Moreover, in the fundamental representation superposition of two different soliton factorizations can be used as solution ansatz. The canonical quantization procedure applied to collective degrees of freedom of the classical soliton leads to anomalous breaking of the chiral symmetry and exponential falloff of the energy density of the soliton at large distance, without explicit symmetry breaking terms included. The evolution of the shape of electric form factor as a function of two different factorization soliton mix ratio is investigated. Numerical results are presented. (author)

  18. Solitons in a sigma model with a fermionic determinant

    International Nuclear Information System (INIS)

    We develop a numerical technique to calculate the fermionic determinant for soliton states with a hedgehog symmetry in three space dimensions based on the phase shift representation. How the divergence builds up in this approach is clarified. An extrapolation procedure is devised which yields an accurately cutoff independent finite answer. We find that the non-linear sigma model coupled to colored fermions does not seem to support soliton solutions although solutions exist if only scale variations are taken into account. Even on adding a Skyrme quartic term to the action, we find oscillating configurations which are able to lower the energy of the system, possibly without bound

  19. The energy levels of the heavy flavour baryons in the topological soliton model

    International Nuclear Information System (INIS)

    The energy levels of the charm and bottom as well as the mixed flavour hyperons are calculated with the model in which the hyperons are described as bound states of a topological SU(2) soliton and K-, D- and B-mesons. The spectra are obtained in a modified version of the Skyrme model where the chiral symmetry breaking term in the Lagrangian density is modified so as to incorporate the different values of the decay constants of the mesons of different flavour. The predicted strange and charmed hyperon spectra are in very good agreement with the empirical values, while the bottom hyperon energies that are more sensitive to the short range dynamics are somewhat below the empirical values. The predicted hyperfine spectra are remarkably close to those obtained with the constituent quark model, more or less independently of the short-distance properties of the effective Lagrangian. We suggest that this feature reflects the presence of an induced nonabelian gauge potential generated by the interplay between 'fast' and 'slow' degrees of freedom in the meson-soliton system. (orig.)

  20. N phi state in chiral quark model

    CERN Document Server

    Huang, F; Zhang, Z Y

    2006-01-01

    The structures of N phi states with spin-parity J^{p}=3/2^- and J^p=1/2^- are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon (NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The channel coupling of N phi and Lambda K* is considered, and the effect of the tensor force which results in the mixing of S and D waves is also investigated. The results show that the N phi state has an attractive interaction, and in the extended chiral SU(3) quark model such an attraction plus the channel coupling effect can consequently make for an N phi quasi-bound state with several MeV binding energy.

  1. CHARACTERIZATION AND MODELING OF SOLITON TRANSMISSION AT 2.5 GB/S OVER 200 KM

    Directory of Open Access Journals (Sweden)

    KHALID A. S. AL-KHATEEB

    2010-09-01

    Full Text Available Soliton characteristics and soliton transmission have been simulated using a VPI simulator. Simulation was also used to construct and study a soliton communication system. Near soliton pulses emitted by an actively mode-locked laser is then compressed in a dispersion-compensating fiber (DCF to produce solitons. The effects of non-linearity and active pre-chirping of mode-locked laser diode sources were also investigated. Assessment on a modeled system using real data shows that propagation over 250 km at 2.5 Gb/s in standard fibers with 20 ps pulse widths is possible in the 1550 nm wavelength range.

  2. Toy model for two chiral nonets

    CERN Document Server

    Fariborz, A H; Schechter, J; Fariborz, Amir H.; Jora, Renata; Schechter, Joseph

    2005-01-01

    Motivated by the possibility that nonets of scalar mesons might be described as mixtures of "two quark" and "four quark" components, we further study a toy model in which corresponding chiral nonets (containing also the pseudoscalar partners) interact with each other. Although the "two quark" and "four quark" chiral fields transform identically under SU(3)$_L \\times$ SU(3)$_R$ transformations they transform differently under the U(1)$_A$ transformation which essentially counts total (quark + antiquark) content of the mesons. To implement this we formulate an effective Lagrangian which mocks up the U(1)$_A$ behavior of the underlying QCD. We derive generating equations which yield Ward identity type relations based only on the assumed symmetry structure. This is applied to the mass spectrum of the low lying pseudoscalars and scalars. as well as their "excitations". Assuming isotopic spin invariance, it is possible to disentangle the amount of"two quark" vs."four quark" content in the pseudoscalar $\\pi, K ,\\eta...

  3. Role of structural factors in formation of chiral magnetic soliton lattice in Cr{sub 1/3}NbS₂

    Energy Technology Data Exchange (ETDEWEB)

    Volkova, L. M.; Marinin, D. V. [Institute of Chemistry, Far Eastern Branch of the Russian Academy of Sciences, 690022 Vladivostok (Russian Federation)

    2014-10-07

    The sign and strength of magnetic interactions not only between nearest neighbors, but also for longer-range neighbors in the Cr{sub 1/3}NbS₂ intercalation compound have been calculated on the basis of structural data. It has been found that left-handed spin helices in Cr{sub 1/3}NbS₂ are formed from strength-dominant at low temperatures antiferromagnetic (AFM) interactions between triangular planes of Cr³⁺ ions through the plane of just one of two crystallographically equivalent diagonals of side faces of embedded into each other trigonal prisms building up the crystal lattice of magnetic Cr³⁺ ions. These helices are oriented along the c axis and packed into two-dimensional triangular lattices in planes perpendicular to these helices directions and lay one upon each other with a displacement. The competition of the above AFM helices with weaker inter-helix AFM interactions could promote the emergence of a long-period helical spin structure. One can assume that in this case, the role of Dzyaloshinskii-Moriya interaction consists of final ordering and stabilization of chiral spin helices into a chiral magnetic soliton lattice. The possibility of emergence of solitons in M{sub 1/3}NbX{sub 2} and M{sub 1/3}TaX₂ (M = Cr, V, Ti, Rh, Ni, Co, Fe, and Mn; X = S and Se) intercalate compounds has been examined. Two important factors caused by the crystal structure (predominant chiral magnetic helices and their competition with weaker inter-helix interactions not destructing the system quasi-one-dimensional character) can be used for the crystal chemistry search of solitons.

  4. Structure functions in the chiral bag model

    International Nuclear Information System (INIS)

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.)

  5. Structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V.; Vento, V.

    1989-07-13

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).

  6. Flattened halos in a nontopological soliton model of dark matter

    International Nuclear Information System (INIS)

    Soliton type solutions of a scalar model with a Φ6 self-interaction are analyzed for their density profiles as toy model of dark matter halos. We construct exact solutions with nontrivial ellipticity due to angular momentum and propose a 'nonlinear superposition' of round and flattened halos in order to improve the scaling relations and the correspondence of the predicted rotation curves to the empirical Burkert fit

  7. Modelling of mirror mode structures as propagating slow magnetosonic solitons

    Directory of Open Access Journals (Sweden)

    K. Stasiewicz

    2009-12-01

    Full Text Available Cluster measurements in the magnetosheath with spacecraft separations of 2000 km indicate that magnetic pulsations interpreted as mirror mode structures are not frozen in plasma flow, but do propagate with speeds of up to ~50 km/s. Properties of these pulsations are shown to be consistent with propagating slow magnetosonic solitons. By using nonlinear two fluid theory we demonstrate that the well known classical mirror instability condition corresponds to a small subset in a continuum of exponentially varying solutions. With the measured plasma moments we have determined parameters of the polybaric pressure model in the region of occurrence of mirror type structures and applied it to numerical modelling of these structures. In individual cases we obtain excellent agreement between observed mirror mode structures and numerical solutions for magnetosonic solitons.

  8. Nucleon Properties from Approximating Chiral Quark Sigma Model

    CERN Document Server

    Abu-Shady, M

    2009-01-01

    We apply the approximating chiral quark model. This chiral quark model is based on an effective Lagrangian which the interactions between quarks via sigma and pions mesons. The field equations have been solved in the mean field approximation for the hedgehog baryon state. Good results are obtained for nucleon properties in comparison with original model.

  9. Dihyperons in chiral color dielectric model

    Indian Academy of Sciences (India)

    S C Phatak

    2003-11-01

    The mass of the dibaryon having spin, parity =0+, isospin = 0 and strangeness -2 is computed using chiral color dielectric model. The bare wave function is constructed as a product of two color-singlet three-quark clusters and then it is properly antisymmetrized by considering appropriate exchange operators for spin, flavor and color. Color magnetic energy due to gluon exchange, meson self energy and energy correction due to center of mass motion are computed. The calculation shows that the mass of the particle is 80 to 160 MeV less than twice mass.

  10. The theta^+ baryon in soliton models: large Nc QCD and the validity of rigid-rotor quantization

    CERN Document Server

    Cohen, T D

    2003-01-01

    A light collective $\\theta^+$ baryon state (with strangeness +1) was predicted via rigid-rotor collective quantization of SU(3) chiral soliton models. This paper explores the validity of this treatment. It is shown that predictions of exotic baryon properties based on this approximation do not follow from large $N_c$ QCD. A number of rather general analyses lead to this conclusion. These include an analysis of the baryon's width, a comparison of the predictions with general large $N_c$ consistency conditions of the Gervais-Sakita-Dashen-Manohar type; an application of the technique to QCD in the limit where the quarks are heavy; a comparison of this method with the vibration approach of Callan and Klebanov; and the $1/N_c$ scaling of the excitation energy. The origin of the problem lies in a flaw in the original rigid-rotor collective quantization treatment which implicitly assumes that the collective motion is orthogonal to vibrational motion. This is untrue for chiral soliton models: the Wess-Zumino term in...

  11. Moduli stabilisation for chiral global models

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-10-15

    We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r

  12. Aspects of solitons in noncommutative field theories. The modified Ward model

    International Nuclear Information System (INIS)

    In this thesis several aspects of solutions to the equations of motions to noncommutative field theories are investigated in detail. The main focus of the analysis is on the integrable chiral or modified unitary sigma model with U(n)-valued fields as introduced by Ward and its noncommutative extension where the above mentioned new solutions arise. Of particular interest in this context are to us the question of stability of static solitons and the applicability of the so-called adiabatic approach to as a means to approximate time-dependent solutions by geodesic motion in the moduli space of static solutions. After some introductory remarks we proceed to present the Ward model together with its noncommutative extension and give a unified exposition of its known static solutions. This model, as the prime example of an almost Lorentz-invariant field theory in 1+2 dimensions, has several virtues which make its analysis worthwhile. First of all it is integrable thus allowing for powerful, well developed, techniques to generate soliton solutions. At the same time these feature interaction among them. Furthermore, the commutative counterpart of the Ward model has been investigated in great detail such that many results are available for comparison. Next, the question of stability for the present static solutions is considered. This stability is governed by the quadratic form of the fluctuations, which, upon concentrating on the case of diagonal U(1) solutions, is explicitly computed. We show that the considered solutions are stable within a certain subsector of possible configurations, namely the grassmannian ones, and become unstable upon embedding them into the full unitary sigma model. Finally, we remark on some possible generalization of these results. This subject is followed, after a brief review of time-dependent Ward model solutions, by the application of the adiabatic approach, as proposed by Manton, to the static solutions. (orig.)

  13. Nontopological soliton in the Polyakov quark-meson model

    Science.gov (United States)

    Jin, Jinshuang; Mao, Hong

    2016-01-01

    Within a mean-field approximation, we study a nontopological soliton solution of the Polyakov quark-meson model in the presence of a fermionic vacuum term with two flavors at finite temperature and density. The profile of the effective potential exhibits a stable soliton solution below a critical temperature T ≤Tχc for both the crossover and the first-order phase transitions, and these solutions are calculated here with appropriate boundary conditions. However, it is found that only if T ≤Tdc is the energy of the soliton MN less than the energy of the three free constituent quarks 3 Mq . As T >Tdc , there is an instant delocalization phase transition from hadron matter to quark matter. The phase diagram together with the location of a critical end point has been obtained in the T and μ plane. We notice that two critical temperatures always satisfy Tdc≤Tχc . Finally, we present and compare the result of thermodynamic pressure at zero chemical potential with lattice data.

  14. Nontopological Soliton in the Polyakov Quark Meson Model

    CERN Document Server

    Jin, Jinshuang

    2016-01-01

    In mean field approximation, we study a nontopological soliton of Polyakov Quark Meson Model in the presence of fermionic vacuum term with two flavors at finite temperature and density. The behavior of the effective potential evolving with temperature supports the existence of the stable soliton solution as long as $T\\leq T_{\\chi}^c$ for both crossover and first-order phase transition, and these solutions are calculated with some appropriate boundary conditions. However, it is found that only if $T\\leq T^c_d$, the energy of the soliton $M_N$ is less than the energy of three free constituent quarks $3M_q$. As $T> T^c_d$, there is a instant delocalization phase transition from hadron matter to quark matter. The phase diagram together with the location of critical end point (CEP) has been obtained in $T$ and $\\mu$ plane. We notice that two critical temperatures always satisfy $T^c_d\\leq T_{\\chi}^c$. In the end, we present and compare the result for temperature variation of thermodynamic pressure at zero chemical...

  15. Lagrangian Formulation of the General Modified Chiral Model

    OpenAIRE

    Ioannidou, Theodora; Zakrzewski, Wojtek

    1998-01-01

    We present a Lagrangian formulation for the general modified chiral model. We use it to discuss the Hamiltonian formalism for this model and to derive the commutation relations for the chiral field. We look at some explicit examples and show that the Hamiltonian, containing a contribution involving a Wess-Zumino term, is conserved, as required.

  16. Toy model for two chiral nonets

    International Nuclear Information System (INIS)

    Motivated by the possibility that nonets of scalar mesons might be described as mixtures of 'two quark' and 'four quark' components, we further study a toy model in which corresponding chiral nonets (containing also the pseudoscalar partners) interact with each other. Although the 'two quark' and 'four quark' chiral fields transform identically under SU(3)LxSU(3)R transformations, they transform differently under the U(1)A transformation which essentially counts total (quark+antiquark) content of the mesons. To implement this, we formulate an effective Lagrangian which mocks up the U(1)A behavior of the underlying QCD. We derive generating equations which yield Ward identity type relations based only on the assumed symmetry structure. This is applied to the mass spectrum of the low lying pseudoscalars and scalars, as well as their 'excitations'. Assuming isotopic spin invariance, it is possible to disentangle the amount of 'two quark' vs 'four quark' content in the pseudoscalar π,K,η-type states and in the scalar κ-type states. It is found that a small 'four quark' content in the lightest pseudoscalars is consistent with a large 'four quark' content in the lightest of the scalar κ mesons. The present toy model also allows one to easily estimate the strength of a 'four quark' vacuum condensate. There seems to be a rich and interesting structure

  17. The solitonic modulation and Lifshitz point in an external magnetic field within Nambu--Jona-Lasinio model

    CERN Document Server

    Cao, Gaoqing

    2016-01-01

    We study the inhomogeneous solitonic modulation of chiral condensate within the effective Nambu--Jona-Lasinio model when a constant external magnetic field is present. The self-consistent Pauli-Villars regularization scheme is adopted to manipulate the ultraviolet divergence encountered in the thermodynamic quantities. In order to determine the chiral restoration lines efficiently, a new kind of Ginzburg-Landau expansion approach is proposed here. At zero temperature, we find that both the upper and lower boundaries of the solitonic modulation oscillate with the magnetic field in the $\\mu$--$B$ phase diagram which is actually the de Hass-van Alphan (dHvA) oscillation. It is very interesting to find out how the tricritical Lifshitz point $(T_L,\\mu_L)$ evolves with the magnetic field: There are also dHvA oscillations in the $T_L$--$B$ and $\\mu_L$--$B$ curves, though the tricritical temperature $T_L$ increases monotonically with the magnetic field.

  18. Baryons as Solitons in Quantum SU(2) Skyrme Model

    CERN Document Server

    Acus, A

    1999-01-01

    This paper is a PhD thesis defended at Institute of Theoretical Physics and Astronomy on 18 December, 1998. The following (abbreviated) statements represent the main results of the work: 1.Each of SU(2) representation j yields the different quantum Lagrangian density. As a consequence, theoretical observables depend on representation j which can be treated as a new phenomenological parameter. 2.Quantum chiral solitons exist and possess asymptotic behaviour consistent with the massive Yukawa field fall. The asymptotic shape and PCAC relation leads to the correct asymptotic equation coinciding with contribution of explicitly broken term. 3.A nucleon and \\Delta_{33}-resonance are the only stable states for irreducible representations j=3/2 and j=2. Unphysical tower of states l_{spin} =l_{isospin} is, therefore, terminated by choosing the appropriate SU(2) representations. 4.Higher spin l> 1/2 quantum states are not "spherically symmetric". The Hamiltonian density function depends on the polar angle theta. 5.Each...

  19. The non-topological, color dielectric, soliton model

    International Nuclear Information System (INIS)

    An essential feature of quantum chromcodynamics is the confinement of quarks and gluons in localized, color-singlet states. This has been effected by models through the introduction of a color function κ and magnetic permittivity μ = κ-1. In regions of confinement, such as the interior of a ''bag,'' κ ≅ 1, while in the vacuum, κ → 0. Although the discussion is concerned primarily with the Friedberg-Lee non-topological soliton model, much of the material presented carries over to other color-dielectric soliton models and in some cases analogies or differences are indicated. Soliton models are characterized by the introduction of a scalar field (here denoted by σ) which is to be identified with the gluon condensate. The σ-field is both a Lorentz scalar and color singlet; it has the quantum numbers of the vacuum. It is not a fundamental field, but an effective field. It plays a role similar to plasmons in an electron gas, or deformation modes in nuclear collective motion. The model has been extended beyond the original classical interpretation to permit quantumdynamical calculations. The effective Lagrangian contains the field and its time derivative, so that a Hamiltonian can be constructed which contains the field and its conjugate momentum. Methods familiar from nuclear theory can therefore be used to construct fully quantal states of the system. In doing so, one can employ the coherent (or, more generally, the single mode) state approximation for the scalar field part of the state vector. This is related to the mean field approximation, but is quantal. 26 refs., 1 fig

  20. Circular dichroism of graphene oxide: the chiral structure model

    Institute of Scientific and Technical Information of China (English)

    Jing CAO; Hua-Jie YIN; Rui SONG

    2013-01-01

    We have observed the circular dichroism signal of dilute graphene oxide (GO), then systematically investigated the chirality of GO and established a probable chiral unit model, This study may open up a new field for understanding the structure of GO and lay the foundation for fabrication of GO-based materials.

  1. Hadron Structure Functions within a Chiral Quark Model

    OpenAIRE

    Weigel, H.(Physics Department, Stellenbosch University, Matieland 7602, South Africa); Gamberg, L.(Department of Physics, Penn State University-Berks, Reading, PA, 19610, U.S.A.)

    2000-01-01

    We outline a consistent regularization procedure to compute hadron structure functions within bosonized chiral quark models. We impose the Pauli--Villars scheme, which reproduces the chiral anomaly, to regularize the bosonized action. We derive the Compton amplitude from this action and utilize the Bjorken limit to extract structure functions that are consistent with the scaling laws and sum rules of deep inelastic scattering.

  2. Skyrmion model in 2+1 dimensions with soliton bound states

    Energy Technology Data Exchange (ETDEWEB)

    Piette, B.; Zakrzewski, W.J. (Dept. of Mathematical Sciences, Univ. Durham (United Kingdom))

    1993-03-22

    We consider a class of skyrmion models in 2+1 dimensions which possess bound stable solitons. We show that these models have one-soliton solutions as well as static solutions corresponding to their bound states. We study the scattering and stability properties of these solutions, compute their energies and estimate their binding energies. (orig.).

  3. Currents, charges, and canonical structure of pseudodual chiral models

    International Nuclear Information System (INIS)

    We discuss the pseudodual chiral model to illustrate a class of two-dimensional theories which have an infinite number of conservation laws but allow particle production, at variance with naive expectations. We describe the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the usual chiral model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model, and we discuss the complete local current algebra for the pseudodual theory. We also exhibit the canonical transformation which connects the usual chiral model to its fully equivalent dual, further distinguishing the pseudodual theory

  4. Vertex decoupling and quark deconfinement in soliton bag model at finite temperature

    International Nuclear Information System (INIS)

    By means of the Matsubara Green's function method, the temperature dependence of coupling constant gqqδ in soliton bag mode is investigated. It is found gqqδ will decrease as temperature increases in high temperature region and will approach zero at critical temperature Tc. The quark deconfinement phase transition in soliton bag model is discussed

  5. Collective coordinate approximation to the scattering of solitons in the (1+1) dimensional NLS model

    CERN Document Server

    Baron, H E; Zakrzewski, W J

    2013-01-01

    We present a collective coordinate approximation to model the dynamics of two interacting nonlinear Schr\\"odinger (NLS) solitons. We discuss the accuracy of this approximation by comparing our results to those of the full numerical simulations and find that it is remarkably accurate not only when the solitons are some distance apart but also during their interaction.

  6. Collective coordinate approximation to the scattering of solitons in the (1+1) dimensional NLS model

    Science.gov (United States)

    Baron, H. E.; Luchini, G.; Zakrzewski, W. J.

    2014-07-01

    We present a collective coordinate approximation to model the dynamics of two interacting nonlinear Schrödinger solitons. We discuss the accuracy of this approximation by comparing our results with those of the full numerical simulations and find that the approximation is remarkably accurate when the solitons are some distance apart, and quite reasonable also during their interaction.

  7. Collective coordinate approximation to the scattering of solitons in the (1+1) dimensional NLS model

    International Nuclear Information System (INIS)

    We present a collective coordinate approximation to model the dynamics of two interacting nonlinear Schrödinger solitons. We discuss the accuracy of this approximation by comparing our results with those of the full numerical simulations and find that the approximation is remarkably accurate when the solitons are some distance apart, and quite reasonable also during their interaction. (paper)

  8. Collective coordinate approximation to the scattering of solitons in the (1+1) dimensional NLS model

    OpenAIRE

    Baron, H.E.; Zakrzewski, W. J.; Luchini, G.

    2013-01-01

    We present a collective coordinate approximation to model the dynamics of two interacting nonlinear Schrödinger solitons. We discuss the accuracy of this approximation by comparing our results with those of the full numerical simulations and find that the approximation is remarkably accurate when the solitons are some distance apart, and quite reasonable also during their interaction.

  9. Generating a soliton splash through variational modelling and experiments

    Science.gov (United States)

    Kalogirou, Anna; Bokhove, Onno

    2015-11-01

    Mathematical modelling of water waves in tanks with wave generators is demonstrated by investigating variational methods asymptotically and numerically. A reduced potential flow water wave model is derived using variational techniques, which is based on the assumptions of waves with small amplitude and large wavelength. This model consists of a set of modified Benney-Luke equations describing the deviation from the still water surface η (x , y , t) and the bottom potential Φ (x , y , t) , and includes a time-dependent gravitional potential mimicking a removable ``sluice gate''. The asymptotic model is solved numerically using the automated system Firedrake. In particular, a (dis)continuous Galerkin finite element method is used, together with symplectic integrators for the time discretisation. As a validation, the numerical results are compared to a soliton splash experiment in a long water channel with a contraction at its end, resulting after a sluice gate is removed at a finite time.

  10. BRST-BFV quantization of chiral Schwinger model

    International Nuclear Information System (INIS)

    The BRST-BFV procedure of quantization is applied to establish, in a gauge independent manner, the equivalence of the gauge noninvariant and gauge invariant formulations of the Chiral Schwinger model. (author). 14 refs

  11. BRST-BFV quantization of Chiral Schwinger model

    International Nuclear Information System (INIS)

    The BRST-BFV procedure of quantization is applied to establish, in a gauge independent manner, the equivalence of the gauge noninvariant and gauge invariant formulations of the Chiral Schwinger model. (author). 14 refs

  12. Chiral-particle Approach to Hadrons in an Extended Chiral ($\\sigma,\\pi,\\omega$) Mean-Field Model

    CERN Document Server

    Uechi, Schun T

    2010-01-01

    The chiral nonlinear ($\\sigma,\\pi,\\omega$) mean-field model is an extension of the conserving nonlinear (nonchiral) $\\sigma$-$\\omega$ hadronic mean-field model which is thermodynamically consistent, relativistic and Lorentz-covariant mean-field theory of hadrons. In the extended chiral ($\\sigma,\\pi,\\omega$) mean-field model, all the masses of hadrons are produced by chiral symmetry breaking mechanism, which is different from other conventional chiral partner models. By comparing both nonchiral and chiral mean-field approximations, the effects of chiral symmetry breaking to the mass of $\\sigma$-meson, coefficients of nonlinear interactions, coupling ratios of hyperons to nucleons and Fermi-liquid properties are investigated in nuclear matter, hyperonic matter, and neutron stars.

  13. Meson phenomenology and phase transitions in nonlocal chiral quark models

    Science.gov (United States)

    Carlomagno, J. P.; Gomez Dumm, D.; Pagura, V.; Scoccola, N. N.

    2015-07-01

    We study the features of nonlocal chiral quark models that include wave function renormalization. Model parameters are determined from meson phenomenology, considering different nonlocal form factor shapes. In this context we analyze the characteristics of the deconfinement and chiral restoration transitions at finite temperature and chemical potential, introducing the couplings of fermions to the Polyakov loop for different Polyakov potentials. The results for various thermodynamical quantities are compared with data obtained from lattice QCD calculations.

  14. Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models

    OpenAIRE

    Zakrzewski, Wojtek; Baron, Helen

    2014-01-01

    We investigate the validity of collective coordinate approaximations to the scattering of solitons in several classes of models in (1+1) dimensional field theory models. We look at models which are deformations of the sine-Gordon (SG) or the nonlinear Schr\\"odinger (NLS) model as they posses solitons which are topological (SG) or non-topological (NLS). Our deformations preserve their topology (SG), but changes their integrability properties, either completely or partially (models become `quas...

  15. Soliton-antisoliton scattering configurations in a noncommutative sigma model in 2+1 dimensions

    International Nuclear Information System (INIS)

    In this paper we study the noncommutative extension of a modified U(n) sigma model in 2+1 dimensions. Using the method of dressing transformations, an iterative approach for the construction of solutions from a given seed solution, we demonstrate the construction of multi-soliton and soliton-antisoliton configurations for general n. As illustrative examples we discuss U(3) solitons and consider the head-on collision of a U(2) soliton and an antisoliton explicitly, which will result in a 90 deg. angle scattering. Further we discuss the head-on collision of one U(2) soliton with two antisolitons. This results in a 60 deg. angle scattering. (author)

  16. Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models

    Science.gov (United States)

    Baron, H. E.; Zakrzewski, W. J.

    2016-06-01

    We investigate the validity of collective coordinate approximations to the scattering of two solitons in several classes of (1+1) dimensional field theory models. We consider models which are deformations of the sine-Gordon (SG) or the nonlinear Schrödinger (NLS) model which posses soliton solutions (which are topological (SG) or non-topological (NLS)). Our deformations preserve their topology (SG), but change their integrability properties, either completely or partially (models become `quasi-integrable').

  17. Computational modeling of femtosecond optical solitons from Maxwell's equations

    Science.gov (United States)

    Goorjian, Peter M.; Taflove, Allen; Joseph, Rose M.; Hagness, Susan C.

    1992-01-01

    An algorithm is developed that permits the direct time integration of full-vector nonlinear Maxwell's equations. This capability permits the modeling of both linear and nonlinear instantaneous and dispersive effects in the electric polarization in material media. The modeling of the optical carrier is retained. The fundamental innovation is to notice that it is possible to treat the linear and nonlinear convolution integrals, which describe the dispersion, as new dependent variables. A coupled system of nonlinear second-order ordinary differential equations can then be derived for the linear and nonlinear convolution integrals, by differentiating them in the time domain. These equations, together with Maxwell's equations, are solved to determine the electromagnetic fields in nonlinear dispersive media. Results are presented of calculations in one dimension of the propagation and collision of femtosecond electromagnetic solitons that retain the optical carrier, taking into account as the Kerr and Raman interactions.

  18. Sigma-model soliton intersections from exceptional calibrations

    CERN Document Server

    Portugues, R

    2002-01-01

    A first-order `BPS' equation is obtained for 1/8 supersymmetric intersections of soliton-membranes (lumps) of supersymmetric (4+1)-dimensional massless sigma models, and a special non-singular solution is found that preserves 1/4 supersymmetry. For 4-dimensional hyper-K\\"ahler target spaces ($HK_4$) the BPS equation is shown to be the low-energy limit of the equation for a Cayley-calibrated 4-surface in $\\bE^4\\times HK_4$. Similar first-order equations are found for stationary intersections of Q-lump-membranes of the massive sigma model, but now generic solutions preserve either 1/8 supersymmetry or no supersymmetry, depending on the time orientation.

  19. D-brane Solitons in Supersymmetric Sigma-Models

    CERN Document Server

    Gauntlett, J P; Tong, D; Townsend, P K; Gauntlett, Jerome P.; Portugues, Rubén; Tong, David; Townsend, Paul K.

    2001-01-01

    Massive D=4 N=2 supersymmetric sigma models typically admit domain wall (Q-kink) solutions and string (Q-lump) solutions, both preserving 1/2 supersymmetry. We exhibit a new static 1/4 supersymmetric `kink-lump' solution in which a string ends on a wall, and show that it has an effective realization as a BIon of the D=4 super DBI-action. It is also shown to have a time-dependent Q-kink-lump generalization which reduces to the Q-lump in a limit corresponding to infinite BI magnetic field. All these 1/4 supersymmetric sigma-model solitons are shown to be realized in M-theory as calibrated, or `Q-calibrated', M5-branes in an M-monopole background.

  20. On SU(3) effective models and chiral phase-transition

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...

  1. Chiral Transition Within Effective Quark Models under Strong Magnetic Fields

    CERN Document Server

    Garcia, Andre Felipe

    2013-01-01

    In the recently years it has been argued that spectators in heavy ion collisions are responsible for creating a strong magnetic field that could play an important role in the QCD phase transition. In this work we use the SU(2) Nambu--Jona-Lasinio (NJL) model in order to study the chiral transition in quark matter subject to a strong magnetic field. We show some results involving the breaking of chiral symmetry and its restoration at finite temperature and density.

