WorldWideScience

Sample records for chiral quark-soliton model

  1. Chiral Quark Soliton Model and Nucleon Spin Structure Functions

    CERN Document Server

    Wakamatsu, M

    2009-01-01

    The chiral quark soliton model (CQSM) is one of the most successful models of baryons at quark level, which maximally incorporates the most important feature of low energy QCD, i.e. the chiral symmetry and its spontaneous breakdown. Basically, it is a relativistic mean-field theory with full account of infinitely many Dirac-sea quarks in a rotational-symmetry-breaking mean field of hedgehog shape. The numerical technique established so far enables us to make a nonperturbative evaluation of Casimir effects (i.e. effects of vacuum-polarized Dirac sea) on a variety of baryon observables. This incompatible feature of the model manifests most clearly in its predictions for parton distribution functions of the nucleon. In this talk, after briefly reviewing several basic features of the CQSM, we plan to demonstrate in various ways that this unique model of baryons provides us with an ideal tool for disentangling nonperturbative aspect of the internal partonic structure of the nucleon, especially the underlying spin ...

  2. On the Chiral Quark Soliton Model with Pauli-Villars Regularization

    OpenAIRE

    Kubota, T.; Wakamatsu, M.; Watabe, T.

    1999-01-01

    The Pauli-Villars regularization scheme is often used for evaluating parton distributions within the framework of the chiral quark soliton model with inclusion of the vacuum polarization effects. Its simplest version with a single subtraction term should however be taken with some caution, since it does not fully get rid of divergences contained in scalar and psuedoscalar quark densities appearing in the soliton equation of motion. To remedy this shortcoming, we propose here its natural exten...

  3. Instability of the hedgehog shape for the octet baryon in the chiral quark soliton model

    CERN Document Server

    Akiyama, S; Akiyama, Satoru; Futami, Yasuhiko

    2003-01-01

    In this paper the stability of the hedgehog shape of the chiral soliton is studied for the octet baryon with the SU(3) chiral quark soliton model. The strangeness degrees of freedom are treated by a simplified bound-state approach, which omits the locality of the kaon wave function. The mean field approximation for the flavor rotation is applied to the model. The classical soliton changes shape according to the strangeness. The baryon appears as a rotational band of the combined system of the deformed soliton and the kaon.

  4. Quantum corrections to the masses of the octet and decuplet baryons in the SU(3) chiral quark soliton model

    CERN Document Server

    Akiyama, S; Akiyama, Satoru; Futami, Yasuhiko

    2006-01-01

    Mesonic fluctuations around the chiral solitons are investigated in the SU(3) chiral quark soliton model. Since the soliton takes the non-hedgehog shape for the hyperons and the hedgehog one for the non-hedgehog baryons in our approach, the fluctuations also change according to the baryonic state. The quantum corrections to the masses (the Casimir energies) are estimated for the octet and decuplet baryons. The lack of the confinement in this model demands the cutoff on the energy of the fluctuations. Under the assumption that the value of the cutoff energy is $2\\times$(the lightest constituent quark mass), these calculation reproduces the masses of the baryons within 15 % error.

  5. The B=2 system in the chiral quark-soliton model with broken scale invariance

    CERN Document Server

    Sarti, Valentina Mantovani; Vento, Vicente

    2013-01-01

    We study the interaction between two B=1 states in the Chiral-Dilaton Model with scale invariance where baryons are described as non-topological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for the B=1 states we construct, via a product ansatz, three possible B=2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics. We investigate the behaviour of these solutions in the range of long and intermediate distances between the two solitons. Since the product ansatz breaks down as the two solitons get close, we explore the short range distances regime by building up a six quarks bag and by evaluating the interaction energy as a function of the inter-soliton separation. We calculate the interaction energy as a function of the inter-soliton distance for the B=2 system and we show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations conne...

  6. Parity-violating aysmmetries in elastic $\\vec{e}p$ scattering in the chiral quark-soliton model: Comparison with A4, G0, HAPPEX and SAMPLE

    CERN Document Server

    Silva, A; Kim, H C; Urbano, D; Goeke, Klaus; Kim, Hyun-Chul; Silva, Antonio; Urbano, Diana

    2006-01-01

    We investigate parity-violating electroweak asymmetries in the elastic scattering of polarized electrons off protons within the framework of the chiral quark-soliton model ($\\chi$QSM). We use as input the former results of the electromagnetic and strange form factors and newly calculated SU(3) axial-vector form factors, all evaluated with the same set of four parameters adjusted several years ago to general mesonic and baryonic properties. Based on this scheme, which yields positive electric and magnetic strange form factors with a $\\mu_s=(0.08-0.13)\\mu_N$, we determine the parity-violating asymmetries of elastic polarized electron-proton scattering. The results are in a good agreement with the data of the A4, HAPPEX, and SAMPLE experiments and reproduce the full $Q^2$-range of the G0-data. We also predict the parity-violating asymmetries for the backward G0 experiment.

  7. Vector transition form factors of the $N K^*\\to\\Theta^+ $ and $N \\bar{K}^*\\to \\Sigma_{\\bar{10}}^{*-}$ in the SU(3) chiral quark-soliton model

    CERN Document Server

    Ledwig, Tim; Goeke, Klaus

    2008-01-01

    We investigate the vector transition form factors of the nucleon and vector meson $K^*$ to the pentaquark baryon $\\Theta^+$ within the framework of the SU(3) chiral quark-soliton model. We take into account the rotational $1/N_c$ and linear $m_{\\rm s}$ corrections, assuming isospin symmetry and employing the symmetry-conserving quantization. It turns out that the leading-order contributions to the form factors are almost cancelled by the rotational corrections. Because of this, the flavor SU(3) symmetry-breaking terms yield sizeable effects on the transition form factors. In particular, the main contribution to the electric transition form factor comes from the wave-function corrections, which is a consequence of the generalized Ademollo-Gatto theorem derived in the present work. We estimate with the help of the vector meson dominance the $K^*$ vector and tensor coupling constants for the $\\Theta^+$: $g_{K^{*}N\\Theta}=0.74 - 0.87$ and $f_{K^{*}N\\Theta}=0.53 - 1.16$. We argue that the outcome of the present wo...

  8. Heavy Quark Solitons in the Nambu--Jona-Lasinio Model

    OpenAIRE

    Gamberg, L.(Department of Physics, Penn State University-Berks, Reading, PA, 19610, U.S.A.); Weigel, H.(Physics Department, Stellenbosch University, Matieland 7602, South Africa); Z{ü}ckert, U.; Reinhardt, H.

    1995-01-01

    The Nambu--Jona-Lasinio model (NJL) is extended to incorporate heavy quark spin-symmetry. In this model baryons containing one heavy quark are analyzed as bound-states of light baryons, represented as chiral solitons, and mesons containing one heavy quark. From related studies in Skyrme type models, the ground-state heavy baryon is known to arise for the heavy meson in a P--wave configuration. In the limit of an infinitely large quark mass the heavy meson wave-function is sharply peaked at th...

  9. Parity-violating $\\pi NN$ coupling constant from the flavor-conserving effective weak chiral Lagrangian

    CERN Document Server

    Hyun, Chang Ho; Lee, Hee-Jung

    2016-01-01

    We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.

  10. Heavy quark solitons strangeness and symmetry breaking

    CERN Document Server

    Momen, A; Subbaraman, A; Momen, Arshad; Schechter, Joseph; Subbaraman, Anand

    1994-01-01

    We discuss the generalization of the Callan-Klebanov model to the case of heavy quark baryons. The light flavor group is considered to be $SU(3)$ and the limit of heavy spin symmetry is taken. The presence of the Wess-Zumino-Witten term permits the neat development of a picture , at the collective level, of a light diquark bound to a ``heavy" quark with decoupled spin degree of freedom. The consequences of $SU(3)$ symmetry breaking are discussed in detail. We point out that the $SU(3)$ mass splittings of the heavy baryons essentially measure the ``low energy" physics once more and that the comparison with experiment is satisfactory.

  11. Heavy quark solitons: Strangeness and symmetry breaking

    International Nuclear Information System (INIS)

    We discuss the generalization of the Callan-Klebanov model to the case of heavy quark baryons. The light flavor group is considered to be SU(3) and the limit of heavy spin symmetry is taken. The presence of the Wess-Zumino-Witten term permits the neat development of a picture, at the collective level, of a light diquark bound to a ''heavy'' quark with decoupled spin degree of freedom. The consequences of SU(3) symmetry breaking are discussed in detail. We point out that the SU(3) mass splitting of the heavy baryons essentially measure the ''low energy'' physics once more and that the comparison with experiment is satisfactory

  12. Chiral quark model

    Indian Academy of Sciences (India)

    H Weigel

    2003-11-01

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.

  13. Chiral String-Soliton Model for the light chiral baryons

    CERN Document Server

    Pavlovsky, Oleg

    2010-01-01

    The Chiral String-Soliton Model is a joining of the two notions about the light chiral baryons: the chiral soliton models (like the Skyrme model) and the Quark-Gluon String models. The ChSS model is based on the Effective Chiral Lagrangian which was proposed in [arXiv:hep-ph/0306216]. We have studied the physical properties of the light chiral baryon within the framework of this ChSS model.

  14. Generalized simplicial chiral models

    International Nuclear Information System (INIS)

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, the simplicial chiral models are generalized through replacing the term Tr(AA†) in the Lagrangian of these models by an arbitrary class function of AA†; V(AA†). This is the same method used in defining the generalized two-dimensional Yang-Mills theories (gYM2) from ordinary YM2. We call these models the 'generalized simplicial chiral models'. Using the results of the one-link integral over a U(N) matrix, the large-N saddle-point equations for eigenvalue density function ρ(z) in the weak (β>βc) and strong (βc) regions are computed. In d=2, where the model is in some sense related to the gYM2 theory, the saddle-point equations are solved for ρ(z) in the two regions, and the explicit value of critical point βc is calculated for V(B)=Tr Bn (B=AA†). For V(B)=Tr B2,Tr B3, and TrB4, the critical behaviour of the model at d=2 is studied, and by calculating the internal energy, it is shown that these models have a third order phase transition

  15. Generalized simplicial chiral models

    CERN Document Server

    Alimohammadi, M

    2000-01-01

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, we generalize the simplicial chiral models by replacing the term Tr$(AA^{\\d})$ in the Lagrangian of these models, by an arbitrary class function of $AA^{\\d}; V(AA^{\\d})$. This is the same method that has been used in defining the generalized two-dimensional Yang-Mills theories (gYM_2) from ordinary YM_2. We call these models, the " generalized simplicial chiral models ". With the help of the results of one-link integral over a U(N) matrix, we compute the large-N saddle-point equations for eigenvalue density function $\\ro (z)$ in the weak ($\\b >\\b_c$) and strong ($\\b <\\b_c$) regions. In d=2, where the model somehow relates to gYM_2 theory, we solve the saddle-point equations and find $\\ro (z)$ in two region, and calculate the explicit value of critical point $\\b_c$ for $V(B)=TrB^n (B=AA^{\\d})$. For $V(B)=Tr B^2,Tr B^3$ and Tr$B^4$, we study the critical behaviour of the model at d=2, and by calculating t...

  16. Dirac brackets for the chiral Schwinger model with chiral constraint

    International Nuclear Information System (INIS)

    Dirac brackets for the chiral Schwinger model with chiral constraint are derived perturbatively from the correlation function by the BJL limit method. The results show that the Poissons brackets are not consistent in this theory. (author)

  17. Chiral Thirring-Wess Model

    CERN Document Server

    Rahaman, Anisur

    2015-01-01

    The vector type of interaction of the Thirring-Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring-Wess model in \\cite{THAR}. The model was studied there with a Faddeevian class of regularization that contained few ambiguity parameters with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring-Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remain exactly solvable but also does not loose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model has been determined in the present scenario through Dirac's method of quantization of constraint system. The theoretical spectrum is found to ...

