WorldWideScience

Sample records for chiral self-assembled supramolecular

  1. Solvent-polarity-tuned morphology and inversion of supramolecular chirality in a self-assembled pyridylpyrazole-linked glutamide derivative: nanofibers, nanotwists, nanotubes, and microtubes.

    Science.gov (United States)

    Jin, Qingxian; Zhang, Li; Liu, Minghua

    2013-07-01

    The self-assembly of a low-molecular-weight organogelator into various hierarchical structures has been achieved for a pyridylpyrazole linked L-glutamide amphiphile in different solvents. Upon gel formation, supramolecular chirality was observed, which exhibited an obvious dependence on the polarity of the solvent. Positive supramolecular chirality was obtained in nonpolar solvents, whereas it was inverted into negative supramolecular chirality in polar solvents. Moreover, the gelator molecules self-assembled into a diverse array of nanostructures over a wide scale range, from nanofibers to nanotubes and microtubes, depending on the solvent polarity. Such morphological changes could even occur for the xerogels in the solvent vapors. We found that the interactions between the pyridylpyrazole headgroups and the solvents could subtly change the stacking of the molecules and, hence, their self-assembled nanostructures. This work exemplifies that organic solvents can significantly involve the gelation, as well as tune the structure and properties, of a gel.

  2. Chiral Supramolecular Self-Assembly of 2,2’:6’,2”-TERPYRIDINE-4’-CARBOXYLIC Acid Molecules Chemically Adsorbed on Cu(111)

    Science.gov (United States)

    Jiang, Danfeng; Lu, Yan; Ling, Jie; Leng, Xinli; Liu, Xiaoqing; Wang, Li

    2016-06-01

    In this paper, large-area chiral supramolecular self-assembly of 2,2’:6’,2”-terpyridine-4’-carboxylic acid (C16H11N3O2; Y) molecules on Cu(111) is studied using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The basic building blocks of such a self-assembled monolayer are triangular vortex-shaped supramolecular structures containing three twisted Y molecules. Chirality is maintained and transferred from one vortex to the adjacent vortex in successive molecular domains within the same atomic terrace. The twisted Y molecule, bridging two nearest-neighbor Cu atoms, is stabilized by symmetric Cu-O bonds on the surface. The near perpendicularity of these bonds to the surface is the main reason for the formation of “standing-up” Y molecules.

  3. Gelation induced supramolecular chirality: chirality transfer, amplification and application.

    Science.gov (United States)

    Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua

    2014-08-14

    Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.

  4. Self-assembly mechanism of 1,3:2,4-di(3,4-dichlorobenzylidene)-D-sorbitol and control of the supramolecular chirality.

    Science.gov (United States)

    Li, Jingjing; Fan, Kaiqi; Guan, Xidong; Yu, Yingzhe; Song, Jian

    2014-11-11

    Dibenzylidene-D-sorbitol (DBS) and its derivatives are known to form gels in organic solvents; however, the mechanism of the gel formation has been a subject of much debate. The present work is undertaken to elucidate the organization mechanism of a DBS derivative, 1,3:2,4-di(3,4-dichlorobenzylidene)-D-sorbitol (DCDBS), by taking into account the solvent effects and comparing the experiment data with theoretical calculation. These molecules form smooth nonhelical fibers with a rest circular dichroism (CD) signal in polar solvents, in contrast to rope-liked left-helical fibers with a strong negative CD signal observed in nonpolar solvents. The molecular complexes thus formed were characterized by means of Fourier transform infrared spectra, ultraviolet-visible spectra, X-ray diffraction patterns, static contact angles, and theoretical calculations. It was proposed that the interactions between the gelator and the solvents could subtly change the stacking of the molecules and hence their self-assembled nanostructures. In nonpolar solvents, the gelator molecules appear as a distorted T-shaped structure with the 6-OH forming intermolecular hydrogen bonds with the acetal oxygens of adjacent gelator molecule. In addition, because of differential stacking interactions on both sides of the 10-member ring skeleton of the gelator, the oligomers may assemble in a helix fashion to minimize the energy, leading to helical fibers. In polar solvents, however, the gelator molecules show a rigid planelike structure and thus stack on top of each other because of strong parallel-displaced π interactions. The balanced driving force on both sides of the 10-member ring skeleton made it difficult for the dimers to bend, thus resulting in nonhelical nanostructure. As expected from the mechanisms proposed here, twisted ribbon fibers with a medium strength CD signal were obtained when solvents of different polarities were mixed. Thus, solvent effects revealed in this work represent an

  5. Construction of Supramolecular Architectures via Self-assembly

    Institute of Scientific and Technical Information of China (English)

    Takeharu; Haino

    2007-01-01

    1 Results In this paper we report supramolecular polymeric nano networks formed by the molecular-recognition-directed self-assembly between a calix[5]arene and C60[1]. Covalently-linked double-calix[5]arenes take up C60 into their cavities[2]. This complementary interaction creates a strong non-covalent bonding; thus,the iterative self-assembly between dumbbell fullerene 1 and ditopic host 2 can produce the supramolecular polymer networks (See Fig.1).

  6. Role of Achiral Nucleobases in Multicomponent Chiral Self-Assembly: Purine-Triggered Helix and Chirality Transfer.

    Science.gov (United States)

    Deng, Ming; Zhang, Li; Jiang, Yuqian; Liu, Minghua

    2016-11-21

    Chiral self-assembly is a basic process in biological systems, where many chiral biomolecules such as amino acids and sugars play important roles. Achiral nucleobases usually covalently bond to saccharides and play a significant role in the formation of the double helix structure. However, it remains unclear how the achiral nucleobases can function in chiral self-assembly without the sugar modification. Herein, we have clarified that purine nucleobases could trigger N-(9-fluorenylmethox-ycarbonyl) (Fmoc)-protected glutamic acid to self-assemble into helical nanostructures. Moreover, the helical nanostructure could serve as a matrix and transfer the chirality to an achiral fluorescence probe, thioflavin T (ThT). Upon chirality transfer, the ThT showed not only supramolecular chirality but also circular polarized fluorescence (CPL). Without the nucleobase, the self-assembly processes cannot happen, thus providing an example where achiral molecules played an essential role in the expression and transfer of the chirality.

  7. Molecular Recognition Directed Self-Assembly of Supramolecular Polymers

    Science.gov (United States)

    1994-06-30

    demonstrated that various substituted gallic acid derivatives can be used to constmict exo-receptors with a tapered shape. "Tihis paper will review...understood self-assembled biological system [3ab.5]. Therefore, we believe it provides an ideal model to be used for the understanding of the principles...governing the self-assembly of synthetic supraimolecular architectures. Synthetic Strategy Used In The Design Of TMV-Like Supramolecular Architectures fl

  8. Development of Supramolecular Saccharide Sensors Based on Cyclodextrin Complexes and Self-assembling Systems.

    Science.gov (United States)

    Tsuchido, Yuji; Fujiwara, Shoji; Hashimoto, Takeshi; Hayashita, Takashi

    2017-01-01

    Cyclodextrins (CDs) are water-soluble host compounds having nano-size hydrophobic cavities that enable them to incorporate organic molecules in water. Optically inert CDs can be efficiently combined with various types of chromoionophores and fluoroionophores. In this study, using diverse combinations of phenylboronic acid fluorescent sensors and azoprobes with CDs, the unique saccharide recognition functions of CD, chemically modified CD, and CD gel complexes based on their synergistic function are clarified, thereby confirming their use as supramolecular saccharide sensors. To realize novel supramolecular chirality, the twisted structure of two ditopic azoprobes inside the γ-CD chiral cavity is controlled by multi-point recognition of guest ions in water. As different types of supramolecular saccharide sensors, phenylboronic acid-based self-assembling systems are also reviewed.

  9. Self-Assembled Supramolecular Architectures Lyotropic Liquid Crystals

    CERN Document Server

    Garti, Nissim

    2012-01-01

    This book will describe fundamentals and recent developments in the area of Self-Assembled Supramolecular Architecture and their relevance to the  understanding of the functionality of  membranes  as delivery systems for active ingredients. As the heirarchial architectures determine their performance capabilities, attention will be paid to theoretical and design aspects related to the construction of lyotropic liquid crystals: mesophases such as lamellar, hexagonal, cubic, sponge phase micellosomes. The book will bring to the reader mechanistic aspects, compositional c

  10. Self-Assembly of Supramolecular Composites under Cylindrical Confinement

    Science.gov (United States)

    Bai, Peter; Thorkelsson, Kari; Ercius, Peter; Xu, Ting

    2014-03-01

    Block copolymer (BCP) or BCP-based supramolecules are useful platforms to direct nanoparticle (NP) assemblies. However, the variety of NP assemblies is rather limited in comparison to those shown by DNA-guided approach. By subjecting supramolecular nanocomposites to 2-D cylindrical confinement afforded by anodic aluminum oxide membranes, a range of new NP assemblies such as stacked rings, and single and double helices can be readily obtained, as confirmed by TEM and TEM tomography. At low NP loadings (3 v%), the nanostructure conforms to the supramolecule morphology. However, at higher NP loadings (6-9 v%), the nanostructure deviates significantly from the morphology of supramolecular nanocomposites in bulk or in thin film, suggesting that frustrated NP packing, in addition to simple supramolecule templating, may play a significant role in the self-assembly process. The present studies demonstrate that 2-D confinement can be an effective means to tailor self-assembled NP structures and may open further opportunities to manipulate the macroscopic properties of NP assemblies.

  11. Supramolecular helices: chirality transfer from conjugated molecules to structures.

    Science.gov (United States)

    Yang, Yang; Zhang, Yajie; Wei, Zhixiang

    2013-11-13

    Different scales of chirality endow a material with many excellent properties and potential applications. In this review, using π-conjugated molecules as functional building blocks, recent progress on supramolecular helices inspired by biological helicity is summarized. First, induced chirality on conjugated polymers and small molecules is introduced. Molecular chirality can be amplified to nanostructures, superstructures, and even macroscopic structures by a self-assembly process. Then, the principles for tuning the helicity of supramolecular chirality, as well as formation of helical heterojunctions, are summarized. Finally, the potential applications of chiral structures in chiral sensing and organic electronic devices are critically reviewed. Due to recent progress in chiral structures, an interdisciplinary area called "chiral electronics" is expected to gain wide popularity in the near future.

  12. Self-Assembled PDINH Supramolecular System for Photocatalysis under Visible Light.

    Science.gov (United States)

    Liu, Di; Wang, Jun; Bai, Xiaojuan; Zong, Ruilong; Zhu, Yongfa

    2016-09-01

    A self-assembled perylene-3,4,9,10-tetracarboxylic diimide(PDINH) supramolecular system consisting of all-organic PDINH molecule building blocks through non-covalent interactions works as a visible light photocatalyst with high activity.

  13. Energy Landscapes for the Self-Assembly of Supramolecular Polyhedra

    Science.gov (United States)

    Russell, Emily R.; Menon, Govind

    2016-06-01

    We develop a mathematical model for the energy landscape of polyhedral supramolecular cages recently synthesized by self-assembly (Sun et al. in Science 328:1144-1147, 2010). Our model includes two essential features of the experiment: (1) geometry of the organic ligands and metallic ions; and (2) combinatorics. The molecular geometry is used to introduce an energy that favors square-planar vertices (modeling {Pd}^{2+} ions) and bent edges with one of two preferred opening angles (modeling boomerang-shaped ligands of two types). The combinatorics of the model involve two-colorings of edges of polyhedra with four-valent vertices. The set of such two-colorings, quotiented by the octahedral symmetry group, has a natural graph structure and is called the combinatorial configuration space. The energy landscape of our model is the energy of each state in the combinatorial configuration space. The challenge in the computation of the energy landscape is a combinatorial explosion in the number of two-colorings of edges. We describe sampling methods based on the symmetries of the configurations and connectivity of the configuration graph. When the two preferred opening angles encompass the geometrically ideal angle, the energy landscape exhibits a very low-energy minimum for the most symmetric configuration at equal mixing of the two angles, even when the average opening angle does not match the ideal angle.

  14. Self-assembly of supramolecularly engineered polymers and their biomedical applications.

    Science.gov (United States)

    Wang, Dali; Tong, Gangsheng; Dong, Ruijiao; Zhou, Yongfeng; Shen, Jian; Zhu, Xinyuan

    2014-10-18

    Noncovalent interactions provide a flexible method of engineering various chemical entities with tailored properties. Specific noncovalent interactions between functionalized small molecules, macromolecules or both of them bearing complementary binding sites can be used to engineer supramolecular complexes that display unique structure and properties of polymers, which can be defined as supramolecularly engineered polymers. Due to their dynamic tunable structures and interesting physical/chemical properties, supramolecularly engineered polymers have recently received more and more attention from both academia and industry. In this feature article, we summarize the recent progress in the self-assembly of supramolecularly engineered polymers as well as their biomedical applications. In view of different molecular building units, the supramolecularly engineered polymers can be classified into the following three major types: supramolecularly engineered polymers built by small molecules, supramolecularly engineered polymers built by small molecules and macromolecules, and supramolecularly engineered polymers built by macromolecules, which possess distinct morphologies, definite architectures and specific functions. Owing to the reversible nature of the noncovalent interactions, the supramolecularly engineered polymers have exhibited unique features or advantages in molecular self-assembly, for example, facile preparation and functionalization, controllable morphologies and structures, dynamic self-assembly processes, adjustable performance, and so on. Furthermore, the self-assembled supramolecular structures hold great potential as promising candidates in various biomedical fields, including bioimaging, drug delivery, gene transfection, protein delivery, regenerative medicine and tissue engineering. Such developments in the self-assembly of supramolecularly engineered polymers and their biomedical applications greatly promote the interdiscipline research among

  15. Supramolecular chemistry: Unexplored territory for self-assembly

    Science.gov (United States)

    Beuerle, Florian

    2016-12-01

    Cage-like structures can self-assemble from suitable metal ions and organic linkers, but the size of the assemblies was limited. The surprise discovery of a new series of cages opens up fresh horizons for self-assembly. See Letter p.563

  16. Reconfigurable self-assembly through chiral control of interfacial tension.

    Science.gov (United States)

    Gibaud, Thomas; Barry, Edward; Zakhary, Mark J; Henglin, Mir; Ward, Andrew; Yang, Yasheng; Berciu, Cristina; Oldenbourg, Rudolf; Hagan, Michael F; Nicastro, Daniela; Meyer, Robert B; Dogic, Zvonimir

    2012-01-04

    From determining the optical properties of simple molecular crystals to establishing the preferred handedness in highly complex vertebrates, molecular chirality profoundly influences the structural, mechanical and optical properties of both synthetic and biological matter on macroscopic length scales. In soft materials such as amphiphilic lipids and liquid crystals, the competition between local chiral interactions and global constraints imposed by the geometry of the self-assembled structures leads to frustration and the assembly of unique materials. An example of particular interest is smectic liquid crystals, where the two-dimensional layered geometry cannot support twist and chirality is consequently expelled to the edges in a manner analogous to the expulsion of a magnetic field from superconductors. Here we demonstrate a consequence of this geometric frustration that leads to a new design principle for the assembly of chiral molecules. Using a model system of colloidal membranes, we show that molecular chirality can control the interfacial tension, an important property of multi-component mixtures. This suggests an analogy between chiral twist, which is expelled to the edges of two-dimensional membranes, and amphiphilic surfactants, which are expelled to oil-water interfaces. As with surfactants, chiral control of interfacial tension drives the formation of many polymorphic assemblages such as twisted ribbons with linear and circular topologies, starfish membranes, and double and triple helices. Tuning molecular chirality in situ allows dynamical control of line tension, which powers polymorphic transitions between various chiral structures. These findings outline a general strategy for the assembly of reconfigurable chiral materials that can easily be moved, stretched, attached to one another and transformed between multiple conformational states, thus allowing precise assembly and nanosculpting of highly dynamical and designable materials with complex

  17. Physical mechanisms and biological significance of supramolecular protein self-assembly.

    Science.gov (United States)

    Kentsis, Alex; Borden, Katherine L B

    2004-04-01

    In living cells, chemical reactions of metabolism, information processing, growth and development are organized in a complex network of interactions. At least in part, the organization of this network is accomplished as a result of physical assembly by supramolecular scaffolds. Indeed, most proteins function in cells within the context of multimeric or supramolecular assemblies. With the increasing availability of atomic structures and molecular thermodynamics, it is possible to recast the problem of non-covalent molecular self-assembly from a unified perspective of structural thermodynamics and kinetics. Here, we present a generalized theory of self-assembly based on Wegner's kinetic model and use it to delineate three physical mechanisms of self-assembly: as limited by association of assembly units (nucleation), by association of monomers (isodesmic), and by conformational reorganization of monomers that is coupled to assembly (conformational). Thus, we discuss actin, tubulin, clathrin, and the capsid of icosahedral cowpea chlorotic mottle virus with respect to assembly of architectural scaffolds that perform largely mechanical functions, and pyruvate dehydrogenase, and RING domain proteins PML, arenaviral Z, and BRCA1:BARD1 with regard to assembly of supramolecular enzymes with metabolic and chemically directive functions. In addition to the biological functions made possible by supramolecular self-assembly, such as mesoscale mechanics of architectural scaffolds and metabolic coupling of supramolecular enzymes, we show that the physical mechanisms of self-assembly and their structural bases are biologically significant as well, having regulatory roles in both formation and function of the assembled structures in health and disease.

  18. Unzipping the role of chirality in nanoscale self-assembly of tripeptide hydrogels

    Science.gov (United States)

    Marchesan, Silvia; Waddington, Lynne; Easton, Christopher D.; Winkler, David A.; Goodall, Liz; Forsythe, John; Hartley, Patrick G.

    2012-10-01

    Change of chirality is a useful tool to manipulate the aqueous self-assembly behaviour of uncapped, hydrophobic tripeptides. In contrast with other short peptides, these tripeptides form hydrogels at a physiological pH without the aid of organic solvents or end-capping groups (e.g. Fmoc). The novel hydrogel forming peptide DLeu-Phe-Phe (DLFF) and its epimer Leu-Phe-Phe (LFF) exemplify dramatic supramolecular effects induced by subtle changes to stereochemistry. Only the d-amino acid-containing peptide instantly forms a hydrogel in aqueous solution following a pH switch, generating long fibres (>100 μm) that entangle into a 3D network. However, unexpected nanostructures are observed for both peptides and they are particularly heterogeneous for LFF. Structural analyses using CD, FT-IR and fluorescent amyloid staining reveal anti-parallel beta-sheets for both peptides. XRD analysis also identifies key distances consistent with beta-sheet formation in both peptides, but suggests additional high molecular order and extended molecular length for DLFF only. Molecular modelling of the two peptides highlights the key interactions responsible for self-assembly; in particular, rapid self-assembly of DLFF is promoted by a phenylalanine zipper, which is not possible because of steric factors for LFF. In conclusion, this study elucidates for the first time the molecular basis for how chirality can dramatically influence supramolecular organisation in very short peptide sequences.Change of chirality is a useful tool to manipulate the aqueous self-assembly behaviour of uncapped, hydrophobic tripeptides. In contrast with other short peptides, these tripeptides form hydrogels at a physiological pH without the aid of organic solvents or end-capping groups (e.g. Fmoc). The novel hydrogel forming peptide DLeu-Phe-Phe (DLFF) and its epimer Leu-Phe-Phe (LFF) exemplify dramatic supramolecular effects induced by subtle changes to stereochemistry. Only the d-amino acid-containing peptide

  19. Directed flexibility: self-assembly of a supramolecular tetrahedron.

    Science.gov (United States)

    Ludlow, James M; Xie, Tingzheng; Guo, Zaihong; Guo, Kai; Saunders, Mary Jane; Moorefield, Charles N; Wesdemiotis, Chrys; Newkome, George R

    2015-03-01

    Self-assembly of a tribenzo-27-crown-9 ether functionalized with six terpyridines generated (85%) an expanded tetrahedral structure comprised of four independent triangular surfaces interlinked by crown ether vertices.

  20. Amphiphiles Self-Assembly: Basic Concepts and Future Perspectives of Supramolecular Approaches

    Directory of Open Access Journals (Sweden)

    Domenico Lombardo

    2015-01-01

    Full Text Available Amphiphiles are synthetic or natural molecules with the ability to self-assemble into a wide variety of structures including micelles, vesicles, nanotubes, nanofibers, and lamellae. Self-assembly processes of amphiphiles have been widely used to mimic biological systems, such as assembly of lipids and proteins, while their integrated actions allow the performance of highly specific cellular functions which has paved a way for bottom-up bionanotechnology. While amphiphiles self-assembly has attracted considerable attention for decades due to their extensive applications in material science, drug and gene delivery, recent developments in nanoscience stimulated the combination of the simple approaches of amphiphile assembly with the advanced concept of supramolecular self-assembly for the development of more complex, hierarchical nanostructures. Introduction of stimulus responsive supramolecular amphiphile assembly-disassembly processes provides particularly novel approaches for impacting bionanotechnology applications. Leading examples of these novel self-assembly processes can be found, in fact, in biosystems where assemblies of different amphiphilic macrocomponents and their integrated actions allow the performance of highly specific biological functions. In this perspective, we summarize in this tutorial review the basic concept and recent research on self-assembly of traditional amphiphilic molecules (such as surfactants, amphiphile-like polymers, or lipids and more recent concepts of supramolecular amphiphiles assembly which have become increasingly important in emerging nanotechnology.

  1. Structural aspects, thermal behavior, and stability of a self-assembled supramolecular polymer derived from flunixin-meglumine supramolecular adducts

    Energy Technology Data Exchange (ETDEWEB)

    Cassimiro, Douglas L.; Kobelnik, Marcelo [Institute of Chemistry, Paulista State University, Av. Prof. Francisco Degni, s/n, 14800-900 Araraquara, Sao Paulo (Brazil); Ribeiro, Clovis A., E-mail: ribeiroc@iq.unesp.br [Institute of Chemistry, Paulista State University, Av. Prof. Francisco Degni, s/n, 14800-900 Araraquara, Sao Paulo (Brazil); Crespi, Marisa S.; Boralle, Nivaldo [Institute of Chemistry, Paulista State University, Av. Prof. Francisco Degni, s/n, 14800-900 Araraquara, Sao Paulo (Brazil)

    2012-02-10

    Highlights: Black-Right-Pointing-Pointer The thermal behavior of flunixin-meglumine, a potent NSAID, was investigated. Black-Right-Pointing-Pointer This supramolecular adduct self-assembled resulting in a polymer-like material. Black-Right-Pointing-Pointer The supramolecular polymer showed a high molecular weight around 290 {+-} 88 MDa. Black-Right-Pointing-Pointer NMR and FT-IR showed that hydrogen bonding can be responsible for the self-assembly. Black-Right-Pointing-Pointer The stability of the supramolecular polymer was also studied and presented here. - Abstract: Flunixin-meglumine, a potent non-steroidal anti-inflammatory drug (NSAID) and a cyclo-oxygenase inhibitor for Veterinary use, is a hydrogen-bonded supramolecular adduct. Two monotropically related crystalline modifications (Forms I and II) were observed for a flunixin-meglumine sample. During the melt of form I, flunixin-meglumine adducts self-assembled by hydrogen bonds involving the hydroxyl groups from meglumine, resulting in an amorphous rigid glassy supramolecular polymer, which showed a high molecular weight around 290 {+-} 88 MDa and a glass transition around 49.5 Degree-Sign C. Both the adduct and the resulting supramolecular polymer were characterized by differential scanning calorimetry (DSC), nuclear magnetic resonance spectroscopy (NMR), Fourier transform-infrared spectroscopy (FT-IR), and weight-average molecular weight determination by light scattering. The chemical stability and morphological changes of the depolymerization process were also investigated for the supramolecular polymer, by DSC and scanning electron microscopy (SEM), respectively.

  2. Mechanism of N-octadecyl-N'-maleoyl-L-phenylalanine self-assembled into supramolecular structures

    Institute of Scientific and Technical Information of China (English)

    Sheng Zu Zhang; Xin Jian Fu; Hong Wang; Ya Jiang Yang

    2008-01-01

    N-Octadecyl-N'-maleoyl-L-phenylalanine (ODMA-L-Phe) was synthesized through the condensation, deprotection and aeid-ylation reaction of BOC-L-phenylalanine, octadecylamine and maleic anhydride. ODMA-L-Phe can self-assemble in some organic solvents and turned them into thermally reversible physical supramolecular organogels. The morphology of ODMA-L-Phe aggregates was characterized by polarized optical microscopy (POM) and field emission scanning electron microscope (FE-SEM). The aggregates of ODMA-L-Phe were needle-like fibrils with diameters of approximately 100-200 nm. The mechanism of ODMA-L-Phe self-assembly in organic solvents was investigated using 1H NMR and circular dichroism (CD). The results indicated that hydrogen bonding was one of the main driving forces for the self-assembly of ODMA-L-Phe.

  3. Inversion of Supramolecular Chirality by Sonication-Induced Organogelation

    Science.gov (United States)

    Maity, Sibaprasad; Das, Priyadip; Reches, Meital

    2015-01-01

    Natural helical structures have inspired the formation of well-ordered peptide-based chiral nanostructures in vitro. These structures have drawn much attention owing to their diverse applications in the area of asymmetric catalysts, chiral photonic materials, and nanoplasmonics. The self-assembly of two enantiomeric fluorinated aromatic dipeptides into ordered chiral fibrillar nanostructures upon sonication is described. These fibrils form organogels. Our results clearly indicate that fluorine-fluorine interactions play an important role in self-assembly. Circular dichroism analysis revealed that both peptides (peptides 1 and 2), containing two fluorines, depicted opposite cotton effects in their monomeric form compared with their aggregated form. This shows that supramolecular chirality inversion took place during the stimuli-responsive self-aggregation process. Conversely, peptide 3, containing one fluorine, did not exhibit chirality inversion in sonication-induced organogelation. Therefore, our results clearly indicate that fluorination plays an important role in the organogelation process of these aromatic dipeptides. Our findings may have broad implications regarding the design of chiral nanostructures for possible applications such as chiroptical switches, asymmetric catalysis, and chiral recognitions. PMID:26553508

  4. Self-assembling supramolecular systems of different symmetry formed by wedged macromolecular dendrons

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbina, M. A., E-mail: shcherbina@ispm.ru; Bakirov, A. V. [Russian Academy of Sciences, Institute of Synthetic Polymer Materials (Russian Federation); Yakunin, A. N. [Karpov Institute of Physical Chemistry (Russian Federation); Percec, V. [University of Pennsylvania (United States); Beginn, U. [Universitaet Osnabrueck, Institut fuer Chemie (Germany); Moeller, M. [Institute for Technical and Macromolecular Chemistry (Germany); Chvalun, S. N. [Russian Academy of Sciences, Institute of Synthetic Polymer Materials (Russian Federation)

    2012-03-15

    The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.

  5. Development of Self-Assembled Supramolecular Catalysts and Their Applications to Organic Synthesis

    Institute of Scientific and Technical Information of China (English)

    Shiro IKEGAMI

    2005-01-01

    @@ 1Introduction In modern synthetic organic chemistry, the development of efficient reagent or catalyst recycling systems is regarded as one of the most important topics. We have previously reported a self-assembled process between poly(N-isopropylacrylamide) (PNIPAAm) based polymer ligands and an inorganic species[1]. This process afforded a networked supramolecular complex where the polymers are cross-linked together by the inorganic species. Thus obtained complex was insoluble in water and worked as an efficient triphase catalyst.

  6. Anisotropic Self-Assembly of Supramolecular Polymers and Plasmonic Nanoparticles at the Liquid-Liquid Interface.

    Science.gov (United States)

    Armao Iv, Joseph J; Nyrkova, Irina; Fuks, Gad; Osypenko, Artem; Maaloum, Mounir; Moulin, Emilie; Arenal, Raul; Gavat, Odile; Semenov, Alexander; Giuseppone, Nicolas

    2017-02-15

    The study of supramolecular polymers in the bulk, in diluted solution, and at the solid-liquid interface has recently become a major topic of interest, going from fundamental aspects to applications in materials science. However, examples of supramolecular polymers at the liquid-liquid interface are mostly unexplored. Here, we describe the supramolecular polymerization of triarylamine molecules and their light-triggered organization at a chloroform-water interface. The resulting interfacial nematic layer of these 1D supramolecular polymers is further used as a template for the precise alignment of spherical gold nanoparticles coming from the water phase. These hybrid thin films are spontaneously formed in a single process, without chemical prefunctionalization of the metallic nanoparticles, and their ordering is improved by centrifugation. The resulting polymer chains and strings of nanoparticles can be co-aligned with high anisotropy over very large distances. By using a combination of experimental and theoretical investigations, we decipher the full sequence of this oriented self-assembly process. In such a highly anisotropic configuration, electron energy loss spectroscopy reveals that the self-assembled nanoparticles behave as plasmonic waveguides.

  7. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity.

    Science.gov (United States)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J; Dong, He

    2015-12-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.

  8. Cooperative Self-Assembly Transfer from Hierarchical Supramolecular Polymers to Gold Nanoparticles.

    Science.gov (United States)

    Coelho, João Paulo; Tardajos, Gloria; Stepanenko, Vladimir; Rödle, Alexander; Fernández, Gustavo; Guerrero-Martínez, Andrés

    2015-11-24

    The transfer of information encoded by molecular subcomponents is a key phenomenon that regulates the biological inheritance in living organisms, yet there is a lack of understanding of related transfer mechanisms at the supramolecular level in artificial multicomponent systems. Our contribution to tackle this challenge has focused on the design of a thiolated π-conjugated linking unit, whose hierarchical, cooperative self-assembly in nonpolar media can be efficiently transferred from the molecular to the nanoscopic level, thereby enabling the reversible self-assembly of gold nanoparticle (AuNP) clusters. The transfer of supramolecular information by the linking π-system can only take place when a specific cooperative nucleation-elongation mechanism is operative, whereas low-ordered noncooperative assemblies formed below a critical concentration do not suffice to extend the order to the AuNP level. To the best of our knowledge, our approach has allowed for the first time a deep analysis of the hierarchy levels and thermodynamics involved in the self-assembly of AuNPs.

  9. Supramolecular chiral host-guest nanoarchitecture induced by the selective assembly of barbituric acid derivative enantiomers

    Science.gov (United States)

    Sun, Xiaonan; Silly, Fabien; Maurel, Francois; Dong, Changzhi

    2016-10-01

    Barbituric acid derivatives are prochiral molecules, i.e. they are chiral upon adsorption on surfaces. Scanning tunneling microscopy reveals that barbituric acid derivatives self-assemble into a chiral guest-host supramolecular architecture at the solid-liquid interface on graphite. The host nanoarchitecture has a sophisticated wavy shape pattern and paired guest molecules are nested insides the cavities of the host structure. Each unit cell of the host structure is composed of both enantiomers with a ratio of 1:1. Furthermore, the wavy patterns of the nanoarchitecture are formed from alternative appearance of left- and right-handed chiral building blocks, which makes the network heterochiral. The functional guest-host nanoarchitecture is the result of two-dimensional chiral amplification from single enantiomers to organizational heterochiral supramolecular self-assembly.

  10. Design and construction of self-assembling supramolecular protein complexes using artificial and fusion proteins as nanoscale building blocks.

    Science.gov (United States)

    Kobayashi, Naoya; Arai, Ryoichi

    2017-02-01

    The central goal of nanobiotechnology is to design and construct novel biomaterials of nanometer sizes. In this short review, we describe recent progress of several approaches for designing and creating artificial self-assembling protein complexes and primarily focus on the following biotechnological strategies for using artificial and fusion proteins as nanoscale building blocks: fusion proteins designed for symmetrical self-assembly; three-dimensional domain-swapped oligomers; self-assembling designed coiled-coil peptide modules; metal-directed self-assembling engineered proteins; computationally designed self-assembling de novo proteins; and self-assembling protein nanobuilding blocks (PN-Blocks) using an intermolecularly folded dimeric de novo protein. These state-of-the-art nanobiotechnologies for designing supramolecular protein complexes will facilitate the development of novel functional nanobiomaterials.

  11. Incorporating Bacteria as a Living Component in Supramolecular Self-Assembled Monolayers through Dynamic Nanoscale Interactions.

    Science.gov (United States)

    Sankaran, Shrikrishnan; Kiren, Mustafa Can; Jonkheijm, Pascal

    2015-01-01

    Supramolecular assemblies, formed through noncovalent interactions, has become particularly attractive to develop dynamic and responsive architectures to address living systems at the nanoscale. Cucurbit[8]uril (CB[8]), a pumpkin shaped macrocylic host molecule, has been successfully used to construct various self-assembled architectures for biomedical applications since it can simultaneously bind two aromatic guest molecules within its cavity. Such architectures can also be designed to respond to external stimuli. Integrating living organisms as an active component into such supramolecular architectures would add a new dimension to the capabilities of such systems. To achieve this, we have incorporated supramolecular functionality at the bacterial surface by genetically modifying a transmembrane protein to display a CB[8]-binding motif as part of a cystine-stabilized miniprotein. We were able to confirm that this supramolecular motif on the bacterial surface specifically binds CB[8] and forms multiple intercellular ternary complexes leading to aggregation of the bacterial solution. We performed various aggregation experiments to understand how CB[8] interacts with this bacterial strain and also demonstrate that it can be chemically reversed using a competitor. To confirm that this strain can be incorporated with a CB[8] based architecture, we show that the bacterial cells were able to adhere to CB[8] self-assembled monolayers (SAMs) on gold and still retain considerable motility for several hours, indicating that the system can potentially be used to develop supramolecular bacterial biomotors. The bacterial strain also has the potential to be combined with other CB[8] based architectures like nanoparticles, vesicles and hydrogels.

  12. Supramolecular nanoparticles generated by the self-assembly of polyrotaxanes for antitumor drug delivery

    Directory of Open Access Journals (Sweden)

    Liu R

    2012-10-01

    Full Text Available Rong Liu,1,2,* Yusi Lai,1,* Bin He,1 Yuan Li,1 Gang Wang,1 Shuang Chang,1 Zhongwei Gu1 1National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China; 2Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China*These authors contributed equally to this paperAbstract: A new approach of fabricating supramolecular nanoparticles generated by self-assembly polyrotaxanes for antitumor drug delivery has been reported. Cinnamic-acid-modified poly(ethylene glycol chains were threaded in a-cyclodextrins to form polyrotaxanes. The polyrotaxanes self-assembled supramolecular nanoparticles. The morphology of the nanoparticles was changed from nanovesicle to micelle after the antitumor drug, doxorubicin, was loaded. The release profile of the drug-loaded nanoparticles was investigated, and it was found that the sustaining release time could last for 32 hours. The drug-loaded nanoparticles were co-cultured with mouse 4T1 breast cancer cells with a drug concentration of 10 µg/mL; the cell survival rate was 3.3% after a 72-hour incubation. In an in vivo study of breast cancer in a mouse model, the drug-loaded nanoparticles were injected in the tail veins of mice with a dose of 5 mg/kg body weight. The tumor inhibition rate of drug-loaded nanoparticles was 53%, which was better than that of doxorubicin hydrochloride. The cardiac toxicity of doxorubicin was decreased greatly after the encapsulation into supramolecular polyrotaxane nanoparticles.Keywords: polyrotaxane, self-assembly, nanoparticle, doxorubicin, supermolecular

  13. Towards Tobacco Mosaic Virus-Like Self-Assembled Supramolecular Architectures

    Science.gov (United States)

    1994-06-30

    gallic acid derivatives can be used to construct exo-receptors with a tapered shape. This paper will review some of our efforts directed towards the...I . . . . .I I I AGENCY USE ONLY (Leave blnk) j2. REPORT DATE 3. REPORT TYPE AND DATES COVERED I June 30, 1994 1 Abstract Report #4 A. TITLE AND... used for the urinoc : -•t aditiL of :he principles governing the self-assembl: of synthetic supramolecular architec:ures. SYNTIHETIC STRATEGY USED IN

  14. Self-assembly of cationic multidomain peptide hydrogels: supramolecular nanostructure and rheological properties dictate antimicrobial activity

    Science.gov (United States)

    Jiang, Linhai; Xu, Dawei; Sellati, Timothy J.; Dong, He

    2015-11-01

    Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would also protect the hydrogel itself from being adversely affected by microbial attachment to its surface. We have previously demonstrated the broad-spectrum antimicrobial activity of supramolecular assemblies of cationic multi-domain peptides (MDPs) in solution. Here, we extend the 1-D soluble supramolecular assembly to 3-D hydrogels to investigate the effect of the supramolecular nanostructure and its rheological properties on the antimicrobial activity of self-assembled hydrogels. Among designed MDPs, the bactericidal activity of peptide hydrogels was found to follow an opposite trend to that in solution. Improved antimicrobial activity of self-assembled peptide hydrogels is dictated by the combined effect of supramolecular surface chemistry and storage modulus of the bulk materials, rather than the ability of individual peptides/peptide assemblies to penetrate bacterial cell membrane as observed in solution. The structure-property-activity relationship developed through this study will provide important guidelines for designing biocompatible peptide hydrogels with built-in antimicrobial activity for various biomedical applications.Hydrogels are an important class of biomaterials that have been widely utilized for a variety of biomedical/medical applications. The biological performance of hydrogels, particularly those used as wound dressing could be greatly advanced if imbued with inherent antimicrobial activity capable of staving off colonization of the wound site by opportunistic bacterial pathogens. Possessing such antimicrobial properties would

  15. Controlling Hierarchically Self-Assembly in Supramolecular Tailed-Dendron Systems

    Science.gov (United States)

    Merlet-Lacroix, Nathalie; Rao, Jingui; Zhang, Afang; Schlüter, Dieter; Ruokolainen, Janne; Mezzenga, Raffaele

    2010-03-01

    We study the self-assembly of a dendritic macromolecular system formed by a second-generation dendron and a polymer chain emanating from its focal point. We use supramolecular ionic interactions to attach to the periphery of the dendrons sulphated alkyl tails. The resulting ``triblock copolymers'' have a molecular architecture similar to a four-arm pitchfork with varying arms and holder lengths. The bulk morphologies observed by SAXS and TEM show thermodynamically stable, hierarchical ``inverted'' hexagonal or lamellar structures. The structural models for the molecular packing emerging from experimental findings are benchmarked to available self-consistent field theories (SCFT) and experiments and theoretical predictions are found in perfect agreement. The present results show that supramolecular systems based on tailed dendrons and surfactants can be used to scale up of the structural organization from the liquid crystalline length scale to the block copolymer length scale, while preserving the inverted unconventional morphologies offering new possibilities in the design of nanostructured materials.

  16. Supramolecular Self-Assembled Chaos: Polyphenolic Lignin’s Barrier to Cost-Effective Lignocellulosic Biofuels

    Directory of Open Access Journals (Sweden)

    Shawn Matthew Dirk

    2010-11-01

    Full Text Available Phenylpropanoid metabolism yields a mixture of monolignols that undergo chaotic, non-enzymatic reactions such as free radical polymerization and spontaneous self-assembly in order to form the polyphenolic lignin which is a barrier to cost-effective lignocellulosic biofuels. Post-synthesis lignin integration into the plant cell wall is unclear, including how the hydrophobic lignin incorporates into the wall in an initially hydrophilic milieu. Self-assembly, self-organization and aggregation give rise to a complex, 3D network of lignin that displays randomly branched topology and fractal properties. Attempts at isolating lignin, analogous to archaeology, are instantly destructive and non-representative of in planta. Lack of plant ligninases or enzymes that hydrolyze specific bonds in lignin-carbohydrate complexes (LCCs also frustrate a better grasp of lignin. Supramolecular self-assembly, nano-mechanical properties of lignin-lignin, lignin-polysaccharide interactions and association-dissociation kinetics affect biomass deconstruction and thereby cost-effective biofuels production.

  17. Shape Selection in the Self-Assembly of Chiral Lipid Aggregates

    Science.gov (United States)

    Selinger, Robin; Selinger, Jonathan; Malanoski, Anthony; Schnur, Joel M.

    2004-03-01

    Many lipids and other biological materials self-assemble into helical or twisted membranes and tubules. The membrane shape is determined by a complex interplay between elastic forces and the orientation and chirality of the constituent molecules. We study this interplay through Monte Carlo simulations, using a mesoscale model of the self-assembly process. Our simulations show shape transitions as the membrane's elastic properties are varied. Remarkably, both right- and left-handed helical aggregates can form from a membrane of a single chirality, depending on the orientation of molecular tilt. We discuss application of these findings to help understand recent experiments.

  18. Supramolecular catalysis with extended aggregates and gels: inversion of stereoselectivity caused by self-assembly.

    Science.gov (United States)

    Rodríguez-Llansola, Francisco; Miravet, Juan F; Escuder, Beatriu

    2010-07-26

    L-Proline-L-valine dipeptide derivatives, which self-assemble in toluene, have been studied as stereoselective catalysts in the conjugate addition of cyclohexanone to trans-beta-nitrostyrene. Remarkable effects on the stereoselectivity are observed associated to the aggregation of the catalyst. Outstanding differences were observed between the catalytic activity of compound 1, which forms supramolecular gels in toluene, and compound 2, which is not a gelator. In the former case, the enantioselectivity of the reaction was almost insensitive to changes in catalyst concentration and temperature, but in the case of compound 2, the catalytic activity was very much affected by those variables. Structural studies indicate that the results can be rationalized by taking into account significant conformational changes experienced by the catalytic L-proline derivatives associated with the aggregation process. The results highlight that catalyst self-assembly is a very important issue to consider in the stereoselective outcome of organocatalytic reactions. Especially relevant is the fact that the use of supramolecular gels as organocatalysts emerges as a technique that affords reliable and constant stereoselectivity in different conditions with the added value of easy catalyst recovery.

  19. New high-throughput screening protease assay based upon supramolecular self-assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Whitten, David G.; Tang, Yanli; Zhou, Zhijun; Achyuthan, Komandoor E.

    2008-11-01

    We previously demonstrated that the supramolecular self-assembly of cyanines could be useful for developing fluorescent enzymatic assays. We took that concept a step further by synthesizing a covalent adduct of the tetrapeptide Asp-Glu-Val-Asp (DEVD) and a cyanine (DEVD-cyanine). The DEVD-cyanine due to its canonical sequence was recognized and hydrolyzed by the proteases, Caspase-3 and -7 in 96- or 384-microwell plate reactions. The catalytically liberated cyanine self-assembled upon scaffolds of carboxymethylamylose (CMA), carboxymethylcellulose (CMC), or a mixture of CMA and CMC resulting in a J aggregate exhibiting bright fluorescence at a 470 nm emission wavelength (optimum signal/background using excitation wavelengths of 415-440 nm). The fluorescence intensity increased with enzyme and substrate concentrations or reaction time and exhibited classical saturation profiles of a rectangular hyperbola. Saturation of the reaction was at 30 U/mL (1 {micro}g/mL) Caspase-3 and 250 {micro}M DEVD-cyanine. The reaction kinetics was linear between 1 and 20 min and saturated at 60 min. The affinity constant (Km) for DEVD-cyanine was 23 {micro}M, similar to those of previously reported values for other DEVD substrates of Caspase-3. Maximal fluorescence emission was observed by using a mixture of CMA and CMC scaffolds at 65 and 35 {micro}M, respectively. The reaction kinetics of Caspase-7 executed in a 384-well plate was similar to the reaction kinetics of Caspase-3 conducted in a 96-well plate. We believe that this is the first demonstration of a cyanine liberated from a covalent adduct due to protease action, leading to supramolecular self-assembly and the detection of protease activity.

  20. Left or Right: How Does Amino Acid Chirality Affect the Handedness of Nanostructures Self-Assembled from Short Amphiphilic Peptides?

    Science.gov (United States)

    Wang, Meng; Zhou, Peng; Wang, Jiqian; Zhao, Yurong; Ma, Hongchao; Lu, Jian R; Xu, Hai

    2017-03-22

    Peptide and protein fibrils have attracted an enormous amount of interests due to their relevance to many neurodegenerative diseases and their potential applications in nanotechnology. Although twisted fibrils are regarded as the key intermediate structures of thick fibrils or bundles of fibrils, the factors determining their twisting tendency and their handedness development from the molecular to the supramolecular level are still poorly understood. In this study, we have designed three pairs of enantiomeric short amphiphilic peptides: (L)I3(L)K and (D)I3(D)K, (L)I3(D)K and (D)I3(L)K, and (La)I3(L)K and (Da)I3(D)K, and investigated the chirality of their self-assembled nanofibrils through the combined use of atomic force microscopy (AFM), circular dichroism (CD) spectroscopy, scanning electron microscopy (SEM), and molecular dynamic (MD) simulations. The results indicated that the twisted handedness of the supramolecular nanofibrils was dictated by the chirality of the hydrophilic Lys head at the C-terminal, while their characteristic CD signals were determined by the chirality of hydrophobic Ile residues. MD simulations delineated the handedness development from molecular chirality to supramolecular handedness by showing that the β-sheets formed by (L)I3(L)K, (La)I3(L)K, and (D)I3(L)K exhibited a propensity to twist in a left-handed direction, while the ones of (D)I3(D)K, (Da)I3(D)K, and (L)I3(D)K in a right-handed twisting orientation.

  1. Synergy in supramolecular chemistry

    CERN Document Server

    Nabeshima, Tatsuya

    2014-01-01

    Synergy and Cooperativity in Multi-metal Supramolecular Systems, T. NabeshimaHierarchically Assembled Titanium Helicates, Markus AlbrechtSupramolecular Hosts and Catalysts Formed by Self-assembly of Multinuclear Zinc Complexes in Aqueous Solution, Shin AokiSupramolecular Assemblies Based on Interionic Interactions, H. MaedaSupramolecular Synergy in the Formation and Function of Guanosine Quadruplexes, Jeffery T. DavisOn-Surface Chirality in Porous Self-Assembled Monolayers at Liquid-Solid Interface, Kazukuni Tahar

  2. In situ clicking methylglyoxal for hierarchical self-assembly of nanotubes in supramolecular hydrogel

    Science.gov (United States)

    Liu, Shuang; Luo, Yufeng; Liang, Gaolin

    2015-12-01

    Methylglyoxal (MGO) is a toxic, dicarbonyl metabolite in all living cells and its detoxification is regulated by glyoxalase I (GLOI). Herein, we rationally designed a precursor o-phenylenediamine-Phe-Phe-OH (1) which ``click'' reacts with MGO to yield amphiphilic methylquinoxaline-Phe-Phe-OH (2) to self-assemble into supramolecular hydrogel II (Gel II). Cryo-TEM images of Gel II suggested that there existed two orders of self-assembly to form the 32.8 nm width-nanotubes in the hydrogel. The hypothesis was validated with the analyses of the fluorescence, transmittance, and circular dichroism data of the serial dilutions of Gel II. Interference tests indicated that hydrogelation of 1 with MGO would not be affected by nitric oxide (NO). Our results suggest that 1 could be applied for specific hydrogelation with MGO, and potentially the removal of MGO in vitro.Methylglyoxal (MGO) is a toxic, dicarbonyl metabolite in all living cells and its detoxification is regulated by glyoxalase I (GLOI). Herein, we rationally designed a precursor o-phenylenediamine-Phe-Phe-OH (1) which ``click'' reacts with MGO to yield amphiphilic methylquinoxaline-Phe-Phe-OH (2) to self-assemble into supramolecular hydrogel II (Gel II). Cryo-TEM images of Gel II suggested that there existed two orders of self-assembly to form the 32.8 nm width-nanotubes in the hydrogel. The hypothesis was validated with the analyses of the fluorescence, transmittance, and circular dichroism data of the serial dilutions of Gel II. Interference tests indicated that hydrogelation of 1 with MGO would not be affected by nitric oxide (NO). Our results suggest that 1 could be applied for specific hydrogelation with MGO, and potentially the removal of MGO in vitro. Electronic supplementary information (ESI) available: Additional experimental details as described in the text. Synthetic routes for 1; Schemes S1 and S2, Fig. S1-S20 and Table S1. See DOI: 10.1039/c5nr07179h

  3. Spatial control of chirality in supramolecular aggregates.

    Science.gov (United States)

    Castriciano, Maria A; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù

    2017-03-09

    Chirality is one of the most intriguing properties of matter related to a molecule's lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic.

  4. Spatial control of chirality in supramolecular aggregates

    Science.gov (United States)

    Castriciano, Maria A.; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù

    2017-01-01

    Chirality is one of the most intriguing properties of matter related to a molecule’s lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic. PMID:28275239

  5. Influence of Axial and Point Chirality in the Chiral Self-Assembly of Twin N-Annulated Perylenecarboxamides.

    Science.gov (United States)

    Buendía, Julia; Greciano, Elisa E; Sánchez, Luis

    2015-12-18

    The synthesis of three bis(N-annulated perylenecarboxamides) endowed with achiral or chiral side chains is reported. The restricted rotation of the perylene moieties yields atropisomers that can be separated by chiral HPLC. The CD spectra of the six stereoisomers show a dichroic pattern in a good solvent that changes drastically upon adding a poor solvent that favors the aggregation. The cooperative character of the supramolecular polymerization mechanism of 1-3 has been determined by denaturation experiments, which reveal that the formation of homochiral aggregates is favored over the formation of heterochiral aggregates. A complete set of amplification of chirality experiments have been carried out, revealing the preponderance of axial chirality over point chirality. The results presented herein shed relevant light on the structural conditions exhibited by molecular units endowed with different elements of asymmetry to generate chiral supramolecular structures and the supremacy of axial chirality over point chirality in the origin of homochirality.

  6. Self-assembled sorbitol-derived supramolecular hydrogels for the controlled encapsulation and release of active pharmaceutical ingredients.

    Science.gov (United States)

    Howe, Edward J; Okesola, Babatunde O; Smith, David K

    2015-05-01

    A simple supramolecular hydrogel based on 1,3:2,4-di(4-acylhydrazide)benzylidene sorbitol (DBS-CONHNH2), is able to extract acid-functionalised anti-inflammatory drugs via directed interactions with the self-assembled gel nanofibres. Two-component hydrogel-drug hybrid materials can be easily formed by mixing and exhibit pH-controlled drug release.

  7. Competitive Self-Assembly Manifests Supramolecular Darwinism in Soft-Oxometalates

    Science.gov (United States)

    Das, Santu; Kumar, Saurabh; Mallick, Apabrita; Roy, Soumyajit

    2015-09-01

    Topological transformation manifested in inorganic materials shows manifold possibilities. In our present work, we show a clear topological transformation in a soft-oxometalate (SOM) system which was formed from its polyoxometalate (POM) precursor [PMo12@Mo72Fe30]. This topological transformation was observed due to time dependent competitive self-assembly of two different length scale soft-oxometalate moieties formed from this two-component host-guest reaction. We characterized different morphologies by scanning electron microscopy, electron dispersive scattering spectroscopy, dynamic light scattering, horizontal attenuated total reflection-infrared spectroscopy and Raman spectroscopy. The predominant structure is selected by its size in a sort of supramolecular Darwinian competition in this process and is described here.

  8. Combining modular ligation and supramolecular self-assembly for the construction of star-shaped macromolecules.

    Science.gov (United States)

    Altintas, Ozcan; Muller, Thierry; Lejeune, Elise; Plietzsch, Oliver; Bräse, Stefan; Barner-Kowollik, Christopher

    2012-06-14

    A well-defined random copolymer of styrene (S) and chloromethylstyrene (CMS) featuring lateral chlorine moieties with an alkyne terminal group is prepared (P(S-co-CMS), M(n) = 5500 Da, PDI = 1.13). The chloromethyl groups are converted into Hamilton wedge (HW) entities (P(S-co-HWS), M(n) = 6200 Da, PDI = 1.13). The P(S-co-HWS) polymer is subsequently ligated with tetrakis(4-azidophenyl)methane to give HW-functional star-shaped macromolecules (P(S-co-HWS))(4), M(n) = 25,100 Da, PDI = 1.08). Supramolecular star-shaped copolymers are then prepared via self-assembly between the HW-functionalized four-arm star-shaped macromolecules (P(S-co-HW))(4) and cyanuric acid (CA) end-functionalized PS (PS-CA, M(n) = 3700 Da, PDI = 1.04), CA end-functionalized poly(methyl methacrylate) (PMMA-CA, M(n) = 8500 Da, PDI = 1.13) and CA end-functionalized polyethylene glycol (PEG-CA, M(n) = 1700 Da, PDI = 1.05). The self-assembly is monitored by (1)H NMR spectroscopy and light scattering analyses.

  9. Designer nanomaterials using chiral self-assembling peptide systems and their emerging benefit for society.

    Science.gov (United States)

    Luo, Zhongli; Zhang, Shuguang

    2012-07-07

    Chirality is absolutely central in chemistry and biology. The recent findings of chiral self-assembling peptides' remarkable chemical complementarity and structural compatibility make it one of the most inspired designer materials and structures in nanobiotechnology. The emerging field of designer chemistry and biology further explores biological and medical applications of these simple D,L- amino acids through producing marvellous nanostructures under physiological conditions. These self-assembled structures include well-ordered nanofibers, nanotubes and nanovesicles. These structures have been used for 3-dimensional tissue cultures of primary cells and stem cells, sustained release of small molecules, growth factors and monoclonal antibodies, accelerated wound-healing in reparative and regenerative medicine as well as tissue engineering. Recent advances in molecular designs have also led to the development of 3D fine-tuned bioactive tissue culture scaffolds. They are also used to stabilize membrane proteins including difficult G-protein coupled receptors for designing nanobiodevices. One of the self-assembling peptides has been used in human clinical trials for accelerated wound-healings. It is our hope that these peptide materials will open doors for more and diverse clinical uses. The field of chiral self-assembling peptide nanobiotechnology is growing in a number of directions that has led to many surprises in areas of novel materials, synthetic biology, clinical medicine and beyond.

  10. A Dynamic Combinatorial Approach for Identifying Side Groups that Stabilize DNA-Templated Supramolecular Self-Assemblies

    Directory of Open Access Journals (Sweden)

    Delphine Paolantoni

    2015-02-01

    Full Text Available DNA-templated self-assembly is an emerging strategy for generating functional supramolecular systems, which requires the identification of potent multi-point binding ligands. In this line, we recently showed that bis-functionalized guanidinium compounds can interact with ssDNA and generate a supramolecular complex through the recognition of the phosphodiester backbone of DNA. In order to probe the importance of secondary interactions and to identify side groups that stabilize these DNA-templated self-assemblies, we report herein the implementation of a dynamic combinatorial approach. We used an in situ fragment assembly process based on reductive amination and tested various side groups, including amino acids. The results reveal that aromatic and cationic side groups participate in secondary supramolecular interactions that stabilize the complexes formed with ssDNA.

  11. Flower-like supramolecular self-assembly of phosphonic acid appended naphthalene diimide and melamine

    Science.gov (United States)

    Bhosale, Rajesh S.; Al Kobaisi, Mohammad; Bhosale, Sidhanath V.; Bhargava, Suresh; Bhosale, Sheshanath V.

    2015-09-01

    Diverse supramolecular assemblies ranging from nanometres to micrometers of small aromatic π-conjugated functional molecules have attracted enormous research interest in light of their applications in optoelectronics, chemosensors, nanotechnology, biotechnology and biomedicines. Here we study the mechanism of the formation of a flower-shaped supramolecular structure of phosphonic acid appended naphthalene diimide with melamine. The flower-shaped assembly formation was visualised by scanning electron microscope (SEM) and transmission electron microscopy (TEM) imaging, furthermore, XRD and DLS used to determined mode of aggregation. Characteristically, phosphonic acid-substituted at imide position of NDIs possess two important properties resulting in the formation of controlled flower-like nanostructures: (i) the aromatic core of the NDI which is designed to optimize the dispersive interactions (π-π stacking and van der Waals interactions) between the cores within a construct and (ii) phosphonic acid of NDI interact with malamine through molecular recognition i.e. strong hydrogen-bonding (H-bonding). We believe such arrangements prevent crystallization and favour the directional growth of flower-like nanostructure in 3D fashion. These works demonstrate that complex self-assembly can indeed be attained through hierarchical non-covalent interactions of two components. Furthermore, flower-like structures built from molecular recognition by these molecules indicate their potential in other fields if combined with other chemical entities.

  12. Supramolecular Polymer Network-Mediated Self-Assembly of Semicrystalline Polymers with Excellent Crystalline Performance.

    Science.gov (United States)

    Cheng, Chih-Chia; Chuang, Wei-Tsung; Lee, Duu-Jong; Xin, Zhong; Chiu, Chih-Wei

    2017-03-01

    A novel application of supramolecular interactions within semicrystalline polymers, capable of self-assembling into supramolecular polymer networks via self-complementary multiple hydrogen-bonded complexes, is demonstrated for efficient construction of highly controlled self-organizing hierarchical structures to offer a direct, efficient nucleation pathway resulting in superior crystallization performance. Herein, a novel functionalized poly(ε-caprolactone) containing self-complementary sextuple hydrogen-bonded uracil-diamidopyridine (U-DPy) moieties is successfully developed and demonstrated excellent thermal and viscoelastic properties as well as high dynamic structural stability in the bulk state due to physical cross-linking created by reversible sextuple hydrogen bonding between U-DPy units. Due to the ability to vary the extent of the reversible network by tuning the U-DPy content, this newly developed material can be readily adjusted to obtain the desired crystalline products with specific characteristics. Importantly, incorporating only 0.1% U-DPy resulted in a polymer with a high crystallization rate constant, short crystallization half-time, and much more rapid crystallization kinetics than pristine PCL, indicating a low content of U-DPy moieties provides highly efficient nucleation sites that manipulate the nucleation and growth processes of polymer crystals to promote crystallization and chain alignment in bulk. This new system is suggested as a potential new route to substantially improve the performance of polymer crystallization.

  13. Syntheses and molecular self-assembly of chiral phosphorami dates

    Institute of Scientific and Technical Information of China (English)

    DU, Da-Ming; HUA, Wen-Ting; WANG, Jian-Wu

    2000-01-01

    Two chiral phosphoramidates, ( R )-( - )-1, 1′-binaphthyl-2, 2′-dihydroxy-N-[ α-( S)-methylbenzyl] phosphoramidate and (-)-l,1′-biphenyl-2,2′-dihydroxy-N-[ α-( S)-methylbenzyl]- phosphoramidate were synthesized. Their crystal structures were determined by X-ray single crystal diffraction analysis. The phoshorramidate molecules are self-associated by inter molecular N-H…… O = P hydrogen bonds and aromatic edge to face interactions.

  14. Interaction of chiral rafts in self-assembled colloidal membranes

    Science.gov (United States)

    Xie, Sheng; Hagan, Michael F.; Pelcovits, Robert A.

    2016-03-01

    Colloidal membranes are monolayer assemblies of rodlike particles that capture the long-wavelength properties of lipid bilayer membranes on the colloidal scale. Recent experiments on colloidal membranes formed by chiral rodlike viruses showed that introducing a second species of virus with different length and opposite chirality leads to the formation of rafts—micron-sized domains of one virus species floating in a background of the other viruses [Sharma et al., Nature (London) 513, 77 (2014), 10.1038/nature13694]. In this article we study the interaction of such rafts using liquid crystal elasticity theory. By numerically minimizing the director elastic free energy, we predict the tilt angle profile for both a single raft and two rafts in a background membrane, and the interaction between two rafts as a function of their separation. We find that the chiral penetration depth in the background membrane sets the scale for the range of the interaction. We compare our results with the experimental data and find good agreement for the strength and range of the interaction. Unlike the experiments, however, we do not observe a complete collapse of the data when rescaled by the tilt angle at the raft edge.

  15. Chiromers: conformation-driven mirror-image supramolecular chirality isomerism identified in a new class of helical rosette nanotubes

    Science.gov (United States)

    Hemraz, Usha D.; El-Bakkari, Mounir; Yamazaki, Takeshi; Cho, Jae-Young; Beingessner, Rachel L.; Fenniri, Hicham

    2014-07-01

    Rosette nanotubes are biologically inspired nanostructures, formed through the hierarchical organization of a hybrid DNA base analogue (G∧C), which features hydrogen-bonding arrays of guanine and cytosine. Several twin-G∧C motifs functionalized with chiral moieties, which undergo a self-assembly process under methanolic and aqueous conditions to produce helical rosette nanotubes (RNTs), were synthesized and characterized. The built-in molecular chirality in the twin-G∧C building blocks led to the supramolecular chirality exhibited by the RNTs, as evidenced by the CD activity. Depending on the motifs and environmental conditions, mirror-image supramolecular chirality due to absolute molecular chirality, solvent-induced and structure-dependent supramolecular chirality inversion, and pH-controlled chiroptical switching were observed.Rosette nanotubes are biologically inspired nanostructures, formed through the hierarchical organization of a hybrid DNA base analogue (G∧C), which features hydrogen-bonding arrays of guanine and cytosine. Several twin-G∧C motifs functionalized with chiral moieties, which undergo a self-assembly process under methanolic and aqueous conditions to produce helical rosette nanotubes (RNTs), were synthesized and characterized. The built-in molecular chirality in the twin-G∧C building blocks led to the supramolecular chirality exhibited by the RNTs, as evidenced by the CD activity. Depending on the motifs and environmental conditions, mirror-image supramolecular chirality due to absolute molecular chirality, solvent-induced and structure-dependent supramolecular chirality inversion, and pH-controlled chiroptical switching were observed. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr00340c

  16. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  17. Hierarchical self-assembly of a striped gyroid formed by threaded chiral mesoscale networks

    DEFF Research Database (Denmark)

    Kirkensgaard, Jacob Judas Kain; Evans, Myfanwy; de Campo, Lilliana;

    2014-01-01

    the gyroid film are densely packed and contain either graphitic hcb nets (chicken wire) or srs nets, forming convoluted intergrowths of multiple nets. Furthermore, each net is ideally a single chiral enantiomer, induced by the gyroid architecture. However, the numerical simulations result in defect......Numerical simulations reveal a family of hierarchical and chiral multicontinuous network structures self-assembled from a melt blend of Y-shaped ABC and ABD three-miktoarm star terpolymers, constrained to have equal-sized A/B and C/D chains, respectively. The C and D majority domains within...

  18. The Self-Assembly of Nano-Objects Code: Applications to supramolecular organic monolayers adsorbed on metal surfaces

    CERN Document Server

    Roussel, Thomas

    2012-01-01

    The Self-Assembly of Nano-Objects (SANO) code we implemented demonstrates the ability to predict the molecular self-assembly of different structural motifs by tuning the molecular building blocks as well as the metallic substrate. It consists in a two-dimensional Grand Canonical Monte-Carlo (GCMC) approach developed to perform atomistic simulations of thousands of large organic molecules self-assembling on metal surfaces. Computing adsorption isotherms at room temperature and spanning over the characteristic sub-micrometric scales, we confront the robustness of the approach with three different well-known systems: ZnPcCl8 on Ag(111), CuPcF16 on Au(111) and PTBC on Ag(111). We retrieve respectively their square, oblique and hexagonal supramolecular tilling. The code incorporates generalized force fields to describe the molecular interactions, which provides transferability and versatility to many organic building blocks and metal surfaces.