  2. Solitonic description of interface profiles in competition models

    CERN Document Server

    Azevedo, T; Menezes, J

    2014-01-01

    We consider the spatial patterns provided by mean field numerical simulations for two competing species. As all individuals have the same rate of mobility, reproduction and competition, interfaces of empty spaces separating domains of single species are formed by a spontaneous process of symmetry breaking. We construct a Lagrangian formalism for studying the static profile of such interfaces by means of a scalar field theory framework. We identify the number density of empty spaces created by the competition interactions with a function of the energy density in scalar field systems. We then present a potential with $Z_2$ symmetry, which leads to differential equations whose solitonic solutions describe interface profile. Finally, we compare the theoretical results with data from one-dimensional numerical simulation of the Lotka-Volterra equations and show that our model fits well the properties of interfaces.

  3. The effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes

    CERN Document Server

    Yu, Lang; Huang, Mei

    2015-01-01

    We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.

  4. Bag constant and deconfinement phase transition in the nontopological soliton bag model

    International Nuclear Information System (INIS)

    The effective potential in finite temperature and density nontopological soliton bag model is investigated. Based on this, the authors calculate the bag constant which depends on temperature and chemical potential. The property of deconfinement phase transition is analysed

  5. Soliton solutions of an improved quark mass density-dependent model at finite temperature

    International Nuclear Information System (INIS)

    The improved quark mass density-dependent model (IQMDD) based on soliton bag model is studied at finite temperature. Applying the finite temperature field theory, the effective potential of the IQMDD model and the bag constant B(T) have been calculated at different temperatures. It is shown that there is a critical temperature TC≅110 MeV. We also calculate the soliton solutions of the IQMDD model at finite temperature. It turns out that when TC, there is a bag constant B(T) and the soliton solutions are stable. However, when T>TC the bag constant B(T)=0 and there is no soliton solution, therefore, the confinement of quarks are removed quickly

  6. ONDAS SOLITÓNICAS EN INTERFACES ABIÓTICAS-BIÓTICAS BASADAS EN FORMULACIÓN DE DRUDE PARA MEDIOS QUIRALES SOLITONIC WAVES IN BIOTIC-ABIOTIC INTERFACES BASED IN DRUDE FORMULATION FOR CHIRAL MEDIA

    Directory of Open Access Journals (Sweden)

    Rodrigo Cancino L

    2007-04-01

    Full Text Available En este artículo se presenta un modelo teórico y la simulación computacional correspondiente, que permite analizar los efectos de la propagación de ondas solitónicas en medios biológicos esencialmente quirales. La quiralidad se modela, en este caso, bajo la formulación de Drude, mostrándose los rangos de validez del modelo propuesto. Este modelo considera los efectos no lineales y dispersivos del medio, debido a una dependencia espectral de la señal de entrada y la aproximación de campo cuasi-monocromático, para escribir la ecuación no lineal de Schrödinger y resolverla numéricamente mediante el método espectral de Fourier. Los resultados de nuestras simulaciones muestran el efecto de la variación del factor quiral sobre la impedancia del medio y sobre los coeficientes de transmisión y reflexión. Finalmente se discute, brevemente, la generalización del modelo de Drude para el caso de metamateriales.In this paper a theory model with the corresponding simulations, which permit to analyze the solitonic wave propagation in biological media, is presented. The chirality is modeled as Drude's formulation, showing the validity rank of the model. The model considers nonlinear and dispersive effects due to the spectral dependency of the input signal and the cuasy-monocromatic approach, so as to write the Schrödinger non-linear equation and solving it numerically by means of the spectral Fourier method. The numerical results show the effect of chiral factor variation on the media impedance, transmission and reflection coefficients. Finally, the generalization of the Drude's formulation for the metamaterial case, is briefly discussed.

  7. Fermions in two (1+1)-dimensional anomalous gauge theories: The chiral Schwinger model and the chiral quantum gravity

    International Nuclear Information System (INIS)

    The fermion in the gauge invariant formulation of the chiral Schwinger model and its relation to the fermion in the anomalous formulation is studied. A gauge invariant fermion operator is constructed that does not give rise to an asymptotic fermion field. It fits in the scheme prepared by generalized Schwinger models. Singularities in the short-distance limit of the chiral Schwinger model in the anomalous formulation lead to the conclusion that it is not a promising starting point for investigations towards realistic (3+1)-dimensional gauge theories with chiral fermion content. A new anomalous (1+1)-dimensional model is studied, the chiral quantum gravity. It is proven to be consistent if only a limited number of chiral fermions couple. The fermion propagator behaves analogously to the one in the massless Thirring model. A general rule is derived for the change of the fermion operator, which is induced by the breakdown of a gauge symmetry. (orig.)

  8. Integrability of a master chiral quantum field model

    International Nuclear Information System (INIS)

    The paper deals with solution of a master chiral field model in two-dimensional space-time using the quantum method of inverse problem. A dominant role in the approach is played by the idea of relativistic model production on the basis of magnetic model in the scaling limit at S→ infinity. L-M pair of a master chiral field model is discussed. Formulae for regularized quantum Hamiltonian and Bethe-Ansatz above pseudovacuum are derived. The description of excitations and Dirac filling for the ground state is given. Continuous limit from magnetic model above physical vacuum is considered

  9. A Geometric Algorithm to construct new solitons in the O(3) Nonlinear Sigma Model

    CERN Document Server

    Barros, M

    2003-01-01

    The O(3) nonlinear sigma model with boundary, in dimension two, is considered. An algorithm to determine all its soliton solutions that preserve a rotational symmetry in the boundary is exhibited. This nonlinear problem is reduced to that of clamped elastica in a hyperbolic plane. These solutions carry topological charges that can be holographically determined from the boundary conditions. As a limiting case, we give a wide family of new soliton solutions in the free O(3) nonlinear sigma model.

  10. Soliton like excitations on a deformable spin model

    International Nuclear Information System (INIS)

    We study numerically non-linear excitations on a one-dimensional deformable discrete classical ferromagnetic chain. In the continuum limits the equations of motion are reduced to a Klein-Gordon equation with a Remoissenet - Peyrard substrate potential. From a numerical computation of the discrete system with a suitable choice of the deformability parameters, the solitons solutions are shown to exist and move both with a monotonic oscillating (i.e. nanopteron) and a monotonic non- oscillating tails and also with a non- oscillating tails but with a splitting propagating shape. The stability of all these various solitons shape is confirmed numerically in a greater range of the reduced magnetic field 0≤b≤0.61 compared to the case of a rigid magnetic chain i.e. 0≤b≤0.33. From a kink- antikink and a kink-kink colliding simulation, we found various effects including a bound state of a kink and an antikink as well as a moving kink profile with higher topological charge that appears to be the bound state of two kinks. We also observed a three particles interaction that also arises from a kink-kink collision. The breather that intercalates between the two kinks has length that varies from its minimal value to the maximal one as far as the alternation between an attractive and a repulsive phenomenon is produced. From our results it appears that the value of the shape parameter of the substrate potential or the modified Zeeman energy is a factor of outmost importance when modelling magnetic chains. (author)

  11. Lectures on the soliton theory of nucleons

    International Nuclear Information System (INIS)

    In the absence of bona fide QCD calculations of nucleon structure (excepting lattice gauge calculations which do not give much detail on the structure of nucleons) new models seem to come up almost every year, all with the claim that QCD will eventually justify them as valid phenomenological models. Other papers show the necessity of implementing simple models (such as the MIT bag model or, more generally, T.D. Lee solitons) with the pionic degree of freedom. In this paper the authors describe models in which it is the pion field or, more precisely, the chiral fields, which are responsible for the binding of quarks in the nucleon. Such bound states in which the quarks constitute a source for the chiral fields, which, in turn, bind the quarks to each other, are called solitons. The starting point for such theories or models are chiral invariant lagrangians, which have been used, in various contexts, for almost a quarter of a century. They are not derived from QCD. It has been argued however that QCD is likely to produce such effective lagrangians for the description of low q phenomena. The Skyrme lagrangian is simpler in that it involves only chiral fields and no quarks. However it may be understood as an effective lagrangian from which the quark degrees of freedom have been integrated out. It is not yet clear to what extent various models are equivalent

  12. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  13. Ω(ε)States in a Chiral Quark Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The structures of Ω(ε) states with spin-parity Jp = 5/2-, 3/2-, and 1/2- are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon (NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The calculated results show that theΩ(ε) state has an attractive interaction, and in the extended chiral SU(3) quark model such attraction can make for aΩ(ε) quasi-bound state with spin-parity Jp = 3/2- or 5/2- and tie binding energy of about several MeV.

  14. Soliton excitations and stability in a square lattice model of ferromagnetic spin system

    Science.gov (United States)

    Latha, M. M.; Anitha, T.

    2015-12-01

    We investigate the nature of nonlinear spin excitations in a square lattice model of ferromagnetic (FM) spin system with bilinear and biquadratic interactions. Using the coherent state ansatz combined with the Holstein-Primakoff (HP) bosonic representation of spin operators, the dynamics is found to be governed by a discrete nonlinear equation which possesses soliton solution. The modulational instability aspects of the soliton excitations are analysed for small perturbations in wave vectors.

  15. Ponderable soliton stars

    Science.gov (United States)

    Chiu, Hong-Yee

    1990-01-01

    The theory of Lee and Pang (1987), who obtained solutions for soliton stars composed of zero-temperature fermions and bosons, is applied here to quark soliton stars. Model soliton stars based on a simple physical model of the proton are computed, and the properties of the solitons are discussed, including the important problem of the existence of a limiting mass and thus the possible formation of black holes of primordial origin. It is shown that there is a definite mass limit for ponderable soliton stars, so that during cooling a soliton star might reach a stage beyond which no equilibrium configuration exists and the soliton star probably will collapse to become a black hole. The radiation of ponderable soliton stars may alter the short-wavelength character of the cosmic background radiation, and may be observed as highly redshifted objects at z of about 100,000.

  16. Nuclei as topological solitons

    International Nuclear Information System (INIS)

    The application of the Skyrme model to the construction of interaction and current operators for nuclear systems is reviewed. The long-range behaviors of these operators are found to agree with results of phenomenological meson theories based on effective chiral Lagrangians. The Skyrme model thus provides a compact method for obtaining long-range parts of such operators, consistent with the usual soft-pion theorems as well as with the requirement of current conservation. Predictions of the short-range parts of the operators remain uncertain due to difficulties in solving the equations of motion for the two-nucleon problem. The usual factorized ansatz for the soliton field of the two-nucleon system does not give sufficient accuracy at short range. The possibility of an improvement which would allow the construction of spin and isospin operators for the individual nucleons is discussed. The Skyrme model is discussed in the limit of large baryon number

  17. Self-bound quark matter in the NJL model revisited: from schematic droplets to solitonic lasagne

    CERN Document Server

    Buballa, Michael

    2012-01-01

    The existence and the properties of self-bound quark matter in the NJL model at zero temperature are investigated in mean-field approximation, focusing on inhomogeneous structures with one-dimensional spatial modulations. It is found that the most stable homogeneous solutions which have previously been interpreted as schematic quark droplets are unstable against formation of a one-dimensional soliton-antisoliton lattice. The solitons repel each other, so that the minimal energy per quark is realized in the single-soliton limit. The properties of the solitons and their interactions are discussed in detail, and the effect of vector interactions is estimated. The results may be relevant for the dynamics of expanding quark matter.

  18. Is the Chiral Model equivalent to Wess-Zumino-Witten Model when coupled with Gravity?

    OpenAIRE

    Nojiri, Shin'ichi

    1996-01-01

    We investigate the non-abelian $T$-duality of Wess-Zumino-Witten model. The obtained dual model is equivalent to the model dual to the $SU(2)$ chiral model found by Curtright-Zachos. This might tell that the Wess-Zumino term would be induced when the chiral model couples with gravity.

  19. Minimal quantization of two-dimensional models with chiral anomalies

    International Nuclear Information System (INIS)

    Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis

  20. Distinguishing Standard Model Extensions using Monotop Chirality at the LHC

    CERN Document Server

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Gao, Yu; Kamon, Teruki

    2015-01-01

    We present two minimal extensions of the standard model that gives rise to baryogensis and include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM.

  1. Vector-meson mass generation in the chiral Schwinger model

    International Nuclear Information System (INIS)

    It is shown that an arbitrary mass is generated for the vector meson in the chiral Schwinger model, a model which has caused some controversy. Our arguments are based on ambiguities in the dimensional regularization of quantum field theory with γ5. (orig.)

  2. The nucleon-nucleon potential in the chromodielectric soliton model

    Science.gov (United States)

    Koepf, W.; Wilets, L.; Pepin, S.; Stancu, F.

    The short and medium range parts of the nucleon-nucleon interaction are being studied in the framework of the chromodielectric soliton model. The model consists of current quarks, gluons in the abelian approximation, and a scalar sigma field which simulates the nonabelian interactions of the gluons and governs the medium through the dielectric function kappa(sigma). Absolute color confinement is effected by the vanishing of the dielectric in vacuum; this also removes the troublesome van der Waals problem. The authors distinguish between spatial confinement, which arises from the self energy of the quarks in medium (excluding MFA contributions), and color confinement which is effected through OGE in the MFA (including the corresponding self energy contributions). The static (adiabatic) energies are computed as a function of deformation (generalized bag separation) in a constrained MFA. Six quark molecular-type wave functions in all important space-spin-isospin-color configurations are included. The gluon propagator is solved in the deformed dielectric medium. The resultant Hamiltonian matrix is diagonalized. Dynamics are handled in the generator coordinate method, which leads to the Hill-Wheeler integral equation. In the present case, this yields a set of coupled equations corresponding to the various configurations. Although this can be approximated by a set of differential equations, they propose to solve the integral equations with some regularization scheme.

  3. Scattering of Topological Solitons on Barriers and Holes of Deformed Sine-Gordon Models

    OpenAIRE

    Al-Alawi, Jassem H.; Zakrzewski, Wojtek J.

    2008-01-01

    We study scattering properties of topological solitons in two classes of models, which are generalizations of the Sine-Gordon model and which have recently been proposed by Bazeia et al. These two classes of models depend on an integer parameter n which, when n=2(for the first class) and n=1 (for the second class), reduce to the Sine-Gordon model. We take the soliton solutions of these models (generalizations of the 'kink' solution of the Sine-Gordon model) and consider their scattering on po...

  4. The soliton sector pf the quantum field associated with the two-dimensional ising model

    International Nuclear Information System (INIS)

    An anti-periodic finite lattice Hamiltonian is defined through the transfer matrix of the two-dimensional Ising model with anti-periodic boundary conditions in the space direction and periodic boundary conditions in the imaginary time direction. An infinite lattice quantum field theory is obtained by taking limits of vector states on the algebra of observables generated by finite products of spin operators. Explicit representations of spin and energy-momentum operators are obtained in terms of free Fermions acting in a Fermionic Fock space. The infinite lattice energy-momentum spectrum is analogous to the odd spectrum of a free, scalar, massive field theory: in particular, the vacuum and two-particle states are absent. The algebra of observables admits a decomposition into two subalgebras corresponding to the soliton, anti-soliton decomposition. Particular vector states show soliton behavior. The scaling limit is also obtained. An algebraic construction of the soliton sector is given and soliton field operators are defined. It is Shown that the imaginary time soliton two-point function is the two-point function of the disorder operator introduced by Kadanoff and Ceva. (author)

  5. Orbital Angular Momentum in the Chiral Quark Model

    OpenAIRE

    Song, Xiaotong

    1998-01-01

    We developed a new and unified scheme for describing both quark spin and orbital angular momenta in symmetry-breaking chiral quark model. The loss of quark spin in the chiral splitting processes is compensated by the gain of the orbital angular momentum carried by quarks and antiquarks. The sum of both spin and orbital angular momenta carried by quarks and antiquarks is 1/2. The analytic and numerical results for the spin and orbital angular momenta carried by quarks and antiquarks in the nuc...

  6. The effective action approach applied to nuclear chiral sigma model

    International Nuclear Information System (INIS)

    The nuclear chiral sigma model of nuclear matter is considered by means of the Cornwall-Jackiw-tomboulis (CTJ) effective action. The method provides a very general framework for investigating many important problems: chiral symmetry in nuclear medium, energy density of nuclear ground state, nuclear Schwinger-Dyson (SD) equations, etc. It is shown that the SD equations for sigma-omega mixing are actually not present in this formalism. For numerical computation purposes the Hartree-Fock (HF) approximation for ground state energy density is also presented. (author). 26 refs

  7. Transversity structure of the pion in chiral quark models

    CERN Document Server

    Broniowski, Wojciech; Dorokhov, Alexander E

    2011-01-01

    We describe the chiral quark model evaluation of the transversity Generalized Parton Distributions (tGPDs) and related transversity form factors (tFFs) of the pion. The obtained tGPDs satisfy all necessary formal requirements, such as the proper support, normalization, and polynomiality. The lowest tFFs, after the necessary QCD evolution, compare favorably to the recent lattice QCD determination. Thus the transversity observables of the pion support once again the fact that the spontaneously broken chiral symmetry governs the structure of the Goldstone pion. The proper QCD evolution is crucial in these studies.

  8. Quantum Solitons with Cylindrical Symmetry

    OpenAIRE

    Chepilko, N.; Kobushkin, A.; Syamtomov, A.

    1993-01-01

    Soliton solutions with cylindrical symmetry are investigated within the nonlinear $\\sigma $-model disregarding the Skyrme-stabilization term. The solitons are stabilized by quantization of collective breathing mode and collapse in the $\\hbar \\to 0$ limit. It is shown that for such stabilization mechanism the model, apart from solitons with integer topological number $B$, admits the solitons with half-odd $B$. The solitons with integer $B$ have standard spin-isospin classification, while $B={\\...

  9. Nonautonomous motion study on accelerated and decelerated solitons for the variable-coefficient Lenells-Fokas model.

    Science.gov (United States)

    Lü, Xing; Peng, Mingshu

    2013-03-01

    In this paper, the nonautonomous Lenells-Fokas (LF) model is studied with the bilinear method and symbolic computation. Such analytical solutions of the nonautonomous LF model as one-soliton, two-soliton, and earthwormons are derived. Nonautonomous characteristics are then symbolically and graphically investigated, and it is finally found that the soliton velocity is time-dependent, and there exist soliton accelerating and decelerating motions. Further, two necessary conditions for the occurrence of earthwormon acceleration and deceleration (and their alternation) are pointed out. PMID:23556959

  10. The Many Faces of the Chiral Potts Model

    CERN Document Server

    Au-Yang, H; Au-Yang, Helen; Perk, Jacques H.H.

    1996-01-01

    In this talk, we give a brief overview of several aspects of the theory of the chiral Potts model, including higher-genus solutions of the star-triangle and tetrahedron equations, cyclic representations of affine quantum groups, basic hypergeometric functions at root of unity, and possible applications.

  11. Dimensional regularization and perturbative solution of the chiral Schwinger model

    International Nuclear Information System (INIS)

    The anomalous chiral Schwinger model is regulated by the method of dimensional regularization and is solved by diagrammatic perturbative expansion. It is shown that there is a regulation ambiguity in the solution. The result disagrees with Das's assertion and agrees with that of Jackiw, Rajaraman, and others

  12. Soliton trap in strained graphene nanoribbons

    International Nuclear Information System (INIS)

    The wavefunction of a massless fermion consists of two chiralities, left handed and right handed, which are eigenstates of the chiral operator. The theory of weak interactions of elementary particle physics is not symmetric about the two chiralities, and such a symmetry-breaking theory is referred to as a chiral gauge theory. The chiral gauge theory can be applied to the massless Dirac particles of graphene. In this paper, we show within the framework of the chiral gauge theory for graphene that a topological soliton exists near the boundary of a graphene nanoribbon in the presence of a strain. This soliton is a zero-energy state connecting two chiralities and is an elementary excitation transporting a pseudo-spin. The soliton should be observable by means of a scanning tunneling microscopy experiment.

  13. Regularization of multi-soliton form factors in sine-Gordon model

    Science.gov (United States)

    Pálmai, T.

    2012-08-01

    A general and systematic regularization is developed for the exact solitonic form factors of exponential operators in the (1+1)-dimensional sine-Gordon model by analytical continuation of their integral representations. The procedure is implemented in Mathematica. Test results are shown for four- and six-soliton form factors. Catalogue identifier: AEMG_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEMG_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 1462 No. of bytes in distributed program, including test data, etc.: 15 488 Distribution format: tar.gz Programming language: Mathematica [1] Computer: PC Operating system: Cross-platform Classification: 7.7, 11.1, 23 Nature of problem: The multi-soliton form factors of the sine-Gordon model (relevant in two-dimensional physics) were given only by highly non-trivial integral representation with a limited domain of convergence. Practical applications of the form factors, e.g. calculation of correlation functions in two-dimensional condensed matter systems, were not possible in general. Solution method: Using analytic continuation techniques an efficient algorithm is found and implemented in Mathematica, which provides a general and systematic way to calculate multi-soliton form factors in the sine-Gordon model. The package contains routines to compute the two-, four- and six-soliton form factors. Running time: Strongly dependent on the desired accuracy and the number of solitons. For physical rapidities after an initialization of about 30 s, the calculation of the two-, four- and six-soliton form factors at a single point takes approximately 0.5 s, 2.5 s and 8 s, respectively. Wolfram Research, Inc., Mathematica Edition: Version 7.0, Wolfram Research, Inc., Champaign, Illinois, 2008.

  14. Chiral matrix model of the semi-QGP in QCD

    Science.gov (United States)

    Pisarski, Robert D.; Skokov, Vladimir V.

    2016-08-01

    Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the

  15. Three-dimensional collinearly propagating solitons

    International Nuclear Information System (INIS)

    The generalized nonlinear Schrödinger equation is modified in order to describe three-dimensional solitons propagating collinearly with a constant velocity. One- and two-soliton solutions are obtained and analysed. When the frequencies of the respective solitons approach, then the effect of the repulsion of the solitons is observed. These solitons are proposed to model photons. (paper)

  16. Three-phase model of a chiral quark bag

    International Nuclear Information System (INIS)

    Three-phase modification of the model of hybrid chiral quark bag is suggested. Along with the phase of asymptotically free current quarks and completely achromatic meson phase the model contains an intermediate phase including massive quark components. Self-consistent solution of model equations with account of contribution from the Dirac sea is found for (1+1)-dimensional case. The dependence of bag characteristics on theory parameters is investigated in analytical and numerical forms

  17. An Anderson-like model of the QCD chiral transition

    Science.gov (United States)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  18. CHIRAL MODEL FOR DENSE, HOT AND STRANGE HADRONIC MATTER

    Energy Technology Data Exchange (ETDEWEB)

    ZSCHIESCHE,D.; PAPAZOGLOU,P.; BECKMANN,C.W.; SCHRAMM,S.; SCHAFFNER-BIELICH,J.; STOCKER,H.; GREINER,W.

    1999-06-10

    Until now it is not possible to determine the equation of state (EOS) of hadronic matter from QCD. One successfully applied alternative way to describe the hadronic world at high densities and temperatures are effective models like the RMF-models, where the relevant degrees of freedom are baryons and mesons instead of quarks and gluons. Since approximate chiral symmetry is an essential feature of QCD, it should be a useful concept for building and restricting effective models. It has been shown that effective {sigma}-{omega}-models including SU(2) chiral symmetry are able to obtain a reasonable description of nuclear matter and finite nuclei. Recently [4] the authors have shown that an extended SU(3) x SU(3) chiral {sigma}-{omega} model is able to describe nuclear matter ground state properties, vacuum properties and finite nuclei satisfactorily. This model includes the lowest SU(3) multiplets of the baryons (octet and decuplet), the spin-0 and the spin-1 mesons as the relevant degrees of freedom. Here they discuss the predictions of this model for dense, hot, and strange hadronic matter.

  19. Self-trapped optical beams: Spatial solitons

    Indian Academy of Sciences (India)

    Andrey A Sukhorukov; Yuri S Kivshar

    2001-11-01

    We present a brief overview of the basic concepts of the theory ofspatial optical solitons, including the soliton stability in non-Kerr media, the instability-induced soliton dynamics, and collision of solitary waves in nonintegrable nonlinear models.

  20. Non-Vortex Topological Solitons of the [InlineMediaObject not available: see fulltext.] Gauge Model

    Science.gov (United States)

    Afanas'ev, K. V.; Gauzshtein, V. V.; Loginov, A. Yu.

    2016-06-01

    A (2+1)-dimensional [InlineMediaObject not available: see fulltext.] gauge model is investigated. The presence of additional local U(1) symmetry, not associated with a physical gauge field, leads to the existence in the given model of two-dimensional non-vortex topological solitons carrying unquantized magnetic flux. Topological solitons of the given type were found numerically for fixed values of the model parameters. Analytical calculations of some properties of non-vortex topological solitons were performed. Universal dependences of the energy and magnetic flux of a non-vortex topological soliton on a dimensionless combination of parameters of the [InlineMediaObject not available: see fulltext.] gauge model were obtained numerically. A comparative analysis of the properties of a non-vortex topological soliton and an Abrikosov-Nielsen-Olesen classical vortex is provided.

  1. Dimension 2 condensates and Polyakov Chiral Quark Models

    OpenAIRE

    Megias, E.; Arriola, E. Ruiz; Salcedo, L. L.

    2006-01-01

    We address a possible relation between the expectation value of the Polyakov loop in pure gluodynamics and full QCD based on Polyakov Chiral Quark Models where constituent quarks and the Polyakov loop are coupled in a minimal way. To this end we use a center symmetry breaking Gaussian model for the Polyakov loop distribution which accurately reproduces gluodynamics data above the phase transition in terms of dimension 2 gluon condensate. The role played by the quantum and local nature of the ...

  2. Soft Matrix Elements in Non-local Chiral Quark Model

    OpenAIRE

    Kotko, Piotr

    2009-01-01

    Using non-local chiral quark model and currents satisfying Ward-Takahashi identities we analyze Distribution Amplitudes (DA) of photon and pion-to-photon Transition Distribution Amplitudes (TDA) in the low energy regime. Photon DA's are calculated analytically up to twist-4 and reveal several interesting features of photon structure. TDA's calculated in the present model satisfy polynomiality condition. Normalization of vector TDA is fixed by the axial anomaly. We also compute relevant form f...

  3. BFFT formalism applied to the minimal chiral Schwinger model

    CERN Document Server

    Natividade, C P; Belvedere, L V

    2000-01-01

    The minimal chiral Schwinger model is discussed from the Batalin-Fradkin-Fradkina-Tyutin point of view. The conversion of second-class constraints to first-class ones results in an extended gauge-invariant theory which is equivalent for $a=2$ to the vector Schwinger model at the Lagrangian level. Here, we present arguments which show that such equivalence does no exist at the operatorial level.

  4. Soliton-like excitation in a nonlinear model of DNA dynamics with viscosity.

    Science.gov (United States)

    Tabi, Conrad Bertrand; Mohamadou, Alidou; Kofane, Timoleon Crepin

    2008-01-01

    The study of solitary wave solutions is of prime significance for nonlinear physical systems. The Peyrard-Bishop model for DNA dynamics is generalized specifically to include the difference among bases pairs and viscosity. The small amplitude dynamics of the model is studied analytically and reduced to a discrete complex Ginzburg-Landau (DCGL) equation. Exact solutions of the obtained wave equation are obtained by the mean of the extended Jacobian elliptic function approach. These amplitude solutions are made of bubble solitons. The propagation of a soliton-like excitation in a DNA is then investigated through numerical integration of the motion equations. We show that discreteness can drastically change the soliton shape. The impact of viscosity as well as elasticity on DNA dynamic is also presented. The profile of solitary wave structures as well as the energy which is initially evenly distributed over the lattice are displayed for some fixed parameters. PMID:18193938

  5. Opportunities for collective model and chirality studies at TRIUMF

    International Nuclear Information System (INIS)

    First predictions for a specific case of the particle-hole-core coupling model which takes advantage of symmetries of a triaxial rotor with γ = 90° are reviewed. Results of the model calculations point towards existence of stable chiral geometry in specific configurations involving high-j orbitals. Next, experimental information on doublet bands built on unique parity, πh11/2νh11/2 intruder states in odd-odd 134Pr is discussed; in particular observed disagreements between electromagnetic transitions within the doublet structures which is pointed out as inconsistent with the simplest models. Finally, the unique experimental infrastructure developed at the Tri-University Meson Facility (TRIUMF) Canada's National Laboratory for Particle and Nuclear Physics is presented including a range of isotopes in the mass 130 region that are accessible as beams and which can possibly yield significant new information in investigations of nuclear chirality. (author)

  6. Hadron Properties in a Chiral Quark-Sigma Model

    CERN Document Server

    Rashdan, M; El-Kholy, S; Abu-Shady, M

    2011-01-01

    Within a chiral quark sigma model in which quarks interact via the exchange of sigma and pi-mesons, hadron properties are investigated. This model of the nucleon and delta is based on the idea that strong QCD forces on very short distances (a small length scales 0.2- 1 fm) result in hidden chiral SU(2)xSU(2) symmetry and that there is a separation of roles between these forces which are responsible for binding quarks in hadrons and the forces which produce absolute confinement. We have solved the field equations in the mean field approximation for the hedgehog baryon state with different sets of model parameters. A new parametrization which well describe the nucleon properties has been introduced and compared with experimental data.

  7. Chiral symmetry breaking in lattice QED model with fermion brane

    CERN Document Server

    Shintani, E

    2012-01-01

    We propose a novel approach of spontaneous chiral symmetry breaking at near zero temperature in 4 dimensional QED model with 3+1 dimensional fermion brane using Hybrid Monte Carlo simulation. We consider an anisotropic QED coupling in non-compact QED action with the manifest gauge invariant interaction and fermi-velocity which is less than speed of light. This model allows for the scaling study at low temperature and strong coupling region with reduced computational cost. We compute the chiral condensate and its susceptibility with different coupling constant, velocity parameter and flavor number, and therefore obtain a compatible behavior with gap equation in broken phase. We also discuss about the comparison of Graphene model.