  18. Solutions of ward's modified chiral model

    International Nuclear Information System (INIS)

    We discuss the adaptation of Uhlenbeck's method of solving the chiral model in 2 Euclidean dimensions to Ward's modified chiral model in (2+1) dimensions. We show that the method reduces the problem of solving the second-order partial differential equations for the chiral field to solving a sequence of first-order partial differential equations for time dependent projector valued fields

  19. Chiral Cosmological Models: Dark Sector Fields Description

    CERN Document Server

    Chervon, S V

    2014-01-01

    The present review is devoted to a Chiral Cosmological Model as the self-gravitating nonlinear sigma model with the potential of (self)interactions employed in cosmology. The chiral cosmological model has successive applications in descriptions of the inflationary epoch of the Universe evolution; the present accelerated expansion of the Universe also can be described by the chiral fields multiplet as the dark energy in wide sense. To be more illustrative we are often addressed to the two-component chiral cosmological model. Namely, the two-component chiral cosmological model describing the phantom field with interaction to a canonical scalar field is analyzed in details. New generalized model of quintom character is proposed and exact solutions are founded out. In the review we represented the perturbation theory for chiral cosmological model with the aim to describe the structure formation using the progress achieved in the inflation theory. It was shown that cosmological perturbations from chiral fields can...

  20. Chiral magnetic effect in the PNJL model

    CERN Document Server

    Fukushima, Kenji; Gatto, Raoul

    2010-01-01

    We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential $\\mu_5$ which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of $\\mu_5$ on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.

  1. Chiral sine-Gordon model

    Science.gov (United States)

    Yanagisawa, Takashi

    2016-02-01

    We investigate the chiral sine-Gordon model using the renormalization group method. The chiral sine-Gordon model is a model for G-valued fields and describes a new class of phase transitions, where G is a compact Lie group. We show that the model is renormalizable by means of a perturbation expansion and we derive beta functions of the renormalization group theory. The coefficients of beta functions are represented by the Casimir invariants. The model contains both asymptotically free and ultraviolet strong-coupling regions. The beta functions have a zero which is a bifurcation point that divides the parameter space into two regions; they are the weak-coupling region and the strong-coupling region. A large-N model is also considered. This model is reduced to the conventional sine-Gordon model that describes the Kosterlitz-Thouless transition near the fixed point. In the strong-coupling limit, the model is reduced to a U(N) matrix model.

  2. Chiral sine-Gordon model

    CERN Document Server

    Yanagisawa, Takashi

    2016-01-01

    We investigate the chiral sine-Gordon model using the renormalization group method. The chiral sine-Gordon model is a model for $G$-valued fields and describes a new class of phase transitions, where $G$ is a compact Lie group. We show that the model is renormalizable by means of a perturbation expansion and we derive beta functions of the renormalization group theory. The coefficients of beta functions are represented by the Casimir invariants. The model contains both asymptotically free and ultraviolet strong coupling regions. The beta functions have a zero which is a bifurcation point that divides the parameter space into two regions; they are the weak coupling region and the strong coupling region. A large-$N$ model is also considered. This model is reduced to the conventional sine-Gordon model that describes the Kosterlitz-Thouless transition near the fixed point. In the strong-coupling limit, the model is reduced to a $U(N)$ matrix model.

  3. Principal chiral model on superspheres

    International Nuclear Information System (INIS)

    We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S3verticalstroke2, we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)

  4. Principal chiral model on superspheres

    Energy Technology Data Exchange (ETDEWEB)

    Mitev, V.; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quella, T. [Amsterdam Univ. (Netherlands). Inst. for Theoretical Physics

    2008-09-15

    We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S{sup 3} {sup vertical} {sup stroke} {sup 2}, we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)

  5. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  6. Intrinsic transverse momentum and dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Christian Weiss, Peter Schweitzer, Mark Strikman

    2013-01-01

    We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.

  7. Chiral Schwinger model at finite temperature

    International Nuclear Information System (INIS)

    We discuss the chiral Schwinger model at finite temperature using Fujikawa's method. We solve this model exactly and show that the axial anomaly and the dynamically generated mass for the gauge field are temperature independent. (author). 20 refs

  8. Chiral Lagrangian and chiral quark model from confinement in QCD

    CERN Document Server

    Simonov, Yu A

    2015-01-01

    The effective chiral Lagrangian in both nonlocal form $L_{ECCL}$ and standard local form $L_{ECL}$ are derived in QCD using the confining kernel, obtained in the vacuum correlator formalism. As a result all coefficients of $L_{ECL}$ can be computed via $q\\bar q$ Green's functions. In the $p^2$ order of $L_{ECL}$ one obtains GOR relations and quark decay constants $f_a$ are calculated $a=1,...8$, while in the $p^4$ order the coefficients $L_1, L_2, L_3,L_4, L_5, L_6$ are obtained in good agreement with the values given by data. The chiral quark model is shown to be a simple consequence of $L_{ECCL}$ with defined coefficients. It is demonstrated that $L_{ECCL}$ gives an extension of the limiting low-energy Lagrangian $L_{ECL}$ to arbitrary momenta.

  9. Effective action in general chiral superfield model

    OpenAIRE

    Petrov, A. Yu.

    2000-01-01

    The effective action in general chiral superfield model with arbitrary k\\"{a}hlerian potential $K(\\bar{\\Phi},\\Phi)$ and chiral (holomorphic) potential $W(\\Phi)$ is considered. The one-loop and two-loop contributions to k\\"{a}hlerian effective potential and two-loop (first non-zero) contribution to chiral effective potential are found for arbitrary form of functions $K(\\bar{\\Phi},\\Phi)$ and $W(\\Phi)$. It is found that despite the theory is non-renormalizable in general case two-loop contributi...

  10. Chiral symmetry restoration in effective Lagrangian models

    International Nuclear Information System (INIS)

    The restoration is studied of chiral symmetry in dense baryon matter using effective lagrangian models of QCD, in which baryons are described as topological solitons. Starting from the breaking of scale invariance and chiral symmetry in the QCD vacuum, the foundations are discussed of effective lagrangians and their relevance for applications to dense matter. Soliton models, such a the Skyrme model, show a phase transition at high densities, whose order parameter is the average scalar field. The properties are investigated of the two phases of the effective theory and show that the phase transition corresponds to the restoration of the chiral symmetry of QCD. It is argued that it should not be understood as deconfinement. The author then considers this phase transition in the context of the Cheshire Cat principle, which provides the link to the underlying quarks of QCD. An analogue of the Cheshire Cat property of this chiral bag model for baryons is found in solitons of effective lagrangians with a scalar glueball field. The Cheshire Cat interpretation of the results of effective lagrangians provides a consistent picture of chiral symmetry restoration at high densities. To verify this interpretation explicitly, the author finally generalizes the effective lagrangian approach to dense matter to a chiral bag model description with quark degrees of freedom

  11. Parity doublers in chiral potential quark models

    International Nuclear Information System (INIS)

    The effect of spontaneous breaking of chiral symmetry over the spectrum of highly excited hadrons is addressed in the framework of a microscopic chiral potential quark model (Generalised Nambu-Jona-Lasinio model) with a vectorial instantaneous quark kernel of a generic form. A heavy-light quark-antiquark bound system is considered, as an example, and the Lorentz nature of the effective light-quark potential is identified to be a pure Lorentz-scalar, for low-lying states in the spectrum, and to become a pure spatial Lorentz vector, for highly excited states. Consequently, the splitting between the partners in chiral doublets is demonstrated to decrease fast in the upper part of the spectrum so that neighboring states of an opposite parity become almost degenerate. A detailed microscopic picture of such a 'chiral symmetry restoration' in the spectrum of highly excited hadrons is drawn and the corresponding scale of restoration is estimated

  12. Chiral effective model with the Polyakov loop

    OpenAIRE

    Fukushima, Kenji

    2003-01-01

    We discuss how the simultaneous crossovers of deconfinement and chiral restoration can be realized. We propose a dynamical mechanism assuming that the effective potential gives a finite value of the chiral condensate if the Polyakov loop vanishes. Using a simple model, we demonstrate that our idea works well for small quark mass, though there should be further constraints to reach the perfect locking of two phenomena.

  13. Two chiral nonet model with massless quarks

    CERN Document Server

    Fariborz, Amir H; Schechter, Joseph

    2007-01-01

    We present a detailed study of a linear sigma model containing one chiral nonet transforming under U(1)$_A$ as a quark-antiquark composite and another chiral nonet transforming as a diquark-anti diquark composite (or, equivalently from a symmetry point of view, as a two meson molecule). The model provides an intuitive explanation of a current puzzle in low energy QCD: Recent work has suggested the existence of a lighter than 1 GeV nonet of scalar mesons which behave like four quark composites. On the other hand, the validity of a spontaneously broken chiral symmetric description would suggest that these states be chiral partners of the light pseudoscalar mesons, which are two quark composites. The model solves the problem by starting with the two chiral nonets mentioned and allowing them to mix with each other. The input of physical masses in the SU(3) invariant limit for two scalar octets and an "excited" pion octet results in a mixing pattern wherein the light scalars have a large four quark content while t...

  14. Two chiral nonet model with massless quarks

    International Nuclear Information System (INIS)

    We present a detailed study of a linear sigma model containing one chiral nonet transforming under U(1)A as a quark-antiquark composite and another chiral nonet transforming as a diquark-antidiquark composite (or, equivalently from a symmetry point of view, as a two meson molecule). The model provides an intuitive explanation of a current puzzle in low energy QCD: Recent work has suggested the existence of a lighter than 1 GeV nonet of scalar mesons which behave like four quark composites. On the other hand, the validity of a spontaneously broken chiral symmetric description would suggest that these states be chiral partners of the light pseudoscalar mesons, which are two quark composites. The model solves the problem by starting with the two chiral nonets mentioned and allowing them to mix with each other. The input of physical masses in the SU(3) invariant limit for two scalar octets and an excited pion octet results in a mixing pattern wherein the light scalars have a large four quark content while the light pseudoscalars have a large two quark content. One light isosinglet scalar is exceptionally light. In addition, the pion pion scattering is also studied and the current algebra theorem is verified for massless pions which contain some four quark admixture

  15. Chiral symmetry breaking in brane models

    International Nuclear Information System (INIS)

    We discuss the chiral symmetry breaking in general intersecting Dq/Dp brane models consisting of Nc Dq-branes and a single Dp-brane with an s-dimensional intersection. There exists a QCD-like theory localized at the intersection and the Dq/Dp model gives a holographic description of it. The rotational symmetry of directions transverse to both of the Dq and Dp-branes can be identified with a chiral symmetry, which is non-Abelian for certain cases. The asymptotic distance between the Dq-branes and the Dp-brane corresponds to a quark mass. By studying the probe Dp-brane dynamics in a Dq-brane background in the near horizon and large Nc limit we find that the chiral symmetry is spontaneously broken and there appear (pseudo-)Nambu-Goldstone bosons. We also discuss the models at finite temperature

  16. Pentaquarks in chiral color dielectric model

    Indian Academy of Sciences (India)

    S C Pathak

    2006-04-01

    Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV. I find that the mass of the state can be fitted to the experimentally observed mass by invoking a color neutral vector field and its interaction with the quarks.

  17. A Note on Ward's Chiral Model

    OpenAIRE

    Ioannidou, Theodora; Zakrzewski, Wojtek

    1998-01-01

    A one parameter generalization of Ward's chiral model in 2+1 dimensions is given. Like the original model the present one is integrable and possesses a positive-definite and conserved energy and $y$-momentum. The details of the scattering depend on the value of the parameter of the generalisation.