  19. Self-assembly through secondary interactions in formation of two-dimensional lead(II) supramolecular polymer with nanosheets morphology

    Science.gov (United States)

    Noori, Yasamin; Akhbari, Kamran; Phuruangrat, Anukorn; Costantino, Ferdinando

    2017-02-01

    In order to study the role of self-assembly through secondary interactions in formation of [Pb(3-AB)2]n (1), [3-ABbar = 3-aminobenzoate], we designed some experiments and synthesized two samples of 1 under ultrasonic irradiations. Nanosheets of 1 were synthesized under these conditions. Compound 1 is a one-dimensional coordination polymer. Self-assembly through hydrogen bonding and π-π stacking interactions between these chains results in formation of two-dimensional supramolecular polymer. It seems that self-assembly through secondary interactions between these chain structures is responsible for formation of 1 with nanosheet morphology. Formation nanoparticles of [Pb(2,6-DHB)2]n (2), [2,6-DHBbar = 2,6-dihydroxybenzoate], under the same condition applied for 1, which has three-dimensional coordination network in its crystalline structure, approved our hypotheses. These microstructures were characterized by IR spectroscopy, X-ray powder diffraction (XRD) and Scanning Electron Microscopy (SEM).

  20. Supramolecular Engineering of Hierarchically Self-Assembled, Bioinspired, Cholesteric Nanocomposites Formed by Cellulose Nanocrystals and Polymers.

    Science.gov (United States)

    Zhu, Baolei; Merindol, Remi; Benitez, Alejandro J; Wang, Baochun; Walther, Andreas

    2016-05-04

    Natural composites are hierarchically structured by combination of ordered colloidal and molecular length scales. They inspire future, biomimetic, and lightweight nanocomposites, in which extraordinary mechanical properties are in reach by understanding and mastering hierarchical structure formation as tools to engineer multiscale deformation mechanisms. Here we describe a hierarchically self-assembled, cholesteric nanocomposite with well-defined colloid-based helical structure and supramolecular hydrogen bonds engineered on the molecular level in the polymer matrix. We use reversible addition-fragmentation transfer polymerization to synthesize well-defined hydrophilic, nonionic polymers with a varying functionalization density of 4-fold hydrogen-bonding ureidopyrimidinone (UPy) motifs. We show that these copolymers can be coassembled with cellulose nanocrystals (CNC), a sustainable, stiff, rod-like reinforcement, to give ordered cholesteric phases with characteristic photonic stop bands. The dimensions of the helical pitch are controlled by the ratio of polymer/CNC, confirming a smooth integration into the colloidal structure. With respect to the effect of the supramolecular motifs, we demonstrate that those regulate the swelling when exposing the biomimetic hybrids to water, and they allow engineering the photonic response. Moreover, the amount of hydrogen bonds and the polymer fraction are decisive in defining the mechanical properties. An Ashby plot comparing previous ordered CNC-based nanocomposites with our new hierarchical ones reveals that molecular engineering allows us to span an unprecedented mechanical property range from highest inelastic deformation (strain up to ∼13%) to highest stiffness (E ∼ 15 GPa) and combinations of both. We envisage that further rational design of the molecular interactions will provide efficient tools for enhancing the multifunctional property profiles of such bioinspired nanocomposites.

  1. Encapsulation and characterization of proton-bound amine homodimers in a water-soluble, self-assembled supramolecular host

    OpenAIRE

    Pluth, Michael D.; Fiedler, Dorothea; Mugridge, Jeffrey S.; Bergman, Robert G.; Raymond, Kenneth N.

    2009-01-01

    Cyclic amines can be encapsulated in a water-soluble self-assembled supramolecular host upon protonation. The hydrogen-bonding ability of the cyclic amines, as well as the reduced degrees of rotational freedom, allows for the formation of proton-bound homodimers inside of the assembly that are otherwise not observable in aqueous solution. The generality of homodimer formation was explored with small N-alkyl aziridines, azetidines, pyrrolidines, and piperidines. Proton-bound homodimer formatio...

  2. Self-Healing Supramolecular Self-Assembled Hydrogels Based on Poly(L-glutamic acid).

    Science.gov (United States)

    Li, Guifei; Wu, Jie; Wang, Bo; Yan, Shifeng; Zhang, Kunxi; Ding, Jianxun; Yin, Jingbo

    2015-11-01

    Self-healing polymeric hydrogels have the capability to recover their structures and functionalities upon injury, which are extremely attractive in emerging biomedical applications. This research reports a new kind of self-healing polypeptide hydrogels based on self-assembly between cholesterol (Chol)-modified triblock poly(L-glutamic acid)-block-poly(ethylene glycol)-block-poly(L-glutamic acid) ((PLGA-b-PEG-b-PLGA)-g-Chol) and β-cyclodextrin (β-CD)-modified poly(L-glutamic acid) (PLGA-g-β-CD). The hydrogel formation relied on the host and guest linkage between β-CD and Chol. This study demonstrates the influences of polymer concentration and β-CD/Chol molar ratio on viscoelastic behavior of the hydrogels. The results showed that storage modulus was highest at polymer concentration of 15% w/v and β-CD/Chol molar ratio of 1:1. The effect of the PLGA molecular weight in (PLGA-b-PEG-b-PLGA)-g-Chol on viscoelastic behavior, mechanical properties and in vitro degradation of the supramolecular hydrogels was also studied. The hydrogels showed outstanding self-healing capability and good cytocompatibility. The multilayer structure was constructed using hydrogels with self-healing ability. The developed hydrogels provide a fascinating glimpse for the applications in tissue engineering.

  3. Dynamic control of chirality and self-assembly of double-stranded helicates with light.

    Science.gov (United States)

    Zhao, Depeng; van Leeuwen, Thomas; Cheng, Jinling; Feringa, Ben L

    2017-03-01

    Helicity switching in biological and artificial systems is a fundamental process that allows for the dynamic control of structures and their functions. In contrast to chemical approaches to responsive behaviour in helicates, the use of light as an external stimulus offers unique opportunities to invert the chirality of helical structures in a non-invasive manner with high spatiotemporal precision. Here, we report that unidirectional rotary motors with connecting oligobipyridyl ligands, which can dynamically change their chirality upon irradiation, assemble into metal helicates that are responsive to light. The motor function controls the self-assembly process as well as the helical chirality, allowing switching between oligomers and double-stranded helicates with distinct handedness. The unidirectionality of the light-induced motion governs the sequence of programmable steps, enabling the highly regulated self-assembly of fully responsive helical structures. This discovery paves the way for the future development of new chirality-dependent photoresponsive systems including smart materials, enantioselective catalysts and light-driven molecular machines.

  4. Dynamic control of chirality and self-assembly of double-stranded helicates with light

    Science.gov (United States)

    Zhao, Depeng; van Leeuwen, Thomas; Cheng, Jinling; Feringa, Ben L.

    2016-11-01

    Helicity switching in biological and artificial systems is a fundamental process that allows for the dynamic control of structures and their functions. In contrast to chemical approaches to responsive behaviour in helicates, the use of light as an external stimulus offers unique opportunities to invert the chirality of helical structures in a non-invasive manner with high spatiotemporal precision. Here, we report that unidirectional rotary motors with connecting oligobipyridyl ligands, which can dynamically change their chirality upon irradiation, assemble into metal helicates that are responsive to light. The motor function controls the self-assembly process as well as the helical chirality, allowing switching between oligomers and double-stranded helicates with distinct handedness. The unidirectionality of the light-induced motion governs the sequence of programmable steps, enabling the highly regulated self-assembly of fully responsive helical structures. This discovery paves the way for the future development of new chirality-dependent photoresponsive systems including smart materials, enantioselective catalysts and light-driven molecular machines.

  5. Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven self-assembly and host/guest interactions.

    Science.gov (United States)

    Yan, Xuzhou; Cook, Timothy R; Pollock, J Bryant; Wei, Peifa; Zhang, Yanyan; Yu, Yihua; Huang, Feihe; Stang, Peter J

    2014-03-26

    An emerging strategy for the fabrication of advanced supramolecular materials is the use of hierarchical self-assembly techniques wherein multiple orthogonal interactions between molecular precursors can produce new species with attractive properties. Herein, we unify the spontaneous formation of metal-ligand bonds with the host/guest chemistry of crown ethers to deliver a 3D supramolecular polymer network (SPN). Specifically, we have prepared a highly directional dipyridyl donor decorated with a benzo-21-crown-7 moiety that undergoes coordination-driven self-assembly with a complementary organoplatinum acceptor to furnish hexagonal metallacycles. These hexagons subsequently polymerize into a supramolecular network upon the addition of a bisammonium salt due to the formation of [2]pseudorotaxane linkages between the crown ether and ammonium moieties. At high concentrations, the resulting 3D SPN becomes a gel comprising many cross-linked metallohexagons. Notably, thermo- and cation-induced gel-sol transitions are found to be completely reversible, reflecting the dynamic and tunable nature of such supramolecular materials. As such, these results demonstrate the structural complexity that can be obtained when carefully controlling multiple interactions in a hierarchical fashion, in this case coordination and host/guest chemistry, and the interesting dynamic properties associated with the materials thus obtained.

  6. Study on the α-cyclodextrin/poly(ethylene glycol) self-assembly supramolecular nanoparticles for drug delivery

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    This paper reports the synthesis and drug delivery properties of a novel supramolecular nanoparticle.α-Cyclodextrins(α-CD) were threaded on cinnamic acid modified poly(ethylene glycol) to form inclusion complex nanoparticles by supramolecular self-assemble.The anti-tumor drug doxorubicin was loaded in the nanoparticles and released in vitro to study the drug release behavior and the anti-tumor effects.The structure and morphology of the nanoparticles were characterized by nuclear magnetic resonance,X-ray diffraction,ultraviolet absorbance,dynamic laser scattering,scanning electronic microscopy,transmission electron microscopy and atom force microscopy.The distribution of the drug loaded nanoparticles in cells and the anti-tumor effects were studied by confocal laser microscopy.The results demonstrate that the supramolecular nanoparticle is biocompatible and it is a promising carrier for drug delivery systems.

  7. Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-04-10

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expanding to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization

  8. High-tech applications of self-assembling supramolecular nanostructured gel-phase materials: from regenerative medicine to electronic devices.

    Science.gov (United States)

    Hirst, Andrew R; Escuder, Beatriu; Miravet, Juan F; Smith, David K

    2008-01-01

    It is likely that nanofabrication will underpin many technologies in the 21st century. Synthetic chemistry is a powerful approach to generate molecular structures that are capable of assembling into functional nanoscale architectures. There has been intense interest in self-assembling low-molecular-weight gelators, which has led to a general understanding of gelation based on the self-assembly of molecular-scale building blocks in terms of non-covalent interactions and packing parameters. The gelator molecules generate hierarchical, supramolecular structures that are macroscopically expressed in gel formation. Molecular modification can therefore control nanoscale assembly, a process that ultimately endows specific material function. The combination of supramolecular chemistry, materials science, and biomedicine allows application-based materials to be developed. Regenerative medicine and tissue engineering using molecular gels as nanostructured scaffolds for the regrowth of nerve cells has been demonstrated in vivo, and the prospect of using self-assembled fibers as one-dimensional conductors in gel materials has captured much interest in the field of nanoelectronics.

  9. Chiral-induced self-assembly sphere phase liquid crystal with fast switching time

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ji-Liang; Ni, Shui-Bin; Ping Chen, Chao; Lu, Jian-Gang, E-mail: lujg@sjtu.edu.cn; Su, Yikai [National Engineering Lab for TFT-LCD Materials and Technologies, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Dong-Qing [College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Song, Xiao-Long; Chen, Chao-Yuan [The Jiangsu Hecheng Display Technology Co., Ltd., Nanjing 211300 (China); Shieh, Han-Ping D. [National Engineering Lab for TFT-LCD Materials and Technologies, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2014-03-03

    A fluid self-assembly sphere phase (SP) of liquid crystal induced by chiral dopant is observed in a narrow temperature range between isotropic and blue phase or between isotropic and chiral nematic phase. The SP consists of three-dimensional twist spheres (3-DTSs) and disclinations among 3-DTSs. The temperature range of the SP has been broadened to more than 85 °C by stabilizing the disclinations with amorphous polymer chains. The electro-optical switching time of the polymer-stabilized SP is demonstrated in sub-millisecond with a low switching electric field of 4.4 V μm{sup −1}, which is of promising applications in displays, 3-D tunable photonic crystals, and phase modulators.

  10. A Ferrocene-Based Catecholamide Ligand: the Consequences of Ligand Swivel for Directed Supramolecular Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth

    2010-02-04

    A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.

  11. The formation of right-handed and left-handed chiral nanopores within a single domain during amino acid self-assembly on Au(111).

    Science.gov (United States)

    Yang, Sena; Jeon, Aram; Driver, Russell W; Kim, Yeonwoo; Jeon, Eun Hee; Kim, Sehun; Lee, Hee-Seung; Lee, Hangil

    2016-05-25

    We report the formation of both right- and left-handed chiral nanopores within a single domain during the self-assembly of an amino acid derivative on an inert Au(111) surface using STM. DFT calculations employed to rationalize this unusual result identified that intermolecular interactions between chiral, windmill-shaped tetramers are crucial for self-assembly.

  12. Self-assembly and supramolecular liquid crystals based on organic cation encapsulated polyoxometalate hybrid reverse micelles and pyridine derivatives.

    Science.gov (United States)

    Yin, Shengyan; Sun, Hang; Yan, Yi; Zhang, Hui; Li, Wen; Wu, Lixin

    2011-09-15

    The controlled self-assembly of multi-components in one system represents the capability integrating intermolecular interactions and functions of components and is believed the key procedure leading to multifunctional materials finally. In pursuing this goal, we used a double-chain cationic surfactant with a benzoic acid group at the end of one tail to encapsulate Keggin-type polyanion clusters via electrostatic interaction, obtaining uniform supramolecular hybrid reverse micelles, which served as hydrogen-bonding donors. Five pyridine derivatives containing conjugated and non-conjugated groups were chosen as hydrogen-bonding acceptors to bind with reverse micelles. Through mixing with these components according to chemical stoichiometry, the hybrid reverse micelle changed to a new self-assembly precursor through intermolecular hydrogen bonding. The as-prepared reverse micelles bearing conjugated pyridine groups exhibit supramolecular liquid crystal properties, which were characterized by differential scanning calorimetry, polarizing optical microscopy, and X-ray diffraction. The length and number of the alky chain in the pyridine derivatives, as well as the charges of polyoxometalates were also studied with regard to the liquid crystal structure. The synergistic effect of among three components was analyzed, and the liquid crystal properties could be conveniently adjusted through the modification of the hydrogen-bonding acceptor components.

  13. Predicting Chiral Nanostructures, Lattices and Superlattices in Complex Multicomponent Nanoparticle Self-Assembly

    KAUST Repository

    Hur, Kahyun

    2012-06-13

    "Bottom up" type nanoparticle (NP) self-assembly is expected to provide facile routes to nanostructured materials for various, for example, energy related, applications. Despite progress in simulations and theories, structure prediction of self-assembled materials beyond simple model systems remains challenging. Here we utilize a field theory approach for predicting nanostructure of complex and multicomponent hybrid systems with multiple types of short- and long-range interactions. We propose design criteria for controlling a range of NP based nanomaterial structures. In good agreement with recent experiments, the theory predicts that ABC triblock terpolymer directed assemblies with ligand-stabilized NPs can lead to chiral NP network structures. Furthermore, we predict that long-range Coulomb interactions between NPs leading to simple NP lattices, when applied to NP/block copolymer (BCP) assemblies, induce NP superlattice formation within the phase separated BCP nanostructure, a strategy not yet realized experimentally. We expect such superlattices to be of increasing interest to communities involved in research on, for example, energy generation and storage, metamaterials, as well as microelectronics and information storage. © 2012 American Chemical Society.

  14. Supramolecular nanostructuring of silver surfaces via self-assembly of [60]fullerene and porphyrin modules

    NARCIS (Netherlands)

    Bonifazi, Davide; Kiebele, Andreas; Stöhr, Meike; Cheng, Fuyong; Jung, Thomas; Diederich, Francois; Spillmann, Hannes

    2007-01-01

    Recent achievements in our laboratory toward the "bottom-up" fabrication of addressable multicomponent molecular entities obtained by self-assembly of C-60 and porphyrins on Ag(100) and Ag(111) surfaces are described.. Scanning tunneling microscopy (STM) studies on ad-layers constituting monomeric a

  15. Supramolecular self-assembly of metal- free naphthalocyanine on Au(111)

    NARCIS (Netherlands)

    Pham, Tuan Anh; Song, Fei; Stöhr, Meike

    2014-01-01

    The self-assembly of metal-free naphthalocyanine (H(2)Nc) on the Au(111) surface is studied under ultrahigh vacuum conditions at room temperature using a combination of scanning tunnelling microscopy (STM), low-energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). The STM me

  16. Self-assembly of 2,3-dihydroxycholestane steroids into supramolecular organogels as a soft template for the in-situ generation of silicate nanomaterials

    OpenAIRE

    Edelsztein, Valeria C; Andrea S. Mac Cormack; Matías Ciarlantini; Di Chenna, Pablo H

    2013-01-01

    Supramolecular gels are an important and interesting class of soft materials that show great potential for many applications. Most of them have been discovered serendipitously, and understanding the supramolecular self-assembly that leads to the formation of the gel superstructure is the key to the directed design of new organogels. We report herein the organogelating property of four stereoisomers of the simple steroid 2,3-dihydroxycholestane. Only the isomer with the trans-diaxial hydroxy g...

  17. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Directory of Open Access Journals (Sweden)

    Hironori Izawa

    2010-07-01

    Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  18. Incorporating bacteria as a living component in supramolecular self-assembled monolayers through dynamic nanoscale interactions

    NARCIS (Netherlands)

    Sankaran, Shrikrishnan; Kiren, Mustafa Can; Jonkheijm, Pascal

    2015-01-01

    Supramolecular assemblies, formed through noncovalent interactions, has become particularly attractive to develop dynamic and responsive architectures to address living systems at the nanoscale. Cucurbit[8]uril (CB[8]), a pumpkin shaped macrocylic host molecule, has been successfully used to constru

  19. Supramolecular self-assembly of biopolymers with carbon nanotubes for biomimetic and bio-inspired sensing and actuation.

    Science.gov (United States)

    Lu, Luhua; Chen, Wei

    2011-06-01

    Biopolymers are important natural multifunctional macromolecules for biomimetic and bio-inspired advanced functional material design. They are not only simple dispersants for carbon nanotube stabilization as they have been found to have specific interactions with carbon nanotubes. Their molecular activity, orientation and crystallization are influenced by the CNTs, which endow their composites with a variety of novel sensing and actuation performances. This review focuses on the progress in supramolecular self-assembly of biopolymers with carbon nanotubes, and their advances in sensing and actuation. To promote the development of advanced biopolymer/CNT functional materials, new electromechanical characteristics of biopolymer/CNT composites are discussed in detail based on the relationship between the microscopic biopolymer structures and the macroscopic composite properties.

  20. Fabrication of cyclodextrins-procainamide supramolecular self-assembly: shape-shifting of nanosheet into microtubular structure.

    Science.gov (United States)

    Siva, S; Kothai Nayaki, S; Rajendiran, N

    2015-05-20

    Encapsulation behavior of α- and β-cyclodextrins (α-CD, β-CD) with procainamide hydrochloride (PCA) has been investigated by absorption, fluorescence, time-resolved fluorescence, proton nuclear magnetic resonance spectroscopy, scanning electron microscope, Fourier transform-infrared spectroscopy, differential scanning calorimetry, and powder X-ray diffraction techniques. Spectral results revealed that PCA forms 1:2 drug-CD2 inclusion complexes with CDs. Novel supramolecular self-assemblies have been fabricated by inclusion complexation of PCA with α-CD/β-CD and characterized by transmission electron microscope and micro-Raman imaging. The obtained results from transmission electron microscope indicated that PCA/α-CD complex could form nano-sized particles. However, when the macrocyclic ring with six glucose units was switched into seven glucose units, the resultant PCA/β-CD complex could be self-assembled to micro-sized tubular structures. Shape-shifting of 2D nanosheet into 1D microtube by simple rolling mechanism was analyzed. Thermodynamic parameters of inclusion process were determined by Parameter Method 3 calculations.

  1. Self-assembly of small peptidomimetic cyclophanes.

    Science.gov (United States)

    Becerril, Jorge; Burguete, M Isabel; Escuder, Beatriu; Galindo, Francisco; Gavara, Raquel; Miravet, Juan F; Luis, Santiago V; Peris, Gabriel

    2004-08-20

    The self-assembly of a series of small peptidomimetic cyclophanes in organic solvents was studied. X-ray diffraction, NMR spectroscopy, and molecular modelling were used to understand the structural features of these self-assembling compounds both at the molecular and supramolecular level. The factors that could influence the formation of gels rather than crystals were studied and a model for the arrangement of molecules in the gel was proposed. Furthermore, scanning electron microscopy revealed that in some cases these compounds undergo a transcription of chirality when going from organogelator to helicoidal gel fibres.

  2. Water tuned the helical nanostructures and supramolecular chirality in organogels.

    Science.gov (United States)

    Liu, Changxia; Jin, Qingxian; Lv, Kai; Zhang, Li; Liu, Minghua

    2014-04-11

    Water was found to tune the self-assembled nanostructures of a cationic amphiphile in organic solvents from nanofibers to helical tapes, helical tubes and chiral nanotwists with various pitch lengths depending on water content. Inversion of CD spectra was observed in the water-triggered polar and non-polar solvent gels.

  3. Supramolecular tilt chirality in crystals of steroids and alkaloids.

    Science.gov (United States)

    Hisaki, Ichiro; Tohnai, Norimitsu; Miyata, Mikiji

    2008-03-01

    The concept of supramolecular chirality has assumed increasing importance in association with the development of supramolecular chemistry over the last two decades. In chiral crystals, 2 1 helical molecular assemblies are frequently observed as key motifs. Helical handedness of the 2 1 assemblies, however, has not been determined from the mathematical or crystallographical viewpoints. In this context, we have proposed two new concepts, three-axial chirality and tilt chirality. On the basis of the concepts, we describe supramolecular chirality and determine the handedness of 2 1 assemblies that are composed of relatively complicated molecules with multiple stereogenic centers such as brucine, bile acids, and cinchona alkaloids as well as those of simple molecules.

  4. Lanthanide-directed synthesis of luminescent self-assembly supramolecular structures and mechanically bonded systems from acyclic coordinating organic ligands.

    Science.gov (United States)

    Barry, Dawn E; Caffrey, David F; Gunnlaugsson, Thorfinnur

    2016-06-01

    Herein some examples of the use of lanthanide ions (f-metal ions) to direct the synthesis of luminescent self-assembly systems (architectures) will be discussed. This area of lanthanide supramolecular chemistry is fast growing, thanks to the unique physical (magnetic and luminescent) and coordination properties of the lanthanides, which are often transferred to the resulting supermolecule. The emphasis herein will be on systems that are luminescent, and hence, generated by using either visibly emitting ions (such as Eu(III), Tb(III) and Sm(III)) or near infrared emitting ions (like Nd(III), Yb(III) and Er(III)), formed through the use of templating chemistry, by employing structurally simple ligands, possessing oxygen and nitrogen coordinating moieties. As the lanthanides have high coordination requirements, their use often allows for the formation of coordination compounds and supramolecular systems such as bundles, grids, helicates and interlocked molecules that are not synthetically accessible through the use of other commonly used templating ions such as transition metal ions. Hence, the use of the rare-earth metal ions can lead to the formation of unique and stable species in both solution and in the solid state, as well as functional and responsive structures.

  5. Self-assembled and responsive supramolecular nanoparticles mediated by cucurbit[8]uril host-guest interactions

    NARCIS (Netherlands)

    Stoffelen, Carmen

    2015-01-01

    Supramolecular nanoparticles (SNPs) have gained large interest in nanoscience because stable, but reversible three-dimensional assemblies can be used for a variety of applications, ranging from stimuli-responsive and self-healing materials to biomedical applications. In particular soft SNPs are prom

  6. Supramolecular Self-Assembly of a Model Hydrogelator: Characterization of Fiber Formation and Morphology

    Directory of Open Access Journals (Sweden)

    Yuan Gao

    2016-10-01

    Full Text Available Hydrogels are of intense recent interest in connection with biomedical applications ranging from 3-D cell cultures and stem cell differentiation to regenerative medicine, controlled drug delivery, and tissue engineering. This prototypical form of soft matter has many emerging material science applications outside the medical field. The physical processes underlying this type of solidification are incompletely understood, and this limits design efforts aimed at optimizing these materials for applications. We address this general problem by applying multiple techniques (e.g., NMR, dynamic light scattering, small angle neutron scattering, rheological measurements to the case of a peptide derivative hydrogelator (molecule 1, NapFFKYp over a broad range of concentration and temperature to characterize both the formation of individual nanofibers and the fiber network. We believe that a better understanding of the hierarchical self-assembly process and control over the final morphology of this kind of material should have broad significance for biological and medicinal applications utilizing hydrogels.

  7. Supramolecular Chemistry And Self-assembly Special Feature: Virus-assisted loading of polymer nanocontainer

    Science.gov (United States)

    Graff, Alexandra; Sauer, Marc; van Gelder, Patrick; Meier, Wolfgang

    2002-04-01

    We present a DNA-containing polymeric nanocontainer using the self-assembled superstructure of amphiphilic block copolymers in aqueous solutions. To demonstrate that DNA translocation is possible across a completely synthetic block copolymer membrane, we have used a phage transfection strategy as a DNA-transfer model system. For this purpose the bacterial channel forming protein LamB was reconstituted in ABA-triblock copolymer vesicles. The outer membrane protein LamB is a specific transporter for maltodextrins but also serves as a receptor for phage to trigger the ejection of phage DNA. We demonstrate that the functionality of the LamB protein is fully preserved despite the artificial surrounding. This leads to a type of polymeric vehicle for DNA that could be useful for gene therapy.

  8. Chiroptical studies on supramolecular chirality of molecular aggregates.

    Science.gov (United States)

    Sato, Hisako; Yajima, Tomoko; Yamagishi, Akihiko

    2015-10-01

    The attempts of applying chiroptical spectroscopy to supramolecular chirality are reviewed with a focus on vibrational circular dichroism (VCD). Examples were taken from gels, solids, and monolayers formed by low-molecular mass weight chiral gelators. Particular attention was paid to a group of gelators with perfluoroalkyl chains. The effects of the helical conformation of the perfluoroalkyl chains on the formation of chiral architectures are reported. It is described how the conformation of a chiral gelator was determined by comparing the experimental and theoretical VCD spectra together with a model proposed for the molecular aggregation in fibrils. The results demonstrate the potential utility of the chiroptical method in analyzing organized chiral aggregates.

  9. Self-assembled supramolecular nanocarrier hosting two kinds of guests in the site-isolation state.

    Science.gov (United States)

    Lou, Xing-Long; Cheng, Fa; Cao, Peng-Fei; Tang, Qiang; Liu, Hua-Ji; Chen, Yu

    2009-11-02

    Hyperbranched polyethylenimine (HPEI) was simply mixed with a solution of amphiphilic calix[4]arene (AC4), which possesses four phenol groups and four aliphatic chains, in chloroform. This resulted in the novel supramolecular complex HPEI-AC4 through the noncovalent interaction of the amino groups of HPEI with the phenol groups of AC4. The formed HPEI-AC4 supramolecular complexes were characterized by 1H NMR spectroscopy and dynamic light scattering. The cationic water-soluble dye methyl blue (MB) and the anionic water-soluble dye methyl orange (MO) were used as the model guests to test the performance of HPEI-AC4 as a supramolecular nanocarrier. It was found that HPEI-AC4 could accommodate the anionic water-soluble MO guests into the HPEI core. The MO encapsulation capacity of HPEI-AC4 was pH sensitive, which reached maximum loading under weakly acidic conditions. The loaded MO molecules could be totally released when the pH value was reduced to be around 4.5 or raised to be around 9.5, and this process was reversible. HPEI-AC4 could not only accommodate the anionic MO with the HPEI core but could also simultaneously load the cationic MB molecules using the formed AC4 shell, thereby realizing the site isolation of the two kinds of functional units. The amount of MO and MB encapsulated by HPEI-AC4 could be controlled by varying the ratio of hydroxyl groups of AC4 to amino groups of HPEI.

  10. Supramolecular self-assembly and controllable drug release of thermosensitive hyperbranched multiarm copolymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A novel temperature-responsive hyperbranched multiarm copolymer with a hydrophobic hyperbranched poly(3-ethyl-3-(hydroxymethyl)oxetane)(HBPO) core and thermosensitive poly(N-isopropylacrylamide)(PNIPAM) arms was synthesized via the atom transfer radical polymerization(ATRP) of NIPAM monomers from a hyperbranched HBPO macroinitiator.It was found that HBPO-star-PNIPAM self-assembled into multimolecular micelles(around 60 nm) in water at room temperature according to pyrene probe fluorescence spectrometry,1H NMR,TEM,and DLS measurements.The micelle solution showed a reversible thermosensitive phase transition at a lower critical solution temperature(LCST)(around 32°C) observed by variable temperature optical absorbance measurements.Variable temperature NMR and DLS analyses demonstrated that the LCST transition originated from the secondary aggregation of the micelles driven by increasing hydrophobic interaction due to the dehydration of PNIPAM shells upon heating.The drug loading and release properties of HBPO-star-PNIPAM micelles were also investigated using prednisone acetate as a model drug.The micelles showed a much improved drug encapsulation efficiency and temperature-dependent sustainable release behavior due to the special micellar structure.The micelles exhibited no apparent cytotoxicity against human HeLa cells.

  11. Amino Acid Chirality and Ferrocene Conformation Guided Self-Assembly and Gelation of Ferrocene-Peptide Conjugates.

    Science.gov (United States)

    Adhikari, Bimalendu; Singh, Charanpreet; Shah, Afzal; Lough, Alan J; Kraatz, Heinz-Bernhard

    2015-08-03

    The self-assembly and gelation behavior of a series of mono- and disubstituted ferrocene (Fc)-peptide conjugates as a function of ferrocene conformation and amino acid chirality are described. The results reveal that ferrocene-peptide conjugates self-assemble into organogels by controlling the conformation of the central ferrocene core, through inter- versus intramolecular hydrogen bonding in the attached peptide chain(s). The chirality controlled assembling studies showed that two monosubstituted Fc conjugates FcCO-LFLFLA-OMe and FcCO-LFLFDA-OMe form gels with nanofibrillar network structures, whereas the other two diastereomers FcCO-DFLFLA-OMe and FcCO-LFDFLA-OMe exclusively produced straight nanorods and non-interconnected small fibers, respectively. This suggests the potential tuning of gelation behavior and nanoscale morphology by altering the chirality of constituted amino acids. The current study confirms the profound effect of diastereomerism and no influence of enantiomers on gelation. Correspondingly, the diastereomeric and enantiomeric Fc[CO-FFA-OMe]2 were constructed for the study of chirality-organized structures.

  12. Self-assembly of 2,3-dihydroxycholestane steroids into supramolecular organogels as a soft template for the in-situ generation of silicate nanomaterials

    Directory of Open Access Journals (Sweden)

    Valeria C. Edelsztein

    2013-09-01

    Full Text Available Supramolecular gels are an important and interesting class of soft materials that show great potential for many applications. Most of them have been discovered serendipitously, and understanding the supramolecular self-assembly that leads to the formation of the gel superstructure is the key to the directed design of new organogels. We report herein the organogelating property of four stereoisomers of the simple steroid 2,3-dihydroxycholestane. Only the isomer with the trans-diaxial hydroxy groups had the ability to gelate a broad variety of liquids and, thus, to be a super-organogelator for hydrocarbons. The scope of solvent gelation was analysed with regard to two solvent parameters, namely the Kamlet–Taft and the Hansen solubility parameters. The best correlation was observed with the Hansen approach that revealed the existence of two clear gelation zones. We propose a general model of self-assembly through multiple intermolecular hydrogen bonds between the 1,2-dihydroxy system, which is based on experimental data and computational simulations revealing the importance of the di-axial orientation of the hydroxy groups for the one-dimensional self-assembly. Under controlled conditions, the fibrillar superstructure of the organogel was successfully used as a template for the in-situ sol–gel polymerization of tetraethoxysilane and the further preparation of silica nanotubes. We propose that the driving forces for templating are hydrogen bonding and electrostatic interactions between the anionic silicate intermediate species and the self-assembled fibrillar network.

  13. Self-assembly of 2,3-dihydroxycholestane steroids into supramolecular organogels as a soft template for the in-situ generation of silicate nanomaterials.

    Science.gov (United States)

    Edelsztein, Valeria C; Mac Cormack, Andrea S; Ciarlantini, Matías; Di Chenna, Pablo H

    2013-01-01

    Supramolecular gels are an important and interesting class of soft materials that show great potential for many applications. Most of them have been discovered serendipitously, and understanding the supramolecular self-assembly that leads to the formation of the gel superstructure is the key to the directed design of new organogels. We report herein the organogelating property of four stereoisomers of the simple steroid 2,3-dihydroxycholestane. Only the isomer with the trans-diaxial hydroxy groups had the ability to gelate a broad variety of liquids and, thus, to be a super-organogelator for hydrocarbons. The scope of solvent gelation was analysed with regard to two solvent parameters, namely the Kamlet-Taft and the Hansen solubility parameters. The best correlation was observed with the Hansen approach that revealed the existence of two clear gelation zones. We propose a general model of self-assembly through multiple intermolecular hydrogen bonds between the 1,2-dihydroxy system, which is based on experimental data and computational simulations revealing the importance of the di-axial orientation of the hydroxy groups for the one-dimensional self-assembly. Under controlled conditions, the fibrillar superstructure of the organogel was successfully used as a template for the in-situ sol-gel polymerization of tetraethoxysilane and the further preparation of silica nanotubes. We propose that the driving forces for templating are hydrogen bonding and electrostatic interactions between the anionic silicate intermediate species and the self-assembled fibrillar network.

  14. Synthesis of a New Porphyrin-fluorescein Hybrid and its Supramolecular Self-assembly with Amino-porphyrinatomanganese(Ⅲ)by Hydrogen-bonding

    Institute of Scientific and Technical Information of China (English)

    Jia Zheng LU; Jin Wang HUANG; Li Fen FAN; Jie LIU; Ke Zhuan XU; Xian Li CHEN; Liang Nian JI

    2005-01-01

    A new porphyrin-fluorescein hybrid 2 (Fl-PPTPP) has been synthesized and characterized by UV-Vis, IR, 1H-NMR, ESI-MS and elemental analysis. The supramolecular self-assembly of Fl-PPTPP with amino-porphyrinatomanganese(Ⅲ) [Mn(Ⅲ) (p-APTPP)C1] by hydrogen-bonding was studied using fluorescence spectroscopic titration and ESI-MS.

  15. Self-assembly, Dynamics and Chirality of Conformational Switches on Metal Surfaces Studied by UHV-STM

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli

    2013-01-01

    Molecular self-assembly is essential in the bottom-up design of nanostructures. Molecular conformational switches are highly interesting both from the basic science of view to enhance our understanding of molecular dynamics in adsorption systems, and also due to potential applications such as mol......Molecular self-assembly is essential in the bottom-up design of nanostructures. Molecular conformational switches are highly interesting both from the basic science of view to enhance our understanding of molecular dynamics in adsorption systems, and also due to potential applications...... structures formed by the conformational switches and statistical analysis of conformational states, a detailed study of dynamic processes is performed by acquiring time-resolved STM data. Furthermore, one of the possible applications of conformational switches towards inducing chirality in surface assemblies...

  16. Chiral expression at the solid-liquid interface: a joint experimental and theoretical study of the self-assembly of chiral porphyrins on graphite.

    Science.gov (United States)

    Linares, Mathieu; Iavicoli, Patrizia; Psychogyiopoulou, Krystallia; Beljonne, David; De Feyter, Steven; Amabilino, David B; Lazzaroni, Roberto

    2008-09-01

    The chiral organization of an enantiopure functional molecule on an achiral surface has been studied with the aim of understanding the influence of stereogenic centers on the self-assembly in two dimensions. A chiral tetra meso-amidophenyl-substituted porphyrin containing long hydrophobic tails at the periphery of the conjugated pi-electron system was prepared for this purpose. Scanning tunneling microscopy (STM) images of the compound at the graphite-heptanol interface reveal a chiral arrangement of the molecules, with the porphyrin rows tilted by 13 degrees with respect to the normal to the graphite axes. In terms of molecular modeling, a combination of molecular dynamics simulations on systems constrained by periodic boundary conditions and on unconstrained large molecular aggregates has been applied to reach a quantitative interpretation on both the density of the layer and its orientation with respect to the graphite surface. The results show clearly that (i) the methyl groups of the stereogenic point toward the graphite surface and (ii) the porphyrin molecules self-assemble into an interdigitated structure where the alkyl chains align along one of the graphite axes and the porphyrin cores are slightly shifted with respect to one another. The direction of this shift, which defines the chirality of the monolayer, is set by the chirality of the stereogenic centers. Such an arrangement results in the formation of a dense chiral monolayer that is further stabilized by hydrogen bonding with protic solvents.

  17. Synthesis and predetermined supramolecular chirality of carbohydrate-functionalized perylene bisimide derivatives.

    Science.gov (United States)

    Wang, Ke-Rang; Han, Dan; Cao, Guo-Jing; Li, Xiao-Liu

    2015-05-01

    Eight carbohydrate-modified perylene bisimides (PBI-4 lac-2 lac, PBI-4 lac-2 Man, PBI-4 lac-2 Gal, PBI-4 lac-2 Mal, PBI-4 Man-2 Man, PBI-4 Man-2 lac, PBI-4 Man-2 Gal and PBI-4 Man-2 Mal) were synthesized, and the following predetermined supramolecular chirality rule was found: perylene bisimides modified with disaccharides (D-lactose and D-maltose) at the imide position generated right-handed chirality, and those modified with monosaccharides (D-mannose and D-galactose) generated left-handed chirality, when D-lactose or D-mannose was substituted in the bay positions of perylene bisimides with amide bonds as the linking spacers. These results may be because of the difference in the stacking angle of the perylene bisimide backbones induced by the steric effect and the additional hydrogen bonds between the disaccharide residues. This study provides an important design rule for predetermined chiral self-assembly of perylene bisimides.

  18. Controlled, bio-inspired self-assembly of cellulose-based chiral reflectors

    NARCIS (Netherlands)

    Dumanli, Ahu Gumrah; Kamita, Gen; Landman, Jasper; van der Kooij, Hanne; Glover, Beverley J.; Baumberg, Jeremy J.; Steiner, Ullrich; Vignolini, Silvia

    2014-01-01

    The self-assembly process of photonic structures made of cellulose nanocrystals is studied in detail by locally monitoring and controlling water evaporation. Three different stages during the evaporation process are identified. Spectroscopy quantifies the amount of disorder in the fabricated samples

  19. Enantioselective self-assembly of antiferromagnetic hexacopper(II) wheels with chiral amino acid oxamates.

    Science.gov (United States)

    Grancha, Thais; Ferrando-Soria, Jesús; Cano, Joan; Lloret, Francesc; Julve, Miguel; De Munno, Giovanni; Armentano, Donatella; Pardo, Emilio

    2013-07-01

    The Cu(2+)-mediated self-assembly of oxamato-based ligands derived from either the (S)- or (R)-enantiomers of the amino acid valine leads to the formation of two antiferromagnetically coupled homochiral anionic hexacopper(II) wheels in the presence of templating tetramethylammonium countercations.

  20. Supramolecular Chirality in Dynamic Coordination Chemistry

    Directory of Open Access Journals (Sweden)

    Hiroyuki Miyake

    2014-10-01

    Full Text Available Labile metal complexes have a useful coordination bond; which is weaker than a covalent C–C bond and is reversibly and dynamically formed and dissociated. Such labile metal complexes also can be used to construct chiral shapes and offer dynamic conversion of chiral molecular shapes in response to external stimuli. This review provides recent examples of chirality induction and describes the dynamic conversion systems produced by chiral metal complexes including labile metal centers, most of which respond to external stimuli by exhibiting sophisticated conversion phenomena.

  1. The fabrication and enhanced nonlinear optical properties of electrostatic self-assembled film containing water-soluble chiral polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang Qiuyun, E-mail: qyouyang7823@yahoo.cn [College of Science, Harbin Engineering University, Harbin 150001 (China); Chen Yujin; Li Chunyan [College of Science, Harbin Engineering University, Harbin 150001 (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer The ultra-thin film containing the chiral PPV and oligo-thiophene derivatives was fabricated. Black-Right-Pointing-Pointer The third-order NLO properties were studied of the ultra-thin film. Black-Right-Pointing-Pointer The reverse saturable absorption and self-defocusing were observed. Black-Right-Pointing-Pointer The nonlinear optical mechanism was discussed. - Abstract: An ultra-thin film containing a water-soluble chiral PPV derivative and oligo-thiophene derivative was fabricated through the electrostatic self-assembly technique. The PPV and thiophene derivatives are poly{l_brace}(2,5-bis(3-bromotrimethylammoniopropoxy)-phenylene-1,4-divinylene) -alt-1,4-(2,5-bis((3-hydroxy-2-(S)-methyl)propoxy)phenylenevinylene) (BHP-PPV) and 4 Prime ,3 Double-Prime -dipentyl-5,2 Prime :5 Prime ,2 Double-Prime :5 Double-Prime ,2 Double-Prime Prime -quaterthiophene-2,5 Double-Prime Prime -dicarboxylic acid (QTDA), respectively. The circular dichroism (CD) spectrum of BHP-PPV cast film on quartz substrate proved the chirality of BHP-PPV. The UV-vis spectra showed a continuous deposition process of BHP-PPV and QTDA. The film structure was characterized by small angle X-ray diffraction (XRD) measurement and atomic force microscopy (AFM) images. The nonlinear optical (NLO) properties of BHP-PPV/QTDA ultra-thin film with different number of bilayers were investigated by the Z-scan technique with 8 ns laser pulse at 532 nm. The Z-scan experimental data were analyzed with the double-sided film Z-scan theory. The BHP-PPV/QTDA film exhibits enhanced reverse saturable absorption (RSA) and self-defocusing effects, which may be attributed to the conjugated strength, chirality and well-ordered film structure. The chirality may lead to the RSA of BHP-PPV/QTDA film contrary to the SA of the other electrostatic self-assembled films without chiral units. The self-defocusing effect should be due to the thermal effect.

  2. Supramolecular Self-Assembly of Histidine-Capped-Dialkoxy-Anthracene: A Visible Light Triggered Platform for facile siRNA Delivery

    KAUST Repository

    Patil, Sachin

    2016-06-29

    Supramolecular self-assembly of histidine-capped-dialkoxy-anthracene (HDA) results in the formation of light responsive nanostructures.Single-crystal X-ray diffraction analysis of HDA shows two types of hydrogen bonding. The first hydrogen bond is established between the imidazole moieties while the second involves the oxygen atom of one amide group and the hydrogen atom of a second amide group. When protonated in acidic aqueous media, HDA successfully complexes siRNA yielding spherical nanostructures. This biocompatible platform controllably delivers siRNA with high efficacy upon visible light irradiation leading up to 90% of gene silencing in live cells.

  3. Self-assemblies based on the "outer-surface interactions" of cucurbit[n]urils: new opportunities for supramolecular architectures and materials.

    Science.gov (United States)

    Ni, Xin-Long; Xiao, Xin; Cong, Hang; Zhu, Qian-Jiang; Xue, Sai-Feng; Tao, Zhu

    2014-04-15

    Supramolecular architectures and materials have attracted immense attention during the last decades because they not only open the possibility of obtaining a large variety of aesthetically interesting structures but also have applications in gas storage, sensors, separation, catalysis, and so on. On the other hand, cucurbit[n]urils (Q[n]s), a relatively new class of macrocyclic hosts with a rigid hydrophobic cavity and two identical carbonyl fringed portals, have attracted much attention in supramolecular chemistry. Because of the strong charge-dipole and hydrogen bonding interactions, as well as hydrophobic and hydrophilic effect derived from the negative portals and rigid cavities of Q[n]s, nearly all research in Q[n]s has been focused on utilizing the portals and cavities to construct supramolecular assemblies similar to other macrocyclic receptors such as cyclodextrin and calixarenes. Interestingly, a recent study revealed that other weak noncovalent interactions such as hydrogen bonding and π···π stacking, as well as C-H···π and ion-dipole interactions, could also be defined as "outer-surface interactions", which are derived from the electrostatically positive outer surface of Q[n]s. These interactions could be the driving forces in the formation of various novel Q[n]-based supramolecular architectures and functional materials. In this Account, we provide a comprehensive overview of supramolecular self-assemblies based on the outer-surface interactions of Q[n]s. These outer-surface interactions include those between Q[n]s, Q[n]s and aromatic molecules, Q[n]s and calixarenes, Q[n]s and inorganic complex ions, and Q[n]s and polyoxometalates. Pioneering work has shown that such weak noncovalent interactions play very important roles in the formation of various Q[n]-based functional materials and supramolecular architectures. For example, hydrogen bonds in outer-surface interactions between Q[n] molecules not only function as the sole driving force in the

  4. Self-Assemblies of Single-Walled Carbon Nanotubes through Tunable Tethering of Pyrenes by Dextrin for Rapidly Chiral Sensing

    Directory of Open Access Journals (Sweden)

    Wei-Li Wei

    2011-01-01

    Full Text Available Pyrene-modified dextrin (Py-Dex was synthesized via the Schiff base reaction between reducing end of dextrins and 1-aminopyrene, and then self-assemblies of single-walled carbon nanotubes (SWNTs were fabricated through the tunable tethering of pyrene to SWNTs by dextrin chains. The Py-Dex-SWNTs assemblies were found to be significantly water-soluble because of the synergistic effect of dextrin chains and pyrene moieties. Py-Dex and Py-Dex-SWNTs were adequately characterized by NMR, UV-vis, fluorescence spectroscopy, Raman spectroscopy, matrix-assisted laser desorption/ionization-time of flight mass spectroscopy, and transmission electron microscopy. The tethering effect of dextrin toward pyrene moieties was clearly revealed and was found to be tunable by adjusting the length of dextrin chains. The fluorescence of pyrene moieties was sufficiently quenched by SWNTs with the support of dextrin chains. Furthermore, the Py-Dex-SWNTs assemblies were used for chiral selective sensing by introducing cyclodextrins as chiral binding sites. The rapid chiral sensing was successfully tested for different enantiomers.

  5. Enantiopure chiral poly(glycerol methacrylate) self-assembled monolayers knock down protein adsorption and cell adhesion.

    Science.gov (United States)

    Li, Zheng; Köwitsch, Alexander; Zhou, Guoying; Groth, Thomas; Fuhrmann, Bodo; Niepel, Marcus; Amado, Elkin; Kressler, Jörg

    2013-10-01

    Chirality plays a fundamental role not only in biological systems, but also in synthetic materials intended for bio-applications. Self-assembled monolayers (SAMs) are prepared on gold surfaces through a "grafting to" method from racemic or enantiopure chiral poly(glycerol methacrylate)s (PGMA(rac), PGMA(R), and PGMA(S)), having a thiol endgroup. Such SAMs constitute a chemically and structurally well-defined model substrate for studying protein adsorption and cell adhesion as a function of the polymer chirality. Surface plasmon resonance measurements reveal that PGMA SAMs greatly reduce the adsorption of bovine serum albumin (BSA) compared to bare gold surfaces. Interestingly, enantiopure SAMs based on PGMA(R) or PGMA(S) show a significantly larger reduction in BSA adsorption than PGMA(rac)-covered surfaces. Studies with the monocytic cell line THP-1 show a similar relationship between enantiopurity of PGMA SAMs and the extent of cell adhesion. Ellipsometry and Raman spectroscopy measurements indicate that SAMs formed by PGMA(rac) have a higher grafting density compared to SAMs of PGMA(R) and PGMA(S). This seems to be due to the ability of PGMA(rac) to form more intermolecular hydrogen bonds among polymer chains compared to the enantiopure PGMAs. Circular dichroism spectroscopy provide evidence that enantiopure polymers adopt a chiral ordered conformation, most likely helical, in aqueous solutions. It is concluded that a higher water content of SAMs formed by enantiopure PGMA(S) and PGMA(R) SAMs arises from the macromolecular chiral conformation adopted by their enantiopure PGMA chains, and it is the decisive reason for the reduced BSA adsorption and cell adhesion as compared to PGMA(rac) SAMs.

  6. Patchy Supramolecular Bottle-Brushes Formed by Solution Self-Assembly of Bis(urea)s and Tris(urea)s Decorated by Two Incompatible Polymer Arms.

    Science.gov (United States)

    Catrouillet, Sylvain; Bouteiller, Laurent; Boyron, Olivier; Lorthioir, Cédric; Nicol, Erwan; Pensec, Sandrine; Colombani, Olivier

    2016-09-01

    In an attempt to design urea-based Janus nanocylinders through a supramolecular approach, nonsymmetrical bis(urea)s and tris(urea)s decorated by two incompatible polymer arms, namely, poly(styrene) (PS) and poly(isobutylene) (PIB), were synthesized using rather straightforward organic and polymer chemistry techniques. Light scattering experiments revealed that these molecules self-assembled in cyclohexane by cooperative hydrogen bonds. The extent of self-assembly was limited for the bis(urea)s. On the contrary, reasonably anisotropic 1D structures (small nanocylinders) could be obtained with the tris(urea)s (Nagg ∼ 50) which developed six cooperative hydrogen bonds per molecule. (1)H transverse relaxation measurements and NOESY NMR experiments in cyclohexane revealed that perfect Janus nanocylinders with one face consisting of only PS and the other of PIB were not obtained. Nevertheless, phase segregation between the PS and PIB chains occurred to a large extent, resulting in patchy cylinders containing well separated domains of PIB and PS chains. Reasons for this behavior were proposed, paving the way to improve the proposed strategy toward true urea-based supramolecular Janus nanocylinders.

  7. Surface-Confined Supramolecular Self-Assembly of Molecular Nanocranes for Chemically Lifting and Positioning C60 above a Conducting Substrate.

    Science.gov (United States)

    Du, Ping; Kreher, David; Mathevet, Fabrice; Maldivi, Pascale; Charra, Fabrice; Attias, André-Jean

    2015-12-21

    2D supramolecular self-assembly is a good way to form well-defined nanostructures on various substrates. One of the current challenges is to extend this approach to 3D functional building blocks. Here, we address this issue by providing a strategy for the controlled lifting and positioning of functional units above a graphitic substrate. This is the first time that multistory cyclophane-based 3D tectons incorporating C60 units have been designed and synthesized. Molecular modelling provides a description of the 3D geometries and evidences the flexible character of the building blocks. Despite this later feature, the supramolecular self-assembly of Janus tectons on HOPG yields well-ordered adlayers incorporating C60 arrays at well-defined mean distances from the surface. As our approach is not limited to C60 , the results reported here open-up possibilities for applications where the topological and electronic interactions between the substrate and the functional unit are of prime importance.

  8. Growth of Optically Active Chiral Inorganic Films through DNA Self-Assembly and Silica Mineralisation

    Science.gov (United States)

    Liu, Ben; Han, Lu; Duan, Yingying; Cao, Yunayuan; Feng, Ji; Yao, Yuan; Che, Shunai

    2014-05-01

    The circularly polarized reflection of nature is due to their distinct azimuthally twisted or helical character in the nanostructure of the surface films. Although many chiral inorganic powders have been successfully synthesised, the artificial synthesis of chiral inorganic films is rare. Herein, we reported a facile synthetic route for the growth of monolayered chiral film on the quaternary ammonium-modified silicon substrate. The films grew on the substrate surface because of the strong electrostatic interaction between positively charged quaternary ammonium groups and negatively charged phosphate groups of DNA, with subsequent growth to right-handed, vertically aligned, impeller-like helical architectures with left-handed two-dimensional square p4mm-structured DNA chiral packing. The DNA-silica composite films exhibited strong optical activity at 295 nm and in the range of 400-800 nm, corresponding to DNA chiral packing (absorption) and to the helical blade in the impeller (scattering), respectively. Upon removal of DNA templates, the pure inorganic impeller-like helical morphology was maintained; consequently, the scattering-based optical response was blue-shifted approximately 200 nm as a result of a decrease in the effective average refractive index. The hierarchical structures were reflected from the surfaces by cross-polarised light, which confirmed that the films were strongly birefringent, with long-range anisotropy.

  9. Cover Picture: Design and Sensing Properties of a Self-Assembled Supramolecular Oligomer (Chem. Eur. J. 6/2016)

    DEFF Research Database (Denmark)

    Bähring, Steffen; Martín-Gomis, Luis; Olsen, Gunnar;

    2016-01-01

    The controlled self-assembly of electron-rich and electron-deficient components to create a stimulus responsive oligomeric ensemble that functions as a sensor system for nitroaromatic explosives is depicted schematically on the cover. More information can be found in the Full Paper by Á. Sastre-S...

  10. Chiral amplification of oligopeptides in two-dimensional crystalline self-assemblies on water

    DEFF Research Database (Denmark)

    Zepik, H.; Shavit, E.; Tang, M.;

    2002-01-01

    from chiral nonracemic mixtures. The crystalline structures on the water surface were determined by grazing incidence x-ray diffraction and the diastereomeric composition of the oligopeptides by matrix-assisted laser desorption time-of-flight mass spectrometry with enantio-labeling. These results...

  11. Chiral hierarchical self-assembly in Langmuir monolayers of diacetylenic lipids

    KAUST Repository

    Basnet, Prem B.

    2013-01-01

    When compressed in the intermediate temperature range below the chain-melting transition yet in the low-pressure liquid phase, Langmuir monolayers made of chiral lipid molecules form hierarchical structures. Using Brewster angle microscopy to reveal this structure, we found that as the liquid monolayer is compressed, an optically anisotropic condensed phase nucleates in the form of long, thin claws. These claws pack closely to form stripes. This appears to be a new mechanism for forming stripes in Langmuir monolayers. In the lower temperature range, these stripes arrange into spirals within overall circular domains, while near the chain-melting transition, the stripes arrange into target patterns. We attributed this transition to a change in boundary conditions at the core of the largest-scale circular domains. © 2013 The Royal Society of Chemistry.

  12. Supramolecular phosphatases formed by the self-assembly of the bis(Zn²⁺-cyclen) complex, copper(II), and barbital derivatives in water.

    Science.gov (United States)

    Zulkefeli, Mohd; Hisamatsu, Yosuke; Suzuki, Asami; Miyazawa, Yuya; Shiro, Motoo; Aoki, Shin

    2014-10-01

    In our previous paper, we reported that a dimeric Zn(2+) complex with a 2,2'-bipyridyl linker (Zn2L(1)), cyanuric acid (CA), and a Cu(2+) ion automatically assemble in aqueous solution to form 4:4:4 complex 3, which selectively catalyzes the hydrolysis of mono(4-nitrophenyl)phosphate (MNP) at neutral pH. Herein, we report that the use of barbital (Bar) instead of CA for the self-assembly with Zn2L(1) and Cu(2+) induces 2:2:2 complexation of these components, and not the 4:4:4 complex, to form supramolecular complex 6 a, the structure and equilibrium characteristics of which were studied by analytical and physical measurements. The finding show that 6 a also accelerates the hydrolysis of MNP, similarly to 3. Moreover, inspired by the crystal structure of 6 a, we prepared barbital units that contain functional groups on their side chains in an attempt to produce supramolecular phosphatases that possess functional groups near the Cu2(μ-OH)2 catalytic core so as to mimic the catalytic center of alkaline phosphatase (AP).

  13. Structure and property of self-assemble valinyl bolaform amides having different chirality.

    Science.gov (United States)

    Doi, M; Asano, A; Yoshida, H; Inouguchi, M; Iwanaga, K; Sasaki, M; Katsuya, Y; Taniguchi, T; Yamamoto, D

    2005-10-01

    Bolaform amides were designed from N,N'-bis(carboethoxy-L-valinyl)-diaminoethane (1) by linking t-butyloxycarbonyl-valine through ethylenediamine (EDA) to enable spectroscopic and X-ray diffraction analyses. N,N'-Bis(Boc-L-valinyl)-diaminoethane (2) and N,N'-bis(Boc-D-valinyl)-diaminoethane (3) were composed of L-Val and D-Val, respectively. N-(Boc-L-valinyl)-N'-(Boc-D-valinyl)-diaminoethane (4) was composed of both L-Val and D-Val, and was achiral (meso-peptide). Peptide 5 was a 1:1 mixture of 2 and 3, and was also achiral (racemate). These peptides mediated gelation of corn oil at a concentration of approximately 1%. Within crystals, the peptides formed beta-sheet ribbons, but differences were observed in hydrogen-bonding patterns and side-chain arrangements. These differences were also deduced from temperature dependence of amide protons. Force-field calculations based on the crystal structures indicated that association of beta-sheet ribbons had energy benefits, and it was assumed that molecular aggregation progressed spontaneously. These structural studies indicated the chirality of amino acids affected for the properties of bolaform amides.

  14. Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry

    Directory of Open Access Journals (Sweden)

    Michiya Fujiki

    2014-08-01

    Full Text Available Controlled mirror symmetry breaking arising from chemical and physical origin is currently one of the hottest issues in the field of supramolecular chirality. The dynamic twisting abilities of solvent molecules are often ignored and unknown, although the targeted molecules and polymers in a fluid solution are surrounded by solvent molecules. We should pay more attention to the facts that mostly all of the chemical and physical properties of these molecules and polymers in the ground and photoexcited states are significantly influenced by the surrounding solvent molecules with much conformational freedom through non-covalent supramolecular interactions between these substances and solvent molecules. This review highlights a series of studies that include: (i historical background, covering chiral NaClO3 crystallization in the presence of d-sugars in the late 19th century; (ii early solvent chirality effects for optically inactive chromophores/fluorophores in the 1960s–1980s; and (iii the recent development of mirror symmetry breaking from the corresponding achiral or optically inactive molecules and polymers with the help of molecular chirality as the solvent use quantity.

  15. High-definition self-assemblies driven by the hydrophobic effect: synthesis and properties of a supramolecular nanocapsule.

    Science.gov (United States)

    Liu, Simin; Gibb, Bruce C

    2008-08-28

    High definition self-assemblies, those that possess order at the molecular level, are most commonly made from subunits possessing metals and metal coordination sites, or groups capable of partaking in hydrogen bonding. In other words, enthalpy is the driving force behind the free energy of assembly. The hydrophobic effect engenders the possibility of (nominally) relying not on enthalpy but entropy to drive assembly. Towards this idea, we describe how template molecules can trigger the dimerization of a cavitand in aqueous solution, and in doing so are encapsulated within the resulting capsule. Although not held together by (enthalpically) strong and directional non-covalent forces, these capsules possess considerable thermodynamic and kinetic stability. As a result, they display unusual and even unique properties. We discuss some of these, including the use of the capsule as a nanoscale reaction chamber and how they can bring about the separation of hydrocarbon gases.

  16. Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin.

    Science.gov (United States)

    Ni, Xiping; Cheng, Alan; Li, Jun

    2009-03-15

    This article reports a detailed study on the hydrogel formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) (PEO-PPO-PEO) triblock copolymers with alpha-cyclodextrin (alpha-CD) in aqueous solutions. The gelation kinetics and the gel rheological properties were studied using viscometry. The sol-gel phase transitions were studied using phase diagrams, while the gelation mechanism was studied using differential scanning calorimetric analysis. It was concluded that the gelation was induced by the complex formation between the PEO segments of the PEO-PPO-PEO triblock copolymer and alpha-CD, and the further self-assembly of the partially formed inclusion complexes. The addition of alpha-CD largely reduced the concentration of the copolymer needed for gel formation. The gels were thixotropic and reversible, and potentially suitable for use as an injectable drug-delivery system.

  17. Selective Synthesis of Molecular Borromean Rings: Engineering of Supramolecular Topology via Coordination-Driven Self-Assembly.

    Science.gov (United States)

    Kim, Taegeun; Singh, Nem; Oh, Jihun; Kim, Eun-Hee; Jung, Jaehoon; Kim, Hyunuk; Chi, Ki-Whan

    2016-07-13

    Molecular Borromean rings (BRs) is one of the rare topology among interlocked molecules. Template-free synthesis of BRs via coordination-driven self-assembly of tetracene-based Ru(II) acceptor and ditopic pyridyl donors is reported. NMR and single-crystal XRD analysis observed sequential transformation of a fully characterized monomeric rectangle to molecular BRs and vice versa. Crystal structure of BRs revealed that the particular topology was enforced by the appropriate geometry of the metallacycle and multiple parallel-displaced π-π interactions between the donor and tetracene moiety of the acceptor. Computational studies based on density functional theory also supported the formation of BRs through dispersive intermolecular interactions in solution.

  18. Shuttle-like supramolecular nanostructures formed by self-assembly of a porphyrin via an oil/water system.

    Science.gov (United States)

    Guo, Peipei; Chen, Penglei; Liu, Minghua

    2011-09-23

    In this paper, in terms of the concentration of an aqueous solution of a surfactant, we investigate the self-assembly behavior of a porphyrin, 5, 10, 15, 20-tetra(4-pyridyl)-21H, 23H-porphine [H2TPyP], by using an oil/water system as the medium. We find that when a chloroform solution of H2TPyP is dropwise added into an aqueous solution of cetyltrimethylammonium bromide [CTAB] with a lower concentration, a large amount of irregular nanoarchitectures, together with a small amount of well-defined shuttle-like nanostructures, hollow nanospheres, and nanotubes, could be produced. While a moderate amount of shuttle-like nanostructures accompanied by a few irregular nanoarchitectures, solid nanospheres, and nanorods are produced when a CTAB aqueous solution in moderate concentration is employed, in contrast, a great quantity of shuttle-like nanostructures together with a negligible amount of solid nanospheres, nanofibers, and irregular nanostructures are manufactured when a high-concentration CTAB aqueous solution is involved. An explanation on the basis of the molecular geometry of H2TPyP and in terms of the intermolecular π-π interactions between H2TPyP units, and hydrophobic interactions between CTAB and H2TPyP has been proposed. The investigation gives deep insights into the self-assembly behavior of porphyrins in an oil/water system and provides important clues concerning the design of appropriate porphyrins when related subjects are addressed. Our investigation suggests that an oil/aqueous system might be an efficient medium for producing unique organic-based nanostructures.