  8. Physical properties of the chiral quantum baryon

    International Nuclear Information System (INIS)

    It is presented an account to understand the quantum chiral baryon, which a stable chiral soliton with baryon number one obtained after first quantization by collective coordinates. Starting from the exact series solution to the non-linear sigma model with the hedge-hog configuration, the values of several physical quantities (mass, axial weak coupling, gyromagnetic ratios and radii) as a function of the order of Pade approximants used as approximanted representations of the solution, are calculated. It turns out that consistent results may be obtained, but a better approximation should be developed. (author)

  9. Bubble and kink solitons in the φ6-model of nonlinear field theory

    International Nuclear Information System (INIS)

    We have studied the φ6-model in the parameter domain A>1, with A being the relevant parameter of the model. For this case we have found localized soliton-like solutions: kinks and bubbles. The investigation of waves propagating through a stable vacuum shows that the sound velocity provides a rigid constraint for these oscillations to be stable or not. (orig.)

  10. A chiral symmetric quark model without free quarks

    International Nuclear Information System (INIS)

    A chirally symmetric quark model is presented which contrary to the Nambu Jona-Lasinio (NJL) model does not lead to the presence of free quarks. In the model a non-local effective interaction is used as a schematic parameterization of the quark antiquark scattering kernel. The non-locality can be interpreted as phenomenologically taking into account an infinite number of elementary scattering processes, like the sum of all multi-gluon exchange processes in the particle-particle channel. The basic Lagrangian of the interaction shares all global internal symmetries with QCD. In particular in the limit of vanishing current quark masses it is chirally symmetric. Starting from the non-local scattering kernel the solution of the Dyson-Schwinger equation and the Bethe-Salpeter equation leads to a consistent description of the dressed quark propagators with the mesonsa s quark-antiquark states. Like in the NJL-model chiral symmetry is spontaneously broken. Because of the non-locality of the interaction, however, in our model the quarks do not acquire a constant constituent mass but a four momentum dependent selfenergy. (orig.)

  11. Trying to stabilize a soliton in the one-loop σ-model

    International Nuclear Information System (INIS)

    The viability of a soliton in the one-loop σ-model in the presence of an omega meson is studied. The effective action is estimated in a mean field treatment and an approximate expression of the baryonic current is used. Renormalization is shown to be conveniently effected in the phase shift formalism, using the ζ-function method. The soliton is still found to be unstable. Next, we calculate the determinant coming from the bosonic fluctuations. It is found to be nearly saturated by the first term in the derivative expansion. It is confirmed that this determinant cannot stabilize a soliton against scaling and that it is dominated at short distances by the fermionic determinant. Finally, effective actions with an explicit momentum cutoff are considered. The mass can have a well defined minimum in this case, but this result is shown to depend crucially on the smoothness of the cutoff function

  12. Microscopically constrained mean-field models from chiral nuclear thermodynamics

    Science.gov (United States)

    Rrapaj, Ermal; Roggero, Alessandro; Holt, Jeremy W.

    2016-06-01

    We explore the use of mean-field models to approximate microscopic nuclear equations of state derived from chiral effective field theory across the densities and temperatures relevant for simulating astrophysical phenomena such as core-collapse supernovae and binary neutron star mergers. We consider both relativistic mean-field theory with scalar and vector meson exchange as well as energy density functionals based on Skyrme phenomenology and compare to thermodynamic equations of state derived from chiral two- and three-nucleon forces in many-body perturbation theory. Quantum Monte Carlo simulations of symmetric nuclear matter and pure neutron matter are used to determine the density regimes in which perturbation theory with chiral nuclear forces is valid. Within the theoretical uncertainties associated with the many-body methods, we find that select mean-field models describe well microscopic nuclear thermodynamics. As an additional consistency requirement, we study as well the single-particle properties of nucleons in a hot/dense environment, which affect e.g., charged-current weak reactions in neutron-rich matter. The identified mean-field models can be used across a larger range of densities and temperatures in astrophysical simulations than more computationally expensive microscopic models.

  13. ND^(*) and NB^(*) interactions in a chiral quark model

    CERN Document Server

    Yang, Dan; Zhang, Dan

    2015-01-01

    ND and ND^* interactions become a hot topic after the observation of new charmed hadrons \\Sigma_c(2800) and \\Lambda_c(2940)^+. In this letter, we have preliminary investigated S-wave ND and ND^* interactions with possible quantum numbers in the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving the resonating group method equation. The numerical results show that the interactions between N and D or N and D^* are both attractive, which are mainly from \\sigma exchanges between light quarks. Further bound-state studies indicate the attractions are strong enough to form ND or ND^* molecules, except for (ND)_{J=3/2} and (ND^*)_{J=3/2} in the chiral SU(3) quark model. In consequence ND system with J=1/2 and ND^* system with J=3/2 in the extended SU(3) quark model could correspond to the observed \\Sigma_c(2800) and \\Lambda_c(2940)^+, respectively. Naturally, the same method can be applied to research NB and NB^* interactions, and similar conclusions obtained, i.e. NB and NB^* attractive fo...

  14. An Anderson-like model of the QCD chiral transition

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...

  15. Self-Dual Chern-Simons Solitons and Generalized Heisenberg Ferromagnet Models

    CERN Document Server

    Oh, P; Oh, Phillial

    1996-01-01

    We consider the (2+1)-dimensional gauged Heisenberg ferromagnet model coupled with the Chern-Simons gauge fields. Self-dual Chern-Simons solitons, the static zero energy solution saturating Bogomol'nyi bounds, are shown to exist when the generalized spin variable is valued in the Hermitian symmetric spaces G/H. By gauging the maximal torus subgroup of H, we obtain self-dual solitons which satisfy vortex-type nonlinear equations thereby extending the two dimensional instantons in a nontrivial way. An explicit example for the CP(N) case is given.

  16. Continuum model for chiral induced spin selectivity in helical molecules

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2015-05-21

    A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

  17. Chiral-Symmetric Technicolor with Standard Model Higgs boson

    CERN Document Server

    Pasechnik, Roman; Kuksa, Vladimir; Vereshkov, Grigory

    2013-01-01

    Most of the traditional Technicolor-based models are known to be in a strong tension with the electroweak precision data. We show that this serious issue is naturally cured in strongly coupled sectors with chiral-symmetric vector-like gauge interactions in the framework of gauged linear sigma model. We discuss possible phenomenological implications of such non-standard chiral-symmetric Technicolor scenario in its simplest formulation preserving the standard Higgs mechanism and (possibly) elementary Higgs boson of the Standard Model (SM). For this purpose, we assume the existence of an extra technifermion sector confined under extra SU(3)_TC at the energy scales reachable at the LHC, Lambda_TC ~ 0.1-1 TeV, and interacting with the SM gauge bosons in a chiral-symmetric (vector-like) way. In the framework of this scenario, the SM Higgs vev acquires natural interpretation in terms of the condensate of technifermions in confinement. We study the influence of the lowest lying composite physical states, namely, tech...

  18. Soliton Fay identities: I. Dark soliton case

    International Nuclear Information System (INIS)

    We derive a set of bilinear identities for the determinants of the matrices that have been used to construct dark soliton solutions for various models. To give examples of the application of the obtained identities, we present soliton solutions for the equations describing multidimensional quadrilateral lattices, Darboux equations, and multidimensional multicomponent systems of the nonlinear Schrödinger type. (paper)

  19. Soliton fay identities: II. Bright soliton case

    International Nuclear Information System (INIS)

    We present a set of bilinear matrix identities that generalize the ones that have been used to construct the bright soliton solutions for various models. As an example of an application of these identities, we present a simple derivation of the N-bright soliton solutions for the Ablowitz–Ladik hierarchy. (paper)

  20. Soliton Fay identities. I. Dark soliton case

    OpenAIRE

    Vekslerchik, V. E.

    2014-01-01

    We derive a set of bilinear identities for the determinants of the matrices that have been used to construct the dark soliton solutions for various models. To give examples of the application of the obtained identities we present soliton solutions for the equations describing multidimensional quadrilateral lattices, Darboux equations and multidimensional multicomponent systems of the nonlinear Schrodinger type.

  1. Soliton Fay identities. II. Bright soliton case

    OpenAIRE

    Vekslerchik, V. E.

    2015-01-01

    We present a set of bilinear matrix identities that generalize the ones that have been used to construct the bright soliton solutions for various models. As an example of an application of these identities, we present a simple derivation of the N-bright soliton solutions for the Ablowitz-Ladik hierarchy.

  2. Scalar mesons in a chiral quark model with glueball

    International Nuclear Information System (INIS)

    Ground-state scalar isoscalar mesons and a scalar glueball are described in a U(3)xU(3) chiral quark model of the Nambu-Jona-Lasinio (NJL) type with 't Hooft interaction. The latter interaction produces singlet-octet mixing in the scalar and pseudoscalar sectors. The glueball is introduced into the effective meson Lagrangian as a dilaton on the basis of scale invariance. The mixing of the glueball with scalar isoscalar quarkonia and amplitudes of their decays into two pseudoscalar mesons are shown to be proportional to current quark masses, vanishing in the chiral limit. Mass spectra of the scalar mesons and the glueball and their main modes of strong decay are described

  3. A class of integrable expanding model for the coupled AKNS-Kaup-Newell soliton hierarchy

    Institute of Scientific and Technical Information of China (English)

    Yang Hong-Xiang; Xu Xi-Xiang

    2005-01-01

    An isospectral problem is established by means of a sub-algebra of loop Lie algebra (A)1, from which the coupled AKNS-Kaup-Newell soliton hierarchy is derived. Subsequently, the integrable expanding model, i.e. integrable coupling,is constructed through enlarging the corresponding loop algebra into the loop Lie algebra (A)2.

  4. Quadratic solitons as nonlocal solitons

    OpenAIRE

    Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole; Królikowski, W.

    2003-01-01

    We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for novel analytical solutions and the prediction of novel bound states of quadratic solitons.

  5. Quadratic solitons as nonlocal solitons

    DEFF Research Database (Denmark)

    Nikolov, Nikola Ivanov; Neshev, D.; Bang, Ole;

    2003-01-01

    We show that quadratic solitons are equivalent to solitons of a nonlocal Kerr medium. This provides new physical insight into the properties of quadratic solitons, often believed to be equivalent to solitons of an effective saturable Kerr medium. The nonlocal analogy also allows for analytical...... solutions and the prediction of bound states of quadratic solitons....

  6. K^- nuclear potentials from in-medium chirally motivated models

    CERN Document Server

    Cieplý, A; Gal, A; Gazda, D; Mareš, J

    2011-01-01

    A self consistent scheme for constructing K^- nuclear optical potentials from subthreshold in-medium Kbar-N s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K^- quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms potentials are characterized by a real part -Re V(K^-;chiral)=(85+/-5) MeV at nuclear matter density, in contrast to half this depth obtained in some derivations based on in-medium Kbar-N threshold amplitudes. The moderate agreement with data is much improved by adding complex rho- and rho^2-dependent phenomenological terms, found to be dominated by rho^2 contributions that could represent Kbar-NN -> YN absorption and dispersion, outside the scope of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave interactions are studied and fo...

  7. Parity-violating $\\pi NN$ coupling constant from the flavor-conserving effective weak chiral Lagrangian

    CERN Document Server

    Hyun, Chang Ho; Lee, Hee-Jung

    2016-01-01

    We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.

  8. Deep inelastic structure functions in the chiral bag model

    International Nuclear Information System (INIS)

    We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.)

  9. Pion Effect of Nuclear Matter in a Chiral Sigma Model

    Institute of Scientific and Technical Information of China (English)

    HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong

    2009-01-01

    We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.

  10. Moduli stabilization in chiral type IIB orientifold models with fluxes

    International Nuclear Information System (INIS)

    We consider type IIB orientifold models on Calabi-Yau spaces with three-form G-flux turned on. These fluxes freeze some of the complex structure moduli and the complex dilaton via an F-term scalar potential. By introducing pairs of D9-D9-bar branes with Abelian magnetic fluxes it is possible to freeze also some of the Kaehler moduli via a D-term potential. Moreover, such magnetic fluxes in general lead to chiral fermions, which make them interesting for string model-building. These issues are demonstrated in a simple toy model based on a Z2xZ2' orbifold

  11. Deep inelastic structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V. (Valencia Univ. (Spain). Dept. de Didactica de las Ciencias Experimentales); Vento, V. (Valencia Univ. (Spain). Dept. de Fisica Teorica; Centro Mixto CSIC/Valencia Univ., Valencia (Spain). Inst. de Fisica Corpuscular)

    1989-10-02

    We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.).

  12. Conceptual Foundations of Soliton Versus Particle Dualities Toward a Topological Model for Matter

    Science.gov (United States)

    Kouneiher, Joseph

    2016-06-01

    The idea that fermions could be solitons was actually confirmed in theoretical models in 1975 in the case when the space-time is two-dimensional and with the sine-Gordon model. More precisely S. Coleman showed that two different classical models end up describing the same fermions particle, when the quantum theory is constructed. But in one model the fermion is a quantum excitation of the field and in the other model the particle is a soliton. Hence both points of view can be reconciliated.The principal aim in this paper is to exhibit a solutions of topological type for the fermions in the wave zone, where the equations of motion are non-linear field equations, i.e. using a model generalizing sine- Gordon model to four dimensions, and describe the solutions for linear and circular polarized waves. In other words, the paper treat fermions as topological excitations of a bosonic field.

  13. Scattering of Topological Solitons on Barriers and Holes of Deformed Sine-Gordon Models

    CERN Document Server

    Al-Alawi, Jassem H

    2008-01-01

    We study scattering properties of topological solitons in two classes of models, which are generalizations of the Sine-Gordon model and which have recently been proposed by Bazeia et al. These two classes of models depend on an integer parameter n which, when n=2(for the first class) and n=1 (for the second class), reduce to the Sine-Gordon model. We take the soliton solutions of these models (generalizations of the 'kink' solution of the Sine-Gordon model) and consider their scattering on potential holes and barriers. We present our results for n=1,...6. We find that, like in the Sine Gordon models, the scattering on the barrier is very elastic while the scattering on the hole is inelastic and can at times, lead to a reflection. We discuss the dependence of our results on n and find that the critical velocity for the transmission through the hole is lowest for n=3.

  14. Soft Matrix Elements in Non-local Chiral Quark Model

    CERN Document Server

    Kotko, Piotr

    2009-01-01

    Using non-local chiral quark model and currents satisfying Ward-Takahashi identities we analyze Distribution Amplitudes (DA) of photon and pion-to-photon Transition Distribution Amplitudes (TDA) in the low energy regime. Photon DA's are calculated analytically up to twist-4 and reveal several interesting features of photon structure. TDA's calculated in the present model satisfy polynomiality condition. Normalization of vector TDA is fixed by the axial anomaly. We also compute relevant form factors and compare them with existing data. Axial form factor turns out to be much lower then the vector one, what indeed is seen in the experimental data.

  15. Relativistic Chiral Mean Field Model for Finite Nuclei

    OpenAIRE

    Ogawa, Yoko; Toki, Hiroshi; Tamenaga, Setsuo; Haga, Akihiro

    2012-01-01

    We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{pi}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{pi} = 0^{-} ...

  16. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  17. Dynamics of the soliton bag

    International Nuclear Information System (INIS)

    The MIT bag was one of the earliest and most successful models of QCD, imposing confinement and including perturbative gluon interactions. An evolution of the MIT bag came with the introduction of the chiral and cloudy bags, which treat pions as elementary particles. As a model of QCD, the soliton model proposed by Friedberg and Lee is particularly attractive. It is based on a covariant field theory and is sufficiently general so that, for certain limiting cases of the adjustable parameters, it can describe either the MIT or SLAC (string) bags. The confinement mechanism appears as a dynamic field. This allows non-static processes, such as bag oscillations and bag collisions, to be calculated utilizing the well-developed techniques of nuclear many-body theory. The utilization of the model for calculating dynamical processes is discussed. 14 references

  18. Microscopic spectral density in random matrix models for chiral and diquark condensation

    International Nuclear Information System (INIS)

    We examine random matrix models of QCD which are capable of supporting both chiral and diquark condensation. A numerical study of the spectral densities near zero virtuality shows that the introduction of color in the interactions does not alter the one-body results imposed by chiral symmetry. A model with three colors has the spectral density predicted for the chiral ensemble with a Dyson index β=2; a pseudoreal model with two colors exhibits the spectral density of the chiral ensemble with β=1

  19. Quasi-integrability in the modified defocusing non-linear Schr\\"odinger model and dark solitons

    CERN Document Server

    Blas, H

    2015-01-01

    The concept of quasi-integrability has been examined in the context of deformations of the defocusing non-linear Schr\\"odinger model (NLS). Our results show that the quasi-integrability concept, recently discussed in the context of deformations of the sine-Gordon, Bullough-Dodd and focusing NLS models, holds for the modified defocusing NLS model with dark soliton solutions and it exhibits the new feature of an infinite sequence of alternating conserved and asymptotically conserved charges. For the special case of two dark soliton solutions, where the field components are eigenstates of a space-reflection symmetry, the first four and the sequence of even order charges are exactly conserved in the scattering process of the solitons. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. We perform extensive numerical simulations and consider the scattering of dark solitons for the cubic-quintic NLS model with potentia...

  20. Chiral models of low energy QCD

    International Nuclear Information System (INIS)

    Two processes may be distinguished when a hadron propagates in a dense baryonic medium. The polarization of the medium and the change in the quark structure of the hadron. The polarization of the medium is better described in terms of colorless mesons and nucleons while the intrinsic change of the hadron is better described by quark models. It is shown how to couple the two processes. The scaling of effective Lagrangians, is related to changes in the quark constituent masses, based on the QCD scale anomaly. (author) 62 refs

  1. NN Scattering Phase Shifts in a Chiral Constituent Quark Model

    OpenAIRE

    Bartz, D.; Stancu, Fl

    2000-01-01

    We study the nucleon-nucleon interaction within a chiral constituent quark model which reproduces succesfully the baryon spectra. We calculate the 3S1 and 1S0 phase shifts by using the resonating group method. They clearly indicate the presence of a strong repulsive interaction at short distance, due to the spin-flavor symmetry of the quark-quark interaction and of the quark interchange between the two interacting nucleons. A sigma-exchange quark-quark interaction, providing a medium-range at...

  2. One loop quantum fluctuations to the energy of the non-topological soliton in Friedberg-Lee model

    CERN Document Server

    Shu, Song

    2016-01-01

    I have used a practical method to calculate the one-loop quantum correction to the energy of the non-topological soliton in Friedberg-Lee model. The quantum effects which come from the quarks of the Dirac sea scattering with the soliton bag are calculated by a summation of the discrete and continuum energy spectrum of the Dirac equation in the background field of soliton. The phase shift of the continuum spectrum is numerically calculated in an efficient way and all the divergences are removed by the same renormalization procedure.

  3. Dualities in the d=2 asymmetric chiral field sigma models

    International Nuclear Information System (INIS)

    Continuous dual symmetry of equations of asymmetric chiral field (ACF) in d=2 (equations of non-linear σ-models with ambiguous effect) and realization of duality transformations in explicit geometrical language of Cartran form is disclosed. Connection of this symmetry with ACF integrability is clarified. Both simple and supersymmetrical cases are considered. Notions of dual algebra and dual σ-model are introduced, their significance for understanding classical and quantum structure d=2 of ACF models is revealed. It is shown, in particular, that transition to points of infrared ACF stability can be described purely algebraically as constraction of dual algebra bringing about the fact that space-factor of the corresponding dual σ-model becomes plane. Equations of asymmetrical n vector-field model are analyzed from the similar view point. The Cartran form method permits to state that classical dynamics of this model is trivial

  4. Finite-temperature corrections in the dilated chiral quark model

    International Nuclear Information System (INIS)

    We calculate the finite-temperature corrections in the dilated chiral quark model using the effective potential formalism. Assuming that the dilaton limit is applicable at some short length scale, we interpret the results to represent the behavior of hadrons in dense and hot matter. We obtain the scaling law, fπ(T)/fπ = mQ(T)/mQ ≅ mσ(T)/mσwhile we argue, using PCAC, that pion mass does not scale within the temperature range involved in our Lagrangian. It is found that the hadron masses and the pion decay constant drop faster with temperature in the dilated chiral quark model than in the conventional linear sigma model that does not take into account the QCD scale anomaly. We attribute the difference in scaling in heat bath to the effect of baryonic medium on thermal properties of the hadrons. Our finding would imply that the AGS experiments (dense and hot matter) and the RHIC experiments (hot and dilute matter) will ''see'' different hadron properties in the hadronization exit phase

  5. An Effective Chiral Meson Lagrangian at O(p6) from the NJL Model

    International Nuclear Information System (INIS)

    In this work we present a strong chiral meson Lagrangian up to and including O(p6) in the momentum expansion. It is derived from the Nambu-Jona-Lasinio (NJL) model using the heat-kernel method. Identities related to the properties of covariant derivatives of the chiral matrix U as well as field transformations have been used to predict the chiral coefficients of a minimal set of linearly independent terms. 16 refs

  6. Fluctuations and the Phase Transition in a Chiral Model with Polyakov Loops

    OpenAIRE

    Sasaki, C.; Friman, B.; Redlich, K.

    2007-01-01

    We explore the NJL model with Polyakov loops for a system of three colors and two flavors within the mean-field approximation, where both chiral symmetry and confinement are taken into account. We focus on the phase structure of the model and study the chiral and Polyakov loop susceptibilities.

  7. Relativistic Quark Model Calculation of the l1, l2 Coefficients of the Chiral Lagrangian

    OpenAIRE

    Llanes-Estrada, Felipe J.; Bicudo, Pedro

    2002-01-01

    We briefly report on a relativistic quark model scheme to calculate the O(P^4) pion-pion vertex in the planar approximation and in the chiral limit. The calculation is reduced to the solution of simple integral equations (Bethe-Salpeter like) by an effective use of chiral Ward Identities. Specific model computations are provided.

  8. Baryon resonances in a chiral confining model, 1

    CERN Document Server

    Umino, Y

    1998-01-01

    In this two part series a chiral confining model of baryons is used to describe low--lying negative parity resonances $N^*$, $\\Delta^*$, $\\Lambda^*$ and $\\Sigma^*$ in the mean field approximation. A physical baryon in this model consists of interacting valence quarks, mesons and a color and chiral singlet hybrid field coexisting inside a dynamically generated confining region. This first paper presents the quark contribution to the masses and wave functions of negative parity baryons calculated with an effective spin--isospin dependent instanton induced interaction. It does not include meson exchanges between quarks. The three--quark wave functions are used to calculate meson--excited baryon vertex functions to lowest order in meson--quark coupling. When the baryons are on mass--shell each of these vertex functions is a product of a coupling constant and a form factor. As examples, quark contributions to $N^*$ hadronic form factors as well as axial coupling constants are extracted from the vertex functions an...

  9. Quantum Lie algebra solitons

    International Nuclear Information System (INIS)

    We construct a special type of quantum soliton solutions for quantized affine Toda models. The elements of the principal Heisenberg subalgebra in the affinised quantum Lie algebra are found. Their eigenoperators inside the quantized universal enveloping algebra for an affine Lie algebra are constructed to generate quantum soliton solutions

  10. An energy conserving finite-difference model of Maxwell's equations for soliton propagation

    CERN Document Server

    Bachiri, H; Vázquez, L

    1997-01-01

    We present an energy conserving leap-frog finite-difference scheme for the nonlinear Maxwell's equations investigated by Hile and Kath [C.V.Hile and W.L.Kath, J.Opt.Soc.Am.B13, 1135 (96)]. The model describes one-dimensional scalar optical soliton propagation in polarization preserving nonlinear dispersive media. The existence of a discrete analog of the underlying continuous energy conservation law plays a central role in the global accuracy of the scheme and a proof of its generalized nonlinear stability using energy methods is given. Numerical simulations of initial fundamental, second and third-order hyperbolic secant soliton pulses of fixed spatial full width at half peak intensity containing as few as 4 and 8 optical carrier wavelengths, confirm the stability, accuracy and efficiency of the algorithm. The effect of a retarded nonlinear response time of the media modeling Raman scattering is under current investigation in this context.

  11. Mean-field model of interaction between bright vortex solitons in Bose-Einstein condensates

    International Nuclear Information System (INIS)

    Using the explicit numerical solution of the axially symmetric Gross-Pitaevskii equation we study the dynamics of interaction among vortex solitons in a rotating matter-wave bright soliton train in a radially trapped and axially free Bose-Einstein condensate to understand certain features of the experiment by Strecker et al (2002 Nature 417 150). In a soliton train, solitons of opposite phase (phase δ = π) repel and stay apart without changing shape; solitons with π = 0 attract, interact and coalesce, but eventually come out; solitons with a general δ usually repel but interact inelastically by exchanging matter. We study this and suggest future experiments with vortex solitons

  12. Models of few optical cycle solitons beyond the slowly varying envelope approximation

    International Nuclear Information System (INIS)

    In the past years there was a huge interest in experimental and theoretical studies in the area of few-optical-cycle pulses and in the broader fast growing field of the so-called extreme nonlinear optics. This review concentrates on theoretical studies performed in the past decade concerning the description of few optical cycle solitons beyond the slowly varying envelope approximation (SVEA). Here we systematically use the powerful reductive expansion method (alias multiscale analysis) in order to derive simple integrable and nonintegrable evolution models describing both nonlinear wave propagation and interaction of ultrashort (femtosecond) pulses. To this aim we perform the multiple scale analysis on the Maxwell–Bloch equations and the corresponding Schrödinger–von Neumann equation for the density matrix of two-level atoms. We analyze in detail both long-wave and short-wave propagation models. The propagation of ultrashort few-optical-cycle solitons in quadratic and cubic nonlinear media are adequately described by generic integrable and nonintegrable nonlinear evolution equations such as the Korteweg–de Vries equation, the modified Korteweg–de Vries equation, the complex modified Korteweg–de Vries equation, the sine–Gordon equation, the cubic generalized Kadomtsev–Petviashvili equation, and the two-dimensional sine–Gordon equation. Moreover, we consider the propagation of few-cycle optical solitons in both (1+1)- and (2+1)-dimensional physical settings. A generalized modified Korteweg–de Vries equation is introduced in order to describe robust few-optical-cycle dissipative solitons. We investigate in detail the existence and robustness of both linearly polarized and circularly polarized few-cycle solitons, that is, we also take into account the effect of the vectorial nature of the electric field. Some of these results concerning the systematic use of the reductive expansion method beyond the SVEA can be relatively easily extended to few

  13. Explicit chiral symmetry breaking in Gross-Neveu type models

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Christian

    2011-07-25

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well

  14. Chiral Phase Transition at Finite Isospin Density in Linear Sigma Model

    Institute of Scientific and Technical Information of China (English)

    SHU Song; LI Jia-Rong

    2005-01-01

    Using the linear sigma model, we have introduced the pion isospin chemical potential. The chiral phase transition is studied at finite temperatures and finite isospin densities. We have studied the μ - T phase diagram for the chiral phase transition and found the transition cannot happen below a certain low temperature because of the BoseEinstein condensation in this system. Above that temperature, the chiral phase transition is studied by the isotherms of pressure versus density. We indicate that the transition, in the chiral limit, is a first-order transition from a low-density phase to a high-density phase like a gas-liquid phase transition.

  15. Solitons in topologically trivial and nontrivial sectors of the Skyrme model

    International Nuclear Information System (INIS)

    Using of the new predictions of form of solitons in the Skyrme model new series of baryon and meson-like configurations are obtained. Some of the obtained configurations are classically stable objects. It is shown that proposed ansatz is the generalization of the Skyrme-Witten ansatz and k Φ one. The origin and approximate character of the last ansatz was demonstrated. 5 refs.; 3 figs.; 2 tabs

  16. Confinement, solitons and the equivalence between the sine-Gordon and massive Thirring models

    International Nuclear Information System (INIS)

    We consider a two-dimensional integrable and conformally invariant field theory possessing two Dirac spinors and three scalar fields. The interaction couples bilinear terms in the spinors to exponentials of the scalars. Its integrability properties are based on the sl(2) affine Kac-Moody algebra, and it is a simple example of the so-called conformal affine Toda theories coupled to matter fields. We show, using bosonization techniques, that the classical equivalence between a U(1) Noether current and the topological current holds true at the quantum level, and then leads to a bag model like mechanism for the confinement of the spinor fields inside the solitons. By bosonizing the spinors we show that the theory decouples into a sine-Gordon model and free scalars. We construct the two-soliton solutions and show that their interactions lead to the same time delays as those for the sine-Gordon solitons. The model provides a good laboratory to test duality ideas in the context of the equivalence between the sine-Gordon and Thirring theories

  17. Chiral HPLC Separation and Modeling of Four Stereomers of DL-Leucine-DL-Tryptophan Dipeptide on Amylose Chiral Column.