  18. Cranking the chiral soliton bag model

    Energy Technology Data Exchange (ETDEWEB)

    Stern, J.; Bourenane, M.; Clement, G.

    1988-10-01

    The nucleon-delta mass difference is computed in the chiral soliton bag model with soft confinement of gluons by the cranking method. The resulting value of the effective strong fine structure constant is ..cap alpha../sub s/ approx. 0.7.

  19. Structure Functions from Chiral Soliton Models

    OpenAIRE

    Weigel, H.(Physics Department, Stellenbosch University, Matieland 7602, South Africa); Gamberg, L.(Department of Physics, Penn State University-Berks, Reading, PA, 19610, U.S.A.); Reinhardt, H.

    1997-01-01

    We study nucleon structure functions within the bosonized Nambu-Jona-Lasinio (NJL) model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron-nucleon scattering. A comparison with a low-scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions $g_{1}(x)$ and $g_{2}(x)$ in this model. We compa...

  20. About chiral models of dense matter and its magnetic properties

    International Nuclear Information System (INIS)

    The chiral models of dense nucleon matter are discussed. The quark matter with broken chiral symmetry is described. The magnetic properties of dense matter are presented and conclusions are given. 37 refs. (A.S.)

  1. N phi state in chiral quark model

    CERN Document Server

    Huang, F; Zhang, Z Y

    2006-01-01

    The structures of N phi states with spin-parity J^{p}=3/2^- and J^p=1/2^- are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon (NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The channel coupling of N phi and Lambda K* is considered, and the effect of the tensor force which results in the mixing of S and D waves is also investigated. The results show that the N phi state has an attractive interaction, and in the extended chiral SU(3) quark model such an attraction plus the channel coupling effect can consequently make for an N phi quasi-bound state with several MeV binding energy.

  2. Toy model for two chiral nonets

    CERN Document Server

    Fariborz, A H; Schechter, J; Fariborz, Amir H.; Jora, Renata; Schechter, Joseph

    2005-01-01

    Motivated by the possibility that nonets of scalar mesons might be described as mixtures of "two quark" and "four quark" components, we further study a toy model in which corresponding chiral nonets (containing also the pseudoscalar partners) interact with each other. Although the "two quark" and "four quark" chiral fields transform identically under SU(3)$_L \\times$ SU(3)$_R$ transformations they transform differently under the U(1)$_A$ transformation which essentially counts total (quark + antiquark) content of the mesons. To implement this we formulate an effective Lagrangian which mocks up the U(1)$_A$ behavior of the underlying QCD. We derive generating equations which yield Ward identity type relations based only on the assumed symmetry structure. This is applied to the mass spectrum of the low lying pseudoscalars and scalars. as well as their "excitations". Assuming isotopic spin invariance, it is possible to disentangle the amount of"two quark" vs."four quark" content in the pseudoscalar $\\pi, K ,\\eta...

  3. Solitons in nonlocal chiral quark models

    CERN Document Server

    Broniowski, W; Ripka, G; Broniowski, Wojciech; Golli, Bojan; Ripka, Georges

    2002-01-01

    Properties of hedgehog solitons in a chiral quark model with nonlocal regulators are described. We discuss the formation of the hedgehog soliton, the quantization of the baryon number, the energetic stability, the gauging and construction of Noether currents with help of path-ordered P-exponents, and the evaluation of observables. The issue of nonlocality is thoroughly discussed, with a focus on contributions to observables related to the Noether currents. It is shown that with typical model parameters the solitons are not far from the weak nonlocality limit. The methods developed are applicable to solitons in models with separable nonlocal four-fermion interactions.

  4. Structure functions in the chiral bag model

    International Nuclear Information System (INIS)

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.)

  5. Structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V.; Vento, V.

    1989-07-13

    We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).

  6. Nucleon Properties from Approximating Chiral Quark Sigma Model

    CERN Document Server

    Abu-Shady, M

    2009-01-01

    We apply the approximating chiral quark model. This chiral quark model is based on an effective Lagrangian which the interactions between quarks via sigma and pions mesons. The field equations have been solved in the mean field approximation for the hedgehog baryon state. Good results are obtained for nucleon properties in comparison with original model.

  7. Dihyperons in chiral color dielectric model

    Indian Academy of Sciences (India)

    S C Phatak

    2003-11-01

    The mass of the dibaryon having spin, parity =0+, isospin = 0 and strangeness -2 is computed using chiral color dielectric model. The bare wave function is constructed as a product of two color-singlet three-quark clusters and then it is properly antisymmetrized by considering appropriate exchange operators for spin, flavor and color. Color magnetic energy due to gluon exchange, meson self energy and energy correction due to center of mass motion are computed. The calculation shows that the mass of the particle is 80 to 160 MeV less than twice mass.

  8. Moduli stabilisation for chiral global models

    Energy Technology Data Exchange (ETDEWEB)

    Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2011-10-15

    We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r

  9. Lagrangian Formulation of the General Modified Chiral Model

    OpenAIRE

    Ioannidou, Theodora; Zakrzewski, Wojtek

    1998-01-01

    We present a Lagrangian formulation for the general modified chiral model. We use it to discuss the Hamiltonian formalism for this model and to derive the commutation relations for the chiral field. We look at some explicit examples and show that the Hamiltonian, containing a contribution involving a Wess-Zumino term, is conserved, as required.

  10. Toy model for two chiral nonets

    International Nuclear Information System (INIS)

    Motivated by the possibility that nonets of scalar mesons might be described as mixtures of 'two quark' and 'four quark' components, we further study a toy model in which corresponding chiral nonets (containing also the pseudoscalar partners) interact with each other. Although the 'two quark' and 'four quark' chiral fields transform identically under SU(3)LxSU(3)R transformations, they transform differently under the U(1)A transformation which essentially counts total (quark+antiquark) content of the mesons. To implement this, we formulate an effective Lagrangian which mocks up the U(1)A behavior of the underlying QCD. We derive generating equations which yield Ward identity type relations based only on the assumed symmetry structure. This is applied to the mass spectrum of the low lying pseudoscalars and scalars, as well as their 'excitations'. Assuming isotopic spin invariance, it is possible to disentangle the amount of 'two quark' vs 'four quark' content in the pseudoscalar π,K,η-type states and in the scalar κ-type states. It is found that a small 'four quark' content in the lightest pseudoscalars is consistent with a large 'four quark' content in the lightest of the scalar κ mesons. The present toy model also allows one to easily estimate the strength of a 'four quark' vacuum condensate. There seems to be a rich and interesting structure

  11. Circular dichroism of graphene oxide: the chiral structure model

    Institute of Scientific and Technical Information of China (English)

    Jing CAO; Hua-Jie YIN; Rui SONG

    2013-01-01

    We have observed the circular dichroism signal of dilute graphene oxide (GO), then systematically investigated the chirality of GO and established a probable chiral unit model, This study may open up a new field for understanding the structure of GO and lay the foundation for fabrication of GO-based materials.

  12. Hadron Structure Functions within a Chiral Quark Model

    OpenAIRE

    Weigel, H.(Physics Department, Stellenbosch University, Matieland 7602, South Africa); Gamberg, L.(Department of Physics, Penn State University-Berks, Reading, PA, 19610, U.S.A.)

    2000-01-01

    We outline a consistent regularization procedure to compute hadron structure functions within bosonized chiral quark models. We impose the Pauli--Villars scheme, which reproduces the chiral anomaly, to regularize the bosonized action. We derive the Compton amplitude from this action and utilize the Bjorken limit to extract structure functions that are consistent with the scaling laws and sum rules of deep inelastic scattering.

  13. Currents, charges, and canonical structure of pseudodual chiral models

    International Nuclear Information System (INIS)

    We discuss the pseudodual chiral model to illustrate a class of two-dimensional theories which have an infinite number of conservation laws but allow particle production, at variance with naive expectations. We describe the symmetries of the pseudodual model, both local and nonlocal, as transmutations of the symmetries of the usual chiral model. We refine the conventional algorithm to more efficiently produce the nonlocal symmetries of the model, and we discuss the complete local current algebra for the pseudodual theory. We also exhibit the canonical transformation which connects the usual chiral model to its fully equivalent dual, further distinguishing the pseudodual theory

  14. BRST-BFV quantization of chiral Schwinger model

    International Nuclear Information System (INIS)

    The BRST-BFV procedure of quantization is applied to establish, in a gauge independent manner, the equivalence of the gauge noninvariant and gauge invariant formulations of the Chiral Schwinger model. (author). 14 refs

  15. BRST-BFV quantization of Chiral Schwinger model

    International Nuclear Information System (INIS)

    The BRST-BFV procedure of quantization is applied to establish, in a gauge independent manner, the equivalence of the gauge noninvariant and gauge invariant formulations of the Chiral Schwinger model. (author). 14 refs

  16. Chiral-particle Approach to Hadrons in an Extended Chiral ($\\sigma,\\pi,\\omega$) Mean-Field Model

    CERN Document Server

    Uechi, Schun T

    2010-01-01

    The chiral nonlinear ($\\sigma,\\pi,\\omega$) mean-field model is an extension of the conserving nonlinear (nonchiral) $\\sigma$-$\\omega$ hadronic mean-field model which is thermodynamically consistent, relativistic and Lorentz-covariant mean-field theory of hadrons. In the extended chiral ($\\sigma,\\pi,\\omega$) mean-field model, all the masses of hadrons are produced by chiral symmetry breaking mechanism, which is different from other conventional chiral partner models. By comparing both nonchiral and chiral mean-field approximations, the effects of chiral symmetry breaking to the mass of $\\sigma$-meson, coefficients of nonlinear interactions, coupling ratios of hyperons to nucleons and Fermi-liquid properties are investigated in nuclear matter, hyperonic matter, and neutron stars.

  17. Meson phenomenology and phase transitions in nonlocal chiral quark models

    Science.gov (United States)

    Carlomagno, J. P.; Gomez Dumm, D.; Pagura, V.; Scoccola, N. N.

    2015-07-01

    We study the features of nonlocal chiral quark models that include wave function renormalization. Model parameters are determined from meson phenomenology, considering different nonlocal form factor shapes. In this context we analyze the characteristics of the deconfinement and chiral restoration transitions at finite temperature and chemical potential, introducing the couplings of fermions to the Polyakov loop for different Polyakov potentials. The results for various thermodynamical quantities are compared with data obtained from lattice QCD calculations.

  18. On SU(3) effective models and chiral phase-transition

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...

  19. Chiral Transition Within Effective Quark Models under Strong Magnetic Fields

    CERN Document Server

    Garcia, Andre Felipe

    2013-01-01

    In the recently years it has been argued that spectators in heavy ion collisions are responsible for creating a strong magnetic field that could play an important role in the QCD phase transition. In this work we use the SU(2) Nambu--Jona-Lasinio (NJL) model in order to study the chiral transition in quark matter subject to a strong magnetic field. We show some results involving the breaking of chiral symmetry and its restoration at finite temperature and density.

  20. The effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes

    CERN Document Server

    Yu, Lang; Huang, Mei

    2015-01-01

    We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.

  1. Fermions in two (1+1)-dimensional anomalous gauge theories: The chiral Schwinger model and the chiral quantum gravity

    International Nuclear Information System (INIS)

    The fermion in the gauge invariant formulation of the chiral Schwinger model and its relation to the fermion in the anomalous formulation is studied. A gauge invariant fermion operator is constructed that does not give rise to an asymptotic fermion field. It fits in the scheme prepared by generalized Schwinger models. Singularities in the short-distance limit of the chiral Schwinger model in the anomalous formulation lead to the conclusion that it is not a promising starting point for investigations towards realistic (3+1)-dimensional gauge theories with chiral fermion content. A new anomalous (1+1)-dimensional model is studied, the chiral quantum gravity. It is proven to be consistent if only a limited number of chiral fermions couple. The fermion propagator behaves analogously to the one in the massless Thirring model. A general rule is derived for the change of the fermion operator, which is induced by the breakdown of a gauge symmetry. (orig.)