  19. Shuttle-like supramolecular nanostructures formed by self-assembly of a porphyrin via an oil/water system

    Directory of Open Access Journals (Sweden)

    Guo Peipei

    2011-01-01

    Full Text Available Abstract In this paper, in terms of the concentration of an aqueous solution of a surfactant, we investigate the self-assembly behavior of a porphyrin, 5, 10, 15, 20-tetra(4-pyridyl-21H, 23H-porphine [H2TPyP], by using an oil/water system as the medium. We find that when a chloroform solution of H2TPyP is dropwise added into an aqueous solution of cetyltrimethylammonium bromide [CTAB] with a lower concentration, a large amount of irregular nanoarchitectures, together with a small amount of well-defined shuttle-like nanostructures, hollow nanospheres, and nanotubes, could be produced. While a moderate amount of shuttle-like nanostructures accompanied by a few irregular nanoarchitectures, solid nanospheres, and nanorods are produced when a CTAB aqueous solution in moderate concentration is employed, in contrast, a great quantity of shuttle-like nanostructures together with a negligible amount of solid nanospheres, nanofibers, and irregular nanostructures are manufactured when a high-concentration CTAB aqueous solution is involved. An explanation on the basis of the molecular geometry of H2TPyP and in terms of the intermolecular π-π interactions between H2TPyP units, and hydrophobic interactions between CTAB and H2TPyP has been proposed. The investigation gives deep insights into the self-assembly behavior of porphyrins in an oil/water system and provides important clues concerning the design of appropriate porphyrins when related subjects are addressed. Our investigation suggests that an oil/aqueous system might be an efficient medium for producing unique organic-based nanostructures.

  20. Cucurbit[n]uril-Based Microcapsules Self-Assembled within Microfluidic Droplets: A Versatile Approach for Supramolecular Architectures and Materials.

    Science.gov (United States)

    Liu, Ji; Lan, Yang; Yu, Ziyi; Tan, Cindy S Y; Parker, Richard M; Abell, Chris; Scherman, Oren A

    2017-02-21

    Microencapsulation is a fundamental concept behind a wide range of daily applications ranging from paints, adhesives, and pesticides to targeted drug delivery, transport of vaccines, and self-healing concretes. The beauty of microfluidics to generate microcapsules arises from the capability of fabricating monodisperse and micrometer-scale droplets, which can lead to microcapsules/particles with fine-tuned control over size, shape, and hierarchical structure, as well as high reproducibility, efficient material usage, and high-throughput manipulation. The introduction of supramolecular chemistry, such as host-guest interactions, endows the resultant microcapsules with stimuli-responsiveness and self-adjusting capabilities, and facilitates hierarchical microstructures with tunable stability and porosity, leading to the maturity of current microencapsulation industry. Supramolecular architectures and materials have attracted immense attention over the past decade, as they open the possibility to obtain a large variety of aesthetically pleasing structures, with myriad applications in biomedicine, energy, sensing, catalysis, and biomimicry, on account of the inherent reversible and adaptive nature of supramolecular interactions. As a subset of supramolecular interactions, host-guest molecular recognition involves the formation of inclusion complexes between two or more moieties, with specific three-dimensional structures and spatial arrangements, in a highly controllable and cooperative manner. Such highly selective, strong yet dynamic interactions could be exploited as an alternative methodology for programmable and controllable engineering of supramolecular architectures and materials, exploiting reversible interactions between complementary components. Through the engineering of molecular structures, assemblies can be readily functionalized based on host-guest interactions, with desirable physicochemical characteristics. In this Account, we summarize the current state

  1. Metal-organic and supramolecular networks driven by 5-chloronicotinic acid: Hydrothermal self-assembly synthesis, structural diversity, luminescent and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhu-Qing, E-mail: zqgao2008@163.com [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Li, Hong-Jin [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Gu, Jin-Zhong, E-mail: gujzh@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Zhang, Qing-Hua [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Kirillov, Alexander M. [Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisbon (Portugal)

    2016-09-15

    Four new crystalline solids, namely [Co{sub 2}(µ{sub 2}-5-Clnic){sub 2}(µ{sub 3}-5-Clnic){sub 2}(µ{sub 2}-H{sub 2}O)]{sub n} (1), [Co(5-Clnic){sub 2}(H{sub 2}O){sub 4}]·2(5-ClnicH) (2), [Pb(µ{sub 2}-5-Clnic){sub 2}(phen)]{sub n} (3), and [Cd(5-Clnic){sub 2}(phen){sub 2}]·3H{sub 2}O (4) were generated by hydrothermal self-assembly methods from the corresponding metal(II) chlorides, 5-chloronicotinic acid (5-ClnicH) as a principal building block, and 1,10-phenanthroline (phen) as an ancillary ligand (optional). All the products 1–4 were characterized by IR spectroscopy, elemental analysis, thermogravimetric (TGA), powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Their structures range from an intricate 3D metal-organic network 1 with the 3,6T7 topology to a ladder-like 1D coordination polymer 3 with the 2C1 topology, whereas compounds 2 and 4 are the discrete 0D monomers. The structures of 2 and 4 are further extended (0D→2D or 0D→3D) by hydrogen bonds, generating supramolecular networks with the 3,8L18 and ins topologies, respectively. Synthetic aspects, structural features, thermal stability, magnetic (for 1) and luminescent (for 3 and 4) properties were also investigated and discussed. - Graphical abstract: A new series of crystalline solids was self-assembled and fully characterized; their structural, topological, luminescent and magnetic features were investigated. Display Omitted.

  2. Nano-self-assemblies based on synthetic analogues of mycobacterial monomycoloyl glycerol and DDA: Supramolecular structure and adjuvant efficacy

    DEFF Research Database (Denmark)

    Martin-Bertelsen, Birte; Korsholm, Karen Smith; Christensen, Dennis

    2016-01-01

    responses. In the present study, we investigated the supramolecular structure and in vivo adjuvant activity of dispersions based on binary mixtures of DDA and an array of synthetic MMG-1 analogues (MMG- 2/3/5/6) displaying longer (MMG-2) or shorter (MMG-3) alkyl chain lengths, or polar headgroup (MMG-5......-adsorbed to DDA:MMG-1/3/6 dispersions revealed that all tested adjuvants were immunoactive and induced strong Th1 and Th17 responses with a potential for a central effector memory profile. The MMG-1 and MMG-6 analogues were equally immunoactive in vivo upon incorporation into DDA liposomes, despite the reported...

  3. Supramolecular self-assembly of graphene oxide and metal nanoparticles into stacked multilayers by means of a multitasking protein ring

    Science.gov (United States)

    Ardini, Matteo; Golia, Giordana; Passaretti, Paolo; Cimini, Annamaria; Pitari, Giuseppina; Giansanti, Francesco; Leandro, Luana Di; Ottaviano, Luca; Perrozzi, Francesco; Santucci, Sandro; Morandi, Vittorio; Ortolani, Luca; Christian, Meganne; Treossi, Emanuele; Palermo, Vincenzo; Angelucci, Francesco; Ippoliti, Rodolfo

    2016-03-01

    Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its lumen. This feature is exploited to both capture presynthesized gold nanoparticles and grow in situ palladium nanoparticles paving the way to straightforward and ``green'' routes to 3D reduced GO-metal composite materials.Graphene oxide (GO) is rapidly emerging worldwide as a breakthrough precursor material for next-generation devices. However, this requires the transition of its two-dimensional layered structure into more accessible three-dimensional (3D) arrays. Peroxiredoxins (Prx) are a family of multitasking redox enzymes, self-assembling into ring-like architectures. Taking advantage of both their symmetric structure and function, 3D reduced GO-based composites are hereby built up. Results reveal that the ``double-faced'' Prx rings can adhere flat on single GO layers and partially reduce them by their sulfur-containing amino acids, driving their stacking into 3D multi-layer reduced GO-Prx composites. This process occurs in aqueous solution at a very low GO concentration, i.e. 0.2 mg ml-1. Further, protein engineering allows the Prx ring to be enriched with metal binding sites inside its

  4. Near infrared (NIR) lanthanide emissive Langmuir-Blodgett monolayers formed using Nd(III) directed self-assembly synthesis of chiral amphiphilic ligands.

    Science.gov (United States)

    Barry, Dawn E; Kitchen, Jonathan A; Albrecht, Martin; Faulkner, Stephen; Gunnlaugsson, Thorfinnur

    2013-09-10

    The incorporation of chiral amphiphilic lanthanide-directed self-assembled Nd(III) complexes (Nd.13 and Nd.23) into stable Langmuir monolayers, and the subsequent Langmuir-Blodgett film formation of these, is described. The photophysical properties of the enantiomeric pair of ligands 1 and 2 in the presence of Nd(CF3SO3)3 were also investigated in CH3CN solutions using UV-vis, fluorescence, and lanthanide luminescence spectroscopies. Analysis of the resulting self-assembly processes revealed that two main species were formed in solution,1:1 and 1:3 Nd:L self-assembly complexes, with the latter being the dominant species upon the addition of 0.33 equivalents of Nd(III). Excited state lifetime measurements of Nd.13 and Nd.23 in CH3OH and CD3OD and CH3CN were also evaluated. The formation of the self-assembly in solution was also monitored by observing the changes in the circular dichroism (CD) spectra; and large differences were observed between the 1:3 and other stoichiometries in the spectra, allowing for correlation to be made with that seen in the emission studies of these systems. Surface pressure-area and surface pressure-time isotherms evidenced the formation of stable Langmuir monolayers of Nd.13 and Nd.23 at an air-water interface, and the deposition of these monolayers onto a quartz solid substrate (Langmuir-Blodgett films) gave rise to immobilized chiral monomolecular films which exhibited Nd(III) NIR luminescence upon excitation of the ligand chromophore, demonstrating efficient energy transfer to the Nd(III) excided state (sensitized) with concomitant emission centered at 800 and 1334 nm.

  5. Preparation for Supramolecular Complexes of Chiral Diols BDPDD, DMBDPD and BINOL with Some Prochiral Compounds

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Interaction between chiral diols BDPDD, DMBDPD and BINOL with prochiral compounds was examined and some new supramolecular complexes were prepared. It was found that these chiral hosts could include prochiral guests,α,β-unsaturated compounds or piper- azinedione derivatives to give inclusion crystals in different molar ratio. Formations of these supramolecular complexes were characterized by the data of IR and 1H NMR spectra.

  6. 新型超分子化合物的合成自组装及应用研究的新进展%Recent Research Achievements on Synthesis,Self-assembly and Applications of New Supramolecular Compounds

    Institute of Scientific and Technical Information of China (English)

    张来新; 胡小兵

    2014-01-01

    This paper briefly introduced the definition, concept, generation and application of supramolecular chemistry. Emphases were put on three parts:① synthesis and self-assembly of new supramolecular compounds;② synthesis and selective recognition effects of new supramolecular compounds;③synthesis and application of su-pramolecular crown ether metal complexes.%简要介绍了超分子化学的定义、概念、产生及应用,详细介绍了:①新型超分子化合物合成及自组装;②新型超分子化合物的合成及选择性识别作用;③超分子冠醚金属配合物的合成及应用。

  7. Supramolecular architectures from the self-assembly of lanthanide ions with 6-hydroxypicolinic acid and 1,10-phenanthroline

    Science.gov (United States)

    Sun, Chang-Yan; Jin, Lin-Pei

    2005-05-01

    Three new lanthanide complexes, [La(HpicO) 3(phen)(H 2O)] n ( 1) and Ln 3(picO) 4(phen) 3(H 2O) 2·HpicO·0.5H 2O (Ln=Er ( 2), Yb ( 3)) were synthesized by the hydrothermal reactions and characterized by single crystal X-ray diffraction, elemental analysis and IR spectrum. In complex 1, each La(III) ion is 10-coordinated and HpicO - ligands link the metal ions into 1D zigzag chains. Complexes 2 and 3 are isomorphous, and there are three crystallographically independent Ln(III) ions in the asymmetric unit. The N-H⋯O and O-H⋯O hydrogen bonds and π-π stacking interactions in these complexes result in the formation of 3D supramolecular architectures.

  8. Direct biomolecule binding on nonfouling surfaces via newly discovered supramolecular self-assembly of lysozyme under physiological conditions.

    Science.gov (United States)

    Yang, Peng

    2012-08-01

    When lysozyme is dissolved in a neutral HEPES buffer solution (pH = 7.4) with 0.001-0.050 M TCEP added, a fast phase transition process occurs and the resulting novel fiber-like hierarchical supramolecular assemblies made by primary spherical-particle aggregation can function as a "superglue" that binds strongly and quickly onto non-fouling coatings. This binding is highly selective towards lysozyme, and excludes synthetic, chemical/physical activation/deactivation (blocking) steps. By using biotinylated lysozyme, such a phase transition quickly creates a perfect biotinylated surface on non-fouling surfaces for avidin binding, showing great potential for the development of low-cost and practical biochips.

  9. Metal-organic and supramolecular networks driven by 5-chloronicotinic acid: Hydrothermal self-assembly synthesis, structural diversity, luminescent and magnetic properties

    Science.gov (United States)

    Gao, Zhu-Qing; Li, Hong-Jin; Gu, Jin-Zhong; Zhang, Qing-Hua; Kirillov, Alexander M.

    2016-09-01

    Four new crystalline solids, namely [Co2(μ2-5-Clnic)2(μ3-5-Clnic)2(μ2-H2O)]n (1), [Co(5-Clnic)2(H2O)4]·2(5-ClnicH) (2), [Pb(μ2-5-Clnic)2(phen)]n (3), and [Cd(5-Clnic)2(phen)2]·3H2O (4) were generated by hydrothermal self-assembly methods from the corresponding metal(II) chlorides, 5-chloronicotinic acid (5-ClnicH) as a principal building block, and 1,10-phenanthroline (phen) as an ancillary ligand (optional). All the products 1-4 were characterized by IR spectroscopy, elemental analysis, thermogravimetric (TGA), powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Their structures range from an intricate 3D metal-organic network 1 with the 3,6T7 topology to a ladder-like 1D coordination polymer 3 with the 2C1 topology, whereas compounds 2 and 4 are the discrete 0D monomers. The structures of 2 and 4 are further extended (0D→2D or 0D→3D) by hydrogen bonds, generating supramolecular networks with the 3,8L18 and ins topologies, respectively. Synthetic aspects, structural features, thermal stability, magnetic (for 1) and luminescent (for 3 and 4) properties were also investigated and discussed.

  10. Enzyme-catalyzed preparation of supramolecular structured hydrogel of polypseudorotaxanes derived from the self-assembly of α-CDs with 3-arm p-hydroxyphenylpropionate terminated PEG

    Institute of Scientific and Technical Information of China (English)

    XIE Zhiguo; HOU Dandan; YE Lin; ZHANG Aiying; FENG Zengguo

    2007-01-01

    A kind of novel 3-D cross-1inked supramolecular structured hydrogels has been fabricated via enzymatic oxidative coupling of polypseudorotaxanes (PPRs) derived from the self-assembly of α-cyclodextrins (α-CDs) with 3-arm p-hydroxyphenylpropionate terminated PEG (3-HPPP) as a macromer by using horseradish peroxidase (HRP)/H2O2 catalytic system.The enzymatic cross-1inking of the macromer or PPRs made with a smaller amount of α-CDs was found to be much faster than that by ordinary chemical pathways,showing the promise to be used as the surgical adhesive and sealant which are needed to rapidly function in vivo.The gelation time was highly extended and the gel content was considerably decreased by increasing the α-CDs to macromer feeding molar ratio.Thereby these hydrogels exhibited a decreasing trend in dynamical mechanical properties with increasing the amount of α-CDs in regard to the blank hydrogel made without α-CD addition.

  11. A chiroptical switch based on supramolecular chirality transfer through alkyl chain entanglement and dynamic covalent bonding.

    Science.gov (United States)

    Lv, Kai; Qin, Long; Wang, Xiufeng; Zhang, Li; Liu, Minghua

    2013-12-14

    Chirality transfer is an interesting phenomenon in Nature, which represents an important step to understand the evolution of chiral bias and the amplification of the chirality. In this paper, we report the chirality transfer via the entanglement of the alkyl chains between chiral gelator molecules and achiral amphiphilic Schiff base. We have found that although an achiral Schiff base amphiphile could not form organogels in any kind of organic solvents, it formed co-organogels when mixed with a chiral gelator molecule. Interestingly, the chirality of the gelator molecules was transferred to the Schiff base chromophore in the mixed co-gels and there was a maximum mixing ratio for the chirality transfer. Furthermore, the supramolecular chirality was also produced based on a dynamic covalent chemistry of an imine formed by the reaction between an aldehyde and an amine. Such a covalent bond of imine was formed reversibly depending on the pH variation. When the covalent bond was formed the chirality transfer occurred, when it was destroyed, the transfer stopped. Thus, a supramolecular chiroptical switch is obtained based on supramolecular chirality transfer and dynamic covalent chemistry.

  12. Direct Biomolecules Binding on Nonfouling Surface via Newly Discovered Supramolecular Self-assembly of Lysozyme under Physiological Condition

    Science.gov (United States)

    Yang, Peng

    2013-01-01

    A major challenge in the development of low cost and practical strategies for biomolecules immobilization on solid supports is that the multi-step chemical/physical activating and following deactivating procedures on nonfouling substrates often increase the cost and complexity of surface functional group types as well as deteriorate the surface integrity. Herein, we show a novel phase transition of lysozyme could be used to constitute a major step to address the above problem. It is found that when lysozyme is dissolved in a neutral buffer solution of 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES, pH 7.4) with 1–50 mM tris(2-carboxyethyl)phosphine (TCEP) added, a fast phase transition process occurs and the resulting novel fibra-like hierarchical supramolecular assemblies made by primary spherical particles aggregation would function as a “superglue” that strongly and quickly bind onto non-fouling coatings. This binding is highly selective towards lysozyme, and excludes completely tedious synthetical, chemical/physical activation/deactivation (blocking) steps. When biotin is conjugated with lysozyme, such phase transition quickly constructs a perfect biotinylated surface on nonfouling surface for avidin binding, showing great potential for the development of low-cost and practical biochips. PMID:22707360

  13. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  14. Three-Dimensionally Isotropic Negative Refractive Index Materials from Block Copolymer Self-Assembled Chiral Gyroid Networks

    KAUST Repository

    Hur, Kahyun

    2011-10-17

    Metamaterials are engineered artificial materials that offer new functionalities such as super-resolution imaging and cloaking. Calculations of the photonic properties of three-dimensionally isotropic metamaterials with cubic double gyroid and alternating gyroid morphologies from block copolymer self-assembly are presented.

  15. Self-assembly of folic acid: a chiral-aligning medium for enantiodiscrimination of organic molecules in an aqueous environment.

    Science.gov (United States)

    Lokesh; Suryaprakash, N

    2012-09-10

    Weak orienting medium: Self-assembly of alkaline salt of folic acid yielded a weak liquid-crystalline phase in an aqueous environment. This medium has the ability to discriminate enantiomers. The mesophase exists over a broad range and has the physical parameter dependent tunability of degree of alignment (see scheme).

  16. Levels of Supramolecular Chirality of Polyglutamine Aggregates Revealed by Vibrational Circular Dichroism

    OpenAIRE

    Kurouski, Dmitry; Kar, Karunakar; Wetzel, Ronald; Dukor, Rina K.; Lednev, Igor K.; Nafie, Laurence A.

    2013-01-01

    Polyglutamine (PolyQ) aggregates are a hallmark of several severe neurodegenerative diseases, expanded CAG-repeat diseases in which inheritance of an expanded polyQ sequence above a pathological threshold is associated with a high risk of disease. Application of vibrational circular dichroism (VCD) reveals that these PolyQ fibril aggregates exhibit a chiral supramolecular organization that is distinct from the supramolecular organization of previously observed amyloid fibrils. PolyQ fibrils g...

  17. Generation of Supramolecular Chirality around Twofold Rotational or Helical Axes in Crystalline Assemblies of Achiral Components

    Directory of Open Access Journals (Sweden)

    Mikiji Miyata

    2015-10-01

    Full Text Available A multi-point approximation method clarifies supramolecular chirality of twofold rotational or helical assemblies as well as bundles of the one-dimensional (1D assemblies. While one-point approximation of materials claims no chirality generation of such assemblies, multi-point approximations do claim possible generation in the 1D assemblies of bars and plates. Such chirality derives from deformations toward three-axial directions around the helical axes. The chiral columns are bundled in chiral ways through symmetry operations. The preferable right- or left-handed columns are bundled together to yield chiral crystals with right- or left-handedness, respectively, indicating that twofold helix symmetry operations cause chiral crystals composed of achiral components via a three-stepwise and three-directional process.

  18. Preparation of optical active polydiacetylene through gelating and the control of supramolecular chirality

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Achiral diacetylene 10,12-pentacosadinoic acid (PCDA) and a chiral low-molecular-weight organogelator could form co-gel in organic solvent and it could be polymerized in the presence of Zn(II) ion or in the corresponding xerogel under UV-irradiation. Optically active polydiacetylene (PDA) were subsequently obtained. Supramolecular chirality of PDA could be controlled by the chirality of gelators. Left-handed and right-handed helical fibers were obtained by using Land D-gelators in xerogels respectively, and CD spectra exhibited mirror-image circular dichroism. The PDA in xerogel exhibited typical blue-to-red transition responsive to the temperature and pH, while the supramolecular chirality of PDA showed a corresponding change.

  19. Hydrogen Bonded Supramolecular Polymers in Both Apolar and Aqueous Media: Self-Assembly and Reversible Conversion of Vesicles and Gels%Hydrogen Bonded Supramolecular Polymers in Both Apolar and Aqueous Media: Self-Assembly and Reversible Conversion of Vesicles and Gels

    Institute of Scientific and Technical Information of China (English)

    杜平; 孔军; 王贵涛; 赵新; 李光玉; 蒋锡夔; 黎占亭

    2011-01-01

    In a preliminary letter (Tetrahedron Lett. 2010, 51, 188), we reported two new hydrazide-based quadruple hydrogen-bonding motifs, this is, two monopodal (la and lb) and five dipodal (2a, 2b and 3a--3c) aromatic hydrazide derivatives, and the formation of supramolecular polymers and vesicles from the dipodal motifs in hydrocarbons. In this paper, we present a full picture on the properties of these hydrogen-bonding motifs with an emphasis on their self-assembling behaviors in aqueous media. SEM, AFM, TEM and fluorescent micrographs indicate that all the dipodal compounds also form vesicles in polar methanol and water-methanol (up to 50% of water) mixtures. Control experiments show that lb does not form vesicles in same media. Addition of lb to the solution of the dipodal compounds inhibits the latter's capacity of forming vesicles. At high concentrations, 3b and 3c also gelate discrete solvents, including hydrocarbons, esters, methanol, and methanol-water mixture. Concentration-dependent SEM investigations reveal that the vesicles of 3b and 3c fuse to form gels and the gel of 3c can de-aggregate to form the vesicles reversibly.

  20. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine-phenylalanine motif

    Science.gov (United States)

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K.; Anson, Christopher E.; Powell, Annie K.; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N.; Coles, Simon J.; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G.; Balaban, Teodor Silviu

    2016-09-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence.

  1. A switchable self-assembling and disassembling chiral system based on a porphyrin-substituted phenylalanine–phenylalanine motif

    Science.gov (United States)

    Charalambidis, Georgios; Georgilis, Evangelos; Panda, Manas K.; Anson, Christopher E.; Powell, Annie K.; Doyle, Stephen; Moss, David; Jochum, Tobias; Horton, Peter N.; Coles, Simon J.; Linares, Mathieu; Beljonne, David; Naubron, Jean-Valère; Conradt, Jonas; Kalt, Heinz; Mitraki, Anna; Coutsolelos, Athanassios G.; Balaban, Teodor Silviu

    2016-01-01

    Artificial light-harvesting systems have until now not been able to self-assemble into structures with a large photon capture cross-section that upon a stimulus reversibly can switch into an inactive state. Here we describe a simple and robust FLFL-dipeptide construct to which a meso-tetraphenylporphyrin has been appended and which self-assembles to fibrils, platelets or nanospheres depending on the solvent composition. The fibrils, functioning as quenched antennas, give intense excitonic couplets in the electronic circular dichroism spectra which are mirror imaged if the unnatural FDFD-analogue is used. By slightly increasing the solvent polarity, these light-harvesting fibres disassemble to spherical structures with silent electronic circular dichroism spectra but which fluoresce. Upon further dilution with the nonpolar solvent, the intense Cotton effects are recovered, thus proving a reversible switching. A single crystal X-ray structure shows a head-to-head arrangement of porphyrins that explains both their excitonic coupling and quenched fluorescence. PMID:27582363

  2. Tetrahedral Arrangements of Perylene Bisimide Columns via Supramolecular Orientational Memory.

    Science.gov (United States)

    Sahoo, Dipankar; Peterca, Mihai; Aqad, Emad; Partridge, Benjamin E; Heiney, Paul A; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Percec, Virgil

    2017-01-24

    Chiral, shape, and liquid crystalline memory effects are well-known to produce commercial macroscopic materials with important applications as springs, sensors, displays, and memory devices. A supramolecular orientational memory effect that provides complex nanoscale arrangements was only recently reported. This supramolecular orientational memory was demonstrated to preserve the molecular orientation and packing within supramolecular units of a self-assembling cyclotriveratrylene crown at the nanoscale upon transition between its columnar hexagonal and Pm3̅n cubic periodic arrays. Here we report the discovery of supramolecular orientational memory in a dendronized perylene bisimide (G2-PBI) that self-assembles into tetrameric crowns and subsequently self-organizes into supramolecular columns and spheres. This supramolecular orientation memory upon transition between columnar hexagonal and body-centered cubic (BCC) mesophases preserves the 3-fold cubic [111] orientations rather than the 4-fold [100] axes, generating an unusual tetrahedral arrangement of supramolecular columns. These results indicate that the supramolecular orientational memory concept may be general for periodic arrays of self-assembling dendrons and dendrimers as well as for other periodic and quasiperiodic nanoscale organizations comprising supramolecular spheres, generated from other organized complex soft matter including block copolymers and surfactants.

  3. Formation of Coaxial Nanocables with Amplified Supramolecular Chirality through an Interaction between Carbon Nanotubes and a Chiral π-Gelator.

    Science.gov (United States)

    Vedhanarayanan, Balaraman; Nair, Vishnu S; Nair, Vijayakumar C; Ajayaghosh, Ayyappanpillai

    2016-08-22

    In an attempt to gather experimental evidence for the influence of carbon allotropes on supramolecular chirality, we found that carbon nanotubes (CNTs) facilitate amplification of the molecular chirality of a π-gelator (MC-OPV) to supramolecular helicity at a concentration much lower than that required for intermolecular interaction. For example, at a concentration 1.8×10(-4)  m, MC-OPV did not exhibit a CD signal; however, the addition of 0-0.6 mg of SWNTs resulted in amplified chirality as evident from the CD spectrum. Surprisingly, AFM analysis revealed the formation of thick helical fibers with a width of more than 100 nm. High-resolution TEM analysis and solid-state UV/Vis/NIR spectroscopy revealed that the thick helical fibers were cylindrical cables composed of individually wrapped and coaxially aligned SWNTs. Such an impressive effect of CNTs on supramolecular chirality and cylindrical-cable formation has not been reported previously.

  4. Self-assembly of metallosupramolecular rhombi from chiral concave 9,9’-spirobifluorene-derived bis(pyridine ligands

    Directory of Open Access Journals (Sweden)

    Rainer Hovorka

    2014-02-01

    Full Text Available Two new 9,9’-spirobifluorene-based bis(4-pyridines were synthesised in enantiopure and one also in racemic form. These ligands act as concave templates and form metallosupramolecular [(dppp2M2L2] rhombi with cis-protected [(dpppPd]2+ and [(dpppPt]2+ ions. The self-assembly process of the racemic ligand preferably occurs in a narcissistic self-recognising manner. Hence, a mixture of all three possible stereoisomers [(dppp2M2{(R-L}2](OTf4, [(dppp2M2{(S-L}2](OTf4, and [(dppp2M2{(R-L}{(S-L}](OTf4 was obtained in an approximate 1.5:1.5:1 ratio which corresponds to an amplification of the homochiral assemblies by a factor of approximately three as evidenced by NMR spectroscopy and mass spectrometry. The racemic homochiral assemblies could also be characterised by single crystal X-ray diffraction.

  5. Enantioselective binding of amino acids and amino alcohols by self-assembled chiral basket-shaped receptors

    NARCIS (Netherlands)

    Escuder, B.; Rowan, A.E.; Feiters, M.C.; Nolte, R.J.M.

    2004-01-01

    Amino acid appended diphenylglycoluril-based chiral molecular receptors 2 and 3 have been prepared and their aggregation has been studied in water at various pH's and in chloroform. The binding of several biologically relevant guests with aromatic moieties to these aggregates has been studied with U

  6. A One-Pot Self-Assembly Reaction to Prepare a Supramolecular Palladium(II) Cyclometalated Complex: An Undergraduate Organometallic Laboratory Experiment

    Science.gov (United States)

    Fernandez, Alberto; Lopez-Torres, Margarita; Fernandez, Jesus J.; Vazquez-Garcia, Digna; Vila, Jose M.

    2012-01-01

    A laboratory experiment for students in advanced inorganic chemistry is described. Students prepare palladium(II) cyclometalated complexes. A terdentate [C,N,O] Schiff base ligand is doubly deprotonated upon reaction with palladium(II) acetate in a self-assembly process to give a palladacycle with a characteristic tetranuclear structure. This…

  7. Helical Self-Assembly-Induced Singlet-Triplet Emissive Switching in a Mechanically Sensitive System.

    Science.gov (United States)

    Wu, Hongwei; Zhou, Yunyun; Yin, Liyuan; Hang, Cheng; Li, Xin; Ågren, Hans; Yi, Tao; Zhang, Qing; Zhu, Liangliang

    2017-01-18

    In nanoscience, chirality has shown a significant ability to tune materials' electronic properties, whereas imposing macrochirality into the regulation of singlet-triplet features of organic optoelectronics remains a challenging research topic. Since the tuning for singlet and triplet excited-state properties in a single π-functional molecule connects to its multicolor luminescent application and potential improvement of internal quantum efficiency, we here report that supramolecular chirality can be employed to toggle the singlet and triplet emissions in a well-designed asterisk-shaped molecule. Employing a hexathiobenzene-based single luminophore as a prototype and functionalizing it with chiral α-lipoiate side groups, we find that helical nanoarchitectures can accordingly form in mixed DMF/H2O solution. On this basis, switching between fluorescence and phosphorescence of the material can be realized upon helical self-assembly and dissociation. Such a behavior can be attributed to a helical-conformation-dependent manipulation of the intersystem crossing. Furthermore, reversible mechanoluminescence of the corresponding solid sample was also observed to rely on an analogous molecular self-assembly alternation. These results can probably provide new visions for the development of next-generation supramolecular chiral functional materials.

  8. Self-Assembly Supramolecular Systems toward Molecular Machines and Motors%具有分子机器、分子开关功能的自组装超分子体系

    Institute of Scientific and Technical Information of China (English)

    陈慧兰

    2001-01-01

    Self-assembly, self-organization and self-replication, that are central to nature' s forms and functions, are now becoming feasible to construct large and intricate, yet highly ordered functioning molecular and supramolecular entities. This paper introduced the recently new progress for a kind of special rotaxane and catenane supramoculars having functions of molecular shuttle or molecular switch, as well as the chemical and biological systems toward molecular machines and motors.%本文介绍了具有分子梭或分子开关性质的新型轮烷和索烃超分子以及具有分子机器功能的其它类型化学和生物分子的国际研究最新动态。

  9. Supramolecular Nanocomposites Under Confinement: Chiral Optically Active Nanoparticle Assemblies and Beyond

    Science.gov (United States)

    Bai, Peter; Yang, Sui; Bao, Wei; Salmeron, Miquel; Zhang, Xiang; Xu, Ting

    2015-03-01

    Block copolymer-based supramolecules provide a versatile platform to direct the self-assembly of nanoparticles (NPs) into precisely controlled nanostructures in bulk and thin film geometries. A supramolecule, PS-b-P4VP(PDP), composed of the small molecule 3-pentadecylphenol (PDP) hydrogen bonded to a diblock copolymer, polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP), was subjected to 2-D volume confinement in cylindrical anodic aluminum oxide (AAO) membrane pores. TEM and 3-D TEM tomography reveal that the morphologies accessible by the supramolecule and supramolecule/NP composites, such as NP clusters, arrays, stacked rings, and single and double helical ribbons, are significantly different from those in the bulk or thin film. Furthermore, single molecule dark field scattering measurements demonstrate strong chiral optical response of single helical Au NP ribbon nanostructures in the near infrared wavelength regime. These studies demonstrate 2-D confinement to be an effective means to tailor self-assembled NP structure within supramolecule nanocomposites and pave the way for this assembly approach to be applied towards next generation chiral metamaterials and optoelectronic devices.

  10. Stereochemistry in subcomponent self-assembly.

    Science.gov (United States)

    Castilla, Ana M; Ramsay, William J; Nitschke, Jonathan R

    2014-07-15

    CONSPECTUS: As Pasteur noted more than 150 years ago, asymmetry exists in matter at all organization levels. Biopolymers such as proteins or DNA adopt one-handed conformations, as a result of the chirality of their constituent building blocks. Even at the level of elementary particles, asymmetry exists due to parity violation in the weak nuclear force. While the origin of homochirality in living systems remains obscure, as does the possibility of its connection with broken symmetries at larger or smaller length scales, its centrality to biomolecular structure is clear: the single-handed forms of bio(macro)molecules interlock in ways that depend upon their handednesses. Dynamic artificial systems, such as helical polymers and other supramolecular structures, have provided a means to study the mechanisms of transmission and amplification of stereochemical information, which are key processes to understand in the context of the origins and functions of biological homochirality. Control over stereochemical information transfer in self-assembled systems will also be crucial for the development of new applications in chiral recognition and separation, asymmetric catalysis, and molecular devices. In this Account, we explore different aspects of stereochemistry encountered during the use of subcomponent self-assembly, whereby complex structures are prepared through the simultaneous formation of dynamic coordinative (N → metal) and covalent (N═C) bonds. This technique provides a useful method to study stereochemical information transfer processes within metal-organic assemblies, which may contain different combinations of fixed (carbon) and labile (metal) stereocenters. We start by discussing how simple subcomponents with fixed stereogenic centers can be incorporated in the organic ligands of mononuclear coordination complexes and communicate stereochemical information to the metal center, resulting in diastereomeric enrichment. Enantiopure subcomponents were then

  11. Development of self-assembling nanowires containing electronically active oligothiophenes

    Science.gov (United States)

    Tsai, Wei-Wen

    modification of a class of peptide lipids. The tripeptide segments in the molecular structure promote beta-sheet formation in nonpolar organic solvents, which is the main driving force for their self-assembly into 1D nanowires. Left-handed helical nanowires were formed with diameters of 8.9 nm and pitches between 50--150 nm. Substitutions of oligothiophenes lead to unprecedented supercoiling phenomena manifested as the transformation from helical to coiled or curved nanowires. We proposed that the curving of the nanowires is the consequence of relaxation from torsionally strained nanohelices, a process similar to supercoiling of strained DNA double helix. This process is governed by the mismatch in intermolecular distances required for peptide beta-sheets vs. pi-pi interactions of the conjugated segments decorating the periphery of the nanowires. Circular dichroism revealed helical arrangements of the conjugated moieties in these peptide lipids manifesting supercoiling phenomena. Peptide lipids without helical arrangement of the conjugated segments only exhibit helical morphologies. The self-assembly process of peptide lipids also leads to hierarchical assemblies of energetically favored single, double, and triple-helical nanostructures with well-defined dimensions. Self-assembled nanowires from oligothiophene-substituted peptide lipids revealed increased conductivity of 1.39--1.41 x 10-5 S/cm, two orders of magnitude higher than unassembled films and one order of magnitude higher than unsubstituted peptide lipids. The role of the primary beta-helix in controlling supramolecular organization was investigated by varying the chirality of the tripeptide segments, GAA. Four diastereomers of a peptide lipid substituted with p-toluene carboxylates were compared using L or D-alanines. Molecules with all L residues self-assemble into left-handed helical nanofibers with a pitch of 160 +/- 30 nm. Substitution of one or two D-alanines leads to assemblies of cylindrical nanofibers without

  12. Self-assembly of hydrolysed α-lactalbumin into nanotubes

    NARCIS (Netherlands)

    Graveland-Bikker, Johanna Frederike

    2005-01-01

    Self-assembly of proteins, peptides and DNA is a powerful approach for fabricating novel supramolecular architectures. Via this "bottom-up" approach many new nanomaterials have been and will be produced. Building blocks that self-assemble into fibrous materials are of special interest, because linea

  13. Calixarene-stabilised cobalt nanoparticle rings: Self-assembly and collective magnetic properties

    DEFF Research Database (Denmark)

    Wei, A; Tripp, SL; Liu, J

    2009-01-01

    ) and entropic loss, analogous to the thermodynamic balance of forces governing supramolecular self-assembly. Examination of the Co nanoparticle rings by electron holography (an electron microscopy technique for imaging in-plane magnetic induction) reveals the existence of chiral flux closure (FC) domains...... at room temperature, comprising a 'racemic' mixture of clockwise and anticlockwise states. Furthermore, these FC polarisations can be reversed by applying out-of-plane magnetic pulses (Hz) in alternating directions. This switching behaviour has no known analogy at the macroscopic level, and may represent...

  14. Cyclodextrin Derivatives as Chiral Supramolecular Receptors for Enantioselective Sensing

    Directory of Open Access Journals (Sweden)

    Uwe Pieles

    2006-06-01

    Full Text Available In view of the chiral nature of many bio-molecules (and all bio-macromolecules,most of therapeutically active compounds which target these molecules need to be chiraland “good handed” to be effective. In addition to asymmetric synthetic and separationmethodologies, enantioselective chemical sensors, able to distinguish between twoenantiomers of the same molecule, are of relevance. In order to design these sensing tools,two major classes of enantioselective layers have been developed. The first is based onmolecularly imprinted polymers which are produced (polymerized in the presence of theirtarget, thus the polymeric material keep in “memory” the size and the shape of this moleculeand the system could be used for sensing (not reviewed here. The second approach makesuse of sensitive layers containing chiral macrocyclic receptors able of stereoselectivemolecular recognition; these receptors are mainly based on cyclodextrins. In thiscontribution, are reviewed achievements in the use of native or chemically modifiedcyclodextrins for chiral sensing purposes (at interfaces. Potentialities of other chiralmacrocycles based on calixarenes, calix-resorcinarenes or crown-ethers as supramolecularreceptors for enantioselective sensing are discussed.

  15. Levels of Supramolecular Chirality of Polyglutamine Aggregates Revealed by Vibrational Circular Dichroism

    Science.gov (United States)

    Kurouski, Dmitry; Kar, Karunakar; Wetzel, Ronald; Dukor, Rina K.; Lednev, Igor K.; Nafie, Laurence A.

    2013-01-01

    Polyglutamine (PolyQ) aggregates are a hallmark of several severe neurodegenerative diseases, expanded CAG-repeat diseases in which inheritance of an expanded polyQ sequence above a pathological threshold is associated with a high risk of disease. Application of vibrational circular dichroism (VCD) reveals that these PolyQ fibril aggregates exhibit a chiral supramolecular organization that is distinct from the supramolecular organization of previously observed amyloid fibrils. PolyQ fibrils grown from monomers with Q repeats 35 and above (Q≥35) exhibit approximately 10-fold enhancement of the same VCD spectrum compared to the already enhanced VCD of fibrils formed from Q repeats 30 and below (Q≤30). PMID:23583713

  16. Solvent effect on neutral chiral supramolecular assemblies and their distinct receptor behaviour towards anions.

    Science.gov (United States)

    Kumar, Navnita; Khullar, Sadhika; Mandal, Sanjay K

    2015-01-28

    We describe the distinct receptor behaviour of a neutral chiral Cu(ii) complex in dimethylsulfoxide or methanol towards anions, such as F(-), Cl(-), Br(-), I(-) or OAc(-), where F(-) and OAc(-) show the most colorimetric change, through various spectroscopic techniques. Further insights into this at the molecular level come from the single crystal X-ray structures of both dimethylsulfoxide and methanol solvates which show a solvent effect on their supramolecular network formation. Both chromogenic and fluorogenic sensing of the anions indicate a 2 : 1 receptor-anion formation via anion-π as well as hydrogen bonding interactions.

  17. Mesoscopic order and the dimensionality of long-range resonance energy transfer in supramolecular semiconductors

    Science.gov (United States)

    Daniel, Clément; Makereel, François; Herz, Laura M.; Hoeben, Freek J. M.; Jonkheijm, Pascal; Schenning, Albertus P. H. J.; Meijer, E. W.; Silva, Carlos

    2008-09-01

    We present time-resolved photoluminescence measurements on two series of oligo-p-phenylenevinylene materials that self-assemble into supramolecular nanostructures with thermotropic reversibility in dodecane. One set of derivatives form chiral helical stacks, while the second set form less organized "frustrated" stacks. Here we study the effects of supramolecular organization on the resonance energy transfer rates. We measure these rates in nanoassemblies formed with mixed blends of oligomers and compare them with the rates predicted by Förster theory. Our results and analysis show that control of supramolecular order in the nanometer length scale has a dominant effect on the efficiency and dimensionality of resonance energy transfer.

  18. A combined experimental and theoretical study of the supramolecular self-assembly of Cu(II) malonate complex assisted by various weak forces and water dimer

    Energy Technology Data Exchange (ETDEWEB)

    Manna, Prankrishna [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India); Ray Choudhury, Somnath [Central Chemical Laboratory, Geological Survey of India, 15 A and B Kyd Street, Kolkata 700 016 (India); Mitra, Monojit [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India); Kumar Seth, Saikat [Department of Physics, M. G. Mahavidyalaya, Bhupatinagar, Purba Medinipur, West Bengal 721 425 (India); Helliwell, Madeleine [School of Chemistry, The University of Manchester, Brunswick Street, Manchester M13 9PL (United Kingdom); Bauzá, Antonio [Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares) (Spain); Frontera, Antonio, E-mail: toni.frontera@uib.es [Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma (Baleares) (Spain); Mukhopadhyay, Subrata, E-mail: smukhopadhyay@chemistry.jdvu.ac.in [Department of Chemistry, Jadavpur University, Kolkata 700 032 (India)

    2014-12-15

    A Cu(II) malonate complex with formula [Cu(C{sub 3}H{sub 2}O{sub 4})(C{sub 6}H{sub 8}N{sub 2})(H{sub 2}O)]{sub 2}·4H{sub 2}O (1) [C{sub 6}H{sub 8}N{sub 2}=2-picolylamine, C{sub 3}H{sub 2}O{sub 4}{sup 2−}=malonate dianion] has been synthesized by mixing the reactants in their stoichiometric proportion and its crystal structure has been determined by single-crystal X-ray diffraction. In 1, monomeric neutral metal malonate units [Cu(C{sub 3}H{sub 2}O{sub 4})(C{sub 6}H{sub 8}N{sub 2})(H{sub 2}O)] are interlinked with each other through hydrogen bonds, weak lone pair⋯π and cuprophilic interactions to generate supramolecular dimers, which in turn further associated through hydrogen bonding to form infinite 1D chains. Water dimers, through series of hydrogen bonds and weak π–stacking forces are found to be responsible for interconnection of 1D chains, which resulted in a 3D network. A density functional (DFT) study of the energetic features of several noncovalent interactions observed in the solid state have been analyzed and characterized using Bader's theory of “atoms-in-molecules”. We also present here Hirshfeld surface analysis to investigate the close intermolecular contacts. - Graphical Abstract: Interplay of weak forces like hydrogen bonding, lone pair⋯π, Cu⋯Cu and π–stacking interactions leading to the formation of supramolecular network in [Cu(C{sub 3}H{sub 2}O{sub 4})(C{sub 6}H{sub 8}N{sub 2})(H{sub 2}O)]{sub 2}·4H{sub 2}O complex. - Highlights: • A complex of Cu(II) with malonate and 2-picolylamine is synthesized and X-ray characterized. • We report a density functional study of the energetic features of several noncovalent interactions • We perform Hirshfeld surface analysis to investigate the close intermolecular contacts.

  19. Redox-Robust Pentamethylferrocene Polymers and Supramolecular Polymers, and Controlled Self-Assembly of Pentamethylferricenium Polymer-Embedded Ag, AgI, and Au Nanoparticles.

    Science.gov (United States)

    Gu, Haibin; Ciganda, Roberto; Castel, Patricia; Vax, Amélie; Gregurec, Danijela; Irigoyen, Joseba; Moya, Sergio; Salmon, Lionel; Zhao, Pengxiang; Ruiz, Jaime; Hernández, Ricardo; Astruc, Didier

    2015-12-01

    We report the first pentamethylferrocene (PMF) polymers and the redox chemistry of their robust polycationic pentamethylferricenium (PMFium) analogues. The PMF polymers were synthesized by ring-opening metathesis polymerization (ROMP) of a PMF-containing norbornene derivative by using the third-generation Grubbs ruthenium metathesis catalyst. Cyclic voltammetry studies allowed us to determine confidently the number of monomer units in the polymers through the Bard-Anson method. Stoichiometric oxidation by using ferricenium hexafluorophosphate quantitatively and instantaneously provided fully stable (even in aerobic solutions) blue d(5) Fe(III) metallopolymers. Alternatively, oxidation of the PMF-containing polymers was conducted by reactions with Ag(I) or Au(III) , to give PMFium polymer-embedded Ag and Au nanoparticles (NPs). In the presence of I2 , oxidation by using Ag(I) gave polymer-embedded Ag/AgI NPs and AgNPs at the surface of AgI NPs. Oxidation by using Au(III) also produced an Au(I) intermediate that was trapped and characterized. Engineered single-electron transfer reactions of these redox-robust nanomaterial precursors appear to be a new way to control their formation, size, and environment in a supramolecular way.

  20. Supramolecular Langmuir monolayers and multilayered vesicles of self-assembling DNA–lipid surface structures and their further implications in polyelectrolyte-based cell transfections

    Energy Technology Data Exchange (ETDEWEB)

    Demirsoy, Fatma Funda Kaya [Ankara University, The Central Laboratory of The Institute of Biotechnology (Turkey); Eruygur, Nuraniye [Gazi University, Department of Pharmacognosy, Faculty of Pharmacy (Turkey); Süleymanoğlu, Erhan, E-mail: erhans@mail.ru [Gazi University, Department of Pharmaceutical Chemistry, Faculty of Pharmacy (Turkey)

    2015-01-15

    The basic interfacial characteristics of DNA–lipid recognitions have been studied. The complex structures of individual unbound DNA molecules and their binary and ternary complexes with zwitterionic lipids and divalent cations were followed by employing lipid monolayers at the air–liquid interfaces, as well as by performing various microscopic, spectroscopic, and thermodynamic measurements with multilayered vesicles. The pressure-area isotherms depicted that Mg{sup 2+}-ions increase the surface pressure of lipid films and thus give rise to electrostatic and hydrophobic lipid–DNA interactions in terms of DNA adsorption, adhesion, and compaction. These features were further approached by using multilamellar vesicles with a mean diameter of 850 nm, where a metal ion-directed nucleic acid compaction and condensation effects were shown. The data obtained show the effectiveness of Langmuir monolayers and lipid multilayers in studying nucleic acid–lipid recognitions. The data provide with further details and support previous reports on mainly structural features of these recognitions. Biomolecular surface recognition events were presented in direct link with spectral and thermodynamic features of lipid vesicle–polynucleotide complex formations. The results serve to build a theoretical model considering the use of neutral lipids in lipoplex designs as a polyelectrolyte alternatives to the currently employed cytotoxic cationic liposomes. The supramolecular structures formed and their possible roles in interfacial electrostatic and hydrophobic mechanisms of endosomal escape in relevant cell transfection assays are particularly emphasized.

  1. Self-assembled peptide nanostructures for functional materials

    Science.gov (United States)

    Sardan Ekiz, Melis; Cinar, Goksu; Aref Khalily, Mohammad; Guler, Mustafa O.

    2016-10-01

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  2. A chiral Mn(IV) complex and its supramolecular assembly: Synthesis, characterization and properties

    Indian Academy of Sciences (India)

    Chullikkattil P Pradeep; Panthapally S Zacharias; Samar K Das

    2006-07-01

    The open air reaction of the chiral Schiff base ligand H2L, prepared by the condensation of L-phenylalaninol and 5-bromosalicylaldehyde, with MnII(CH3COO)2$\\cdot$4H2O yielded dark brown complex [MnIVL2]$\\cdot$0.5 DMF (1). Compound 1 was characterized by elemental analysis, IR, UV-visible, CD and EPR spectroscopy, cyclic voltammetry and room temperature magnetic moment determination. Singlecrystal X-ray analysis revealed that compound 1 crystallises in the monoclinic 21 space group with six mononuclear [MnIVL2] units in the asymmetric unit along with three solvent DMF molecules. In the crystal structure, each Mn(IV) complex, acting as the building unit, undergoes supramolecular linking through C-H$\\cdots$O bonds leading to an intricate hydrogen bonding network.

  3. Self-assembly of aromatic-functionalized amphiphiles: The role and consequences of aromatic-aromatic noncovalent interactions in building supramolecular aggregates and novel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Whitten, D.G.; Chen, L.; Geiger, H.C.; Perlstein, J.; Song, X. [Los Alamos National Lab., NM (United States). Chemical Science and Technology Div.]|[Univ. of Rochester, NY (United States)

    1998-12-10

    This feature article presents an overview of a study of several different aromatic-functionalized amphiphiles-fatty acid and phospholipid derivatives. These amphiphiles form organized assemblies when the fatty acids are spread as monolayers at the air-water interface or when the phospholipids are dispersed in aqueous solutions. For a wide range of aromatic chromophores--trans-stilbene derivatives and a series of vinylogues (1,4-diphenyl-1,3-butadiene and 1,6-diphenyl-1,3,5-hexatriene), diphenylacetylenes, and azobenzenes such as phenyl, biphenyl, and terphenyl derivatives and modified stilbenes (styryl thiophenes and styryl naphthalenes)--assembly formation is accompanied by formation of aggregates of the aromatic groups. Results of experimental studies and simulations indicate that in many cases the aromatics form a small, stable unit aggregate characterized by strong noncovalent edge-to-face interactions among adjacent aromatics. Although the unit aggregates exhibit characteristic spectral shifts and strong induced circular dichroism indicating a chiral pinwheel aggregate structure, they may be packed together in pure films or dispersions to form an extended glide or herringbone structure. Although the pinwheel unit aggregate and the extended glide or herringbone structure. Although the pinwheel unit aggregate and the extended glide structure is favored for the majority of aromatics studied, for certain aromatics (styrenes, styrylthiophenes, and {alpha}-styrylnaphthalenes) a translation layer, characterized by face-to-face noncovalent interactions, is preferred. The glide or herringbone aggregates are readily distinguished from the translation aggregates by different spectral signatures and different photochemical and photophysical behavior. Factors controlling the type of aggregate and hence extended structure formed from different aromatic functionalized aromatics include shape and steric factors and strength of the competing noncovalent edge-face and face

  4. Mesoscopic Self-Assembly: A Shift to Complexity

    Directory of Open Access Journals (Sweden)

    Massimo eMastrangeli

    2015-06-01

    Full Text Available By focusing on the construction of thermodynamically stable structures, the self-assembly of mesoscopic systems has proven capable of formidable achievements in the bottom-up engineering of micro- and nanosystems. Yet, inspired by an analogous evolution in supramolecular chemistry, synthetic mesoscopic self-assembly may have a lot more ahead, within reach of a shift toward fully three-dimensional architectures, collective interactions of building blocks and kinetic control. All over these challenging fronts, complexity holds the key.

  5. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks

    Directory of Open Access Journals (Sweden)

    Katja Petkau-Milroy

    2013-10-01

    Full Text Available Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard to streptavidin. Next to tetravalent streptavidin, monovalent streptavidin was used to study the protein assembly along the supramolecular polymer in detail without the interference of cross-linking. Upon self-assembly of the monovalent biotinylated discotics, multivalent proteins can be assembled along the supramolecular polymer. The concentration of discotics, which influences the length of the final polymers at the same time dictates the amount of assembled proteins.

  6. Chapter 8: Selective Stoichiometric and Catalytic Reactivity in the Confines of a Chiral Supramolecular Assembly

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Berkeley; Lawrence Berkeley National Laboratory; Raymond, Kenneth; Pluth, Michael D.; Bergman, Robert G.; Raymond, Kenneth N.

    2007-09-27

    increased complexity of synthetic host molecules, most assembly conditions utilize self-assembly to form complex highly-symmetric structures from relatively simple subunits. For supramolecular assemblies able to encapsulate guest molecules, the chemical environment in each assembly--defined by the size, shape, charge, and functional group availability--greatly influences the guest-binding characteristics.[6, 13-17

  7. Effects of molecular chirality on self-assembly and switching in liquid crystals at the cross-over between rod-like and bent shapes.

    Science.gov (United States)

    Ocak, Hale; Poppe, Marco; Bilgin-Eran, Belkız; Karanlık, Gürkan; Prehm, Marko; Tschierske, Carsten

    2016-09-21

    A bent-core compound derived from a 4-cyanoresorcinol core unit with two terephthalate based rod-like wings and carrying chiral 3,7-dimethyloctyloxy side chains has been synthesized in racemic and enantiomerically pure form and characterized by polarizing microscopy, differential scanning calorimetry, X-ray diffraction and electro-optical investigations to study the influence of molecular chirality on the superstructural chirality and polar order in lamellar liquid crystalline phases. Herein we demonstrate that the coupling of molecular chirality with superstructural layer chirality in SmCsPF domain phases (forming energetically distinct diastereomeric pairs) can fix the tilt direction and thus stabilize synpolar order, leading to bistable ferroelectric switching in the SmC* phases of the (S)-enantiomer, whereas tristable modes determine the switching of the racemate. Moreover, the mechanism of electric field induced molecular reorganization changes from a rotation around the molecular long axis in the racemate to a rotation on the tilt-cone for the (S)-enantiomer. At high temperature the enantiomer behaves like a rod-like molecule with a chirality induced ferroelectric SmC* phase and an electroclinic effect in the SmA'* phase. At reduced temperature sterically induced polarization, due to the bent molecular shape, becomes dominating, leading to much higher polarization values, thus providing access to high polarization ferroelectric materials with weakly bent compounds having only "weakly chiral" stereogenic units. Moreover, the field induced alignment of the SmCsPF(()*()) domains gives rise to a special kind of electroclinic effect appearing even in the absence of molecular chirality. Comparison with related compounds indicates that the strongest effects of chirality appear for weakly bent molecules with a relatively short coherence length of polar order, whereas for smectic phases with long range polar order the effects of the interlayer interfaces can override

  8. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  9. Self assembling proteins

    Science.gov (United States)

    Yeates, Todd O.; Padilla, Jennifer; Colovos, Chris

    2004-06-29

    Novel fusion proteins capable of self-assembling into regular structures, as well as nucleic acids encoding the same, are provided. The subject fusion proteins comprise at least two oligomerization domains rigidly linked together, e.g. through an alpha helical linking group. Also provided are regular structures comprising a plurality of self-assembled fusion proteins of the subject invention, and methods for producing the same. The subject fusion proteins find use in the preparation of a variety of nanostructures, where such structures include: cages, shells, double-layer rings, two-dimensional layers, three-dimensional crystals, filaments, and tubes.

  10. Self-Assembly, Supramolecular Organization, and Phase Behavior of L-Alanine Alkyl Esters (n = 9-18) and Characterization of Equimolar L-Alanine Lauryl Ester/Lauryl Sulfate Catanionic Complex.

    Science.gov (United States)

    Sivaramakrishna, D; Swamy, Musti J

    2015-09-08

    A homologous series of l-alanine alkyl ester hydrochlorides (AEs) bearing 9-18 C atoms in the alkyl chain have been synthesized and characterized with respect to self-assembly, supramolecular structure, and phase transitions. The CMCs of AEs bearing 11-18 C atoms were found to range between 0.1 and 10 mM. Differential scanning calorimetric (DSC) studies showed that the transition temperatures (Tt), enthalpies (ΔHt) and entropies (ΔSt) of AEs in the dry state exhibit odd-even alternation, with the odd-chain-length compounds having higher Tt values, but the even-chain-length homologues showing higher values of ΔHt and ΔSt. In DSC measurements on hydrated samples, carried out at pH 5.0 and pH 10.0 (where they exist in cationic and neutral forms, respectively), compounds with 13-18 C atoms in the alkyl chain showed sharp gel-to-liquid crystalline phase transitions, and odd-even alternation was not seen in the thermodynamic parameters. The molecular structure, packing properties, and intermolecular interactions of AEs with 9 and 10 C atoms in the alkyl chain were determined by single crystal X-ray diffraction, which showed that the alkyl chains are packed in a tilted interdigitated bilayer format. d-Spacings obtained from powder X-ray diffraction studies exhibited a linear dependence on the alkyl chain length, suggesting that the other AEs also adopt an interdigitated bilayer structure. Turbidimetric, fluorescence spectroscopic, and isothermal titration calorimetric (ITC) studies established that in aqueous dispersions l-alanine lauryl ester hydrochloride (ALE·HCl) and sodium dodecyl sulfate (SDS) form an equimolar complex. Transmission electron microscopic and DSC studies indicate that the complex exists as unilamellar liposomes, which exhibit a sharp phase transition at ∼39 °C. The aggregates were disrupted at high pH, suggesting that the catanionic complex would be useful to develop a base-labile drug delivery system. ITC studies indicated that ALE·HCl forms

  11. Photovoltaic self-assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.

    2010-10-01

    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  12. The striking influence of SWNT-COOH on self-assembled gelation.

    Science.gov (United States)

    Mandal, Subhra Kanti; Kar, Tanmoy; Das, Dibyendu; Das, Prasanta Kumar

    2012-02-07

    A miniscule amount of f-SWNTs remarkably improved (~17-fold) the gelation efficiency of amphiphilic molecules by triggering the formation of interconnecting self-assembled fibrillar networks (SAFIN) in supramolecular gelation.

  13. Nanoporous Network Channels from Self-Assembled Triblock Copolymer Supramolecules

    NARCIS (Netherlands)

    du Sart, Gerrit Gobius; Vukovic, Ivana; Vukovic, Zorica; Polushkin, Evgeny; Hiekkataipale, Panu; Ruokolainen, Janne; Loos, Katja; ten Brinke, Gerrit

    2011-01-01

    Supramolecular complexes of a poly(tert-butoxystyrene)-block-polystyrene-block-poly(4-vinylpyridine) triblock copolymers and less than stoichiometric amounts of pentadecylphenol (PDP) are shown to self-assemble into a core-shell gyroid morphology with the core channels formed by the hydrogen-bonded

  14. Crops: a green approach toward self-assembled soft materials.

    Science.gov (United States)

    Vemula, Praveen Kumar; John, George

    2008-06-01

    To date, a wide range of industrial materials such as solvents, fuels, synthetic fibers, and chemical products are being manufactured from petroleum resources. However, rapid depletion of fossil and petroleum resources is encouraging current and future chemists to orient their research toward designing safer chemicals, products, and processes from renewable feedstock with an increased awareness of environmental and industrial impact. Advances in genetics, biotechnology, process chemistry, and engineering are leading to a new manufacturing concept for converting renewable biomass to valuable fuels and products, generally known as the biorefinery concept. The swift integration of crop-based materials synthesis and biorefinery manufacturing technologies offers the potential for new advances in sustainable energy alternatives and biomaterials that will lead to a new manufacturing paradigm. This Account presents a novel and emerging concept of generating various forms of soft materials from crops (an alternate feedstock). In future research, developing biobased soft materials will be a fascinating yet demanding practice, which will have direct impact on industrial applications as an economically viable alternative. Here we discuss some remarkable examples of glycolipids generated from industrial byproducts such as cashew nut shell liquid, which upon self-assembly produced soft nanoarchitectures including lipid nanotubes, twisted/helical nanofibers, low-molecular-weight gels, and liquid crystals. Synthetic methods applied to a "chiral pool" of carbohydrates using the selectivity of enzyme catalysis yield amphiphilic products derived from biobased feedstock including amygdalin, trehalose, and vitamin C. This has been achieved with a lipase-mediated regioselective synthetic procedure to obtain such amphiphiles in quantitative yields. Amygdalin amphiphiles showed unique gelation behavior in a broad range of solvents such as nonpolar hexanes to polar aqueous solutions

  15. Miniaturization of metal-biomolecule frameworks based on stereoselective self-assembly and potential application in water treatment and as antibacterial agents.

    Science.gov (United States)

    Pu, Fang; Liu, Xia; Xu, Bailu; Ren, Jinsong; Qu, Xiaogang

    2012-04-02

    Miniaturization of metal-biomolecule frameworks (MBioFs) to the nanometer scale represents a novel strategy for fabricating materials with tunable physical and chemical properties. Herein, we demonstrate a simple, low-cost, and completely organic solvent-free strategy for constructing a dl-glutamic acid-copper ion-based three-dimensional nanofibrous network structure. The building blocks used are available in large quantities and do not require any laborious synthesis or modification. Importantly, we demonstrate with an intriguing example, that the self-assembly ability of supramolecular nanofibers could be finely tuned with the ligands' chirality. This offers opportunities for obtaining one-dimensional hierarchical nanostructures and expands the investigation scope of stereoselective self-assembly. Furthermore, the material displays good ability in removing anionic dyes from water and inhibits the growth of both Gram positive and Gram negative bacteria, possibly through the contact-killing mechanism; this indicates potential applications in environmental issues and antimicrobial nanotherapeutics.

  16. 超分子化合物的合成自组装应用研究的新进展%Recent Research Achievements on Synthesis and Self-assembly Applications of New Supramolecular Compounds

    Institute of Scientific and Technical Information of China (English)

    张来新; 赵卫星

    2013-01-01

    简要介绍了超分子化学的产生、发展及应用,重点介绍了:①新型超分子化合物的合成及自组装;②新型超分子金属配合物的合成及应用;③新型超分子化合物的合成及药理作用。并对超分子化学的发展进行了展望。%This paper briefly introduces the generation ,development,and application of supramolecular chemis-try.Emphases are put on three parts:①synthesis and applications of new supramolecular compounds;②synthesis and applications of new supramolecular metal complexes;③synthesis and pharmacological effects of new supramo-lecular compounds.Future developments of supramolecular chemistry are prospected in the end.