    Science.gov (United States)

    Alajmi, Mohammed F; Hussain, Afzal; Suhail, Mohd; Mukhtar, Sofi Danish; Sahoo, Dibya Ranjan; Asnin, Leonid; Ali, Imran

    2016-09-01

    Chiral high-performance liquid chromatography (HPLC) separation and modeling of four stereomers of DL-leucine-tryptophan DL-dipeptide on AmyCoat-RP column are described. The mobile phase applied was ammonium acetate (10 mM)-methanol-acetonitrile (50:5:45, v/v). The flow rate of the mobile phases was 0.8 mL/min with UV detection at 230 nm. The values of retention factors for LL-, DD-, DL-, and LD- stereomers were 2.25, 3.60, 5.00, and 6.50, respectively. The values of separation and resolution factors were 1.60, 1.39, and 1.30 and 7.76, 8.05, and 7.19. The limits of detection and quantitation were ranging from 1.0-2.3 and 5.6-14.0 μg/mL. The simulation studies established the elution orders and the mechanism of chiral recognition. It was seen that π-π connections and hydrogen bondings were the main forces for enantiomeric resolution. The reported chiral HPLC method may be applied for the enantiomeric separation of DL-leucine-DL-tryptophan in unknown matrices. Chirality 28:642-648, 2016. © 2016 Wiley Periodicals, Inc. PMID:27474783

  18. charmed baryon strong decays in a chiral quark model

    CERN Document Server

    Zhong, Xian-Hui

    2007-01-01

    Charmed baryon strong decays are studied in a chiral quark model. The data for the decays of $\\Lambda^+_c(2593)$, $\\Lambda^+_c(2625)$, $\\Sigma^{++,+,0}_c$ and $\\Sigma^{+,0}_c(2520)$, are accounted for successfully, which allows to fix the pseudoscalar-meson-quark couplings in an effective chiral Lagrangian. Extending this framework to analyze the strong decays of the newly observed charmed baryons, we classify that both $\\Lambda_c(2880)$ and $\\Lambda_c(2940)$ are $D$-wave states in the N=2 shell; $\\Lambda_c(2880)$ could be $|\\Lambda_c ^2 D_{\\lambda\\lambda}{3/2}^+>$ and $\\Lambda_c(2940)$ could be $|\\Lambda_c ^2 D_{\\lambda\\lambda}{5/2}^+>$. Our calculation also suggests that $\\Lambda_c(2765)$ is very likely a $\\rho$-mode $P$-wave excited state in the N=1 shell, and favors a $|\\Lambda_c ^4P_\\rho 1/2^->$ configuration. The $\\Sigma_c(2800)$ favors being a $|\\Sigma_c ^2P_\\lambda{1/2}^->$ state. But its being $|\\Sigma^{++}_c ^4 P_\\lambda{5/2}^->$ cannot be ruled out.

  19. Latent solitons, black strings, black branes, and equations of state in Kaluza-Klein models

    International Nuclear Information System (INIS)

    In Kaluza-Klein models with an arbitrary number of toroidal internal spaces, we investigate soliton solutions which describe the gravitational field of a massive compact object. Each di-dimensional torus has its own scale factor Ci, i=1,...,N, which is characterized by a parameter γi. We single out the physically interesting solution corresponding to a pointlike mass. For the general solution we obtain equations of state in the external and internal spaces. These equations demonstrate that the pointlike mass soliton has dustlike equations of state in all spaces. We also obtain the parametrized post-Newtonian parameters, which give the possibility to obtain the formulas for perihelion shift, deflection of light and time-delay of radar echoes. Additionally, the gravitational experiments lead to a strong restriction on the parameters of the model: τ=i=1Ndiγi=-(2.1±2.3)x10-5. The pointlike mass solution with γ1=...=γN=(1+i=1Ndi)-1 contradicts this restriction. The condition τ=0 satisfies the experimental limitation and defines a new class of solutions which are indistinguishable from general relativity. We call such solutions latent solitons. Black strings and black branes with γi=0 belong to this class. Moreover, the condition of stability of the internal spaces singles out black strings/branes from the latent solitons and leads uniquely to the black string/brane equations of state pi=-ε/2, i=1,...,N, in the internal spaces and to the number of the external dimensions d0=3. The investigation of multidimensional static spherically symmetric perfect fluid with a dustlike equation of state in the external space confirms the above results.

  20. Chiral Dynamics and Dubna-Mainz-Taipei Dynamical Model for Pion-Photoproduction Reaction

    CERN Document Server

    Yang, Shin Nan

    2010-01-01

    We demonstrate that the Dubna-Mainz-Taipei (DMT) meson-exchange dynamical model, which starts from an effective chiral Lagrangian, for pion photoproduction provides an excellent and economic framework to describe both the pi^0 threshold production and the Delta deformation, two features dictated by chiral dynamics.

  1. Non-uniform chiral phase studied within the Polyakov NJL model

    OpenAIRE

    Partyka, Tomasz L.

    2010-01-01

    We consider how does the introduction of a Polyakov loop affects the spatially inhomogeneous quark condensate. The primary result of our work is that the existence of the spatially non-uniform chiral phase is confirmed within the Polyakov NJL model in a chiral limit. These findings are obtained both in a 3d-cutoff and in a Schwinger (proper time) regularization schemes.

  2. Finite-Temperature Phase Structure in the Chiral σ-ω Model with Dilatons

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Bing ZHANG Xiao-Bing; LI Xue-Qian; NING Ping-Zhi

    2000-01-01

    We investigate the finite-temperature phase structure in a scaled chiral model which includes the dilaton (glueball) field. It is shown that hot nuclear matter undergoes a discontinuous transition in the mean field of scalar mesons as well as the Lee-Wick abnormal transition. The corresponding behavior of the gluon condensate during the chiral phase transition is also studied.

  3. Numerical Evidence of Spin-Chirality Decoupling in the Three-Dimensional Heisenberg Spin Glass Model

    Science.gov (United States)

    Viet, Dao Xuan; Kawamura, Hikaru

    2009-01-01

    Ordering of the three-dimensional Heisenberg spin glass with Gaussian coupling is studied by extensive Monte Carlo simulations. The model undergoes successive chiral-glass and spin-glass transitions at nonzero temperatures TCG>TSG>0, exhibiting spin-chirality decoupling.

  4. Exact solutions of the field equations for Charap's chiral invariant model of the pion dynamics

    International Nuclear Information System (INIS)

    The field equations for the chiral invariant model of pion dynamics developed by Charap have been revisited. Two new types of solutions of these equations have been obtained. Each type allows infinite number of solutions. It has also been shown that the chiral invariant field equations admit invariance for a transformation of the dependent variables. (author)

  5. The Interaction of Two Hopf Solitons

    OpenAIRE

    Ward, R. S.

    2000-01-01

    This Letter deals with topological solitons in an O(3) sigma model in three space dimensions (with a Skyrme term to stabilize their size). The solitons are classified topologically by their Hopf number N. The N=2 sector is studied; in particular, for two solitons far apart, there are three ``attractive channels''. Viewing the solitons as dipole pairs enables one to predict the force between them. Relaxing in the attractive channels leads to various static 2-soliton solutions.

  6. The properties of isolated chiral skyrmions in thin magnetic films

    Science.gov (United States)

    Leonov, A. O.; Monchesky, T. L.; Romming, N.; Kubetzka, A.; Bogdanov, A. N.; Wiesendanger, R.

    2016-06-01

    Axisymmetric solitonic states (chiral skyrmions) were first predicted theoretically more than two decades ago. However, until recently they have been observed in a form of skyrmionic condensates (hexagonal lattices and other mesophases). In this paper we report experimental and theoretical investigations of isolated chiral skyrmions discovered in PdFe/Ir(111) bilayers two years ago by Romming et al (2013 Science 341 636). The results of spin-polarized scanning tunneling microscopy analyzed within the continuum and discrete models provide a consistent description of isolated skyrmions in thin layers. The existence region of chiral skyrmions is restricted by strip-out instabilities at low fields and a collapse at high fields. We demonstrate that the same equations describe axisymmetric localized states in all condensed matter systems with broken mirror symmetry, and thus our findings establish basic properties of isolated skyrmions common for chiral liquid crystals, different classes of noncentrosymmetric magnets, ferroelectrics, and multiferroics.

  7. Stable spatial Langmuir solitons as a model of long-lived atmospheric plasma structures

    CERN Document Server

    Dvornikov, Maxim

    2014-01-01

    I study stable spatial Langmuir solitons in plasma based on nonlinear radial oscillations of charged particles. I discuss two situations when a Langmuir soliton can be stable. In the former case the stability of solitons against the collapse is due to electron-electron interactions which result in the nonlocal terms in the nonlinear Schr\\"{o}dinger equation. In the latter situation I derive the new cubic-quintic nonlinear Schr\\"{o}dinger equation with accounts for the interaction of induced dipole moments of diatomic ions with a rapidly oscillating electric field and show that the collapse of Langmuir waves can be also arrested. In both cases I find the numerical solutions of the nonlinear Schr\\"{o}dinger equation and analyze their stability using the Vakhitov-Kolokolov criterion. I discuss the application of my results for the description of long-lived atmospheric plasma structures. I show that, using my model, one can explain the existence of atmospheric plasmoids in the upper ionosphere. It is also demonst...

  8. Nonlinear principle and Skyrme-I model for characteristics of nucleon within Chiral limits

    International Nuclear Information System (INIS)

    A modification of the Skyrme model basing on the nonlinear invariance principle is proposed. In this modified model a sector of hedgehog soliton describes rather well the nucleons. It has a lot of quantitative and quantitative advantages in comparison to the usual Skyrme model and requires new rate between topological and baryon number current. (author). 20 refs., 1 fig., 2 tabs

  9. Chiral magnetic conductivity in an interacting lattice model of parity-breaking Weyl semimetal

    Science.gov (United States)

    Buividovich, P. V.; Puhr, M.; Valgushev, S. N.

    2015-11-01

    We report on the mean-field study of the chiral magnetic effect (CME) in static magnetic fields within a simple model of parity-breaking Weyl semimetal given by the lattice Wilson-Dirac Hamiltonian with constant chiral chemical potential. We consider both the mean-field renormalization of the model parameters and nontrivial corrections to the CME originating from resummed ladder diagrams with arbitrary number of loops. We find that onsite repulsive interactions affect the chiral magnetic conductivity almost exclusively through the enhancement of the renormalized chiral chemical potential. Our results suggest that nontrivial corrections to the chiral magnetic conductivity due to interfermion interactions are not relevant in practice since they only become important when the CME response is strongly suppressed by the large gap in the energy spectrum.

  10. Compactons versus solitons

    Indian Academy of Sciences (India)

    Paulo E G Assis; Andreas Fring

    2010-06-01

    We investigate whether the recently proposed $\\mathcal{PT}$-symmetric extensions of generalized Korteweg–de Vries equations admit genuine soliton solutions besides compacton solitary waves. For models which admit stable compactons having a width which is independent of their amplitude and those which possess unstable compacton solutions the Painlevé test fails, such that no soliton solutions can be found. The Painlevé test is passed for models allowing for compacton solutions whose width is determined by their amplitude. Consequently, these models admit soliton solutions in addition to compactons and are integrable.

  11. Strange and Non-Strange Meson Fluctuations off the Nambu--Jona-Lasinio Soliton

    CERN Document Server

    Weigel, H; Alkofer, R

    1993-01-01

    Mesonic fluctuations off the chiral soliton of the Nambu--Jona-Lasinio model are investigated. The hedgehog configuration is proven to represent a local extremum of the action. The method is applied to flavor SU(3) and the energy eigenvalue of the kaon bound state in the soliton background is evaluated which is the key ingredient for the Callan-Klebanov approach to hyperons. The energy eigenvalue of the corresponding strange-valence-quark is found to be 183MeV higher than the energy eigenvalue of the up-valence-quark when 400MeV is assumed for the up-quark constituent mass.

  12. Scattering of Topological Solitons on Barriers and Holes in Two \\lambda \\phi^4 Models

    CERN Document Server

    Al-Alawi, Jassem H

    2007-01-01

    We present results of our studies of various scattering properties of topological solitons on obstructions in the form of holes and barriers in 1+1 dimensions. Our results are based on two models involving a \\phi^4 potential. The obstructions are characterised by a potential parameter, \\lambda which has a non-zero value in a certain region of space and zero elsewhere. In the first model the potential parameter is included in the potential and in the second model the potential parameter is included in the metric. Our results are based on numerical simulations and analytical considerations.

  13. Scattering of topological solitons on barriers and holes in two {psi}{sup 4} models

    Energy Technology Data Exchange (ETDEWEB)

    Al-Alawi, Jassem H; Zakrzewski, Wojtek J [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom)

    2007-09-14

    We present the results of our studies of various scattering properties of topological solitons on obstructions in the form of holes and barriers in 1+1 dimensions. Our results are based on two models involving a {psi}{sup 4} potential. The obstructions are characterized by a potential parameter, {lambda}, which has a nonzero value in a certain region of space and zero elsewhere. In the first model the potential parameter is included in the potential and in the second model the potential parameter is included in the metric. Our results are based on numerical simulations and analytical considerations.

  14. Scattering of Topological Solitons on Barriers and Holes in Two \\lambda \\phi^4 Models

    OpenAIRE

    Al-Alawi, Jassem H.; Zakrzewski, Wojtek J.

    2007-01-01

    We present results of our studies of various scattering properties of topological solitons on obstructions in the form of holes and barriers in 1+1 dimensions. Our results are based on two models involving a \\phi^4 potential. The obstructions are characterised by a potential parameter, \\lambda which has a non-zero value in a certain region of space and zero elsewhere. In the first model the potential parameter is included in the potential and in the second model the potential parameter is inc...

  15. Scattering of topological solitons on barriers and holes in two ψ4 models

    International Nuclear Information System (INIS)

    We present the results of our studies of various scattering properties of topological solitons on obstructions in the form of holes and barriers in 1+1 dimensions. Our results are based on two models involving a ψ4 potential. The obstructions are characterized by a potential parameter, λ, which has a nonzero value in a certain region of space and zero elsewhere. In the first model the potential parameter is included in the potential and in the second model the potential parameter is included in the metric. Our results are based on numerical simulations and analytical considerations

  16. Supergravity solitons

    International Nuclear Information System (INIS)

    An outline for the construction of an effective theory of interacting solitons in N = 2 supergravity is presented. The solitons are described by their asymptotic properties, carrying translational and supertranslational degrees of freedom. We discuss briefly the classical and the quantized dynamics for the free soliton. The Lagrangian for the motion of a soliton in a curved supergravity background is exhibited and its implications for an effective supercharge interaction are mentioned. (Author)

  17. Route to nonlocality and observation of accessible solitons

    OpenAIRE

    Conti, Claudio; Peccianti, Marco; Assanto, Gaetano

    2003-01-01

    We develop a general theory of spatial solitons in a liquid crystalline medium exhibiting a nonlinearity with an arbitrary degree of effective nonlocality. The model accounts the observability of "accessible solitons" and establishes an important link with parametric solitons.

  18. Painlevé test for integrability for a combination of Yang’s self-dual equations for (2) gauge fields and Charap's equations for chiral invariant model of pion dynamics and a comparative discussion among the three

    Indian Academy of Sciences (India)

    Susanto Chakraborty; Pranab Krishna Chandra

    2007-04-01

    Painlevé test for integrability for the combined equations generated from Yang's self-dual equations for (2) gauge fields and Charap's equations for chiral invariant model of pion dynamics faces some peculiar situations that allow none of the stages (leading order analysis, resonance calculation and checking of the existence of the requisite number of arbitrary functions) to be conclusive. It is also revealed from a comparative study with the previous results that the existence of abnormal behaviour at any of the stated stages may have a correlation with the existence of chaotic property or some other properties that do not correspond to solitonic behaviour.

  19. △△ Dibaryon Structure in Extended Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    DAI Lian-Rong

    2005-01-01

    @@ The structure of △△ dibaryon is studied in the extended chiral SU(3) quark model in which vector meson exchanges are included. The effect of the vector meson fields is very similar to that of the one-gluon exchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model, the resultant mass of the △△ dibaryon is lower than the threshold of the △△ channel but higher than that of the△Nπ channel.

  20. Scattering of topological solitons on barriers and holes of deformed Sine-Gordon models

    Energy Technology Data Exchange (ETDEWEB)

    Al-Alawi, Jassem H; Zakrzewski, Wojtek J [Department of Mathematical Sciences, University of Durham, Durham DH1 3LE (United Kingdom)], E-mail: J.H.Al-Alawi@durham.ac.uk, E-mail: W.J.Zakrzewski@durham.ac.uk

    2008-08-08

    We study various scattering properties of topological solitons in two classes of models, which are the generalizations of the Sine-Gordon model and which have recently been proposed by Bazeia et al. These two classes of models depend on a positive real nonzero parameter n but in this paper we consider the models only for its integer values as when n = 2 (for the first class) and n = 1 (for the second class), the model reduces to the Sine-Gordon one. We take the soliton solutions of these models (generalizations of the 'kink' solution of the Sine-Gordon model) and consider their scattering on potential holes and barriers. We present our results for n = 1, ..., 6. We find that, like in the Sine-Gordon models, the scattering on the barrier is very elastic while the scattering on the hole is inelastic and can, at times, lead to a reflection. We discuss the dependence of our results on n and find that the critical velocity for the transmission through the hole is lowest for n = 3.

  1. Scattering of topological solitons on barriers and holes of deformed Sine-Gordon models

    International Nuclear Information System (INIS)

    We study various scattering properties of topological solitons in two classes of models, which are the generalizations of the Sine-Gordon model and which have recently been proposed by Bazeia et al. These two classes of models depend on a positive real nonzero parameter n but in this paper we consider the models only for its integer values as when n = 2 (for the first class) and n = 1 (for the second class), the model reduces to the Sine-Gordon one. We take the soliton solutions of these models (generalizations of the 'kink' solution of the Sine-Gordon model) and consider their scattering on potential holes and barriers. We present our results for n = 1, ..., 6. We find that, like in the Sine-Gordon models, the scattering on the barrier is very elastic while the scattering on the hole is inelastic and can, at times, lead to a reflection. We discuss the dependence of our results on n and find that the critical velocity for the transmission through the hole is lowest for n = 3

  2. Phase solitons and domain dynamics in an optically injected semiconductor laser

    Science.gov (United States)

    Gustave, F.; Columbo, L.; Tissoni, G.; Brambilla, M.; Prati, F.; Barland, S.

    2016-06-01

    We analyze experimentally and theoretically the spatiotemporal dynamics of a highly multimode semiconductor laser with coherent optical injection. Due to the particular geometry of the device (a 1-m-long ring cavity), the multimode dynamics can be resolved in real time and we observe stable chiral solitons and domain dynamics. The experiment is analyzed in the framework of a set of effective semiconductor Maxwell-Bloch equations. We analyze the stability of stationary solutions and simulate both the complete model and a reduced rate equation model. This allows us to predict domain shrinking and the stability of only one chiral charge that we ascribe to the finite active medium response time.

  3. Phase solitons and domain dynamics in an optically injected semiconductor laser

    CERN Document Server

    Gustave, F; Tissoni, G; Brambilla, M; Prati, F; Barland, S

    2016-01-01

    We analyze experimentally and theoretically the spatio-temporal dynamics of a highly multimode semiconductor laser with coherent optical injection. Due to the particular geometry of the device (a 1~m long ring cavity), the multimode dynamics can be resolved in real time and we observe stable chiral solitons and domain dynamics. The experiment is analyzed in the framework of a set of effective semiconductor Maxwell-Bloch equations. We analyze the stability of stationary solutions and simulate both the complete model and a reduced rate equation model. This allows us to predict domain shrinking and the stability of only one chiral charge that we ascribe to the finite active medium response time.

  4. QCD topological susceptibility from the nonlocal chiral quark model

    CERN Document Server

    Nam, Seung-il

    2016-01-01

    We investigate the QCD topological susceptibility $\\chi_t$ by using the nonlocal chiral quark model (NL$\\chi$QM). This model is based on the liquid instanton QCD-vacuum configuration in which $\\mathrm{SU}(3)$ flavor symmetry is explicitly broken by the current quark mass $(m_{u,d},m_s)\\approx(5,135)$ MeV. To compute $\\chi_t$, the local topological charge density operator $Q_t(x)$ is derived from the effective partition function of NL$\\chi$QM. We take into account the contributions from the leading-order (LO) ones $\\sim\\mathcal{O}(N_c)$ in the $1/N_c$ expansion. We also verify that the analytical expression of $\\chi_t$ in NL$\\chi$QM satisfy the Witten-Veneziano (WV) and the Leutwyler-Smilga (LS) formulae. Once the average instanton size and inter-instanton distance are fixed with $\\bar{\\rho}=1/3$ fm and $\\bar{R}=1$ fm, respectively, all the associated model parameters are all determined self-consistently within the model, including the $\\eta$ and $\\eta'$ weak decay constants. We obtain the results such as $F_{...

  5. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.)

  6. Two-loop effective potentials in general N=2, d=3 chiral superfield model

    International Nuclear Information System (INIS)

    We study local superspace contributions to the low-energy effective action in general chiral three-dimensional superfield model. The effective Kähler and chiral potentials are computed in an explicit form up to the two-loop order. In accordance with the non-renormalization theorem, the ultraviolet divergences appear only in the full superspace while the effective chiral potential receives only finite quantum contributions in the massless case. As an application, the two-loop effective scalar potential is found for the three-dimensional N=2 supersymmetric Wess-Zumino model.

  7. Non-leptonic decays in an extended chiral quark model

    CERN Document Server

    Eeg, J O

    2012-01-01

    We consider the color suppressed (nonfactorizable) amplitude for the decay mode $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $. We treat the $b$-quark in the heavy quark limit and the energetic light ($u,d,s$) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ is suppressed by a factor of order $\\Lambda_{QCD}/m_b$ with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for $\\bar{B_{d}^0} \\rightarrow \\pi^...

  8. Conformal chiral boson models on twisted doubled tori and non-geometric string vacua

    CERN Document Server

    Avramis, Spyros D; Prezas, Nikolaos

    2009-01-01

    We derive and analyze the conditions for quantum conformal and Lorentz invariance of the duality symmetric interacting chiral boson sigma-models, which are conjectured to describe non-geometric string theory backgrounds. The one-loop Weyl and Lorentz anomalies are computed for the general case using the background field method. Subsequently, our results are applied to a class of (on-shell) Lorentz invariant chiral boson models which are based on twisted doubled tori. Our findings are in agreement with those expected from the effective supergravity approach, thereby firmly establishing that the chiral boson models under consideration provide the string worldsheet description of N=4 gauged supergravities with electric gaugings. Furthermore, they demonstrate that twisted doubled tori are indeed the doubled internal geometries underlying a large class of non-geometric string compactifications. For compact gaugings the associated chiral boson models are automatically conformal, a fact that is explained by showing ...

  9. Heisenberg model of the high-energy hadron collision in terms of chiral fields

    CERN Document Server

    Pavlovsky, Oleg V

    2007-01-01

    Properties of chiral Born-Infeld Theory proposed as the model for shock-wave fireball production in the hadron-hadron collisions was studied. The role of the shock-waves in the multi-particle production was discussed.

  10. Helmholtz algebraic solitons

    International Nuclear Information System (INIS)

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  11. Helmholtz algebraic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Christian, J M; McDonald, G S [Joule Physics Laboratory, School of Computing, Science and Engineering, Materials and Physics Research Centre, University of Salford, Salford M5 4WT (United Kingdom); Chamorro-Posada, P, E-mail: j.christian@salford.ac.u [Departamento de Teoria de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI Telecomunicacion, Campus Miguel Delibes s/n, 47011 Valladolid (Spain)

    2010-02-26

    We report, to the best of our knowledge, the first exact analytical algebraic solitons of a generalized cubic-quintic Helmholtz equation. This class of governing equation plays a key role in photonics modelling, allowing a full description of the propagation and interaction of broad scalar beams. New conservation laws are presented, and the recovery of paraxial results is discussed in detail. The stability properties of the new solitons are investigated by combining semi-analytical methods and computer simulations. In particular, new general stability regimes are reported for algebraic bright solitons.

  12. Scattering of periodic solitons

    Energy Technology Data Exchange (ETDEWEB)

    Cova, R.J. [Carleton University, School of Mathematics and Statistics, 1125 Colonel by Drive, Ottawa, Ontario K1S 5B6 (Canada); Zakrzewski, W.J. [University of Durham, Dept. of Mathematical Sciences, Durham DH1 3LE (United Kingdom)]. e-mail: rcova@math.carleton.ca

    2004-07-01

    Through numerical simulations we study N-soliton scattering (N = 3, 4) in the (2 + 1)-dimensional CP{sup 1} model with periodic boundary conditions. Solitons colliding from symmetrical configurations scatter at {pi}/ N, as observed in the usual model with standard boundary conditions. When the initial configurations are not symmetric the angles differ from {pi}/ N. We describe our observed patterns based on a properly formulated geodesic approximation. (Author) 11 refs., 10 figs.

  13. Modelling and measuring the irrational behaviour of agents in financial markets: Discovering the psychological soliton

    Science.gov (United States)

    Dhesi, Gurjeet; Ausloos, Marcel

    2016-07-01

    Following a Geometrical Brownian Motion extension into an Irrational Fractional Brownian Motion model, we re-examine agent behaviour reacting to time dependent news on the log-returns thereby modifying a financial market evolution. We specifically discuss the role of financial news or economic information positive or negative feedback of such irrational (or contrarian) agents upon the price evolution. We observe a kink-like effect reminiscent of soliton behaviour, suggesting how analysts' forecasts errors induce stock prices to adjust accordingly, thereby proposing a measure of the irrational force in a market.

  14. Integrability and Hopf Solitons in Models with Explicitly Broken O(3) Symmetry

    CERN Document Server

    Wereszczynski, A

    2004-01-01

    A wide class of models, built of the three component unit vector field living in the (3+1) Minkowski space-time, which break explicitly global O(3) symmetry are discussed. The symmetry breaking occurs due to the so-called dielectric function multiplying a standard symmetric term. Integrability conditions are found. Moreover, for some particular forms of the Lagrangian exact toroidal solutions with any Hopf index are obtained. It is proved that such symmetry breaking influences the shape of the solitons whereas the energy as well as the Hopf index remain unchanged.

  15. Constructing Soliton and Kink Solutions of PDE Models in Transport and Biology

    Directory of Open Access Journals (Sweden)

    Vsevolod A. Vladimirov

    2006-06-01

    Full Text Available We present a review of our recent works directed towards discovery of a periodic, kink-like and soliton-like travelling wave solutions within the models of transport phenomena and the mathematical biology. Analytical description of these wave patterns is carried out by means of our modification of the direct algebraic balance method. In the case when the analytical description fails, we propose to approximate invariant travelling wave solutions by means of an infinite series of exponential functions. The effectiveness of the method of approximation is demonstrated on a hyperbolic modification of Burgers equation.

  16. Antikaon induced Ξ production from a chiral model at NLO

    Directory of Open Access Journals (Sweden)

    Feijoo A.

    2014-01-01

    Full Text Available We study the meson-baryon interaction in the strangeness S = −1 sector using a chiral unitary approach, paying particular attention to the K̄N → KΞ reaction, especially important for constraining the next-to-leading order chiral terms, and considering also the effect of high spin hyperonic resonances. We also present results for the production of Ξ hyperons in nuclei

  17. An Emergent Universe with Dark Sector Fields in a Chiral Cosmological Model

    OpenAIRE

    Beesham, A.; Chervon, S. V.; S. D. Maharaj; Kubasov, A. S.

    2013-01-01

    We consider the emergent universe scenario supported by a chiral cosmological model with two interacting dark sector fields: phantom and canonical. We investigate the general properties of the evolution of the kinetic and potential energies as well as the development of the equation of state with time. We present three models based on asymptotic solutions and investigate the phantom part of the potential and chiral metric components. The exact solution corresponding to a global emergent unive...

  18. Chiral phase transition in the soft-wall model of AdS/QCD

    Science.gov (United States)

    Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2016-04-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t'Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.

  19. Chiral geometry in multiple chiral doublet bands

    CERN Document Server

    Zhang, Hao

    2015-01-01

    The chiral geometry of the multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters $\\gamma$ in the particle rotor model with $\\pi h_{11/2}\\otimes \

  20. Soliton and Similarity Solutions of Ν = 2, 4 Supersymmetric Equations

    Directory of Open Access Journals (Sweden)

    Laurent Delisle

    2012-08-01

    Full Text Available We produce soliton and similarity solutions of supersymmetric extensions of Burgers, Korteweg–de Vries and modified KdV equations. We give new representations of the τ -functions in Hirota bilinear formalism. Chiral superfields are used to obtain such solutions. We also introduce new solitons called virtual solitons whose nonlinear interactions produce no phase shifts.

  1. Resurgence in $\\eta$-deformed Principal Chiral Models

    CERN Document Server

    Demulder, Saskia; Thompson, Daniel C

    2016-01-01

    We study the $SU(2)$ Principal Chiral Model (PCM) in the presence of an integrable $\\eta$-deformation. We put the theory on $\\mathbb{R}\\times S^1$ with twisted boundary conditions and then reduce the circle to obtain an effective quantum mechanics associated with the Whittaker-Hill equation. Using resurgent analysis we study the large order behaviour of perturbation theory and recover the fracton events responsible for IR renormalons. The fractons are modified from the standard PCM due to the presence of this $\\eta$-deformation but they are still the constituents of uniton-like solutions in the deformed quantum field theory. We also find novel $SL(2,\\mathbb{C})$ saddles, thus strengthening the conjecture that the semi-classical expansion of the path integral gives rise to a resurgent transseries once written as a sum over Lefschetz thimbles living in a complexification of the field space. We conclude by connecting our quantum mechanics to a massive deformation of the $\\mathcal{N}=2~$ $4$-d gauge theory with g...

  2. Partially conserved axial-vector current and model chiral field theories in nuclear physics

    International Nuclear Information System (INIS)

    We comment on the relation between the two standard approaches to chiral symmetry--namely, the current algebra/partially conserved axial-vector current approach and the chiral Lagrangian method--in a manner intended to clarify recent and probable future applications of this symmetry in nuclear physics. Specifically, we show that in explicit chiral field theories the canonical πN scattering amplitude does not have the famed ''Adler zero'' unless partial conservation of axial-vector current holds as an operator equation. This implies that there are a number of familiar chiral models in which the ''Adler self-consistency'' condition does not apply to the canonical pion field. Among the problems of current interest for which our remarks are relevant are the studies of the pion-nucleus optical potential, pion condensation, and the attempts to formulate a model field theory having both reasonable nuclear saturation and good low energy pion phenomenology

  3. Emerging Potentials in Higher-Derivative Gauged Chiral Models Coupled to N=1 Supergravity

    CERN Document Server

    Farakos, Fotis

    2012-01-01

    We present a new method to introduce scalar potentials to gauge-invariant chiral models coupled to supergravity. The theories under consideration contain consistent higher-derivative terms which do not give rise to instabilities and ghost states. The chiral auxiliaries are not propagating and can be integrated out. Their elimination gives rise to emerging potentials even when there is not a superpotential to start with. We present the case of a single chiral multiplet with and without a superpotential and, in the gauged theory, up to two chiral multiplets coupled to supergravity with no superpotential. A general feature of the emergent potential is that it is negative defined leading to anti-de Sitter vacua. In the gauge models, competing D-terms may lift the potential leading to stable and metastable de Sitter and Minkowski vacua as well with spontaneously broken supersymmetry.