  2. Integrability of a master chiral quantum field model

    International Nuclear Information System (INIS)

    The paper deals with solution of a master chiral field model in two-dimensional space-time using the quantum method of inverse problem. A dominant role in the approach is played by the idea of relativistic model production on the basis of magnetic model in the scaling limit at S→ infinity. L-M pair of a master chiral field model is discussed. Formulae for regularized quantum Hamiltonian and Bethe-Ansatz above pseudovacuum are derived. The description of excitations and Dirac filling for the ground state is given. Continuous limit from magnetic model above physical vacuum is considered

  3. Chiral soliton model vs. pentaquark structure for (1540)

    Indian Academy of Sciences (India)

    R Ramachandran

    2005-09-01

    The exotic baryon + (1540 MeV) is visualized as an expected (iso) rotational excitation in the chiral soliton model. It is also argued as a pentaquark baryon state in a constituent quark model with strong diquark correlations. I contrast these two points of view; observe the similarities and differences between the two pictures. Collective excitation, the characteristic of chiral soliton model, points toward small mixing of representations in the wake of (3) breaking. In contrast, constituent quark models prefer near `ideal' mixing, similar to - mixing.

  4. Quark matter inside neutron stars in an effective chiral model

    International Nuclear Information System (INIS)

    An effective chiral model which describes properties of a single baryon predicts that the quark matter relevant to neutron stars, close to the deconfinement density, is in a chirally broken phase. We find the SU(2) model that pion-condensed up and down quark matter is preferred energetically at neutron star densities. It exhibits spin ordering and can posses a permanent magnetization. The equation of state of quark matter with chiral condensate is very well approximated by bag model equation of the state with suitably chosen parameters. We study quark cores inside neutron stars in this model using realistic nucleon equations of state. The biggest quark core corresponds to the second order phase transition to quark matter. Magnetic moment of the pion-condensed quark core is calculated. (author). 19 refs, 10 refs, 1 tab

  5. Ω(ε)States in a Chiral Quark Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The structures of Ω(ε) states with spin-parity Jp = 5/2-, 3/2-, and 1/2- are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon (NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The calculated results show that theΩ(ε) state has an attractive interaction, and in the extended chiral SU(3) quark model such attraction can make for aΩ(ε) quasi-bound state with spin-parity Jp = 3/2- or 5/2- and tie binding energy of about several MeV.

  6. Is the Chiral Model equivalent to Wess-Zumino-Witten Model when coupled with Gravity?

    OpenAIRE

    Nojiri, Shin'ichi

    1996-01-01

    We investigate the non-abelian $T$-duality of Wess-Zumino-Witten model. The obtained dual model is equivalent to the model dual to the $SU(2)$ chiral model found by Curtright-Zachos. This might tell that the Wess-Zumino term would be induced when the chiral model couples with gravity.

  7. Minimal quantization of two-dimensional models with chiral anomalies

    International Nuclear Information System (INIS)

    Two-dimensional gauge models with chiral anomalies - ''left-handed'' QED and the chiral Schwinger model, are quantized consistently in the frames of the minimal quantization method. The choice of the cone time as a physical time for system of quantization is motivated. The well-known mass spectrum is found but with a fixed value of the regularization parameter a=2. Such a unique solution is obtained due to the strong requirement of consistency of the minimal quantization that reflects in the physically motivated choice of the time axis

  8. Distinguishing Standard Model Extensions using Monotop Chirality at the LHC

    CERN Document Server

    Allahverdi, Rouzbeh; Dutta, Bhaskar; Gao, Yu; Kamon, Teruki

    2015-01-01

    We present two minimal extensions of the standard model that gives rise to baryogensis and include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM.

  9. Vector-meson mass generation in the chiral Schwinger model

    International Nuclear Information System (INIS)

    It is shown that an arbitrary mass is generated for the vector meson in the chiral Schwinger model, a model which has caused some controversy. Our arguments are based on ambiguities in the dimensional regularization of quantum field theory with γ5. (orig.)

  10. Orbital Angular Momentum in the Chiral Quark Model

    OpenAIRE

    Song, Xiaotong

    1998-01-01

    We developed a new and unified scheme for describing both quark spin and orbital angular momenta in symmetry-breaking chiral quark model. The loss of quark spin in the chiral splitting processes is compensated by the gain of the orbital angular momentum carried by quarks and antiquarks. The sum of both spin and orbital angular momenta carried by quarks and antiquarks is 1/2. The analytic and numerical results for the spin and orbital angular momenta carried by quarks and antiquarks in the nuc...

  11. The effective action approach applied to nuclear chiral sigma model

    International Nuclear Information System (INIS)

    The nuclear chiral sigma model of nuclear matter is considered by means of the Cornwall-Jackiw-tomboulis (CTJ) effective action. The method provides a very general framework for investigating many important problems: chiral symmetry in nuclear medium, energy density of nuclear ground state, nuclear Schwinger-Dyson (SD) equations, etc. It is shown that the SD equations for sigma-omega mixing are actually not present in this formalism. For numerical computation purposes the Hartree-Fock (HF) approximation for ground state energy density is also presented. (author). 26 refs

  12. Transversity structure of the pion in chiral quark models

    CERN Document Server

    Broniowski, Wojciech; Dorokhov, Alexander E

    2011-01-01

    We describe the chiral quark model evaluation of the transversity Generalized Parton Distributions (tGPDs) and related transversity form factors (tFFs) of the pion. The obtained tGPDs satisfy all necessary formal requirements, such as the proper support, normalization, and polynomiality. The lowest tFFs, after the necessary QCD evolution, compare favorably to the recent lattice QCD determination. Thus the transversity observables of the pion support once again the fact that the spontaneously broken chiral symmetry governs the structure of the Goldstone pion. The proper QCD evolution is crucial in these studies.

  13. Nucleon-antinucleon annihilation in chiral soliton model

    International Nuclear Information System (INIS)

    We investigate annihilation process of nucleons in chiral soliton model by path integral method. Soliton-antisoliton pair is shown to decay into pions at range of order of about 1 fm, defined by SS-bar potential. Contribution of annihilation channel into elastic scattering is discussed. (author). 14 refs, 1 fig

  14. The Many Faces of the Chiral Potts Model

    CERN Document Server

    Au-Yang, H; Au-Yang, Helen; Perk, Jacques H.H.

    1996-01-01

    In this talk, we give a brief overview of several aspects of the theory of the chiral Potts model, including higher-genus solutions of the star-triangle and tetrahedron equations, cyclic representations of affine quantum groups, basic hypergeometric functions at root of unity, and possible applications.

  15. Dimensional regularization and perturbative solution of the chiral Schwinger model

    International Nuclear Information System (INIS)

    The anomalous chiral Schwinger model is regulated by the method of dimensional regularization and is solved by diagrammatic perturbative expansion. It is shown that there is a regulation ambiguity in the solution. The result disagrees with Das's assertion and agrees with that of Jackiw, Rajaraman, and others

  16. Nucleon-antinucleon annihilation in chiral soliton model

    International Nuclear Information System (INIS)

    We investigate annihilation process of nucleons in the chiral soliton model by the path integral method. A soliton-antisoliton pair is shown to decay into mesons at range of about 1fm, defined by the S bar S potential. Contribution of the annihilation channel to the elastic scattering is discussed

  17. Nucleon Structure Functions within a Chiral Soliton Model

    OpenAIRE

    Gamberg, L.(Department of Physics, Penn State University-Berks, Reading, PA, 19610, U.S.A.); Reinhardt, H.; Weigel, H.(Physics Department, Stellenbosch University, Matieland 7602, South Africa)

    1997-01-01

    We study nucleon structure functions within the bosonized Nambu--Jona--Lasinio model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron--nucleon scattering. A comparison with a low--scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions $g_{1}(x)$ and $g_{2}(x)$ in this model. We compare...

  18. Chiral matrix model of the semi-QGP in QCD

    Science.gov (United States)

    Pisarski, Robert D.; Skokov, Vladimir V.

    2016-08-01

    Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the

  19. Three-phase model of a chiral quark bag

    International Nuclear Information System (INIS)

    Three-phase modification of the model of hybrid chiral quark bag is suggested. Along with the phase of asymptotically free current quarks and completely achromatic meson phase the model contains an intermediate phase including massive quark components. Self-consistent solution of model equations with account of contribution from the Dirac sea is found for (1+1)-dimensional case. The dependence of bag characteristics on theory parameters is investigated in analytical and numerical forms

  20. An Anderson-like model of the QCD chiral transition

    Science.gov (United States)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  1. CHIRAL MODEL FOR DENSE, HOT AND STRANGE HADRONIC MATTER

    Energy Technology Data Exchange (ETDEWEB)

    ZSCHIESCHE,D.; PAPAZOGLOU,P.; BECKMANN,C.W.; SCHRAMM,S.; SCHAFFNER-BIELICH,J.; STOCKER,H.; GREINER,W.

    1999-06-10

    Until now it is not possible to determine the equation of state (EOS) of hadronic matter from QCD. One successfully applied alternative way to describe the hadronic world at high densities and temperatures are effective models like the RMF-models, where the relevant degrees of freedom are baryons and mesons instead of quarks and gluons. Since approximate chiral symmetry is an essential feature of QCD, it should be a useful concept for building and restricting effective models. It has been shown that effective {sigma}-{omega}-models including SU(2) chiral symmetry are able to obtain a reasonable description of nuclear matter and finite nuclei. Recently [4] the authors have shown that an extended SU(3) x SU(3) chiral {sigma}-{omega} model is able to describe nuclear matter ground state properties, vacuum properties and finite nuclei satisfactorily. This model includes the lowest SU(3) multiplets of the baryons (octet and decuplet), the spin-0 and the spin-1 mesons as the relevant degrees of freedom. Here they discuss the predictions of this model for dense, hot, and strange hadronic matter.

  2. The baryon number two system in the Chiral Soliton Model

    CERN Document Server

    Sarti, Valentina Mantovani; Vento, Vicente; Park, Byung-Yoon

    2012-01-01

    We study the interaction between two B = 1 states in a Chiral Soliton Model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.

  3. Dimension 2 condensates and Polyakov Chiral Quark Models

    OpenAIRE

    Megias, E.; Arriola, E. Ruiz; Salcedo, L. L.

    2006-01-01

    We address a possible relation between the expectation value of the Polyakov loop in pure gluodynamics and full QCD based on Polyakov Chiral Quark Models where constituent quarks and the Polyakov loop are coupled in a minimal way. To this end we use a center symmetry breaking Gaussian model for the Polyakov loop distribution which accurately reproduces gluodynamics data above the phase transition in terms of dimension 2 gluon condensate. The role played by the quantum and local nature of the ...

  4. Soft Matrix Elements in Non-local Chiral Quark Model

    OpenAIRE

    Kotko, Piotr

    2009-01-01

    Using non-local chiral quark model and currents satisfying Ward-Takahashi identities we analyze Distribution Amplitudes (DA) of photon and pion-to-photon Transition Distribution Amplitudes (TDA) in the low energy regime. Photon DA's are calculated analytically up to twist-4 and reveal several interesting features of photon structure. TDA's calculated in the present model satisfy polynomiality condition. Normalization of vector TDA is fixed by the axial anomaly. We also compute relevant form f...