  17. Molecular self-assembly in substituted alanine derivatives: XRD, Hirshfeld surfaces and DFT studies

    Science.gov (United States)

    Rajalakshmi, Periasamy; Srinivasan, Navaneethakrishnan; Sivaraman, Gandhi; Razak, Ibrahim Abdul; Rosli, Mohd Mustaqim; Krishnakumar, Rajaputi Venkatraman

    2014-06-01

    The molecular assemblage in the crystal structures of three modified chiral amino acids, two of which are isomeric D- and L-pairs boc-L-benzothienylalanine (BLA), boc-D-benzothienylalanine (BDA) and the other boc-D-naphthylalanine (NDA) differing from this pair very slightly in the chemical modification introduced, is accurately described. The aggregation of amino acid molecules is similar in all the crystals and may be described as a twisted double helical ladder in which two complementary long helical chains formed through O-H⋯O hydrogen bonds are interconnected through the characteristic head-to-tail N-H⋯O hydrogen bonds. Thus the molecular aggregation enabled through classical hydrogen bonds may be regarded as a mimic of the characteristic double helical structure of DNA. Also, precise structural information involving these amino acid molecules with lower symmetry exhibiting higher trigonal symmetry in their self-assembly is expected to throw light on the nature and strength of intermolecular interactions and their role in self-assembly of molecular aggregates, which are crucial in developing new or at least supplement existing crystal engineering strategies. Single crystal X-ray analysis and their electronic structures were calculated at the DFT level with a detailed analysis of Hirshfeld surfaces and fingerprint plots facilitating a comparison of intermolecular interactions in building different supramolecular architectures.

  18. Designed post-self-assembly structural and functional modifications of a truncated tetrahedron.

    Science.gov (United States)

    Zheng, Yao-Rong; Lan, Wen-Jie; Wang, Ming; Cook, Timothy R; Stang, Peter J

    2011-10-26

    Post-self-assembly modifications of a discrete metal-organic supramolecular structure have been developed. Such modifications allow the properties of the self-assembled supramolecular species to be changed in a simple and efficient manner (>90% yield). Initiated by the application of chemical stimuli, the post-self-assembly modifications described herein result in three distinct changes to the supramolecular system: an individual building-block component change, an overall structural modification, and a functional evolution of a [6+4] metal-organic supramolecular structure. The three modifications have been carefully examined by a range of characterization methods, including NMR and UV-vis spectroscopy, electrospray ionization mass spectrometry, pulsed field gradient spin echo NMR measurements, electrochemical analysis, and computational simulations.

  19. Supramolecular amphiphiles.

    Science.gov (United States)

    Zhang, Xi; Wang, Chao

    2011-01-01

    Supramolecular amphiphiles (SA), also named superamphiphiles, refer to amphiphiles that are formed by non-covalent interactions. This tutorial review focuses on the molecular architectures of SAs, including diversified topologies such as single chain, double chain, bolaform, gemini and rotaxane types. Non-covalent syntheses that have been employed to fabricate SAs are driven by hydrogen bonding, electrostatic attraction, host-guest recognition, charge transfer interaction, metal coordination and so on. It should be noted that SAs can be either small organic molecules or polymers. SAs allow for tuning of their amphiphilicity in a reversible fashion, leading to controlled self-assembly and disassembly. This line of research has been enriching traditional colloid chemistry and current supramolecular chemistry, and the application of SAs in the field of functional supramolecular materials is keenly anticipated.

  20. Polymer Self-assembly on Carbon Nanotubes

    Science.gov (United States)

    Giulianini, Michele; Motta, Nunzio

    This chapter analyses the poly(3-hexylthiophene) self-assembly on carbon nanotubes and the interaction between the two materials forming a new hybrid nanostructure. The chapter starts with a review of the several studies investigating polymers and biomolecules self-assembled on nanotubes. Then conducting polymers and polythiophenes are briefly introduced. Accordingly, carbon nanotube structure and properties are reported in Sect. 3. The experimental section starts with the bulk characterisation of polymer thin films with the inclusion of uniformly distributed carbon nanotubes. By using volume film analysis techniques (AFM, TEM, UV-Vis and Raman), we show how the polymer's higher degree of order is a direct consequence of interaction with carbon nanotubes. Nevertheless, it is through the use of nanoscale analysis and molecular dynamic simulations that the self-assembly of the polymer on the nanotube surface can be clearly evidenced and characterised. In Sect. 6, the effect of the carbon templating structure on the P3HT organisation on the surface is investigated, showing the chirality-driven polymer assembly on the carbon nanotube surface. The interaction between P3HT and CNTs brings also to charge transfer, with the modification of physical properties for both species. In particular, the alteration of the polymer electronic properties and the modification of the nanotube mechanical structure are a direct consequence of the P3HT π-π stacking on the nanotube surface. Finally, some considerations based on molecular dynamics studies are reported in order to confirm and support the experimental results discussed.

  1. Photocontrol over cooperative porphyrin self-assembly with phenylazopyridine ligands.

    Science.gov (United States)

    Hirose, Takashi; Helmich, Floris; Meijer, E W

    2013-01-02

    The cooperative self-assembly of chiral zinc porphyrins is regulated by a photoresponsive phenylazopyridine ligand. Porphyrin stacks depolymerize into dimers upon axial ligation and the strength of the coordination is regulated by its photoinduced isomerization, which shows more than 95 % conversion ratio for both photostationary states.

  2. Tailoring two-dimensional PTCDA-melamine self-assembled architectures at room temperature by tuning molecular ratio

    NARCIS (Netherlands)

    Sun, Xiaonan; Jonkman, Harry T.; Silly, Fabien

    2010-01-01

    Engineering and tuning multi-component supramolecular self-assemblies on surfaces is one of the challenges of nanotechnology. We use scanning tunneling microscopy to investigate the influence of molecular ratio on the self-assembly of PTCDA-melamine structures on Au(111)-(22 x root 3). Our observati

  3. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel

    Science.gov (United States)

    Replicating the multi-hierarchical self-assembly of collagen has long-attracted scientists, from both the perspective of the fundamental science of supramolecular chemistry and that of potential biomedical applications in tissue engineering. Many approaches to drive the self-assembly of synthetic s...

  4. Self-assembled peptide nanostructures for functional materials.

    Science.gov (United States)

    Ekiz, Melis Sardan; Cinar, Goksu; Khalily, Mohammad Aref; Guler, Mustafa O

    2016-10-07

    Nature is an important inspirational source for scientists, and presents complex and elegant examples of adaptive and intelligent systems created by self-assembly. Significant effort has been devoted to understanding these sophisticated systems. The self-assembly process enables us to create supramolecular nanostructures with high order and complexity, and peptide-based self-assembling building blocks can serve as suitable platforms to construct nanostructures showing diverse features and applications. In this review, peptide-based supramolecular assemblies will be discussed in terms of their synthesis, design, characterization and application. Peptide nanostructures are categorized based on their chemical and physical properties and will be examined by rationalizing the influence of peptide design on the resulting morphology and the methods employed to characterize these high order complex systems. Moreover, the application of self-assembled peptide nanomaterials as functional materials in information technologies and environmental sciences will be reviewed by providing examples from recently published high-impact studies.

  5. Fibrous networks with incorporated macrocycles: a chiral stimuli-responsive supramolecular supergelator and its application to biocatalysis in organic media.

    Science.gov (United States)

    Qi, Zhenhui; Wu, Changzhu; Malo de Molina, Paula; Sun, Han; Schulz, Andrea; Griesinger, Christian; Gradzielski, Michael; Haag, Rainer; Ansorge-Schumacher, Marion B; Schalley, Christoph A

    2013-07-29

    A new and versatile, crown ether appended, chiral supergelator has been designed and synthesized based on the bis-urea motif. The introduction of a stereogenic center improved its gelation ability significantly relative to its achiral analogue. This low-molecular-weight gelator forms supramolecular gels in a variety of organic solvents. It is sensitive to multiple chemical stimuli and the sol-gel phase transitions can be reversibly triggered by host-guest interactions. The gel can be used to trap enzymes and release them on demand by chemical stimuli. It stabilizes the microparticles in Pickering emulsions so that enzyme-catalyzed organic reactions can take place in the polar phase inside the microparticles, the organic reactants diffusing through the biphasic interface from the surrounding organic phase. Because of the higher interface area between the organic and polar phases, enzyme activity is enhanced in comparison with simple biphasic systems.

  6. Design of Self-Assembling Peptide Nanotubes with Delocalized Electronic States[**

    Science.gov (United States)

    Ashkenasy, Nurit; Horne, W. Seth; Reza Ghadiri, M.

    2007-01-01

    Electronically active biomaterials via directed peptide self-assembly Redox-promoted self-assembly of an eight-residue cyclic D,L-α-peptide bearing four 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) side chains results in the formation of electronically delocalized peptide nanotubes hundreds of nm in length. The supramolecular approach described provides a rational basis for the design and fabrication of 1-D materials with potential utility in optical and electronic devices. PMID:17193563

  7. Coded nanoscale self-assembly

    Indian Academy of Sciences (India)

    Prathyush Samineni; Debabrata Goswami

    2008-12-01

    We demonstrate coded self-assembly in nanostructures using the code seeded at the component level through computer simulations. Defects or cavities occur in all natural assembly processes including crystallization and our simulations capture this essential aspect under surface minimization constraints for self-assembly. Our bottom-up approach to nanostructures would provide a new dimension towards nanofabrication and better understanding of defects and crystallization process.

  8. Thioamides: versatile bonds to induce directional and cooperative hydrogen bonding in supramolecular polymers.

    Science.gov (United States)

    Mes, Tristan; Cantekin, Seda; Balkenende, Dirk W R; Frissen, Martijn M M; Gillissen, Martijn A J; De Waal, Bas F M; Voets, Ilja K; Meijer, E W; Palmans, Anja R A

    2013-06-24

    The amide bond is a versatile functional group and its directional hydrogen-bonding capabilities are widely applied in, for example, supramolecular chemistry. The potential of the thioamide bond, in contrast, is virtually unexplored as a structuring moiety in hydrogen-bonding-based self-assembling systems. We report herein the synthesis and characterisation of a new self-assembling motif comprising thioamides to induce directional hydrogen bonding. N,N',N''-Trialkylbenzene-1,3,5-tris(carbothioamide)s (thioBTAs) with either achiral or chiral side-chains have been readily obtained by treating their amide-based precursors with P2S5. The thioBTAs showed thermotropic liquid crystalline behaviour and a columnar mesophase was assigned. IR spectroscopy revealed that strong, three-fold, intermolecular hydrogen-bonding interactions stabilise the columnar structures. In apolar alkane solutions, thioBTAs self-assemble into one-dimensional, helical supramolecular polymers stabilised by three-fold hydrogen bonding. Concentration- and temperature-dependent self-assembly studies performed by using a combination of UV and CD spectroscopy demonstrated a cooperative supramolecular polymerisation mechanism and a strong amplification of supramolecular chirality. The high dipole moment of the thioamide bond in combination with the anisotropic shape of the resulting cylindrical aggregate gives rise to sufficiently strong depolarised light scattering to enable depolarised dynamic light scattering (DDLS) experiments in dilute alkane solution. The rotational and translational diffusion coefficients, D(trans) and D(rot), were obtained from the DDLS measurements, and the average length, L, and diameter, d, of the thioBTA aggregates were derived (L = 490 nm and d = 3.6 nm). These measured values are in good agreement with the value L(w) = 755 nm obtained from fitting the temperature-dependent CD data by using a recently developed equilibrium model. This experimental verification

  9. TOPICAL REVIEW: Challenges and breakthroughs in recent research on self-assembly

    Directory of Open Access Journals (Sweden)

    Katsuhiko Ariga, Jonathan P Hill, Michael V Lee, Ajayan Vinu, Richard Charvet and Somobrata Acharya

    2008-01-01

    Full Text Available The controlled fabrication of nanometer-scale objects is without doubt one of the central issues in current science and technology. However, existing fabrication techniques suffer from several disadvantages including size-restrictions and a general paucity of applicable materials. Because of this, the development of alternative approaches based on supramolecular self-assembly processes is anticipated as a breakthrough methodology. This review article aims to comprehensively summarize the salient aspects of self-assembly through the introduction of the recent challenges and breakthroughs in three categories: (i types of self-assembly in bulk media; (ii types of components for self-assembly in bulk media; and (iii self-assembly at interfaces.

  10. Self-assembly of novel supramolecular silver(I) compound based on mixed ligands bipy/TST3- H3TST=2,4,6-tris (4-sulfophenylamino)-1,3,5-triazine

    NARCIS (Netherlands)

    Yu, Yunfang; Wei, Yongqin; Broer, Ria; Wu, Kechen

    2007-01-01

    The novel supramolecular silver(I) compound with formula [Ag-6(TST)(2)(bipy)(6)(H2O)(2)](n) center dot 3nH(2)O (1) based on assembly of Ag(I) and mixed ligand bipy/TST3-, bipy = 2,2'-bipyridine, H3TST = 2,4,6-tris(4-sulfophenylamino)-1,3,5-triazine, has been prepared by hydrothermal method. In the s

  11. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  12. Nanoscale force sensors to study supramolecular systems

    NARCIS (Netherlands)

    Cingil, E.H.

    2016-01-01

    Supramolecular systems are solutions, suspensions or solids, formed by physical and non-covalent interactions. These weak and dynamic bonds drive molecular self-assembly in nature, leading to formation of complex ordered structures in high precision. Understanding self-assembly and co-assembly is cr

  13. Chiral assembly of achiral pseudoisocyanine with D-and L-phenylalanine

    Institute of Scientific and Technical Information of China (English)

    ZENG LiXi; HE Yujian; DAI ZhiFeng; WANG Jian; WANG CaiQi; YANG YongGang

    2009-01-01

    Supramolecular chirality and molecular self-assembly are important and interesting phenomena in living and non-living systems.In this work,supramolecular chirality of achiral pseudoisocyanine (PIC) J-aggregates was successfully induced by D-,L-phenylalanine (Phe) and other amino acids in NaCI solution.The chiral J-aggregates showed a characteristic,induced circular dichroism (ICD) in the visible region of J-band chromophore which depends on the absolute configuration,concentration and side groups of a-amino acids,as well as temperature.The atomic force microscopy images indicated that the J-aggregates exist in large bundles of entangled nanof ibers,and the observed ICD might result from the macroscopic helical arrangement of the assemblies.

  14. Chiral assembly of achiral pseudoisocyanine with D-and L-phenylalanine

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Supramolecular chirality and molecular self-assembly are important and interesting phenomena in living and non-living systems.In this work,supramolecular chirality of achiral pseudoisocyanine(PIC) J-aggregates was successfully induced by D-,L-phenylalanine(Phe) and other amino acids in NaCl solution.The chiral J-aggregates showed a characteristic,induced circular dichroism(ICD) in the visible region of J-band chromophore which depends on the absolute configuration,concentration and side groups of α-amino acids,as well as temperature.The atomic force microscopy images indicated that the J-aggregates exist in large bundles of entangled nanofibers,and the observed ICD might result from the macroscopic helical arrangement of the assemblies.

  15. Self-assembly of cyclodextrins

    DEFF Research Database (Denmark)

    Fülöp, Z.; Kurkov, S.V.; Nielsen, T.T.;

    2012-01-01

    The design of functional cyclodextrin (CD) nanoparticles is a developing area in the field of nanomedicine. CDs can not only help in the formation of drug carriers but also increase the local concentration of drugs at the site of action. CD monomers form aggregates by self-assembly, a tendency...... that increases upon formation of inclusion complexes with lipophilic drugs. However, the stability of such aggregates is not sufficient for parenteral administration. In this review CD polymers and CD containing nanoparticles are categorized, with focus on self-assembled CD nanoparticles. It is described how...... the nanoparticles can be stabilized and tuned to have specific properties....

  16. A chiral pinwheel supramolecular network driven by the assembly of PTCDI and melamine

    NARCIS (Netherlands)

    Silly, Fabien; Shaw, Adam Q.; Castell, Martin R.; Briggs, G. A. D.

    2008-01-01

    The mixing of perylene-3,4,9,10-tetracarboxylic diimide ( PTCDI) and 1,3,5-triazine-2,4,6-triamine ( melamine) at room temperature in a ratio of 3 : 4 on Au( 111) leads to the formation of a new chiral " pinwheel'' structure.

  17. A Novel Self-Assembled Supramolecular Complex {[Cu(Ⅱ)(en)2·H2O] [Cu(Ⅰ)2(CN)4]}n with Honeycomb-like Structure and Its Adsorption Properties

    Institute of Scientific and Technical Information of China (English)

    SHEN,Xiao-Ping(沈小平); ZOU,Jian-Zhong(邹建忠); LI,Bao-Long(李宝龙); HU,Huai-Ming(胡怀民); XU,Zheng(徐正)

    2002-01-01

    A novel supramolecular complex {[Cu(Ⅱ)(en)2@H2O]@[Cu(I)2(CN)4]n (en= ethylenediamine), in which the cyanide-bridged Cu(I) forms the honeycomb-like skeleton host and the Cu(Ⅱ) complex ion [Cu(en)2@H2O]2+ is encapsulated in the center of the channel cavity of the skeleton, was synthesized by two different methods. The complex was also characterized by elemental analysis, ICP analysis, IR spectra and thermal analysis. The adsorption and desorption studies of the complex indicate that H2O and NH3 can be desorbed and re-adsorbed without collapse of the channel structure of the supramolecule.

  18. Spectroscopic analyses of the noncovalent self-assembly of cyanines upon various nucleic acid scaffolds.

    Science.gov (United States)

    Achyuthan, Komandoor E; McClain, Jaime L; Zhou, Zhijun; Whitten, David G; Branch, Darren W

    2009-04-01

    We utilized self-assembly of cyanine chromophores to study the conformational changes in various types of nucleic acid scaffolds: single and double stranded DNA, linear or circular DNA and RNA. We identified a chromophore that became highly fluorescent after aggregating upon nucleic acids. Fluorescence from the aggregate was instantaneous after self-assembly. Temporal emission profiles displayed a biphasic trend demonstrating kinetic dependence for assembly and disassembly. Absorption spectra of the aggregate showed a red-shifted "shoulder" peak indicative of J-aggregate. Fluorescence from J-aggregates was also red-shifted. We utilized cyanine self-assembly to quantize various nucleic acids. The limits of detection and quantization for psiX174 DNA were 3 and 9 fmol, respectively. We similarly determined the sensitivity for various nucleic acids and established the optimum conditions for self-assembly. Collectively, the effects of methanol, salt, and full width at half maximum for cyanine fluorescence on DNA or carboxymethylamylose scaffolds, all suggested noncovalent, electrostatic, and hydrophobic forces were involved in supramolecular self-assembly. Our results facilitate a better understanding of supramolecular self-assembly.

  19. Controlling the self-assembly of protein polymers via heterodimer-forming modules

    NARCIS (Netherlands)

    Domeradzka, Natalia Eliza

    2016-01-01

    Supramolecular assemblies formed by protein polymers are attractive candidates for future biomaterials. Ideally, one would like to be able to define the nanostructure, in which the protein polymers should self-assemble, and then design protein polymer sequences that assemble exactly into such nanost

  20. Order-disorder transitions in self-assembled polymers : A positron annihilation study

    NARCIS (Netherlands)

    Ramani, Ramasubbu; Valkama, Sami; Kilpeläinen, Simo; Tumisto, Filip; Brinke, Gerrit ten; Ruokolainen, Janne; Alam, Sarfaraz; Ikkala, Olli

    2009-01-01

    We report here the first results of order-disorder transition (ODT) in a self-assembled comb-like polymer-amphiphile supramolecular system as identified from the change in positron lifetime parameters. We have used poly(4-vinyl pyridine) hydrogen bonded with 3-pentadecyl phenol, which upon heating s

  1. Deposition of metal Islands, metal clusters and metal containing single molecules on self-assembled monolayers

    NARCIS (Netherlands)

    Speets, Emiel Adrianus

    2005-01-01

    The central topic of this thesis is the deposition of metals on Self-Assembled Monolayers (SAMs). Metals are deposited in the form of submicron scale islands, nanometer scale clusters, and as supramolecular, organometallic coordination cages. Several SAMs on various substrates were prepared and anal

  2. Self-assemblies of lecithin and a-tocopherol as gelators of lipid material

    NARCIS (Netherlands)

    Nikiforidis, C.V.; Scholten, E.

    2014-01-01

    Amongst the different mechanisms that have been proposed and used to structure organogels, self-assembly of the gelators into supramolecular structures linked through non-covalent bonds is the most interesting. The gelator activity of LMGOs is often found most effective when micellar or lamellar pha

  3. Self-assembled M2L4 coordination cages : Synthesis and potential applications

    NARCIS (Netherlands)

    Schmidt, Andrea; Casini, Angela; Kuehn, Fritz E.

    2014-01-01

    Metal-mediated self-assemblies of the general formula MxLy (M = metal ion, L = ligand) have emerged as a promising research area of supramolecular chemistry because of their applicability in various fields such as molecular recognition, catalysis and drug delivery. The focus of this review is on dis

  4. Self-assembly of self-assembled molecular triangles

    Indian Academy of Sciences (India)

    Mili C Naranthatta; V Ramkumar; Dillip Kumar Chand

    2014-09-01

    A rare variety of self-assembledmolecular triangle [Pd3(bpy)3(imidazolate)3](NO3)3, 1 is prepared by the combination of Pd(bpy)(NO3)2 with imidazole, at 1:1 ratio, in acetonitrile-water. Deprotonation of imidazole happened during the course of the complexation reaction where upon the metallomacrocycle is formed. The bowl-shaped trinuclear architecture of 1 is crafted with three peripheral bpy units capable of - stacking interactions. While the solution state structure of 1 can be best described as a trinuclear complex, in the solidstate well-fashioned intermolecular - and CH- interactions are observed. Thus, in the solid-state further self-assembly of already self-assembled molecular triangle is witnessed. The triangular panels are arranged in a linear manner utilizing intermolecular - interactions where upon two out of three bpy units of each molecule participated in the chain formation.

  5. Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties

    OpenAIRE

    Isabelle Russier-Antoine; Franck Bertorelle; Alexander Kulesza; Antonin Soleilhac; Amina Bensalah-Ledoux; Stephan Guy; Philippe Dugourd; Pierre-François Brevet; Rodolphe Antoine

    2016-01-01

    Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. We report a simple synthetic approach for the production of chiral gold-cysteine polymeric nanoparticles soluble in water. Conjugation of cysteine with gold in a polymeric way, leading to ~50 nm diameter nanoparticles, resulted in the generation of new characteristic circular dichroism (CD) signals in the region of 250–400 nm, whereas no CD signal changes were found with c...

  6. Rapid self-assembly of block copolymers to photonic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  7. Recent Advances in Targeted, Self-Assembling Nanoparticles to Address Vascular Damage Due to Atherosclerosis.

    Science.gov (United States)

    Chung, Eun Ji; Tirrell, Matthew

    2015-11-18

    Self-assembling nanoparticles functionalized with targeting moieties have significant potential for atherosclerosis nanomedicine. While self-assembly allows the easy construction (and degradation) of nanoparticles with therapeutic or diagnostic functionality, or both, the targeting agent can direct them to a specific molecular marker within a given stage of the disease. Therefore, supramolecular nanoparticles have been investigated in the last decade as molecular imaging agents or explored as nanocarriers that can decrease the systemic toxicity of drugs by producing accumulation predominantly in specific tissues of interest. In this Progress Report, the pathogenesis of atherosclerosis and the damage caused to vascular tissue are described, as well as the current diagnostic and treatment options. An overview of targeted strategies using self-assembling nanoparticles is provided, including liposomes, high density lipoproteins, protein cages, micelles, proticles, and perfluorocarbon nanoparticles. Finally, an overview is given of current challenges, limitations, and future applications for personalized medicine in the context of atherosclerosis of self-assembling nanoparticles.

  8. Multivalency in supramolecular chemistry and nanofabrication

    NARCIS (Netherlands)

    Mulder, Alart; Huskens, Jurriaan; Reinhoudt, David N.

    2004-01-01

    Multivalency is a powerful and versatile self-assembly pathway that confers unique thermodynamic and kinetic behavior onto supramolecular complexes. The diversity of the examples of supramolecular multivalent systems discussed in this perspective shows that the concept of multivalency is a general p

  9. A Precise Packing Sequence for Self-Assembled Convex Structures

    Science.gov (United States)

    Chen, Ting; Zhang, Zhenli; Glotzer, Sharon

    2007-03-01

    We present molecular simulations of the self-assembly of cone-shaped particles with patchy, attractive interactions[1,2]. Upon cooling from random initial conditions, we find that the cones self assemble into clusters and that clusters comprised of particular numbers of cones have a unique and precisely packed structure that is robust over a range of cone angles. These precise clusters form precise packing sequence that for small sizes is identical to that observed in evaporation-driven assembly of colloidal spheres. This sequence is reproduced and extended in simulations of two simple models of spheres self-assembling from random initial conditions subject to convexity constraints, and contains six of the most common virus capsid structures obtained in vivo including large chiral clusters, and a cluster that may correspond to several non- icosahedral, spherical virus capsid structures obtained in vivo. For prolate spheroidal convexity conditions, we demonstrate the formation of several prolate virus structures from self-assembling hard spheres[3]. [1] Chen T, Zhang ZL, Glotzer SC, PNAS, in press (http://xxx.lanl.gov/pdf/cond-mat/ 0608592) [2] Chen T, Zhang ZL, Glotzer SC, http://xxx.lanl.gov/pdf/cond-mat/0608613 [3] Chen T, Glotzer SC http://xxx.lanl.gov/pdf/q-bio.BM/0608040

  10. Self-assembled plasmonic metamaterials

    Science.gov (United States)

    Mühlig, Stefan; Cunningham, Alastair; Dintinger, José; Scharf, Toralf; Bürgi, Thomas; Lederer, Falk; Rockstuhl, Carsten

    2013-07-01

    Nowadays for the sake of convenience most plasmonic nanostructures are fabricated by top-down nanofabrication technologies. This offers great degrees of freedom to tailor the geometry with unprecedented precision. However, it often causes disadvantages as well. The structures available are usually planar and periodically arranged. Therefore, bulk plasmonic structures are difficult to fabricate and the periodic arrangement causes undesired effects, e.g., strong spatial dispersion is observed in metamaterials. These limitations can be mitigated by relying on bottom-up nanofabrication technologies. There, self-assembly methods and techniques from the field of colloidal nanochemistry are used to build complex functional unit cells in solution from an ensemble of simple building blocks, i.e., in most cases plasmonic nanoparticles. Achievable structures are characterized by a high degree of nominal order only on a short-range scale. The precise spatial arrangement across larger dimensions is not possible in most cases; leading essentially to amorphous structures. Such self-assembled nanostructures require novel analytical means to describe their properties, innovative designs of functional elements that possess a desired near- and far-field response, and entail genuine nanofabrication and characterization techniques. Eventually, novel applications have to be perceived that are adapted to the specifics of the self-assembled nanostructures. This review shall document recent progress in this field of research. Emphasis is put on bottom-up amorphous metamaterials. We document the state-of-the-art but also critically assess the problems that have to be overcome.

  11. Self-assembling hydrogel scaffolds for photocatalytic hydrogen production

    Science.gov (United States)

    Weingarten, Adam S.; Kazantsev, Roman V.; Palmer, Liam C.; McClendon, Mark; Koltonow, Andrew R.; Samuel, Amanda P. S.; Kiebala, Derek J.; Wasielewski, Michael R.; Stupp, Samuel I.

    2014-11-01

    Integration into a soft material of all the molecular components necessary to generate storable fuels is an interesting target in supramolecular chemistry. The concept is inspired by the internal structure of photosynthetic organelles, such as plant chloroplasts, which colocalize molecules involved in light absorption, charge transport and catalysis to create chemical bonds using light energy. We report here on the light-driven production of hydrogen inside a hydrogel scaffold built by the supramolecular self-assembly of a perylene monoimide amphiphile. The charged ribbons formed can electrostatically attract a nickel-based catalyst, and electrolyte screening promotes gelation. We found the emergent phenomenon that screening by the catalyst or the electrolytes led to two-dimensional crystallization of the chromophore assemblies and enhanced the electronic coupling among the molecules. Photocatalytic production of hydrogen is observed in the three-dimensional environment of the hydrogel scaffold and the material is easily placed on surfaces or in the pores of solid supports.

  12. Chiral supramolecular gold-cysteine nanoparticles:Chiroptical and nonlinear optical properties

    Institute of Scientific and Technical Information of China (English)

    Isabelle Russier-Antoine; Franck Bertorelle; Alexander Kulesza; Antonin Soleilhac; Amina Bensalah-Ledoux; Stephan Guy; Philippe Dugourd; Pierre-François Brevet; Rodolphe Antoine

    2016-01-01

    Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. We report a simple synthetic approach for the production of chiral gold-cysteine polymeric nanoparticles soluble in water. Conjugation of cysteine with gold in a polymeric way, leading to ~50 nm diameter nanoparticles, resulted in the generation of new characteristic circular dichroism (CD) signals in the region of 250–400 nm, whereas no CD signal changes were found with cysteine alone. We also investigate their nonlinear optical properties after two-photon absorption. Two-photon emission spectra and first hyper-polarizabilities, as obtained by the hyper-Rayleigh scattering technique, of these particles are presented.

  13. Chiral supramolecular gold-cysteine nanoparticles: Chiroptical and nonlinear optical properties

    Directory of Open Access Journals (Sweden)

    Isabelle Russier-Antoine

    2016-10-01

    Full Text Available Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. We report a simple synthetic approach for the production of chiral gold-cysteine polymeric nanoparticles soluble in water. Conjugation of cysteine with gold in a polymeric way, leading to ~50 nm diameter nanoparticles, resulted in the generation of new characteristic circular dichroism (CD signals in the region of 250–400 nm, whereas no CD signal changes were found with cysteine alone. We also investigate their nonlinear optical properties after two-photon absorption. Two-photon emission spectra and first hyper-polarizabilities, as obtained by the hyper-Rayleigh scattering technique, of these particles are presented.

  14. Self-Assembly and Nanostructures in Organogels Based on a Bolaform Cholesteryl Imide Compound with Conjugated Aromatic Spacer

    OpenAIRE

    2013-01-01

    The self-assembly of small functional molecules into supramolecular structures is a powerful approach toward the development of new nanoscale materials and devices. As a class of self-assembled materials, low weight molecular organic gelators, organized in special nanoarchitectures through specific non-covalent interactions, has become one of the hot topics in soft matter research due to their scientific values and many potential applications. Here, a bolaform cholesteryl imide compound with ...

  15. Supramolecular Complexes Formed by the Self-assembly of Hydrophobic Bis(Zn(2+)-cyclen) Complexes, Copper, and Di- or Triimide Units for the Hydrolysis of Phosphate Mono- and Diesters in Two-Phase Solvent Systems (Cyclen=1,4,7,10-Tetraazacyclododecane).

    Science.gov (United States)

    Hisamatsu, Yosuke; Miyazawa, Yuya; Yoneda, Kakeru; Miyauchi, Miki; Zulkefeli, Mohd; Aoki, Shin

    2016-01-01

    We previously reported on supramolecular complexes 4 and 5, formed by the 4 : 4 : 4 or 2 : 2 : 2 assembly of a dimeric zinc(II) complex (Zn2L(1)) having 2,2'-bipyridyl linker, dianion of cyanuric acid (CA) or 5,5-diethylbarbituric acid (Bar), and copper(II) ion (Cu(2+)) in an aqueous solution. The supermolecule 4 possesses Cu2(μ-OH)2 centers and catalyzes hydrolysis of phosphate monoester dianion, mono(4-nitrophenyl)phosphate (MNP), at neutral pH. In this manuscript, we report on design and synthesis of hydrophobic supermolecules 9 and 10 by 4 : 4 : 4 and 2 : 2 : 2 self-assembly of hydrophobic Zn2L(2) and Zn2L(3) containing long alkyl chains, CA or Bar, and Cu(2+) and their phosphatase activity for the hydrolysis of MNP and bis(4-nitrophenyl)phosphate (BNP) in two-phase solvent systems. We assumed that the Cu2(μ-OH)2 active sites of 9 and 10 would be more stable in organic solvent than in aqueous solution and that product inhibition of the supermolecules might be avoided by the release of HPO4(2-) into the aqueous layer. The findings indicate that 9 and 10 exhibit phosphatase activity in the two-phase solvent system, although catalytic turnover was not observed. Furthermore, the hydrolysis of BNP catalyzed by the hydrophobic 2 : 2 : 2 supermolecules in the two-phase solvent system is described.

  16. Stable doping of carbon nanotubes via molecular self assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lee, B.; Chen, Y.; Podzorov, V., E-mail: podzorov@physics.rutgers.edu [Department of Physics and Institute for Advanced Materials and Devices for Nanotechnology, Rutgers University, New Jersey 08854 (United States); Cook, A.; Zakhidov, A. [Department of Physics and NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75083 (United States)

    2014-10-14

    We report a novel method for stable doping of carbon nanotubes (CNT) based on methods of molecular self assembly. A conformal growth of a self-assembled monolayer of fluoroalkyl trichloro-silane (FTS) at CNT surfaces results in a strong increase of the sheet conductivity of CNT electrodes by 60–300%, depending on the CNT chirality and composition. The charge carrier mobility of undoped partially aligned CNT films was independently estimated in a field-effect transistor geometry (~100 cm²V⁻¹s⁻¹). The hole density induced by the FTS monolayer in CNT sheets is estimated to be ~1.8 ×10¹⁴cm⁻². We also show that FTS doping of CNT anodes greatly improves the performance of organic solar cells. This large and stable doping effect, easily achieved in large-area samples, makes this approach very attractive for applications of CNTs in transparent and flexible electronics.

  17. Improving Photocatalytic Activity through Electrostatic Self-Assembly: Polyelectrolytes as Tool for Solar Energy Conversion?

    Science.gov (United States)

    Groehn, Franziska

    2015-03-01

    With regard to the world's decreasing energy resources, developing strategies to exploit solar energy become more and more important. One approach is to take advantage of photocatalysis. Inspired by natural systems such as assemblies performing photosynthesis, it is highly promising to self-assemble synthetic functional species to form more effective or tailored supramolecular units. In this contribution, a new type of photocatalytically active self-assembled nanostructures in aqueous solution will be presented: supramolecular nano-objects obtained through self-assembly of macroions and multivalent organic or inorganic counterions. Polyelectrolyte-porphyrin nanoscale assemblies exhibit up to 10-fold higher photocatalytic activity than the corresponding porphyrins without polymeric template. Other self-assembled catalysts based on polyelectrolytes can exhibit expressed selectivity in a photocatalytic model reaction or even allow catalytic reactions in solution that are not possible with the building blocks only. Further, current results on combining different functional units at the polyelectrolyte template represent a next step towards more complex supramolecular structures for solar energy conversion.

  18. Solvent-induced chirality inversion involving supramolecular helix transformation and color-tunable fluorescence of a C(6)-symmetric hexakis(phenylethynyl)benzene derivative.

    Science.gov (United States)

    Sakajiri, Koichi; Sugisaki, Takeshi; Moriya, Keiichi; Kutsumizu, Shoichi

    2009-09-21

    A C(6)-symmetric disk-like molecule, a hexakis(phenylethynyl)benzene derivative bearing chiral alanine parts, L-1, exhibited a solvent-induced supramolecular helix-sense inversion involving conformational changes followed by destruction of the supramolecular helical column. This phenomenon has been found by investigating the supramolecular assembly state of L-1 in mixed solvents of various chloroform (CHCl(3))/n-hexane (Hx) ratios. L-1 forms a stable helical columnar assembly via multiple noncovalent bonding interactions in nonpolar Hx, while the molecules in relatively polar CHCl(3) are in a molecularly dispersed state. Although one would expect disruption of the helical column with the addition of nonhelicogenic CHCl(3), an opposite-handed helical columnar structure was formed at 8-15 vol% of CHCl(3), and subsequently the inverted helical column was disassembled by a further increase of CHCl(3). In addition, this morphological transformation was accompanied by a significant change in fluorescent color, which varies over a wide visible range from orange in an original helical columnar state to light blue in a molecularly dispersed state through yellow in an inverted helical columnar state. These unprecedented behaviors are shown by the spectroscopic results, and the molecular conformations of L-1 and the driving force for the helical sense inversion are discussed.

  19. Photochemical Reactions in Self-Assembled Organic Monolayers Characterized by using Scanning Tunneling Microscopy.

    Science.gov (United States)

    Guo, Chao; Li, Min; Kang, ShiZhao

    2016-03-16

    Research on the supramolecular self-assembly behavior at interfaces is of great importance to improving the performance of nanodevices that are based on optical functional materials. In this Minireview, several photoinduced isomerization and polymerization reactions in self-assembled organic monolayers on surfaces are discussed. Typical organic molecules contain azobenzene, alkynyl, or olefins groups. The feature surface base is a highly oriented pyrolytic graphite (HOPG) surface or a gold surface. Scanning tunneling microscopy (STM) is used as a strong tool to characterize new species' structures before and after illumination.

  20. Chemical reactions directed Peptide self-assembly.

    Science.gov (United States)

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  1. Photon Upconversion and Molecular Solar Energy Storage by Maximizing the Potential of Molecular Self-Assembly.

    Science.gov (United States)

    Kimizuka, Nobuo; Yanai, Nobuhiro; Morikawa, Masa-Aki

    2016-11-29

    The self-assembly of functional molecules into ordered molecular assemblies and the fulfillment of potentials unique to their nanotomesoscopic structures have been one of the central challenges in chemistry. This Feature Article provides an overview of recent progress in the field of molecular self-assembly with the focus on the triplet-triplet annihilation-based photon upconversion (TTA-UC) and supramolecular storage of photon energy. On the basis of the integration of molecular self-assembly and photon energy harvesting, triplet energy migration-based TTA-UC has been achieved in varied molecular systems. Interestingly, some molecular self-assemblies dispersed in solution or organogels revealed oxygen barrier properties, which allowed TTA-UC even under aerated conditions. The elements of molecular self-assembly were also introduced to the field of molecular solar thermal fuel, where reversible photoliquefaction of ionic crystals to ionic liquids was found to double the molecular storage capacity with the simultaneous pursuit of switching ionic conductivity. A future prospect in terms of innovating molecular self-assembly toward molecular systems chemistry is also discussed.

  2. Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on Au(111)

    DEFF Research Database (Denmark)

    Yan, Jiawei; Ouyang, Runhai; Jensen, Palle Skovhus;

    2014-01-01

    The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest unsubstitu...

  3. Facile Isolation of Adsorbent-Free Long and Highly-Pure Chirality-Selected Semiconducting Single-Walled Carbon Nanotubes Using A Hydrogen-bonding Supramolecular Polymer

    Science.gov (United States)

    Toshimitsu, Fumiyuki; Nakashima, Naotoshi

    2015-12-01

    The ideal form of semiconducting-single-walled carbon nanotubes (sem-SWNTs) for science and technology is long, defect-free, chirality pure and chemically pure isolated narrow diameter tubes. While various techniques to solubilize and purify sem-SWNTs have been developed, many of them targeted only the chiral- or chemically-purity while sacrificing the sem-SWNT intrinsic structural identities by applying strong ultra-sonication and/or chemical modifications. Toward the ultimate purification of the sem-SWNTs, here we report a mild-conditioned extraction of the sem-SWNTs using removable supramolecular hydrogen-bonding polymers (HBPs) that are composed of dicarboxylic- or diaminopyridyl-fluorenes with ~70%-(8,6)SWNT selective extraction. Replacing conventional strong sonication techniques by a simple shaking using HPBs was found to provide long sem-SWNTs (>2.0 μm) with a very high D/G ratio, which was determined by atomic force microscopy observations. The HBPs were readily removed from the nanotube surfaces by an outer stimulus, such as a change in the solvent polarities, to provide chemically pure (8,6)-enriched sem-SWNTs. We also describe molecular mechanics calculations to propose possible structures for the HBP-wrapped sem-SWNTs, furthermore, the mechanism of the chiral selectivity for the sorted sem-SWNTs is well explained by the relationship between the molecular surface area and mass of the HBP/SWNT composites.

  4. Research on Self-Assembling Quantum Dots.

    Science.gov (United States)

    1995-10-30

    0K. in a second phase of this contract we turned our efforts to the fabrication and studies of self assembled quantum dots . We first demonstrated a...method for producing InAs-GasAs self assembled quantum dots (SAD) using MBE. (AN)

  5. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  6. Synthesis and self-assembly behavior of chiral amphiphilic diblock copolymers bearing L- phenylalanine%侧基带有L-苯丙氨酸的手性两亲嵌段共聚物的合成及其自组装行为

    Institute of Scientific and Technical Information of China (English)

    周勇; 汪瑾; 郭素珍

    2011-01-01

    Novel chiral amphiphilic diblock copolymers bearing L-phenylalanine was synthesized using a “click” reaction of N3-L-phenylalanine and MPEO-b-PGPE. The structure and composition of copolymers were characterized by 1H-NMR and elemental analysis. Additionally, the self - assembly behavior of these chiral copolymers was investigated in sodium dihydrogen phosphate buffer ( pH 4.5): the CMC of copolymer MPEO-b-PGTP determined by the measurement of surface tension was 2.1 mg/mL; the size and morphology of the micelles were studied using TEM; the specific optical rotation ( [α] 25D ) of the micellar solutions was also measured; the result indicated that the copolymers can form chiral micelles in sodium dihydrogen phosphate buffer (pH = 4.5 ).%N3-苯丙氨酸与嵌段共聚物聚乙二醇-b-聚炔丙基缩水甘油(MPEO-b-PGPE)发生"click"反应,合成了具有光学活性的两亲嵌段共聚物聚乙二醇-B-聚L-苯丙氨酸三唑基缩水甘油(MPEO-b-PGTP),用1H-NMR和元素分析对其结构和组成进行表征.并对其自组装行为进行研究,滴体积法测定MPEO-b-PGTP溶液(pH=4.5)的临界胶束浓度为2.1mg/mL;用电子透射显微镜(TEM)直接观察聚合物MPEO-b-PGTP形成胶束的形态和尺寸;旋光仪测定结果表明其在水中自组装形成的胶束具有手性.

  7. Carbohydrates in Supramolecular Chemistry.

    Science.gov (United States)

    Delbianco, Martina; Bharate, Priya; Varela-Aramburu, Silvia; Seeberger, Peter H

    2016-02-24

    Carbohydrates are involved in a variety of biological processes. The ability of sugars to form a large number of hydrogen bonds has made them important components for supramolecular chemistry. We discuss recent advances in the use of carbohydrates in supramolecular chemistry and reveal that carbohydrates are useful building blocks for the stabilization of complex architectures. Systems are presented according to the scaffold that supports the glyco-conjugate: organic macrocycles, dendrimers, nanomaterials, and polymers are considered. Glyco-conjugates can form host-guest complexes, and can self-assemble by using carbohydrate-carbohydrate interactions and other weak interactions such as π-π interactions. Finally, complex supramolecular architectures based on carbohydrate-protein interactions are discussed.

  8. Gold nanoparticle self-assembly in two-component lipid Langmuir monolayers.

    Science.gov (United States)

    Mogilevsky, Alina; Jelinek, Raz

    2011-02-15

    Self-assembly processes are considered to be fundamental factors in supramolecular chemistry. Langmuir monolayers of surfactants or lipids have been shown to constitute effective 2D "templates" for self-assembled nanoparticles and colloids. Here we show that alkyl-coated gold nanoparticles (Au NPs) adopt distinct configurations when incorporated within Langmuir monolayers comprising two lipid components at different mole ratios. Thermodynamic and microscopy analyses reveal that the organization of the Au NP aggregates is governed by both lipid components. In particular, we show that the configurations of the NP assemblies were significantly affected by the extent of molecular interactions between the two lipid components within the monolayer and the monolayer phases formed by each individual lipid. This study demonstrates that multicomponent Langmuir monolayers significantly modulate the self-assembly properties of embedded Au NPs and that parameters such as the monolayer composition, surface pressure, and temperature significantly affect the 2D nanoparticle organization.

  9. Exploring Programmable Self-Assembly in Non-DNA based Molecular Computing

    CERN Document Server

    Terrazas, German; Krasnogor, Natalio

    2013-01-01

    Self-assembly is a phenomenon observed in nature at all scales where autonomous entities build complex structures, without external influences nor centralised master plan. Modelling such entities and programming correct interactions among them is crucial for controlling the manufacture of desired complex structures at the molecular and supramolecular scale. This work focuses on a programmability model for non DNA-based molecules and complex behaviour analysis of their self-assembled conformations. In particular, we look into modelling, programming and simulation of porphyrin molecules self-assembly and apply Kolgomorov complexity-based techniques to classify and assess simulation results in terms of information content. The analysis focuses on phase transition, clustering, variability and parameter discovery which as a whole pave the way to the notion of complex systems programmability.

  10. Self-assembly of mixed lipids into bicelles and vesicles: molecular dynamics simulations

    Science.gov (United States)

    Sharma, Hari; Wang, Zilu; Dormidontova, Elena

    Formation of complex supramolecular nanostructures, such as micelles, bicelles, vesicles (liposomes) etc. via self-assembly of simple molecules has provided a new pathway for the design and development of effective drug carriers. Solid nanoparticles or functional biopolymers, such as RNA, DNA, peptides can be encapsulated into these carriers for controlled delivery or selective targeting. We performed coarse grained molecular dynamics simulation using the MARTINI force field to study the self-assembly of a binary surfactant mixture composed of long and short phospholipids, DPPC and DHPC, in the ratio 3:1. We found that at low temperature lipids self-assemble into a bicelle (nanodisc) with the longer lipid mainly forming the interior and short lipid the rim of the bicelle. At higher temperature the nanodisc transforms into a vesicle with homogeneously distributed lipids. The structural changes of these nanodiscs and vesicles imposed by gold nanoparticle encapsulation and pegylation will be addressed.

  11. Molecular Recognition Directed Self-Assembly of Supramolecular Architectures

    Science.gov (United States)

    1994-06-30

    experiments have demonstrated that various substituted gallic acid derivatives can be used to construct exo-receptors with a tapered shape. 1.2...om , No .O.𔃺J04-0 * • . .. . •. *. " ..s *.-aI*mdl ,•t, ,t,.lmageg t..4o4etqr S b~lr~Ptqld O l- ’ .,JS 4t *V 41N~q #l• .W4 *W E~ uS n I.reCt.On .’ ,e...le*,.1,’*f 2 I:I %C.*, t.AGENCY USE ONLY (L~eive b;ank) ~2. REPORT DATE I1"REPORT TYPE AND DATES COVERED IJune 30, 1994 I Abstract Report #11 4

  12. Fabrication of 2D nanosheet through self assembly behavior of sulfamethoxypyridazine inclusion complexes with α- and β-cyclodextrins.

    Science.gov (United States)

    Rajendiran, N; Venkatesh, G; Mohandass, T

    2014-04-01

    A 2D nanosheet was fabricated through the supramolecular self assembly of sulfamethoxypyridazine (SMP) and β-cyclodextrin (β-CD) inclusion complexes. HRTEM image exhibited 2D nanosheet morphology with a length of 1200mm and the sheet thickness of 60mm. It is noted that the nanosheet did not form a single layer aggregation but a bulk aggregation of SMP/β-CD inclusion complex. The formation of this multilayer 2D nanosheet based on the self assembly of SMP/β-CD inclusion complexes is proposed by the topological transformation as well as molecular modeling calculations. But, nanorods are formed in SMP/α-CD inclusion complex indicated that the nature of the CD determined the shape of the self assembled supramolecular architecture. The formation of nanomaterial was characterized by using FT-IR, DSC, PXRD, (1)H NMR, absorption, fluorescence and lifetime measurements.

  13. Charge transport in vertically aligned, self-assembled peptide nanotube junctions

    Science.gov (United States)

    Mizrahi, Mordechay; Zakrassov, Alexander; Lerner-Yardeni, Jenny; Ashkenasy, Nurit

    2012-01-01

    The self-assembly propensity of peptides has been extensively utilized in recent years for the formation of supramolecular nanostructures. In particular, the self-assembly of peptides into fibrils and nanotubes makes them promising building blocks for electronic and electro-optic applications. However, the mechanisms of charge transfer in these wire-like structures, especially in ambient conditions, are not yet fully understood. We describe here a layer-by-layer deposition methodology of short self-assembled cyclic peptide nanotubes, which results in vertically oriented nanotubes on gold substrates. Using this novel deposition methodology, we have fabricated molecular junctions with a conductive atomic force microscopy tip as a second electrode. Studies of the junctions' current-voltage characteristics as a function of the nanotube length revealed an efficient charge transfer in these supramolecular structures, with a low current attenuation constant of 0.1 Å-1, which indicate that electron transfer is dominated by hopping. Moreover, the threshold voltage to field-emission dominated transport was found to increase with peptide length in a manner that depends on the nature of the contact with the electrodes. The flexibility in the design of the peptide monomers and the ability to control their sequential order over the nanotube by means of the layer-by-layer assembly process, which is demonstrated in this work, can be used to engineer the electronic properties of self-assembled peptide nanotubes toward device applications.

  14. Self-assembling Characteristics of Amphiphilic Star Block Copolymers with a Polyelectrolyte Shell

    Institute of Scientific and Technical Information of China (English)

    S.Strandman; A.Zarembo; V.Aseyev; S.J.Butcher; H.Tenhu

    2007-01-01

    1 Results Amphiphilic block copolymers are capable of forming supramolecular assemblies resembling those observed in nature,such as spherical micelles,worm micelles,and vesicles.Changing the solvent composition,ionic strength or pH of the polymer solution may induce the self-assembly of block copolymers or trigger the transition between the geometries of noncovalent assemblies.In the current work,we have synthesised starlike amphiphilic block copolymers having hydrophobic poly(methyl methacrylate),PMMA,...

  15. Hierarchical Formation of Fibrillar and Lamellar Self-Assemblies from Guanosine-Based Motifs

    Directory of Open Access Journals (Sweden)

    Paolo Neviani

    2010-01-01

    Full Text Available Here we investigate the supramolecular polymerizations of two lipophilic guanosine derivatives in chloroform by light scattering technique and TEM experiments. The obtained data reveal the presence of several levels of organization due to the hierarchical self-assembly of the guanosine units in ribbons that in turn aggregate in fibrillar or lamellar soft structures. The elucidation of these structures furnishes an explanation to the physical behaviour of guanosine units which display organogelator properties.

  16. Modulating Charge Transfer Through Cyclic D,L α-Peptide Self-Assembly

    OpenAIRE

    Horne, W. Seth; Ashkenasy, Nurit; Ghadiri, M. Reza

    2005-01-01

    We describe a concise solid support-based synthetic method for the preparation of cyclic D,L α-peptides bearing 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) side chains. Studies of the structural and photoluminescence properties of these molecules in solution show that the hydrogen bond directed self-assembly of the cyclic D,L α-peptide backbone promotes intermolecular NDI excimer formation. The efficiency of NDI charge transfer in the resulting supramolecular assemblies is shown to depen...

  17. Design of Self-Assembling Peptide Nanotubes with Delocalized Electronic States[**

    OpenAIRE

    Ashkenasy, Nurit; Horne, W. Seth; Reza Ghadiri, M.

    2006-01-01

    Redox-promoted self-assembly of an eight-residue cyclic D,L-α-peptide bearing four 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) side chains results in the formation of electronically delocalized peptide nanotubes hundreds of nm in length. The supramolecular approach described provides a rational basis for the design and fabrication of 1-D materials with potential utility in optical and electronic devices.

  18. Physical principles of filamentous protein self-assembly kinetics

    Science.gov (United States)

    Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.

    2017-04-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  19. Delivery of therapeutics and molecules using self-assembled peptides.

    Science.gov (United States)

    Sundar, S; Chen, Y; Tong, Y W

    2014-01-01

    The use of nanobiotechnology in the formulation of drug carriers has been gaining popularity in recent years. Peptide self-assembly technology is a particularly attractive option due to its simplicity and programmability. Selfassembling peptide amphiphiles are surfactant-like molecules that are capable of spontaneous organization into a variety of nanostructures. The structural and functional features of these nanostructures can be designed through alterations to the peptide sequence. With a keen understanding of the supramolecular principles governing the non-covalent interactions involved, drug loading strategies can be customised. Hydrophobic drugs can be hidden within the core via aromatic interactions while gene-based therapeutics can be complexed with a cationic region of lysine residues. This review article focuses on the application of self-assembling peptide amphiphiles to drug delivery in the area of anti-cancer therapeutics, protein- and peptide-based therapeutics and nucleic acid-based therapeutics. Specific examples are used to discuss the various systems available and emphasis is given to the encapsulation and release mechanism.

  20. Recent development of peptide self-assembly

    Institute of Scientific and Technical Information of China (English)

    Xiubo Zhao; Fang Pan; Jian R. Lu

    2008-01-01

    Amino acids are the building blocks to build peptides and proteins. Recent development in peptide synthesis has however enabled us to mimic this natural process by preparing various long and short peptides possessing different conformations and biological functions. The self-assembly of short designed peptides into molecular nanostructures is becoming a growing interest in nanobiotechnology. Self-assembled peptides exhibit several attractive features for applications in tissue regeneration, drug delivery, biological surface engineering as well as in food science, cosmetic industry and antibiotics. The aim of this review is to introduce the readers to a number of representative studies on peptide self-assembly.

  1. Block Copolymer Directed Self-Assembly Approaches for Doping Planar and Non-Planar Semiconductors

    Science.gov (United States)

    Popere, Bhooshan; Russ, Boris; Heitsch, Andrew; Trefonas, Peter; Segalman, Rachel

    As electronic circuits continue to shrink, reliable nanoscale doping of functional devices presents new challenges. While directed self-assembly (DSA) of block copolymers (BCPs) has enabled excellent pitch control for lithography, controlling the 3D dopant distribution remains a fundamental challenge. To this end, we have developed a BCP self-assembly approach to confine dopants to nanoscopic domains within a semiconductor. This relies on the supramolecular encapsulation of the dopants within the core of the block copolymer (PS- b-P4VP) micelles, self-assembly of these micelles on the substrate, followed by rapid thermal diffusion of the dopants into the underlying substrate. We show that the periodic nature of the BCP domains enables precise control over the dosage and spatial position of dopant atoms on the technologically relevant length scales (10-100 nm). Additionally, as the lateral density of 2D circuit elements approaches the Moore's limit, novel 3D architectures have emerged. We have utilized our BCP self-assembly approach towards understanding the self-assembly our micelles directed by such nanoscale non-planar features. We show that the geometric confinement imposed by the hard feature walls directs the assembly of these micelles.

  2. Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinhua, E-mail: caoxhchem@163.com; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru

    2016-04-15

    Graphical abstract: - Highlights: • The different structures could be obtained in this self-assembly system. • A water-drop could freely roll on the xerogel film with the sliding angle of 15.0. • The superhydrophobic surface can be obtained via supramolecular self-assembly. - Abstract: A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV–vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.

  3. Soft supramolecular nanoparticles by noncovalent and host-guest interactions

    NARCIS (Netherlands)

    Stoffelen, C.; Huskens, J.

    2016-01-01

    Supramolecular chemistry provides a tool for the formation of highly ordered structures by means of noncovalent interactions. Soft supramolecular nanoparticles are self-assembled nanoassemblies based on small building blocks and stabilized by basic noncovalent interactions, selective host–guest inte

  4. Supramolecular science: A new way to understand the matter world

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi; SHEN Jiacong

    2003-01-01

    @@ After over 20 years' rapid development, supramolecular chemistry has exceeded the original realm of organic host-guest chemistry, and formed its own unique concepts and systems, such as molecular recognition, molecular self-assembly, supramolecular devices and materials[1,2]. These branches have organized into a charming new subject in the whole family of chemistry.

  5. Self assembly of interlocked architectures

    CERN Document Server

    Schergna, S

    2002-01-01

    An area of great interest is the synthesis and characterisation of molecules possessing moving parts, with the goal that they can act as 'molecular machine' carrying out tasks that molecules with fixed conventional architectures cannot do. Rotaxanes and catenanes (mechanically interlocked architectures) represent one approach toward achieving these aims as their component wheels and / or threads are connected together but can still move, in certain, controlled directions. This thesis focused on the study of structural rigidity and the preorganisation of thread binding sites as factors of major influence on template efficiency in the synthesis of hydrogen bond assembled supramolecular structures (rotaxanes and catenanes). Chapter One gives a brief outline of the common synthetic approaches to interlocked architectures (catenanes and rotaxanes) that are now being developed to address the problems outlined above. Chapter Two and Chapter Three concerns the synthesis of novel amide-based rotaxanes containing vario...

  6. Directed Self-Assembly of Nanodispersions

    Energy Technology Data Exchange (ETDEWEB)

    Furst, Eric M [University of Delaware

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  7. Self-Assembly of Two Chiral Supramolecules with Three-Dimensional Porous Host Frameworks: (Delta){[Fe(II)(phen)(3)][Fe(III)Na(C(2)O(4))(3)]}(n)() and Its Enantiomer.

    Science.gov (United States)

    Li, Pei-zhou; Lu, Xiao-ming; Liu, Bo; Wang, Shuo; Wang, Xiao-jun

    2007-07-23

    Two chiral supramolecules with enantiomeric three-dimensional porous host frameworks, (Delta){[Fe(II)(phen)(3)][Fe(III)Na(C(2)O(4))(3)]}(n) (1) and (Lambda){[Fe(II)(phen)(3)][Fe(III)Na(C(2)O(4))(3)]}(n) (2) (phen = 1,10-phenanthroline), have been synthesized, and their crystal structures have been determined. The structural analysis shows that compounds 1 and 2 are a pair of enantiomers, both consisting of a three-dimensional porous skeleton formed by (Delta)/(Lambda){[Fe(III)Na(C(2)O(4))(3)](2-)}(n) and guest (Delta)/(Lambda)[Fe(phen)(3)](2+) units. The circular dichroism spectrum measurements confirmed the optical activity and the enantiomeric nature of complexes 1 and 2.

  8. Mechanical Self-Assembly Science and Applications

    CERN Document Server

    2013-01-01

    Mechanical Self-Assembly: Science and Applications introduces a novel category of self-assembly driven by mechanical forces. This book discusses self-assembly in various types of small material structures including thin films, surfaces, and micro- and nano-wires, as well as the practice's potential application in micro and nanoelectronics, MEMS/NEMS, and biomedical engineering. The mechanical self-assembly process is inherently quick, simple, and cost-effective, as well as accessible to a large number of materials, such as curved surfaces for forming three-dimensional small structures. Mechanical self-assembly is complementary to, and sometimes offer advantages over, the traditional micro- and nano-fabrication. This book also: Presents a highly original aspect of the science of self-assembly Describes the novel methods of mechanical assembly used to fabricate a variety of new three-dimensional material structures in simple and cost-effective ways Provides simple insights to a number of biological systems and ...

  9. Membrane-targeted self-assembling cyclic peptide nanotubes.

    Science.gov (United States)

    Rodríguez-Vázquez, Nuria; Ozores, H Lionel; Guerra, Arcadio; González-Freire, Eva; Fuertes, Alberto; Panciera, Michele; Priegue, Juan M; Outeiral, Juan; Montenegro, Javier; Garcia-Fandino, Rebeca; Amorin, Manuel; Granja, Juan R

    2014-01-01

    Peptide nanotubes are novel supramolecular nanobiomaterials that have a tubular structure. The stacking of cyclic components is one of the most promising strategies amongst the methods described in recent years for the preparation of nanotubes. This strategy allows precise control of the nanotube surface properties and the dimensions of the tube diameter. In addition, the incorporation of 3- aminocycloalkanecarboxylic acid residues in the nanotube-forming peptides allows control of the internal properties of the supramolecular tube. The research aimed at the application of membrane-interacting self-assembled cyclic peptide nanotubes (SCPNs) is summarized in this review. The cyclic peptides are designed to interact with phospholipid bilayers to induce nanotube formation. The properties and orientation of the nanotube can be tuned by tailoring the peptide sequence. Hydrophobic peptides form transmembrane pores with a hydrophilic orifice, the nature of which has been exploited to transport ions and small molecules efficiently. These synthetic ion channels are selective for alkali metal ions (Na(+), K(+) or Cs(+)) over divalent cations (Ca(2+)) or anions (Cl(-)). Unfortunately, selectivity was not achieved within the series of alkali metal ions, for which ion transport rates followed the diffusion rates in water. Amphipathic peptides form nanotubes that lie parallel to the membrane. Interestingly, nanotube formation takes place preferentially on the surface of bacterial membranes, thus making these materials suitable for the development of new antimicrobial agents.

  10. Chiral Nanoscience and Nanotechnology

    Directory of Open Access Journals (Sweden)

    Dibyendu S. Bag

    2008-09-01

    Full Text Available The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale approaches to chiraltechnology such as asymmetric synthesis and catalysis, chiral separation and detection, and enantiomericanalysis. Chiral sensors have also been included. The state-of-the-art chiral research at DMSRDE,Kanpur isalso presented.Defence Science Journal, 2008, 58(5, pp.626-635, DOI:http://dx.doi.org/10.14429/dsj.58.1685

  11. Self-Assembling Peptide Amphiphiles for Targeted Drug Delivery

    Science.gov (United States)

    Moyer, Tyson

    The systemic delivery of therapeutics is currently limited by off-target side effects and poor drug uptake into the cells that need to be treated. One way to circumvent these issues is to target the delivery and release of therapeutics to the desired location while limiting systemic toxicity. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures for the development of targeted therapies. Specifically, the research has focused on the interrelationships between presentation of targeting moeities and the control of nanostructure morphology in the context of systemic delivery for targeting cancer and vascular injuries. The self-assembly region of the PA was systematically altered to achieve control of nanostructure widths, from 100 nm to 10 nm, by the addition of valine-glutamic acid dimers into the chemical structure, subsequently increasing the degree of nanostructure twist. For the targeting of tumors, a homing PA was synthesized to include a dimeric, cyclic peptide sequence known to target the cancer-specific, death receptor 5 (DR5) and initiate apoptosis through the oligomerization of DR5. This PA presented a multivalent display of DR5-binding peptides, resulting in improved binding affinity measured by surface plasmon resonance. The DR5-targeting PA also showed enhanced efficacy in both in vitro and in vivo tumor models relative to non-targeted controls. Alternative modifications to the PA-based antitumor therapies included the use of a cytotoxic, membrane-lytic PA coassembled with a pegylated PA, which showed enhanced biodistribution and in vivo activity after coassembly. The functionalization of the hydrophobic core was also accomplished through the encapsulation of the chemotherapy camptothecin, which was shown to be an effective treatment in vivo. Additionally, a targeted PA nanostructure was designed to bind to the site of vascular intervention by targeting collagen IV. Following balloon angioplasty

  12. Robust excitons inhabit soft supramolecular nanotubes

    NARCIS (Netherlands)

    Eisele, Doerthe M.; Arias, Dylan H.; Fu, Xiaofeng; Bloemsma, Erik A.; Steiner, Colby P.; Jensen, Russell A.; Rebentrost, Patrick; Eisele, Holger; Tokmakoff, Andrei; Lloyd, Seth; Nelson, Keith A.; Nicastro, Daniela; Knoester, Jasper; Bawendi, Moungi G.