  4. Investigations in gauge theories, topological solitons and string theories

    International Nuclear Information System (INIS)

    This is the Final Report on a supported research project on theoretical particle physics entitled ''Investigations in Gauge Theories, Topological Solitons and String Theories.'' The major theme of particle theory pursued has been within the rubric of the standard model, particularly on the interplay between symmetries and dynamics. Thus, the research has been carried out primarily in the context of gauge with or without chiral fermions and in effective chiral lagrangian field theories. The topics studied include the physical implications of abelian and non-abelian anomalies on the spectrum and possible dynamical symmetry breaking in a wide range of theories. A wide range of techniques of group theory, differential geometry and function theory have been applied to probe topological and conformal properties of quantum field theories in two and higher dimensions, the breaking of global chiral symmetries by vector-like gauge theories such as QCD,the phenomenology of a possibly strongly interacting Higgs sector within the minimal standard model, and the relevance of solitonic ideas to non-perturbative phenomena at SSC energies

  5. Alfven solitons in the solar wind

    Science.gov (United States)

    Ovenden, C.; Schwartz, S. J.

    1983-01-01

    A nonlinear Alfven soliton solution of the MHD equations is presented. This solution represents the final state of modulationally unstable Alfven waves. A model of the expected turbulent spectrum due to a collection of such solitons is briefly described.

  6. Three-dimensional homogeneous generalized Ricci solitons

    OpenAIRE

    Calvaruso, Giovanni

    2015-01-01

    We study three-dimensional generalized Ricci solitons, both in Riemannian and Lorentzian settings. We shall determine their homogeneous models, classifying left-invariant generalized Ricci solitons on three-dimensional Lie groups.

  7. Soliton tunneling

    OpenAIRE

    Kälbermann, G.

    1997-01-01

    We present a numerical simulation of the scattering of a topological soliton off finite size attractive impurities, repulsive impurities and a combination of both. The attractive and attractive-repulsive cases show similar features to those found for $\\delta$ function type of impurities. For the repulsive case, corresponding to a finite width barrier, the soliton behaves completely classically. No tunneling occurs for sub-barrier kinetic energies despite the extended nature of the soliton.

  8. The temperature dependence of the chiral condensate in the Schwinger model with Matrix Product States

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Ba nuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics

    2014-12-15

    We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.

  9. Uniqueness of quarks, leptons and exotic fermions in the chiral-color models

    International Nuclear Information System (INIS)

    We study the uniqueness of quarks, leptons and exotic fermions in the chiral-color models of SU(3)CL x SU(2)L x U(1)Y and SU(3)CL x SU(3)CR x SU(2)L x SU(2)R x U(1) based on the cancellations of the three known chiral anomalies in four dimensions. The minimal exotic particles are identified for existing three and four quark-lepton families

  10. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    CERN Document Server

    Gitman, D M

    1996-01-01

    The phase structure of d=3 Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the 1/N-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the gravitational field.

  11. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    OpenAIRE

    Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.

    1996-01-01

    The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...

  12. Coupling of pion condensate, chiral condensate and Polyakov loop in an extended NJL model

    OpenAIRE

    Zhang, Zhao; Liu, Yu-Xin

    2006-01-01

    The Nambu Jona-Lasinio model with a Polyakov loop is extended to finite isospin chemical potential case, which is characterized by simultaneous coupling of pion condensate, chiral condensate and Polyakov loop. The pion condensate, chiral condensate and the Polyakov loop as functions of temperature and isospin chemical potential are investigated by minimizing the thermodynamic potential of the system. The resulting $(T,\\mu_I)$ phase diagram is studied with emphasis on the critical point and Po...

  13. Solutions of the Modified Chiral Model in (2+1) Dimensions

    OpenAIRE

    Ioannidou, Theodora; Zakrzewski, Wojtek

    1998-01-01

    This paper deals with classical solutions of the modified chiral model on $R^{2+1}$. Such solutions are shown to correspond to products of various factor which we call time-dependent unitons. Then the problem of solving the system of second-order partial differential equations for the chiral field is reduced to solving a sequence of systems of first-order partial differential equations for the unitons.

  14. Evolution of spherical domain walls in solitonic symmetron models

    CERN Document Server

    Peyravi, Marzieh; Lobo, Francisco S N

    2016-01-01

    In this work, inspired by the symmetron model, we analyse the evolution of spherical domain walls by considering specific potentials that ensure symmetry breaking and the occurrence of degenerate vacua that are necessary for the formation of domain walls. By considering a simple analytical model of spherical domain wall collapse, in vacuum, it is shown that this model fits the more accurate numerical results very well until full collapse, after which oscillations and scalar radiation take place. Furthermore, we explore the effect of a central non-relativistic matter lump on the evolution of a spherical domain wall and show that the central lump can prevent the full collapse and annihilation of the domain wall bubble, due to the repulsion between the domain wall and matter over-density within the adopted symmetron inspired model.

  15. Plasmon-soliton waves in planar slot waveguides: I. Modeling

    CERN Document Server

    Walasik, Wiktor

    2016-01-01

    We present two complementary models to study stationary nonlinear solutions in one-dimensional plasmonic slot waveguides made of a finite-thickness nonlinear dielectric core surrounded by metal regions. The considered nonlinearity is of focusing Kerr type. In the first model, it is assumed that the nonlinear term depends only on the transverse component of the electric field and that the nonlinear refractive index change is small compared to the linear part of the refractive index. This first model allows us to describe analytically the field profiles in the whole waveguide using Jacobi elliptic special functions. It also provides a closed analytical formula for the nonlinear dispersion relation. In the second model, the full dependency of the Kerr nonlinearity on the electric field components is taken into account and no assumption is required on the amplitude of the nonlinear term. The disadvantage of this approach is that the field profiles must be computed numerically. Nevertheless analytical constraints ...

  16. Role of instantons in a chiral confining model

    International Nuclear Information System (INIS)

    In this paper we describe the role of instantons in a model of the nucleon called the chiral confining model (CCM). The effect of instantons is included through the 't Hooft interaction. In general, confining models tend to give for the product of nucleon mass and quark rms radius, MN left-angle r2 right-angle 1/2, values in the range 6--8, while the experimental value is 3.48. In the CCM, in principle, the gluons have been integrated out in favor of mesons. Hence the N-Δ mass splitting must be understood in terms of the spin-isospin dependent forces generated by pion exchange. Unfortunately, one-pion exchange contributes only about 50 MeV or less to the N-Δ mass splitting. The 't Hooft interaction is capable of resolving both these problems. The passage from QCD to the CCM modifies the strength of the 't Hooft interaction and, at present, we do not know what it is. We fix it by fitting MN-MΔ. With the strength so fixed we obtain values of MN left-angle r2 right-angle 1/2 in the range 4.4--5.1. A simple estimate of the correction for the motion of the center of mass of the nucleon, always present in any mean field calculation, reduces the value to 3.8--4.4. One hopes that the remaining discrepancy will be largely resolved when the mean-field approximation is improved by including quark-quark correlations

  17. Soliton wave model for simulating the slug formation in vertical-to-horizontal partially blocked pipes

    International Nuclear Information System (INIS)

    velocity and the slug predominant frequency were obtained from the void fraction signals. The waves were filmed using a digital video camera and the frame images were used to extract their amplitudes. Even though, for co-current flows, the formation of slugs has been explained in terms of the Kelvin-Helmholtz instability criterion, we did not observe that the slugging phenomena were triggered by this type of instability. Thus, the objective of this paper is to provide a model that explain the formation of slugs in a CCF. The model is based on the Boussinesq nonlinear system of equations that are discretized by using leap-frog scheme and solved numerically. The results have been used to obtain the slug frequency and propagation velocity. We have calculated the slug frequency from the lag time between the instant a train of solitons are formed in the horizontal leg and the instant that two trains of solitons collide with each other to form a slug. The slug propagation velocity has been estimated by using a control volume approach, the average horizontal velocity given by the model and the velocity of gravitational waves. The predictions of the model were compared with the slug data; in general, a good agreement between the predictions and the data was found. (authors)

  18. Non-Abelian sine-Gordon solitons

    Directory of Open Access Journals (Sweden)

    Muneto Nitta

    2015-06-01

    Full Text Available We point out that non-Abelian sine-Gordon solitons stably exist in the U(N chiral Lagrangian. They also exist in a U(N gauge theory with two N by N complex scalar fields coupled to each other. One non-Abelian sine-Gordon soliton can terminate on one non-Abelian global vortex. They are relevant in chiral Lagrangian of QCD or in color-flavor locked phase of high density QCD, where the anomaly is suppressed at asymptotically high temperature or density, respectively.

  19. Integrable string models with constant torsion in terms of chiral invariants of SU(n), SO(n), SP(n) groups

    CERN Document Server

    Gershun, V D

    2009-01-01

    We used the invariant local chiral currents of principal chiral models for SU(n), SO(n), SP(n) groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians.

  20. Solitons in cell membranes

    Science.gov (United States)

    Das, Pradip; Schwarz, W. H.

    1995-04-01

    Using a two-dimensional smectic liquid crystal model, we have shown the plausibility of electrical solitary wave propagation along a bimolecular leaflet such as the cell membrane of a nerve axon which consists of chiral, lipid building blocks. Our model is a head-to-tail correlated ferroelectric, chiral Sm-C* liquid crystal, which is a unique class of substances that combines the electric polarization and anisotropy of ferroelectric crystals with the hydrodynamic properties of liquids. Polar Sm-A models can also be used with the same results. In addition to the usual transverse ferroelectricity, characteristic of the Sm-C* liquid crystal, the head-to-tail correlation ensures a longitudinal ferroelectricity component. The electric polarization due to the latter can couple to the transmembrane electric field resulting from the ionic imbalance between the two sides of the membrane-a mechanism detailed in the so-called Hodgkin-Huxley set of partial differential equations for the propagation of the action potential. We obtain a Landau-de Gennes-like free energy, which is the sum of elastic, fluctuation, and polarization terms, together with a ferroelectric term showing a direct coupling between the electric field and the mechanical deformation variable. Minimizing and equating to a viscous damping term leads to an equation similar to one equation of the Fitzhugh-Nagumo coupled set of partial differential equations, which is a simplified version of the Hodgkin-Huxley equations. The other equation of the set resembles an equation derived from the Nernst-Planck equation, which describes transmembrane ion transport and hence provides a mechanism for transmembrane potential variation. A more complete calculation of the velocity of the asymptotic wave form shows a lower wave speed than the estimate of Nagumo et al. The piezoelectric properties of the phase compete with its curvature elasticity to produce the soliton lattice of the cell membrane, which consists of juxtaposed

  1. Collective coordinate approximation to the scattering of solitons in modified NLS and sine-Gordon models

    CERN Document Server

    Zakrzewski, Wojtek

    2014-01-01

    We use a collective coordinate approximation to model the scattering of two solitons in modified nonlinear Schr\\"odinger and sine-Gordon systems. We find that the anomalies of the conservation laws of the charges as calculated using the collective coordinate approximation demonstrate the same dependence on the symmetry of the field configuration as that previously found analytically and using a full numerical simulation. This suggests that the collective coordinate approximation is a suitable method to investigate quasi-integrability in perturbed integrable models. We also discuss the general accuracy of this approximation by comparing our results with those of the full numerical simulations and find that the approximation is often remarkably accurate though less so when the models are a long way from the integrable case.

  2. Interaction dynamics and nontopological soliton stability in the essentially nonlinear model of a complex scalar field

    International Nuclear Information System (INIS)

    Stability and interaction dynamics of ''charged'' solitons in the framework of the relativistically invariant Klein-Gordon equation with the self-action of the ''current-current'' form are studied in numerical experiments. The particle-like solution stability region is found. The computations reveal a rich spectrum of interactions versus the particle-like soliton charge signs and velocities: weak inelastic interaction, inelastic interaction and production of an additional soliton

  3. Influence of the Polyakov loop on the chiral phase transition in the two flavor chiral quark model

    Science.gov (United States)

    Markó, G.; Szép, Zs.

    2010-09-01

    The SU(2)L×SU(2)R chiral quark model consisting of the (σ,π→) meson multiplet and the constituent quarks propagating on the homogeneous background of a temporal gauge field is solved at finite temperature and quark baryon chemical potential μq using an expansion in the number of flavors Nf, both in the chiral limit and for the physical value of the pion mass. Keeping the fermion propagator at its tree level, several approximations to the pion propagator are investigated. These approximations correspond to different partial resummations of the perturbative series. Comparing their solution with a diagrammatically formulated resummation relying on a strict large-Nf expansion of the perturbative series, one concludes that only when the local part of the approximated pion propagator resums infinitely many orders in 1/Nf of fermionic contributions a sufficiently rapid crossover transition at μq=0 is achieved allowing for the existence of a tricritical point or a critical end point in the μq-T phase diagram. The renormalization and the possibility of determining the counterterms in the resummation provided by a strict large-Nf expansion are investigated.

  4. An explicit construction of the quantum group in chiral WZW-models

    International Nuclear Information System (INIS)

    It is shown how a chiral Wess-Zumino-Witten theory with globally defined vertex operators and a one-to-one correspondence between fields and states can be constructed. The Hilbert space of this theory is the direct sum of tensor products of representations of the chiral algebra and finite dimensional internal parameter spaces. On this enlarged space there exists a natural action of Drinfeld's quasi-quantum group Ag,t, which commutes with the action of the chiral algebra and plays the role of an internal symmetry algebra. The R matrix describes the braiding of the chiral vertex operators and the coassociator Φ gives rise to a modification of the duality property. For generic q the quasi-quantum group is isomorphic to the coassociative quantum group Uq(g) and thus the duality property of the chiral theory can be restored. This construction has to be modified for the physically relevant case of integer level. The quantum group has to be replaced by the corresponding truncated quasi-quantum group, which is not coassociative because of the truncation. This exhibits the truncated quantum group as the internal symmetry algebra of the chiral WZW model, which therefore has only a modified duality property. The case of g = su(2) is worked out in detail. (orig.)

  5. Spinning $\\sigma$-model solitons in $2+1$ Anti-de Sitter space

    CERN Document Server

    Harms, B

    2016-01-01

    We obtain spinning topological solitons solutions of the nonlinear $\\sigma$-model in $2+1 $ dimensional Anti-de Sitter space using numerical methods. Two types of solutions, which we denote by $i)$ and $ii)$, are found. The $\\sigma$-model fields are everywhere well defined for both types of solutions, but they differ in their space-time domains. The space-time domain for the type $ii)$ solutions is singularity free. On the other hand, any time slice of the space-time for the type $i)$ solution has a causal singularity, despite the fact that all scalars constructed from the curvature tensor are bounded functions. No evidence of a horizon is seen for any of the solutions, and therefore the type $i)$ solutions have naked singularities.

  6. Quasi-integrability in the modified defocusing non-linear Schrödinger model and dark solitons

    Science.gov (United States)

    Blas, H.; Zambrano, M.

    2016-03-01

    The concept of quasi-integrability has been examined in the context of deformations of the defocusing non-linear Schrödinger model (NLS). Our results show that the quasi-integrability concept, recently discussed in the context of deformations of the sine-Gordon, Bullough-Dodd and focusing NLS models, holds for the modified defocusing NLS model with dark soliton solutions and it exhibits the new feature of an infinite sequence of alternating conserved and asymptotically conserved charges. For the special case of two dark soliton solutions, where the field components are eigenstates of a space-reflection symmetry, the first four and the sequence of even order charges are exactly conserved in the scattering process of the solitons. Such results are obtained through analytical and numerical methods, and employ adaptations of algebraic techniques used in integrable field theories. We perform extensive numerical simulations and consider the scattering of dark solitons for the cubic-quintic NLS model with potential V=η {I}^2-in /6{I}^3 and the saturable type potential satisfying [InlineEquation not available: see fulltext.], with a deformation parameter ɛ ∈ [InlineMediaObject not available: see fulltext.] and I = | ψ|2. The issue of the renormalization of the charges and anomalies, and their (quasi)conservation laws are properly addressed. The saturable NLS supports elastic scattering of two soliton solutions for a wide range of values of { η, ɛ, q}. Our results may find potential applications in several areas of non-linear science, such as the Bose-Einstein condensation.

  7. Geometric solitons of Hamiltonian flows on manifolds

    International Nuclear Information System (INIS)

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution

  8. Geometric solitons of Hamiltonian flows on manifolds

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chong, E-mail: songchong@xmu.edu.cn [School of Mathematical Sciences, Xiamen University, Xiamen 361005 (China); Sun, Xiaowei, E-mail: sunxw@cufe.edu.cn [School of Applied Mathematics, Central University of Finance and Economics, Beijing 100081 (China); Wang, Youde, E-mail: wyd@math.ac.cn [Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190 (China)

    2013-12-15

    It is well-known that the LIE (Locally Induction Equation) admit soliton-type solutions and same soliton solutions arise from different and apparently irrelevant physical models. By comparing the solitons of LIE and Killing magnetic geodesics, we observe that these solitons are essentially decided by two families of isometries of the domain and the target space, respectively. With this insight, we propose the new concept of geometric solitons of Hamiltonian flows on manifolds, such as geometric Schrödinger flows and KdV flows for maps. Moreover, we give several examples of geometric solitons of the Schrödinger flow and geometric KdV flow, including magnetic curves as geometric Schrödinger solitons and explicit geometric KdV solitons on surfaces of revolution.

  9. Kerr-Newman electron as spinning soliton

    CERN Document Server

    Burinskii, Alexander

    2014-01-01

    Measurable parameters of the electron indicate that its background should be described by the Kerr-Newman (KN) solution. Spin/mass ratio of the electron is extreme large, and the black hole horizons disappear, opening a topological defect of spacetime -- the Kerr singular ring of the Compton size, which may be interpreted as a closed fundamental string to the low energy string theory. The singular and twosheeted structure of the corresponding Kerr space has to be regularized, and we consider the old problem of regular source of the KN solution. As a development of the earlier Keres-Israel-Hamity-L\\'opez model, we describe the model of smooth and regular source forming a gravitating and relativistically rotating soliton based on the chiral field model and the Higgs mechanism of broken symmetry. The model reveals some new remarkable properties: 1) the soliton forms a relativistically rotating bubble of the Compton radius, which is filled by the oscillating Higgs field in pseudo-vacuum state, 2) boundary of the ...

  10. Some Aspects of Optical Spatial Solitons in Photorefractive Crystals

    OpenAIRE

    Konar, S.; Biswas, Anjan

    2012-01-01

    We have reviewed recent developments of some aspects of optical spatial solitons in photorefractive media. Underlying principles governing the dynamics of photorefractive nonlinearity have been discussed using band transport model. Nonlinear dynamical equations for propagating solitons have been derived considering single as well as two-photon photorefractive processes. Fundamental properties of three types of solitons, particularly, screening, photovoltaic and screening photovoltaic solitons...

  11. Non-chiral fusion rules, structure constants of $D_{m}$ minimal models

    CERN Document Server

    Rida, A

    1999-01-01

    We present a technique to construct, for $D_{m}$ unitary minimal models, the non-chiral fusion rules which determines the operator content of the operator product algebra. Using these rules we solve the bootstrap equations and therefore determine the structure constants of these models. Through this approach we emphasize the role played by some discrete symmetries in the classification of minimal models.

  12. A new exactly solvable spatially one-dimensional quantum superradiance fermi-medium model and properties of its quantum solitonic states

    Directory of Open Access Journals (Sweden)

    D. Blackmore

    2013-06-01

    Full Text Available A new exactly solvable spatially one-dimensional quantum superradiance model describing a charged fermionic medium interacting with external electromagnetic field is proposed. The infinite hierarchy of quantuum conservation laws and many-particle Bethe eigenstates that model quantum solitonic impulse structures are constructed. The Hamilton operator renormalization procedure subject to a physically stable vacuum is described, the quantum excitations and quantum solitons, related with the thermodynamical equilibrity of the model, are discussed.

  13. Non-linear sigma models via the chiral de Rham complex

    CERN Document Server

    Ekstrand, Joel; Kallen, Johan; Zabzine, Maxim

    2009-01-01

    We propose a physical interpretation of the chiral de Rham complex as a formal Hamiltonian quantization of the supersymmetric non-linear sigma model. We show that the chiral de Rham complex on a Calabi-Yau manifold carries all information about the classical dynamics of the sigma model. Physically, this provides an operator realization of the non-linear sigma model. Mathematically, the idea suggests the use of Hamiltonian flow equations within the vertex algebra formalism with the possibility to incorporate both left and right moving sectors within one mathematical framework.

  14. sup 3 P sub 0 study of meson decays in a chiral quark model

    CERN Document Server

    Bonnaz, R; Silvestre-Brac, B; Fernández, F; Valcarce, A

    2001-01-01

    The strong decays of a meson into two mesons are studied in the framework of the sup 3 P sub 0 model. The meson wave functions are determined by means of a realistic chiral quark model constructed in the baryon sector and comparison is made with a traditional potential of 'Coulomb + linear' type. Two different forms for the creation vertex are analyzed. A momentum dependent vertex is proved to be definitively superior. The chiral quark model provides an overall good description of all known transitions and gives results of roughly the same quality as those obtained from phenomenological quark-antiquark potentials.

  15. Vertex operator representation of the soliton tau functions in the An(1) Toda models by dressing transformations

    International Nuclear Information System (INIS)

    Affine Toda theories based on simple Lie algebras G are known to posses soliton solutions. Toda solitons has been found by Olive, Turok and Underwood within the group-theoretical approach to the integrable field equations. Single solitons are created by exponentials of special elements of the underlying affine Lie algebra which diagonalize the adjoint action of the principal Heisenberg subalgebra. When G is simply laced and level one representations are considered, the generators of the affine Lie algebra are expressed in terms of the principal Heisenberg oscillators. This representation is known as vertex operator construction. It plays a crucial role in the string theory as well as in the conformal field theory. Alternatively, solitons can be generated from the vacuum by dressing transformations. The problem to relate dressing symmetry to the vertex operator representation of the tau functions for the sine-Gordon model was previously considered by Babelon and Bernard. In the present paper, we extend this relation for arbitrary A(1)n Toda field theory. (author)

  16. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  17. Chirality and Circular Polarization in Models of Inflation

    CERN Document Server

    Alexander, Stephon; Sims, Robert

    2016-01-01

    We investigate the possibility that a chiral asymmetry during inflation can manifest as net circular polarization in photons. Using an example known to produce a helicity imbalance in fermions, we show that superhorizon photon modes produced during inflation acquire net circular polarization. Modes that reenter the horizon around last scattering can thermalize into the Cosmic Microwave Background while retaining a portion of their net circular polarization. We also consider the possibility of direct detection of the circular polarization in the CMB.

  18. Theory of Multidimensional Solitons

    OpenAIRE

    Carr, L. D.; Brand, Joachim

    2007-01-01

    We review a number of topics germane to higher-dimensional solitons in Bose-Einstein condensates. For dark solitons, we discuss dark band and planar solitons; ring dark solitons and spherical shell solitons; solitary waves in restricted geometries; vortex rings and rarefaction pulses; and multi-component Bose-Einstein condensates. For bright solitons, we discuss instability, stability, and metastability; bright soliton engineering, including pulsed atom lasers; solitons in a thermal bath; sol...

  19. Formulation and quantization of a generalized model related to the chiral Schwinger model

    Science.gov (United States)

    Bracken, Paul

    2009-07-01

    A generalized theory which describes fermions interacting with a gauge field is investigated. In 1 + 1 dimensions such a model is equivalent to a theory in which a boson field appears in the Lagrangian density rather than a fermion field. In this form, the Lagrangian density can be diagonalized and then quantized in terms of the transformed fields. The case of the chiral Schwinger model can be obtained from the general model and the physics with respect to the operator form is discussed. It is shown how the theory can be made nonanomalous by means of a Wess-Zumino field.

  20. Chiral Phase Transition in the Soft-Wall Model of AdS/QCD

    CERN Document Server

    Chelabi, Kaddour; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2015-01-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t'Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realize...

  1. 1/N/sup 2/ expansion of the mean field for lattice chiral and gauge models

    Energy Technology Data Exchange (ETDEWEB)

    Brihaye, Y.; Taormina, A.

    1985-08-21

    For lattice chiral and gauge models the authors develop an /sup 1//N/sup 2/ expansion of the mean-field approximation. Special attention is paid to the free energy for which the effect of fluctuations around the mean-field solution is presented as an /sup 1//N/sup 2/ expansion. The differences between U(N) and SU(N) are pointed out. Finally, for the chiral model the mean-field saddle-point technique is applied to compute the two-point correlation function. (author).

  2. Unified dark matter and dark energy description in a chiral cosmological model

    OpenAIRE

    Abbyazov, Renat R.; Chervon, Sergey V.

    2014-01-01

    We show the way of dark matter and dark energy presentation via ansatzs on the kinetic energies of the fields in the two-component chiral cosmological model. To connect a kinetic interaction of dark matter and dark energy with observational data the reconstruction procedure for the chiral metric component $h_{22}$ and the potential of (self)interaction $V$ has been developed. The reconstruction of $h_{22}$ and $V$ for the early and later inflation have been performed. The proposed model is co...

  3. Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa Model

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)

    2010-02-15

    We establish the cutoff-dependent upper Higgs boson mass bound by means of direct lattice computations in the framework of a chirally invariant lattice Higgs-Yukawa model emulating the same chiral Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. As expected from the triviality picture of the Higgs sector, we observe the upper mass bound to decrease with rising cutoff parameter {lambda}. Moreover, the strength of the fermionic contribution to the upper mass bound is explored by comparing to the corresponding analysis in the pure {phi}{sup 4}-theory. (orig.)

  4. SO(10) x SU(4) chiral preon model satisfying complementarity principle

    International Nuclear Information System (INIS)

    The authors extended the MAC principle to the case for semisimple metacolor gauge group and constructed an SO(10) x SU(4) chiral preon model which satisfies the complementarity principle. This model had a unique solution and thus predicted 4 generations of quarks and leptons without exotics. The generation gauge group was intruduced and the breaking of mass degeneracy among different generations was investigated

  5. Confinement and dynamical chiral symmetry breaking in a non-perturbative renormalizable quark model

    Science.gov (United States)

    Dudal, D.; Guimaraes, M. S.; Palhares, L. F.; Sorella, S. P.

    2016-02-01

    Inspired by the construction of the Gribov-Zwanziger action in the Landau gauge, we introduce a quark model exhibiting both confinement and chiral symmetry aspects. An important feature is the incorporation of spontaneous chiral symmetry breaking in a renormalizable fashion. The quark propagator in the condensed vacuum turns out to be of a confining type. Besides a real pole, it exhibits complex conjugate poles. The resulting spectral form is explicitly shown to violate positivity, indicative of its unphysical character. Moreover, the ensuing quark mass function fits well to existing lattice data. To further validate the physical nature of the model, we identify a massless pseudoscalar (i.e. a pion) in the chiral limit and present estimates for the ρ meson mass and decay constant.

  6. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  7. Soliton-soliton effective interaction

    International Nuclear Information System (INIS)

    A scheme of semi-phenomenological quantization is proposed for the collision process of two equal size envelopes-solitons provided by nonlinear Schroedinger equation. The time advance due to two envelopes-solitons collision was determined. Considering the solitons as puntual particles and using the description of classical mechanics, the effective envelope soliton-envelope soliton attractive potential, denominated modified Poschl-Teller potential. The obtainment of this potential was possible using the information in from of system memory, done by an analytical expression of time delay. Such system was quantized using this effective potential in Schroeding equation. The Scol matrix of two punctual bodies was determined, and it is shown that, in the limit of 122 /mN4 it reproduces the exact S2N matrix obtained from soliton packet wich incurs on another soliton packet. Every ones have the same mass, interacts by contact force between two bodies. These packets have only one bound state, i e, do not have excited states. It was verified that, using the Scol matrix, the binding energy of ground state of the system can be obtained, which is coincident with 2N particles in the 1/N approximation. In this scheme infinite spurious bound states are found (M.C.K.)

  8. Competition and duality correspondence between chiral and superconducting channels in (2+1)-dimensional four-fermion models with fermion number and chiral chemical potentials

    CERN Document Server

    Ebert, D; Klimenko, K G; Zhukovsky, V C

    2016-01-01

    In this paper the duality correspondence between fermion-antifermion and difermion interaction channels is established in two (2+1)-dimensional Gross-Neveu type models with a fermion number chemical potential $\\mu$ and a chiral chemical potential $\\mu_5$. The role and influence of this property on the phase structure of the models are investigated. In particular, it is shown that the chemical potential $\\mu_5$ promotes the appearance of dynamical chiral symmetry breaking, whereas the chemical potential $\\mu$ contributes to the emergence of superconductivity.

  9. Supersonic Vibron Solitons and Their Possible Existence in Polypeptides

    OpenAIRE

    Takeno, Shozo

    1999-01-01

    Nonlinear interactions of vibrons with lattice solitons due to the soft cubic nonlinearity in a quasi-one-dimensional lattice yield supersonic vibron solitons. Their binding energy is larger than those of the conventional Davydov solitons and vibron solitons, and their propagation velocity is uniquely determined in contrast to the latter two. Examination of parameters in the model Hamiltonian for polypeptides leads to the result that the supersonic vibron solitons obtained here are more likel...

  10. -Soliton Solutions of the Nonisospectral Generalized Sawada-Kotera Equation

    OpenAIRE

    2014-01-01

    The soliton interaction is investigated based on solving the nonisospectral generalized Sawada-Kotera (GSK) equation. By using Hirota method, the analytic one-, two-, three-, and N-soliton solutions of this model are obtained. According to those solutions, the relevant properties and features of line-soliton and bright-soliton are illustrated. The results of this paper will be useful to the study of soliton resonance in the inhomogeneous media.