  5. BFFT formalism applied to the minimal chiral Schwinger model

    CERN Document Server

    Natividade, C P; Belvedere, L V

    2000-01-01

    The minimal chiral Schwinger model is discussed from the Batalin-Fradkin-Fradkina-Tyutin point of view. The conversion of second-class constraints to first-class ones results in an extended gauge-invariant theory which is equivalent for $a=2$ to the vector Schwinger model at the Lagrangian level. Here, we present arguments which show that such equivalence does no exist at the operatorial level.

  6. Opportunities for collective model and chirality studies at TRIUMF

    International Nuclear Information System (INIS)

    First predictions for a specific case of the particle-hole-core coupling model which takes advantage of symmetries of a triaxial rotor with γ = 90° are reviewed. Results of the model calculations point towards existence of stable chiral geometry in specific configurations involving high-j orbitals. Next, experimental information on doublet bands built on unique parity, πh11/2νh11/2 intruder states in odd-odd 134Pr is discussed; in particular observed disagreements between electromagnetic transitions within the doublet structures which is pointed out as inconsistent with the simplest models. Finally, the unique experimental infrastructure developed at the Tri-University Meson Facility (TRIUMF) Canada's National Laboratory for Particle and Nuclear Physics is presented including a range of isotopes in the mass 130 region that are accessible as beams and which can possibly yield significant new information in investigations of nuclear chirality. (author)

  7. Hadron Properties in a Chiral Quark-Sigma Model

    CERN Document Server

    Rashdan, M; El-Kholy, S; Abu-Shady, M

    2011-01-01

    Within a chiral quark sigma model in which quarks interact via the exchange of sigma and pi-mesons, hadron properties are investigated. This model of the nucleon and delta is based on the idea that strong QCD forces on very short distances (a small length scales 0.2- 1 fm) result in hidden chiral SU(2)xSU(2) symmetry and that there is a separation of roles between these forces which are responsible for binding quarks in hadrons and the forces which produce absolute confinement. We have solved the field equations in the mean field approximation for the hedgehog baryon state with different sets of model parameters. A new parametrization which well describe the nucleon properties has been introduced and compared with experimental data.

  8. Chiral symmetry breaking in lattice QED model with fermion brane

    CERN Document Server

    Shintani, E

    2012-01-01

    We propose a novel approach of spontaneous chiral symmetry breaking at near zero temperature in 4 dimensional QED model with 3+1 dimensional fermion brane using Hybrid Monte Carlo simulation. We consider an anisotropic QED coupling in non-compact QED action with the manifest gauge invariant interaction and fermi-velocity which is less than speed of light. This model allows for the scaling study at low temperature and strong coupling region with reduced computational cost. We compute the chiral condensate and its susceptibility with different coupling constant, velocity parameter and flavor number, and therefore obtain a compatible behavior with gap equation in broken phase. We also discuss about the comparison of Graphene model.

  9. A chiral symmetric quark model without free quarks

    International Nuclear Information System (INIS)

    A chirally symmetric quark model is presented which contrary to the Nambu Jona-Lasinio (NJL) model does not lead to the presence of free quarks. In the model a non-local effective interaction is used as a schematic parameterization of the quark antiquark scattering kernel. The non-locality can be interpreted as phenomenologically taking into account an infinite number of elementary scattering processes, like the sum of all multi-gluon exchange processes in the particle-particle channel. The basic Lagrangian of the interaction shares all global internal symmetries with QCD. In particular in the limit of vanishing current quark masses it is chirally symmetric. Starting from the non-local scattering kernel the solution of the Dyson-Schwinger equation and the Bethe-Salpeter equation leads to a consistent description of the dressed quark propagators with the mesonsa s quark-antiquark states. Like in the NJL-model chiral symmetry is spontaneously broken. Because of the non-locality of the interaction, however, in our model the quarks do not acquire a constant constituent mass but a four momentum dependent selfenergy. (orig.)

  10. Microscopically constrained mean-field models from chiral nuclear thermodynamics

    Science.gov (United States)

    Rrapaj, Ermal; Roggero, Alessandro; Holt, Jeremy W.

    2016-06-01

    We explore the use of mean-field models to approximate microscopic nuclear equations of state derived from chiral effective field theory across the densities and temperatures relevant for simulating astrophysical phenomena such as core-collapse supernovae and binary neutron star mergers. We consider both relativistic mean-field theory with scalar and vector meson exchange as well as energy density functionals based on Skyrme phenomenology and compare to thermodynamic equations of state derived from chiral two- and three-nucleon forces in many-body perturbation theory. Quantum Monte Carlo simulations of symmetric nuclear matter and pure neutron matter are used to determine the density regimes in which perturbation theory with chiral nuclear forces is valid. Within the theoretical uncertainties associated with the many-body methods, we find that select mean-field models describe well microscopic nuclear thermodynamics. As an additional consistency requirement, we study as well the single-particle properties of nucleons in a hot/dense environment, which affect e.g., charged-current weak reactions in neutron-rich matter. The identified mean-field models can be used across a larger range of densities and temperatures in astrophysical simulations than more computationally expensive microscopic models.

  11. ND^(*) and NB^(*) interactions in a chiral quark model

    CERN Document Server

    Yang, Dan; Zhang, Dan

    2015-01-01

    ND and ND^* interactions become a hot topic after the observation of new charmed hadrons \\Sigma_c(2800) and \\Lambda_c(2940)^+. In this letter, we have preliminary investigated S-wave ND and ND^* interactions with possible quantum numbers in the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving the resonating group method equation. The numerical results show that the interactions between N and D or N and D^* are both attractive, which are mainly from \\sigma exchanges between light quarks. Further bound-state studies indicate the attractions are strong enough to form ND or ND^* molecules, except for (ND)_{J=3/2} and (ND^*)_{J=3/2} in the chiral SU(3) quark model. In consequence ND system with J=1/2 and ND^* system with J=3/2 in the extended SU(3) quark model could correspond to the observed \\Sigma_c(2800) and \\Lambda_c(2940)^+, respectively. Naturally, the same method can be applied to research NB and NB^* interactions, and similar conclusions obtained, i.e. NB and NB^* attractive fo...

  12. An Anderson-like model of the QCD chiral transition

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...

  13. Nucleon Structure Functions within a Chiral Soliton Model

    CERN Document Server

    Gamberg, L P; Weigel, H

    1997-01-01

    We study nucleon structure functions within the bosonized Nambu--Jona--Lasinio model where the nucleon emerges as a chiral soliton. We discuss the model predictions on the Gottfried sum rule for electron--nucleon scattering. A comparison with a low--scale parametrization shows that the model reproduces the gross features of the empirical structure functions. We also compute the leading twist contributions of the polarized structure functions $g_{1}(x)$ and $g_{2}(x)$ in this model. We compare the model predictions on these structure functions with data from the E143 experiment by GLAP evolving them appropriately.

  14. Continuum model for chiral induced spin selectivity in helical molecules

    Energy Technology Data Exchange (ETDEWEB)

    Medina, Ernesto [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France); Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); González-Arraga, Luis A. [IMDEA Nanoscience, Cantoblanco, 28049 Madrid (Spain); Finkelstein-Shapiro, Daniel; Mujica, Vladimiro [Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287 (United States); Berche, Bertrand [Centro de Física, Instituto Venezolano de Investigaciones Científicas, 21827, Caracas 1020 A (Venezuela, Bolivarian Republic of); Groupe de Physique Statistique, Institut Jean Lamour, Université de Lorraine, 54506 Vandoeuvre-les-Nancy Cedex (France)

    2015-05-21

    A minimal model is exactly solved for electron spin transport on a helix. Electron transport is assumed to be supported by well oriented p{sub z} type orbitals on base molecules forming a staircase of definite chirality. In a tight binding interpretation, the spin-orbit coupling (SOC) opens up an effective π{sub z} − π{sub z} coupling via interbase p{sub x,y} − p{sub z} hopping, introducing spin coupled transport. The resulting continuum model spectrum shows two Kramers doublet transport channels with a gap proportional to the SOC. Each doubly degenerate channel satisfies time reversal symmetry; nevertheless, a bias chooses a transport direction and thus selects for spin orientation. The model predicts (i) which spin orientation is selected depending on chirality and bias, (ii) changes in spin preference as a function of input Fermi level and (iii) back-scattering suppression protected by the SO gap. We compute the spin current with a definite helicity and find it to be proportional to the torsion of the chiral structure and the non-adiabatic Aharonov-Anandan phase. To describe room temperature transport, we assume that the total transmission is the result of a product of coherent steps.

  15. Chiral-Symmetric Technicolor with Standard Model Higgs boson

    CERN Document Server

    Pasechnik, Roman; Kuksa, Vladimir; Vereshkov, Grigory

    2013-01-01

    Most of the traditional Technicolor-based models are known to be in a strong tension with the electroweak precision data. We show that this serious issue is naturally cured in strongly coupled sectors with chiral-symmetric vector-like gauge interactions in the framework of gauged linear sigma model. We discuss possible phenomenological implications of such non-standard chiral-symmetric Technicolor scenario in its simplest formulation preserving the standard Higgs mechanism and (possibly) elementary Higgs boson of the Standard Model (SM). For this purpose, we assume the existence of an extra technifermion sector confined under extra SU(3)_TC at the energy scales reachable at the LHC, Lambda_TC ~ 0.1-1 TeV, and interacting with the SM gauge bosons in a chiral-symmetric (vector-like) way. In the framework of this scenario, the SM Higgs vev acquires natural interpretation in terms of the condensate of technifermions in confinement. We study the influence of the lowest lying composite physical states, namely, tech...

  16. Scalar mesons in a chiral quark model with glueball

    International Nuclear Information System (INIS)

    Ground-state scalar isoscalar mesons and a scalar glueball are described in a U(3)xU(3) chiral quark model of the Nambu-Jona-Lasinio (NJL) type with 't Hooft interaction. The latter interaction produces singlet-octet mixing in the scalar and pseudoscalar sectors. The glueball is introduced into the effective meson Lagrangian as a dilaton on the basis of scale invariance. The mixing of the glueball with scalar isoscalar quarkonia and amplitudes of their decays into two pseudoscalar mesons are shown to be proportional to current quark masses, vanishing in the chiral limit. Mass spectra of the scalar mesons and the glueball and their main modes of strong decay are described

  17. K^- nuclear potentials from in-medium chirally motivated models

    CERN Document Server

    Cieplý, A; Gal, A; Gazda, D; Mareš, J

    2011-01-01

    A self consistent scheme for constructing K^- nuclear optical potentials from subthreshold in-medium Kbar-N s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K^- quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms potentials are characterized by a real part -Re V(K^-;chiral)=(85+/-5) MeV at nuclear matter density, in contrast to half this depth obtained in some derivations based on in-medium Kbar-N threshold amplitudes. The moderate agreement with data is much improved by adding complex rho- and rho^2-dependent phenomenological terms, found to be dominated by rho^2 contributions that could represent Kbar-NN -> YN absorption and dispersion, outside the scope of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave interactions are studied and fo...

  18. Deep inelastic structure functions in the chiral bag model

    International Nuclear Information System (INIS)

    We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.)

  19. Pion Effect of Nuclear Matter in a Chiral Sigma Model

    Institute of Scientific and Technical Information of China (English)

    HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong

    2009-01-01

    We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.