    2014-01-01

    Nature's highly efficient light-harvesting antennae, such as those found in green sulfur bacteria, consist of supramolecular building blocks that self-assemble into a hierarchy of close-packed structures. In an effort to mimic the fundamental processes that govern nature's efficient systems, it is i

  13. Programming biomolecular self-assembly pathways.

    Science.gov (United States)

    Yin, Peng; Choi, Harry M T; Calvert, Colby R; Pierce, Niles A

    2008-01-17

    In nature, self-assembling and disassembling complexes of proteins and nucleic acids bound to a variety of ligands perform intricate and diverse dynamic functions. In contrast, attempts to rationally encode structure and function into synthetic amino acid and nucleic acid sequences have largely focused on engineering molecules that self-assemble into prescribed target structures, rather than on engineering transient system dynamics. To design systems that perform dynamic functions without human intervention, it is necessary to encode within the biopolymer sequences the reaction pathways by which self-assembly occurs. Nucleic acids show promise as a design medium for engineering dynamic functions, including catalytic hybridization, triggered self-assembly and molecular computation. Here, we program diverse molecular self-assembly and disassembly pathways using a 'reaction graph' abstraction to specify complementarity relationships between modular domains in a versatile DNA hairpin motif. Molecular programs are executed for a variety of dynamic functions: catalytic formation of branched junctions, autocatalytic duplex formation by a cross-catalytic circuit, nucleated dendritic growth of a binary molecular 'tree', and autonomous locomotion of a bipedal walker.

  14. Mammalian serum albumins as a chiral mediator library for bio-supramolecular photochirogenesis: optimizing enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylate.

    Science.gov (United States)

    Nishijima, Masaki; Goto, Masato; Fujikawa, Mayu; Yang, Cheng; Mori, Tadashi; Wada, Takehiko; Inoue, Yoshihisa

    2014-11-25

    A simple strategy for choosing optimal bio-supramolecular mediators from the mammalian serum albumin library is proposed for bimolecular photochirogenic reactions. Thus, the enantiodifferentiating photocyclodimerization of 2-anthracencecarboxylate (AC) was optimized in chemical and optical yields, when mediated by porcine and canine serum albumins, both of which bound two AC molecules in the first productive site to give the (P)-enantiomer of syn-head-to-tail-cyclodimer in 69% yield and 89% enantiomeric excess (ee) for the former but the (M)-enantiomer in 77% yield and 97% ee for the latter.

  15. Ultrasmall peptides self-assemble into diverse nanostructures: morphological evaluation and potential implications.

    Science.gov (United States)

    Lakshmanan, Anupama; Hauser, Charlotte A E

    2011-01-01

    In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures.

  16. Ultrasmall Peptides Self-Assemble into Diverse Nanostructures: Morphological Evaluation and Potential Implications

    Directory of Open Access Journals (Sweden)

    Charlotte A.E. Hauser

    2011-09-01

    Full Text Available In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures.

  17. Composition and method for self-assembly and mineralization of peptide-amphiphiles

    Science.gov (United States)

    Stupp, Samuel I [Chicago, IL; Beniash, Elia [Newton, MA; Hartgerink, Jeffrey D [Pearland, TX

    2012-02-28

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  18. Composition and method for self-assembly and mineralization of peptide amphiphiles

    Science.gov (United States)

    Stupp, Samuel I.; Beniash, Elia; Hartgerink, Jeffrey D.

    2009-06-30

    The present invention is directed to a composition useful for making homogeneously mineralized self assembled peptide-amphiphile nanofibers and nanofiber gels. The composition is generally a solution comprised of a positively or negatively charged peptide-amphiphile and a like signed ion from the mineral. Mixing this solution with a second solution containing a dissolved counter-ion of the mineral and/or a second oppositely charged peptide amphiphile, results in the rapid self assembly of the peptide-amphiphiles into a nanofiber gel and templated mineralization of the ions. Templated mineralization of the initially dissolved mineral cations and anions in the mixture occurs with preferential orientation of the mineral crystals along the fiber surfaces within the nanofiber gel. One advantage of the present invention is that it results in homogenous growth of the mineral throughout the nanofiber gel. Another advantage of the present invention is that the nanofiber gel formation and mineralization reactions occur in a single mixing step and under substantially neutral or physiological pH conditions. These homogeneous nanostructured composite materials are useful for medical applications especially the regeneration of damaged bone in mammals. This invention is directed to the synthesis of peptide-amphiphiles with more than one amphiphilic moment and to supramolecular compositions comprised of such multi-dimensional peptide-amphiphiles. Supramolecular compositions can be formed by self assembly of multi-dimensional peptide-amphiphiles by mixing them with a solution comprising a monovalent cation.

  19. Patterned self-assembled film guided electrodeposition

    Institute of Scientific and Technical Information of China (English)

    ZHOU; Feng; LI; Bin; XU; Tao; CHEN; Miao; HAO; Jingcheng; LI

    2004-01-01

    The paper describes the fabrication of polypyrrole (PPy) microstructures through patterned self-assembled film guided electrodeposition. Thus the patterned self-assembled monolayer is prepared by microcontact printing (μCP) and used as the template in the electrodeposition of PPy. It has been found that the self-assembled monolayer plays completely different roles on different substrates in directing the deposition of the PPy. Namely, the electrodeposition mainly occurs on the exposed area of the gold substrates patterned with dodecanethiol (DDT) and octadecanelthiol (ODT) and on the indium tin oxide (ITO) substrate patterned with octadecyltrichlorosilane (OTS), while PPy nucleates on the OTS covered area and no deposition is found on the exposed area of a semiconductor substrate (silicon). This is attributed to the cooperative effect between the substrate conductivity and the compatibility of the PPy oligomer with the covered or exposed area of the substrate surface.

  20. S-layer protein self-assembly.

    Science.gov (United States)

    Pum, Dietmar; Toca-Herrera, Jose Luis; Sleytr, Uwe B

    2013-01-25

    Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports.

  1. Self-assembled gelators for organic electronics.

    Science.gov (United States)

    Babu, Sukumaran Santhosh; Prasanthkumar, Seelam; Ajayaghosh, Ayyappanpillai

    2012-02-20

    Nature excels at engineering materials by using the principles of chemical synthesis and molecular self-assembly with the help of noncovalent forces. Learning from these phenomena, scientists have been able to create a variety of self-assembled artificial materials of different size, shapes, and properties for wide ranging applications. An area of great interest in this regard is solvent-assisted gel formation with functional organic molecules, thus leading to one-dimensional fibers. Such fibers have improved electronic properties and are potential soft materials for organic electronic devices, particularly in bulk heterojunction solar cells. Described herein is how molecular self-assembly, which was originally proposed as a simple laboratory curiosity, has helped the evolution of a variety of soft functional materials useful for advanced electronic devices such as organic field-effect transistors and organic solar cells. Highlights on some of the recent developments are discussed.

  2. Remote control of self-assembled microswimmers

    CERN Document Server

    Grosjean, Galien; Darras, Alexis; Hubert, Maxime; Lumay, Geoffroy; Vandewalle, Nicolas

    2015-01-01

    Physics governing the locomotion of microorganisms and other microsystems is dominated by viscous damping. An effective swimming strategy involves the non-reciprocal and periodic deformations of the considered body. Here, we show that a magnetocapillary-driven self-assembly, composed of three soft ferromagnetic beads, is able to swim along a liquid-air interface when powered by an external magnetic field. More importantly, we demonstrate that trajectories can be fully controlled, opening ways to explore low Reynolds number swimming. This magnetocapillary system spontaneously forms by self-assembly, allowing miniaturization and other possible applications such as cargo transport or solvent flows.

  3. Self-assembling segmented coiled tubing

    Energy Technology Data Exchange (ETDEWEB)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  4. Colloidal chirality in wormlike micellar systems exclusively originated from achiral species: Role of secondary assembly and stimulus responsivity.

    Science.gov (United States)

    Zhao, Wenrong; Hao, Jingcheng

    2016-09-15

    Colloidal chirality in wormlike micellar systems exclusively originated from achiral species and discussion of the role of secondary assembly of fiber-like aggregates in chirality generation were presented in this paper. Herein, formation of colloidal wormlike micelles for the first time incorporated chirality and redox-responsiveness into one design via noncovalent interaction. A dual-stimuli-responsive gel of wormlike micelles which were designed by employing a dual-responsive cationic surfactant (FTMA) and a strong gelator (AzoNa4) and regulated by redox reaction and host-guest inclusion is presented. Both the redox and host-guest interaction play an important role in regulating the viscosity and supramolecular chirality of gels of the wormlike micelles. The supramolecular chirality and viscosity of the wormlike micelle gels were switched reversibly by exerting chemical redox onto the ferrocenyl groups. For the amphiphile FTMA containing redox-active ferrocenyl group, reversible control of the oxidation state of ferrocenyl groups leads to the charge and hydrophobicity changes of FTMA, therefore change its self-assembly behavior. Of equal interest, β-CD successfully detached the wormlike micelles via the recognition-inclusion behavior with FTMA and invalidate the H-bond and hydrophobic interaction between FTMA and AzoH4. This designed system provides a new strategy to tune the supramolecular chirality of colloidal aggregates and explore the specific packing mode detail within the micelles or the secondary assembly of the inter-micelles. We anticipate this dual-responsive H-bond-directed chiral gel switch could propose a new strategy when researchers designing new, multi-responsive functional gel materials.

  5. Reversible Plasmonic Circular Dichroism via Hybrid Supramolecular Gelation of Achiral Gold Nanorods.

    Science.gov (United States)

    Jin, Xue; Jiang, Jian; Liu, Minghua

    2016-12-27

    The fabrication of chiroptical plasmonic nanomaterials such as chiral plasmonic gold nanorods (GNRs) has been attracting great interest. Generally, in order to realize the plasmonic circular dichroism (PCD) from achiral GNRs, it is necessary to partially replace the surface-coated cetyltrimethylammonium bromide with chiral molecules. Here, we present a supramolecular approach to generate and modulate the PCD of GNRs through the hybrid gelation of GNRs with an amphiphilic chiral dendron gelator. Upon gelation, the PCD could be produced and further regulated depending on the ratio of the dendrons to GNRs. It was revealed that the wrapping of the self-assembled nanofibers around the GNRs is crucial for generating the PCD. Furthermore, the hybrid gel underwent a thermotriggered gel-sol and sol-gel transformation, during which the PCD can disappear (solution) and reappear (gel), respectively, and such process can be repeated many times. In addition, the hybrid gel could also undergo shrinkage upon addition of a slight amount of Mg(2+) ions, during which the PCD disappeared also. Thus, through the gel formation and subsequent metal ion- or temperature-triggered phase transition, PCD can be reversibly modulated. The results not only clarified the generation mechanism of PCD from the achiral GNRs without the chiral modification on the surface but also offered a simple and efficient way to modulate the PCD.

  6. From self-assembly fundamental knowledge to nanomedicine developments.

    Science.gov (United States)

    Monduzzi, Maura; Lampis, Sandrina; Murgia, Sergio; Salis, Andrea

    2014-03-01

    This review highlights the key role of NMR techniques in demonstrating the molecular aspects of the self-assembly of surfactant molecules that nowadays constitute the basic knowledge which modern nanoscience relies on. The aim is to provide a tutorial overview. The story of a rigorous scientific approach to understand self-assembly in surfactant systems and biological membranes starts in the early seventies when the progresses of SAXRD and NMR technological facilities allowed to demonstrate the existence of ordered soft matter, and the validity of Tanford approach concerning self-assembly at a molecular level. Particularly, NMR quadrupolar splittings, NMR chemical shift anisotropy, and NMR relaxation of dipolar and quadrupolar nuclei in micellar solutions, microemulsions, and liquid crystals proved the existence of an ordered polar-apolar interface, on the NMR time scale. NMR data, rationalized in terms of the two-step model of relaxation, allowed to quantify the dynamic aspects of the supramolecular aggregates in different soft matter systems. In addition, NMR techniques allowed to obtain important information on counterion binding as well as on size of the aggregate through molecular self-diffusion. Indeed NMR self-diffusion proved without any doubt the existence of bicontinuous microemulsions and bicontinuous cubic liquid crystals, suggested by pioneering and brilliant interpretation of SAXRD investigations. Moreover, NMR self-diffusion played a fundamental role in the understanding of microemulsion and emulsion nanostructures, phase transitions in phase diagrams, and particularly percolation phenomena in microemulsions. Since the nineties, globalization of the knowledge along with many other technical facilities such as electron microscopy, particularly cryo-EM, produced huge progresses in surfactant and colloid science. Actually we refer to nanoscience: bottom up/top down strategies allow to build nanodevices with applications spanning from ICT to food

  7. Basic building units, self-assembly and crystallization in the formation of complex inorganic open architectures

    Indian Academy of Sciences (India)

    C N R Rao

    2001-10-01

    Careful investigations of open-framework metal phosphates reveal that the formation of these complex architectures is likely to involve a process wherein one-dimensional ladders or chains, and possibly zero-dimens ional monomers, transform to higher dimensional structures. The one-dimensional ladder appears to be the primary building unit of these structures. At one stage of the building-up process, spontaneous self-assembly of a low-dimensional structure such as the ladder seems to occur, followed by crys tallization of a two- or three-dimensional structure. Accordingly, many of the higher dimensional structures retain the structural features of the 1D structure, indicating the occurrence of self-assembly. These findings mark the beginnings of our understan ding of complex supramolecular inorganic materials.

  8. Unfolding a molecular trefoil derived from a zwitterionic metallopeptide to form self-assembled nanostructures

    KAUST Repository

    Zhang, Ye

    2015-02-19

    While used extensively by nature to control the geometry of protein structures, and dynamics of proteins, such as self-organization, hydration forces and ionic interactions received less attention for controlling the behaviour of small molecules. Here we describe the synthesis and characterization of a novel zwitterionic metallopeptide consisting of a cationic core and three distal anionic groups linked by self-assembling peptide motifs. 2D NMR spectra, total correlated spectroscopy and nuclear Overhauser effect spectroscopy, show that the molecule exhibits a three-fold rotational symmetry and adopts a folded conformation in dimethyl sulfoxide due to Coulombic forces. When hydrated in water, the molecule unfolds to act as a self-assembling building block of supramolecular nanostructures. By combining ionic interactions with the unique geometry from metal complex and hydrophobic interactions from simple peptides, we demonstrate a new and effective way to design molecules for smart materials through mimicking a sophisticated biofunctional system using a conformational switch.

  9. Modulating charge transfer through cyclic D,L-alpha-peptide self-assembly.

    Science.gov (United States)

    Horne, W Seth; Ashkenasy, Nurit; Ghadiri, M Reza

    2005-02-04

    We describe a concise, solid support-based synthetic method for the preparation of cyclic d,l-alpha-peptides bearing 1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI) side chains. Studies of the structural and photoluminescence properties of these molecules in solution show that the hydrogen bond-directed self-assembly of the cyclic d,l-alpha-peptide backbone promotes intermolecular NDI excimer formation. The efficiency of NDI charge transfer in the resulting supramolecular assemblies is shown to depend on the length of the linker between the NDI and the peptide backbone, the distal NDI substituent, and the number of NDIs incorporated in a given structure. The design rationale and synthetic strategies described here should provide a basic blueprint for a series of self-assembling cyclic d,l-alpha-peptide nanotubes with interesting optical and electronic properties.

  10. Modulating Charge Transfer Through Cyclic D,L α-Peptide Self-Assembly

    Science.gov (United States)

    Horne, W. Seth; Ashkenasy, Nurit; Ghadiri, M. Reza

    2007-01-01

    We describe a concise solid support-based synthetic method for the preparation of cyclic D,L α-peptides bearing 1,4,5,8-naphthalenetetracarboxylic diimide (NDI) side chains. Studies of the structural and photoluminescence properties of these molecules in solution show that the hydrogen bond directed self-assembly of the cyclic D,L α-peptide backbone promotes intermolecular NDI excimer formation. The efficiency of NDI charge transfer in the resulting supramolecular assemblies is shown to depend on the length of the linker between the NDI and the peptide backbone, the distal NDI substituent, and the number of NDIs incorporated in a given structure. The design rationale and synthetic strategies described here should provide a basic blueprint for a series of self-assembling cyclic D,L α-peptide nanotubes with interesting optical and electronic properties. PMID:15624124

  11. [INVITED] Self-assembled optical metamaterials

    Science.gov (United States)

    Baron, Alexandre; Aradian, Ashod; Ponsinet, Virginie; Barois, Philippe

    2016-08-01

    Self-assembled metamaterials constitute a promising platform to achieving bulk and homogenous optical materials that exhibit unusual effective medium properties. For many years now, the research community has contemplated lithographically fabricated metasurfaces, with extraordinary optical features. However, achieving large volumes at low cost is still a challenge by top-down fabrication. Bottom-up fabrication, that relies both on nanochemistry and self-assembly, is capable of building such materials while greatly reducing the energy footprint in the formulation of the metamaterial. Self-assembled metamaterials have shown that they are capable of reaching unprecedented values of bulkiness and homogeneity figures of merit. This feat is achieved by synthesizing plasmonic nanoresonators (meta-atoms in the sense of artificial polarizable units) and assembling them into a fully three-dimensional matrix through a variety of methods. Furthermore it has been shown that a wide range of material parameters can be tailored by controlling the geometry and composition of the meta-atoms as well as the volume fraction of the nano-objects in the metamaterial. Here we conduct a non-comprehensive review of some of the recent trends in self-assembled optical metamaterials and illustrate these trends with our recent work.

  12. DNA addition using linear self-assembly

    Institute of Scientific and Technical Information of China (English)

    ZHAO Jian; QIAN LuLu; LIU Qiang; ZHANG ZhiZhou; HE Lin

    2007-01-01

    This paper presents a DNA algorithm which adds two nonnegative binary integers using self-assembly in constant steps. The approach has the benefit of greater experimental simplicity when compared with previous DNA addition algorithms. For the addition of two binary n-bit integers, O(n) is different from DNA strands and only O(1) biochemical experimental procedures are required.

  13. Stabilization of Self-Assembled Alumina Mesophases

    NARCIS (Netherlands)

    Perez, Lidia Lopez; Perdriau, Sebastien; ten Brink, Gert; Kooi, Bart J.; Heeres, Hero Jan; Melian-Cabrera, Ignacio

    2013-01-01

    An efficient route to stabilize alumina mesophases derived from evaporation-induced self-assembly is reported after investigating various aspects in-depth: influence of the solvent (EtOH, s-BuOH, and t-BuOH) on the textural and structural properties of the mesophases based on aluminum tri-sec-butoxi

  14. Fluorescent Self-Assembled Polyphenylene Dendrimer Nanofibers

    NARCIS (Netherlands)

    Liu, Daojun; Feyter, Steven De; Cotlet, Mircea; Wiesler, Uwe-Martin; Weil, Tanja; Herrmann, Andreas; Müllen, Klaus; Schryver, Frans C. De

    2003-01-01

    A second-generation polyphenylene dendrimer 1 self-assembles into nanofibers on various substrates such as HOPG, silicon, glass, and mica from different solvents. The investigation with noncontact atomic force microscopy (NCAFM) and scanning electron microscopy (SEM) shows that the morphology of the

  15. Nanopropulsion by biocatalytic self-assembly.

    Science.gov (United States)

    Leckie, Joy; Hope, Alexander; Hughes, Meghan; Debnath, Sisir; Fleming, Scott; Wark, Alastair W; Ulijn, Rein V; Haw, Mark D

    2014-09-23

    A number of organisms and organelles are capable of self-propulsion at the micro- and nanoscales. Production of simple man-made mimics of biological transportation systems may prove relevant to achieving movement in artificial cells and nano/micronscale robotics that may be of biological and nanotechnological importance. We demonstrate the propulsion of particles based on catalytically controlled molecular self-assembly and fiber formation at the particle surface. Specifically, phosphatase enzymes (acting as the engine) are conjugated to a quantum dot (the vehicle), and are subsequently exposed to micellar aggregates (fuel) that upon biocatalytic dephosphorylation undergo fibrillar self-assembly, which in turn causes propulsion. The motion of individual enzyme/quantum dot conjugates is followed directly using fluorescence microscopy. While overall movement remains random, the enzyme-conjugates exhibit significantly faster transport in the presence of the fiber forming system, compared to controls without fuel, a non-self-assembling substrate, or a substrate which assembles into spherical, rather than fibrous structures upon enzymatic dephosphorylation. When increasing the concentration of the fiber-forming fuel, the speed of the conjugates increases compared to non-self-assembling substrate, although directionality remains random.

  16. Self-assembly micro optical filter

    Science.gov (United States)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Optical communication and sensor industry face critical challenges in manufacturing for system integration. Due to the assembly complexity and integration platform variety, micro optical components require costly alignment and assembly procedures, in which many required manual efforts. Consequently, self-assembly device architectures have become a great interest and could provide major advantages over the conventional optical devices. In this paper, we discussed a self-assembly integration platform for micro optical components. To demonstrate the adaptability and flexibility of the proposed optical device architectures, we chose a commercially available MEMS fabrication foundry service - MUMPs (Multi-User MEMS Process). In this work, polysilicon layers of MUMPS are used as the 3-D structural material for construction of micro component framework and actuators. However, because the polysilicon has high absorption in the visible and near infrared wavelength ranges, it is not suitable for optical interaction. To demonstrate the required optical performance, hybrid integration of materials was proposed and implemented. Organic compound materials were applied on the silicon-based framework to form the required optical interfaces. Organic compounds provide good optical transparency, flexibility to form filters or lens and inexpensive manufacturing procedures. In this paper, we have demonstrated a micro optical filter integrated with self-assembly structures. We will discuss the self-assembly mechanism, optical filter designs, fabrication issues and results.

  17. Self-assembled nanogaps for molecular electronics

    DEFF Research Database (Denmark)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during se...

  18. Self-assembled nanolaminate coatings (SV)

    Energy Technology Data Exchange (ETDEWEB)

    Fan, H.

    2012-03-01

    Sandia National Laboratories (Sandia) and Lockheed Martin Aeronautics (LM Aero) are collaborating to develop affordable, self-assembled, nanocomposite coatings and associated fabrication processes that will be tailored to Lockheed Martin product requirements. The purpose of this project is to develop a family of self-assembled coatings with properties tailored to specific performance requirements, such as antireflective (AR) optics, using Sandia-developed self-assembled techniques. The project met its objectives by development of a simple and economic self-assembly processes to fabricate multifunctional coatings. Specifically, materials, functionalization methods, and associated coating processes for single layer and multiple layers coatings have been developed to accomplish high reflective coatings, hydrophobic coatings, and anti-reflective coatings. Associated modeling and simulations have been developed to guide the coating designs for optimum optical performance. The accomplishments result in significant advantages of reduced costs, increased manufacturing freedom/producibility, improved logistics, and the incorporation of new technology solutions not possible with conventional technologies. These self-assembled coatings with tailored properties will significantly address LMC's needs and give LMC a significant competitive lead in new engineered materials. This work complements SNL's LDRD and BES programs aimed at developing multifunctional nanomaterials for microelectronics and optics as well as structure/property investigations of self-assembled nanomaterials. In addition, this project will provide SNL with new opportunities to develop and apply self-assembled nanocomposite optical coatings for use in the wavelength ranges of 3-5 and 8-12 micrometers, ranges of vital importance to military-based sensors and weapons. The SANC technologies will be applied to multiple programs within the LM Company including the F-35, F-22, ADP (Future Strike Bomber

  19. Self-assembling bisphosphonates into nanofibers to enhance their inhibitory capacity on bone resorption

    Science.gov (United States)

    Tang, Anming; Qian, Yu; Liu, Shuang; Wang, Weijuan; Xu, Bing; Qin, An; Liang, Gaolin

    2016-05-01

    Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently.Osteoporosis (OP) is an important aging-related disease and the effective prevention/treatment of this disease remains challenging. Considering the acidic microenvironment of bone resorption lacunae, herein, we rationally designed two pamidronate (Pami)-derivative and alendronate (Alen)-derivative hydrogelators Pami-D and Alen-D which self-assemble into nanofibers to form supramolecular hydrogels under acidic conditions. Cell viability assay, osteoclastogenesis, osteoclastic gene expression, and in vitro bone resorption results indicated that both Pami-D and Alen-D have better inhibitory effects on osteoclastic formation and bone resorption than Pami and Alen, respectively. We anticipate that our new drugs Pami-D and Alen-D could ``smartly'' self-assemble and locally concentrate the drugs at bone resorption lacunae in vivo and subsequently prevent/treat osteoporosis more efficiently. Electronic supplementary information (ESI) available: Experiment methods and details; syntheses and characterization of Pami-D and Alen-D; HPLC conditions; Fig. S1-S15, Schemes S1 and S2, Tables S1 and S2

  20. Bio-inspired metal ions regulate the structure evolution of self-assembled peptide-based nanoparticles

    Science.gov (United States)

    Xu, An-Ping; Yang, Pei-Pei; Yang, Chao; Gao, Yu-Juan; Zhao, Xiao-Xiao; Luo, Qiang; Li, Xiang-Dan; Li, Li-Zhong; Wang, Lei; Wang, Hao

    2016-07-01

    We report an assembly and transformation process of a supramolecular module, BP-KLVFF-RGD (BKR) in solution and on specific living cell surfaces for imaging and treatment. The BKR self-assembled into nanoparticles, which further transformed into nanofibers in situ induced by coordination with Ca2+ ions.We report an assembly and transformation process of a supramolecular module, BP-KLVFF-RGD (BKR) in solution and on specific living cell surfaces for imaging and treatment. The BKR self-assembled into nanoparticles, which further transformed into nanofibers in situ induced by coordination with Ca2+ ions. Electronic supplementary information (ESI) available: Experimental details; Fig. S1-S9. See DOI: 10.1039/c6nr03580a

  1. Dipole-moment-driven cooperative supramolecular polymerization.

    Science.gov (United States)

    Kulkarni, Chidambar; Bejagam, Karteek K; Senanayak, Satyaprasad P; Narayan, K S; Balasubramanian, S; George, Subi J

    2015-03-25

    While the mechanism of self-assembly of π-conjugated molecules has been well studied to gain control over the structure and functionality of supramolecular polymers, the intermolecular interactions underpinning it are poorly understood. Here, we study the mechanism of self-assembly of perylene bisimide derivatives possessing dipolar carbonate groups as linkers. It was observed that the combination of carbonate linkers and cholesterol/dihydrocholesterol self-assembling moieties led to a cooperative mechanism of self-assembly. Atomistic molecular dynamics simulations of an assembly in explicit solvent strongly suggest that the dipole-dipole interaction between the carbonate groups imparts a macro-dipolar character to the assembly. This is confirmed experimentally through the observation of a significant polarization in the bulk phase for molecules following a cooperative mechanism. The cooperativity is attributed to the presence of dipole-dipole interaction in the assembly. Thus, anisotropic long-range intermolecular interactions such as dipole-dipole interaction can serve as a way to obtain cooperative self-assembly and aid in rationalizing and predicting the mechanisms in various synthetic supramolecular polymers.

  2. Advances in switchable supramolecular nanoassemblies.

    Science.gov (United States)

    Fenske, Tassilo; Korth, Hans-Gert; Mohr, Andreas; Schmuck, Carsten

    2012-01-16

    Supramolecular nanoassemblies are gaining increasing importance as promising new materials with considerable potential for novel and promising applications. Within supramolecular nanoassemblies the connectivity of the monomeric units is based on reversible noncovalent interactions, like van der Waals interactions, hydrogen bonding, or ionic interactions. As the strength of these interactions depends on the molecular surrounding, the formation of nanoassemblies in principle can be controlled externally by changing the environment and/or the molecular shape of the underlying monomer. This way it is not only possible to switch the self-assembly on or off, but also to change between different aggregation states. In this minireview we present some recent selected approaches to supramolecular stimuli-responsive nanoassemblies.

  3. Supramolecular Layer-by-Layer Assembly: Alternating Adsorptions of Guest- and Host-Functionalized Molecules and Particles Using Multivalent Supramolecular Interactions

    NARCIS (Netherlands)

    Crespo-Biel, Olga; Dordi, Barbara; Reinhoudt, David N.; Huskens, Jurriaan

    2005-01-01

    The stepwise construction of a novel kind of self-assembled organic/inorganic multilayers based on multivalent supramolecular interactions between guest-functionalized dendrimers and host-modified gold nanoparticles has been developed, yielding supramolecular layer-by-layer assembly. The deposition

  4. Self-assembly of ssDNA-amphiphiles into micelles, nanotapes and nanotubes

    Science.gov (United States)

    Pearce, Timothy R.

    The field of DNA nanotechnology utilizes DNA as a construction material to create functional supramolecular and multi-dimensional structures like two-dimensional periodic lattices and three-dimensional polyhedrons with order on the nanometer scale for many nanotechnology applications including molecular templating, nanosensors, and drug delivery. Single-stranded DNA (ssDNA) is often used to create these nanostructures as the DNA bases provide an intrinsic molecular code that can be exploited to allow for the programmed assembly of structures based upon Watson-Crick base-pairing. However, engineering these complex structures from biopolymers alone requires careful design to ensure that the intrinsic forces responsible for organizing the materials can produce the desired structures. Additional control over supramolecular assembly can be achieved by chemically modifying the ssDNA with hydrophobic moieties to create amphiphilic molecules, which adds the hydrophobic interaction to the list of contributing forces that drive the self-assembly process. We first explored the self-assembly behavior of a set of ssDNA aptamer-amphiphiles composed of the same hydrophobic tail and hydrophilic ssDNA aptamer headgroup but with different spacer molecules linking these groups together. Through the use of cryo-transmission electron microscopy (cryo-TEM), small angle x-ray scattering (SAXS), and circular dichroism (CD) we show that the aptamer-amphiphiles can assemble into a variety of structures depending on the spacer used. We demonstrated, for the first time, the creation of self-assembled aptamer-amphiphile nanotape structures and show that the choice of the spacer used in the design of aptamer-amphiphiles can influence their supramolecular self-assembly as well as the secondary structure of the aptamer headgroup. We next explored the role of the ssDNA headgroup on the amphiphile self-assembly behavior by designing amphiphiles with headgroups of multiple lengths and nucleotides

  5. Silica biomineralization via the self-assembly of helical biomolecules.

    Science.gov (United States)

    Liu, Ben; Cao, Yuanyuan; Huang, Zhehao; Duan, Yingying; Che, Shunai

    2015-01-21

    The biomimetic synthesis of relevant silica materials using biological macromolecules as templates via silica biomineralization processes attract rapidly rising attention toward natural and artificial materials. Biomimetic synthesis studies are useful for improving the understanding of the formation mechanism of the hierarchical structures found in living organisms (such as diatoms and sponges) and for promoting significant developments in the biotechnology, nanotechnology and materials chemistry fields. Chirality is a ubiquitous phenomenon in nature and is an inherent feature of biomolecular components in organisms. Helical biomolecules, one of the most important types of chiral macromolecules, can self-assemble into multiple liquid-crystal structures and be used as biotemplates for silica biomineralization, which renders them particularly useful for fabricating complex silica materials under ambient conditions. Over the past two decades, many new silica materials with hierarchical structures and complex morphologies have been created using helical biomolecules. In this review, the developments in this field are described and the recent progress in silica biomineralization templating using several classes of helical biomolecules, including DNA, polypeptides, cellulose and rod-like viruses is summarized. Particular focus is placed on the formation mechanism of biomolecule-silica materials (BSMs) with hierarchical structures. Finally, current research challenges and future developments are discussed in the conclusion.

  6. Magnetism: a supramolecular function

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Pellaux, R.; Schmalle, H.W. [Zurich Univ., Inst. fuer Anorganische Chemie, Zurich (Switzerland)

    1996-11-01

    The field of molecule-based magnetism has developed tremendously in the last few years. Two different extended molecular - hence supramolecular -systems are presented. The Prussian-blue analogues show some of the highest magnetic ordering temperature of any class of molecular magnets, T{sub c} = 315 K, whereas the class of transition-metal oxalate-bridged compounds exhibits a diversity of magnetic phenomena. Especially for the latter compounds, the elastic neutron scattering technique has successfully been proven to trace the magnetic structure of these supramolecular and chiral compounds. (author) 18 figs., 25 refs.

  7. Side-chain-controlled self-assembly of polystyrene-polypeptide miktoarm star copolymers

    KAUST Repository

    Junnila, Susanna

    2012-03-27

    We show how the self-assembly of miktoarm star copolymers can be controlled by modifying the side chains of their polypeptide arms, using A 2B and A 2B 2 type polymer/polypeptide hybrids (macromolecular chimeras). Initially synthesized PS 2PBLL and PS 2PBLL 2 (PS, polystyrene; PBLL, poly(ε-tert-butyloxycarbonyl-l-lysine) ) miktoarms were first deprotected to PS 2PLLHCl and PS 2PLLHCl 2 miktoarms (PLLHCl, poly(l-lysine hydrochloride)) and then complexed ionically with sodium dodecyl sulfonate (DS) to give the supramolecular complexes PS 2PLL(DS) and PS 2(PLL(DS)) 2. The solid-state self-assemblies of these six miktoarm systems were studied by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and small- and wide-angle X-ray scattering (SAXS, WAXS). The side chains of the polypeptide arms were observed to have a large effect on the solubility, polypeptide conformation, and self-assembly of the miktoarms. Three main categories were observed: (i) lamellar self-assemblies at the block copolymer length scale with packed layers of α-helices in PS 2PBLL and PS 2PBLL 2; (ii) charge-clustered polypeptide micelles with less-defined conformations in a nonordered lattice within a PS matrix in PS 2PLLHCl and PS 2PLLHCl 2; (iii) lamellar polypeptide-surfactant self-assemblies with β-sheet conformation in PS 2PLL(DS) and PS 2(PLL(DS)) 2 which dominate over the formation of block copolymer scale structures. Differences between the 3- and 4-arm systems illustrate how packing frustration between the coil-like PS arms and rigid polypeptide conformations can be relieved by the right number of arms, leading to differences in the extent of order. © 2012 American Chemical Society.

  8. Narcissistic self-sorting in self-assembled cages of rare Earth metals and rigid ligands.

    Science.gov (United States)

    Johnson, Amber M; Wiley, Calvin A; Young, Michael C; Zhang, Xing; Lyon, Yana; Julian, Ryan R; Hooley, Richard J

    2015-05-04

    Highly selective, narcissistic self-sorting can be achieved in the formation of self-assembled cages of rare earth metals with multianionic salicylhydrazone ligands. The assembly process is highly sensitive to the length of the ligand and the coordination geometry. Most surprisingly, high-fidelity sorting is possible between ligands of identical coordination angle and geometry, differing only in a single functional group on the ligand core, which is not involved in the coordination. Supramolecular effects allow discrimination between pendant functions as similar as carbonyl or methylene groups in a complex assembly process.

  9. Self-assembly of DNA-polymer complexes using template polymerization.

    Science.gov (United States)

    Trubetskoy, V S; Budker, V G; Hanson, L J; Slattum, P M; Wolff, J A; Hagstrom, J E

    1998-09-15

    The self-assembly of supramolecular complexes of nucleic acids and polymers is of relevance to several biological processes including viral and chromatin formation as well as gene therapy vector design. We now show that template polymerization facilitates condensation of DNA into particles that are <150 nm in diameter. Inclusion of a poly(ethylene glycol)-containing monomer prevents aggregation of these particles. The DNA within the particles remains biologically active and can express foreign genes in cells. The formation or breakage of covalent bonds has until now not been employed to compact DNA into artificial particles.

  10. Biocatalytic induction of supramolecular order

    Science.gov (United States)

    Hirst, Andrew R.; Roy, Sangita; Arora, Meenakshi; Das, Apurba K.; Hodson, Nigel; Murray, Paul; Marshall, Stephen; Javid, Nadeem; Sefcik, Jan; Boekhoven, Job; van Esch, Jan H.; Santabarbara, Stefano; Hunt, Neil T.; Ulijn, Rein V.

    2010-12-01

    Supramolecular gels, which demonstrate tunable functionalities, have attracted much interest in a range of areas, including healthcare, environmental protection and energy-related technologies. Preparing these materials in a reliable manner is challenging, with an increased level of kinetic defects observed at higher self-assembly rates. Here, by combining biocatalysis and molecular self-assembly, we have shown the ability to more quickly access higher-ordered structures. By simply increasing enzyme concentration, supramolecular order expressed at molecular, nano- and micro-levels is dramatically enhanced, and, importantly, the gelator concentrations remain identical. Amphiphile molecules were prepared by attaching an aromatic moiety to a dipeptide backbone capped with a methyl ester. Their self-assembly was induced by an enzyme that hydrolysed the ester. Different enzyme concentrations altered the catalytic activity and size of the enzyme clusters, affecting their mobility. This allowed structurally diverse materials that represent local minima in the free energy landscape to be accessed based on a single gelator structure.

  11. Design directed self-assembly of donor-acceptor polymers.

    Science.gov (United States)

    Marszalek, Tomasz; Li, Mengmeng; Pisula, Wojciech

    2016-09-21

    Donor-acceptor polymers with an alternating array of donor and acceptor moieties have gained particular attention during recent years as active components of organic electronics. By implementation of suitable subunits within the conjugated backbone, these polymers can be made either electron-deficient or -rich. Additionally, their band gap and light absorption can be precisely tuned for improved light-harvesting in solar cells. On the other hand, the polymer design can also be modified to encode the desired supramolecular self-assembly in the solid-state that is essential for an unhindered transport of charge carriers. This review focuses on three major factors playing a role in the assembly of donor-acceptor polymers on surfaces which are (1) nature, geometry and substitution position of solubilizing alkyl side chains, (2) shape of the conjugated polymer defined by the backbone curvature, and (3) molecular weight which determines the conjugation length of the polymer. These factors adjust the fine balance between attractive and repulsive forces and ensure a close polymer packing important for an efficient charge hopping between neighboring chains. On the microscopic scale, an appropriate domain formation with a low density of structural defects in the solution deposited thin film is crucial for the charge transport. The charge carrier transport through such thin films is characterized by field-effect transistors as basic electronic elements.

  12. Chirality imprinting and direct asymmetric reaction screening using a stereodynamic Brønsted/Lewis acid receptor

    Science.gov (United States)

    Bentley, Keith W.; Proano, Daysi; Wolf, Christian

    2016-08-01

    Molecular recognition, activation and dynamic self-assembly with Brønsted and Lewis acids play a central role across the chemical sciences including catalysis, crystal engineering, supramolecular architectures and drug design. Despite this general advance, the utilization of the corresponding binding motifs for fast and robust quantitative chemosensing of chiral compounds in a complicate matrix has remained challenging. Here we show that a stereodynamic probe carrying complementary boronic acid and urea units achieves this goal with hydroxy carboxylic acids. Synergistic dual-site binding and instantaneous chirality imprinting result in characteristic ultraviolet and CD readouts that allow instantaneous determination of the absolute configuration, enantiomeric excess and concentration of the target compound even in complex mixtures. The robustness and practicality of this strategy for high-throughput screening purposes is demonstrated. Comprehensive sensing of only 0.5 mg of a crude reaction mixture of an asymmetric reduction eliminates cumbersome work-up protocols and minimizes analysis time, labour and waste production.

  13. Self-assembly of functional chromophores into chiral nanomaterials

    OpenAIRE

    Oliveras González, Cristina; Hernando Campos, Jordi

    2015-01-01

    Aquesta tesi es basa en l'estudi de l'auto-assemblatge de porfirines quirals i la utilització d'aquests cromòfors en l'organització de molècules orgàniques de manera quiral. Les porfirines i els seus derivats son colorants – uns d'ells naturals - formats per quatre anells pirròlics units entre si per un enllaç metilè i les quals formen part d'una família de cromòfors cíclics. Les porfirines estan presents a la natura i juguen un paper important in diferents processos en sistemes biològics, es...

  14. Self-assembly of functional chromophores into chiral nanomaterials

    OpenAIRE

    Oliveras González, Cristina

    2015-01-01

    Aquesta tesi es basa en l’estudi de l’auto-assemblatge de porfirines quirals i la utilització d’aquests cromòfors en l’organització de molècules orgàniques de manera quiral. Les porfirines i els seus derivats son colorants – uns d’ells naturals - formats per quatre anells pirròlics units entre si per un enllaç metilè i les quals formen part d’una família de cromòfors cíclics. Les porfirines estan presents a la natura i juguen un paper important in diferents processos en sistemes biològics,...

  15. Towards negative index self-assembled metamaterials

    CERN Document Server

    Fruhnert, Martin; Lederer, Falk; Rockstuhl, Carsten

    2016-01-01

    We investigate the magnetic response of meta-atoms that can be fabricated by a bottom-up technique. Usually such meta-atoms consist of a dielectric core surrounded by a large number of solid metallic nanoparticles. In contrast to those meta-atoms considered thus far, we study here for the first time hollow metallic nanoparticles (shells). In doing so we solve one of the most pertinent problems of current self-assembled metamaterials, namely implementing meta-atoms with sufficiently large resonance strength and small absorption. Both conditions have to be met for deep sub-wavelength meta-atoms to obtain effectively homogeneous metamaterials which may be meaningfully described by negative material parameters. Eventually we show that by using these findings self-assembled negative index materials come in reach.

  16. Ternary self-assemblies in water

    DEFF Research Database (Denmark)

    Hill, Leila R.; Blackburn, Octavia A.; Jones, Michael W.

    2013-01-01

    The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α,α'-bis(E......The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α...

  17. Self-assembled nanoparticles made of fucan

    OpenAIRE

    Dantas-Santos, N.; Almeida-Lima, J.; Vidal, A. A. J.; Pereira, Paula Alexandra Cunha; Pedrosa, Sílvia Santos; Gama, F. M.; Rocha,H.A.O.

    2011-01-01

    Amphiphilic polymers can self-assemble in water due to hydrophilic and hydrophobic interactions, forming nanoparticles (NPs) with unique physicochemical characteristics and thermodynamic stability. A non toxic sulfated Fucan, extracted from Spatoglossum schroederi was chemically modified by the grafting of Hexadecylamine (C16) to the polymer hydrophilic backbone. The resulting modified material (Fucan-C16) formed nanosized particles which were characterized by 1H NMR to asse...

  18. Magnetic Films on Self-assembled Nanospheres

    Institute of Scientific and Technical Information of China (English)

    T.Ulbrich; I.Guhr; T.Schrefl; O.Hellwig; S.van; Dijken; M.Albrecht

    2007-01-01

    1 Results Nanoparticle media using arrays of monodisperse nanoparticles with high magneticanisotropy are assumed to be the ideal future magnetic recording media. However,key requirements like control of the magnetic anisotropy orientation along with magnetic domain isolation have not been achieved so far. Here, we report on a combination of a two-dimensional topographic pattern formed of self-assembled nanoparticles with sizes as small as 20 nm and magnetic multilayer film deposition[1]. The so formed n...

  19. Templated Self Assemble of Nano-Structures

    Energy Technology Data Exchange (ETDEWEB)

    Suo, Zhigang [Harvard University

    2013-04-29

    This project will identify and model mechanisms that template the self-assembly of nanostructures. We focus on a class of systems involving a two-phase monolayer of molecules adsorbed on a solid surface. At a suitably elevated temperature, the molecules diffuse on the surface to reduce the combined free energy of mixing, phase boundary, elastic field, and electrostatic field. With no template, the phases may form a pattern of stripes or disks. The feature size is on the order of 1-100 nm, selected to compromise the phase boundary energy and the long-range elastic or electrostatic interaction. Both experimental observations and our theoretical simulations have shown that the pattern resembles a periodic lattice, but has abundant imperfections. To form a perfect periodic pattern, or a designed aperiodic pattern, one must introduce a template to guide the assembly. For example, a coarse-scale pattern, lithographically defined on the substrate, will guide the assembly of the nanoscale pattern. As another example, if the molecules on the substrate surface carry strong electric dipoles, a charged object, placed in the space above the monolayer, will guide the assembly of the molecular dipoles. In particular, the charged object can be a mask with a designed nanoscale topographic pattern. A serial process (e.g., e-beam lithography) is necessary to make the mask, but the pattern transfer to the molecules on the substrate is a parallel process. The technique is potentially a high throughput, low cost process to pattern a monolayer. The monolayer pattern itself may serve as a template to fabricate a functional structure. This project will model fundamental aspects of these processes, including thermodynamics and kinetics of self-assembly, templated self-assembly, and self-assembly on unconventional substrates. It is envisioned that the theory will not only explain the available experimental observations, but also motivate new experiments.

  20. Engineered Self-Assembly of Plasmonic Nanomaterials

    Science.gov (United States)

    Tao, Andrea

    2013-03-01

    A critical need in nanotechnology is the development of new tools and methods to organize, connect, and integrate solid-state nanocomponents. Self-assembly - where components spontaneously organize themselves - can be carried out on a massively parallel scale to construct large-scale architectures using solid-state nanocrystal building blocks. I will present our recent work on the synthesis and self-assembly of nanocrystals for plasmonics, where light is propagated, manipulated, and confined by solid-state components that are smaller than the wavelength of light itself. We show the organization of polymer-grafted metal nanocrystals into hierarchical nanojunction arrays that possess intense ``hot spots'' due to electromagnetic field localization. We also show that doped semiconductor nanocrystals can serve as a new class of plasmonic building blocks, where shape and carrier density can be actively tuned to engineer plasmon resonances. These examples demonstrate that nanocrystals possess unique electromagnetic properties that rival top-down structures, and the potential of self-assembly for fabricating designer plasmonic materials.

  1. Self-assembly of Artificial Actin Filaments

    Science.gov (United States)

    Grosenick, Christopher; Cheng, Shengfeng

    Actin Filaments are long, double-helical biopolymers that make up the cytoskeleton along with microtubules and intermediate filaments. In order to further understand the self-assembly process of these biopolymers, a model to recreate actin filament geometry was developed. A monomer in the shape of a bent rod with vertical and lateral binding sites was designed to assemble into single or double helices. With Molecular Dynamics simulations, a variety of phases were observed to form by varying the strength of the binding sites. Ignoring lateral binding sites, we have found a narrow range of binding strengths that lead to long single helices via various growth pathways. When lateral binding strength is introduced, double helices begin to form. These double helices self-assemble into substantially more stable structures than their single helix counterparts. We have found double helices to form long filaments at about half the vertical binding strength of single helices. Surprisingly, we have found that triple helices occasionally form, indicating the importance of structural regulation in the self-assembly of biopolymers.

  2. Self-assembly of knots and links

    Science.gov (United States)

    Orlandini, Enzo; Polles, Guido; Marenduzzo, Davide; Micheletti, Cristian

    2017-03-01

    Guiding the self-assembly of identical building blocks towards complex three-dimensional structures with a set of desired properties is a major goal in material science, chemistry and physics. A particularly challenging problem, especially explored in synthetic chemistry, is that of self-assembling closed structures with a target topology starting by simple geometrical templates. Here we overview and revisit recent advancements, based on stochastic simulations, where the geometry of rigid helical templates with functionalised sticky ends has been designed for self-assembling efficiently and reproducibly into a wide range of three-dimensional closed structures. Notably, these include non trivial topologies of links and knots, including the 819 knot that we had predicted to be highly encodable and that has only recently been obtained experimentally. By appropriately tuning the parameters that define the template shape, we show that, for fixed concentration of templates, the assembly process can be directed towards the formation of specific knotted and linked structures such as the trefoils, pentafoil knots, Hopf and Solomon links. More exotic and unexpected knots and links are also found. Our results should be relevant to the design of new protocols that can both increase and broaden the population of synthetise molecular knots and catenanes.

  3. Self-assembly of single-walled carbon nanotubes into multiwalled carbon nanotubes in water: molecular dynamics simulations.

    Science.gov (United States)

    Zou, Jian; Ji, Baohua; Feng, Xi-Qiao; Gao, Huajian

    2006-03-01

    We report discoveries from a series of molecular dynamics simulations that single-walled carbon nanotubes, with different diameters, lengths, and chiralities, can coaxially self-assemble into multiwalled carbon nanotubes in water via spontaneous insertion of smaller tubes into larger ones. The assembly process is tube-size-dependent, and the driving force is primarily the intertube van der Waals interactions. The simulations also suggest that a multiwalled carbon nanotube may be separated into single-walled carbon nanotubes under appropriate solvent conditions. This study suggests possible bottom-up self-assembly routes for the fabrication of novel nanodevices and systems.

  4. Differential self-assembly behaviors of cyclic and linear peptides.

    Science.gov (United States)

    Choi, Sung-ju; Jeong, Woo-jin; Kang, Seong-Kyun; Lee, Myongsoo; Kim, Eunhye; Ryu, Du Yeol; Lim, Yong-beom

    2012-07-01

    Here we ask the fundamental questions about the effect of peptide topology on self-assembly. The study revealed that the self-assembling behaviors of cyclic and linear peptides are significantly different in several respects, in addition to sharing several similarities. Their clear differences included the morphological dissimilarities of the self-assembled nanostructures and their thermal stability. The similarities include their analogous critical aggregation concentration values and cytotoxicity profiles, which are in fact closely related. We believe that understanding topology-dependent self-assembly behavior of peptides is important for developing tailor-made self-assembled peptide nanostructures.

  5. Potential control of DNA self-assembly on gold electrode

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The self-assembly monolayer (SAM) was prepared with 2-aminoethanethiol (AET) on the gold electrode.A new approach based on potential was first used to control DNA self-assembly covalently onto the SAM with the activation of 1-ethyl-3(3-dimethylaminopropyl)-carbodiimide (EDC) and N-hydroxysulfosuccinimide (NHS). The influence of potential on DNA self-assembly was investigated by means of cyclic voltammetry (CV), AC impedance, Auger electron spectrometry (AES) and atomic force microscopy (AFM). The result proves that controlled potential can affect the course of DNA self-assembly. More negative potential can restrain the DNA self-assembly, while more positive potential can accelerate the DNA self-assembly, which is of great significance for the control of DNA self-assembly and will find wide application in the field of DNA-based devices.

  6. Molecular chirality at surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, Karl-Heinz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Organic Chemistry Institute, University Zurich, 8057 Zuerich (Switzerland)

    2012-11-15

    With the adsorption of larger molecules being increasingly tackled by surface scientists, the aspect of chirality often plays a role. This paper gives a topical review of molecular chirality at surfaces and gives a phenomenological overview of different aspects of adsorption and self-assembly of chiral and prochiral molecules and the principles of mirror-symmetry breaking at a surface. After a brief introduction into the history of molecular chirality and the important role it played for understanding the spatial structure of molecules, definitions of chirality are presented. Topics treated here are principle ways to create single chiral adsorbates, chiral ensembles, and monolayers by achiral molecules, adsorption of intrinsically chiral molecules at achiral and chiral surfaces, long-range symmetry breaking in two-dimensional (2D) crystals due to additional chiral bias, chiral restructuring of solid surfaces under the influence of chiral molecules, switching the handedness of adsorbates, and chirality at the liquid/air interface. An outlook onto further potential research directions and recommendations for further reading, including nonsurface-related sources of chiral topics completes this paper. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  7. Formation of bacterial pilus-like nanofibres by designed minimalistic self-assembling peptides

    Science.gov (United States)

    Guterman, Tom; Kornreich, Micha; Stern, Avigail; Adler-Abramovich, Lihi; Porath, Danny; Beck, Roy; Shimon, Linda J. W.; Gazit, Ehud

    2016-11-01

    Mimicking the multifunctional bacterial type IV pili (T4Ps) nanofibres provides an important avenue towards the development of new functional nanostructured biomaterials. Yet, the development of T4Ps-based applications is limited by the inability to form these nanofibres in vitro from their pilin monomers. Here, to overcome this limitation, we followed a reductionist approach and designed a self-assembling pilin-based 20-mer peptide, derived from the presumably bioelectronic pilin of Geobacter sulfurreducens. The designed 20-mer, which spans sequences from both the polymerization domain and the functionality region of the pilin, self-assembled into ordered nanofibres. Investigation of the 20-mer revealed that shorter sequences which correspond to the polymerization domain form a supramolecular β-sheet, contrary to their helical configuration in the native T4P core, due to alternative molecular recognition. In contrast, the sequence derived from the functionality region maintains a native-like, helical conformation. This study presents a new family of self-assembling peptides which form T4P-like nanostructures.

  8. Chemical microenvironment mediated formation of organicnanostructures from self-assembly of melamine and barbituric acid derivatives

    Institute of Scientific and Technical Information of China (English)

    ZHUANG; Jiaqi; (庄家骐); WANG; Gang; (王刚); Lü; Nan; (吕男); YANG; Wensheng; (杨文胜); JIANG; Yueshun; (姜月顺); LI; Tiejin; (李铁津)

    2002-01-01

    The recent progresses on constructing organic nanostructures from the self-assembly of melamine and barbituric acid derivatives are reviewed. By mediating the chemical microenvironment during the self-assembly, the information contained in the molecular components can be expressed at different levels, thus resulting in the formation of different organic nanostructures. When the assembly is carried out in anhydrous chloroform, a kind of asymmetric layered structure with a d value of 4.1 nm is obtained. When a little amount of polar solvent such as alcohol is contained in the chloroform, organic nanotubes with diameter of 6 nm and length of several hundreds of nanometers are observed. After being treated by appropriate polar solvents, the nanotubes are induced into supercoils with diameter of about 300 nm and length of several tens of microns. The sensitivity of the self-assembly process origins from the weak noncovalent intermolecular interactions between the molecular components. The enthalpy change of such interactions is pretty small, so slight change of the molecular structure or microenvironment could affect the primary equilibrium, resulting in the rearrangement and transformation of the supramolecular structure.

  9. Cluster perturbation theory for the self-assembly of associating fluids into complex structures.

    Science.gov (United States)

    Marshall, Bennett D

    2014-12-01

    Wertheim's two-density thermodynamic perturbation theory (TPT) has proven to be an indispensable statistical mechanical tool in the description of associating fluids with a single association site. TPT was developed to enforce the monovalence of the hydrogen bond and only recently has been extended to account for divalent association sites. It has been shown through experiment and molecular simulation that certain one-site associating fluids can self-assemble into complex extended supramolecular structures as a result of multiple bonding of association sites. In this paper we reorganize TPT into a form that is more easily applied to complex associated structures. The derived theory is general to all possible self-assemble structures. We obtain the free energy and bonding fractions in a general way in terms of single-cluster partition functions and averages. The new formalism removes any reference to graph theory allowing for the conceptually straightforward application of the two-density formalism to complex self-assembled structures.

  10. Monte Carlo study of the self-assembly of achiral bolaform amphiphiles into helical nanofibers.

    Science.gov (United States)

    Wahab, M; Schiller, P; Schmidt, R; Mögel, H-J

    2010-03-02

    It is shown by coarse-grained off-lattice Monte Carlo simulations that a geometrically induced frustration of the parallel arrangement of rigid achiral bolaform amphiphiles can cause chirality in self-assembled nanostructures. The amphiphilic molecules are represented as rigid linear chains of 8 equally sized hydrophobic spheres (tail) and a hydrophilic sphere (head) at each end. The hydrophilic and hydrophobic spheres differ in size. A very simple interaction scheme consisting of only hard-core repulsion between all spheres and square-well attraction between hydrophobic spheres is sufficient for self-assembly into helical fibers for molecules with head/tail diameter ratios ranging from 1.3 to 1.8.

  11. Block copolymer self-assembly-directed synthesis of mesoporous gyroidal superconductors.

    Science.gov (United States)

    Robbins, Spencer W; Beaucage, Peter A; Sai, Hiroaki; Tan, Kwan Wee; Werner, Jörg G; Sethna, James P; DiSalvo, Francis J; Gruner, Sol M; Van Dover, Robert B; Wiesner, Ulrich

    2016-01-01

    Superconductors with periodically ordered mesoporous structures are expected to have properties very different from those of their bulk counterparts. Systematic studies of such phenomena to date are sparse, however, because of a lack of versatile synthetic approaches to such materials. We demonstrate the formation of three-dimensionally continuous gyroidal mesoporous niobium nitride (NbN) superconductors from chiral ABC triblock terpolymer self-assembly-directed sol-gel-derived niobium oxide with subsequent thermal processing in air and ammonia gas. Superconducting materials exhibit a critical temperature (T c) of about 7 to 8 K, a flux exclusion of about 5% compared to a dense NbN solid, and an estimated critical current density (J c) of 440 A cm(-2) at 100 Oe and 2.5 K. We expect block copolymer self-assembly-directed mesoporous superconductors to provide interesting subjects for mesostructure-superconductivity correlation studies.

  12. Self-repairing complex helical columns generated via kinetically controlled self-assembly of dendronized perylene bisimides.

    Science.gov (United States)

    Percec, Virgil; Hudson, Steven D; Peterca, Mihai; Leowanawat, Pawaret; Aqad, Emad; Graf, Robert; Spiess, Hans W; Zeng, Xiangbing; Ungar, Goran; Heiney, Paul A

    2011-11-16

    The dendronized perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI), (3,4,5)12G1-3-PBI, was recently reported to self-assemble in complex helical columns containing tetramers of PBI as basic repeat unit. These tetramers contain a pair of two molecules arranged side-by-side and another pair in the next stratum of the column turned upside-down and rotated around the column axis. Intra- and intertetramer rotation angles and stacking distances are different. At high temperature, (3,4,5)12G1-3-PBI self-assembles via a thermodynamically controlled process in a 2D hexagonal columnar phase while at low temperature in a 3D orthorhombic columnar array via a kinetically controlled process. Here, we report the synthesis and structural analysis, by a combination of differential scanning calorimetry, X-ray and electron diffraction, and solid-state NMR performed at different temperatures, on the supramolecular structures generated by a library of (3,4,5)nG1-3-PBI with n = 14-4. For n = 11-8, the kinetically controlled self-assembly from low temperature changes in a thermodynamically controlled process, while the orthorhombic columnar array for n = 9 and 8 transforms from the thermodynamic product into the kinetic product. The new thermodynamic product at low temperature for n = 9, 8 is a self-repaired helical column with an intra- and intertetramer distance of 3.5 Å forming a 3D monoclinic periodic array via a kinetically controlled self-assembly process. The complex dynamic process leading to this reorganization was elucidated by solid-state NMR and X-ray diffraction. This discovery is important for the field of self-assembly and for the molecular design of supramolecular electronics and solar cell.

  13. Between peptides and bile acids: self-assembly of phenylalanine substituted cholic acids.

    Science.gov (United States)

    Travaglini, Leana; D'Annibale, Andrea; di Gregorio, Maria Chiara; Schillén, Karin; Olsson, Ulf; Sennato, Simona; Pavel, Nicolae V; Galantini, Luciano

    2013-08-01

    Biocompatible molecules that undergo self-assembly are of high importance in biological and medical applications of nanoscience. Peptides and bile acids are among the most investigated due to their ability to self-organize into many different, often stimuli-sensitive, supramolecular structures. With the aim of preparing molecules mixing the aggregation properties of bile acid and amino acid-based molecules, we report on the synthesis and self-association behavior of two diastereomers obtained by substituting a hydroxyl group of cholic acid with a l-phenylalanine residue. The obtained molecules are amphoteric, and we demonstrate that they show a pH-dependent self-assembly. Both molecules aggregate in globular micelles at high pH, whereas they form tubular superstructures under acid conditions. Unusual narrow nanotubes with outer and inner cross-section diameters of about 6 and 3 nm are formed by the derivatives. The diasteroisomer with α orientation of the substituent forms in addition a wider tubule (17 nm cross-section diameter). The ability to pack in supramolecular tubules is explained in terms of a wedge-shaped bola-form structure of the derivatives. Parallel or antiparallel face-to-face dimers are hypothesized as fundamental building blocks for the formation of the narrow and wide nanotubes, respectively.

  14. Self-Assembly of Discrete Metal Complexes in Aqueous Solution via Block Copolypeptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Timothy J. Deming

    2013-01-01

    Full Text Available The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN2]−, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K183L19 to [Au(CN2]− solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals. This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water.

  15. Molecular design driving tetraporphyrin self-assembly on graphite: a joint STM, electrochemical and computational study

    Science.gov (United States)

    El Garah, M.; Santana Bonilla, A.; Ciesielski, A.; Gualandi, A.; Mengozzi, L.; Fiorani, A.; Iurlo, M.; Marcaccio, M.; Gutierrez, R.; Rapino, S.; Calvaresi, M.; Zerbetto, F.; Cuniberti, G.; Cozzi, P. G.; Paolucci, F.; Samorì, P.