  11. Efficient modeling of chiral media using SCN-TLM method

    Directory of Open Access Journals (Sweden)

    Yaich M.I.

    2004-01-01

    Full Text Available An efficient approach allowing to include linear bi-isotropic chiral materials in time-domain transmission line matrix (TLM calculations by employing recursive evaluation of the convolution of the electric and magnetic fields and susceptibility functions is presented. The new technique consists to add both voltage and current sources in supplementary stubs of the symmetrical condensed node (SCN of the TLM method. In this article, the details and the complete description of this approach are given. A comparison of the obtained numerical results with those of the literature reflects its validity and efficiency.

  12. Soliton driven angiogenesis

    Science.gov (United States)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  13. Scattering of periodic solitons

    CERN Document Server

    Cova, R J

    2003-01-01

    With the help of numerical simulations we study N-soliton scattering (N=3,4) in the (2+1)-dimensional CP^1 model with periodic boundary conditions. When the solitons are scattered from symmetrical configurations the scattering angles observed agree with the earlier \\pi/N predictions based on the model on R_2 with standard boundary conditions. When the boundary conditions are not symmetric the angles are different from \\pi/N. We present an explanation of our observed patterns based on a properly formulated geodesic approximation.

  14. A New Model of Holographic QCD and Chiral Condensate in Dense Matter

    CERN Document Server

    Seki, Shigenori

    2013-01-01

    We consider the model of holographic QCD with asymptotic freedom and gluon condensation in its vacuum. It consists of the color D4-branes and D0-branes as a background and the flavor D8-branes as a probe. By taking a specific field theory limit, the effective coupling decreases to vanish in UV region. We then introduce the uniformly distributed baryons in terms of the baryon vertices and study the density dependence of chiral condensate, which is evaluated using the worldsheet instanton method. In the confined phase, the chiral condensate as a function of density monotonically decreases in high baryon density. Such behavior is in agreement with the expectation, while in extremely low density it increases. We attribute this anomaly to the incorrect approximation of uniformity in very low density. In the deconfined phase the chiral condensate monotonically decreases in the whole region of density.

  15. Chiral Random Matrix Model at Finite Chemical Potential: Characteristic Determinant and Edge Universality

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2016-01-01

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  16. QQqq Four-Quark Bound States in Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; ZHANG Hai-Xia; ZHANG Zong-Ye

    2008-01-01

    The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JP=1+, I=0 and for the ccnn (JP=1+, I=0) configuration, which is not bound but slightly above the D*D* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the chiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.

  17. Chiral random matrix model at finite chemical potential: Characteristic determinant and edge universality

    Science.gov (United States)

    Liu, Yizhuang; Nowak, Maciej A.; Zahed, Ismail

    2016-08-01

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  18. Surface second harmonic generation of chiral molecules using three-coupled-oscillator model

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Ou; Li Chun-Fei; Li Jun-Qing

    2006-01-01

    Based on the three-coupled-oscillator molecular model we proposed, the relation between the second-order susceptibilities of a chiral film and the molecular hyperpolarizabilities is given. The effect of microscopic parameters on the second-order susceptibilities is simulated numerically and the difference between the efficiencies of s-polarized second-harmonic fields induced by the left- and the right-handed circularly-polarized fundamental beams is discussed. The theoretical basis for studying second-order nonlinear optical properties of the chiral molecular media with a tripod-like structure is provided in this paper.

  19. Random matrix theory and higher genus integrability: the quantum chiral Potts model

    International Nuclear Information System (INIS)

    We perform a random matrix theory (RMT) analysis of the quantum four-state chiral Potts chain for different sizes of the chain up to size L 8. Our analysis gives clear evidence of a Gaussian orthogonal ensemble (GOE) statistics, suggesting the existence of a generalized time-reversal invariance. Furthermore, a change from the (generic) GOE distribution to a Poisson distribution occurs when the integrability conditions are met. The chiral Potts model is known to correspond to a (star-triangle) integrability associated with curves of genus higher than zero or one. Therefore, the RMT analysis can also be seen as a detector of 'higher genus integrability'. (author)

  20. Pion Form Factor in Chiral Limit of Hard-Wall AdS/QCD Model

    Energy Technology Data Exchange (ETDEWEB)

    Anatoly Radyushkin; Hovhannes Grigoryan

    2007-12-01

    We develop a formalism to calculate form factor and charge density distribution of pion in the chiral limit using the holographic dual model of QCD with hard-wall cutoff. We introduce two conjugate pion wave functions and present analytic expressions for these functions and for the pion form factor. They allow to relate such observables as the pion decay constant and the pion charge electric radius to the values of chiral condensate and hard-wall cutoff scale. The evolution of the pion form factor to large values of the momentum transfer is discussed, and results are compared to existing experimental data.

  1. Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model

    OpenAIRE

    Rebhan, Anton; Schmitt, Andreas; Stricker, Stefan A.

    2009-01-01

    In the chiral magnetic effect an imbalance in the number of left- and right-handed quarks gives rise to an electromagnetic current parallel to the magnetic field produced in noncentral heavy-ion collisions. The chiral imbalance may be induced by topologically nontrivial gluon configurations via the QCD axial anomaly, while the resulting electromagnetic current itself is a consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain limit is dual to large-N_c QCD, we discuss...

  2. NΩ and ΔΩ dibaryons in a SU(3) chiral quark model

    International Nuclear Information System (INIS)

    The binding energy of the six-quark system with strangeness s=-3 is investigated under the chiral SU(3) constituent quark model in the framework of RGM. The calculations of the single NΩ channel with spin S=2 and the single ΔΩ channel with spin S=3 are performed. The results show that both systems could be dibaryons and the interaction induced by the chiral field plays a very important role on forming bound states in the systems considered. The phase shifts and scattering lengths in corresponding channels are also given. (orig.)

  3. Quantum solitons

    International Nuclear Information System (INIS)

    Two of the most remarkable properties of light - squeezing and solitons - are being combined in a new generation of experiments that could revolutionize optics and communications. One area of application concerns the transmission and processing of classical (binary) information, in which the presence or absence of a soliton in a time-window corresponds to a ''1'' or ''0'', as in traditional optical-fibre communications. However, since solitons occur at fixed power levels, we do not have the luxury of being able to crank up the input power to improve the signal-to-noise ratio at the receiving end. Nevertheless, the exploitation of quantum effects such as squeezing could help to reduce noise and improve fidelity. In long-distance communications, where the signal is amplified every 50-100 kilometres or so, the soliton pulse is strongest just after the amplifier. Luckily this is where the bulk of the nonlinear interaction needed to maintain the soliton shape occurs. However, the pulse gets weaker as it propagates along the fibre, so the nonlinear interaction also becomes weaker and weaker. This means that dispersive effects become dominant until the next stage of amplification, where the nonlinearity takes over again. One problem is that quantum fluctuations in the amplifiers lead to random jumps in the central wavelength of the individual solitons, and this results in a random variation of the speed of individual solitons in the fibre. Several schemes have been devised to remove this excess noise and bring the train of solitons back to the orderly behaviour characteristic of a stable coherent state (e.g. the solitons could be passed through a spectral filter). Photon-number squeezing could also play a key role in solving this problem. For example, if the solitons are number-squeezed immediately after amplification, there will be a smaller uncertainty in the nonlinearity that keeps the soliton in shape and, therefore, there will also be less noise in the soliton. This

  4. Chiral symmety breaking in 3-flavor Nambu-Jona Lasinio model in magnetic background

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Bhaswar; Mishra, Hiranmaya [Theory Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India); Mishra, Amruta [Department of Physics, Indian Institute of Technology, New Delhi-110016 (India)

    2011-07-15

    Effect of magnetic field on chiral symmetry breaking in a 3-flavor Nambu Jona Lasinio (NJL) model at finite temperature and densities is considered here using an explicit structure of ground state in terms of quark and antiquark condensates. While at zero chemical potential and finite temperature, magnetic field enhances the condensates, at zero temperature, the critical chemical potential decreases with increasing magnetic field.

  5. Chiral symmety breaking in 3-flavor Nambu-Jona Lasinio model in magnetic background

    International Nuclear Information System (INIS)

    Effect of magnetic field on chiral symmetry breaking in a 3-flavor Nambu Jona Lasinio (NJL) model at finite temperature and densities is considered here using an explicit structure of ground state in terms of quark and antiquark condensates. While at zero chemical potential and finite temperature, magnetic field enhances the condensates, at zero temperature, the critical chemical potential decreases with increasing magnetic field.

  6. Chiral symmety breaking in 3-flavor Nambu-Jona Lasinio model in magnetic background

    CERN Document Server

    Chatterjee, Bhaswar; Mishra, Amruta

    2011-01-01

    Effect of magnetic field on chiral symmetry breaking in a 3-flavor Nambu Jona Lasinio (NJL) model at finite temperature and densities is considered here using an explicit structure of ground state in terms of quark and antiquark condensates. While at zero chemical potential and finite temperature, magnetic field enhances the condensates, at zero temperature, the critical chemical potential decreases with increasing magnetic field.

  7. From Chiral quark dynamics with Polyakov loop to the hadron resonance gas model

    OpenAIRE

    Arriola, E. Ruiz; Megias, E.; Salcedo, L. L.

    2012-01-01

    Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.

  8. Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model

    Institute of Scientific and Technical Information of China (English)

    宗红石; 吴小华; 侯丰尧; 赵恩广

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.

  9. Generation of bright soliton through the interaction of black solitons

    CERN Document Server

    Losano, L; Bazeia, D

    2001-01-01

    We report on the possibility of having two black solitons interacting inside a silica fiber that presents normal group-velocity dispersion, to generate a pair of solitons, a vector soliton of the black-bright type. The model obeys a pair of coupled nonlinear Schr\\"odinger equations, that follows in accordance with a Ginzburg-Landau equation describing the anisotropic XY model. We solve the coupled equations using a trial-orbit method, which plays a significant role when the Schr\\"odinger equations are reduced to first order differential equations.

  10. a Chiral Schwinger Model, its Constraint Structure and Applications to its Quantization

    Science.gov (United States)

    Bracken, Paul

    The Jackiw-Rajaraman version of the chiral Schwinger model is studied as a function of the renormalization parameter. The constraints are obtained and they are used to carry out canonical quantization of the model by means of Dirac brackets. By introducing an additional scalar field, it is shown that the model can be made gauge invariant. The gauge invariant model is quantized by establishing a pair of gauge fixing constraints in order that the method of Dirac can be used.

  11. A Chiral Schwinger model, its Constraint Structure and Applications to its Quantization

    OpenAIRE

    Bracken, Paul

    2007-01-01

    The Jackiw-Rajaraman version of the chiral Schwinger model is studied as a function of the renormalization parameter. The constraints are obtained and they are used to carry out canonical quantization of the model by means of Dirac brackets. By introducing an additional scalar field, it is shown that the model can be made gauge invariant. The gauge invariant model is quantized by establishing a pair of gauge fixing constraints in order that the method of Dirac can be used.

  12. A Chiral Schwinger model, its Constraint Structure and Applications to its Quantization

    CERN Document Server

    Bracken, Paul

    2007-01-01

    The Jackiw-Rajaraman version of the chiral Schwinger model is studied as a function of the renormalization parameter. The constraints are obtained and they are used to carry out canonical quantization of the model by means of Dirac brackets. By introducing an additional scalar field, it is shown that the model can be made gauge invariant. The gauge invariant model is quantized by establishing a pair of gauge fixing constraints, so the method of Dirac can be used.

  13. Non-BPS Dirac-Born-Infeld Solitons

    OpenAIRE

    Ioannidou, Theodora; Papadopoulos, George; Sutcliffe, Paul(Department of Mathematical Sciences, Durham University, South Road, Durham, DH1 3LE, U.K.)

    1999-01-01

    We show that CPn sigma model solitons solve the field equations of a Dirac-Born-Infeld (DBI) action and, furthermore, we prove that the non-BPS soliton/anti-soliton solutions of the sigma model also solve the DBI equations. Using the moduli space approximation we compare the dynamics of the BPS sigma model solitons with that of the associated DBI solitons. We find that for the CP1 case the metric on the moduli space of sigma model solitons is identical to that of the moduli space of DBI solit...

  14. CSOS models descending from chiral Potts models: degeneracy of the eigenspace and loop algebra

    Science.gov (United States)

    Au-Yang, Helen; Perk, Jacques H. H.

    2016-04-01

    Monodromy matrices of the {{\\boldsymbol{τ }}}2\\phantom{^{\\prime }} model are known to satisfy a Yang-Baxter equation with a six-vertex R-matrix as the intertwiner. The commutation relations of the elements of the monodromy matrices are completely determined by this R-matrix. We show the reason why in the superintegrable case the eigenspace is degenerate, but not in the general case. We then show that the eigenspaces of special CSOS models descending from the chiral Potts model are also degenerate. The existence of an L({{sl}}2) quantum loop algebra (or subalgebra) in these models is established by showing that the Serre relations hold for the generators. The highest weight polynomial (or the Drinfeld polynomial) of the representation is obtained by using the method of Baxter for the superintegrable case. As a byproduct, the eigenvalues of all such CSOS models are given explicitly.

  15. Chiral Gravitational Waves from Chiral Fermions

    CERN Document Server

    Anber, Mohamed M

    2016-01-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  16. Integrable String Models in Terms of Chiral Invariants of SU(n, SO(n, SP(n Groups

    Directory of Open Access Journals (Sweden)

    Victor D. Gershun

    2008-05-01

    Full Text Available We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativity equation to construct new integrable string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents in first case. We used the invariant local chiral currents of principal chiral models for SU(n, SO(n, SP(n groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor nonlocal currents to construct new nonlocal string equation.

  17. On magnetohydrodynamic solitons in jets

    Science.gov (United States)

    Roberts, B.

    1987-01-01

    Nonlinear solitary wave propagation in a compressible magnetic beam model of an extragalactic radio jet is examined and shown to lead to solitons of the Benjamin-Ono type. A number of similarities between such magnetic beam models of jets and models of solar photospheric flux tubes are pointed out and exploited. A single soliton has the appearance of a symmetric bulge on the jet which propagates faster than the jet's flow.

  18. Chiral symmetry

    International Nuclear Information System (INIS)

    We present many varied chiral symmetry models at the quark level which consistently describe strong interaction hadron dynamics. The pattern that emerges is a nonstrange current quark mass scale mcur ≅ (34-69) MeV and a current quark mass ratio (ms/m)cur ≅ 5-6 along with no strange quark content in nucleons. (orig./WL)

  19. Solitons in Josephson junctions

    Science.gov (United States)

    Ustinov, A. V.

    1998-11-01

    Magnetic flux quanta in Josephson junctions, often called fluxons, in many cases behave as solitons. A review of recent experiments and modelling of fluxon dynamics in Josephson circuits is presented. Classic quasi-one-dimensional junctions, stacked junctions (Josephson superlattices), and discrete Josephson transmission lines (JTLs) are discussed. Applications of fluxon devices as high-frequency oscillators and digital circuits are also addressed.

  20. Structure of the vacuum in the color dielectric model: confinement and chiral symmetry

    International Nuclear Information System (INIS)

    Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied

  1. Simulation, Modeling, and Analysis of Soliton Waves Interaction and Propagation in CNN Transmission Lines for Innovative Data Communication and Processing

    Directory of Open Access Journals (Sweden)

    G. Borgese

    2015-01-01

    Full Text Available We present an innovative approach to study the interaction between oblique solitons, using nonlinear transmission lines, based on Cellular Neural Network (CNN paradigm. A single transmission line consists of a 1D array of cells that interact with neighboring cells, through both linear and nonlinear connections. Each cell is controlled by a nonlinear Ordinary Differential Equation, in particular the Korteweg de Vries equation, which defines the cell status and behavior. Two typologies of CNN transmission lines are modelled: crisscross and ring lines. In order to solve KdV equations two different methods are used: 4th-order Runge-Kutta and Forward Euler methods. This is done to evaluate their accuracy and stability with the purpose of implementing CNN transmission lines on embedded systems such as FPGA and microcontrollers. Simulation/analysis Graphic User Interface platforms are designed to conduct numerical simulations and to display elaboration results. From this analysis it is possible both to identify the presence and the propagation of soliton waves on the transmission lines and to highlight the interaction between solitons and rich nonlinear dynamics. With this approach it is possible to simulate and develop the transmission and processing of information within large brain networks and high density sensor systems.

  2. Highly nonlinear wave solutions in a dual to the chiral model

    Science.gov (United States)

    Rajeev, S. G.; Ranken, Evan

    2016-05-01

    We consider a two-dimensional scalar field theory with a nilpotent current algebra, which is dual to the Principal Chiral Model. The quantum theory is renormalizable and not asymptotically free; the theory is strongly coupled at short distances (encountering a Landau pole). We suggest it can serve as a toy model for λ ϕ4 theory in four dimensions, just as the principal chiral model is a useful toy model for Yang-Mills theory. We find some classical wave solutions that survive the strong coupling limit and quantize them by the collective variable method. They describe excitations with an unusual dispersion relation ω ∝|k |2/3 . Perhaps they are the "preons" at strong coupling, the bound states of which form massless particles over long distances.

  3. Highly nonlinear wave solutions in a dual to the chiral model

    CERN Document Server

    Rajeev, S G

    2016-01-01

    We consider a two-dimensional scalar field theory with a nilpotent current algebra, which is dual to the Principal Chiral Model. The quantum theory is renormalizable and not asymptotically free: the theory is strongly coupled at short distances (encountering a Landau pole). We suggest it can serve as a toy model for $\\lambda\\phi^{4}$ theory in four dimensions, just as the principal chiral model is a useful toy model for Yang-Mills theory. We find some classical wave solutions that survive the strong coupling limit and quantize them by the collective variable method. They describe excitations with an unusual dispersion relation $\\omega\\propto|k|^{\\frac{2}{3}}$ . Perhaps they are the "preons" at strong coupling, whose bound states form massless particles over long distances.

  4. Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules

    Science.gov (United States)

    Bahrami, M.; Donadi, S.; Ferialdi, L.; Bassi, A.; Curceanu, C.; di Domenico, A.; Hiesmayr, B. C.

    2013-06-01

    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate-creating quantum superpositions-and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models.

  5. Chirality in Nonlinear Optics

    Science.gov (United States)

    Haupert, Levi M.; Simpson, Garth J.

    2009-05-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.

  6. UA(1) breaking and phase transition in chiral random matrix model

    CERN Document Server

    Sano, T; Ohtani, M

    2009-01-01

    We propose a chiral random matrix model which properly incorporates the flavor-number dependence of the phase transition owing to the \\UA(1) anomaly term. At finite temperature, the model shows the second-order phase transition with mean-field critical exponents for two massless flavors, while in the case of three massless flavors the transition turns out to be of the first order. The topological susceptibility satisfies the anomalous \\UA(1) Ward identity and decreases gradually with the temperature increased.

  7. The chiral de Rham complex and quantum non-linear sigma models

    International Nuclear Information System (INIS)

    In [J. Ekstrand, R. Heluani, J. Kaellen, M. Zabzine, Adv. Theor. Math. Phys. 13 (2009) 1221-1254; J. Ekstrand, R. Heluani, J. Kaellen, M. Zabzine, (arXiv:1003.4388 [hep-th])], the interpretation of the chiral de Rham complex as a formal quantization of 2d non-linear sigma models in the Hamiltonian framework was suggested and used to compute symmetry algebras for quantum models with non-flat target spaces. Here we review the construction.

  8. The chiral de Rham complex and quantum non-linear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Kaellen, J. [Department of Physics and Astronomy, Division of Theoretical Physics, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2011-07-15

    In [J. Ekstrand, R. Heluani, J. Kaellen, M. Zabzine, Adv. Theor. Math. Phys. 13 (2009) 1221-1254; J. Ekstrand, R. Heluani, J. Kaellen, M. Zabzine, (arXiv:1003.4388 [hep-th])], the interpretation of the chiral de Rham complex as a formal quantization of 2d non-linear sigma models in the Hamiltonian framework was suggested and used to compute symmetry algebras for quantum models with non-flat target spaces. Here we review the construction.

  9. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Directory of Open Access Journals (Sweden)

    Biernat Elmar P.

    2016-01-01

    Full Text Available We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.

  10. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    CERN Document Server

    Biernat, Elmar P; Ribeiro, J E; Stadler, A; Gross, F

    2015-01-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  11. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Science.gov (United States)

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, A.; Gross, F.

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.

  12. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  13. Generalized sine-Gordon solitons

    Energy Technology Data Exchange (ETDEWEB)

    Santos, C dos [Centro de Fisica e Departamento de Fisica e Astronomia, Faculdade de Ciencias da Universidade do Porto, 4169-007 Porto (Portugal); Rubiera-Garcia, D, E-mail: cssilva@fc.up.pt, E-mail: rubieradiego@gmail.com [Departamento de Fisica, Universidad de Oviedo, Avenida Calvo Sotelo 18, 33007 Oviedo, Asturias (Spain)

    2011-10-21

    In this paper, we construct analytical self-dual soliton solutions in (1+1) dimensions for two families of models which can be seen as generalizations of the sine-Gordon system but where the kinetic term is non-canonical. For that purpose we use a projection method applied to the sine-Gordon soliton. We focus our attention on the wall and lump-like soliton solutions of these k-field models. These solutions and their potentials reduce to those of the Klein-Gordon kink and the standard lump for the case of a canonical kinetic term. As we increase the nonlinearity on the kinetic term the corresponding potentials get modified and the nature of the soliton may change, in particular, undergoing a topology modification. The procedure constructed here is shown to be a sort of generalization of the deformation method for a specific class of k-field models. (paper)

  14. Spatial Patterns of Dissipative Polariton Solitons in Semiconductor Microcavities.

    Science.gov (United States)

    Chana, J K; Sich, M; Fras, F; Gorbach, A V; Skryabin, D V; Cancellieri, E; Cerda-Méndez, E A; Biermann, K; Hey, R; Santos, P V; Skolnick, M S; Krizhanovskii, D N

    2015-12-18

    We report propagating bound microcavity polariton soliton arrays consisting of multipeak structures either along (x) or perpendicular (y) to the direction of propagation. Soliton arrays of up to five solitons are observed, with the number of solitons controlled by the size and power of the triggering laser pulse. The breakup along the x direction occurs when the effective area of the trigger pulse exceeds the characteristic soliton size determined by polariton-polariton interactions. Narrowing of soliton emission in energy-momentum space indicates phase locking between adjacent solitons, consistent with numerical modeling which predicts stable multihump soliton solutions. In the y direction, the breakup originates from inhomogeneity across the wave front in the transverse direction which develops into a stable array only in the solitonic regime via phase-dependent interactions of propagating fronts. PMID:26722931

  15. Spatial solitons in photonic lattices with large-scale defects

    Institute of Scientific and Technical Information of China (English)

    Yang Xiao-Yu; Zheng Jiang-Bo; Dong Liang-Wei

    2011-01-01

    We address the existence, stability and propagation dynamics of solitons supported by large-scale defects surrounded by the harmonic photonic lattices imprinted in the defocusing saturable nonlinear medium. Several families of soliton solutions, including flat-topped, dipole-like, and multipole-like solitons, can be supported by the defected lattices with different heights of defects. The width of existence domain of solitons is determined solely by the saturable parameter. The existence domains of various types of solitons can be shifted by the variations of defect size, lattice depth and soliton order. Solitons in the model are stable in a wide parameter window, provided that the propagation constant exceeds a critical value, which is in sharp contrast to the case where the soliton trains is supported by periodic lattices imprinted in defocusing saturable nonlinear medium. We also find stable solitons in the semi-infinite gap which rarely occur in the defocusing media.

  16. Chiral Symmetry Breaking on the Lattice a Study of the Strongly Coupled Lattice Schwinger Model

    CERN Document Server

    Berruto, F; Semenoff, Gordon W; Sodano, P

    1998-01-01

    We revisit the strong coupling limit of the Schwinger model on the lattice using staggered fermions and the hamiltonian approach to lattice gauge theories. Although staggered fermions have no continuous chiral symmetry, they posses a discrete axial invari ance which forbids fermion mass and which must be broken in order for the lattice Schwinger model to exhibit the features of the spectrum of the continuum theory. We show that this discrete symmetry is indeed broken spontaneously in the strong coupling li mit. Expanding around a gauge invariant ground state and carefully considering the normal ordering of the charge operator, we derive an improved strong coupling expansion and compute the masses of the low lying bosonic excitations as well as the chiral co ndensate of the model. We find very good agreement between our lattice calculations and known continuum values for these quantities already in the fourth order of strong coupling perturbation theory. We also find the exact ground state of the antiferromag ...

  17. Homogeneous Cotton solitons

    OpenAIRE

    Calviño-Louzao, E.; Hervella, L. M.; Seoane-Bascoy, J.; Vázquez-Lorenzo, R.

    2013-01-01

    Left-invariant Cotton solitons on homogeneous manifolds are determined. Moreover, algebraic Cotton solitons are studied providing examples of non-invariant Cotton solitons, both in the Riemannian and Lorentzian homogeneous settings.

  18. Soliton turbulence

    Science.gov (United States)

    Tchen, C. M.

    1986-01-01

    Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.

  19. Supergravity solitons

    International Nuclear Information System (INIS)

    The Langrangian for a single free soliton in N = 2 supergravity as proposed in an earlier paper, is studied. We analyze the algebra of constraints and discuss the local gauge symmetry due to the existence of first class constraints. The classical motion as well as a Gupta-Bleuler type quantization are given. (Author)

  20. Bound soliton fiber laser

    OpenAIRE

    Tang, D. Y.; B. Zhao; Shen, D. Y.; Lu, C.

    2009-01-01

    Experimental study on the soliton dynamics of a passively mode locked fiber ring laser firstly revealed a state of bound soliton operation in the laser, where two solitons bind together tightly with fixed pulse separation. We further report on the properties of the bound-soliton emission of the laser. In particular, we demonstrate both experimentally and numerically that, like the single pulse soliton operation of the laser, the bound soliton emission is another intrinsic feature of the laser.

  1. A large N phase transition in the continuum two dimensional SU(N) X SU(N) principal chiral model

    OpenAIRE

    R. Narayanan; Neuberger, H.; Vicari, E.

    2008-01-01

    It is established by numerical means that the continuum large N principal chiral model in two dimensions has a phase transition in a smoothed two point function at a critical distance of the order of the correlation length.

  2. Dark solitons in laser radiation build-up dynamics.

    Science.gov (United States)

    Woodward, R I; Kelleher, E J R

    2016-03-01

    We reveal the existence of slowly decaying dark solitons in the radiation build-up dynamics of bright pulses in all-normal dispersion mode-locked fiber lasers, numerically modeled in the framework of a generalized nonlinear Schrödinger equation. The evolution of noise perturbations to quasistationary dark solitons is examined, and the significance of background shape and soliton-soliton collisions on the eventual soliton decay is established. We demonstrate the role of a restoring force in extending soliton interactions in conservative systems to include the effects of dissipation, as encountered in laser cavities, and generalize our observations to other nonlinear systems. PMID:27078358

  3. Chiral formulation for hyperKähler sigma-models on cotangent bundles of symmetric spaces

    Science.gov (United States)

    Kuzenko, Sergei M.; Novak, Joseph

    2008-12-01

    Starting with the projective-superspace off-shell formulation for four-dimensional Script N = 2 supersymmetric sigma-models on cotangent bundles of arbitrary Hermitian symmetric spaces, their on-shell description in terms of Script N = 1 chiral superfields is developed. In particular, we derive a universal representation for the hyperkähler potential in terms of the curvature of the symmetric base space. Within the tangent-bundle formulation for such sigma-models, completed recently in arXiv:0709.2633 and realized in terms of Script N = 1 chiral and complex linear superfields, we give a new universal formula for the superspace Lagrangian. A closed form expression is also derived for the Kähler potential of an arbitrary Hermitian symmetric space in Kähler normal coordinates.

  4. GENERALIZED (2+1)−DIMENSIONAL BREAKING SOLITON EQUATION

    OpenAIRE

    Abdul-Majid Wazwaz

    2011-01-01

    In this work, a general (2+1)&minusdimensional breaking soliton equation is investigated. The Hereman’s simplified method is applied to derive multiple soliton solutions,hence to confirm the model integrability.

  5. Susceptibilities and the Phase Structure of a Chiral Model with Polyakov Loops

    OpenAIRE

    Sasaki, C.; Friman, B.; Redlich, K.

    2006-01-01

    In an extension of the Nambu-Jona-Lasinio model where the quarks interact with the temporal gluon field, represented by the Polyakov loop, we explore the relation between the deconfinement and chiral phase transitions. The effect of Polyakov loop dynamics on thermodynamic quantities, on the phase structure at finite temperature and baryon density and on various susceptibilities is presented. Particular emphasis is put on the behavior and properties of the fluctuations of the (approximate) ord...

  6. The Quantum and Local Polyakov loop in Chiral Quark Models at Finite Temperature

    OpenAIRE

    Megias, E.; Arriola, E. Ruiz; Salcedo, L. L.

    2006-01-01

    We describe results for the confinement-deconfinement phase transition as predicted by the Nambu--Jona-Lasinio model where the local and quantum Polyakov loop is coupled to the constituent quarks in a minimal way (PNJL). We observe that the leading correlation of two Polyakov loops describes the chiral transition accurately. The effects of the current quark mass on the transition are also analysed.

  7. Strange quark matter in a chiral SU(3) quark mean field model

    OpenAIRE

    Wang, P.; Lyubovitskij, V. E.; Gutsche, Th.; Faessler, Amand

    2002-01-01

    We apply the chiral SU(3) quark mean field model to investigate strange quark matter. The stability of strange quark matter with different strangeness fraction is studied. The interaction between quarks and vector mesons destabilizes the strange quark matter. If the strength of the vector coupling is the same as in hadronic matter, strangelets can not be formed. For the case of beta equilibrium, there is no strange quark matter which can be stable against hadron emission even without vector m...