  20. Moduli stabilization in chiral type IIB orientifold models with fluxes

    International Nuclear Information System (INIS)

    We consider type IIB orientifold models on Calabi-Yau spaces with three-form G-flux turned on. These fluxes freeze some of the complex structure moduli and the complex dilaton via an F-term scalar potential. By introducing pairs of D9-D9-bar branes with Abelian magnetic fluxes it is possible to freeze also some of the Kaehler moduli via a D-term potential. Moreover, such magnetic fluxes in general lead to chiral fermions, which make them interesting for string model-building. These issues are demonstrated in a simple toy model based on a Z2xZ2' orbifold

  1. Deep inelastic structure functions in the chiral bag model

    Energy Technology Data Exchange (ETDEWEB)

    Sanjose, V. (Valencia Univ. (Spain). Dept. de Didactica de las Ciencias Experimentales); Vento, V. (Valencia Univ. (Spain). Dept. de Fisica Teorica; Centro Mixto CSIC/Valencia Univ., Valencia (Spain). Inst. de Fisica Corpuscular)

    1989-10-02

    We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.).

  2. Soft Matrix Elements in Non-local Chiral Quark Model

    CERN Document Server

    Kotko, Piotr

    2009-01-01

    Using non-local chiral quark model and currents satisfying Ward-Takahashi identities we analyze Distribution Amplitudes (DA) of photon and pion-to-photon Transition Distribution Amplitudes (TDA) in the low energy regime. Photon DA's are calculated analytically up to twist-4 and reveal several interesting features of photon structure. TDA's calculated in the present model satisfy polynomiality condition. Normalization of vector TDA is fixed by the axial anomaly. We also compute relevant form factors and compare them with existing data. Axial form factor turns out to be much lower then the vector one, what indeed is seen in the experimental data.

  3. Relativistic Chiral Mean Field Model for Finite Nuclei

    OpenAIRE

    Ogawa, Yoko; Toki, Hiroshi; Tamenaga, Setsuo; Haga, Akihiro

    2012-01-01

    We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{pi}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{pi} = 0^{-} ...

  4. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  5. Microscopic spectral density in random matrix models for chiral and diquark condensation

    International Nuclear Information System (INIS)

    We examine random matrix models of QCD which are capable of supporting both chiral and diquark condensation. A numerical study of the spectral densities near zero virtuality shows that the introduction of color in the interactions does not alter the one-body results imposed by chiral symmetry. A model with three colors has the spectral density predicted for the chiral ensemble with a Dyson index β=2; a pseudoreal model with two colors exhibits the spectral density of the chiral ensemble with β=1

  6. Chiral models of low energy QCD

    International Nuclear Information System (INIS)

    Two processes may be distinguished when a hadron propagates in a dense baryonic medium. The polarization of the medium and the change in the quark structure of the hadron. The polarization of the medium is better described in terms of colorless mesons and nucleons while the intrinsic change of the hadron is better described by quark models. It is shown how to couple the two processes. The scaling of effective Lagrangians, is related to changes in the quark constituent masses, based on the QCD scale anomaly. (author) 62 refs

  7. NN Scattering Phase Shifts in a Chiral Constituent Quark Model

    OpenAIRE

    Bartz, D.; Stancu, Fl

    2000-01-01

    We study the nucleon-nucleon interaction within a chiral constituent quark model which reproduces succesfully the baryon spectra. We calculate the 3S1 and 1S0 phase shifts by using the resonating group method. They clearly indicate the presence of a strong repulsive interaction at short distance, due to the spin-flavor symmetry of the quark-quark interaction and of the quark interchange between the two interacting nucleons. A sigma-exchange quark-quark interaction, providing a medium-range at...

  8. Dualities in the d=2 asymmetric chiral field sigma models

    International Nuclear Information System (INIS)

    Continuous dual symmetry of equations of asymmetric chiral field (ACF) in d=2 (equations of non-linear σ-models with ambiguous effect) and realization of duality transformations in explicit geometrical language of Cartran form is disclosed. Connection of this symmetry with ACF integrability is clarified. Both simple and supersymmetrical cases are considered. Notions of dual algebra and dual σ-model are introduced, their significance for understanding classical and quantum structure d=2 of ACF models is revealed. It is shown, in particular, that transition to points of infrared ACF stability can be described purely algebraically as constraction of dual algebra bringing about the fact that space-factor of the corresponding dual σ-model becomes plane. Equations of asymmetrical n vector-field model are analyzed from the similar view point. The Cartran form method permits to state that classical dynamics of this model is trivial

  9. Finite-temperature corrections in the dilated chiral quark model

    International Nuclear Information System (INIS)

    We calculate the finite-temperature corrections in the dilated chiral quark model using the effective potential formalism. Assuming that the dilaton limit is applicable at some short length scale, we interpret the results to represent the behavior of hadrons in dense and hot matter. We obtain the scaling law, fπ(T)/fπ = mQ(T)/mQ ≅ mσ(T)/mσwhile we argue, using PCAC, that pion mass does not scale within the temperature range involved in our Lagrangian. It is found that the hadron masses and the pion decay constant drop faster with temperature in the dilated chiral quark model than in the conventional linear sigma model that does not take into account the QCD scale anomaly. We attribute the difference in scaling in heat bath to the effect of baryonic medium on thermal properties of the hadrons. Our finding would imply that the AGS experiments (dense and hot matter) and the RHIC experiments (hot and dilute matter) will ''see'' different hadron properties in the hadronization exit phase

  10. An Effective Chiral Meson Lagrangian at O(p6) from the NJL Model

    International Nuclear Information System (INIS)

    In this work we present a strong chiral meson Lagrangian up to and including O(p6) in the momentum expansion. It is derived from the Nambu-Jona-Lasinio (NJL) model using the heat-kernel method. Identities related to the properties of covariant derivatives of the chiral matrix U as well as field transformations have been used to predict the chiral coefficients of a minimal set of linearly independent terms. 16 refs

  11. Solitons in a chiral quark model with non-local interactions

    CERN Document Server

    Golli, B; Ripka, G; Golli, Bojan; Broniowski, Wojciech; Ripka, Georges

    1998-01-01

    Hedgehog solitons are found in a chiral quark model with non-local interactions. The solitons are stable without the chiral-circle constraint for the meson fields, as was assumed in previous Nambu-Jona--Lasinio model with local interactions.

  12. Fluctuations and the Phase Transition in a Chiral Model with Polyakov Loops

    OpenAIRE

    Sasaki, C.; Friman, B.; Redlich, K.

    2007-01-01

    We explore the NJL model with Polyakov loops for a system of three colors and two flavors within the mean-field approximation, where both chiral symmetry and confinement are taken into account. We focus on the phase structure of the model and study the chiral and Polyakov loop susceptibilities.

  13. Relativistic Quark Model Calculation of the l1, l2 Coefficients of the Chiral Lagrangian

    OpenAIRE

    Llanes-Estrada, Felipe J.; Bicudo, Pedro

    2002-01-01

    We briefly report on a relativistic quark model scheme to calculate the O(P^4) pion-pion vertex in the planar approximation and in the chiral limit. The calculation is reduced to the solution of simple integral equations (Bethe-Salpeter like) by an effective use of chiral Ward Identities. Specific model computations are provided.

  14. Baryon resonances in a chiral confining model, 1

    CERN Document Server

    Umino, Y

    1998-01-01

    In this two part series a chiral confining model of baryons is used to describe low--lying negative parity resonances $N^*$, $\\Delta^*$, $\\Lambda^*$ and $\\Sigma^*$ in the mean field approximation. A physical baryon in this model consists of interacting valence quarks, mesons and a color and chiral singlet hybrid field coexisting inside a dynamically generated confining region. This first paper presents the quark contribution to the masses and wave functions of negative parity baryons calculated with an effective spin--isospin dependent instanton induced interaction. It does not include meson exchanges between quarks. The three--quark wave functions are used to calculate meson--excited baryon vertex functions to lowest order in meson--quark coupling. When the baryons are on mass--shell each of these vertex functions is a product of a coupling constant and a form factor. As examples, quark contributions to $N^*$ hadronic form factors as well as axial coupling constants are extracted from the vertex functions an...

  15. Explicit chiral symmetry breaking in Gross-Neveu type models

    Energy Technology Data Exchange (ETDEWEB)

    Boehmer, Christian

    2011-07-25

    This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well

  16. Chiral Phase Transition at Finite Isospin Density in Linear Sigma Model

    Institute of Scientific and Technical Information of China (English)

    SHU Song; LI Jia-Rong

    2005-01-01

    Using the linear sigma model, we have introduced the pion isospin chemical potential. The chiral phase transition is studied at finite temperatures and finite isospin densities. We have studied the μ - T phase diagram for the chiral phase transition and found the transition cannot happen below a certain low temperature because of the BoseEinstein condensation in this system. Above that temperature, the chiral phase transition is studied by the isotherms of pressure versus density. We indicate that the transition, in the chiral limit, is a first-order transition from a low-density phase to a high-density phase like a gas-liquid phase transition.

  17. Confined Chiral Solitons in the Spectral Quark Model

    CERN Document Server

    Ruiz-Arriola, E; Golli, B; Arriola, Enrique Ruiz; Broniowski, Wojciech; Golli, Bojan

    2006-01-01

    Chiral solitons with baryon number one are investigated in the spectral quark model. In this model the quark propagator is a superposition of complex mass propagators with a suitable spectral function. As a result, the constituent quark mass is identified with saddle points of the Dirac eigenvalues. Due to this feature the valence quarks never become unbound nor dive into the negative spectrum, hence providing stable solitons as absolute minima of the action. This a manifestation of the built-in analytic confinement in the spectral quark model. Self-consistent mean field hedgehog solutions are found and some of their properties determined. Our analysis constitutes an example of a treatment of a relativistic complex mass system.

  18. Studies on phenomenological hadron models with chiral symmetry

    International Nuclear Information System (INIS)

    In this report we consider, in the context of phenomenological models for hadrons, several aspects of Skyrme-type and hybrid bag models. In the first of the two central parts we discuss two qualitatively different generalizations of the minimal SU(2) Skyrme model. One of these consists in adding to the Lagrangian density a symmetric term of fourth order in the field derivatives. Its consequences are determined for solutions and observables by analytical and numerical investigations. In the other we propose a contribution for explicit isospin symmetry breaking in the mesonic as well as the baryonic sector. Together with the standard nonlinear σ-model term it allows for exact time-dependent classical soliton solutions. Their quantization leads to a quantitative connection between the hadronic isospin mass differenced of pions and nucleons. The second main part of this report is devoted to the generalization of SU(2) bag models under the aspect of chiral symmetry. We first show that the construction of appropriate surface terms in the Lagrangian density necessitates the introduction of dynamical bosonic degrees of freedom. This allows for a variety of bag scenarios (including the 'endopionic' bag). We then consider explicit isospin symmetry breaking for hybrid bag models with a nonlinear mesonic sector. An intimate relationship is revealed between the effects of a quark mass difference and the time-dependent bosonic solutions found for the purely mesonic case. It is reflected in a nontrivial interdependence between quark and meson masses, bag radius and chiral angle. We provide an especially extensive list of references for the topics discussed in this report. (orig.)

  19. Chiral HPLC Separation and Modeling of Four Stereomers of DL-Leucine-DL-Tryptophan Dipeptide on Amylose Chiral Column.