    2016-07-01

    Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to control their organization at the supramolecular level. Such a tuning is particularly important when applied to sophisticated molecules combining functional units which possess specific electronic properties, such as electron/energy transfer, in order to develop multifunctional systems. Here we have synthesized two tetraferrocene-porphyrin derivatives that by design can selectively self-assemble at the graphite/liquid interface into either face-on or edge-on monolayer-thick architectures. The former supramolecular arrangement consists of two-dimensional planar networks based on hydrogen bonding among adjacent molecules whereas the latter relies on columnar assembly generated through intermolecular van der Waals interactions. Scanning Tunneling Microscopy (STM) at the solid-liquid interface has been corroborated by cyclic voltammetry measurements and assessed by theoretical calculations to gain multiscale insight into the arrangement of the molecule with respect to the basal plane of the surface. The STM analysis allowed the visualization of these assemblies with a sub-nanometer resolution, and cyclic voltammetry measurements provided direct evidence of the interactions of porphyrin and ferrocene with the graphite surface and offered also insight into the dynamics within the face-on and edge-on assemblies. The experimental findings were supported by theoretical calculations to shed light on the electronic and other physical properties of both assemblies. The capability to engineer the functional nanopatterns through self-assembly of porphyrins containing ferrocene units is a key step toward the bottom-up construction of multifunctional molecular nanostructures and nanodevices.Tuning the intermolecular interactions among suitably designed molecules forming highly ordered self-assembled monolayers is a viable approach to

  16. Self-assembly studies of native and recombinant fibrous proteins

    Science.gov (United States)

    Wilson, Donna Lucille

    The structure of silk proteins consists of alternating amorphous (glycine-rich) and ordered crystalline regions (poly(alanine) and poly(glycine-alanine) repeats), where the organized regions are typically beta-sheet assemblies. In collagen, the basic helical repeat (glycine-proline-hydroxyproline and variants on this repeat) drives hierarchical assembly. Three polypeptide chains form left-handed poly-proline II-like helices, these three chains then self-assemble to form a right-handed triple helix. The focus of this thesis is on these proteins and defined variations thereof to reveal features of fibrous protein self-assembly. The amino acid sequences of native silk and collagen and their respective assembly environments have been systematically manipulated. Spider silk protein, based on the consensus sequence of Nephila clavipes dragline-silk, was genetically engineered to include methionines flanking the beta-sheet forming polyalanine regions. These methionines could be selectively oxidized and reduced, altering the bulkiness and charge of a methionine-based sulfoxide group to control beta-sheet formation by steric hindrance. A second version of the sterical trigger included a recognition site for Protein Kinase A allowing for the selective phosphorylation of a serine. Patterning a monolayer of precursor "director" molecules on length scales ranging from nanometer- to micrometer-length scales simplifies the interpretation of supramolecular assembly. Utilizing the atomic force microscopy (AFM)-based technique of dip-pen nanolithography, thiolated collagen and a collagen-like peptide were patterned at 30--50 nm line widths on evaporated gold surfaces. These are the largest molecules thus far positively printed on a surface at such small-length scales. The method preserved the triple helical structure and biological activity of collagen and even fostered the formation of characteristic higher-levels of structural organization. Nanopatterns were also achieved for

  17. pH-Dependent In-Cell Self-Assembly of Peptide Inhibitors Increases the Anti-Prion Activity While Decreasing the Cytotoxicity.

    Science.gov (United States)

    Waqas, Muhammad; Jeong, Woo-Jin; Lee, Young-Joo; Kim, Dae-Hwan; Ryou, Chongsuk; Lim, Yong-Beom

    2017-02-13

    The first step in the conventional approach to self-assembled biomaterials is to develop well-defined nanostructures in vitro, which is followed by disruption of the preformed nanostructures at the inside of the cell to achieve bioactivity. Here, we propose an inverse strategy to develop in-cell gain-of-function self-assembled nanostructures. In this approach, the supramolecular building blocks exist in a unimolecular/unordered state in vitro or at the outside of the cell and assemble into well-defined nanostructures after cell internalization. We used block copolypeptides of an oligoarginine and a self-assembling peptide as building blocks and investigated correlations among the nanostructural state, antiprion bioactivity, and cytotoxicity. The optimal bioactivity (i.e., the highest antiprion activity and lowest cytotoxicity) was obtained when the building blocks existed in a unimolecular/unordered state in vitro and during the cell internalization process, exerting minimal cytotoxic damage to cell membranes, and were subsequently converted into high-charge-density vesicles in the low pH endosome/lysosomes in vivo, thus, resulting in the significantly enhanced antiprion activity. In particular, the in-cell self-assembly concept presents a feasible approach to developing therapeutics against protein misfolding diseases. In general, the in-cell self-assembly provides a novel inverse methodology to supramolecular bionanomaterials.

  18. Directed Self-assembly of Colloidal Particles on a Blue Phase I Interface

    Science.gov (United States)

    Martinez-Gonzalez, Jose; Zhou, Ye; Sadati, Monirosadat; Abbott, Nicholas; de Pablo, Juan

    Blue phases are liquid states of matter with a highly ordered defect structure which confers unique properties among complex fluids. In this work, a free energy model of chiral liquid crystals is used to consider the self-assembly of colloids and nanoparticles on the interface of a Blue Phase I. It is shown that the crystalline defect structure of the blue phase produces intricate, two-dimensional hexagonal and Kagome structures among the nanoparticle arrangements, with lattice parameters that depend on the type of anchoring of the liquid crystal at the particle's surface. These parameters can be tuned via the chirality of the material, thereby offering intriguing possibilities for the creation of hierarchical materials based on the directed assembly of particles in chiral liquid crystals. This work is supported by the Department of Energy, Basic Energy Sciences, Materials Science and Engineering Division, Biomaterials Program, through DE-SC004025.

  19. Self-assembly of colloidal surfactants

    Science.gov (United States)

    Kegel, Willem

    2012-02-01

    We developed colloidal dumbbells with a rough and a smooth part, based on a method reported in Ref. [1]. Specific attraction between the smooth parts occurs upon addition of non-adsorbing polymers of appropriate size. We present the first results in terms of the assemblies that emerge in these systems. [4pt] [1] D.J. Kraft, W.S. Vlug, C.M. van Kats, A. van Blaaderen, A. Imhof and W.K. Kegel, Self-assembly of colloids with liquid protrusions, J. Am. Chem. Soc. 131, 1182, (2009)

  20. Orientation-dependent handedness and chiral design

    OpenAIRE

    Efrati, Efi; Irvine, William T. M.

    2013-01-01

    Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in ...

  1. Switching surface chemistry with supramolecular machines.

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, Timothy D.; Kelly, Michael James; Jeppesen, Jan O. (University of California, Los Angeles, CA); Bunker, Bruce Conrad; Matzke, Carolyn M.; Stoddart, J. Fraser; Huber, Dale L.; Kushmerick, James G.; Flood, Amar H. (University of California, Los Angeles, CA); Perkins, Julie (University of California, Los Angeles, CA); Cao, Jianguo (University of California, Los Angeles, CA)

    2005-07-01

    Tethered supramolecular machines represent a new class of active self-assembled monolayers in which molecular configurations can be reversibly programmed using electrochemical stimuli. We are using these machines to address the chemistry of substrate surfaces for integrated microfluidic systems. Interactions between the tethered tetracationic cyclophane host cyclobis(paraquat-p-phenylene) and dissolved {pi}-electron-rich guest molecules, such as tetrathiafulvalene, have been reversibly switched by oxidative electrochemistry. The results demonstrate that surface-bound supramolecular machines can be programmed to adsorb or release appropriately designed solution species for manipulating surface chemistry.

  2. Self-Assembly Strategies for Integrating Light Harvesting and Charge Separation in Artificial Photosynthetic Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wasielewski, Michael R. (NWU)

    2017-02-15

    In natural photosynthesis, organisms optimize solar energy conversion through organized assemblies of photofunctional chromophores and catalysts within proteins that provide specifically tailored environments for chemical reactions. As with their natural counterparts, artificial photosynthetic systems for practical solar fuels production must collect light energy, separate charge, and transport charge to catalytic sites where multielectron redox processes will occur. While encouraging progress has been made on each aspect of this complex problem, researchers have not yet developed self-ordering and self-assembling components and the tailored environments necessary to realize a fully-functional artificial system. Previously researchers have used complex, covalent molecular systems comprised of chromophores, electron donors, and electron acceptors to mimic both the light-harvesting and the charge separation functions of photosynthetic proteins. These systems allow for study of the dependencies of electron transfer rate constants on donor?acceptor distance and orientation, electronic interaction, and the free energy of the reaction. The most useful and informative systems are those in which structural constraints control both the distance and the orientation between the electron donors and acceptors. Self-assembly provides a facile means for organizing large numbers of molecules into supramolecular structures that can bridge length scales from nanometers to macroscopic dimensions. The resulting structures must provide pathways for migration of light excitation energy among antenna chromophores, and from antennas to reaction centers. They also must incorporate charge conduits, that is, molecular 'wires' that can efficiently move electrons and holes between reaction centers and catalytic sites. The central scientific challenge is to develop small, functional building blocks with a minimum number of covalent linkages, which also have the appropriate molecular

  3. Directing the self-assembly of supra-biomolecular nanotubes using entropic forces.

    Science.gov (United States)

    Ruiz, Luis; Keten, Sinan

    2014-02-14

    Peptide self-assembly, ubiquitous in biology, is one of the most promising 'bottom-up' approaches for the generation of synthetic supramolecular architectures. However, directing the self-assembly of functional peptides into predictable ordered structures most often requires precise tuning of weak intermolecular forces. Existing strategies are generally based on specific interactions between molecular mediators that require complex chemical synthesis pathways and elaborated design rules. Here we establish a theoretical framework that delineates a generic route towards directing the self-assembly of small peptides by simply using entropic forces generated by the polymer chains attached to the peptides. We demonstrate the viability of this concept for polymer-conjugated peptide nanotubes using coarse-grained molecular dynamics (CGMD) simulations combined with theoretical calculations. We show that conjugated polymer chains create an entropic penalty due to chain confinement upon assembly, and illustrate that the self-assembly process can be directed by merely varying the degree of polymer conjugation. Specifically, the entropic penalty, and consequently, the binding energy between peptides can be greatly varied by changing the length and the number of conjugated polymers. Extending this concept for peptides with different degrees of conjugation reveals a path towards controlling the stacking sequence of binary mixtures. Remarkably, we find that a large disparity in the conjugation degree of the two peptides results in a preference towards alternating mixed sequences that minimize the entropic penalty of confinement in the thermodynamic limit. Our study explains recent experiments on polymer-peptide conjugates and sets the stage for utilizing entropic forces to guide the stacking sequence of functional macrocycles in tubular assemblies.

  4. Hydrogels constructed via self-assembly of beta-hairpin molecules

    Science.gov (United States)

    Ozbas, Bulent

    There is a recent and growing interest in hydrogel materials that are formed via peptide self-assembly for tissue engineering applications. Peptide based materials are excellent candidates for diverse applications in biomedical field due to their responsive behavior and complex self-assembled structures. However, there is very limited information on the self-assembly and resultant network and mechanical properties of these types of hydrogels. The main goal of this dissertation is to investigate the self-assembly mechanism and viscoelastic properties of hydrogels that can be altered by changing solution conditions as well as the primary structure of the peptide. These hydrogels are formed via intramolecular folding and consequent self-assembly of 20 amino acid long beta-hairpin peptide molecules (Max1). The peptide molecules are locally amphiphilic with two linear strands of alternating hydrophobic valine and hydrophilic lysine amino acids connected with a Dproline-LProline turn sequence. Circular dichroism and FTIR spectroscopy show that at physiological conditions peptides are unfolded in the absence of salt. By raising the ionic strength of the solution electrostatic interactions between charged lysines are screened and the peptide arms are forced into a beta-sheet secondary structure stabilized by the turn sequence. These folded molecules intermolecularly assemble via hydrophobic collapse and hydrogen bonding into a three dimensional network. Folding and self-assembly of these molecules can also be triggered by increasing temperature and/or pH of the peptide solution. In addition, the random-coil to beta-sheet transition of the beta-hairpin peptides is pH and, with proper changes in the peptide sequence, thermally reversible. Rheological measurements demonstrate that the resultant supramolecular structure forms an elastic material, whose structure, and thus modulus, can be tuned by magnitude of the stimulus. Hydrogels recover their initial viscoelastic

  5. Self-assembly of intramolecular charge-transfer compounds into functional molecular systems.

    Science.gov (United States)

    Li, Yongjun; Liu, Taifeng; Liu, Huibiao; Tian, Mao-Zhong; Li, Yuliang

    2014-04-15

    Highly polarized compounds exhibiting intramolecular charge transfer (ICT) are used widely as nonlinear optical (NLO) materials and red emitters and in organic light emitting diodes. Low-molecular-weight donor/acceptor (D/A)-substituted ICT compounds are ideal candidates for use as the building blocks of hierarchically structured, multifunctional self-assembled supramolecular systems. This Account describes our recent studies into the development of functional molecular systems with well-defined self-assembled structures based on charge-transfer (CT) interactions. From solution (sensors) to the solid state (assembled structures), we have fully utilized intrinsic and stimulus-induced CT interactions to construct these functional molecular systems. We have designed some organic molecules capable of ICT, with diversity and tailorability, that can be used to develop novel self-assembled materials. These ICT organic molecules are based on a variety of simple structures such as perylene bisimide, benzothiadiazole, tetracyanobutadiene, fluorenone, isoxazolone, BODIPY, and their derivatives. The degree of ICT is influenced by the nature of both the bridge and the substituents. We have developed new methods to synthesize ICT compounds through the introduction of heterocycles or heteroatoms to the π-conjugated systems or through extending the conjugation of diverse aromatic systems via another aromatic ring. Combining these ICT compounds featuring different D/A units and different degrees of conjugation with phase transfer methodologies and solvent-vapor techniques, we have self-assembled various organic nanostructures, including hollow nanospheres, wires, tubes, and ribbonlike architectures, with controllable morphologies and sizes. For example, we obtained a noncentrosymmetric microfiber structure that possessed a permanent dipole along its fibers' long axis and a transition dipole perpendicular to it; the independent NLO responses of this material can be separated and

  6. Triggered self-assembly of magnetic nanoparticles

    Science.gov (United States)

    Ye, L.; Pearson, T.; Cordeau, Y.; Mefford, O. T.; Crawford, T. M.

    2016-03-01

    Colloidal magnetic nanoparticles are candidates for application in biology, medicine and nanomanufac-turing. Understanding how these particles interact collectively in fluids, especially how they assemble and aggregate under external magnetic fields, is critical for high quality, safe, and reliable deployment of these particles. Here, by applying magnetic forces that vary strongly over the same length scale as the colloidal stabilizing force and then varying this colloidal repulsion, we can trigger self-assembly of these nanoparticles into parallel line patterns on the surface of a disk drive medium. Localized within nanometers of the medium surface, this effect is strongly dependent on the ionic properties of the colloidal fluid but at a level too small to cause bulk colloidal aggregation. We use real-time optical diffraction to monitor the dynamics of self-assembly, detecting local colloidal changes with greatly enhanced sensitivity compared with conventional light scattering. Simulations predict the triggering but not the dynamics, especially at short measurement times. Beyond using spatially-varying magnetic forces to balance interactions and drive assembly in magnetic nanoparticles, future measurements leveraging the sensitivity of this approach could identify novel colloidal effects that impact real-world applications of these nanoparticles.

  7. Molecular self-assembly at solid surfaces.

    Science.gov (United States)

    Otero, Roberto; Gallego, José María; de Parga, Amadeo L Vázquez; Martín, Nazario; Miranda, Rodolfo

    2011-11-23

    Self-assembly, the process by which objects initially distributed at random arrange into well-defined patterns exclusively due to their local mutual interactions without external intervention, is generally accepted to be the most promising method for large-scale fabrication of functional nanostructures. In particular, the ordering of molecular building-blocks deposited at solid surfaces is relevant for the performance of many organic electronic and optoelectronic devices, such as organic field-effect transistors (OFETs), organic light-emitting diodes (OLEDs) or photovoltaic solar cells. However, the fundamental knowledge on the nature and strength of the intermolecular and molecule-substrate interactions that govern the ordering of molecular adsorbates is, in many cases, rather scarce. In most cases, the structure and morphology of the organic-metal interface is not known and it is just assumed to be the same as in the bulk, thereby implicitly neglecting the role of the surface on the assembly. However, this approximation is usually not correct, and the evidence gathered over the last decades points towards an active role of the surface in the assembly, leading to self-assembled structures that only in a few occasions can be understood by considering just intermolecular interactions in solid or gas phases. In this work we review several examples from our recent research demonstrating the apparently endless variety of ways in which the surface might affect the assembly of organic adsorbates.

  8. The determinism and boundedness of self-assembling structures

    CERN Document Server

    Tesoro, S

    2016-01-01

    Self-assembly processes are widespread in nature, and lie at the heart of many biological and physical phenomena. The characteristics of self-assembly building blocks determine the structures that they form. Among the most important of these properties are whether the self-assembly is deterministic or nondeterministic, and whether it is bound or unbound. The former tells us whether the same set of building blocks always generates the same structure, and the latter whether it grows indefinitely. These properties are highly relevant in the context of protein structures, as the difference between deterministic protein self-assembly and nondeterministic protein aggregation is central to a number of diseases. Here we introduce a graph-based approach that can determine, with a few restrictions, whether a set of self-assembly building blocks is deterministic or nondeterministic, and whether it is bound or unbound. We apply this methodology to a previously studied lattice self-assembly model and discuss generalisatio...

  9. Design and assembly of supramolecular dual-modality nanoprobes

    Science.gov (United States)

    Liu, Shuang; Zhang, Pengcheng; Ray Banerjee, Sangeeta; Xu, Jiadi; Pomper, Martin G.; Cui, Honggang

    2015-05-01

    We report the design and synthesis of self-assembling dual-modality molecular probes containing both a fluorophore for optical imaging and a metal ion chelator for imaging with MRI or radionuclide methods. These molecular probes can spontaneously associate into spherical nanoparticles under physiological conditions. We demonstrate the use of these supramolecular nanoprobes for live-cell optical imaging, as well as their potential use as MRI contrast agents after complexation with gadolinium. Our results suggest that self-assembly into supramolecular nanoprobes presents an effective means to enhance and tune the relaxivities of molecular probes.We report the design and synthesis of self-assembling dual-modality molecular probes containing both a fluorophore for optical imaging and a metal ion chelator for imaging with MRI or radionuclide methods. These molecular probes can spontaneously associate into spherical nanoparticles under physiological conditions. We demonstrate the use of these supramolecular nanoprobes for live-cell optical imaging, as well as their potential use as MRI contrast agents after complexation with gadolinium. Our results suggest that self-assembly into supramolecular nanoprobes presents an effective means to enhance and tune the relaxivities of molecular probes. Electronic supplementary information (ESI) available: Experimental methods, materials, synthesis schemes, sample characterization, fluorescence measurements, cellular uptake and MRI experimental details. See DOI: 10.1039/c5nr01518a

  10. Molecular Component Structures Mediated Formation of Self-assemblies

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Molecular recognition directed self-assemblies from complementary molecular components, melamine and barbituric acid derivatives were studied by means of NMR, fluorescence, and TEM. It was found that both the process of the self-assembly and the morphologies of the result ed self-assemblies could be mediated by modifying the structures of the molecular components used. The effect of the structures of the molecular components on the formation of the self-as semblies was discussed in terms of intermolecular interactions.

  11. Enhanced Conversion Efficiencies in Dye-Sensitized Solar Cells Achieved through Self-Assembled Platinum(II) Metallacages

    Science.gov (United States)

    He, Zuoli; Hou, Zhiqiang; Xing, Yonglei; Liu, Xiaobin; Yin, Xingtian; Que, Meidan; Shao, Jinyou; Que, Wenxiu; Stang, Peter J.

    2016-07-01

    Two-component self-assembly supramolecular coordination complexes with particular photo-physical property, wherein unique donors are combined with a single metal acceptor, can be utilized for many applications including in photo-devices. In this communication, we described the synthesis and characterization of two-component self-assembly supramolecular coordination complexes (SCCs) bearing triazine and porphyrin faces with promising light-harvesting properties. These complexes were obtained from the self-assembly of a 90° Pt(II) acceptor with 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPyT) or 5,10,15,20-Tetra(4-pyridyl)-21H,23H-porphine (TPyP). The greatly improved conversion efficiencies of the dye-sensitized TiO2 solar cells were 6.79 and 6.08 respectively, while these SCCs were introduced into the TiO2 nanoparticle film photoanodes. In addition, the open circuit voltage (Voc) of dye-sensitized solar cells was also increased to 0.769 and 0.768 V, which could be ascribed to the inhibited interfacial charge recombination due to the addition of SCCs.

  12. The statistical mechanics of dynamic pathways to self-assembly.

    Science.gov (United States)

    Whitelam, Stephen; Jack, Robert L

    2015-04-01

    This review describes some important physical characteristics of the pathways (i.e., dynamical processes) by which molecular, nanoscale, and micrometer-scale self-assembly occurs. We highlight the existence of features of self-assembly pathways that are common to a wide range of physical systems, even though those systems may differ with respect to their microscopic details. We summarize some existing theoretical descriptions of self-assembly pathways and highlight areas-notably, the description of self-assembly pathways that occur far from equilibrium-that are likely to become increasingly important.

  13. New Hybrid Nanomaterial Based on Self-Assembly of Cyclodextrins and Cobalt Prussian Blue Analogue Nanocubes

    Directory of Open Access Journals (Sweden)

    Caio L. C. Carvalho

    2015-06-01

    Full Text Available Supramolecular self-assembly has been demonstrated to be a useful approach to developing new functional nanomaterials. In this work, we used a cobalt Prussian blue analogue (PBA, Co3[Co(CN6]2 compound and a β-cyclodextrin (CD macrocycle to develop a novel host-guest PBA-CD nanomaterial. The preparation of the functional magnetic material involved the self-assembly of CD molecules onto a PBA surface by a co-precipitation method. According to transmission electronic microscopy results, PBA-CD exhibited a polydisperse structure composed of 3D nanocubes with a mean edge length of 85 nm, which became shorter after CD incorporation. The supramolecular arrangement and structural, crystalline and thermal properties of the hybrid material were studied in detail by vibrational and electronic spectroscopies and X-ray diffraction. The cyclic voltammogram of the hybrid material in a 0.1 mol·L−1 NaCl supporting electrolyte exhibited a quasi-reversible redox process, attributed to Co2+/Co3+ conversion, with an E1/2 value of 0.46 V (vs. SCE, with higher reversibility observed for the system in the presence of CD. The standard rate constants for PBA and PBA-CD were determined to be 0.07 and 0.13 s−1, respectively, which suggests that the interaction between the nanocubes and CD at the supramolecular level improves electron transfer. We expect that the properties observed for the hybrid material make it a potential candidate for (biosensing designs with a desirable capability for drug delivery.

  14. Optically active micelles from self-assembly of MPEG-b-PMALM copolymer in water

    Institute of Scientific and Technical Information of China (English)

    Fa Bao Zhao; Zhi Lei Liu; Jian Ping Sun; Liang Feng; Ji Wen Hu

    2009-01-01

    Reported here is fabrication of optically active micelles with broad range of morphologies in water,such as spheres,cylinders,and vesicles,from self-assembly of poly(ethylene glycol)monomethyl ether-b-poly-(methacryloyl-L-leacine methyl ester)(MPEG-b-PMALM)copolymer,which was prepared via atom transfer radical polymerization(ATRP)from vinyl monomer bearing chiral amino acid moieties,N-methacryloyl L-leucine methyl ester(MALM),using bromine(Br)end-capped poly(ethylene golycol)monomethylether(MPEG-Br)as macroinitiator in the presence of CuBr/Me6TREN as catalytic system.

  15. New class of phosphine oxide donor-based supramolecular coordination complexes from an in situ phosphine oxidation reaction or phosphine oxide ligands.

    Science.gov (United States)

    Shankar, Bhaskaran; Elumalai, Palani; Shanmugam, Ramasamy; Singh, Virender; Masram, Dhanraj T; Sathiyendiran, Malaichamy

    2013-09-16

    A one-pot, multicomponent, coordination-driven self-assembly approach was used to synthesize the first examples of neutral bridging phosphine oxide donor-based supramolecular coordination complexes. The complexes were self-assembled from a fac-Re(CO)3 acceptor, an anionic bridging O donor, and a neutral soft phosphine or hard phosphine oxide donor.

  16. Controlling water evaporation through self-assembly.

    Science.gov (United States)

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  17. Heterogeneous self-assembled media for biopolymerization

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    Heterogeneous media, such as micro-structured aqueous environments, could offer an alternative approach to the synthesis of biopolymers with novel functions. Structured media are here defined as specialized, self-assembled structures that are formed, e.g, by amphiphiles, such as liposomes, emulsion...... polymerization, the initial elongation rates clearly depended on the complementarity of the monomers with the templating nucleobases3. However, metal-ion catalyzed reactions deliver RNA analogs with heterogeneous linkages. Moreover, the usefulness of this medium in the form of quasi-compartmentalization extends...... beyond metal-ion catalysis reactions, as we have recently demonstrated the catalytic power of a dipeptide, SerHis, for the regioselective formation of phosphodiester bonds. These results in conjonction with the synthesis of nucleobases at -78˚C, the demonstration of ribozyme activity (RNA ligase ribozyme...

  18. Smart self-assembled hybrid hydrogel biomaterials.

    Science.gov (United States)

    Kopeček, Jindřich; Yang, Jiyuan

    2012-07-23

    Hybrid biomaterials are systems created from components of at least two distinct classes of molecules, for example, synthetic macromolecules and proteins or peptide domains. The synergistic combination of two types of structures may produce new materials that possess unprecedented levels of structural organization and novel properties. This Review focuses on biorecognition-driven self-assembly of hybrid macromolecules into functional hydrogel biomaterials. First, basic rules that govern the secondary structure of peptides are discussed, and then approaches to the specific design of hybrid systems with tailor-made properties are evaluated, followed by a discussion on the similarity of design principles of biomaterials and macromolecular therapeutics. Finally, the future of the field is briefly outlined.

  19. Self Assembly and Elasticity of Nuclear Pasta

    Science.gov (United States)

    Caplan, Matthew; Horowitz, Chuck; Berry, Don; da Silva Schneider, Andre

    2015-10-01

    While the outer crust of a neutron star is likely a solid ion lattice, the core consists of uniform nuclear matter at or above saturation density. In between, nuclei adopt exotic non-spherical geometries called ``nuclear pasta'' in order to minimize the nuclear attraction and Coulomb repulsion between protons. These structures have been well studied with both classical and quantum molecular dynamics, and their geometry can be predicted from the density, temperature, and proton fraction. Recent classical molecular dynamics simulations find evidence for a phase transition at T ~ 0 . 5 MeV, where simulations with low proton fractions undergo a solid-liquid phase transition, while simulations with high proton fractions under a glass-rubber phase transition. This is expected to have nontrivial consequences for the elastic properties of the pasta. Additionally, recent observations indicate that the structure of nuclear pasta may be related to structures observed in biophysics, specifically self assembling lipid membranes.

  20. Self-Assembled Magnetic Surface Swimmers

    Science.gov (United States)

    Snezhko, A.; Belkin, M.; Aranson, I. S.; Kwok, W.-K.

    2009-03-01

    We report studies of novel self-assembled magnetic surface swimmers (magnetic snakes) formed from a dispersion of magnetic microparticles at a liquid-air interface and energized by an alternating magnetic field. We show that under certain conditions the snakes spontaneously break the symmetry of surface flows and turn into self-propelled objects. Parameters of the driving magnetic field tune the propulsion velocity of these snakelike swimmers. We find that the symmetry of the surface flows can also be broken in a controlled fashion by attaching a large bead to a magnetic snake (bead-snake hybrid), transforming it into a self-locomoting entity. The observed phenomena have been successfully described by a phenomenological model based on the amplitude equation for surface waves coupled to a large-scale hydrodynamic mean flow equation.

  1. Shape Restoration by Active Self-Assembly

    Directory of Open Access Journals (Sweden)

    D. Arbuckle

    2005-01-01

    Full Text Available Shape restoration is defined as the problem of constructing a desired, or goal, solid shape Sg by growing an initial solid Si, which is a subset of the goal but is otherwise unknown. This definition attempts to capture abstractly a situation that often arises in the physical world when a solid object loses its desired shape due to wear and tear, corrosion or other phenomena. For example, if the top of the femur becomes distorted, the hip joint no longer functions properly and may have to be replaced surgically. Growing it in place back to its original shape would be an attractive alternative to replacement. This paper presents a solution to the shape restoration problem by using autonomous assembly agents (robots that self-assemble to fill the volume between Sg and Si. If the robots have very small dimension (micro or nano, the desired shape is approximated with high accuracy. The assembly agents initially execute a random walk. When two robots meet, they may exchange a small number of messages. The robot behavior is controlled by a finite state machine with a small number of states. Communication contact models chemical communication, which is likely to be the medium of choice for robots at the nanoscale, while small state and small messages are limitations that also are expected of nanorobots. Simulations presented here show that swarms of such robots organize themselves to achieve shape restoration by using distributed algorithms. This is one more example of an interesting geometric problem that can be solved by the Active Self-Assembly paradigm introduced in previous papers by the authors.

  2. Progress of Rod-like Chiral Supramolecular Liquid Crystals Based on Intermolecular Hydrogen Bonding%基于分子间氢键的棒状手性液晶的研究进展

    Institute of Scientific and Technical Information of China (English)

    左飞龙; 吴奕环; 时志强; 武长城

    2012-01-01

    Due to its unique optical-electro properties, facile synthesis and stimuli responsiveness to the environment, chiral supramolecular liquid crystals based on intermolecular hydrogen bonding have been becoming one of the hot topics in domain of supramolecular chemistry and been winning more application in functional materials, nonlinear optics and biomedical science, etc. This paper presents a brief review on the rod-like hydrogen-bonding chiral liquid crystals (RHCLC). The molecular structure, chiral group, substituent group, flexible chain, stability of these hydrogen-bonded supramolecular complexes and their relation to the observed liquid crystalline phases are the main topics of this review. Recent research achievements about RHCLC sorted by hydrogen bonds groups such as carboxylic acid and pyridine are introduced. At last the future development of RHCLC is prospected.%分子间氢键棒状手性液晶因其兼具手性液晶奇特的光电性能和氢键液晶的便捷制备以及独特的外界刺激响应性,在功能材料、非线性光学、生物医学等领域具有潜在的应用价值,一直是超分子液晶领域的研究热点.文章按照形成氢键互补基团的不同,将其划分为3种类型,即羧酸-羧酸类、羧酸吡啶类和其他类型氢键,介绍了此三类氢键棒状手性液晶近年来的研究进展.详细归纳了氢键质子给受体的分子结构、氢键稳定性、手性中心位置、取代基、柔性链长度等对液晶性能的影响,并在此基础上,对其未来发展做了展望.

  3. Characterization and Application of DNA-templated Silver Nanoclusters and Polarized Spectroscopy of Self-Assembled Nanostructures

    DEFF Research Database (Denmark)

    Carro-Temboury, Miguel R.

    of the DNA-AgNCs before and after reduction. Two reduced samples of IR-AgNCs were measured, a sample purified by High Performance Liquid Chromatography (HPLC) and a non-purified sample. The samples were characterized spectroscopically to support the EXAFS measurements. C24-AgNCs samples were prepared...... for single-molecule spectral, time-resolved and polarization studies that contributed to the knowledge on this sequence. Purified IR-AgNCs were prepared and 2 Dimensional Electronic Spectroscopy (2DES) was performed by our collaborators at the University of Lund. Self-assembled nanostructures are interesting...... due to their reduced cost, high achievable degree of supramolecular order, and potential application in molecular electronics. The degree of order is related to the performance of molecular devices. Ionic Self-Assembled (ISA) materials formed by surfactant chains and azo-dyes featuring long range...

  4. Controlled Self-Assembly of Cyclophane Amphiphiles: From 1D Nanofibers to Ultrathin 2D Topological Structures

    Energy Technology Data Exchange (ETDEWEB)

    Cai, Zhengxu; Li, Lianwei; Lo, Wai-Yip; Zhao, Donglin; Wu, Qinghe; Zhang, Na; Su, Yu-An; Chen, Wei; Yu, Luping

    2016-07-05

    A novel series of amphiphilic TC-PEG molecules were designed and synthesized based on the orthogonal cyclophane unit. These molecules were able to self-assemble from 1D nanofibers and nanobelts to 2D ultrathin nanosheets (3 nm thick) in a controlled way by tuning the length of PEG side chains. The special structure of the cyclophane moiety allowed control in construction of nanostructures through programmed noncovalent interactions (hydrophobic hydrophilic interaction and pi-pi interaction). The self-assembled nanostructures were characterized by combining real space imaging (TEM, SEM, and AFM) and reciprocal space scattering (GIWAXS) techniques. This unique supramolecular system may provide a new strategy for the design of materials with tunable nanomorphology and functionality.

  5. Supramolecular chemistry and crystal engineering

    Indian Academy of Sciences (India)

    Ashwini Nangia

    2010-05-01

    Advances in supramolecular chemistry and crystal engineering reported from India within the last decade are highlighted in the categories of new intermolecular interactions, designed supramolecular architectures, network structures, multi-component host-guest systems, cocrystals, and polymorphs. Understanding self-assembly and crystallization through X-ray crystal structures is illustrated by two important prototypes - the large unit cell of elusive saccharin hydrate, Na16(sac)16 . 30H2O, which contains regular and irregular domains in the same structure, and by the Aufbau build up of zinc phosphate framework structures, e.g. ladder motif in [C3N2H12][Zn(HPO4)2] to layer structure in [C3N2H12][Zn2(HPO4)3] upon prolonged hydrothermal conditions. The pivotal role of accurate X-ray diffraction in supramolecular and structural studies is evident in many examples. Application of the bottomup approach to make powerful NLO and magnetic materials, design of efficient organogelators, and crystallization of novel pharmaceutical polymorphs and cocrystals show possible future directions for interdisciplinary research in chemistry with materials and pharmaceutical scientists. This article traces the evolution of supramolecular chemistry and crystal engineering starting from the early nineties and projects a center stage for chemistry in the natural sciences.

  6. Competition between self-assembly and surface adsorption

    Science.gov (United States)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-02-01

    We investigate a minimal equilibrium polymerization model for the competition between self-assembly on a boundary and in solution that arises when an assembling system is in the presence of an adsorbing interface. Adsorption generally occurs upon cooling, but assembly (equilibrium polymerization) may arise either upon cooling or heating. Both cases are shown to exhibit a coupling between adsorption and self-assembly. When both assembly and adsorption proceed upon cooling, a change in the ratio of the enthalpy of adsorption to the enthalpy of assembly in solution can switch the system between a predominance of self-assembly in solution to assembly on the substrate. If assembly is promoted by heating and adsorption by cooling, as in many self-assembling proteins in aqueous solution, then a self-assembly analog of a closed loop phase boundary is found. In particular, the order parameter for assembly on the surface exhibits a peak as a function of temperature. As demonstrated by illustrative examples, the coupling between surface adsorption and self-assembly provides a powerful means of switching self-assembly processes on and off. Understanding and controlling this switching phenomenon will be useful in designing and directing self-assembly processes on surfaces for applications to nanomanufacturing and in developing treatments for diseases arising from pathological adsorption-induced assembly.

  7. Synthetic self-assembled models with biomimetic functions

    NARCIS (Netherlands)

    Fiammengo, Roberto; Crego-Calama, Mercedes; Reinhoudt, David N.

    2001-01-01

    Self-assembly can be considered a powerful tool in the hand of chemists for the understanding, modeling and mimicking of biological systems. The possibility of reproducing biological functions in synthetic systems obtained by self-assembly is envisioned as a modest but very important step towards th

  8. Role of peripheral phenanthroline groups in the self-assembly of self-assembled molecular triangles

    Indian Academy of Sciences (India)

    Mili C Naranthatta; V Ramkumar; Dillip Kumar Chand

    2015-02-01

    Self-assembled molecular triangles [Pd3(phen)3(imidazolate)3](NO3)3, 1a and [Pd3(phen)3 (imidazolate)3](PF6)3, 1b are prepared by the combination of imidazole with Pd(phen)(NO3)2 and Pd(phen) (PF6)2, respectively. Imidazole was deprotonated during the complexation reactions and the imidazolate so formed acted as a bis-monodentate bridging ligand to form the bowl-shaped trinuclear architectures of 1a/b. Relative orientation of the imidazolate moieties can be best described as syn,anti,anti as observed in the crystal structure of 1b. However, in solution state, slow conformational changes are assumed on the basis of 1HNMR spectral data. The molecular triangles are crafted with three peripheral phen units capable of − stacking interactions. Well-fashioned intermolecular − interactions are observed in the solid-state, wherein further self-assembly of already self-assembled triangle is observed.

  9. Self-assembly of pi-conjugated peptides in aqueous environments leading to energy-transporting bioelectronic nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Tavor, John [Johns Hopkins Univ., Baltimore, MD (United States)

    2016-12-06

    The realization of new supramolecular pi-conjugated organic structures inspired and driven by peptide-based self-assembly will offer a new approach to interface with the biotic environment in a way that will help to meet many DOE-recognized grand challenges. Previously, we developed pi-conjugated peptides that undergo supramolecular self-assembly into one-dimensional (1-D) organic electronic nanomaterials under benign aqueous conditions. The intermolecular interactions among the pi-conjugated organic segments within these nanomaterials lead to defined perturbations of their optoelectronic properties and yield nanoscale conduits that support energy transport within individual nanostructures and throughout bulk macroscopic collections of nanomaterials. Our objectives for future research are to construct and study biomimetic electronic materials for energy-related technology optimized for harsher non-biological environments where peptide-driven self-assembly enhances pi-stacking within nanostructured biomaterials, as detailed in the following specific tasks: (1) synthesis and detailed optoelectronic characterization of new pi-electron units to embed within homogeneous self assembling peptides, (2) molecular and data-driven modeling of the nanomaterial aggregates and their higher-order assemblies, and (3) development of new hierarchical assembly paradigms to organize multiple electronic subunits within the nanomaterials leading to heterogeneous electronic properties (i.e. gradients and localized electric fields). These intertwined research tasks will lead to the continued development and fundamental mechanistic understanding of a powerful bioinspired materials set capable of making connections between nanoscale electronic materials and macroscopic bulk interfaces, be they those of a cell, a protein or a device.

  10. Controlling the stereochemistry and regularity of butanethiol self-assembled monolayers on au(111).

    Science.gov (United States)

    Yan, Jiawei; Ouyang, Runhai; Jensen, Palle S; Ascic, Erhad; Tanner, David; Mao, Bingwei; Zhang, Jingdong; Tang, Chunguang; Hush, Noel S; Ulstrup, Jens; Reimers, Jeffrey R

    2014-12-10

    The rich stereochemistry of the self-assembled monolayers (SAMs) of four butanethiols on Au(111) is described, the SAMs containing up to 12 individual C, S, or Au chiral centers per surface unit cell. This is facilitated by synthesis of enantiomerically pure 2-butanethiol (the smallest unsubstituted chiral alkanethiol), followed by in situ scanning tunneling microscopy (STM) imaging combined with density functional theory molecular dynamics STM image simulations. Even though butanethiol SAMs manifest strong headgroup interactions, steric interactions are shown to dominate SAM structure and chirality. Indeed, steric interactions are shown to dictate the nature of the headgroup itself, whether it takes on the adatom-bound motif RS(•)Au(0)S(•)R or involves direct binding of RS(•) to face-centered-cubic or hexagonal-close-packed sites. Binding as RS(•) produces large, organizationally chiral domains even when R is achiral, while adatom binding leads to rectangular plane groups that suppress long-range expression of chirality. Binding as RS(•) also inhibits the pitting intrinsically associated with adatom binding, desirably producing more regularly structured SAMs.

  11. Solid state nanofibers based on self-assemblies : from cleaving from self-assemblies to multilevel hierarchical constructs

    NARCIS (Netherlands)

    Ikkala, Olli; Ras, Robin H. A.; Houbenov, Nikolay; Ruokolainen, Janne; Paakko, Marjo; Laine, Janne; Leskela, Markku; Berglund, Lars A.; Lindstrom, Tom; ten Brinke, Gerrit; Iatrou, Hermis; Hadjichristidis, Nikos; Faul, Charl F. J.; Pääkkö, Marjo; Leskelä, Markku; Lindström, Tom

    2009-01-01

    Self-assemblies and their hierarchies are useful to construct soft materials with structures at different length scales and to tune the materials properties for various functions. Here we address routes for solid nanofibers based on different forms of self-assemblies. On the other hand, we discuss r

  12. Study of the Edge-on Self-Assembly of Axially Substituted Silicon(IV) Phthalocyanine Derivatives in a Template on the HOPG Surface.

    Science.gov (United States)

    Geng, Yanfang; Xu, Jing; Xue, Jindong; Shen, Xiaomin; Li, Min; Huang, Jiandong; Li, Xiaokang; Zeng, Qingdao

    2015-12-15

    Molecular conformation is an important issue related to the self-assembly architecture and property. The self-assembly of silicon(IV) phthalocyanines covalently linked to the 5-N-cytidine or 4-carboxyphenoxy moiety at the axial positions, namely, SiPc(NC)2 and SiPc(CP)2, respectively, has been studied by means of scanning tunneling microscopy (STM) at the solid-liquid interface. The intermolecular axial hydrogen bonding in combination with the stabilizing role of the TCDB template brings about supramolecular self-assembled structures of silicon(IV) phthalocyanines in an edge-on orientation. Two pyridine compounds, 4,4'-bipyridine (BPY) and 1,2-di(4-pyridyl)ethylene (DPE), can tune the supramolecular structure, leading to interestingly axial self-assemblies of SiPc(CP)2 with BPY and DPE in an edge-on manner by hydrogen bonding. The results indicate that the axial substituents and the axial ligands can regulate and precisely control the conformation and arrangement of the phthalocyanine moiety on the graphite surface.

  13. RNA self-assembly and RNA nanotechnology.

    Science.gov (United States)

    Grabow, Wade W; Jaeger, Luc

    2014-06-17

    CONSPECTUS: Nanotechnology's central goal involves the direct control of matter at the molecular nanometer scale to build nanofactories, nanomachines, and other devices for potential applications including electronics, alternative fuels, and medicine. In this regard, the nascent use of nucleic acids as a material to coordinate the precise arrangements of specific molecules marked an important milestone in the relatively recent history of nanotechnology. While DNA served as the pioneer building material in nucleic acid nanotechnology, RNA continues to emerge as viable alternative material with its own distinct advantages for nanoconstruction. Several complementary assembly strategies have been used to build a diverse set of RNA nanostructures having unique structural attributes and the ability to self-assemble in a highly programmable and controlled manner. Of the different strategies, the architectonics approach uniquely endeavors to understand integrated structural RNA architectures through the arrangement of their characteristic structural building blocks. Viewed through this lens, it becomes apparent that nature routinely uses thermodynamically stable, recurrent modular motifs from natural RNA molecules to generate unique and more complex programmable structures. With the design principles found in natural structures, a number of synthetic RNAs have been constructed. The synthetic nanostructures constructed to date have provided, in addition to affording essential insights into RNA design, important platforms to characterize and validate the structural self-folding and assembly properties of RNA modules or building blocks. Furthermore, RNA nanoparticles have shown great promise for applications in nanomedicine and RNA-based therapeutics. Nevertheless, the synthetic RNA architectures achieved thus far consist largely of static, rigid particles that are still far from matching the structural and functional complexity of natural responsive structural elements such

  14. Solvent induced helical aggregation in the self-assembly of cholesterol tailed platinum complexes.

    Science.gov (United States)

    Mao, Yueyuan; Liu, Keyin; Meng, Luyan; Chen, Liang; Chen, Liming; Yi, Tao

    2014-10-14

    Three alkynylplatinum(ii) bipyridyl complexes in which two cholesterol groups are combined with a bipyridyl group via alkyl chains and amido bonds were designed and synthesized. The complexes have different lengths of ethylene glycol chains at the para-position of 1-phenylethyne. All three complexes can self-assemble to gel networks in DMSO, while only the morphology of 1a without an ether chain shows a well-defined right-handed helical structure in layer packing mode. However, 1c with long ethylene glycol chains forms perfect regular left-handed helical structures in aqueous ethanol solution while the volume percentage of water is less than 5% (v/v). As the ratio of water increases, the chirality changes from a left-handed helix to a right-handed helix and the packing mode alters from a monolayer structure to a hexagonal structure. As the ratio of water further increases to greater than 50% (v/v), the structure of the assembly finally transforms into bilayer vesicles. The process of the morphology transition is traced by circular dichroism spectra, powder X-ray diffraction, SEM and TEM images. The result indicates that a polar solvent (water) acts as a trigger to change the self-assembly of the chiral structures of the complex due to the strong hydrophobic interaction between cholesterol groups and the balance of the hydrophobicity and hydrophilicity of the solvent environment.

  15. Self-assembly programming of DNA polyominoes.

    Science.gov (United States)

    Ong, Hui San; Syafiq-Rahim, Mohd; Kasim, Noor Hayaty Abu; Firdaus-Raih, Mohd; Ramlan, Effirul Ikhwan

    2016-10-20

    Fabrication of functional DNA nanostructures operating at a cellular level has been accomplished through molecular programming techniques such as DNA origami and single-stranded tiles (SST). During implementation, restrictive and constraint dependent designs are enforced to ensure conformity is attainable. We propose a concept of DNA polyominoes that promotes flexibility in molecular programming. The fabrication of complex structures is achieved through self-assembly of distinct heterogeneous shapes (i.e., self-organised optimisation among competing DNA basic shapes) with total flexibility during the design and assembly phases. In this study, the plausibility of the approach is validated using the formation of multiple 3×4 DNA network fabricated from five basic DNA shapes with distinct configurations (monomino, tromino and tetrominoes). Computational tools to aid the design of compatible DNA shapes and the structure assembly assessment are presented. The formations of the desired structures were validated using Atomic Force Microscopy (AFM) imagery. Five 3×4 DNA networks were successfully constructed using combinatorics of these five distinct DNA heterogeneous shapes. Our findings revealed that the construction of DNA supra-structures could be achieved using a more natural-like orchestration as compared to the rigid and restrictive conventional approaches adopted previously.

  16. Functional Self-Assembled Nanofibers by Electrospinning

    Science.gov (United States)

    Greiner, A.; Wendorff, J. H.

    Electrospinning constitutes a unique technique for the production of nanofibers with diameters down to the range of a few nanometers. In strong contrast to conventional fiber producing techniques, it relies on self-assembly processes driven by the Coulomb interactions between charged elements of the fluids to be spun to nanofibers. The transition from a macroscopic fluid object such as a droplet emerging from a die to solid nanofibers is controlled by a set of complex physical instability processes. They give rise to extremely high extensional deformations and strain rates during fiber formation causing among others a high orientational order in the nanofibers as well as enhanced mechanical properties. Electrospinning is predominantly applied to polymer based materials including natural and synthetic polymers, but, more recently, its use has been extended towards the production of metal, ceramic and glass nanofibers exploiting precursor routes. The nanofibers can be functionalized during electrospinning by introducing pores, fractal surfaces, by incorporating functional elements such as catalysts, quantum dots, drugs, enzymes or even bacteria. The production of individual fibers, random nonwovens, or orientationally highly ordered nonwovens is achieved by an appropriate selection of electrode configurations. Broad areas of application exist in Material and Life Sciences for such nanofibers, including not only optoelectronics, sensorics, catalysis, textiles, high efficiency filters, fiber reinforcement but also tissue engineering, drug delivery, and wound healing. The basic electrospinning process has more recently been extended towards compound co-electrospinning and precision deposition electrospinning to further broaden accessible fiber architectures and potential areas of application.

  17. Self-assembling holographic biosensors and biocomputers.

    Energy Technology Data Exchange (ETDEWEB)

    Light, Yooli Kim; Bachand, George David (Sandia National Laboratories, Albuquerque, NM); Schoeniger, Joseph S.; Trent, Amanda M. (Sandia National Laboratories, Albuquerque, NM)

    2006-05-01

    We present concepts for self-assembly of diffractive optics with potential uses in biosensors and biocomputers. The simplest such optics, diffraction gratings, can potentially be made from chemically-stabilized microtubules migrating on nanopatterned tracks of the motor protein kinesin. We discuss the fabrication challenges involved in patterning sub-micron-scale structures with proteins that must be maintained in aqueous buffers to preserve their activity. A novel strategy is presented that employs dry contact printing onto glass-supported amino-silane monolayers of heterobifunctional crosslinkers, followed by solid-state reactions of these cross-linkers, to graft patterns of reactive groups onto the surface. Successive solution-phase addition of cysteine-mutant proteins and amine-reactive polyethylene glycol allows assembly of features onto the printed patterns. We present data from initial experiments showing successful micro- and nanopatterning of lines of single-cysteine mutants of kinesin interleaved with lines of polyethylene, indicating that this strategy can be employed to arrays of features with resolutions suitable for gratings.

  18. Stochastic self-assembly of incommensurate clusters

    Science.gov (United States)

    DÓ Rsogna, Maria; Lakatos, Greg; Chou, Tom

    2013-03-01

    We examine the classic problem of homogeneous nucleation and self-assembly by deriving and analyzing a fully discrete stochastic master equation. We enumerate the highest probability steady-states, and derive exact analytical formulae for quenched and equilibrium mean cluster size distributions. Upon comparison with results obtained from the associated the mass-action Becker-Döring (BD) equations, we find striking differences between the two corresponding equilibrium mean cluster concentrations. These differences depend primarily on the divisibility of the total available mass by the maximum allowed cluster size, and the remainder. When such mass ``incommensurability'' arises, a single remainder particle can ``emulsify'' the system by significantly broadening the equilibrium mean cluster size distribution. This discreteness-induced broadening effect is periodic in the total mass of the system but arises even when the system size is asymptotically large, provided the ratio of the total mass to the maximum cluster size is finite. Our findings define a new scaling regime in which results from classic mass-action theories are qualitatively inaccurate, even in the limit of large total system size. This work supported by NSF DMS-1021818 and DMS-1021850

  19. Optical orientation in self assembled quantum dots

    CERN Document Server

    Stevens, G C

    2002-01-01

    We examined Zeeman splitting in a series of ln sub x Ga sub ( sub 1 sub - sub x sub ) As/GaAs self assembled quantum dots (SAQD's) with different pump polarisations. All these measurements were made in very low external magnetic fields where direct determination of the Zeeman splitting energy is impossible due to its small value in comparison to the photoluminescence linewidths. The use of a technique developed by M. J. Snelling allowed us to obtain the Zeeman splitting and hence the excitonic g-factors indirectly. We observed a linear low field splitting, becoming increasingly non-linear at higher fields. We attribute this non-linearity to field induced level mixing. It is believed these are the first low field measurements in these structures. A number of apparent nuclear effects in the Zeeman splitting measurements led us onto the examination of nuclear effects in these structures. The transverse and oblique Hanie effects then allowed us to obtain the sign of the electronic g-factors in two of our samples,...

  20. What promotes derected self assembly (DSA)?

    Science.gov (United States)

    Nakagawa, S. T.

    2016-09-01

    A low-energy electron beam (EB) can create self-interstitial atoms (SIA) in a solid and can cause directed self-assembly (DSA), e.g. {3 1 1}SIA platelets in c-Si. The crystalline structure of this planar defect is known from experiment to be made up of SIAs that form well aligned atomic rows on each (3 1 1) plane. To simulate the experiment we distributed Frenkel pairs (FP) randomly in bulk c-Si. Then making use of a molecular dynamic (MD) simulation, we have reproduced the experimental result, where SIAs are trapped at metastable sites in bulk. With increasing pre-doped FP concentration, the number of SIAs that participate in DSA tends to be increased but soon slightly supressed. On the other hand, when the FP concentration is less than 3%, a cooperative motion of target atoms was characterized from the long-range-order (LRO) parameter. Here we investigated the correlation between DSA and that cooperative motion, by adding a case of intrinsic c-Si. We confirmed that the cooperative motion slightly promote DSA by assisting migration of SIAs toward metastable sites as long as the FP concentration is less than 3%, however, it is essentially independent of DSA.

  1. Self-assembled nanostructures via electrospraying

    Science.gov (United States)

    Jayasinghe, S. N.

    2006-07-01

    A concentrated nanoparticulate-based ethylene glycol suspension was prepared and electrosprayed at optimum and stable cone-jet mode conditions. Using laser spectroscopy, the droplets were measured and found to range within ∼0.23-3.8 μm. In parallel to spectroscopy-assisted sizing, a volume equivalence route for estimating droplet sizes was carried out by measuring contact angles and diameters of the deposits. The electrosprayed nanosuspension relics were examined using optical and transmission electron microscopy. These deposits were further characterized using energy-dispersive X-rays and selected area electron diffraction. Simultaneously deposits were formed by a controlled route through needle deposition without the presence of an electric field. The structures formed in this non-electric field driven route are compared with those formed with electric fields. Thus, elucidating electrosprays as a competing nanofabrication route for forming self-assemblies with a wide range of nanomaterials in the nanoscale for top-down based bottom-up assembly of structures.

  2. Self-assembly models for lipid mixtures

    Science.gov (United States)

    Singh, Divya; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula

    2006-03-01

    Solutions of mixed long and short (detergent-like) phospholipids referred to as ``bicelle'' mixtures in the literature, are known to form a variety of different morphologies based on their total lipid composition and temperature in a complex phase diagram. Some of these morphologies have been found to orient in a magnetic field, and consequently bicelle mixtures are widely used to study the structure of soluble as well as membrane embedded proteins using NMR. In this work, we report on the low temperature phase of the DMPC and DHPC bicelle mixture, where there is agreement on the discoid structures but where molecular packing models are still being contested. The most widely accepted packing arrangement, first proposed by Vold and Prosser had the lipids completely segregated in the disk: DHPC in the rim and DMPC in the disk. Using data from small angle neutron scattering (SANS) experiments, we show how radius of the planar domain of the disks is governed by the effective molar ratio qeff of lipids in aggregate and not the molar ratio q (q = [DMPC]/[DHPC] ) as has been understood previously. We propose a new quantitative (packing) model and show that in this self assembly scheme, qeff is the real determinant of disk sizes. Based on qeff , a master equation can then scale the radii of disks from mixtures with varying q and total lipid concentration.

  3. Dissipative adaptation in driven self-assembly.

    Science.gov (United States)

    England, Jeremy L

    2015-11-01

    In a collection of assembling particles that is allowed to reach thermal equilibrium, the energy of a given microscopic arrangement and the probability of observing the system in that arrangement obey a simple exponential relationship known as the Boltzmann distribution. Once the same thermally fluctuating particles are driven away from equilibrium by forces that do work on the system over time, however, it becomes significantly more challenging to relate the likelihood of a given outcome to familiar thermodynamic quantities. Nonetheless, it has long been appreciated that developing a sound and general understanding of the thermodynamics of such non-equilibrium scenarios could ultimately enable us to control and imitate the marvellous successes that living things achieve in driven self-assembly. Here, I suggest that such a theoretical understanding may at last be emerging, and trace its development from historic first steps to more recent discoveries. Focusing on these newer results, I propose that they imply a general thermodynamic mechanism for self-organization via dissipation of absorbed work that may be applicable in a broad class of driven many-body systems.

  4. Self-assembly of smallest magnetic particles.

    Science.gov (United States)

    Mehdizadeh Taheri, Sara; Michaelis, Maria; Friedrich, Thomas; Förster, Beate; Drechsler, Markus; Römer, Florian M; Bösecke, Peter; Narayanan, Theyencheri; Weber, Birgit; Rehberg, Ingo; Rosenfeldt, Sabine; Förster, Stephan

    2015-11-24

    The assembly of tiny magnetic particles in external magnetic fields is important for many applications ranging from data storage to medical technologies. The development of ever smaller magnetic structures is restricted by a size limit, where the particles are just barely magnetic. For such particles we report the discovery of a kind of solution assembly hitherto unobserved, to our knowledge. The fact that the assembly occurs in solution is very relevant for applications, where magnetic nanoparticles are either solution-processed or are used in liquid biological environments. Induced by an external magnetic field, nanocubes spontaneously assemble into 1D chains, 2D monolayer sheets, and large 3D cuboids with almost perfect internal ordering. The self-assembly of the nanocubes can be elucidated considering the dipole-dipole interaction of small superparamagnetic particles. Complex 3D geometrical arrangements of the nanodipoles are obtained under the assumption that the orientation of magnetization is freely adjustable within the superlattice and tends to minimize the binding energy. On that basis the magnetic moment of the cuboids can be explained.

  5. Thermally-nucleated self-assembly of water and alcohol into stable structures at hydrophobic interfaces

    Science.gov (United States)

    Voïtchovsky, Kislon; Giofrè, Daniele; José Segura, Juan; Stellacci, Francesco; Ceriotti, Michele

    2016-10-01

    At the interface with solids, the mobility of liquid molecules tends to be reduced compared with bulk, often resulting in increased local order due to interactions with the surface of the solid. At room temperature, liquids such as water and methanol can form solvation structures, but the molecules remain highly mobile, thus preventing the formation of long-lived supramolecular assemblies. Here we show that mixtures of water with methanol can form a novel type of interfaces with hydrophobic solids. Combining in situ atomic force microscopy and multiscale molecular dynamics simulations, we identify solid-like two-dimensional interfacial structures that nucleate thermally, and are held together by an extended network of hydrogen bonds. On graphite, nucleation occurs above ~35 °C, resulting in robust, multilayered nanoscopic patterns. Our findings could have an impact on many fields where water-alcohol mixtures play an important role such as fuel cells, chemical synthesis, self-assembly, catalysis and surface treatments.

  6. Self-assembly of Bis[2-(2-hydroxyphenyl)-pyridine]Copper(Ⅱ) Induced by C-H…π and π…π Stacking Interaction

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ Introduction The control of molecular assembly in the solid state is an important theme of modern chemistry.It is in this regard that there is an activity in the area of supramolecular structures at present.The self-assembly of molecules can form well-defined supramolecular structures under the influence of drive forces such as hydrogen bonds[1-3],metal-ligand coordination bonds[4-6] and π…π stacking interactions[7-10].Word et al.have described the co-ordination chemistry of polydentate chelating ligands which contain mixed pyridine-phenol donor sets[11].Some unusual structures of transition metal pyridine-phenol complexes have been established in which non-covalent interactions such as hydrogen bonding and π…π stacking appear to play a dominant part.These observations suggest that it might be possible to construct supramolecular structures with a metal pyridine-phenol system.To explore this idea we have begun to investigate the self-assembly properties of metal pyridine-phenol complexes.Herein we present the self-assembly properties of Cu(pp)2[pp=2-(2-hydroxyphenol)-pyridine] under different conditions.

  7. An information-bearing seed for nucleating algorithmic self-assembly.

    Science.gov (United States)

    Barish, Robert D; Schulman, Rebecca; Rothemund, Paul W K; Winfree, Erik

    2009-04-14

    Self-assembly creates natural mineral, chemical, and biological structures of great complexity. Often, the same starting materials have the potential to form an infinite variety of distinct structures; information in a seed molecule can determine which form is grown as well as where and when. These phenomena can be exploited to program the growth of complex supramolecular structures, as demonstrated by the algorithmic self-assembly of DNA tiles. However, the lack of effective seeds has limited the reliability and yield of algorithmic crystals. Here, we present a programmable DNA origami seed that can display up to 32 distinct binding sites and demonstrate the use of seeds to nucleate three types of algorithmic crystals. In the simplest case, the starting materials are a set of tiles that can form crystalline ribbons of any width; the seed directs assembly of a chosen width with >90% yield. Increased structural diversity is obtained by using tiles that copy a binary string from layer to layer; the seed specifies the initial string and triggers growth under near-optimal conditions where the bit copying error rate is complexity is achieved by using tiles that generate a binary counting pattern; the seed specifies the initial value for the counter. Self-assembly proceeds in a one-pot annealing reaction involving up to 300 DNA strands containing >17 kb of sequence information. In sum, this work demonstrates how DNA origami seeds enable the easy, high-yield, low-error-rate growth of algorithmic crystals as a route toward programmable bottom-up fabrication.

  8. Solid crystal network of self-assembled cyclodextrin and nonionic surfactant pseudorotaxanes.

    Science.gov (United States)

    Guerrero-Martínez, Andrés; Avila, David; Martínez-Casado, Francisco J; Ripmeester, John A; Enright, Gary D; De Cola, Luisa; Tardajos, Gloria

    2010-09-09

    The title system allows the straightforward formation of three-dimensional crystals of self-assembled pseudorotaxanes formed by the nonionic surfactant Igepal CO-520 and beta-cyclodextrin (beta-CD) in aqueous solution. The work involves a combination of X-ray powder diffraction, high resolution electron transmission microscopy, and (13)C CP/MAS NMR studies of the solid crystal, supported by single crystal structural analysis. The results indicate a lamellar self-assembly of pseudorotaxanes with preferential orientation and disorder in the structure. For the single crystal, the unit cell was found to be triclinic (P1) and contains a beta-CD dimer. The surfactant molecules are located in the channel formed by these dimers along the c axis of the crystal network. The individual pseudorotaxane structure is formed by a dimer of beta-CDs threaded by the oxyethylene hydrophilic segment of Igepal CO-520, and a beta-CD dimer that binds the hydrophobic region of the surfactant. Thus, as in a CD polyrotaxane structure, this system results in an ordered self-assembly of pseudorotaxanes through the formation of a network of hydrogen bonds between head-to-head beta-CD dimers. Moreover, the analysis of the (1)H NMR spectra in solutions of pseudorotaxanes formed by beta-CD and Igepals with different lengths of the hydrophilic tails indicates equal stoichiometry patterns of both oxyethyelene and hydrophobic regions for the different supramolecules. Whereas the common hydrophobic moiety threads two macrocycles, the ratio between complexed oxyehtlyene segments and beta-CD is 2.5 for the hydrophilic tails. All these results show that nonionic surfactants can be used as alternative and effective linear threads to polymers and copolymers in the synthesis of supramolecular polyrotaxane solid crystals with CDs.

  9. Desymmetrization of an Octahedral Coordination Complex Inside a Self-Assembled Exoskeleton.

    Science.gov (United States)

    Johnstone, Mark D; Schwarze, Eike K; Ahrens, Jennifer; Schwarzer, Dirk; Holstein, Julian J; Dittrich, Birger; Pfeffer, Frederick M; Clever, Guido H

    2016-07-25

    The synthesis of a centrally functionalized, ribbon-shaped [6]polynorbornane ligand L that self-assembles with Pd(II) cations into a {Pd2 L4 } coordination cage is reported. The shape-persistent {Pd2 L4 } cage contains two axial cationic centers and an array of four equatorial H-bond donors pointing directly towards the center of the cavity. This precisely defined supramolecular environment is complementary to the geometry of classic octahedral complexes [M(XY)6 ] with six diatomic ligands. Very strong binding of [Pt(CN)6 ](2-) to the cage was observed, with the structure of the host-guest complex {[Pt(CN)6 ]@Pd2 L4 } supported by NMR spectroscopy, MS, and X-ray data. The self-assembled shell imprints its geometry on the encapsulated guest, and desymmetrization of the octahedral platinum species by the influence of the D4h -symmetric second coordination sphere was evidenced by IR spectroscopy. [Fe(CN)6 ](3-) and square-planar [Pt(CN)4 ](2-) were strongly bound. Smaller octahedral anions such as [SiF6 ](2-) , neutral carbonyl complexes ([M(CO)6 ]; M=Cr, Mo, W) and the linear [Ag(CN)2 ](-) anion were only weakly bound, showing that both size and charge match are key factors for high-affinity binding.