  8. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz.

    Science.gov (United States)

    Zamorano, M; Torres-Silva, H

    2006-04-01

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) "inverse skin effect" shows up at 1800 MHz, with respect to a 900 MHz source. PMID:16552096

  9. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    International Nuclear Information System (INIS)

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source

  10. Duality between chiral symmetry breaking and charged pion condensation at large $N_c$: Consideration of an NJL$_2$ model with baryon-, isospin- and chiral isospin chemical potentials

    CERN Document Server

    Ebert, D; Klimenko, K G

    2016-01-01

    In this paper we investigate the phase structure of a (1+1)-dimensional schematic quark model with four-quark interaction and in the presence of baryon ($\\mu_B$), isospin ($\\mu_I$) and chiral isospin ($\\mu_{I5}$) chemical potentials. It is established that in the large-$N_c$ limit ($N_c$ is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation (PC) one. The role and influence of this property on the phase structure of the model are studied. Moreover, it is shown that the chemical potential $\\mu_{I5}$ promotes the appearance of the charged PC phase with nonzero baryon density.

  11. Soliton electric generators based on conducting polymers

    International Nuclear Information System (INIS)

    Iodide doping produces charge carriers in π-conjugated polymers. Motivated by the SSH theoretical model of solitons in one-dimensional conjugated polymers, chemical doping of polyacetylene film is experimentally carried out to generate solitons. An Arago-type wheel electric generator is assembled based on the doped polyacetylene in place of a copper or aluminium plate. This is the first report of electric generation in conducting polymers based on solitons

  12. A chiral matrix model of the semi-Quark Gluon Plasma in QCD

    CERN Document Server

    Pisarski, Robert D

    2016-01-01

    A chiral matrix model applicable to QCD with 2+1 flavors is developed. This requires adding a SU(3)_L x SU(3)_R x Z(3)_A nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y. Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. In addition to the usual symmetry breaking term, linear in the current quark mass m_qk, at a nonzero temperature T it is necessary to add a new term, ~ m_qk T^2. The parameters of the gluon part of the matrix model, including especially the deconfining transition temperature T_d = 270 MeV, are identical to that for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant the masses of the pions, kaons, eta, and eta'. The temperature for the chiral crossover at T_chi = 155 MeV is determined by adjusting the Yukawa coupling y. We find reasonable agreement with th...

  13. Intrinsic transverse momentum and dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Christian Weiss, Peter Schweitzer, Mark Strikman

    2013-01-01

    We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.

  14. Generalized Korteweg-de Vries equation induced from position-dependent effective mass quantum models and mass-deformed soliton solution through inverse scattering transform

    International Nuclear Information System (INIS)

    We consider one-dimensional stationary position-dependent effective mass quantum model and derive a generalized Korteweg-de Vries (KdV) equation in (1+1) dimension through Lax pair formulation, one being the effective mass Schrödinger operator and the other being the time-evolution of wave functions. We obtain an infinite number of conserved quantities for the generated nonlinear equation and explicitly show that the new generalized KdV equation is an integrable system. Inverse scattering transform method is applied to obtain general solution of the nonlinear equation, and then N-soliton solution is derived for reflectionless potentials. Finally, a special choice has been made for the variable mass function to get mass-deformed soliton solution. The influence of position and time-dependence of mass and also of the different representations of kinetic energy operator on the nature of such solitons is investigated in detail. The remarkable features of such solitons are demonstrated in several interesting figures and are contrasted with the conventional KdV-soliton associated with constant-mass quantum model

  15. Generalized Korteweg-de Vries equation induced from position-dependent effective mass quantum models and mass-deformed soliton solution through inverse scattering transform

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, A., E-mail: gangulyasish@rediffmail.com, E-mail: aganguly@maths.iitkgp.ernet.in; Das, A., E-mail: amiya620@gmail.com [Department of Mathematics, IIT Kharagpur, Kharagpur, 721302 West Bengal (India)

    2014-11-15

    We consider one-dimensional stationary position-dependent effective mass quantum model and derive a generalized Korteweg-de Vries (KdV) equation in (1+1) dimension through Lax pair formulation, one being the effective mass Schrödinger operator and the other being the time-evolution of wave functions. We obtain an infinite number of conserved quantities for the generated nonlinear equation and explicitly show that the new generalized KdV equation is an integrable system. Inverse scattering transform method is applied to obtain general solution of the nonlinear equation, and then N-soliton solution is derived for reflectionless potentials. Finally, a special choice has been made for the variable mass function to get mass-deformed soliton solution. The influence of position and time-dependence of mass and also of the different representations of kinetic energy operator on the nature of such solitons is investigated in detail. The remarkable features of such solitons are demonstrated in several interesting figures and are contrasted with the conventional KdV-soliton associated with constant-mass quantum model.

  16. Chiral phase transition in a lattice fermion-gauge-scalar model with U(1) gauge symmetry

    International Nuclear Information System (INIS)

    The chiral phase transition induced by a charged scalar field is investigated numerically in a lattice fermion-gauge-scalar model with U(1) gauge symmetry, proposed recently as a model for dynamical fermion mass generation. For very strong gauge coupling the transition is of second order and its scaling properties are very similar to those of the Nambu-Jona-Lasinio model. However, in the vicinity of the tricritical point at somewhat weaker coupling, where the transition changes the order, the scaling behavior is different. Therefore it is worthwhile to investigate the continuum limit of the model at this point. (orig.)

  17. A theoretical description for solitons in polyacetylene

    Institute of Scientific and Technical Information of China (English)

    田强; 周会; 朱瑞

    2002-01-01

    The bond-alternation domain walls or the solitons in the dimerized polyacetylene are analyzed theoretically. The width of the soliton is many times the period of the chain, so that the soliton can be reasonably well described by a continuum model. Because of the existence of the bond-alternation domain walls, the electron density is different definitely. Thus the electron density can be used to describe the formation of the domain walls, and a self-trapped potential is discussed and introduced in the Hamiltonian. It is shown that the envelope of the wave functions of the chain is governed by the nonlinear Schr?dinger equation which has soliton solutions. Then the shape of the soliton is determined analytically which is in accordance with the numerical calculations by Su, Schrieffer and Heeger. This implies that the bond-alternation domain wall or the soliton is observed as the envelope of the wave function.

  18. Stability of multicomponent-soliton trains

    International Nuclear Information System (INIS)

    Stable configurations of periodic multicomponent-soliton trains are determined with relevance to the idea of data storing, transmitting and processing using the pulse-polarization vector as an information register. The interactions of the solitons of the train are expected to stabilize this polarization vector, preventing it from changes induced by the transmission-line imperfections as well as by the inherent increase of the pulse-parameter uncertainty with time. We investigate the use of the bright (self-focusing), dark (self-defocusing) and mixed bright-dark multicomponent solitons whose dynamics is governed by the nonlinear Schrodinger equation. The relevance of the (previously used) Toda-chain model to the dynamical description of the parameters of the bright-soliton train is verified. Unlike the bright solitons, trains of the mixed bright-dark solitons are found to be stable with relevance to externally driven change of the polarization of a single pulse.

  19. Understanding complex chiral plasmonics

    Science.gov (United States)

    Duan, Xiaoyang; Yue, Song; Liu, Na

    2015-10-01

    Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant

  20. Poisson bracket algebra for chiral group elements in the WZNW model

    CERN Document Server

    Bimonte, G; Simoni, A; Stern, A

    1992-01-01

    We examine the Wess-Zumino-Novikov-Witten (WZNW) model on a circle and compute the Poisson bracket algebra for left and right moving chiral group elements. Our computations apply for arbitrary groups and boundary conditions, the latter being characterized by the monodromy matrix. Unlike in previous treatments, they do not require specifying a particular parametrization of the group valued fields in terms of angles spanning the group. We do however find it necessary to make a gauge choice, as the chiral group elements are not gauge invariant observables. (On the other hand, the quadratic form of the Poisson brackets may be defined independent of a gauge fixing.) Gauge invariant observables can be formed from the monodromy matrix and these observables are seen to commute in the quantum theory.

  1. Poisson bracket algebra for chiral group elements in the WZNW model

    International Nuclear Information System (INIS)

    In this paper, the authors examine the Wess-Zumino-Novikov-Witten (WZNW) model on a circle and compute the Poisson bracket algebra for left- and right-moving chiral group elements. The authors' computations apply for arbitrary groups and arbitrary boundary conditions, the latter being characterized by the monodromy matrix. Unlike previous treatments, the Poisson brackets do not require specifying a particular parametrization of the group valued fields in terms of angles spanning the group. The authors do however find it necessary to make a gauge choice, as the chiral group elements are not gauge invariant observables. (On the other hand, the quadratic form of the Poisson brackets may be defined independently of a gauge fixing.) Gauge invariant observables can be formed from the monodromy matrix and these observbles are seen to commute in the quantum theory

  2. Three-flavor chiral effective model with four baryonic multiplets within the mirror assignment

    CERN Document Server

    Olbrich, L; Giacosa, F

    2016-01-01

    We study three-flavor octet baryons by using the so-called extended Linear Sigma Model (eLSM). Within a quark-diquark picture, the requirement of a mirror assignment naturally leads to the consideration of four spin-$\\frac{1}{2}$ baryon multiplets. A reduction of the Lagrangian to the two-flavor case leaves four doublets of nucleonic states which mix to form the experimentally observed states $N(939)$, $N(1440)$, $N(1535)$ and $N(1650)$. We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of the aforementioned states. By tracing their masses when chiral symmetry is restored, we conclude that the pairs $N(939)$, $N(1535)$ and $N(1440)$, $N(1650)$ form chiral partners.

  3. Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model

    CERN Document Server

    Alam, M Sohaib; Kundu, Arnab

    2012-01-01

    A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually p...

  4. Equation of state of isospin-asymmetric nuclear matter in relativistic mean-field models with chiral limits

    OpenAIRE

    Jiang, Wei-Zhou; Li, Bao-An; Chen, Lie-Wen

    2007-01-01

    Using in-medium hadron properties according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities and considering naturalness of the coupling constants, we have newly constructed several relativistic mean-field Lagrangians with chiral limits. The model parameters are adjusted such that the symmetric part of the resulting equation of state at supra-normal densities is consistent with that required by the collective flow data from high energy heavy-ion reactions, whi...

  5. The Star Square in the Baxter-Bazhanov Model and the Star-Triangle Relation in the Chiral Potts Model

    Science.gov (United States)

    Hu, Zhan-Ning

    In this letter, the connection is found between the "star-square" relation in the Baxter-Bazhanov model and the "star-triangle" relation in the chiral Potts model, which means that the tetrahedron equation of the Baxter-Bazhanov model is a consequence of the latter. The four additional constraints in the tetrahedron equation given by Kashaev et al. hold naturally in respect to the spherical trigonometry parametrizations.

  6. Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models

    CERN Document Server

    Pagura, V P; Noguera, S; Scoccola, N N

    2016-01-01

    We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature our results show that nonlocal models naturally lead to the Inverse Magnetic Catalysis effect.

  7. Generalized Ginzburg–Landau approach to inhomogeneous phases in nonlocal chiral quark models

    International Nuclear Information System (INIS)

    We analyze the presence of inhomogeneous phases in the QCD phase diagram within the framework of nonlocal chiral quark models. We concentrate in particular in the positions of the tricritical (TCP) and Lifshitz (LP) points, which are studied in a general context using a generalized Ginzburg–Landau approach. We find that for all the phenomenologically acceptable model parametrizations considered the TCP is located at a higher temperature and a lower chemical potential in comparison with the LP. Consequently, these models seem to favor a scenario in which the onset of the first order transition between homogeneous phases is not covered by an inhomogeneous, energetically favored phase

  8. Fragmentation functions of pions and kaons in the nonlocal chiral quark model

    Directory of Open Access Journals (Sweden)

    Kao Chung Wen

    2014-03-01

    Full Text Available We investigate the unpolarized pion and kaon fragmentation functions using the nonlocal chiral-quark model. In this model the interactions between the quarks and pseudoscalar mesons is manifested nonlocally. In addition, the explicit flavor SU(3 symmetry breaking effect is taken into account in terms of the current quark masses. The results of our model are evaluated to higher Q2 value Q2 = 4 GeV2 by the DGLAP evolution. Then we compare them with the empirical parametrizations. We find that our results are in relatively good agreement with the empirical parametrizations and the other theoretical estimations.

  9. Chirally Invariant Avatar in a Model of Neutrinos with Light Cone Reflection Symmetry

    CERN Document Server

    Chodos, Alan

    2016-01-01

    In previous work we developed a model of neutrinos based on a new symmetry, Light Cone Reflection (LCR), that interchanges spacelike and timelike intervals. In this paper we start with the four-dimensional model, and construct a two-dimensional avatar that obeys the same equations of motion, and preserves both the light-cone reflection symmetry and the chiral symmetry of the original theory. The avatar also contains the interaction that rendered the four-dimensional model gauge invariant. In an addendum, we make some remarks about how to determine the scalar field that enters into the definition of the LCR-covariant derivative.

  10. Model studies of the chiral and deconfinement transitions in QCD

    CERN Document Server

    Naylor, William R

    2015-01-01

    The Doctoral thesis of William Naylor. Gives the background of the three papers included, specifically introducing both the quark meson model and the NJL model, the basic formalism of thermal field theory, and functional renormalization group (including some details on numerically solving the FRG equation for the QM model).

  11. Vacuum phenomenology of the chiral partner of the nucleon in a linear sigma model with vector mesons

    International Nuclear Information System (INIS)

    We investigate a linear sigma model with global chiral U(2)RxU(2)L symmetry. The mesonic degrees of freedom are the standard scalar and pseudoscalar mesons and the vector and axial-vector mesons. The baryonic degrees of freedom are the nucleon, N, and its chiral partner, N*, which is usually identified with N(1535). The chiral partner is incorporated in the so-called mirror assignment, where the nucleon mass is not solely generated by the chiral condensate but also by a chirally invariant mass term, m0. The presence of (axial-) vector fields modifies the expressions for the axial-coupling constants of the nucleon, gAN, and its partner, gAN*. Using experimental data for the decays N*→Nπ and a1→πγ, as well as lattice results for gAN* we infer that in our model m0∼500 MeV, i.e., an appreciable amount of the nucleon mass originates from sources other than the chiral condensate. We test our model by evaluating the decay N*→Nη and the s-wave nucleon-pion scattering lengths a0(±).

  12. The chiral magnetic effect in hydrodynamical approach

    OpenAIRE

    Sadofyev, A. V.; Isachenkov, M. V.

    2010-01-01

    In quark-gluon plasma nonzero chirality can be induced by the chiral anomaly. When a magnetic field is applied to a system with nonzero chirality an electromagnetic current is induced along the magnetic field. This phenomenon is called the chiral magnetic effect. In this paper appearance of the chiral magnetic effect in hydrodynamical approximation is shown. We consider a hydrodynamical model for chiral liquid with two independent currents of left and right handed particles in the presence of...

  13. Microscopic nuclear structure models and methods: chiral symmetry, wobbling motion and γ–bands

    Science.gov (United States)

    Sheikh, Javid A.; Bhat, Gowhar H.; Dar, Waheed A.; Jehangir, Sheikh; Ganai, Prince A.

    2016-06-01

    A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of γ-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, γ-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering γ-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the γ-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of γ-bands observed up to the highest spin in dysposium, hafnium, mercury and uranium isotopes. Furthermore, several measurements related to chiral symmetry breaking and wobbling motion have been reported recently. These phenomena, which are possible only for triaxial nuclei, have been investigated using the TPSM approach. It is shown that doublet bands observed in lighter odd–odd Cs-isotopes can be considered as candidates for chiral symmetry breaking. Transverse wobbling motion recently observed in 135Pr has also been investigated and it is shown that TPSM approach provides a reasonable description of the measured properties.

  14. Chiral symmetry in the strong color-electric field in terms of Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    We examine the behavior of chiral symmetry in an external gluon field using Nambu-Jona-Lasinio model, which is an effective theory of QCD. The Dyson equation for the dynamical quark mass in the presence of the external color-electric field is obtained. By solving it in the color flux tube inside mesons, chiral symmetry would be restored in the flux tube of mesons and this result supports Chiral Bag picture for mesons. Next we consider the flux tubes formed in the central region for ultra-relativistic heavy-ion collisions, and find the chiral restoration occurs there, so that the current quark mass seems to be suitable in calculating the q-q-bar pair creation rate by the Schwinger formula in the flux-tube picture. (author)

  15. Chiral Superfluidity for QCD

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  16. On the nonlinear dynamics of topological solitons in DNA

    OpenAIRE

    Yakushevich, L. V.; Savin, A. V.; Manevitch, L. I.

    2002-01-01

    Dynamics of topological solitons describing open states in the DNA double helix are studied in the frameworks of the model which takes into account asymmetry of the helix. It is shown that three types of topological solitons can occur in the DNA double chain. Interaction between the solitons, their interactions with the chain inhomogeneities and stability of the solitons with respect to thermal oscillations are investigated.

  17. Propagation of twist solitons in real DNA chains

    OpenAIRE

    Cadoni, M.; De Leo, R.; Demelio, S.; Gaeta, G.

    2009-01-01

    We report on numerical investigations concerning the propagation of solitons in a real DNA chain (the Human Adenovirus 2) using a realistic model of DNA torsional dynamics; this takes fully into account the inhomogeneities in the real chain. We find that twist solitons propagate for considerable distances (2-10 times their diameters) before stopping due to phonon emission. Our results show that twist solitons may exist in real DNA chains; and on a more general level that solitonic propagation...

  18. The Effect of Logarithmic Mesonic Potential on the Magnetic Catalysis in the Chiral Quark-Sigma Model

    CERN Document Server

    Abu-Shady, M

    2015-01-01

    The chiral symmetry breaking in the presence of external magnetic field is studied in the framework of logarithmic quark-sigma model. The effective logarithmic mesonic potential is employed and is numerically solved in the mean-field approximation. We find that the chiral symmetry breaking enhances in comparison with the original sigma model. Two sets of parameterization are investigated in the present model. We find that increasing coupling constant enhances the breaking symmetry while increasing sigma mass inhibits enhancing chiral broken vacuum state. A comparison with the Numbu-Jona-Lasinio model and the Schwinger-Dyson equation is discussed. We conclude that the logarithmic sigma model enhances the magnetic catalysis in comparison with the original sigma model and other models.

  19. Rational solitons in deep nonlinear optical Bragg grating

    NARCIS (Netherlands)

    Alatas, H.; Iskandar, A.A.; Tjia, M.O.; Valkering, T.P.

    2006-01-01

    We have examined the rational solitons in the Generalized Coupled Mode model for a deep nonlinear Bragg grating. These solitons are the degenerate forms of the ordinary solitons and appear at the transition lines in the parameter plane. A simple formulation is presented for the investigation of the

  20. Eta and kaon production in a chiral quark model

    CERN Document Server

    Golli, Bojan

    2016-01-01

    We apply a coupled-channel formalism incorporating quasi-bound quark-model states to calculate pion scattering into eta N, K Lambda and K Sigma channels, as well eta p, eta n, K+Lambda, and K0Sigma+ photo-production processes. The meson-baryon and photon-baryon vertices are determined in a SU(3) version of the Cloudy Bag Model. Our model predicts sizable amplitudes in the P11, P13, P33 and S11 partial waves in agreement with the latest MAID isobar model and the recent partial-wave analyses of the Bonn-Gatchina group. We are able to give a quark-model explanation for the apparent resonance at 1685 MeV in the eta n channel.

  1. Diffusion of Classical Solitons

    OpenAIRE

    Dziarmaga, J.; Zakrzewski, W.

    1998-01-01

    We study the diffusion and deformation of classical solitons coupled to thermal noise. The diffusion coefficient for kinks in the $\\phi^4$ theory is predicted up to the second order in $kT$. The prediction is verified by numerical simulations. Multiskyrmions in the vector O(3) sigma model are studied within the same formalism. Thermal noise results in a diffusion on the multisoliton collective coordinate space (moduli space). There are entropic forces which tend, for example, to bind pairs of...

  2. The quantization of exotic states in SU(3) soliton models: A solvable quantum mechanical analog

    OpenAIRE

    Cherman, Aleksey; Cohen, Thomas D.; Nellore, Abhinav

    2004-01-01

    The distinction between the rigid rotor and Callan-Klebanov approaches to the quantization of SU(3) solitons is considered in the context of exotic baryons. A numerically tractable quantum mechanical analog system is introduced to test the reliability of the two quantization schemes. We find that in the equivalent of the large N_c limit of QCD, the Callan-Klebanov approach agrees with a numerical solution of the quantum mechanical analog. Rigid rotor quantization generally does not. The impli...

  3. Collective coordinate quantization, spin statistics of the solitons in the $\\mathbb{C}P^N$ Skyrme-Faddeev model

    CERN Document Server

    Amari, Yuki; Sawado, Nobuyuki

    2016-01-01

    The $\\mathbb{C}P^N$ extended Skyrme-Faddeev model possesses planar soliton solutions. We consider quantum aspects of the solutions applying collective coordinate quantization in regime of rigid body approximation. In order to discuss statistical properties of the solutions we include an abelian Chern-Simons term (the Hopf term) in the Lagrangian. Since $\\Pi_3(\\mathbb{C}P^1)=\\mathbb{Z}$ then for $N=1$ the term becomes integer. On the other hand for $N>1$ it became perturbative because $\\Pi_3(\\mathbb{C}P^N)$ is trivial. The prefactor of the Hopf term (anyon angle) $\\Theta$ is not quantized and its value depends on the physical system. The corresponding fermionic models can fix value of the angle $\\Theta$ for all $N$ in a way that the soliton with $N=1$ is not an anyon type whereas for $N>1$ it is always an anyon even for $\\Theta=n\\pi, n\\in \\mathbb{Z}$. We quantize the solutions and calculate several mass spectra for $N=2$. Finally we discuss generalization for $N\\geqq 3$.

  4. A chiral random matrix model with 2+1 flavors at finite temperature and density

    CERN Document Server

    Fujii, H

    2009-01-01

    Phase diagram of a chiral random matrix model with the degenerate ud quarks and the s quark at finite temperature and density is presented. The model exhibits a first-order transition at finite temperature for three massless flavors, owing to the U_A(1) breaking determinant term. We study the order of the transition with changing the quark masses and the quark chemical potential, and show that the first-order transition region expands as the chemical potential increases. We also discuss the behavior of the meson masses and the susceptibilities near the critical point.

  5. Kaon semileptonic decay (K_{l3}) form factor in the nonlocal chiral quark model

    CERN Document Server

    Nam, Seung-il

    2007-01-01

    We investigate the kaon semileptonic decay (K_{l3}) form factors within the framework of the nonlocal chiral quark model from the instanton vacuum, taking into account the effects of flavor SU(3) symmetry breaking. All theoretical calculations are carried out without any adjustable parameter. We also show that the present results satisfy the Callan-Treiman low-energy theorem as well as the Ademollo-Gatto theorem. It turns out that the effects of flavor SU(3) symmetry breaking are essential in reproducing the kaon semileptonic form factors. The present results are in a good agreement with experiments, and are compatible with other model calculations.

  6. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    CERN Document Server

    Sun, Yifeng; Li, Feng

    2016-01-01

    Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).

  7. Vacuum properties of open charmed mesons in a chiral symmetric model

    CERN Document Server

    Eshraim, Walaa I

    2014-01-01

    We present a $U(4)_R \\times U(4)_L$ chirally symmetric model, which in addition to scalar and pseudoscalar mesons also includes vector and axial-vector mesons. A part from the three new parameters pertaining to the charm degree of freedom, the parameters of the model are fixed from the $N_f=3$ flavor sector. We compute open charmed meson masses, weak decay constants, and the (OZI-dominant) strong decays of open charmed mesons. A precise description of decays of open charmed states is important for the CBM and PANDA experiments at the future FAIR facility.

  8. The early history of the integrable chiral Potts model and the odd-even problem

    Science.gov (United States)

    Perk, Jacques H. H.

    2016-04-01

    In the first part of this paper I shall discuss the round-about way of how the integrable chiral Potts model was discovered about 30 years ago. As there should be more higher-genus models to be discovered, this might be of interest. In the second part I shall discuss some quantum group aspects, especially issues of odd versus even N related to the Serre relations conjecture in our quantum loop subalgebra paper of 5 years ago and how we can make good use of coproducts, also borrowing ideas of Drinfeld, Jimbo, Deguchi, Fabricius, McCoy and Nishino.

  9. All-optical gates facilitated by soliton interactions in a multilayered Kerr medium

    OpenAIRE

    Scheuer, Jacob; Orenstein, Meir

    2005-01-01

    All-optical soliton logic operations, facilitated by incoherent interactions of multiple spatial solitons with nonlinear interfaces, are proposed and analyzed. A particlelike model, validated by beam propagation simulations, was developed for calculating the soliton trajectories and was employed for the analysis of the soliton-based logic gates.

  10. The Role of Stochastic Models in Interpreting the Origins of Biological Chirality

    Directory of Open Access Journals (Sweden)

    Gábor Lente

    2010-04-01

    Full Text Available This review summarizes recent stochastic modeling efforts in the theoretical research aimed at interpreting the origins of biological chirality. Stochastic kinetic models, especially those based on the continuous time discrete state approach, have great potential in modeling absolute asymmetric reactions, experimental examples of which have been reported in the past decade. An overview of the relevant mathematical background is given and several examples are presented to show how the significant numerical problems characteristic of the use of stochastic models can be overcome by non-trivial, but elementary algebra. In these stochastic models, a particulate view of matter is used rather than the concentration-based view of traditional chemical kinetics using continuous functions to describe the properties system. This has the advantage of giving adequate description of single-molecule events, which were probably important in the origin of biological chirality. The presented models can interpret and predict the random distribution of enantiomeric excess among repetitive experiments, which is the most striking feature of absolute asymmetric reactions. It is argued that the use of the stochastic kinetic approach should be much more widespread in the relevant literature.

  11. The nuclear soliton reactor

    International Nuclear Information System (INIS)

    The basic reactor physics of a completely novel nuclear fission reactor design - the soliton-reactor - is presented on the basis of a simple model. In such a reactor, the neutrons in the critical region convert either fertile material in the adjacent layers into fissile material or reduce the poisoning of fissile material in such a manner that successively new critical regions emerge. The result is an autocatalytically driven burn-up wave which propagates throughout the reactor. Thereby, the relevant characteristic spatial distributions (neutron flux, specific power density and the associated particle densities) are solitons - wave phenomena resulting from non-linear partial differential equations which do not change their shape during propagation. A qualitativley new kind of harnessing nuclear fission energy may become possible with fuel residence times comparable with the useful lifetime of the reactor system. In the long run, fast breeder systems which exploit the natural uranium and thorium resources, without any reprocessing capacity are imaginable. (orig.)

  12. K- nuclear potentials from in-medium chirally motivated models

    Czech Academy of Sciences Publication Activity Database

    Cieplý, Aleš; Friedman, E.; Gal, A.; Gazda, Daniel; Mareš, Jiří

    2011-01-01

    Roč. 84, č. 4 (2011), 045206/1-045206/11. ISSN 0556-2813 R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : p-wave interactions * coupled-channel model Subject RIV: BE - Theoretical Physics Impact factor: 3.308, year: 2011

  13. A Theoretical Model of All-optical Switching Induced by a Soliton Pulse in Nano-waveguide Ring Resonator

    International Nuclear Information System (INIS)

    We propose a theoretical model of 1×2 all-optical switching in a silicon nano-waveguide ring resonator induced by a soliton pulse. All-optical switches made by silicon fiber or silicon waveguide have attracted much attention, because the low-absorption wavelength windows of silicon material just match optical fiber communication. However, to achieve all-optical switching in silicon is challenging owing to its relatively weak nonlinear optical properties and require high switching power, which is much higher than the signal power. Such high power is inappropriate for effective on-chip integration. To overcome this limitation, we have used a highly confined nano-waveguide ring resonator structure with soliton pulse input to enhance the nonlinearity and this leads to enhance the effect of refractive index change on the transmission response. The refractive index is changed by controlling the free-carrier concentration through two-photon absorption (TPA) effect. The result indicates that a refractive index change as small as 6.4×10−3 can reduce the switching power to 2.38 ×10−6 W. The nano-waveguide ring resonator all-optical switching described here is achieved by using the concept of strong light confinement, and the switching power is approximately three orders of magnitude lower than the available silicon optical switches. Such controllable switch is desired for achieving high performance in nanometer-size planar structures.

  14. Two dimensional untwisted (4,4), twisted (4,4-bar) and chiral supersymmetric non linear σ-models

    International Nuclear Information System (INIS)

    D=2 N=(4,4) harmonic superspace analysis is developed. The underlying untwisted (4,4) non linear σ-models are studied. A method of deriving chiral (4,0) and (0,4) models is presented. The Lagrange superparameter leading to the constraint specifying the hyperkahler manifold structure is predicted and its relation to the matter superfield is stated in a covariant way. A known construction is recovered. We show also that (4,4) model is not a direct sum of the chiral ones. Finally a twisted (4,4-bar) model is obtained. (author). 28 refs

  15. SIMP model at NNLO in chiral perturbation theory

    DEFF Research Database (Denmark)

    Hansen, Martin Rasmus Lundquist; Langaeble, K.; Sannino, F.

    2015-01-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 to 2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By...... phenomenological constraints challenging the viability of the simplest realisation of the strongly interacting massive particle (SIMP) paradigm....

  16. Chiral condensate in the Schwinger model with Matrix Product Operators

    CERN Document Server

    Bañuls, Mari Carmen; Jansen, Karl; Saito, Hana

    2016-01-01

    Tensor network (TN) methods, in particular the Matrix Product States (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the non-zero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chir...

  17. SOLITONS: Optimal control of optical soliton parameters: Part 1. The Lax representation in the problem of soliton management

    Science.gov (United States)

    Serkin, Vladimir N.; Belyaeva, T. L.