    Science.gov (United States)

    Alajmi, Mohammed F; Hussain, Afzal; Suhail, Mohd; Mukhtar, Sofi Danish; Sahoo, Dibya Ranjan; Asnin, Leonid; Ali, Imran

    2016-09-01

    Chiral high-performance liquid chromatography (HPLC) separation and modeling of four stereomers of DL-leucine-tryptophan DL-dipeptide on AmyCoat-RP column are described. The mobile phase applied was ammonium acetate (10 mM)-methanol-acetonitrile (50:5:45, v/v). The flow rate of the mobile phases was 0.8 mL/min with UV detection at 230 nm. The values of retention factors for LL-, DD-, DL-, and LD- stereomers were 2.25, 3.60, 5.00, and 6.50, respectively. The values of separation and resolution factors were 1.60, 1.39, and 1.30 and 7.76, 8.05, and 7.19. The limits of detection and quantitation were ranging from 1.0-2.3 and 5.6-14.0 μg/mL. The simulation studies established the elution orders and the mechanism of chiral recognition. It was seen that π-π connections and hydrogen bondings were the main forces for enantiomeric resolution. The reported chiral HPLC method may be applied for the enantiomeric separation of DL-leucine-DL-tryptophan in unknown matrices. Chirality 28:642-648, 2016. © 2016 Wiley Periodicals, Inc. PMID:27474783

  20. charmed baryon strong decays in a chiral quark model

    CERN Document Server

    Zhong, Xian-Hui

    2007-01-01

    Charmed baryon strong decays are studied in a chiral quark model. The data for the decays of $\\Lambda^+_c(2593)$, $\\Lambda^+_c(2625)$, $\\Sigma^{++,+,0}_c$ and $\\Sigma^{+,0}_c(2520)$, are accounted for successfully, which allows to fix the pseudoscalar-meson-quark couplings in an effective chiral Lagrangian. Extending this framework to analyze the strong decays of the newly observed charmed baryons, we classify that both $\\Lambda_c(2880)$ and $\\Lambda_c(2940)$ are $D$-wave states in the N=2 shell; $\\Lambda_c(2880)$ could be $|\\Lambda_c ^2 D_{\\lambda\\lambda}{3/2}^+>$ and $\\Lambda_c(2940)$ could be $|\\Lambda_c ^2 D_{\\lambda\\lambda}{5/2}^+>$. Our calculation also suggests that $\\Lambda_c(2765)$ is very likely a $\\rho$-mode $P$-wave excited state in the N=1 shell, and favors a $|\\Lambda_c ^4P_\\rho 1/2^->$ configuration. The $\\Sigma_c(2800)$ favors being a $|\\Sigma_c ^2P_\\lambda{1/2}^->$ state. But its being $|\\Sigma^{++}_c ^4 P_\\lambda{5/2}^->$ cannot be ruled out.

  1. Chiral Dynamics and Dubna-Mainz-Taipei Dynamical Model for Pion-Photoproduction Reaction

    CERN Document Server

    Yang, Shin Nan

    2010-01-01

    We demonstrate that the Dubna-Mainz-Taipei (DMT) meson-exchange dynamical model, which starts from an effective chiral Lagrangian, for pion photoproduction provides an excellent and economic framework to describe both the pi^0 threshold production and the Delta deformation, two features dictated by chiral dynamics.

  2. Non-uniform chiral phase studied within the Polyakov NJL model

    OpenAIRE

    Partyka, Tomasz L.

    2010-01-01

    We consider how does the introduction of a Polyakov loop affects the spatially inhomogeneous quark condensate. The primary result of our work is that the existence of the spatially non-uniform chiral phase is confirmed within the Polyakov NJL model in a chiral limit. These findings are obtained both in a 3d-cutoff and in a Schwinger (proper time) regularization schemes.

  3. Finite-Temperature Phase Structure in the Chiral σ-ω Model with Dilatons

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Bing ZHANG Xiao-Bing; LI Xue-Qian; NING Ping-Zhi

    2000-01-01

    We investigate the finite-temperature phase structure in a scaled chiral model which includes the dilaton (glueball) field. It is shown that hot nuclear matter undergoes a discontinuous transition in the mean field of scalar mesons as well as the Lee-Wick abnormal transition. The corresponding behavior of the gluon condensate during the chiral phase transition is also studied.

  4. Numerical Evidence of Spin-Chirality Decoupling in the Three-Dimensional Heisenberg Spin Glass Model

    Science.gov (United States)

    Viet, Dao Xuan; Kawamura, Hikaru

    2009-01-01

    Ordering of the three-dimensional Heisenberg spin glass with Gaussian coupling is studied by extensive Monte Carlo simulations. The model undergoes successive chiral-glass and spin-glass transitions at nonzero temperatures TCG>TSG>0, exhibiting spin-chirality decoupling.

  5. Exact solutions of the field equations for Charap's chiral invariant model of the pion dynamics

    International Nuclear Information System (INIS)

    The field equations for the chiral invariant model of pion dynamics developed by Charap have been revisited. Two new types of solutions of these equations have been obtained. Each type allows infinite number of solutions. It has also been shown that the chiral invariant field equations admit invariance for a transformation of the dependent variables. (author)

  6. Chiral magnetic conductivity in an interacting lattice model of parity-breaking Weyl semimetal

    Science.gov (United States)

    Buividovich, P. V.; Puhr, M.; Valgushev, S. N.

    2015-11-01

    We report on the mean-field study of the chiral magnetic effect (CME) in static magnetic fields within a simple model of parity-breaking Weyl semimetal given by the lattice Wilson-Dirac Hamiltonian with constant chiral chemical potential. We consider both the mean-field renormalization of the model parameters and nontrivial corrections to the CME originating from resummed ladder diagrams with arbitrary number of loops. We find that onsite repulsive interactions affect the chiral magnetic conductivity almost exclusively through the enhancement of the renormalized chiral chemical potential. Our results suggest that nontrivial corrections to the chiral magnetic conductivity due to interfermion interactions are not relevant in practice since they only become important when the CME response is strongly suppressed by the large gap in the energy spectrum.

  7. △△ Dibaryon Structure in Extended Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    DAI Lian-Rong

    2005-01-01

    @@ The structure of △△ dibaryon is studied in the extended chiral SU(3) quark model in which vector meson exchanges are included. The effect of the vector meson fields is very similar to that of the one-gluon exchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model, the resultant mass of the △△ dibaryon is lower than the threshold of the △△ channel but higher than that of the△Nπ channel.

  8. QCD topological susceptibility from the nonlocal chiral quark model

    CERN Document Server

    Nam, Seung-il

    2016-01-01

    We investigate the QCD topological susceptibility $\\chi_t$ by using the nonlocal chiral quark model (NL$\\chi$QM). This model is based on the liquid instanton QCD-vacuum configuration in which $\\mathrm{SU}(3)$ flavor symmetry is explicitly broken by the current quark mass $(m_{u,d},m_s)\\approx(5,135)$ MeV. To compute $\\chi_t$, the local topological charge density operator $Q_t(x)$ is derived from the effective partition function of NL$\\chi$QM. We take into account the contributions from the leading-order (LO) ones $\\sim\\mathcal{O}(N_c)$ in the $1/N_c$ expansion. We also verify that the analytical expression of $\\chi_t$ in NL$\\chi$QM satisfy the Witten-Veneziano (WV) and the Leutwyler-Smilga (LS) formulae. Once the average instanton size and inter-instanton distance are fixed with $\\bar{\\rho}=1/3$ fm and $\\bar{R}=1$ fm, respectively, all the associated model parameters are all determined self-consistently within the model, including the $\\eta$ and $\\eta'$ weak decay constants. We obtain the results such as $F_{...

  9. Chiral anomaly, fermionic determinant and two dimensional models

    International Nuclear Information System (INIS)

    The chiral anomaly in random pair dimension is analysed. This anomaly is perturbatively calculated by dimensional regularization method. A new method for non-perturbative Jacobian calculation of a general chiral transformation, 1.e., finite and non-Abelian, is developed. This method is used for non-perturbative chiral anomaly calculation, as an alternative to bosonization of two-dimensional theories for massless fermions and to study the phenomenum of fermion number fractionalization. The fermionic determinant from two-dimensional quantum chromodynamics is also studied, and calculated, exactly, as in decoupling gauge as with out reference to a particular gauge. (M.C.K.)

  10. Two-loop effective potentials in general N=2, d=3 chiral superfield model

    International Nuclear Information System (INIS)

    We study local superspace contributions to the low-energy effective action in general chiral three-dimensional superfield model. The effective Kähler and chiral potentials are computed in an explicit form up to the two-loop order. In accordance with the non-renormalization theorem, the ultraviolet divergences appear only in the full superspace while the effective chiral potential receives only finite quantum contributions in the massless case. As an application, the two-loop effective scalar potential is found for the three-dimensional N=2 supersymmetric Wess-Zumino model.

  11. Non-leptonic decays in an extended chiral quark model

    CERN Document Server

    Eeg, J O

    2012-01-01

    We consider the color suppressed (nonfactorizable) amplitude for the decay mode $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $. We treat the $b$-quark in the heavy quark limit and the energetic light ($u,d,s$) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ is suppressed by a factor of order $\\Lambda_{QCD}/m_b$ with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for $\\bar{B_{d}^0} \\rightarrow \\pi^...

  12. Conformal chiral boson models on twisted doubled tori and non-geometric string vacua

    CERN Document Server

    Avramis, Spyros D; Prezas, Nikolaos

    2009-01-01

    We derive and analyze the conditions for quantum conformal and Lorentz invariance of the duality symmetric interacting chiral boson sigma-models, which are conjectured to describe non-geometric string theory backgrounds. The one-loop Weyl and Lorentz anomalies are computed for the general case using the background field method. Subsequently, our results are applied to a class of (on-shell) Lorentz invariant chiral boson models which are based on twisted doubled tori. Our findings are in agreement with those expected from the effective supergravity approach, thereby firmly establishing that the chiral boson models under consideration provide the string worldsheet description of N=4 gauged supergravities with electric gaugings. Furthermore, they demonstrate that twisted doubled tori are indeed the doubled internal geometries underlying a large class of non-geometric string compactifications. For compact gaugings the associated chiral boson models are automatically conformal, a fact that is explained by showing ...

  13. Heisenberg model of the high-energy hadron collision in terms of chiral fields

    CERN Document Server

    Pavlovsky, Oleg V

    2007-01-01

    Properties of chiral Born-Infeld Theory proposed as the model for shock-wave fireball production in the hadron-hadron collisions was studied. The role of the shock-waves in the multi-particle production was discussed.

  14. Antikaon induced Ξ production from a chiral model at NLO

    Directory of Open Access Journals (Sweden)

    Feijoo A.

    2014-01-01

    Full Text Available We study the meson-baryon interaction in the strangeness S = −1 sector using a chiral unitary approach, paying particular attention to the K̄N → KΞ reaction, especially important for constraining the next-to-leading order chiral terms, and considering also the effect of high spin hyperonic resonances. We also present results for the production of Ξ hyperons in nuclei

  15. An Emergent Universe with Dark Sector Fields in a Chiral Cosmological Model

    OpenAIRE

    Beesham, A.; Chervon, S. V.; S. D. Maharaj; Kubasov, A. S.

    2013-01-01

    We consider the emergent universe scenario supported by a chiral cosmological model with two interacting dark sector fields: phantom and canonical. We investigate the general properties of the evolution of the kinetic and potential energies as well as the development of the equation of state with time. We present three models based on asymptotic solutions and investigate the phantom part of the potential and chiral metric components. The exact solution corresponding to a global emergent unive...

  16. Chiral phase transition in the soft-wall model of AdS/QCD

    Science.gov (United States)

    Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2016-04-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t'Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.

  17. Chiral geometry in multiple chiral doublet bands

    CERN Document Server

    Zhang, Hao

    2015-01-01

    The chiral geometry of the multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters $\\gamma$ in the particle rotor model with $\\pi h_{11/2}\\otimes \

  18. Resurgence in $\\eta$-deformed Principal Chiral Models

    CERN Document Server

    Demulder, Saskia; Thompson, Daniel C

    2016-01-01

    We study the $SU(2)$ Principal Chiral Model (PCM) in the presence of an integrable $\\eta$-deformation. We put the theory on $\\mathbb{R}\\times S^1$ with twisted boundary conditions and then reduce the circle to obtain an effective quantum mechanics associated with the Whittaker-Hill equation. Using resurgent analysis we study the large order behaviour of perturbation theory and recover the fracton events responsible for IR renormalons. The fractons are modified from the standard PCM due to the presence of this $\\eta$-deformation but they are still the constituents of uniton-like solutions in the deformed quantum field theory. We also find novel $SL(2,\\mathbb{C})$ saddles, thus strengthening the conjecture that the semi-classical expansion of the path integral gives rise to a resurgent transseries once written as a sum over Lefschetz thimbles living in a complexification of the field space. We conclude by connecting our quantum mechanics to a massive deformation of the $\\mathcal{N}=2~$ $4$-d gauge theory with g...