  10. Programming Self-Assembly of DNA Origami Honeycomb Two-Dimensional Lattices and Plasmonic Metamaterials.

    Science.gov (United States)

    Wang, Pengfei; Gaitanaros, Stavros; Lee, Seungwoo; Bathe, Mark; Shih, William M; Ke, Yonggang

    2016-06-22

    Scaffolded DNA origami has proven to be a versatile method for generating functional nanostructures with prescribed sub-100 nm shapes. Programming DNA-origami tiles to form large-scale 2D lattices that span hundreds of nanometers to the micrometer scale could provide an enabling platform for diverse applications ranging from metamaterials to surface-based biophysical assays. Toward this end, here we design a family of hexagonal DNA-origami tiles using computer-aided design and demonstrate successful self-assembly of micrometer-scale 2D honeycomb lattices and tubes by controlling their geometric and mechanical properties including their interconnecting strands. Our results offer insight into programmed self-assembly of low-defect supra-molecular DNA-origami 2D lattices and tubes. In addition, we demonstrate that these DNA-origami hexagon tiles and honeycomb lattices are versatile platforms for assembling optical metamaterials via programmable spatial arrangement of gold nanoparticles (AuNPs) into cluster and superlattice geometries.

  11. All-or-none switching of photon upconversion in self-assembled organogel systems.

    Science.gov (United States)

    Duan, Pengfei; Asthana, Deepak; Nakashima, Takuya; Kawai, Tsuyoshi; Yanai, Nobuhiro; Kimizuka, Nobuo

    2017-02-22

    Aggregation-induced photon upconversion (iPUC) based on a triplet-triplet annihilation (TTA) process is successfully developed via controlled self-assembly of donor-acceptor pairs in organogel nanoassemblies. Although segregation of donor from acceptor assemblies has been an outstanding problem in TTA-based UC and iPUC, we resolved this issue by modifying both the triplet donor and aggregation induced emission (AIE)-type acceptor with glutamate-based self-assembling moieties. These donors and acceptors co-assemble to form organogels without segregation. Interestingly, these donor-acceptor binary gels show upconversion at room temperature but the upconversion phenomena were lost upon dissolution of the gels on heating. The observed changes in TTA-UC emission were thermally reversible, reflecting the controlled assembly/disassembly of the binary molecular systems. The observed on/off ratio of UC emission was much higher than that of the aggregation-induced fluorescence of the acceptor, which highlights the important role of iPUC, i.e., multi-exciton TTA for photoluminescence switching. This work bridges iPUC and supramolecular chemistry and provides a new strategy for designing stimuli-responsive upconversion systems.

  12. Bis-naphthalimides self-assembly organogel formation and application in detection of p-phenylenediamine.

    Science.gov (United States)

    Cao, Xinhua; Zhao, Na; Gao, Aiping; Lv, Haiting; Jia, Yuling; Wu, Renmiao; Wu, Yongquan

    2017-01-01

    Two new gelators containing bis-naphthalimides group were designed and synthesized. The gelator 1b could form gels in DMF and mixed solvent of DMSO/H2O (10/1, v/v). The self-assembly processes of 1b in two kinds of solvents were detailedly investigated by UV-vis, fluorescence, infrared spectroscopy, field emission scanning electron microscope (FE-SEM), X-ray diffraction and contact angle experiments. The experiment results showed the hydrogen bonding was the main force for the gel formation. The gel 1b formed in mixed solvent of DMSO/H2O (10/1, v/v) possessed of the ability of distinguishing of o-phenylenediamine, m-phenylenediamine and p-phenylenediamine. At the same time, the gelator 1b could selectively and sensitively detect p-phenylenediamine in solution with the detection limit of 8.961×10(-8)ML(-1). The detection experiment was also confirmed by DFT theoretical calculations. This research would expand the supramolecular self-assembly materials application in sensor field and offer a new detection method for organic amines.

  13. Flower-like superstructures of AIE-active tetraphenylethylene through solvophobic controlled self-assembly

    Science.gov (United States)

    Salimimarand, Mina; La, Duong Duc; Kobaisi, Mohammad Al; Bhosale, Sheshanath V.

    2017-02-01

    The development of well-organized structures with high luminescent properties in the solid and aggregated states is of both scientific and technological interest due to their applications in nanotechnology. In this paper we described the synthesis of amphiphilic and dumbbell shaped AIE-active tetraphenylethylene (TPE) derivatives and studied their self-assembly with solvophobic control. Interestingly, both TPE derivatives form a 3D flower-shape supramolecular structure from THF/water solutions at varying water fractions. SEM microscopy was used to visualise step-wise growth of flower-shape assembly. TPE derivatives also show good mechanochromic properties which can be observed in the process of grinding, fuming and heating. These TPE derivative self-assemblies are formed due to two main important properties: (i) the TPE-core along with alkyl chains, optimizing the dispersive interactions within a construct, and (ii) amide-linkage through molecular recognition. We believe such arrangements prevent crystallization and favour the directional growth of flower-shape nanostructures in a 3D fashion.

  14. Ultrashort cationic naphthalene-derived self-assembled peptides as antimicrobial nanomaterials.

    Science.gov (United States)

    Laverty, Garry; McCloskey, Alice P; Gilmore, Brendan F; Jones, David S; Zhou, Jie; Xu, Bing

    2014-09-01

    Self-assembling dipeptides conjugated to naphthalene show considerable promise as nanomaterial structures, biomaterials, and drug delivery devices. Biomaterial infections are responsible for high rates of patient mortality and morbidity. The presence of biofilm bacteria, which thrive on implant surfaces, are a huge burden on healthcare budgets, as they are highly resistant to current therapeutic strategies. Ultrashort cationic self-assembled peptides represent a highly innovative and cost-effective strategy to form antibacterial nanomaterials. Lysine conjugated variants display the greatest potency with 2% w/v NapFFKK hydrogels significantly reducing the viable Staphylococcus epidermidis biofilm by 94%. Reducing the size of the R-group methylene chain on cationic moieties resulted in reduction of antibiofilm activity. The primary amine of the protruding R-group tail may not be as readily available to interact with negatively charged bacterial membranes. Cryo-SEM, FTIR, CD spectroscopy, and oscillatory rheology provided evidence of supramolecular hydrogel formation at physiological pH (pH 7.4). Cytotoxicity assays against murine fibroblast (NCTC 929) cell lines confirmed the gels possessed reduced cytotoxicity relative to bacterial cells, with limited hemolysis upon exposure to equine erythrocytes. The results presented in this paper highlight the significant potential of ultrashort cationic naphthalene peptides as future biomaterials.

  15. Directed self-assembly in laponite/CdSe/polyaniline nanocomposites.

    Science.gov (United States)

    Kehlbeck, Joanne D; Hagerman, Michael E; Cohen, Brian D; Eliseo, Jennifer; Fox, Melissa; Hoek, William; Karlin, David; Leibner, Evan; Nagle, Emily; Nolan, Michael; Schaefer, Ian; Toney, Alexandra; Topka, Michael; Uluski, Richard; Wood, Charles

    2008-09-02

    Laponite films provide versatile inorganic scaffolds with materials architectures that direct the self-assembly of CdSe quantum dots (QDs or EviTags) and catalytic surfaces that promote the in situ polymerization of polyaniline (PANI) to yield novel nanocomposites for light emitting diodes (LEDs) and solar cell applications. Water-soluble CdSe EviTags with varying, overlapping emission wavelengths in the visible spectrum were incorporated using soft chemistry routes within Na-Laponite host film platforms to achieve broadband emission in the visible spectrum. QD concentrations, composition and synthesis approach were varied to optimize photophysical properties of the films and to mediate self-assembly, optical cascading and energy transfer. In addition, aniline tetramers coupled to CdSe (QD-AT) surfaces using a dithioate linker were embedded within Cu-Laponite nanoscaffolds and electronically coupled to PANI via vapor phase exposure. Nanotethering and specific host-guest and guest-guest interactions that mediate nanocomposite photophysical behavior were probed using electronic absorption and fluorescence spectroscopies, optical microscopy, AFM, SEM, powder XRD, NMR and ATR-FTIR. Morphology studies indicated that Lap/QD-AT films synthesized using mixed solvent, layer by layer (LbL) methods exhibited anisotropic supramolecular structures with unique mesoscopic ordering that affords bifunctional networks to optimize charge transport.

  16. Investigation of gas surface interactions at self-assembled silicon surfaces acting as gas sensors

    Science.gov (United States)

    Narducci, Dario; Bernardinello, Patrizia; Oldani, Matteo

    2003-05-01

    This paper reports the results of an investigation aimed at using self-assembled monolayers to modify the supramolecular interactions between Si surfaces and gaseous molecules. The specific goal is that of employing molecularly imprinted silicon surfaces to develop a new class of chemical sensors capable to detect species with enhanced selectivity. Single-crystal p-type (0 0 1) silicon has been modified by grafting organic molecules onto its surface by using wet chemistry synthetic methods. Silicon has been activated toward nucleophilic attack by brominating its surface using a modified version of the purple etch, and aromatic fragments have been bonded through the formation of direct Si-C bonds onto it using Grignard reagents or lithium aryl species. Formation of self-assembled monolayers (SAMs) was verified by using vibrational spectroscopy. Porous metal-SAM-Si diodes have been successfully tested as resistive chemical sensors toward NO x, SO x, CO, NH 3 and methane. Current-voltage characteristics measured at different gas compositions showed that the mechanism of surface electron density modulation involves a modification of the junction barrier height upon gas adsorption. Quantum-mechanical simulations of the interaction mechanism were carried out using different computational methods to support such an interaction mechanism. The results obtained appear to open up new relevant applications of the SAM techniques in the area of gas sensing.

  17. Electrochemical Functionalization of Graphene at the Nanoscale with Self-Assembling Diazonium Salts.

    Science.gov (United States)

    Xia, Zhenyuan; Leonardi, Francesca; Gobbi, Marco; Liu, Yi; Bellani, Vittorio; Liscio, Andrea; Kovtun, Alessandro; Li, Rongjin; Feng, Xinliang; Orgiu, Emanuele; Samorì, Paolo; Treossi, Emanuele; Palermo, Vincenzo

    2016-07-26

    We describe a fast and versatile method to functionalize high-quality graphene with organic molecules by exploiting the synergistic effect of supramolecular and covalent chemistry. With this goal, we designed and synthesized molecules comprising a long aliphatic chain and an aryl diazonium salt. Thanks to the long chain, these molecules physisorb from solution onto CVD graphene or bulk graphite, self-assembling in an ordered monolayer. The sample is successively transferred into an aqueous electrolyte, to block any reorganization or desorption of the monolayer. An electrochemical impulse is used to transform the diazonium group into a radical capable of grafting covalently to the substrate and transforming the physisorption into a covalent chemisorption. During covalent grafting in water, the molecules retain the ordered packing formed upon self-assembly. Our two-step approach is characterized by the independent control over the processes of immobilization of molecules on the substrate and their covalent tethering, enabling fast (t < 10 s) covalent functionalization of graphene. This strategy is highly versatile and works with many carbon-based materials including graphene deposited on silicon, plastic, and quartz as well as highly oriented pyrolytic graphite.

  18. Understanding recognition and self-assembly in biology using the chemist's toolbox. Insight into medicinal chemistry.

    Science.gov (United States)

    Quirolo, Z B; Benedini, L A; Sequeira, M A; Herrera, M G; Veuthey, T V; Dodero, V I

    2014-01-01

    Medicinal chemistry is intimately connected with basic science such as organic synthesis, chemical biology and biophysical chemistry among other disciplines. The reason of such connections is due to the power of organic synthesis to provide designed molecules; chemical biology to give tools to discover biological and/or pathological pathways and biophysical chemistry which provides the techniques to characterize and the theoretical background to understand molecular behaviour. The present review provides some selective examples of these research areas. Initially, template dsDNA organic synthesis and the spatio-temporal control of transcription are presenting following by the supramolecular entities used in drug delivery, such as liposomes and liquid crystal among others. Finally, peptides and protein self-assembly is connected with biomaterials and as an important event in the balance between health and disease. The final aim of the present review is to show the power of chemical tools not only for the synthesis of new molecules but also to improve our understanding of recognition and self-assembly in the biological context.

  19. Self-assembly of latex particles for colloidal crystals

    Institute of Scientific and Technical Information of China (English)

    Zhirong Li; Jingxia wang; Yanlin Song

    2011-01-01

    Self-assembly of latex particles is of great importance for fabricating various functional colloidal crystals.In this paper,we review recent research on the self-assembly of latex particles for colloidal crystals,covering the assembly forces and various assembly approaches of latex particles,including self-assembly by gravity sedimentation,vertical deposition,physical confinement,electric field,and magnetic field.Furthermore,some simple methods for assembling latex particles such as spin coating,spray coating,and printing are also summarized.

  20. Magnetic manipulation of self-assembled colloidal asters.

    Energy Technology Data Exchange (ETDEWEB)

    Snezhko, A.; Aranson, I. S. (Materials Science Division)

    2011-09-01

    Self-assembled materials must actively consume energy and remain out of equilibrium to support structural complexity and functional diversity. Here we show that a magnetic colloidal suspension confined at the interface between two immiscible liquids and energized by an alternating magnetic field dynamically self-assembles into localized asters and arrays of asters, which exhibit locomotion and shape change. By controlling a small external magnetic field applied parallel to the interface, we show that asters can capture, transport, and position target microparticles. The ability to manipulate colloidal structures is crucial for the further development of self-assembled microrobots

  1. Dynamic self-assembly of 'living' polymeric chains

    Science.gov (United States)

    Deng, Binghui; Shi, Yunfeng

    2017-01-01

    We report a dynamic self-assembly system of 'living' polymeric chains sustained by chemistry using reactive molecular dynamics simulations. The linear polymeric chains consist of self-assembled nanoparticles connected by metastable linker molecules. As such, the polymeric chains, once assembled, undergo spontaneous dissociation driven by thermodynamics. However, with a continuous supply of linker molecules and the stored chemical energy therein, the polymeric chains can survive and maintain a steady state averaged chain length. These dynamically self-assembled polymeric chains are analogous to biological systems that both are thermodynamically metastable, yet dynamically stable upon continuous influx of matter and energy.

  2. The Lost Work in Dissipative Self-Assembly

    Science.gov (United States)

    Koper, G. J. M.; Boekhoven, J.; Hendriksen, W. E.; van Esch, J. H.; Eelkema, R.; Pagonabarraga, I.; Rubí, J. M.; Bedeaux, D.

    2013-07-01

    A general thermodynamic analysis is given of dissipative self-assembly (DSA). Subsequently, the analysis is used to quantify the lost work in a recently published chemical realization of DSA (Boekhoven et al., Angew Chem Int Ed 49:4825, 2010) where a formation reaction produces the monomers that subsequently self-assemble and are finally annihilated by means of a destruction reaction. For this example, the work lost in self-assembly itself is found to be negligibly small compared to the work lost in the reactions driving the non-spontaneous formation reaction and the kinetically hindered destruction reaction.

  3. Self-assembly of amino acids on noble metal surfaces: universality of the amino acid bonding scheme

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, Joachim; Auwaerter, Willi; Marschall, Matthias; Barth, Johannes V. [Physik Department, TU Muenchen (Germany); Schiffrin, Agustin [Physik Department, TU Muenchen (Germany); Chemistry Department, University of British Columbia, Vancouver (Canada); Pennec, Yan; Weber-Bargioni, Alexander [Chemistry Department, University of British Columbia, Vancouver (Canada); Cvetko, Dean; Cossaro, Albano; Morgante, Alberto [INFM/TASC, Trieste (Italy)

    2009-07-01

    We investigated the molecular self-assemblies of L-methionine on Cu(111) and L-tyrosine on Ag(111) by means of STM, HAS, XPS and NEXAFS in UHV. The self-assembly of L-methionine on Cu(111) is strongly influenced by the substrate reactivity and reveals a temperature dependent structural transformation involving a chiral orientational switch and the emergence of an ordered 1D high temperature phase. XPS data show that this transformation is triggered by a thermally activated deprotonation of the NH{sub 3}{sup +} group. The ordered phase shows noncovalent molecular dimerization and alignment into chains which are commensurate with the underlying substrate. L-tyrosine on Ag(111) self-assembles into linear nanoribbons primarily following the substrate crystalline symmetry. A zwitterionic noncovalent molecular dimerization is observed, and NEXAFS data provide evidence of a non-flat adsorption of the phenol ring. This dimerization scheme is reminiscent of methionine on Cu(111) and Ag(111), and supports a universal self-assembling trend for amino acids on close-packed noble metal surfaces.

  4. Effect of a bulky lateral substitution by chlorine atom and methoxy group on self-assembling properties of lactic acid derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Stojanović, Maja, E-mail: maja.stojanovic@df.uns.ac.rs [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg D.Obradovića 4, 21000 Novi Sad (Serbia); Bubnov, Alexej [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Obadović, Dušanka Ž. [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg D.Obradovića 4, 21000 Novi Sad (Serbia); Hamplová, Věra [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic); Cvetinov, Miroslav [Department of Physics, Faculty of Sciences, University of Novi Sad, Trg D.Obradovića 4, 21000 Novi Sad (Serbia); Kašpar, Miroslav [Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague (Czech Republic)

    2014-07-01

    Several chiral liquid crystalline materials derived from the lactic acid have been studied with the aim to establish the effect of bulky lateral substituents on their self-assembling properties. A chlorine atom and methoxy group have been used as lateral substituents in ortho position to ether group position on phenyl ring far from the chiral centre. All the studied materials possess tilted ferroelectric smectic C* phase in a broad temperature range. In dependence on the molecular structure namely type of lateral substituent and length of the chiral chain, the cholesteric mesophase, orthogonal paraelectric smectic A* and crystal mesophases have been detected. Lateral chlorine substitution results in decrease of both the clearing point and crystallisation temperature as well as in a distinct increase of spontaneous polarization. Bulky methoxy substitution slightly suppresses the spontaneous polarisation but strongly increases the melting point that results in monotropic peculiarity of the SmC* phase. Mesomorphic, spontaneous, structural and dielectric properties of the substituted compounds were established and compared to those of the non-substituted ones in order to contribute to better understanding of the structure–property relationship for such chiral self-assembling materials. - Highlights: • Chiral liquid crystalline materials derived from the lactic acid have been studied. • Effect of bulky lateral substituents on self-assembling properties has been established. • Bulky methoxy substitution suppresses spontaneous polarisation but increases the melting point. • The compounds might have a strong potential for many advanced electro-optic applications.

  5. Supramolecular chemistry-general principles and selected examples from anion recognition and metallosupramolecular chemistry.

    Science.gov (United States)

    Albrecht, Markus

    2007-12-01

    This review gives an introduction into supramolecular chemistry describing in the first part general principles, focusing on terms like noncovalent interaction, molecular recognition, self-assembly, and supramolecular function. In the second part those will be illustrated by simple examples from our laboratories. Supramolecular chemistry is the science that bridges the gap between the world of molecules and nanotechnology. In supramolecular chemistry noncovalent interactions occur between molecular building blocks, which by molecular recognition and self-assembly form (functional) supramolecular entities. It is also termed the "chemistry of the noncovalent bond." Molecular recognition is based on geometrical complementarity based on the "key-and-lock" principle with nonshape-dependent effects, e.g., solvatization, being also highly influential. Self-assembly leads to the formation of well-defined aggregates. Hereby the overall structure of the target ensemble is controlled by the symmetry features of the certain building blocks. Finally, the aggregates can possess special properties or supramolecular functions, which are only found in the ensemble but not in the participating molecules. This review gives an introduction on supramolecular chemistry and illustrates the fundamental principles by recent examples from our group.

  6. Inspection of directed self-assembly defects

    Science.gov (United States)

    Ito, Chikashi; Durant, Stephane; Lange, Steve; Harukawa, Ryota; Miyagi, Takemasa; Nagaswami, Venkat; Rincon Delgadillo, Paulina; Gronheid, Roel; Nealey, Paul

    2014-03-01

    Directed Self-Assembly (DSA) is considered as a potential patterning solution for future generation devices. One of the most critical challenges for translating DSA into high volume manufacturing is to achieve low defect density in the DSA patterning process. The defect inspection capability is fundamental to defect reduction in any process, particularly the DSA process, as it provides engineers with information on the numbers and types of defects. While the challenges of other candidates of new generation lithography are well known (for example, smaller size, noise level due to LER etc.), the DSA process causes certain defects that are unique. These defects are nearly planar and in a material which produces very little defect scattering signal. These defects, termed as "dislocation" and "disclination" have unique shapes and have very little material contrast. While large clusters of these unique defects are easy to detect, single dislocation and disclination defects offer considerable challenge during inspection. In this investigation, etching the DSA pattern into a silicon (Si) substrate structure to enhance defect signal and Signal-to-Noise Ratio (SNR) is studied. We used a Rigorous Coupled-Wave Analysis (RCWA) method for solving Maxwell's equations to simulate the DSA unique defects and calculate inspection parameters. Controllable inspection parameters include various illumination and collection apertures, wavelength band, polarization, noise filtering, focus, pixel size, and signal processing. From the RCWA simulation, we compared SNR between "Post-SiN etch" and "Post-SiN+Si-substrate etch" steps. The study is also extended to investigate wafer-level data at post etch inspection. Both the simulations and inspection tool results showed dramatic signal and SNR improvements when the pattern was etched into the SiN+Si substrate allowing capture of DSA unique defect types.

  7. Self-Assembled Nanostructured Health Monitoring Sensors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed NASA SBIR program is to design, fabricate and evaluate the performance of self-assembled nanostructured sensors for the health...

  8. Self-Assembling Wireless Autonomous Reconfigurable Modules (SWARM) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. and the MIT Space Systems Laboratory propose Self-assembling, Wireless, Autonomous, Reconfigurable Modules (SWARM) as an innovative approach to...

  9. Predicting self-assembled patterns on spheres with multicomponent coatings.

    Science.gov (United States)

    Edlund, Erik; Lindgren, Oskar; Jacobi, Martin Nilsson

    2014-05-01

    Patchy colloids are promising candidates for building blocks in directed self-assembly, but large scale synthesis of colloids with controlled surface patterns remains challenging. One potential fabrication method is to self-assemble the surface patterns themselves, allowing complex morphologies to organize spontaneously. For this approach to be competitive, prediction and control of the pattern formation process are necessary. However, structure formation in many-body systems is fundamentally hard to understand, and new theoretical methods are needed. Here we present a theory for self-assembling pattern formation in multi-component systems on the surfaces of colloidal particles, formulated as an analytic technique that predicts morphologies directly from the interactions in an effective model. As a demonstration we formulate an isotropic model of alkanethiols on gold, a suggested system for directed self-assembly, and predict its morphologies and transitions as a function of the interaction parameters.

  10. Magnetic structure of two- and three-dimensional supramolecular compounds

    Energy Technology Data Exchange (ETDEWEB)

    Decurtins, S.; Schmalle, H.W.; Pellaux, R. [Zurich Univ. (Switzerland); Fischer, P.; Fauth, F. [Paul Scherrer Inst. (PSI), Villigen (Switzerland); Ouladdiaf, B. [Institut Max von Laue - Paul Langevin, 75 - Paris (France)

    1997-09-01

    Supramolecular chiral networks of oxalato-bridged transition metals show either two- or three-dimensional structural features. The magnetic structures of such compounds have been investigated by means of elastic neutron powder diffraction. (author) 2 figs., 2 refs.

  11. Electronic polymers and DNA self-assembled in nanowire transistors.

    Science.gov (United States)

    Hamedi, Mahiar; Elfwing, Anders; Gabrielsson, Roger; Inganäs, Olle

    2013-02-11

    Aqueous self-assembly of DNA and molecular electronic materials can lead to the creation of innumerable copies of identical devices, and inherently programmed complex nanocircuits. Here self-assembly of a water soluble and highly conducting polymer PEDOT-S with DNA in aqueous conditions is shown. Orientation and assembly of the conducting DNA/PEDOT-S complex into electrochemical DNA nanowire transistors is demonstrated.

  12. Self-assembly drugs: from micelles to nanomedicine.

    Science.gov (United States)

    Messina, Paula V; Besada-Porto, Jose Miguel; Ruso, Juan M

    2014-03-01

    Self-assembly has fascinated many scientists over the past few decades. Rapid advances and widespread interest in the study of this subject has led to the synthesis of an ever-increasing number of elegant and intricate functional structures with sizes that approach nano- and mesoscopic dimensions. Today, it has grown into a mature field of modern science whose interfaces with many disciplines have provided invaluable opportunities for crossing boundaries for scientists seeking to design novel molecular materials exhibiting unusual properties, and for researchers investigating the structure and function of biomolecules. Consequently, self-assembly transcends the traditional divisional boundaries of science and represents a highly interdisciplinary field including nanotechnology and nanomedicine. Basically, self-assembly focuses on a wide range of discrete molecules or molecular assemblies and uses physical transformations to achieve its goals. In this Review, we present a comprehensive overview of the advances in the field of drug self-assembly and discuss in detail the synthesis, self-assembly behavior, and physical properties as well as applications. We refer the reader to past reviews dealing with colloidal molecules and colloidal self-assembly. In the first part, we will discuss, compare, and link the various bioinformatic procedures: Molecular Dynamics and Quantitative Structure Activity Relationship. The second section deals with the self-assembly behavior in more detail, in which we focus on several experimental techniques, selected according to the depth of knowledge obtained. The last part will review the advances in drug-protein assembly. Nature provides many examples of proteins that form their substrate binding sites by bringing together the component pieces in a process of self-assembly. We will focus in the understanding of physical properties and applications developing thereof.

  13. Self-assembled multicompartment liquid crystalline lipid carriers for protein, peptide, and nucleic acid drug delivery.

    Science.gov (United States)

    Angelova, Angelina; Angelov, Borislav; Mutafchieva, Rada; Lesieur, Sylviane; Couvreur, Patrick

    2011-02-15

    with large water channels. Time-resolved X-ray diffraction (XRD) scans allowed us to detect metastable intermediate and coexisting structures and monitor the temperature-induced phase sequences of mixed systems containing glycerol monooleate, a soluble protein macromolecule, and an interfacial curvature modulating agent. These observed states correspond to the stages of the growth of the nanofluidic channel network. With the application of a thermal stimulus, the system becomes progressively more ordered into a double-diamond cubic lattice formed by a bicontinuous lipid membrane. High-resolution freeze-fracture electronic microscopy indicates that nanodomains are induced by the inclusion of proteins into nanopockets of the supramolecular cubosomic assemblies. These results contribute to the understanding of the structure and dynamics of functionalized self-assembled lipid nanosystems during stimuli-triggered LC phase transformations.

  14. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel.

    Science.gov (United States)

    O'Leary, Lesley E R; Fallas, Jorge A; Bakota, Erica L; Kang, Marci K; Hartgerink, Jeffrey D

    2011-08-28

    Replicating the multi-hierarchical self-assembly of collagen has long-attracted scientists, from both the perspective of the fundamental science of supramolecular chemistry and that of potential biomedical applications in tissue engineering. Many approaches to drive the self-assembly of synthetic systems through the same steps as those of natural collagen (peptide chain to triple helix to nanofibres and, finally, to a hydrogel) are partially successful, but none simultaneously demonstrate all the levels of structural assembly. Here we describe a peptide that replicates the self-assembly of collagen through each of these steps. The peptide features collagen's characteristic proline-hydroxyproline-glycine repeating unit, complemented by designed salt-bridged hydrogen bonds between lysine and aspartate to stabilize the triple helix in a sticky-ended assembly. This assembly is propagated into nanofibres with characteristic triple helical packing and lengths with a lower bound of several hundred nanometres. These nanofibres form a hydrogel that is degraded by collagenase at a similar rate to that of natural collagen.

  15. Water-Regulated Self-Assembly Structure Transformation and Gelation Behavior Prediction Based on a Hydrazide Derivative.

    Science.gov (United States)

    Li, Yajie; Ran, Xia; Li, Qiuyue; Gao, Qiongqiong; Guo, Lijun

    2016-08-05

    Herein, we report the water-regulated supramolecular self-assembly structure transformation and the predictability of the gelation ability based on an azobenzene derivative bearing a hydrazide group, namely, N-(3,4,5-tributoxyphenyl)-N'-4-[(4-hydroxyphenyl)azophenyl] benzohydrazide (BNB-t4). The regulation effects are demonstrated in the morphological transformation from spherical to lamellar particles then back to spherical in different solvent ratios of n-propanol/water. The self-assembly behavior of BNB-t4 was characterized by minimum gelation concentration, microstructure, thermal, and mechanical stabilities. From the spectroscopy studies, it is suggested that gel formation of BNB-t4 is mainly driven by intermolecular hydrogen bonding, accompanied with the contribution from π-π stacking as well as hydrophobic interactions. The successfully established correlation between the self-assembly behavior and solubility parameters yields a facile way to predict the gelation performance of other molecules in other single or mixed solvents.

  16. Self-Assembly and Nanostructures in Organogels Based on a Bolaform Cholesteryl Imide Compound with Conjugated Aromatic Spacer

    Directory of Open Access Journals (Sweden)

    Ti-Feng Jiao

    2013-12-01

    Full Text Available The self-assembly of small functional molecules into supramolecular structures is a powerful approach toward the development of new nanoscale materials and devices. As a class of self-assembled materials, low weight molecular organic gelators, organized in special nanoarchitectures through specific non-covalent interactions, has become one of the hot topics in soft matter research due to their scientific values and many potential applications. Here, a bolaform cholesteryl imide compound with conjugated aromatic spacer was designed and synthesized. The gelation behaviors in 23 solvents were investigated as efficient low-molecular-mass organic gelator. The experimental results indicated that the morphologies and assembly modes of as-formed organogels can be regulated by changing the kinds of organic solvents. Scanning electron microscopy and atomic force microscopy observations revealed that the gelator molecule self-assemble into different aggregates, from wrinkle and belt to fiber with the change of solvents. Spectral studies indicated that there existed different H-bond formations between imide groups and assembly modes. Finally, some rational assembly modes in organogels were proposed and discussed. The present work may give some insight to the design and character of new organogelators and soft materials with special structures.

  17. Multi-hierarchical self-assembly of a collagen mimetic peptide from triple helix to nanofibre and hydrogel

    Science.gov (United States)

    O'Leary, Lesley E. R.; Fallas, Jorge A.; Bakota, Erica L.; Kang, Marci K.; Hartgerink, Jeffrey D.

    2011-10-01

    Replicating the multi-hierarchical self-assembly of collagen has long-attracted scientists, from both the perspective of the fundamental science of supramolecular chemistry and that of potential biomedical applications in tissue engineering. Many approaches to drive the self-assembly of synthetic systems through the same steps as those of natural collagen (peptide chain to triple helix to nanofibres and, finally, to a hydrogel) are partially successful, but none simultaneously demonstrate all the levels of structural assembly. Here we describe a peptide that replicates the self-assembly of collagen through each of these steps. The peptide features collagen's characteristic proline-hydroxyproline-glycine repeating unit, complemented by designed salt-bridged hydrogen bonds between lysine and aspartate to stabilize the triple helix in a sticky-ended assembly. This assembly is propagated into nanofibres with characteristic triple helical packing and lengths with a lower bound of several hundred nanometres. These nanofibres form a hydrogel that is degraded by collagenase at a similar rate to that of natural collagen.

  18. Structures Self-Assembled Through Directional Solidification

    Science.gov (United States)

    Dynys, Frederick W.; Sayir, Ali

    2005-01-01

    dry plasma etch. The wet chemical etches the silicon away, exposing the TiSi2 rods, whereas plasma etching preferentially etches the Si-TiSi2 interface to form a crater. The porous architectures are applicable to fabricating microdevices or creating templates for part fabrication. The porous rod structure can serve as a platform for fabricating microplasma devices for propulsion or microheat exchangers and for fabricating microfilters for miniatured chemical reactors. Although more work is required, self-assembly from DSE can have a role in microdevice fabrication.

  19. Multicomponent Self-assembly:Spontaneous Formation of a Metallomacrocycle from Two Quinoline Based Linear Ligands and Four Silver(Ⅰ) Nitrates

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@ Using metal ions to control the self-assembly of metallosupramolecules of varying architecture is one of the fascinating developments in supramolecular chemistry[1,2],particularly those concerned with the deliberate construction of molecular aggregates,like helices,rotaxanes,catenanes,knots,cages[3~6] and the crystal engineering of two or three dimensional networks with varied topology and interpenetration[7~10].Coordination bonds have proved themselves to be one of the most useful connectors in supramolecular self-assembly due to their versatile geometrical modes(e.g.linear,trigonal,square plane,tetrahedral,octahedral) in bond formations.By careful design of tailored ligands,various novel supramolecular architectures have been constructed.Recently,angular bi- or tridentate and other polydentate ligands have aroused a special interest,and a variety of molecular squares,boxes and cages[1~14] with internal cavity or void have been reported,in which many nanoscale structures are formed[6,15,16].We have been interested in the construction of metal based supramolecular structures with polydentate ligands[17~20] and herein report a new metallomacrocyclic complex assembled from two linear polydentate ligands and silver(Ⅰ) nitrate.

  20. Transfer of chirality from adsorbed chiral molecules to the substrates highlighted by circular dichroism in angle-resolved valence photoelectron spectroscopy

    DEFF Research Database (Denmark)

    Contini, G.; Turchini, S.; Sanna, Simone

    2012-01-01

    Studies of self-assembled chiral molecules on achiral metallic surfaces have mostly focused on the determination of the geometry of adsorbates and their electronic structure. The aim of this paper is to provide direct information on the chirality character of the system and on the chirality trans...

  1. Self-assembled structures of 4‧-([2,2‧:6‧,2″-terpyridine]-4‧-yl)-[1,1‧-phenyl]-4-carboxylic acid molecules induced by metal atoms on ag(111) surface

    Science.gov (United States)

    Ling, Jie; Lu, Yan; Liu, Lacheng; Liu, Xiaoqing; Wang, Li

    2016-07-01

    The self-assembled supramolecular structures of 4‧-([2,2‧:6‧,2″-terpyridine]-4‧-yl)-[1,1‧-phenyl]-4-carboxylic acid (Y) molecules on Ag(111) surface induced by metal elements have been studied by scanning tunneling microscopy. After annealing, the as-deposited monolayer of Y molecules shows four kinds of well-ordered structures due to the competition between dipole interaction, hydrogen bonding and Van der Waals interaction. Introduced Cu atoms drive ordered monolayer into a self-assembled supramolecular structure with bright spots. Deposited Ag atoms cause the monolayer change to a windmill shape self-assembled supramolecular structure. Though the Cu and Ag are in the same group of the periodic table, a Cu atom connects two COOH groups and an Ag atom trends to bind to three COOH groups during the formation of metal-organic bonding within both induced structures. Such result suggests that the self-assembled structures formed by metal-organic coordination bonding can be controlled by choosing the number of metal-organic coordination bonds, which can be helpful to design metal-organic molecular architectures comprising functional building blocks.

  2. Dynamic peptide libraries for the discovery of supramolecular nanomaterials

    Science.gov (United States)

    Pappas, Charalampos G.; Shafi, Ramim; Sasselli, Ivan R.; Siccardi, Henry; Wang, Tong; Narang, Vishal; Abzalimov, Rinat; Wijerathne, Nadeesha; Ulijn, Rein V.

    2016-11-01

    Sequence-specific polymers, such as oligonucleotides and peptides, can be used as building blocks for functional supramolecular nanomaterials. The design and selection of suitable self-assembling sequences is, however, challenging because of the vast combinatorial space available. Here we report a methodology that allows the peptide sequence space to be searched for self-assembling structures. In this approach, unprotected homo- and heterodipeptides (including aromatic, aliphatic, polar and charged amino acids) are subjected to continuous enzymatic condensation, hydrolysis and sequence exchange to create a dynamic combinatorial peptide library. The free-energy change associated with the assembly process itself gives rise to selective amplification of self-assembling candidates. By changing the environmental conditions during the selection process, different sequences and consequent nanoscale morphologies are selected.

  3. Self-Assembled Pyridine-Dipyrrolate Cages.

    Science.gov (United States)

    Zhang, Huacheng; Lee, Juhoon; Lammer, Aaron D; Chi, Xiaodong; Brewster, James T; Lynch, Vincent M; Li, Hao; Zhang, Zhan; Sessler, Jonathan L

    2016-04-06

    An inherently nonlinear pyridine dipyrrolate ligand, namely 2,6-bis(3,4-diethyl-5-carboxy-1H-pyrrol-2yl)pyridine (compound 1), is able to distinguish between different zinc(II) cation sources, namely Zn(acac)2 and Zn(OAc)2, respectively. This differentiation is manifest both in terms of the observed fluorescent behavior in mixed organic media and the reaction chemistry. Treatment of 1 with Zn(acac)2 gives rise to a cage dimer, cage-1, wherein two molecules of compound 1 act as double bridging units to connect two individual cage subunits. As inferred from X-ray crystallographic studies, this cage system consists of discrete zinc dimers with hydroxide bridges that, with the assistance of bound DMF solvent molecules, serve to fix the geometry and orientation of the pyridine dipyrrolate building blocks. When a different zinc source, Zn(OAc)2, is used to carry out an ostensibly similar complexation reaction with compound 1, an acetate-bridged 1D abacus-like cage polymer is obtained as inferred from X-ray diffraction analysis. This extended solid state structure, cage-2, contains individual zinc dimer cage submits and appears stabilized by solvent molecules (DMF) and the counteranion (acetate). Rod-like assemblies are also observed by DLS and SEM. This construct, in contrast to cage-1, proved fluorescent in mixed organic media. The structure of the ligand itself (i.e., in the absence of Zn(II)) was confirmed by X-ray crystallographic analysis and was found to assemble into a supramolecular polymer. Conversion to a dimer form was seen upon the addition of TBAOAc. On the basis of the metric parameters, the structures seen in the solid state are stabilized via hydrogen bonding interactions involving solvent molecules.

  4. Thrombogenic collagen-mimetic peptides: Self-assembly of triple helix-based fibrils driven by hydrophobic interactions.

    Science.gov (United States)

    Cejas, Mabel A; Kinney, William A; Chen, Cailin; Vinter, Jeremy G; Almond, Harold R; Balss, Karin M; Maryanoff, Cynthia A; Schmidt, Ute; Breslav, Michael; Mahan, Andrew; Lacy, Eilyn; Maryanoff, Bruce E

    2008-06-24

    Collagens are integral structural proteins in animal tissues and play key functional roles in cellular modulation. We sought to discover collagen model peptides (CMPs) that would form triple helices and self-assemble into supramolecular fibrils exhibiting collagen-like biological activity without preorganizing the peptide chains by covalent linkages. This challenging objective was accomplished by placing aromatic groups on the ends of a representative 30-mer CMP, (GPO)(10), as with l-phenylalanine and l-pentafluorophenylalanine in 32-mer 1a. Computational studies on homologous 29-mers 1a'-d' (one less GPO), as pairs of triple helices interacting head-to-tail, yielded stabilization energies in the order 1a' > 1b' > 1c' > 1d', supporting the hypothesis that hydrophobic aromatic groups can drive CMP self-assembly. Peptides 1a-d were studied comparatively relative to structural properties and ability to stimulate human platelets. Although each 32-mer formed stable triple helices (CD) spectroscopy, only 1a and 1b self-assembled into micrometer-scale fibrils. Light microscopy images for 1a depicted long collagen-like fibrils, whereas images for 1d did not. Atomic force microscopy topographical images indicated that 1a and 1b self-organize into microfibrillar species, whereas 1c and 1d do not. Peptides 1a and 1b induced the aggregation of human blood platelets with a potency similar to type I collagen, whereas 1c was much less effective, and 1d was inactive (EC(50) potency: 1a/1b > 1c > 1d). Thus, 1a and 1b spontaneously self-assemble into thrombogenic collagen-mimetic materials because of hydrophobic aromatic interactions provided by the special end-groups. These findings have important implications for the design of biofunctional CMPs.

  5. Self-assembly of conjugated oligomers and polymers at the interface: structure and properties.

    Science.gov (United States)

    Xu, Lirong; Yang, Liu; Lei, Shengbin

    2012-08-01

    In this review, we give a brief account on the recent scanning tunneling microscopy investigation of interfacial structures and properties of π-conjugated semiconducting oligomers and polymers, either at the solid-air (including solid-vacuum) or at the solid-liquid interface. The structural aspects of the self-assembly of both oligomers and polymers are highlighted. Conjugated oligomers can form well ordered supramolecular assemblies either at the air-solid or liquid-solid interface, thanks to the relatively high mobility and structural uniformity in comparison with polymers. The backbone structure, substitution of side chains and functional groups can affect the assembling behavior significantly, which offers the opportunity to tune the supramolecular structure of these conjugated oligomers at the interface. For conjugated polymers, the large molecular weight limits the mobility on the surface and the distribution in size also prevents the formation of long range ordered supramolecular assembly. The submolecular resolution obtained on the assembling monolayers enables a detailed investigation of the chain folding at the interface, both the structural details and the effect on electronic properties. Besides the ability in studying the assembling structures at the interfaces, STM also provides a reasonable way to evaluate the distribution of the molecular weight of conjugated polymers by statistic of the contour length of the adsorbed polymer chains. Both conjugated oligomers and polymers can form composite assemblies with other materials. The ordered assembly of oligomers can act as a template to controllably disperse other molecules such as coronene or fullerene. These investigations open a new avenue to fine tune the assembling structure at the interface and in turn the properties of the composite materials. To summarize scanning tunneling microscopy has demonstrated its surprising ability in the investigation of the assembling structures and properties of

  6. 共聚物的自组装研究进展%Progress in Self-assembly of the Copolymers

    Institute of Scientific and Technical Information of China (English)

    周平; 马晓燕; 王罡; 周冬; 唐林

    2012-01-01

    Self-assembly of copolymers is the process by which a system of molecules relied on noncovalent interaction spontaneously assemble into a stable and structure-determinated molecular aggregates or supramolecular structures with specific functions in the mean time. Well-organized structure of function materials can be attained through the self-assembly of copolymers, and these function materials have large potential applications in biomedicine, drug delivery, smart materials. The previous studies have revealed that the self-assembly morphologies of different structural copolymers and their functions are diverse, and can be tuned by controlling environmental conditions, such as pH, temperature, etc. In this paper, we review the self-assembly of copolymers with different chemical structures and the main influencing factors of self-assembly. Besides, the relationships among copolymer structures, the morphologies of self assembly as well as the function are involved.%自组装是分子间通过非共价键相互作用自发组合形成的一类结构明确、稳定,同时具有某种特定功能或性能的分子聚集体或超分子结构的现象。利用共聚物自组装技术可以制备高度有序介观形貌的功能材料,这些材料:有望在生物医学、药物释放、智能材料等领域得到广泛的应用。研究表明,不同结构的共聚物的自组装行为和功能一般不同,同时环境条件,如温度、pH值等也对共聚物自组装行为有很大影响。本文从共聚物结构及外部环境条件两个方面综述了近几年来共聚物的自组装行为规律,并分析了相关自组装结构应用的研究进展。

  7. Synthesis, optical properties, and helical self-assembly of a bivaline-containing tetraphenylethene

    Science.gov (United States)

    Li, Hongkun; Zheng, Xiaoyan; Su, Huimin; Lam, Jacky W. Y.; Sing Wong, Kam; Xue, Shan; Huang, Xuejiao; Huang, Xuhui; Li, Bing Shi; Tang, Ben Zhong

    2016-01-01

    A chiral tetraphenylethene derivative with two valine-containing attachments (TPE-DVAL), was synthesized by Cu(I)-catalyzed azide-alkyne “click” reaction. The optical properties and self-assembling behaviours of TPE-DVAL were investigated. The molecule is non-emissive and circular dichroism (CD)-silent in solution, but shows strong fluorescence and Cotton effects in the aggregation state, demonstrating aggregation-induced emission (AIE) and CD (AICD) characteristics. TPE-DVAL exhibits good circularly polarized luminescence (CPL) when depositing on the surface of quartz to allow the evaporation of its 1,2-dichloroethane solution. SEM and TEM images of the molecule show that the molecule readily self-assembles into right-handed helical nanofibers upon the evaporation of its solvent of DCE. The molecular alignments and interactions in assembling process are further explored through XRD analysis and computational simulation. The driving forces for the formation of the helical fibers were from the cooperative effects of intermolecular hydrogen bonding, π-π interactions and steric effect.

  8. Self-Assembled, Iridescent, Crustacean-Mimetic Nanocomposites with Tailored Periodicity and Layered Cuticular Structure.

    Science.gov (United States)

    Wang, Baochun; Walther, Andreas

    2015-11-24

    Natural high-performance materials inspire the pursuit of ordered hard/soft nanocomposite structures at high fractions of reinforcements and with balanced molecular interactions. Herein, we develop a facile, waterborne self-assembly pathway to mimic the multiscale cuticle structure of the crustacean armor by combining hard reinforcing cellulose nanocrystals (CNCs) with soft poly(vinyl alcohol) (PVA). We show iridescent CNC nanocomposites with cholesteric liquid-crystal structure, in which different helical pitches and photonic band gaps can be realized by varying the CNC/PVA ratio. We further show that multilayered crustacean-mimetic materials with tailored periodicity and layered cuticular structure can be obtained by sequential preparation pathways. The transition from a cholesteric to a disordered structure occurs for a critical polymer concentration. Correspondingly, we find a transition from stiff and strong mechanical behavior to materials with increasing ductility. Crack propagation studies using scanning electron microscopy visualize the different crack growth and toughening mechanisms inside cholesteric nanocomposites as a function of the interstitial polymer content for the first time. Different extents of crack deflection, layered delamination, ligament bridging, and constrained microcracking can be observed. Drawing of highly plasticized films sheds light on the mechanistic details of the transition from a cholesteric/chiral nematic to a nematic structure. The study demonstrates how self-assembly of biobased CNCs in combination with suitable polymers can be used to replicate a hierarchical biological structure and how future design of these ordered multifunctional nanocomposites can be optimized by understanding mechanistic details of deformation and fracture.

  9. A redox responsive, fluorescent supramolecular metallohydrogel consists of nanofibers with single-molecule width

    KAUST Repository

    Zhang, Ye

    2013-04-03

    The integration of a tripeptide derivative, which is a versatile self-assembly motif, with a ruthenium(II)tris(bipyridine) complex affords the first supramolecular metallo-hydrogelator that not only self assembles in water to form a hydrogel but also exhibits gel-sol transition upon oxidation of the metal center. Surprisingly, the incorporation of the metal complex in the hydrogelator results in the nanofibers, formed by the self-assembly of the hydrogelator in water, to have the width of a single molecule of the hydrogelator. These results illustrate that metal complexes, besides being able to impart rich optical, electronic, redox, or magnetic properties to supramolecular hydrogels, also offer a unique geometrical control to prearrange the self-assembly motif prior to self-assembling. The use of metal complexes to modulate the dimensionality of intermolecular interactions may also help elucidate the interactions of the molecular nanofibers with other molecules, thus facilitating the development of supramolecular hydrogel materials for a wide range of applications. © 2013 American Chemical Society.

  10. Constructing supramolecular nanostructure by hydrogen-bonding

    Institute of Scientific and Technical Information of China (English)

    LI YiBao; ZENG QingDao; WANG ZhiHui; QI GuiCun; GUAN Li; FAN XiaoLin; WANG Chen

    2008-01-01

    The diquinoxalino (2.3-2'.3'-a.c) phenazine (DQP), containing 6 nitrogen atoms, was synthesized, and its adsorption and self-assembling behavior on highly oriented pyrolytic graphite (HOPG) was studied by scanning tunneling microscopy (STM) under ambient conditions. With 1,14-tetradecanedioic acid as a bridge, uniform two-dimensional arrays of 1,14-tetradecanedioic acid/DQP nanostrueture were suc-cessfully fabricated. The result illustrates that it is possible to construct and control supramolecular nanostructure by intermolecular hydrogen-bonding.

  11. The magneto-elastica: from self-buckling to self-assembly

    KAUST Repository

    Vella, D.

    2013-12-04

    Spherical neodymium-iron-boron magnets are permanent magnets that can be assembled into a variety of structures owing to their high magnetic strength. A one-dimensional chain of these magnets responds to mechanical loadings in a manner reminiscent of an elastic rod. We investigate the macroscopic mechanical properties of assemblies of ferromagnetic spheres by considering chains, rings and chiral cylinders of magnets. Based on energy estimates and simple experiments, we introduce an effective magnetic bending stiffness for a chain of magnets and show that, used in conjunction with classic results for elastic rods, it provides excellent estimates for the buckling and vibration dynamics of magnetic chains. We then use this estimate to understand the dynamic self-assembly of a cylinder from an initially straight chain of magnets.

  12. Controlled crystallization of hydroxyapatite under hexadecylamine self-assembled monolayer

    Institute of Scientific and Technical Information of China (English)

    黄苏萍; 周科朝; 刘咏; 黄伯云

    2003-01-01

    The role of self-assembled monolayer in inducing the crystal growth was investigated by X-ray diffractions (XRD), and scanning electron microscopy (SEM). Results show that crystallization in the absence of monolayer results in a mixture of poorly crystallized calcium phosphates, including hydroxyapatite (HAP) and octacalcium phosphate (OCP), while the presence of self-assembled monolayer gives rise to oriented and well crystallized HAP crystals. Moreover, the HAP crystal grows very quickly under the self-assembled monolayer, whereas very little calcium phosphate crystals grow without the monolayer. It is rationalized that the hexadecylamine monolayer with high polarity and charged density leads to increase supersaturation and lower the interfacial energy, which attributes to the HAP crystals nucleation. On the other hand, the positive headgroups construct the ordered "recognized site" with distinct size and topology, which results in the oriented HAP crystals deposit.

  13. Investigating collagen self-assembly with optical tweezers microrheology

    Science.gov (United States)

    Forde, Nancy; Shayegan, Marjan; Altindal, Tuba

    Collagen is the fundamental structural protein in vertebrates. Assembled from individual triple-helical proteins to make strong fibres, collagen is a beautiful example of a hierarchical self-assembling system. Using optical tweezers to perform microrheology measurements, we explore the dynamics of interactions between collagens responsible for their self-assembly and examine the development of heterogeneous mechanics during assembly into fibrillar gels. Telopeptides, short non-helical regions that flank the triple helix, have long been known to facilitate fibril self-assembly. We find that their removal not only slows down fibril nucleation but also results in a significant frequency-dependent reduction in the elastic modulus of collagens in solution. We interpret these results in terms of a model in which telopeptides facilitate transient intermolecular interactions, which enhance network connectivity in solution and lead to more rapid assembly in fibril-forming conditions. Current address: Department of Physics, McGill University.

  14. Self-assembly of DNA-functionalized colloids

    Directory of Open Access Journals (Sweden)

    P.E. Theodorakis

    2015-06-01

    Full Text Available Colloidal particles grafted with single-stranded DNA (ssDNA chains can self-assemble into a number of different crystalline structures, where hybridization of the ssDNA chains creates links between colloids stabilizing their structure. Depending on the geometry and the size of the particles, the grafting density of the ssDNA chains, and the length and choice of DNA sequences, a number of different crystalline structures can be fabricated. However, understanding how these factors contribute synergistically to the self-assembly process of DNA-functionalized nano- or micro-sized particles remains an intensive field of research. Moreover, the fabrication of long-range structures due to kinetic bottlenecks in the self-assembly are additional challenges. Here, we discuss the most recent advances from theory and experiment with particular focus put on recent simulation studies.

  15. Hydrodynamic Self-Assembly of Topographical Patterns on Soft Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Satish [Univ. of Minnesota, Minneapolis, MN (United States)

    2016-01-06

    The objective of this project is to use theoretical tools to explore fundamentally new ways of creating and controlling surface topography on soft materials (e.g., polymeric liquids, gels, colloidal suspensions) that make use of principles from hydrodynamics and self-assembly. Surface topography is known to have a significant impact on the optical, adhesive, and wetting properties of materials, so improved fundamental understanding of how to create and control it will help enable the tailoring of these properties to desired specifications. Self-assembly is the spontaneous organization of an ordered structure, and hydrodynamics often plays an important role in the self-assembly of soft materials. This research supported through this project has led to the discovery of a number of novel phenomena that are described in published journal articles. In this way, the research significantly adds to the fundamental understanding of the topics investigated.

  16. A novel autonomous self-assembly distributed swarm flying robot

    Institute of Scientific and Technical Information of China (English)

    Wei Hongxing; Li Ning; Liu Miao; Tan Jindong

    2013-01-01

    Swarm intelligence embodied by many species such as ants and bees has inspired scholars in swarm robotic researches.This paper presents a novel autonomous self-assembly distributed swarm flying robot-DSFR,which can drive on the ground,autonomously accomplish self-assembly and then fly in the air coordinately.Mechanical and electrical designs ofa DSFR module,as well as the kinematics and dynamics analysis,are specifically investigated.Meanwhile,this paper brings forward a generalized adjacency matrix to describe configurations of DSFR structures.Also,the distributed flight control model is established for vertical taking-off and horizontal hovering,which can be applied to control of DSFR systems with arbitrary configurations.Finally,some experiments are carried out to testify and validate the DSFR design,the autonomous self-assembly strategy and the distributed flight control laws.

  17. A Supramolecular Sensing Platform for Phosphate Anions and an Anthrax Biomarker in a Microfluidic Device

    NARCIS (Netherlands)

    Eker, Bilge; Yilmaz, Mahmut Deniz; Schlautmann, Stefan; Gardeniers, Johannes G.E.; Huskens, Jurriaan

    2011-01-01

    A supramolecular platform based on self-assembled monolayers (SAMs) has been implemented in a microfluidic device. The system has been applied for the sensing of two different analyte types: biologically relevant phosphate anions and aromatic carboxylic acids, which are important for anthrax detecti

  18. Elastic instability-mediated actuation by a supra-molecular polymer

    Science.gov (United States)

    Levin, Aviad; Michaels, Thomas C. T.; Adler-Abramovich, Lihi; Mason, Thomas O.; Müller, Thomas; Zhang, Bohan; Mahadevan, L.; Gazit, Ehud; Knowles, Tuomas P. J.

    2016-10-01

    In nature, fast, high-power-density actuation can be achieved through the release of stored elastic energy by exploiting mechanical instabilities in systems including the closure of the Venus flytrap and the dispersal of plant or fungal spores. Here, we use droplet microfluidics to tailor the geometry of a nanoscale self-assembling supra-molecular polymer to create a mechanical instability. We show that this strategy allows the build-up of elastic energy as a result of peptide self-assembly, and its release within milliseconds when the buckled geometry of the nanotube confined within microdroplets becomes unstable with respect to the straight form. These results overcome the inherent limitations of self-assembly for generating large-scale actuation on the sub-second timescale and illuminate the possibilities and performance limits of irreversible actuation by supra-molecular polymers.

  19. Self-Assembled DNA Templated Nano-wires and Circuits

    Science.gov (United States)

    Braun, Erez

    2000-03-01

    The realization that conventional microelectronics is approaching its miniaturization limits has motivated the search for an alternative route based on self-assembled nanometer-scale electronics. We have recently proposed a new approach based on the hybridization of biological and electronic materials (Braun E., Eichen Y., Sivan U. and Ben-Yoseph G., Nature 391, 775 (1998)). The concept relies on a two-step self-assembly process. The inherent molecular recognition capabilities of DNA molecules are first utilized to construct a network that serves as a template for the subsequent assembly of electronic materials into a circuit. The utilization of DNA and its associated enzymatic machinery enables: (a) self-assembly of complex substrates, (b) specific molecular addresses for the localization of electronic materials (e.g., gold colloids) by standard molecular biology techniques, (c) interdevice wiring and (d) bridging the microscopic structures to the macroscopic world. The self-assembly of nanometer scale electronics relies on two complementary developments. First, the ability to convert DNA molecules into thin conductive wires and second, the self-assembly of complex extended DNA templates. Our progress in these two directions will be presented. Regarding the first issue, a physical process resulting in condensation of gold colloids onto DNA molecules enables the assembly of thin gold wires (around 100-200 A wide) having, in principle, unlimited extensions. The second issue is developed in the context of recombinant DNA which allows the self-assembly of precise molecular junctions and networks. Specifically, we use RecA protein, which is the main protein responsible for genetic recombination in E. Coli bacteria, to construct DNA junctions at pre-designed addresses (sequences) on the molecules. The integration of these processes allows advancing nanometer-scale electronics. A realistic fabrication scheme for a room-temperature single-electron transistor

  20. Graphene controlled H- and J-stacking of perylene dyes into highly stable supramolecular nanostructures for enhanced photocurrent generation

    DEFF Research Database (Denmark)

    Gan, Shiyu; Zhong, Lijie; Engelbrekt, Christian;

    2014-01-01

    We report a new method for controlling H- and J-stacking in supramolecular self-assembly. Graphene nanosheets act as structure inducers to direct the self-assembly of a versatile organic dye, perylene into two distinct types of functional nanostructures, i.e. one-dimensional nanotubes via J......-stacking and two-dimensional branched nanobuds through H-stacking. Graphene integrated supramolecular nanocomposites are highly stable and show significant enhancement of photocurrent generation in these two configurations of photosensing devices, i.e. solid-state optoelectronic constructs and liquid...

  1. Chiral Cyclobutane β-Amino Acid-Based Amphiphiles: Influence of Cis/Trans Stereochemistry on Solution Self-Aggregation and Recognition.

    Science.gov (United States)

    Sorrenti, Alessandro; Illa, Ona; Pons, Ramon; Ortuño, Rosa M

    2015-09-08

    Novel diastereomeric anionic amphiphiles based on the rigid cyclobutane β-amino acid scaffold have been synthesized and deeply investigated with the aim of generating new functional supramolecular architectures on the basis of the rational design of original amphiphilic molecules and the control of their self-assembly. The main interest has been focused on the effect that cis/trans stereochemistry exerts on their molecular organization and recognition. In diluted solutions, the relative stereochemistry mainly influences the headgroup solvation and anionic-charge stabilization, i.e., better stabilized in the cis diastereoisomer due to intramolecular hydrogen-bonding and/or charge-dipole interactions. This provokes differences in their physicochemical behavior (pKa, cmc, conductivity) as well as in the structural parameters of the spherical micelles formed. Although both diastereoisomers form fibers that evolve with time from the spherical micelles, they display markedly different morphology and kinetics of formation. In the lyotropic liquid crystal domain, the greatest differences are observed at the highest concentrations and can be ascribed to different hydrogen-bonding and molecular packing imposed by the stereochemical constraints. Remarkably, the spherical micelles of the two anionic surfactants show dramatically diverse enantioselection ability for bilirubin enantiomers. In addition, both the surfactants form heteroaggregates with bilirubin at submicellar concentrations but with a different expression of supramolecular chirality. This points out that the unlike relative configuration of the two surfactants influences their chiral recognition ability as well as the fashion in which chirality is expressed at the supramolecular level by controlling the molecular organization in both micellar aggregates and surfactant/bilirubin heteroaggregates. All these differential features can be appropriate and useful for the design and development of new soft materials with

  2. Investigation on the Cyanine Dyes Supramolecular Assembly and Chiral Inducement by Fulvic Acid%黄腐酸对菁染料超分子组装及手性调控研究

    Institute of Scientific and Technical Information of China (English)

    张秀凤; 陈蕾; 杨千帆; 孙晓然; 陈宏博; 杨光; 唐亚林

    2014-01-01

    Using cyanine dyes supramolecular as molecular probes to mark FA has important significance in life sciences and pharmaceutical chemistry ,w hich can detect FA as drug efficacy mechanism and the change in physiological activity .In the pres-ent paper ,we investigated supramolecular assembly and chiral inducement of cyanine dyes template by FA with absorption and circular dichroism (CD) spectra .The result suggests that FA can induce cyanine dyes from J-aggregation to monomer along with different colors change and has strong affinity with cyanine dye monomer .The template of FA not only can translate the chirality of MTC H-aggregation to other two states ,but also induce ETC J-aggregation to molecular rearrangement and form left-handed helix of J-aggregates .Besides ,the association of PTC with FA ,i .e .binding to FA gave rise to the J-aggregation CD signals . Meanwhile ,it was inferred that the meso substituent of cyanine dyes play an important role in the interaction between FA and the J-aggregation:the smaller the meso substituent ,the higher the affinity interacted with FA .Clearly ,the binding abilities be-tween cyanine dyes and FA follow the order of MTC> ETC> PTC .These results support that the cyanine dyes supramolecular aggregates can be used as a kind of excellent molecular probes for specific recognition of FA and achieve the effect of visual in-spection .%利用菁染料超分子作为分子探针对黄腐酸进行标记,检测黄腐酸和药效机制,对于生命科学和药物化学领域的发展具有重要意义。采用紫外-可见吸收光谱和圆二色谱研究黄腐酸作为模板对不同结构菁染料超分子的组装及手性调控。结果表明:黄腐酸能诱导三种菁染料 J-聚集体解聚为单体并伴有体系表观颜色的变化,并与菁染料单体之间具有很高亲和力。黄腐酸作为模板不仅可以诱导M TC形成具有一定手性的H-聚集体,而且能使M TC的 H-聚集体的手性出现两次反

  3. Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Miguel Gama

    2010-02-01

    Full Text Available Hydrogel nanoparticles—also referred to as polymeric nanogels or macromolecular micelles—are emerging as promising drug carriers for therapeutic applications. These nanostructures hold versatility and properties suitable for the delivery of bioactive molecules, namely of biopharmaceuticals. This article reviews the latest developments in the use of self-assembled polymeric nanogels for drug delivery applications, including small molecular weight drugs, proteins, peptides, oligosaccharides, vaccines and nucleic acids. The materials and techniques used in the development of self-assembling nanogels are also described.

  4. Self-assembly of two-dimensional DNA crystals

    Institute of Scientific and Technical Information of China (English)

    SONG Cheng; CHEN Yaqing; WEI Shuai; YOU Xiaozeng; XIAO Shoujun

    2004-01-01

    Self-assembly of synthetic oligonucleotides into two-dimensional lattices presents a 'bottom-up' approach to the fabrication of devices on nanometer scale. We report the design and observation of two-dimensional crystalline forms of DNAs that are composed of twenty-one plane oligonucleotides and one phosphate-modified oligonucleotide. These synthetic sequences are designed to self-assemble into four double-crossover (DX) DNA tiles. The 'sticky ends' of these tiles that associate according to Watson-Crick's base pairing are programmed to build up specific periodic patterns upto tens of microns. The patterned crystals are visualized by the transmission electron microscopy.

  5. Self-assembly of flagellin on Au(111) surfaces.

    Science.gov (United States)

    González Orive, Alejandro; Pissinis, Diego E; Diaz, Carolina; Miñán, Alejandro; Benítez, Guillermo A; Rubert, Aldo; Daza Millone, Antonieta; Rumbo, Martin; Hernández Creus, Alberto; Salvarezza, Roberto C; Schilardi, Patricia L

    2014-11-01

    The adsorption of flagellin monomers from Pseudomonas fluorescens on Au(111) has been studied by Atomic Force Microscopy (AFM), Scanning Tunneling Microscopy (STM), X-ray Photoelectron Spectroscopy (XPS), Surface Plasmon Resonance (SPR), and electrochemical techniques. Results show that flagellin monomers spontaneously self-assemble forming a monolayer thick protein film bounded to the Au surface by the more hydrophobic subunit and exposed to the environment the hydrophilic subunit. The films are conductive and allow allocation of electrochemically active cytochrome C. The self-assembled films could be used as biological platforms to build 3D complex molecular structures on planar metal surfaces and to functionalize metal nanoparticles.