    2001-11-01

    The existence of the Lax representation for a model of soliton management under certain conditions is shown, which proves a complete integrability of the model. The exact analytic solutions are obtained for the problem of the optimal control of parameters of Schrodinger solitons in nonconservative systems with the group velocity dispersion, nonlinear refractive index, and gain (absorption coefficient) varying over the length. The examples demonstrating the non-trivial amplification dynamics of optical solitons, which are important from practical point of view, are considered. The exact analytic solutions are obtained for problems of the optimal amplification of solitons in optical fibres with monotonically decreasing dispersion and of Raman pumping of solitons in fibreoptic communication systems.

  18. Quark contribution to the proton spin in the chiral quark-meson model

    Energy Technology Data Exchange (ETDEWEB)

    Stern, J. (Laboratoire de Physique Theorique, Universite des Sciences et de la Technologie Houari Boumediene, Alger (DZ)); Clement, G. (Departement de Physique, Ecole Normale Spuerieure, Vieux-Kouba, Alger (DZ))

    1988-12-01

    It has been argued that, to leading order in the 1/N/sub c/ expansion, very little of the spin of the proton is carried by the helicities of its constituent quarks, in accordance with the results of a recent EMC experiment. The authors investigate this question by a direct computation in the chiral quark-meson model, where the proton spin is generated by cranking a mean field hedgehog baryon. For not too small values of the quark-meson coupling constant, their results are consistent with the EMC data.

  19. Nucleon shape and electromagnetic form factors in the chiral constituent quark model

    CERN Document Server

    Dahiya, Harleen

    2010-01-01

    The electromagnetic form factors are the most fundamental quantities to describe the internal structure of the nucleon and the shape of a spatially extended particle is determined by its intrinsic quadrupole moment which can be related to the charge radii. We have calculated the electromagnetic form factors, nucleon charge radii and the intrinsic quadrupole moment of the nucleon in the framework of chiral constituent quark model. The results obtained are comparable to the latest experimental studies and also show improvement over some theoretical interpretations.

  20. $Z_b(10650)$ and $Z_b(10610)$ states in a chiral quark model

    OpenAIRE

    Li, M. T.; Wang, W L; Dong, Y. B.; Zhang, Z. Y.

    2012-01-01

    We perform a systematic study of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ systems by using effective interaction in our chiral quark model. Our results show that the interactions of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ states are attractive, which consequently result in $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ bound states. The recent observed exotic-like hadrons of $Z_b(10610)$ and $Z_b(10650)$ are, therefore in our approach,...

  1. ΞΩ and Ξ*Ω dibaryons in SU(3) chiral quark model

    International Nuclear Information System (INIS)

    The binding energy of the six quark system with strangeness s = -5 is investigated by the SU(3) chiral constituent quark model. the single Ξ*Ω channel calculation with spin S = 0 and the coupled ΞΩ-Ξ*Ω channel calculation with spin S = 1 are considered. It is shown that in the spin S = 0 case, the binding energy of Ξ*Ω is ranged from 80.0 to 92.4 MeV, while in the S = 1 case, the additional Ξ*Ω channel increases the binding energy of ΞΩ to a range of 26.2-32.9 MeV

  2. Hadronic contributions to the muon anomaly in the Constituent Chiral Quark Model

    Science.gov (United States)

    Greynat, David

    2016-04-01

    The hadronic contributions to the anomalous magnetic moment of the muon which are relevant for the confrontation between theory and experiment at the present level of accuracy, are evaluated within the same framework: the constituent chiral quark model. This includes the contributions from the dominant hadronic vacuum polarization as well as from the next-to-leading order hadronic vacuum polarization, the contributions from the hadronic light-by-light scattering, and the contributions from the electroweak hadronic Zγγ vertex. They are all evaluated as a function of only one free parameter: the constituent quark mass. We also comment on the comparison between our results and other phenomenological evaluations.

  3. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  4. Scaling violation and the magnetic equation of state in chiral models

    CERN Document Server

    Almasi, Gabor Andras; Friman, Bengt; Redlich, Krzysztof

    2016-01-01

    The critical behavior of the order parameter at the chiral phase transition of strongly interacting matter and the corresponding magnetic equation of state is studied within effective models. We explore universal and non-universal structures near the critical point. These include the scaling functions, the leading corrections to scaling and the corresponding size of the critical region as well as their dependence on an external symmetry breaking field. We consider two models in the mean-field approximation, the quark-meson (QM) and the Polyakov loop extended quark-meson (PQM) models, and compare their critical properties with a purely bosonic theory, the $O(N)$ linear sigma (LS) model in the $N\\to\\infty$ limit. In these models the order parameter scaling function is found analytically using the high temperature expansion of the thermodynamic potential. The effects of a gluonic background on the non-universal scaling parameters are quantified within the PQM model.

  5. Influence of gain dynamics on dissipative soliton interaction in the presence of a continuous wave

    Science.gov (United States)

    Niang, A.; Amrani, F.; Salhi, M.; Leblond, H.; Sanchez, F.

    2015-09-01

    We investigate the effect of the gain dynamics on the motion and interactions of solitons in the frame of a complex Ginzburg-Landau-type model, which accounts for dissipative soliton formation and propagation in a ring fiber laser. It is shown that the gain dynamics modifies the soliton velocity and their interactions. In the presence of an injected continuous wave, an initial crystal of a few solitons gets broken, either into bunches or into individual solitons. Quasielastic collisions analogous to Newton's cradle have been seen. The soliton set may evolve into gas, solitons, or harmonic mode-locked patterns. The time jitter present in the last situation has been considered.

  6. The quantization of exotic states in SU(3) soliton models: A solvable quantum mechanical analog

    CERN Document Server

    Cherman, A; Nellore, A; Cherman, Aleksey; Cohen, Thomas D.; Nellore, Abhinav

    2004-01-01

    The distinction between the rigid rotor and Callan-Klebanov approaches to the quantization of SU(3) solitons is considered in the context of exotic baryons. A numerically tractable quantum mechanical analog system is introduced to test the reliability of the two quantization schemes. We find that in the equivalent of the large N_c limit of QCD, the Callan-Klebanov approach agrees with a numerical solution of the quantum mechanical analog. Rigid rotor quantization generally does not. The implications for exotic baryons are briefly discussed.

  7. Structures of (ΩΩ)0+ and (([1])Ω)1+ in Extended Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zong-Ye; YU You-Wen; DAI Lian-Rong

    2003-01-01

    The structures of (ΩΩ)0+ and (([1])Ω)1+ are studied in the extended chiral SU(3) quark model in whichvector meson exchanges are included. The effect from the vector meson fields is very similar to that from the one-gluonexchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model,di-omega (ΩΩ)0+ is always deeply bound, with over one hundred MeV binding energy, and (([1])Ω)1+ 's binding energyis around 20 MeV. An analysis shows that the quark exchange effect plays a very important role for making di-omega(ΩΩ)0+ deeply bound.

  8. [Investigations in guage theories, topological solitons and string theories

    International Nuclear Information System (INIS)

    This report discusses the following topics: Phases and conservation laws in parametrized systems; Time reversal symmetry in 2 + 1 dimemsional systems; Chiral symmetry breaking in QCD at high temperatures; Solitons at Tev energies; Self-Duality, conformal symmetries and hypercomplex analyticity; Hopf phase entanglements, exotic membranes and division algebras; and Non-perturbative methods. 58 refs

  9. Two-dimensional solitons in saturable media with a quasi-one-dimensional lattice potential

    OpenAIRE

    Mayteevarunyoo, Thawatchai; Malomed, Boris A.

    2006-01-01

    We study families of solitons in a two-dimensional (2D) model of the light transmission through a photorefractive medium equipped with a (quasi-)one-dimensional photonic lattice. The soliton families are bounded from below by finite minimum values of the peak and total power. Narrow solitons have a single maximum, while broader ones feature side lobes. Stability of the solitons is checked by direct simulations. The solitons can be set in motion across the lattice (actually, made tilted in the...

  10. Stochastic perturbation in quasi-ideal dispersion-managed soliton system

    Institute of Scientific and Technical Information of China (English)

    李宏; 黄德修

    2003-01-01

    The model of stochastic perturbation is built up systematically in quasi-ideal dispersion-managed soliton system,its influence on soliton propagation is investigated by both the variational approach and the numerical simulation,and it is found that the stochastic perturbation leads to disintegration of soliton and enhances the interaction between solitons.The nonlinear gain and filter are introduced to suppress effectively the influence on both soliton propagation and interaction.

  11. N-Soliton Solutions of the Nonisospectral Generalized Sawada-Kotera Equation

    Directory of Open Access Journals (Sweden)

    Jian Zhou

    2014-01-01

    Full Text Available The soliton interaction is investigated based on solving the nonisospectral generalized Sawada-Kotera (GSK equation. By using Hirota method, the analytic one-, two-, three-, and N-soliton solutions of this model are obtained. According to those solutions, the relevant properties and features of line-soliton and bright-soliton are illustrated. The results of this paper will be useful to the study of soliton resonance in the inhomogeneous media.

  12. Interaction of spatially overlapping standing electromagnetic solitons in plasmas

    International Nuclear Information System (INIS)

    Numerical investigations on mutual interactions between two spatially overlapping standing electromagnetic solitons in a cold unmagnetized plasma are reported. It is found that an initial state comprising of two overlapping standing solitons evolves into different end states, depending on the amplitudes of the two solitons and the phase difference between them. For small amplitude solitons with zero phase difference, we observe the formation of an oscillating bound state whose period depends on their initial separation. These results suggest the existence of a bound state made of two solitons in the relativistic cold plasma fluid model.

  13. An(1) Toda solitons and the dressing symmetry

    International Nuclear Information System (INIS)

    We present an elementary derivation of the soliton-like solutions in the An(1) Toda models which is alternative to the previously used Hirota method. The solutions of the underlying linear problem corresponding to the N-solitons are calculated. This enables us to obtain explicit expression for the element which by dressing group action, produces a generic soliton solution. In the particular example of mono solitons we suggest a relation to vertex operator formalism, previously used by olive, Turok and Underwood. Our results can also be considered as generalization of the approach to the sine-Gordon solitons, proposed by Babelon and Bernard. (author)

  14. A simple formula for the conserved charges of soliton theories

    CERN Document Server

    Ferreira, L A

    2007-01-01

    We present a simple formula for all the conserved charges of soliton theories, evaluated on the solutions belonging to the orbit of the vacuum under the group of dressing transformations. For pedagogical reasons we perform the explicit calculations for the case of the sine-Gordon model, taken as a prototype of soliton theories. We show that the energy and momentum are boundary terms for all the solutions on the orbit of the vacuum. That orbit includes practically all the solutions of physical interest, namely solitons, multi-solitons, breathers, and combinations of solitons and breathers.

  15. A simple formula for the conserved charges of soliton theories

    International Nuclear Information System (INIS)

    We present a simple formula for all the conserved charges of soliton theories, evaluated on the solutions belonging to the orbit of the vacuum under the group of dressing transformations. For pedagogical reasons we perform the explicit calculations for the case of the sine-Gordon model, taken as a prototype of soliton theories. We show that the energy and momentum are boundary terms for all the solutions on the orbit of the vacuum. That orbit includes practically all the solutions of physical interest, namely solitons, multi-solitons, breathers, and combinations of solitons and breathers. The example of the mKdV equation is also given explicitly

  16. Path Integral Quantization of the Chiral Schwinger Model in Bosonized Form

    Science.gov (United States)

    Bracken, Paul

    The development of the Wess-Zumino action or one-cycle is reviewed from the path integral approach. This is related to the occurrence of anomalies in the theory, and generally signifies a breakdown of gauge invariance. The Jackiw-Rajaraman version of the chiral Schwinger model is studied by means of path integrals. It is shown how the model can be made gauge invariant by using a Wess-Zumino term to write a gauge invariant Lagrangian. The model is considered only in bosonized form without any reference to fermions. The constraints are determined. These components are then used to write a path integral quantization for the bosonized form of the model. Some physical quantities and information, in particular, propagators are derived from the path integral.

  17. Chiral symmetry restoration in the massive Thirring model at finite T and μ: dimensional reduction and the Coulomb gas

    International Nuclear Information System (INIS)

    We show that in certain limits the (1+1)-dimensional massive Thirring model at finite temperature T is equivalent to a one-dimensional Coulomb gas of charged particles at the same T. This equivalence is then used to explore the phase structure of the massive Thirring model. For strong coupling and T >>m (the fermion mass), the system is shown to behave as a free gas of 'molecules' (charge pairs in the Coulomb gas terminology) made of pairs of chiral condensates. This binding of chiral condensates is responsible for the restoration of chiral symmetry as T→∞. In addition, when a fermion chemical potential μ≠0 is included, the analogy with a Coulomb gas still holds with μ playing the role of a purely imaginary external electric field. For small T and μ we find a typical massive Fermi gas behaviour for the fermion density, whereas for large μ it shows chiral restoration by means of a vanishing effective fermion mass. Some similarities with the chiral properties of low-energy QCD at finite T and baryon chemical potential are discussed

  18. Chiral Quark-Meson model of N and DELTA with vector mesons

    International Nuclear Information System (INIS)

    Vector mesons rho, A1 and ω are introduced in the Chiral Quark-Meson Theory (CQMT) of N and Δ. We propose a new viewpoint for developing CQMT from QCD at the mean-field level. The SU(2) x SU(2) chiral Lagrangian incorporates universal coupling. Accordingly, rho is coupled to the conserved isospin current, A to the partially conserved axial-vector current (PCAC), and ω to the conserved baryon current. As a result the only parameter of the model not directly related to experiment is the quark-pion coupling constant. A fully self-consistent mean-field solution to the model is found for fields in the hedgehog ansatz. The vector mesons play a very important role in the system. They contribute significantly to the values of observables and produce a high-quality fit to many data. The classical stability of the system with respect to hedgehog excitations is analyzed through the use of the Quark-Meson RPA equations (QMRPA)

  19. (3+1)-dimensional light-front model with spontaneous breaking of chiral symmetry

    International Nuclear Information System (INIS)

    We investigate a (3+1)-dimensional toy model that exhibits spontaneous breakdown of chiral symmetry, both in a light-front (LF) Hamiltonian and in a Euclidean Schwinger-Dyson (SD) formulation. We show that both formulations are completely equivalent, provided the renormalization is properly done. The counterterm can be constructed explicitly by eliminating zero-mode degrees of freedom, giving rise to to an effective interaction: i.e., zero-mode dynamics, in the sense of an effective action, leads to a very simple set of modifications for the nonzero modes. We find that it is sufficient to renormalize terms that exist already in the canonical LF Hamiltonian independently. Chiral symmetry breaking is manifested via a open-quotes kinetic massclose quotes counterterm, which is eventually responsible for the mass generation of the physical fermion of the model. The vertex mass in the LF calculation must be taken to be the same as the current quark mass in the SD calculation. copyright 1997 The American Physical Society

  20. Molecular Modeling Study of Chiral Separation and Recognition Mechanism of β-Adrenergic Antagonists by Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Yifeng Chai

    2012-01-01

    Full Text Available Chiral separations of five β-adrenergic antagonists (propranolol, esmolol, atenolol, metoprolol, and bisoprolol were studied by capillary electrophoresis using six cyclodextrins (CDs as the chiral selectors. Carboxymethylated-β-cyclodextrin (CM-β-CD exhibited a higher enantioselectivity power compared to the other tested CDs. The influences of the concentration of CM-β-CD, buffer pH, buffer concentration, temperature, and applied voltage were investigated. The good chiral separation of five β-adrenergic antagonists was achieved using 50 mM Tris buffer at pH 4.0 containing 8 mM CM-β-CD with an applied voltage of 24 kV at 20 °C. In order to understand possible chiral recognition mechanisms of these racemates with CM-β-CD, host-guest binding procedures of CM-β-CD and these racemates were studied using the molecular docking software Autodock. The binding free energy was calculated using the Autodock semi-empirical binding free energy function. The results showed that the phenyl or naphthyl ring inserted in the hydrophobic cavity of CM-β-CD and the side chain was found to point out of the cyclodextrin rim. Hydrogen bonding between CM-β-CD and these racemates played an important role in the process of enantionseparation and a model of the hydrogen bonding interaction positions was constructed. The difference in hydrogen bonding formed with the –OH next to the chiral center of the analytes may help to increase chiral discrimination and gave rise to a bigger separation factor. In addition, the longer side chain in the hydrophobic phenyl ring of the enantiomer was not beneficial for enantioseparation and the chiral selectivity factor was found to correspond to the difference in binding free energy.

  1. Vertex operator representation of the soliton tau functions in the A{sub n} {sup (1)} Toda models by dressing transformations

    Energy Technology Data Exchange (ETDEWEB)

    Belich, H.; Cuba, G.; Paunov, R

    1997-12-01

    Affine Toda theories based on simple Lie algebras G are known to posses soliton solutions. Toda solitons has been found by Olive, Turok and Underwood within the group-theoretical approach to the integrable field equations. Single solitons are created by exponentials of special elements of the underlying affine Lie algebra which diagonalize the adjoint action of the principal Heisenberg subalgebra. When G is simply laced and level one representations are considered, the generators of the affine Lie algebra are expressed in terms of the principal Heisenberg oscillators. This representation is known as vertex operator construction. It plays a crucial role in the string theory as well as in the conformal field theory. Alternatively, solitons can be generated from the vacuum by dressing transformations. The problem to relate dressing symmetry to the vertex operator representation of the tau functions for the sine-Gordon model was previously considered by Babelon and Bernard. In the present paper, we extend this relation for arbitrary A{sup (1)}{sub n} Toda field theory. (author) 37 refs.

  2. The Sakai-Sugimoto soliton

    International Nuclear Information System (INIS)

    The Sakai-Sugimoto model is the preeminent example of a string theory description of holographic QCD, in which baryons correspond to topological solitons in the bulk. Here we investigate the validity of various approximations of the Sakai-Sugimoto soliton that are used widely to study the properties of holographic baryons. These approximations include the flat space self-dual instanton, a linear expansion in terms of eigenfunctions in the holographic direction and an asymptotic power series at large radius. These different approaches have produced contradictory results in the literature regarding properties of the baryon, such as relations for the electromagnetic form factors. Here we determine the regions of validity of these various approximations and show how to relate different approximations in contiguous regions of applicability. This analysis clarifies the source of the contradictory results in the literature and resolves some outstanding issues, including the use of the flat space self-dual instanton, the detailed properties of the asymptotic soliton tail, and the role of the UV cutoff introduced in previous investigations. A consequence of our analysis is the discovery of a new large scale, that grows logarithmically with the ’t Hooft coupling, at which the soliton fields enter a nonlinear regime. Finally, we provide the first numerical computation of the Sakai-Sugimoto soliton and demonstrate that the numerical results support our analysis

  3. Gravitational radiation from primordial solitons and soliton-star binaries

    Science.gov (United States)

    Gleiser, Marcelo

    1989-01-01

    The possibility that both the formation of nontopological solitons in a primordial second-order phase transition and binary systems of soliton stars could generate a stochastic gravitational-wave background is examined. The present contribution of gravitational radiation to the energy density of the universe from these processes is estimated for a number of different models. The detectability of such contributions from the timing measurements of the millisecond pulsar and spaceborne laser interferometry is briefly discussed and compared to other cosmological and local sources of background gravitational waves.

  4. Topological Solitons in Physics.

    Science.gov (United States)

    Parsa, Zohreh

    1979-01-01

    A broad definition of solitons and a discussion of their role in physics is given. Vortices and magnetic monopoles which are examples of topological solitons in two and three spatial dimensions are described in some detail. (BB)

  5. Proton parton-distribution functions from the nonlocal Chiral-Quark model

    International Nuclear Information System (INIS)

    Full text: We investigate the parton distribution functions for the proton, employing the gauge invariant nonlocal chiral-quark model. By the virtue of the Drell-Yan-Levy relation, we compute the parton distribution and fragmentation (splitting) functions for the pion and kaon consistently within the present model at the low renormalization scale ∼1 GeV which are necessary for computing the fluctuations of the quarks inside the proton. All the model parameters are determined by the normalization condition for the parton distribution functions and the empirical data for the weak-decay constants for the pion and kaon. As for the initial constituent quark, we use a simple Gaussian-type distribution, developed at the nucleon rest frame. All the results are evolved to high-Q2 via the DGLAP equations, then compared with presently available experimental data. We also discuss the asymmetry for the sea-quark distributions in the proton.

  6. Some aspects of pion physics in the Nambu- and Jona-Lasinio model and chiral Lagrangians

    International Nuclear Information System (INIS)

    I discuss here to what extent the original two-flavour NJL model (which has a minimal number of adjustable parameters) reproduces pion observables. In particular, the sensitivity of the recently calculated electromagnetic mass shift to these NJL parameters is pointed out and a new way to fix them is suggested. A new set of O(1/Nc) diagrams, which are the first meson loop corrections to the RPA, is presented and its effect on the pionic Goldstone mode, its electromagnetic form factor, weak decay constant, and on the constituent quark mass m is discusseed. The relation of these NJL model results to some other chiral Lagrangians is pointed out, where ever possible. The here presented higher order diagrams indicate how one could systematically generate the next-order diagrams. It is, however, questionable whether the simplistic but mathematically manageable contact interaction of the NJL model should be maintained also in these higher order diagrams. (orig.)

  7. The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, Philipp; Kallarackal, Jim [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-11-15

    The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling. (orig.)

  8. Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules

    CERN Document Server

    Bahrami, M; Ferialdi, L; Bassi, A; Curceanu, C; Di Domenico, A; Hiesmayr, B C

    2013-01-01

    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate --creating quantum superpositions-- and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond ex...

  9. Vector Soliton Fiber Lasers

    OpenAIRE

    Zhang, Han

    2011-01-01

    Solitons, as stable localized wave packets that can propagate long distance in dispersive media without changing their shapes, are ubiquitous in nonlinear physical systems. Since the first experimental realization of optical bright solitons in the anomalous dispersion single mode fibers (SMF) by Mollenauer et al. in 1980 and optical dark solitons in the normal dispersion SMFs by P. Emplit et al. in 1987, optical solitons in SMFs had been extensively investigated. In reality a SMF always suppo...

  10. Vector Lattice Vortex Solitons

    Institute of Scientific and Technical Information of China (English)

    WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping

    2005-01-01

    @@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.

  11. Dark Soliton Fiber Laser

    OpenAIRE

    Zhang, H.; Tang, D. Y.; L.M. Zhao; Wu, X; Bao, Q. L.; Loh, K. P.

    2009-01-01

    We report on the experimental observation of stable dark solitons in an all normal dispersion fiber laser. We found experimentally that dark soliton formation is a generic feature of the fiber laser under strong continuous wave (CW) emission. However, only under appropriate pump strength and negative cavity feedback, stable single or multiple dark soliton could be achieved. Furthermore, we show that the features of the observed dark solitons could be well understood based on the nonlinear Sch...

  12. Modelling the Global Solar Corona: Filament Chirality Observations and Surface Simulations

    CERN Document Server

    Yeates, A R; Van Ballegooijen, A A

    2007-01-01

    The hemispheric pattern of solar filaments is considered in the context of the global magnetic field of the solar corona. In recent work Mackay and van Ballegooijen have shown how, for a pair of interacting magnetic bipoles, the observed chirality pattern could be explained by the dominant range of bipole tilt angles and helicity in each hemisphere. This study aims to test this earlier result through a direct comparison between theory and observations, using newly-developed simulations of the actual surface and 3D coronal magnetic fields over a 6-month period, on a global scale. In this paper we consider two key components of the study; firstly the observations of filament chirality for the sample of 255 filaments, and secondly our new simulations of the large-scale surface magnetic field. Based on a flux-transport model, these will be used as the lower boundary condition for the future 3D coronal simulations. Our technique differs significantly from those of other authors, where the coronal field is either a...

  13. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  14. Phase diagram and the pseudogap state in a linear chiral homopolymer model

    Science.gov (United States)

    Sinelnikova, A.; Niemi, A. J.; Ulybyshev, M.

    2015-09-01

    The phase structure of a single self-interacting homopolymer chain is investigated in terms of a universal theoretical model, designed to describe the chain in the infrared limit of slow spatial variations. The effects of chirality are studied and compared with the influence of a short-range attractive interaction between monomers, at various ambient temperature values. In the high-temperature limit the homopolymer chain is in the self-avoiding random walk phase. At very low temperatures two different phases are possible: When short-range attractive interactions dominate over chirality, the chain collapses into a space-filling conformation. But when the attractive interactions weaken, there is a low-temperature unfolding transition and the chain becomes like a straight rod. Between the high- and low-temperature limits, several intermediate states are observed, including the θ regime and pseudogap state, which is a novel form of phase state in the context of polymer chains. Applications to polymers and proteins, in particular collagen, are suggested.

  15. A Three-Flavor Chiral Effective Model with Four Baryonic Multiplets within the Mirror Assignment

    CERN Document Server

    Olbrich, Lisa; Giacosa, Francesco; Rischke, Dirk H

    2015-01-01

    In the case of three quark flavors, (pseudo)scalar diquarks transform as antiquarks under chiral transformations. We construct four spin-1/2 baryonic multiplets from left- and right-handed quarks as well as left- and right-handed diquarks. The fact that two of these multiplets transform in a "mirror" way allows for chirally invariant mass terms. We then embed these baryonic multiplets into the Lagrangian of the so-called extended Linear Sigma Model, which features (pseudo)scalar and (axial-)vector mesons, as well as glueballs. Reducing the Lagrangian to the two-flavor case, we obtain four doublets of nucleonic states. These mix to produce four experimentally observed states with definite parity: the positive-parity nucleon $N(939)$ and Roper resonance $N(1440)$, as well as the negative-parity resonances $N(1535)$ and $N(1650)$. We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of the aforementioned states. Studying the limit of vanishing quark conden...

  16. Introduction to solitons

    Indian Academy of Sciences (India)

    Miki Wadati

    2001-11-01

    As an introduction to the special issue on nonlinear waves, solitons and their significance in physics are reviewed. The soliton is the first universal concept in nonlinear science. Universality and ubiquity of the soliton concept are emphasized.

  17. Soft matrix elements in the non-local chiral quark model

    International Nuclear Information System (INIS)

    In presence of the hard scale amplitudes for high energy processes factorize into perturbative and soft part. While the former can be calculated within QCD, the latter has to be either obtained from experiment or treated by non-perturbative methods. One of the possibilities is to use low energy effective models, which incorporate dynamical chiral symmetry breaking, as a one of the most important phenomena at this scale. Moreover, realistic models have to take into account the non-local interactions. In the present talk we consider semibosonized Nambu-Jona-Lasinio model, where the non-locality emerges as a momentum dependence of constituent quark mass. Technically, it serves as a natural way of Lorentz covariant regulator of the loop integrals at high momenta, which is needed in order to make the calculations finite. On the other hand, momentum dependence of the mass forces us to replace standard local currents by the non-local ones. Their precise form is in general not restricted, therefore they have to be modelled. In order to demonstrate simple choice of the non-local vector current, we use the photon distribution amplitudes and an ansatz for the momentum dependence of mass allowing for analytic calculations. As an example of the more advanced applications of the non-local chiral quark model (NCQM), we consider recently proposed pion-photon transition distribution amplitudes (TDA). They are in some sense similar to the ordinary generalized parton distribution functions, however they are non diagonal in the states - instead of transition between two hadrons with different momenta we deal with the hadron and the real photon. TDA's appear as a universal non perturbative input in backward Compton scattering or hadron-antihadron annihilation into two photons. From the point of view of the NCQM's TDA's are very interesting objects to study, because they have to satisfy several properties originating from Lorentz invariance (so called polynomiality), Ward identities and

  18. Brans-Dicke solitons as finite perturbations on perfect-fluid FRW models in general relativity

    International Nuclear Information System (INIS)

    We consider the relation between a class of vacuum solutions in the Brans-Dicke theory of gravitation and perfect barotropic field Friedmann-Robertson-Walker cosmologies which can be related to five-dimensional vacuum solutions of Einstein's equations. We present a family of solitonic solutions of the Einstein equations obtained by the application of the inverse scattering technique in five dimensions followed by a subsequent Kaluza-Klein dimensional reduction procedure and a conformal rescaling. The effective energy-momentum tensor that appears is equivalent to that of the Brans-Dicke theory of gravitation. For large time values the metric approaches that of a flat FRW universe with a barotropic perfect fluid as material content. The solutions are a particular case of a family previously presented, together with a new renormalisation procedure for the inverse scattering technique. (author)

  19. Confinement, chiral symmetry breaking and continuum limits in quantum link models

    International Nuclear Information System (INIS)

    Using the example of compact U(1) lattice gauge theory we argue that quantum link models can be used to reproduce the physics of conventional Hamiltonian lattice gauge theories. In addition to the usual gauge coupling g, these models have a new parameter j which naturally cuts-off large electric flux quanta on each link while preserving exact U(1) gauge invariance. The j → ∞ limit recovers the conventional Hamiltonian. At strong couplings, the theory shows confinement and chiral symmetry breaking for all non-trivial values of j. The phase diagram of the 3+1 dimensional theory suggests that a coulomb phase is present at large but finite j. Setting g = 0, a new approach to the physics of compact U(1) gauge theory on the lattice emerges. In this case the parameter j takes over the role of the gauge coupling, and j → ∞ describes free photons

  20. SO(3) vortices and disorder in the 2d SU(2) chiral model

    CERN Document Server

    Kovács, T G

    1995-01-01

    We study the correlation function of the 2d SU(2) principal chiral model on the lattice. By rewriting the model in terms of Z(2) degrees of freedom coupled to SO(3) vortices we show that the vortices play a crucial role in disordering the correlations at low temperature. Using a series of exact transformations we prove that, if satisfied, certain inequalities between vortex correlations imply exponential fall-off of the correlation function at arbitrarily low temperatures. We also present some Monte Carlo evidence that these correlation inequalities are indeed satisfied. Our method can be easily translated to the language of 4d SU(2) gauge theory to establish the role of corresponding SO(3) monopoles in maintaining confinement at small couplings.