  6. Directional Self-assembly in Archaerhodopsin-Reconstituted Phospholipid Liposomes

    Institute of Scientific and Technical Information of China (English)

    吴佳; 黄力; 刘坚; 明明; 李庆国; 丁建东

    2005-01-01

    This paper reports, for the first time, that Archaerhodopsin-4 (AR4) could be reconstituted into phospholipid liposomes by self-assembly. AR4 is a new membrane protein isolated from halobacteria H.sp. xz515 in a salt lake of Tibet, China. This is a bacteriorhodopsin (bR) like protein, function as a light-driven proton pump. Experimental measurements verified that similar to bR, AR not only remains its biological activity in pmteoliposome, but also keeps a preferred orientation in self-assembly.

  7. Artificial nanograting woven by self-assembled nanowires.

    Science.gov (United States)

    Liu, Feng-Qi; Shao, Ye; Huang, Xiu-Qi; Wang, Zhan-Guo

    2005-10-01

    We report on a new simple route to realize a high resolution nanograting. By adopting an InAlGaAs matrix and strain-compensated technique, we have proved that a uniform self-assembled InAs nanowire array can be fabricated by molecular beam epitaxy (MBE). A nanograting woven by self-assembled semiconductor nanowires shows a conspicuous diffraction feature. The good agreement between the theoretical and experimental values of diffraction peak positions indicates that a uniform nanowire array is a promising nanograting. This simple one-step MBE growth method will open exciting opportunities for the field of clever optics design.

  8. Self-assembly patterning of organic molecules on a surface

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Minghu; Fuentes-Cabrera, Miguel; Maksymovych, Petro; Sumpter, Bobby G.; Li, Qing

    2017-04-04

    The embodiments disclosed herein include all-electron control over a chemical attachment and the subsequent self-assembly of an organic molecule into a well-ordered three-dimensional monolayer on a metal surface. The ordering or assembly of the organic molecule may be through electron excitation. Hot-electron and hot-hole excitation enables tethering of the organic molecule to a metal substrate, such as an alkyne group to a gold surface. All-electron reactions may allow a direct control over the size and shape of the self-assembly, defect structures and the reverse process of molecular disassembly from single molecular level to mesoscopic scale.

  9. Nano-engineering by optically directed self-assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Furst, Eric (University of Delaware, Newark, DE); Dunn, Elissa (Yale University, New Haven, CT); Park, Jin-Gyu (Yale University, New Haven, CT); Brinker, C. Jeffrey; Sainis, Sunil (Yale University, New Haven, CT); Merrill, Jason (Yale University, New Haven, CT); Dufresne, Eric (Yale University, New Haven, CT); Reichert, Matthew D.; Brotherton, Christopher M.; Bogart, Katherine Huderle Andersen; Molecke, Ryan A.; Koehler, Timothy P.; Bell, Nelson Simmons; Grillet, Anne Mary; Gorby, Allen D.; Singh, John (University of Delaware, Newark, DE); Lele, Pushkar (University of Delaware, Newark, DE); Mittal, Manish (University of Delaware, Newark, DE)

    2009-09-01

    Lack of robust manufacturing capabilities have limited our ability to make tailored materials with useful optical and thermal properties. For example, traditional methods such as spontaneous self-assembly of spheres cannot generate the complex structures required to produce a full bandgap photonic crystals. The goal of this work was to develop and demonstrate novel methods of directed self-assembly of nanomaterials using optical and electric fields. To achieve this aim, our work employed laser tweezers, a technology that enables non-invasive optical manipulation of particles, from glass microspheres to gold nanoparticles. Laser tweezers were used to create ordered materials with either complex crystal structures or using aspherical building blocks.

  10. Self-assembly and manipulation of particles on drop surfaces

    Science.gov (United States)

    Janjua, M.; Fischer, I. S.; Singh, P.

    2013-11-01

    We have recently shown that particles adsorbed on the surface of a drop can be self-assembled at the poles or the equator of the drop by applying a uniform electric field, and that this method can be used to separate on the surface of a drop particles experiencing positive dielectrophoresis from those experiencing negative dielectrophoresis. In this talk we show that the frequency of the electric field is an important parameter which can be used to modify the distribution of self-assembled monolayers.

  11. Structural simulations of nanomaterials self-assembled from ionic macrocycles.

    Energy Technology Data Exchange (ETDEWEB)

    van Swol, Frank B.; Medforth, Craig John (University of New Mexico, Albuquerque, NM)

    2010-10-01

    Recent research at Sandia has discovered a new class of organic binary ionic solids with tunable optical, electronic, and photochemical properties. These nanomaterials, consisting of a novel class of organic binary ionic solids, are currently being developed at Sandia for applications in batteries, supercapacitors, and solar energy technologies. They are composed of self-assembled oligomeric arrays of very large anions and large cations, but their crucial internal arrangement is thus far unknown. This report describes (a) the development of a relevant model of nonconvex particles decorated with ions interacting through short-ranged Yukawa potentials, and (b) the results of initial Monte Carlo simulations of the self-assembly binary ionic solids.

  12. Large-Scale Self-Assembled Ag Nanotubes

    Institute of Scientific and Technical Information of China (English)

    WEI Guodan; NAN Cewen; YU Dapeng

    2005-01-01

    A high yield of silver nanotubes with large aspect ratio were conveniently synthesized via an organic-assist solvothermal preparation technique using polyvinyl pyrrolidone (PVP) as a capping reagent and architecture soft-template. The molecular ratio between the repeating unit of PVP and AgNO3 plays a crucial role in determining the geometric shape of the product. Such novel-type Ag nanotubes were self-assembled by Ag nanoparticles, which had largely similar crystallographic orientation, forming a texture. The fact that nanoparticles without anisotropic crystal structures can form such superstructures by self-assembly may open a window for understanding a range of nanotube formation processes.

  13. Regulation gel formation, hierarchical structures and surface wettability via isomeride effect in supramolecular organogel system.

    Science.gov (United States)

    Cao, Xinhua; Ding, Qianqian; Gao, Aiping; Lv, Haiting; Zhao, Na; Liu, Dan

    2017-05-15

    A new serial of gelators with two cholesteryl groups based on o-phenylenediamine, m-phenylenediamine and p-phenylenediamine were synthesized, and their organogelation ability was evaluated. We found that G-o could form gels in DMF, DMSO and ethyl acetate, G-m and G-p could only gel DMF and 1,4-dioxane. The organogels were thoroughly characterized using various microscopic techniques including field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV-Vis spectrum, FT-IR spectrum and contact angle. The gelation ability, morphology, self-assembly mode and materials surface wettability all could be tuned via isomeride effect in self-assembly system. Interestingly, superhydrophobic surface was formed via the self-assembly of compound G-p in 1,4-dioxane and exhibited very high adsorption capacity for water. This gel system provided new method for modulation self-assembly process in supramolecular field.

  14. Thermodynamic versus kinetic control in self-assembly of zero-, one-, quasi-two-, and two-dimensional metal-organic coordination structures.

    Science.gov (United States)

    Lin, Tao; Wu, Qi; Liu, Jun; Shi, Ziliang; Liu, Pei Nian; Lin, Nian

    2015-03-14

    Four types of metal-organic structures exhibiting specific dimensionality were studied using scanning tunneling microscopy and Monte Carlo simulations. The four structures were self-assembled out of specifically designed molecular building blocks via the same coordination motif on an Au(111) surface. We found that the four structures behaved differently in response to thermal annealing treatments: The two-dimensional structure was under thermodynamic control while the structures of lower dimension were under kinetic control. Monte Carlo simulations revealed that the self-assembly pathways of the four structures are associated with the characteristic features of their specific heat. These findings provide insights into how the dimensionality of supramolecular coordination structures affects their thermodynamic properties.

  15. A nanoscale bio-inspired light-harvesting system developed from self-assembled alkyl-functionalized metallochlorin nano-aggregates

    KAUST Repository

    Ocakoǧlu, Kasim

    2014-01-01

    Self-assembled supramolecular organization of nano-structured biomimetic light-harvesting modules inside solid-state nano-templates can be exploited to develop excellent light-harvesting materials for artificial photosynthetic devices. We present here a hybrid light-harvesting system mimicking the chlorosomal structures of the natural photosynthetic system using synthetic zinc chlorin units (ZnChl-C6, ZnChl-C12 and ZnChl-C 18) that are self-aggregated inside the anodic aluminum oxide (AAO) nano-channel membranes. AAO nano-templates were modified with a TiO2 matrix and functionalized with long hydrophobic chains to facilitate the formation of supramolecular Zn-chlorin aggregates. The transparent Zn-chlorin nano-aggregates inside the alkyl-TiO2 modified AAO nano-channels have a diameter of ∼120 nm in a 60 μm length channel. UV-Vis studies and fluorescence emission spectra further confirm the formation of the supramolecular ZnChl aggregates from monomer molecules inside the alkyl-functionalized nano-channels. Our results prove that the novel and unique method can be used to produce efficient and stable light-harvesting assemblies for effective solar energy capture through transparent and stable nano-channel ceramic materials modified with bio-mimetic molecular self-assembled nano-aggregates. © 2014 the Partner Organisations.

  16. Molecular self-assembly: Design, synthesis, and characterization of peptidic materials for bio- and nano-technologies

    Science.gov (United States)

    Lamm, Matthew S.

    The research presented in this dissertation focuses on the design, synthesis, and characterization of amphiphilic peptides capable of self-assembling into beta-sheet fibrils under specific aqueous solution conditions. The peptide design consists of two beta-sheet forming strands of alternating valine and lysine residues, flanking a central tetrapeptide sequence that contains a diproline. Depending on the chirality of the prolines the peptide can assume either an intramolecularly folded or an extended conformation in the self-assembled state. For the peptide where intramolecular folding is designed against, the self-assembled nanostructure was found to exhibit a unique, nontwisted laminated morphology. Experimental techniques including transmission electron microscopy, atomic force microscopy, circular dichroism spectroscopy, Fourier transform infra-red spectroscopy and x-ray diffraction were employed to characterize the self-assembled structure and kinetics. With the understanding of the self-assembly process gained from these first peptides, other peptide sequences were rationally designed to assemble with a desired nanostructure. For example, the effect of peptide strand length in conserving the laminated morphology and controlling the fibril height was investigated. In addition, other peptides were designed so as to affect the self-assembled nanostructure by enforcing a parallel versus anti-parallel beta-sheet or by disrupting the registry of laminating beta-sheet filaments. In some cases, the peptides assembled into structures predicted by the initial design while other peptides assembled into unexpected fibril morphologies. The major conclusions from the research on these peptides is that the diproline sequence plays an important role in disrupting the beta-strand twist thereby resulting in a nontwisted laminated morphology. However, when the flanking beta-strands become long enough, the effect of the diproline sequence becomes diminished and the fibrils do

  17. New Metal-organic Polymers Through Subcomponent Self-Assembly

    Science.gov (United States)

    2012-07-27

    material using subcomponent self-assembly. We developed the synthesis of double helical polymeric species according to the general procedure...to use - diketones as subcomponents for polymers. She then shifted her efforts to other projects, funded by the European Research Council. Because

  18. Controlled self-assembly of hydrophobic quantum dots through silanization.

    Science.gov (United States)

    Yang, Ping; Ando, Masanori; Murase, Norio

    2011-09-01

    We demonstrate the formation of one-, two-, and three-dimensional nanocomposites through the self-assembly of silanized CdSe/ZnS quantum dots (QDs) by using a controlled sol-gel process. The self-assembly behavior of the QDs was created when partially hydrolyzed silicon alkoxide monomers replaced hydrophobic ligands on the QDs. We examined systematically self-assembly conditions such as solvent components and QD sizes in order to elucidate the formation mechanism of various QD nanocomposites. The QD nanocomposites were assembled in water phase or on the interface of water and oil phase in emulsions. The partially hydrolyzed silicon alkoxides act as intermolecules to assemble the QDs. The QD nanocomposites with well-defined solid or hollow spherical, fiber-like, sheet-like, and pearl-like morphologies were prepared by adjusting the experimental conditions. The high photoluminescence efficiency of the prepared QD nanocomposites suggests partially hydrolyzed silicon alkoxides reduced the surface deterioration of QDs during self-assembly. These techniques are applicable to other hydrophobic QDs for fabricating complex QD nanocomposites.

  19. Photoresponsive self-assemblies based on fatty acids.

    Science.gov (United States)

    Fameau, A-L; Arnould, A; Lehmann, M; von Klitzing, R

    2015-02-18

    Photoresponsive surfactant system based on fatty acids has been developed by the introduction in aqueous solution of a photoacid generator (PAG). Self-assembly transitions are triggered by UV irradiation due to a pH change induced by the presence of PAG.

  20. Self-assembled materials from thermosensitive and biohybrid block copolymers

    NARCIS (Netherlands)

    de Graaf, A.J.

    2012-01-01

    In this research, several block copolymers were synthesized and characterized with regard to possible pharmaceutical applications. All block copolymers were thermosensitive and self-assembled at 37 °C into structures like micelles and hydrogels, which can be used for innovative drug delivery purpose

  1. Self-assembly and semiconductivity of an oligothiophene supergelator

    NARCIS (Netherlands)

    Pratihar, P.; Ghosh, S.; Stepanenko, V.; Patwardhan, S.; Grozema, F.C.; Siebbeles, L.D.A.; Würthner, F.

    2010-01-01

    A bis(trialkoxybenzamide)-functionalized quaterthiophene derivative was synthesized and its self-assembly properties in solution were studied. In non-polar solvents such as cyclohexane, this quaterthiophene π-system formed fibril aggregates with an H-type molecular arrangement due to synergistic eff

  2. Developmental self-assembly of a DNA tetrahedron.

    Science.gov (United States)

    Sadowski, John P; Calvert, Colby R; Zhang, David Yu; Pierce, Niles A; Yin, Peng

    2014-04-22

    Kinetically controlled isothermal growth is fundamental to biological development, yet it remains challenging to rationally design molecular systems that self-assemble isothermally into complex geometries via prescribed assembly and disassembly pathways. By exploiting the programmable chemistry of base pairing, sophisticated spatial and temporal control have been demonstrated in DNA self-assembly, but largely as separate pursuits. By integrating temporal with spatial control, here we demonstrate the "developmental" self-assembly of a DNA tetrahedron, where a prescriptive molecular program orchestrates the kinetic pathways by which DNA molecules isothermally self-assemble into a well-defined three-dimensional wireframe geometry. In this reaction, nine DNA reactants initially coexist metastably, but upon catalysis by a DNA initiator molecule, navigate 24 individually characterizable intermediate states via prescribed assembly pathways, organized both in series and in parallel, to arrive at the tetrahedral final product. In contrast to previous work on dynamic DNA nanotechnology, this developmental program coordinates growth of ringed substructures into a three-dimensional wireframe superstructure, taking a step toward the goal of kinetically controlled isothermal growth of complex three-dimensional geometries.

  3. Equation of State for Phospholipid Self-Assembly

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle...

  4. Fluorescent self-assembled monolayers as new sensing materials

    NARCIS (Netherlands)

    Basabe Desmonts, Lourdes

    2006-01-01

    Fluorescent self-assembled monolayers (SAMs) on glass surfaces have been studied as a new material for chemical sensing. The new sensing system presented in this thesis is a label-free sensing approach suitable for metal ion and inorganic anions sensing in both organic solvents and aqueous solution.

  5. Self-assembly of hydrofluorinated Janus graphene monolayer

    DEFF Research Database (Denmark)

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei;

    2016-01-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van...... der Waals (vdW) interaction and the coupling of C-H/π/C-F interaction and π/π interaction are proven to offer the continuous driving force of self-assembly of J-GN. The results show that J-GN can self-assemble into various J-NSs structures, including arcs, multi-wall J-NS and arm-chair-like J......-NS by manipulating its original geometry (size and aspect ratio). Moreover, we also investigated self-assembly of hydrofluorinated J-GN and Fe nanowires (NWs), suggesting that Fe NW is a good alternative to activate J-GN to form J-NS. Differently, the strong vdW interaction between J-GN and Fe NW provides the main...

  6. Electrostatic Force Microscopy of Self Assembled Peptide Structures

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Pantagos, Spyros P.;

    2011-01-01

    In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures. In partic......In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures....... In particular we use EFM to investigate the structures of diphenylalanine peptide tubes, particles, and CSGAITIG peptide particles placed on pre-fabricated SiO2 surfaces with a backgate. We show that the cavity in the peptide tubes could be to the presence of water residues. Additionally we show that self......-assembled amyloid peptides form spherical solid structures containing the same self-assembled peptide in its interior. In both cases transmission electron microscopy is used to verify these structures. Further, the limitations of the EFM technique are discussed, especially when the observed structures become small...

  7. Multiphonon capture processes in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend;

    2001-01-01

    We investigate capture of carriers from states in the continuous part of the energy spectrum into the discrete states of self-assembled InAs/GaAs QDs via emission of one or two phonons. We are not aware of any other investigations of two-phonon mediated capture processes in QDs, but we show that ...

  8. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain;

    2014-01-01

    New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self-assemble in combinat...

  9. Self-assembly of hydrofluorinated Janus graphene monolayer

    DEFF Research Database (Denmark)

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei

    2016-01-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van...

  10. Tuning of metal work functions with self-assembled monolayers

    NARCIS (Netherlands)

    de Boer, B; Hadipour, A; Foekema, R; van Woudenbergh, T; Mandoc, MM; Mihailetchi, VD; Blom, PWM; Heremans, PL; Muccini, M; Hofstraat, H

    2004-01-01

    Tuning the work functions of metals was demonstrated by chemically modifying the metal surface through the formation of chemisorbed self-assembled monolayers (SAMs) derived from 1H,1H,2H,2H-perfluorinated alkanethiols and hexadecanethiol. The ordering inherent in the SAMs creates an effective, molec

  11. Understanding the self-assembly of TCNQ on Cu(111)

    DEFF Research Database (Denmark)

    Stradi, Daniele; Borca, Bogdana; Barja, Sara;

    2016-01-01

    The structure of self-assembled monolayers of 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) adsorbed on Cu(111) has been studied using a combination of scanning tunnelling microscopy (STM) experiments and density functional theory (DFT) calculations. We show that the polymorphism of the self-assem...

  12. Effect of alkyl substitutions on self-assembly

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The self-assemblies of 4-hexadecyloxybenzoic acid and 3,4,5-trihexadecyloxybenzoic acid have been studied by using scanning tunneling microscopy (STM). The well-ordered assemblies with different arrangement have been investigated. The structural change is attributed to the different number of substituted alkyl chains on periphery.

  13. Self-assembled three-dimensional non-volatile memories

    NARCIS (Netherlands)

    Abelmann, Leon; Tas, Niels; Berenschot, Erwin; Elwenspoek, Miko

    2010-01-01

    The continuous increase in capacity of non-volatile data storage systems will lead to bit densities of one bit per atom in 2020. Beyond this point, capacity can be increased by moving into the third dimension. We propose to use self-assembly of nanosized elements, either as a loosely organised assoc

  14. Anisotropic Nanocolloids: self-assembly, interfacial adsorption, and electrostatic screening

    NARCIS (Netherlands)

    de Graaf, J.

    2012-01-01

    In this thesis we consider the influence of anisotropy on the behaviour of colloids using theory and simulations. The recent increase in the ability to synthesize anisotropic particles (cubes, caps, octapods, etc.) has led to samples of sufficient quality to perform self-assembly experiments. Our in

  15. Electrostatic Self-Assembled Multilayers from Side Chain Azo Polyelectrolytes

    Institute of Scientific and Technical Information of China (English)

    庹新林; 陈峥; 邓永红; 王晓工; 刘德山

    2002-01-01

    Photoresponsive behavior and self-assembly properties of three side chain azo polyelectrolytes, poly (2-(4-phenylazophenoxy) ethanol-co-acrylic acid) (PPAPE), poly (2-(4-(4′-nitrophenylazo) phenoxy) ethanol-co-acrylic acid) (PNAPE), and poly (2-(4-(4′-ethoxyphenylazo) phenoxy) ethanol-co-acrylic acid) (PEAPE), were studied. These polyelectrolytes with different degrees of functionalization of azo chromophores were fabricated into nano-composite multilayers using two types of dipping solutions through a layer-by-layer electrostatic self-assembling process. Results show that the ratio between tetrahydrofuran (THF) and H2O significantly influences the photoresponsive behavior of PNAPE in THF-H2O mixture. The THF-H2O dipping solution, used in this work for self-assembly of hydrophobic polyelectrolytes, is proved to be as applicable as aqueous dipping solution for normal self-assembly of hydrophobic polyelectrolytes. However, significant differences in the multilayer growth between the two systems were also observed, which resulted from the remarkable difference of the existing forms of the polyelectrolytes in these two dipping solutions.

  16. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly.

    Science.gov (United States)

    Moore, Tyler G; Garzon, Max H; Deaton, Russell J

    2015-01-01

    Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are "strong" assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic self-assembly systems

  17. Probabilistic Analysis of Pattern Formation in Monotonic Self-Assembly.

    Directory of Open Access Journals (Sweden)

    Tyler G Moore

    Full Text Available Inspired by biological systems, self-assembly aims to construct complex structures. It functions through piece-wise, local interactions among component parts and has the potential to produce novel materials and devices at the nanoscale. Algorithmic self-assembly models the product of self-assembly as the output of some computational process, and attempts to control the process of assembly algorithmically. Though providing fundamental insights, these computational models have yet to fully account for the randomness that is inherent in experimental realizations, which tend to be based on trial and error methods. In order to develop a method of analysis that addresses experimental parameters, such as error and yield, this work focuses on the capability of assembly systems to produce a pre-determined set of target patterns, either accurately or perhaps only approximately. Self-assembly systems that assemble patterns that are similar to the targets in a significant percentage are "strong" assemblers. In addition, assemblers should predominantly produce target patterns, with a small percentage of errors or junk. These definitions approximate notions of yield and purity in chemistry and manufacturing. By combining these definitions, a criterion for efficient assembly is developed that can be used to compare the ability of different assembly systems to produce a given target set. Efficiency is a composite measure of the accuracy and purity of an assembler. Typical examples in algorithmic assembly are assessed in the context of these metrics. In addition to validating the method, they also provide some insight that might be used to guide experimentation. Finally, some general results are established that, for efficient assembly, imply that every target pattern is guaranteed to be assembled with a minimum common positive probability, regardless of its size, and that a trichotomy exists to characterize the global behavior of typical efficient, monotonic

  18. Supramolecular polymers for organocatalysis in water.

    Science.gov (United States)

    Neumann, Laura N; Baker, Matthew B; Leenders, Christianus M A; Voets, Ilja K; Lafleur, René P M; Palmans, Anja R A; Meijer, E W

    2015-07-28

    A water-soluble benzene-1,3,5-tricarboxamide (BTA) derivative that self-assembles into one-dimensional, helical, supramolecular polymers is functionalised at the periphery with one L-proline moiety. In water, the BTA-derivative forms micrometre long supramolecular polymers, which are stabilised by hydrophobic interactions and directional hydrogen bonds. Furthermore, we co-assemble a catalytically inactive, but structurally similar, BTA with the L-proline functionalised BTA to create co-polymers. This allows us to assess how the density of the L-proline units along the supramolecular polymer affects its activity and selectivity. Both the supramolecular polymers and co-polymers show high activity and selectivity as catalysts for the aldol reaction in water when using p-nitrobenzaldehyde and cyclohexanone as the substrates for the aldol reaction. After optimisation of the reaction conditions, a consistent conversion of 92 ± 7%, deanti of 92 ± 3%, and eeanti of 97 ± 1% are obtained with a concentration of L-proline as low as 1 mol%.

  19. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains.

    Science.gov (United States)

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  20. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains

    Science.gov (United States)

    Mubeena, Shaikh; Chatterji, Apratim

    2015-03-01

    We report many different nanostructures which are formed when model nanoparticles of different sizes (diameter σn) are allowed to aggregate in a background matrix of semiflexible self-assembled polymeric wormlike micellar chains. The different nanostructures are formed by the dynamical arrest of phase-separating mixtures of micellar monomers and nanoparticles. The different morphologies obtained are the result of an interplay of the available free volume, the elastic energy of deformation of polymers, the density (chemical potential) of the nanoparticles in the polymer matrix, and, of course, the ratio of the size of self-assembling nanoparticles and self-avoidance diameter of polymeric chains. We have used a hybrid semi-grand-canonical Monte Carlo simulation scheme to obtain the (nonequilibrium) phase diagram of the self-assembled nanostructures. We observe rodlike structures of nanoparticles which get self-assembled in the gaps between the nematically ordered chains, as well as percolating gel-like network of conjoined nanotubes. We also find a totally unexpected interlocked crystalline phase of nanoparticles and monomers, in which each crystal plane of nanoparticles is separated by planes of perfectly organized polymer chains. We identified the condition which leads to such interlocked crystal structure. We suggest experimental possibilities of how the results presented in this paper could be used to obtain different nanostructures in the laboratory.

  1. Diverse supramolecular structures formed by self-assembling proteins of the B acillus subtilis spore coat

    OpenAIRE

    2015-01-01

    Summary Bacterial spores (endospores), such as those of the pathogens C lostridium difficile and B acillus anthracis, are uniquely stable cell forms, highly resistant to harsh environmental insults. B acillus subtilis is the best studied spore‐former and we have used it to address the question of how the spore coat is assembled from multiple components to form a robust, protective superstructure. B . subtilis coat proteins (CotY, CotE, CotV and CotW) expressed in E scherichia coli can arrange...

  2. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    Science.gov (United States)

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy.

  3. Self-assembly of tetraalkoxydinaphthophenazines in monolayers on HOPG by scanning tunneling microscopy

    Science.gov (United States)

    Jaroch, Tomasz; Maranda-Niedbala, Agnieszka; Kotwica, Kamil; Wamil, Damian; Bujak, Piotr; Pron, Adam; Nowakowski, Robert

    2015-11-01

    2D supramolecular organization in monolayers of tetraalkoxydinaphthophenazines, a new group of solution processable organic semiconductors obtained by simple functionalization of indanthrone (6,15-dihydrodinaphtho[2,3-a:2‧,3‧-h]phenazine-5,9,14,18-tetraone), an old intractable dye, was investigated by scanning tunneling microscopy (STM). Five derivatives with increasing substituent length from butoxy (P-C4) to dodecyloxy (P-C12) were tested. All derivatives show a strong tendency to form ordered monolayers on HOPG graphite via self-assembly which constitute of rows of molecules oriented in one direction. However, local arrangement in this 2D supramolecular organization is strongly dependent on the substituent length. Two tendencies in the structural evolution are observed. For butoxy (P-C4), hexyloxy (P-C6) and octyloxy (P-C8) derivatives increasing substituent length results in the transformation of the structure governed by the conjugated core interactions to the one in which mutual interactions of the alkoxy groups dominate. As a consequence, for P-C8 a very stable 2D structure is obtained with a nearly rectangular 2D unit cell, as a consequence of the alkoxy group interdigitation in two perpendicular directions. With further increase of the substituent length to decyloxy (P-C10) and dodecyloxy (P-C12) a different effect is observed-a directional expansion of the unit cell along the longitudinal axis of the molecules. This is a consequence of structural nonequivalence of the alkoxy groups attached to the same aromatic ring.

  4. Chirality of 4,4'-Biphenylene Bridged Polybissilsesquioxane Nanotubes Using the Dipeptides Derived from Valine.

    Science.gov (United States)

    Sang, Yunsen; Guo, Yongmin; Wang, Hairui; Li, Yi; Li, Baozong; Yang, Yonggang

    2015-03-01

    Four dipeptides with alkyl chains derived from L- and D-valines were synthesized, the handedness of their self-assemblies were controlled by the valine chirality at the terminals. The stacking of the carbonyl groups plays an important in the formation of chiral organic self-assemblies. Chiral 4,4'-biphenylene bridged polybissilsesquioxane nanotubes were prepared using the self-assemblies of these dipeptides as the templates. The chirality of the polysilsesquioxane nanotubes was mainly controlled by the valines at the terminals of the dipeptides, which was transferred from the valines at the terminals through electrostatic interaction. The valines near the alkyl chains could also affect the polysilsesquioxane chirality through hydrogen bonding.

  5. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    with molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... kept at low surface pressure before protein adsorption. The introduction of dipole moments at the interface by the admixture of phospholipids or the application of lateral pressure on the lipid monolayer before protein adsorption were found to impose an extension of the spacer moieties. The biotin...... groups were thus presented further away from the interface, and a hydration layer between the protein and the functionalized interface was observed in the self-assembled supramolecular structures....

  6. Self-Assembled Monolayers of CdSe Nanocrystals on Doped GaAs Substrates

    DEFF Research Database (Denmark)

    Marx, E.; Ginger, D.S.; Walzer, Karsten;

    2002-01-01

    This letter reports the self-assembly and analysis of CdSe nanocrystal monolayers on both p- and a-doped GaAs substrates. The self-assembly was performed using a 1,6-hexanedithiol self-assembled monolayer (SAM) to link CdSe nanocrystals to GaAs substrates. Attenuated total reflection Fourier tran...

  7. Self-assembly of gibberellic amide assemblies and their applications in the growth and fabrication of ordered gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Smoak, Evan M; Carlo, Andrew D; Fowles, Catherine C; Banerjee, Ipsita A, E-mail: banerjee@fordham.edu [Department of Chemistry, Fordham University, 441 East Fordham Road, Bronx, NY 10458 (United States)

    2010-01-15

    Gibberellins are a group of naturally occurring diterpenoid based phytohormones that play a vital role in plant growth and development. In this work, we have studied the self-assembly of gibberellic acid, a phytohormone, which belongs to the family of gibberellins, and designed amide derivatives of gibberellic acid (GA{sub 3}) for the facile, green synthesis of gold nanoparticles. It was found that the derivatives self-assembled into nanofibers and nanoribbons in aqueous solutions at varying pH. Further, upon incubation with tetrachloroaurate, the self-assembled GA{sub 3}-amide derivatives efficiently nucleated and formed gold nanoparticles when heated to 60 deg. C. Energy dispersive x-ray spectroscopy, transmission electron microscopy and scanning electron microscopy analyses revealed that uniform coatings of gold nanoparticles in the 10-20 nm range were obtained at low pH on the nanowire surfaces without the assistance of additional reducing agents. This simple method for the development of morphology controlled gold nanoparticles using a plant hormone derivative opens doors for a new class of plant biomaterials which can efficiently yield gold nanoparticles in an environmentally friendly manner. The gold encrusted nanowires formed using biomimetic methods may lead on to the formation of conductive nanowires, which may be useful for a wide range of applications such as in optoelectronics and sensors. Further, the spontaneous formation of highly organized nanostructures obtained from plant phytohormone derivatives such as gibberellic acid is of particular interest as it might help in further understanding the supramolecular assembly mechanism of more highly organized biological structures.

  8. Self-assembly of gibberellic amide assemblies and their applications in the growth and fabrication of ordered gold nanoparticles

    Science.gov (United States)

    Smoak, Evan M.; Carlo, Andrew D.; Fowles, Catherine C.; Banerjee, Ipsita A.

    2010-01-01

    Gibberellins are a group of naturally occurring diterpenoid based phytohormones that play a vital role in plant growth and development. In this work, we have studied the self-assembly of gibberellic acid, a phytohormone, which belongs to the family of gibberellins, and designed amide derivatives of gibberellic acid (GA3) for the facile, green synthesis of gold nanoparticles. It was found that the derivatives self-assembled into nanofibers and nanoribbons in aqueous solutions at varying pH. Further, upon incubation with tetrachloroaurate, the self-assembled GA3-amide derivatives efficiently nucleated and formed gold nanoparticles when heated to 60 °C. Energy dispersive x-ray spectroscopy, transmission electron microscopy and scanning electron microscopy analyses revealed that uniform coatings of gold nanoparticles in the 10-20 nm range were obtained at low pH on the nanowire surfaces without the assistance of additional reducing agents. This simple method for the development of morphology controlled gold nanoparticles using a plant hormone derivative opens doors for a new class of plant biomaterials which can efficiently yield gold nanoparticles in an environmentally friendly manner. The gold encrusted nanowires formed using biomimetic methods may lead on to the formation of conductive nanowires, which may be useful for a wide range of applications such as in optoelectronics and sensors. Further, the spontaneous formation of highly organized nanostructures obtained from plant phytohormone derivatives such as gibberellic acid is of particular interest as it might help in further understanding the supramolecular assembly mechanism of more highly organized biological structures.

  9. Unconventional nanotubes self-assembled in alumina channels: morphology and surface potential of isolated nanostructures at surfaces.

    Science.gov (United States)

    Palermo, Vincenzo; Liscio, Andrea; Talarico, Anna Maria; Zhi, Linjie; Müllen, Klaus; Samorì, Paolo

    2007-06-15

    Synthetic nanographenes have been self-assembled from solution on the surface of nanometric channels of an alumina membrane template. By controlling the interplay between intermolecular and interfacial interactions, the molecules have been adsorbed either 'face-on' or 'edge-on' on the pore's surfaces, leading to the formation of columnar stacks in the latter case. Upon thermal treatment at high temperature, the molecular cross-linking of the columns has been triggered, transforming the delicate supramolecular arrangement into robust carbon nanotubes, with the graphitic planes at predetermined orientations with respect to the tube axis. Scanning force microscopy characterization of single nanotubes deposited from suspensions on mica showed that the nanotubes can self-assemble on flat surfaces adopting preferential alignments which reflect the threefold symmetry of the mica substrate. Kelvin probe force microscopy studies revealed that the nanotubes possess a surface potential much smaller than the work function of both graphite and conventional vacuum-processed nanotubes, providing evidence for their more confined electronic structure.

  10. Formation of a polypseudorotaxane via self-assembly of γ-cyclodextrin with poly(N-isopropylacrylamide).

    Science.gov (United States)

    Wang, Jin; Li, Shuo; Ye, Lin; Zhang, Ai-Ying; Feng, Zeng-Guo

    2012-07-13

    A polypseudorotaxane (PPR) comprising γ-cyclodextrin (γ-CD) as host molecules and poly(N-isopropylacrylamide) (PNIPAM) as a guest polymer is prepared via self-assembly in aqueous solution. Due to the bulky pendant isopropylamide group, PNIPAM exhibits size-selectivity toward self-assembly with α-, β-, and γ-CDs. It can fit into the cavity of γ-CD to give rise to a PPR, but cannot pass through α-CD and β-CD under the same conditions. The ratio of the number of γ-CD molecules to entrapped NIPAM repeat units is kept at 1:2.2 or 1:2.4, determined by (1) H NMR spectroscopy and TGA analysis, respectively, indicating that there are more than 2 but less than 3 NIPAM repeat units included by one γ-CD molecule. This finding opens new avenues to PPR-based supramolecular polymers to be used as solid, stimuli-responsive materials.

  11. Nanostructured self assembled lipid materials for drug delivery and tissue engineering.

    Science.gov (United States)

    Shanmugam, Thanigaivel; Banerjee, Rinti

    2011-11-01

    Every living organism comprises of lipids as basic building blocks in addition to other components. Utilizing these lipids for pharmaceutical and biomedical applications can overcome biocompatibility and biodegradability issues. A well known example is liposomes (lipids arranged in lamellar structures), but other than that there are additional unique mesophasic structures of lipids formed as a result of lipid polymorphisms, which include cubic-, hexagonal- or sponge-phase structures. These structures provide the advantages of stability and production feasibility compared with liposomes. Cubosomes, which exist in a cubic structure, have improved stability, bioadhesivity and biocompatibility. Hexagonal phases or hexosomes exhibit hexagonal arrangements and can encapsulate different drugs with high stability. Lipids also forms tube-like structures known as tubules and ribbons that are also utilized in different biomedical applications, especially in tissue engineering. Immune stimulating complexes are nanocage-like structures formed as a result of interactions of lipid, antigen and Quillaja saponin. These lipidic mesophasic structures have been utilized for gene, vaccine and drug delivery. This article addresses lipid self-assembled supramolecular nanostructures, including cubosomes, hexosomes, tubules, ribbons, cochleates, lipoplexes and immune stimulating complexes and their biomedical applications.

  12. Highly Efficient Photon Upconversion in Self-Assembled Light-Harvesting Molecular Systems

    Science.gov (United States)

    Ogawa, Taku; Yanai, Nobuhiro; Monguzzi, Angelo; Kimizuka, Nobuo

    2015-06-01

    To meet the world’s demands on the development of sunlight-powered renewable energy production, triplet-triplet annihilation-based photon upconversion (TTA-UC) has raised great expectations. However, an ideal highly efficient, low-power, and in-air TTA-UC has not been achieved. Here, we report a novel self-assembly approach to achieve this, which enabled highly efficient TTA-UC even in the presence of oxygen. A newly developed lipophilic 9,10-diphenylanthracene-based emitter molecule functionalized with multiple hydrogen-bonding moieties spontaneously coassembled with a triplet sensitizer in organic media, showing efficient triplet sensitization and subsequent triplet energy migration among the preorganized chromophores. This supramolecular light-harvesting system shows a high UC quantum yield of 30% optimized at low excitation power in deaerated conditions. Significantly, the UC emission largely remains even in an air-saturated solution, and this approach is facilely applicable to organogel and solid-film systems.

  13. Thymine- and Adenine-Functionalized Polystyrene Form Self-Assembled Structures through Multiple Complementary Hydrogen Bonds

    Directory of Open Access Journals (Sweden)

    Yu-Shian Wu

    2014-06-01

    Full Text Available In this study, we investigated the self-assembly of two homopolymers of the same molecular weight, but containing complementary nucleobases. After employing nitroxide-mediated radical polymerization to synthesize poly(vinylbenzyl chloride, we converted the polymer into poly(vinylbenzyl azide through a reaction with NaN3 and then performed click chemistry with propargyl thymine and propargyl adenine to yield the homopolymers, poly(vinylbenzyl triazolylmethyl methylthymine (PVBT and poly(vinylbenzyl triazolylmethyl methyladenine (PVBA, respectively. This PVBT/PVBA blend system exhibited a single glass transition temperature over the entire range of compositions, indicative of a miscible phase arising from the formation of multiple strong complementary hydrogen bonds between the thymine and adenine groups of PVBT and PVBA, respectively; Fourier transform infrared and 1H nuclear magnetic resonance spectroscopy confirmed the presence of these noncovalent interactions. In addition, dynamic rheology, dynamic light scattering and transmission electron microscopy provided evidence for the formation of supramolecular network structures in these binary PVBT/PVBA blend systems.

  14. Thermally-nucleated self-assembly of water and alcohol into stable structures at hydrophobic interfaces

    Science.gov (United States)

    Voïtchovsky, Kislon; Giofrè, Daniele; José Segura, Juan; Stellacci, Francesco; Ceriotti, Michele

    2016-01-01

    At the interface with solids, the mobility of liquid molecules tends to be reduced compared with bulk, often resulting in increased local order due to interactions with the surface of the solid. At room temperature, liquids such as water and methanol can form solvation structures, but the molecules remain highly mobile, thus preventing the formation of long-lived supramolecular assemblies. Here we show that mixtures of water with methanol can form a novel type of interfaces with hydrophobic solids. Combining in situ atomic force microscopy and multiscale molecular dynamics simulations, we identify solid-like two-dimensional interfacial structures that nucleate thermally, and are held together by an extended network of hydrogen bonds. On graphite, nucleation occurs above ∼35 °C, resulting in robust, multilayered nanoscopic patterns. Our findings could have an impact on many fields where water-alcohol mixtures play an important role such as fuel cells, chemical synthesis, self-assembly, catalysis and surface treatments. PMID:27713413

  15. Liquid-crystal nanoscience: an emerging avenue of soft self-assembly.

    Science.gov (United States)

    Bisoyi, Hari Krishna; Kumar, Sandeep

    2011-01-01

    Liquid crystals are finding increasing applications in a wide variety of fields including liquid-crystal display technology, materials science, bioscience, etc., apart from acting as prototype self-organizable supramolecular soft materials and tunable solvents. Recently, keeping in pace with topical science, liquid crystals have entered into the fascinating domains of nanoscience and nanotechnology. This tutorial review describes the recent and significant developments in liquid-crystal nanoscience embracing contemporary nanomaterials such as nanoparticles, nanorods, nanotubes, nanoplatelets, etc. The dispersion of zero-, one- and two-dimensional nanomaterials in liquid crystals for the enhancement of properties, liquid-crystalline phase behavior of nanomaterials themselves, self-assembly and alignment of nanomaterials in liquid-crystalline media, and the synthesis of nanomaterials by using liquid crystals as 'templates' or 'precursors' have been highlighted and discussed. It is almost certain that the 'fourth state of matter' will play more prevalent roles in nanoscience and nanotechnology in the near future. Moreover, liquid-crystal nanoscience reflects itself as a beautiful demonstration of the contemporary theme "crossing the borders: science without boundaries".

  16. Self-assembly of double helical nanostructures inside carbon nanotubes.

    Science.gov (United States)

    Lv, Cheng; Xue, Qingzhong; Shan, Meixia; Jing, Nuannuan; Ling, Cuicui; Zhou, Xiaoyan; Jiao, Zhiyong; Xing, Wei; Yan, Zifeng

    2013-05-21

    We use molecular dynamics (MD) simulations to show that a DNA-like double helix of two poly(acetylene) (PA) chains can form inside single-walled carbon nanotubes (SWNTs). The computational results indicate that SWNTs can activate and guide the self-assembly of polymer chains, allowing them to adopt a helical configuration in a SWNT through the combined action of the van der Waals potential well and the π-π stacking interaction between the polymer and the inner surface of SWNTs. Meanwhile both the SWNT size and polymer chain stiffness determine the outcome of the nanostructure. Furthermore, we also found that water clusters encourage the self-assembly of PA helical structures in the tube. This molecular model may lead to a better understanding of the formation of a double helix biological molecule inside SWNTs. Alternatively, it could form the basis of a novel nanoscale material by utilizing the 'empty' spaces of SWNTs.

  17. Self Assembled Structures by Directional Solidification of Eutectics

    Science.gov (United States)

    Dynys, Frederick W.; Sayir, Ali

    2004-01-01

    Interest in ordered porous structures has grown because of there unique properties such as photonic bandgaps, high backing packing density and high surface to volume ratio. Inspired by nature, biometric strategies using self assembled organic molecules dominate the development of hierarchical inorganic structures. Directional solidification of eutectics (DSE) also exhibit self assembly characteristics to form hierarchical metallic and inorganic structures. Crystallization of diphasic materials by DSE can produce two dimensional ordered structures consisting of rods or lamella. By selective removal of phases, DSE is capable to fabricate ordered pore arrays or ordered pin arrays. Criteria and limitations to fabricate hierarchical structures will be presented. Porous structures in silicon base alloys and ceramic systems will be reported.

  18. Self-Assembly and Hydrogelation of Peptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Wahyudi Priyono Suwarso

    2012-04-01

    Full Text Available Seven peptide amphiphiles were successfully synthesized using solid phase peptide synthesis method. Peptide amphiphiles were characterized using matrix assisted laser desorption/ionization (MALDI. Atomic force microscopy (AFM study showed that peptide amphiphiles having glycine, valine, or proline as linker, self-assembled into 100-200 nm nanofibers structure. According to our research, both peptide amphiphile with positive and negative charges bear similar self-assembly properties. Peptide amphiphile also showed its capability as low molecular weight gelator (LMWG. Peptide amphiphiles bearing C-16 and C-12 as alkyl showed better hydrogelation properties than C-8 alkyl. Five out of seven peptide amphiphiles have minimum gelation concentration (MGC lower than 1% (w/v.

  19. Self-assembly and semiconductivity of an oligothiophene supergelator

    Directory of Open Access Journals (Sweden)

    Pampa Pratihar

    2010-11-01

    Full Text Available A bis(trialkoxybenzamide-functionalized quaterthiophene derivative was synthesized and its self-assembly properties in solution were studied. In non-polar solvents such as cyclohexane, this quaterthiophene π-system formed fibril aggregates with an H-type molecular arrangement due to synergistic effect of hydrogen bonding and π-stacking. The self-assembled fibres were found to gelate numerous organic solvents of diverse polarity. The charge transport ability of such elongated fibres of quaterthiophene π-system was explored by the pulse radiolysis time resolved microwave conductivity (PR-TRMC technique and moderate mobility values were obtained. Furthermore, initial AFM and UV-vis spectroscopic studies of a mixture of our electron-rich quaterthiophene derivative with the electron acceptor [6,6]-phenyl-C61-butyric acid methyl ester (PCBM revealed a nanoscale segregated assembly of the individual building blocks in the blend.

  20. Self-Assembled Monolayer of Mixed Gold and Nickel Nanoparticles

    Institute of Scientific and Technical Information of China (English)

    Yanni Jie; Huiqing Fan; Wei You

    2012-01-01

    Forming a monolayer of mixed nickel and gold nanoparticles through self-assembly via simple solu-tion processing constitutes an important step toward inexpensive nanoparticle-based carbon nanofiber growth. In this work, mixed gold and nickel nanoparticles were anchored on the silicon wafer using self-assembled monolayers (SAMs) as a template. SAMs of 3-mercaptopropyl trimethoxysilane (MPTS-SAMs) were formed on silicon wafer, with the exposed thiol functionality providing ligand exchange sites to form the mixed mono-layer of nickel and gold nanoparticles via a two-step sequential soaking approach. The densities of the nickel and gold nanoparticles on the surface can be varied by adjusting the soaking sequence.

  1. Advances in self-assembled ultrathin polyoxomolybdates multilayers

    Institute of Scientific and Technical Information of China (English)

    Liang-bao YANG; Xiu-fang WANG; An-jian XIE; Gang HU; Yu-bua SHEN

    2009-01-01

    The research on the assembly and function of organized molecular films has gained more and more interest. Electrostatic interactions can be employed to assemble polyoxomolybdates in surface confined multi-layers. Ultrathin multilayer films of polyoxomolybdates and organic molecules by the self-assembly method have been reviewed. At the same time, self-assemblies in aqueous solution are also reported, such as wheel-shaped clusters (Mo154), hollow spherical "blackberry"-like vesicles (Mo72Fe30) and Keggin structures. Polyoxomo-lybdate multilayers are promising candidates for diverse applications including electrocatalytic, photo- and electro-chromic systems. The development in this particular field of materials science may be highlighted in the future.

  2. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    Science.gov (United States)

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  3. Biomolecular decision-making process for self assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Osbourn, Gordon Cecil

    2005-01-01

    The brain is often identified with decision-making processes in the biological world. In fact, single cells, single macromolecules (proteins) and populations of molecules also make simple decisions. These decision processes are essential to survival and to the biological self-assembly and self-repair processes that we seek to emulate. How do these tiny systems make effective decisions? How do they make decisions in concert with a cooperative network of other molecules or cells? How can we emulate the decision-making behaviors of small-scale biological systems to program and self-assemble microsystems? This LDRD supported research to answer these questions. Our work included modeling and simulation of protein populations to help us understand, mimic, and categorize molecular decision-making mechanisms that nonequilibrium systems can exhibit. This work is an early step towards mimicking such nanoscale and microscale biomolecular decision-making processes in inorganic systems.

  4. Molecular Gels Materials with Self-Assembled Fibrillar Networks

    CERN Document Server

    Weiss, Richard G

    2006-01-01

    Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actua...

  5. Lipid Self-Assemblies and Nanostructured Emulsions for Cosmetic Formulations

    Directory of Open Access Journals (Sweden)

    Chandrashekhar V. Kulkarni

    2016-10-01

    Full Text Available A majority of cosmetic products that we encounter on daily basis contain lipid constituents in solubilized or insolubilized forms. Due to their amphiphilic nature, the lipid molecules spontaneously self-assemble into a remarkable range of nanostructures when mixed with water. This review illustrates the formation and finely tunable properties of self-assembled lipid nanostructures and their hierarchically organized derivatives, as well as their relevance to the development of cosmetic formulations. These lipid systems can be modulated into various physical forms suitable for topical administration including fluids, gels, creams, pastes and dehydrated films. Moreover, they are capable of encapsulating hydrophilic, hydrophobic as well as amphiphilic active ingredients owing to their special morphological characters. Nano-hybrid materials with more elegant properties can be designed by combining nanostructured lipid systems with other nanomaterials including a hydrogelator, silica nanoparticles, clays and carbon nanomaterials. The smart materials reviewed here may well be the future of innovative cosmetic applications.

  6. Communication: Self-assembly of semiflexible-flexible block copolymers

    Science.gov (United States)

    Kumar, N. Arun; Ganesan, Venkat

    2012-03-01

    We apply the methodology of self-consistent Brownian dynamics simulations to study the self-assembly behavior in melts of semiflexible-flexible diblock copolymers as a function of the persistence length of the semiflexible block. Our results reveal a novel progression of morphologies in transitioning from the case of flexible-coil to rod-coil copolymers. At even moderate persistence lengths, the morphologies in the semiflexible-block rich region of the phase diagram transform to liquid crystalline phases. In contrast, the phases in the flexible-block rich region of the phase diagram persist up to much larger persistence lengths. Our analysis suggests that the development of orientational order in the semiflexible block to be a critical factor influencing the morphologies of self-assembly.

  7. Self-assembly of semiflexible-flexible block copolymers

    Science.gov (United States)

    Kumar, Arun; Ganesan, Venkat

    2012-02-01

    We apply self-consistent Brownian dynamics simulations to study the self-assembly behavior of semiflexible-flexible block copolymers. A Maier-Saupe interaction model was applied for the orientational interactions between the semiflexible polymers, while the enthalpic interactions between semiflexible and flexible polymers were modeled through a standard Flory-Huggins approach. To develop a physical understanding of the phases and their regimes of occurrence as a function of varying persistence length of the semiflexible block, we computed the 2D phase diagram for our model. We quantify the progression of the self-assembly morphologies in transitioning from coil-coil block copolymers on the one hand to rod-coil block copolymers on the other hand. The results obtained are in qualitative agreement with the existing experimental and numerical results.

  8. Self-Assembled Magnetic Surface Swimmers: Theoretical Model

    Science.gov (United States)

    Aranson, Igor; Belkin, Maxim; Snezhko, Alexey

    2009-03-01

    The mechanisms of self-propulsion of living microorganisms are a fascinating phenomenon attracting enormous attention in the physics community. A new type of self-assembled micro-swimmers, magnetic snakes, is an excellent tool to model locomotion in a simple table-top experiment. The snakes self-assemble from a dispersion of magnetic microparticles suspended on the liquid-air interface and subjected to an alternating magnetic field. Formation and dynamics of these swimmers are captured in the framework of theoretical model coupling paradigm equation for the amplitude of surface waves, conservation law for the density of particles, and the Navier-Stokes equation for hydrodynamic flows. The results of continuum modeling are supported by hybrid molecular dynamics simulations of magnetic particles floating on the surface of fluid.

  9. The collagen assisted self-assembly of silicon nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Salhi, Billel; Vaurette, Francois; Grandidier, Bruno; Stievenard, Didier [IEMN, UMR8520, Department ISEN, 41 Boulevard Vauban, 59046 Lille Cedex (France); Melnyk, Oleg [IBL, UMR8161, Institut Pasteur de Lille, Universite de Lille Nord de France, 1 rue du Professeur Calmette, 59021 Lille (France); Coffinier, Yannick; Boukherroub, Rabah [IRI, USR3078, c/o IEMN, Cite Scientifique, BP60069, 59652 Villeneuve d' Ascq (France)], E-mail: didier.stievenard@isen.iemn.univ-lille1.fr

    2009-06-10

    The paper reports on self-assembly of silicon nanowire junctions assisted by protocollagen, a low cost soluble long fiber protein and precursor of collagen fibrils. First, the collagen was combed on an octadecyl-terminated silicon surface with gold electrodes. Then the combed surface was exposed to an aqueous suspension of silicon nanowires. In order to increase electrostatic interactions between the positively charged collagen and the nanowires, the nanowires were chemically modified with negatively charged sulfonate groups. The interaction of collagen with the sulfonated nanowires, which mimics the native collagen/heparin sulfate interaction, induced self-assembly of the nanowires localized between gold electrodes. The proof of concept for the formation of spontaneous electrode-nanowire-electrode junctions using collagen as a template was supported by current-voltage measurements.

  10. Self-reproduction of nanoparticles through synergistic self-assembly.

    Science.gov (United States)

    Ikeda, Keisuke; Nakano, Minoru

    2015-01-01

    We describe a self-reproduction mechanism of nanometer-sized particles (i.e., nanodiscs) through chemical ligation of the precursors and self-assembly of the building blocks. The ligation reaction was accelerated on lipid bilayer surfaces, and the products spontaneously assembled into nanodiscs with lipid molecules. With the increase in the number of nanodiscs, a rapid proliferation of the nanodiscs occurred through the spatial rearrangements of the molecules between the pre-existing nanodiscs and the unreacted materials, rather than template- or complex-enhanced ligation of the precursors. The subsequent process of surface-enhanced ligation of integrated precursors matured the nanoparticles into identical copies of the pre-existing assembly. Our study showed that the synergistic self-assembly mechanism probably underlie the self-replication principles for heterogeneous multimolecular systems.

  11. Tailoring self-assembled monolayers at the electrochemical interface

    Indian Academy of Sciences (India)

    S Varatharajan; Sheela Berchmans; V Yegnaraman

    2009-09-01

    The main focus of this review is to illustrate the amenability of self-assembled monolayers (SAMs) for functionalisation with different receptors, catalytic materials, biomolecules, enzymes, antigen-antibody, etc for various applications. The review discusses initially about the preparation and characterization of SAMs and tailoring of SAMs by incorporation of suitable recognition elements. A description of how the molecular recognition is achieved through forces like electrostatic, covalent and host-guest interactions is included in the review.

  12. Hydrophobic Interactions Modulate Self-Assembly of Nanoparticles

    OpenAIRE

    Sánchez-Iglesias, Ana; Grzelczak, Marek; Altantzis, Thomas; Goris, Bart; Pérez-Juste, Jorge; Bals, Sara; Van Tendeloo, Gustaaf; Donaldson, Stephen H.; Chmelka, Bradley F.; Israelachvili, Jacob N.; Liz-Marzán, Luis M.

    2012-01-01

    Abstract: Hydrophobic interactions constitute one of the most important types of nonspecific interactions in biological systems, which emerge when water molecules rearrange as two hydrophobic species come close to each other. The prediction of hydrophobic interactions at the level of nanoparticles (Brownian objects) remains challenging because of uncontrolled diffusive motion of the particles. We describe here a general methodology for solvent-induced, reversible self-assembly of gold nanopar...

  13. Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures

    Science.gov (United States)

    2010-02-28

    evaporation induced self-assembly of aqueous silica precursors with a biologically compatible surfactant, glycerol monooleate ( GMO ) via dip-coating...film is first deposited, it has a relatively low contact angle with water and remains in a semi-solid state. Upon exposure to UV/ozone, the GMO begins...Figure 8. A) Water contact angle of a GMO -templated silica film as a function of UV light and ozone exposure time, B) Localization of fluorescently

  14. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...... coherence. The inferred homogeneous line widths are significantly smaller than the line widths usually observed in the photoluminescence from single quantum dots indicating an additional inhomogeneours broadening mechanism in the latter....

  15. Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene.

    Science.gov (United States)

    Xia, Guanglin; Tan, Yingbin; Chen, Xiaowei; Sun, Dalin; Guo, Zaiping; Liu, Huakun; Ouyang, Liuzhang; Zhu, Min; Yu, Xuebin

    2015-10-21

    Monodisperse MgH2 nanoparticles with homogeneous distribution and a high loading percent are developed through hydrogenation-induced self-assembly under the structure-directing role of graphene. Graphene acts not only as a structural support, but also as a space barrier to prevent the growth of MgH2 nanoparticles and as a thermally conductive pathway, leading to outstanding performance.

  16. Chiral discrimination in host-guest supramolecular complexes. Understanding enantioselectivity and solid solution behaviors by using spectroscopic methods and chemical sensors.

    Science.gov (United States)

    Grandeury, Arnaud; Condamine, Eric; Hilfert, Liane; Gouhier, Géraldine; Petit, Samuel; Coquerel, Gérard

    2007-06-28

    Diastereomeric host-guest associations formed between permethylated-beta-cyclodextrin (TMbeta-Cd) and the two enantiomers of p-bromophenylethanol (pBrPE) were characterized in aqueous solution by NMR spectroscopy, revealing similar inclusion geometries and weak binding constants, whatever the guest configuration. These features were confirmed by hydrogenation experiments, and do not allow to account for the ability of TMbeta-Cd to resolve racemic pBrPE by successive crystallizations [Grandeury, A.; Petit, S.; Gouhier, G.; Agasse, V.; Coquerel, G. Tetrahedron: Asymmetry 2003, 14, 2143-2152]. The analysis, by means of solid-state NMR, oxidation experiments, and solubility measurements, of the two crystalline phases containing known proportions of guest enantiomers revealed identical inclusion geometries in a given phase, irrespective of the enantiomeric composition. The corresponding solid solutions were further characterized by the determination of an isothermal section (40 degrees C) in the relevant ternary phase diagram. It appears from all these data that chiral resolution mechanisms in this system can only be envisaged in terms of nucleation conditions of each crystal form (with its specific inclusion geometry) and enantiomeric recognition at crystal solution interfaces during the growth of each crystal packing.

  17. Molecular recognition on supramolecular systems (XXXV)-- Synthesis of novel b-cyclodextrin derivative bearing pyridinio group and its chiral discrimination of amino acids

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A novel b-cyclodextrin derivative 4 bearing a pyridinio group on the primary side was synthesized by the reaction of 2-aminopyridine with 6-b-cyclodextrin monoaldehyde 3, and its complexation stability constants with several aliphatic amino acids have been determined in phosphate buffer solution ( pH = 7.2, 0.1 mol·L-1) at 25 ℃ by using spectrofluormetric titrations. The stoichiometry is 1︰1 for the inclusion complexation of amino acids with compound 4. Circular dichroism study indicates that the aromatic moiety was embedded shallowly into the cyclodextrin cavity. As a spectral probe, the pyridinio group in the modified cyclodextrin can recognize not only differences of the size and shape of amino acid molecules, but also the L/D-amino acid chiral isomer. As com-pared with mono-[6-(1-pyridinio)-6-deoxy]-b-cyclodextrin 5, compound 4 switched the enantiomer preference for L- to D-isomer, and showed the highest enantioselectivity of 5.4 for D/L-serine. The-se results are discussed from the viewpoints of geometric compensation, induced-fit concept and cooperation of several weak interactions.

  18. Molecular recognition on supramolecular systems (XXXV)——Synthesis of novel β-cyclodextrin derivative bearing pyridinio group and its chiral discrimination of amino acids

    Institute of Scientific and Technical Information of China (English)

    刘育; 康诗钊

    2001-01-01

    A novel p-cyclodextrin derivative 4 bearing a pyridinio group on the primary side was synthesized by the reaction of 2-aminopyridine with 6-p-cyclodextrin monoaldehyde 3, and its complexation stability constants with several aliphatic amino acids have been determined in phosphate buffer solution ( pH = 7.2, 0.1 mol ?L-1) at 25℃by using spectrofluorometric titrations. The stoichiometry is 1 : 1 for the inclusion complexation of amino acids with compound 4. Circular dichroism study indicates that the aromatic moiety was embedded shallowly into the cyclodextrin cavity. As a spectral probe, the pyridinio group in the modified cyclodextrin can recognize not only differences of the size and shape of amino acid molecules, but also the L/D-amino acid chiral iso-mer. As compared with mono-[6-(1-pyridinio)-6-deoxy]-p-cyclodextrin 5, compound 4 switched the enantiomer preference for L- to D-isomer, and showed the highest enantioselectivity of 5.4 for D/L-serine. These results are discussed from the viewpoints of ge

  19. Synthesis and self-assembly of glycal-based bolaforms.

    Science.gov (United States)

    Bozell, Joseph J; Tice, Nathan C; Sanyal, Nibedita; Thompson, David; Kim, Jong-Mok; Vidal, Sébastien

    2008-11-21

    Glycal-based bolaforms serve as synthetically flexible components of molecular self-assembly. The compounds are prepared in good yield by a Ferrier reaction between triacetylglucal or -galactal or diacetylxylal and a long chain alpha,omega-diol, followed by deacetylation under Zemplen conditions. The reactions are stereoselective and preferentially afford the alpha-diastereomer. The bolaforms undergo self-assembly in water or water/dioxane solution to give a variety of nanostructures. In solution, bolaforms with C8 or C10 chains between glucal headgroups form nanoscale vesicles. In contrast, bolaforms with C12 chains exhibit lower solubility and a dynamic self-assembly, forming several different nanoscale structures. However, the solid-state structures of C12 bolaform isomers adopt shapes very similar to those of bolaforms possessing more extensive hydrogen-bonding networks, indicating that multiple hydrogen bonds in solution are important to formation of stable, discrete nanostructures but that only a few key intermolecular interactions between bolaform headgroups are necessary to determine the structure in the solid state. The diversity and differentiation of the functional groups present in glycal-based bolaforms suggest that they could be useful probes of the various noncovalent forces controlling the structure of new nanomaterials.

  20. Algorithmic self-assembly of DNA Sierpinski triangles.

    Directory of Open Access Journals (Sweden)

    Paul W K Rothemund

    2004-12-01

    Full Text Available Algorithms and information, fundamental to technological and biological organization, are also an essential aspect of many elementary physical phenomena, such as molecular self-assembly. Here we report the molecular realization, using two-dimensional self-assembly of DNA tiles, of a cellular automaton whose update rule computes the binary function XOR and thus fabricates a fractal pattern--a Sierpinski triangle--as it grows. To achieve this, abstract tiles were translated into DNA tiles based on double-crossover motifs. Serving as input for the computation, long single-stranded DNA molecules were used to nucleate growth of tiles into algorithmic crystals. For both of two independent molecular realizations, atomic force microscopy revealed recognizable Sierpinski triangles containing 100-200 correct tiles. Error rates during assembly appear to range from 1% to 10%. Although imperfect, the growth of Sierpinski triangles demonstrates all the necessary mechanisms for the molecular implementation of arbitrary cellular automata. This shows that engineered DNA self-assembly can be treated as a Turing-universal biomolecular system, capable of implementing any desired algorithm for computation or construction tasks.