  19. Partially conserved axial-vector current and model chiral field theories in nuclear physics

    International Nuclear Information System (INIS)

    We comment on the relation between the two standard approaches to chiral symmetry--namely, the current algebra/partially conserved axial-vector current approach and the chiral Lagrangian method--in a manner intended to clarify recent and probable future applications of this symmetry in nuclear physics. Specifically, we show that in explicit chiral field theories the canonical πN scattering amplitude does not have the famed ''Adler zero'' unless partial conservation of axial-vector current holds as an operator equation. This implies that there are a number of familiar chiral models in which the ''Adler self-consistency'' condition does not apply to the canonical pion field. Among the problems of current interest for which our remarks are relevant are the studies of the pion-nucleus optical potential, pion condensation, and the attempts to formulate a model field theory having both reasonable nuclear saturation and good low energy pion phenomenology

  20. Emerging Potentials in Higher-Derivative Gauged Chiral Models Coupled to N=1 Supergravity

    CERN Document Server

    Farakos, Fotis

    2012-01-01

    We present a new method to introduce scalar potentials to gauge-invariant chiral models coupled to supergravity. The theories under consideration contain consistent higher-derivative terms which do not give rise to instabilities and ghost states. The chiral auxiliaries are not propagating and can be integrated out. Their elimination gives rise to emerging potentials even when there is not a superpotential to start with. We present the case of a single chiral multiplet with and without a superpotential and, in the gauged theory, up to two chiral multiplets coupled to supergravity with no superpotential. A general feature of the emergent potential is that it is negative defined leading to anti-de Sitter vacua. In the gauge models, competing D-terms may lift the potential leading to stable and metastable de Sitter and Minkowski vacua as well with spontaneously broken supersymmetry.

  1. The temperature dependence of the chiral condensate in the Schwinger model with Matrix Product States

    Energy Technology Data Exchange (ETDEWEB)

    Saito, H; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Ba nuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics

    2014-12-15

    We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.

  2. Uniqueness of quarks, leptons and exotic fermions in the chiral-color models

    International Nuclear Information System (INIS)

    We study the uniqueness of quarks, leptons and exotic fermions in the chiral-color models of SU(3)CL x SU(2)L x U(1)Y and SU(3)CL x SU(3)CR x SU(2)L x SU(2)R x U(1) based on the cancellations of the three known chiral anomalies in four dimensions. The minimal exotic particles are identified for existing three and four quark-lepton families

  3. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    CERN Document Server

    Gitman, D M

    1996-01-01

    The phase structure of d=3 Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the 1/N-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the gravitational field.

  4. Chiral symmetry breaking in d=3 NJL model in external gravitational and magnetic fields

    OpenAIRE

    Gitman, D. M.; Odintsov, S. D.; Shil'nov, Yu. I.

    1996-01-01

    The phase structure of $d=3$ Nambu-Jona-Lasinio model in curved spacetime with magnetic field is investigated in the leading order of the $1/N$-expansion and in linear curvature approximation (an external magnetic field is treated exactly). The possibility of the chiral symmetry breaking under the combined action of the external gravitational and magnetic fields is shown explicitly. At some circumstances the chiral symmetry may be restored due to the compensation of the magnetic field by the ...

  5. Coupling of pion condensate, chiral condensate and Polyakov loop in an extended NJL model

    OpenAIRE

    Zhang, Zhao; Liu, Yu-Xin

    2006-01-01

    The Nambu Jona-Lasinio model with a Polyakov loop is extended to finite isospin chemical potential case, which is characterized by simultaneous coupling of pion condensate, chiral condensate and Polyakov loop. The pion condensate, chiral condensate and the Polyakov loop as functions of temperature and isospin chemical potential are investigated by minimizing the thermodynamic potential of the system. The resulting $(T,\\mu_I)$ phase diagram is studied with emphasis on the critical point and Po...

  6. The role of the Delta isobar in chiral perturbation theory and hedgehog soliton models

    OpenAIRE

    Cohen, Thomas D.; Broniowski, Wojciech

    1992-01-01

    Hedgehog model predictions for the leading nonanalytic behavior (in $m^{2}_{\\pi }$) of certain observables are shown to agree with the predictions of chiral perturbation theory up to an overall factor which depends on the operator. This factor can be understood in terms of contributions of the $\\Delta$ isobar in chiral loops. These physically motivated contributions are analyzed in an expansion in which both $m_{\\pi}$ and $M_{\\Delta}-M_N$ are taken as small parameters, and are shown to yield ...

  7. Solutions of the Modified Chiral Model in (2+1) Dimensions

    OpenAIRE

    Ioannidou, Theodora; Zakrzewski, Wojtek

    1998-01-01

    This paper deals with classical solutions of the modified chiral model on $R^{2+1}$. Such solutions are shown to correspond to products of various factor which we call time-dependent unitons. Then the problem of solving the system of second-order partial differential equations for the chiral field is reduced to solving a sequence of systems of first-order partial differential equations for the unitons.

  8. Role of instantons in a chiral confining model

    International Nuclear Information System (INIS)

    In this paper we describe the role of instantons in a model of the nucleon called the chiral confining model (CCM). The effect of instantons is included through the 't Hooft interaction. In general, confining models tend to give for the product of nucleon mass and quark rms radius, MN left-angle r2 right-angle 1/2, values in the range 6--8, while the experimental value is 3.48. In the CCM, in principle, the gluons have been integrated out in favor of mesons. Hence the N-Δ mass splitting must be understood in terms of the spin-isospin dependent forces generated by pion exchange. Unfortunately, one-pion exchange contributes only about 50 MeV or less to the N-Δ mass splitting. The 't Hooft interaction is capable of resolving both these problems. The passage from QCD to the CCM modifies the strength of the 't Hooft interaction and, at present, we do not know what it is. We fix it by fitting MN-MΔ. With the strength so fixed we obtain values of MN left-angle r2 right-angle 1/2 in the range 4.4--5.1. A simple estimate of the correction for the motion of the center of mass of the nucleon, always present in any mean field calculation, reduces the value to 3.8--4.4. One hopes that the remaining discrepancy will be largely resolved when the mean-field approximation is improved by including quark-quark correlations

  9. Integrable string models with constant torsion in terms of chiral invariants of SU(n), SO(n), SP(n) groups

    CERN Document Server

    Gershun, V D

    2009-01-01

    We used the invariant local chiral currents of principal chiral models for SU(n), SO(n), SP(n) groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians.

  10. Influence of the Polyakov loop on the chiral phase transition in the two flavor chiral quark model

    Science.gov (United States)

    Markó, G.; Szép, Zs.

    2010-09-01

    The SU(2)L×SU(2)R chiral quark model consisting of the (σ,π→) meson multiplet and the constituent quarks propagating on the homogeneous background of a temporal gauge field is solved at finite temperature and quark baryon chemical potential μq using an expansion in the number of flavors Nf, both in the chiral limit and for the physical value of the pion mass. Keeping the fermion propagator at its tree level, several approximations to the pion propagator are investigated. These approximations correspond to different partial resummations of the perturbative series. Comparing their solution with a diagrammatically formulated resummation relying on a strict large-Nf expansion of the perturbative series, one concludes that only when the local part of the approximated pion propagator resums infinitely many orders in 1/Nf of fermionic contributions a sufficiently rapid crossover transition at μq=0 is achieved allowing for the existence of a tricritical point or a critical end point in the μq-T phase diagram. The renormalization and the possibility of determining the counterterms in the resummation provided by a strict large-Nf expansion are investigated.

  11. An explicit construction of the quantum group in chiral WZW-models

    International Nuclear Information System (INIS)

    It is shown how a chiral Wess-Zumino-Witten theory with globally defined vertex operators and a one-to-one correspondence between fields and states can be constructed. The Hilbert space of this theory is the direct sum of tensor products of representations of the chiral algebra and finite dimensional internal parameter spaces. On this enlarged space there exists a natural action of Drinfeld's quasi-quantum group Ag,t, which commutes with the action of the chiral algebra and plays the role of an internal symmetry algebra. The R matrix describes the braiding of the chiral vertex operators and the coassociator Φ gives rise to a modification of the duality property. For generic q the quasi-quantum group is isomorphic to the coassociative quantum group Uq(g) and thus the duality property of the chiral theory can be restored. This construction has to be modified for the physically relevant case of integer level. The quantum group has to be replaced by the corresponding truncated quasi-quantum group, which is not coassociative because of the truncation. This exhibits the truncated quantum group as the internal symmetry algebra of the chiral WZW model, which therefore has only a modified duality property. The case of g = su(2) is worked out in detail. (orig.)

  12. Non-chiral fusion rules, structure constants of $D_{m}$ minimal models

    CERN Document Server

    Rida, A

    1999-01-01

    We present a technique to construct, for $D_{m}$ unitary minimal models, the non-chiral fusion rules which determines the operator content of the operator product algebra. Using these rules we solve the bootstrap equations and therefore determine the structure constants of these models. Through this approach we emphasize the role played by some discrete symmetries in the classification of minimal models.

  13. Non-linear sigma models via the chiral de Rham complex

    CERN Document Server

    Ekstrand, Joel; Kallen, Johan; Zabzine, Maxim

    2009-01-01

    We propose a physical interpretation of the chiral de Rham complex as a formal Hamiltonian quantization of the supersymmetric non-linear sigma model. We show that the chiral de Rham complex on a Calabi-Yau manifold carries all information about the classical dynamics of the sigma model. Physically, this provides an operator realization of the non-linear sigma model. Mathematically, the idea suggests the use of Hamiltonian flow equations within the vertex algebra formalism with the possibility to incorporate both left and right moving sectors within one mathematical framework.

  14. sup 3 P sub 0 study of meson decays in a chiral quark model

    CERN Document Server

    Bonnaz, R; Silvestre-Brac, B; Fernández, F; Valcarce, A

    2001-01-01

    The strong decays of a meson into two mesons are studied in the framework of the sup 3 P sub 0 model. The meson wave functions are determined by means of a realistic chiral quark model constructed in the baryon sector and comparison is made with a traditional potential of 'Coulomb + linear' type. Two different forms for the creation vertex are analyzed. A momentum dependent vertex is proved to be definitively superior. The chiral quark model provides an overall good description of all known transitions and gives results of roughly the same quality as those obtained from phenomenological quark-antiquark potentials.

  15. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  16. Chirality and Circular Polarization in Models of Inflation

    CERN Document Server

    Alexander, Stephon; Sims, Robert

    2016-01-01

    We investigate the possibility that a chiral asymmetry during inflation can manifest as net circular polarization in photons. Using an example known to produce a helicity imbalance in fermions, we show that superhorizon photon modes produced during inflation acquire net circular polarization. Modes that reenter the horizon around last scattering can thermalize into the Cosmic Microwave Background while retaining a portion of their net circular polarization. We also consider the possibility of direct detection of the circular polarization in the CMB.

  17. Formulation and quantization of a generalized model related to the chiral Schwinger model

    Science.gov (United States)

    Bracken, Paul

    2009-07-01

    A generalized theory which describes fermions interacting with a gauge field is investigated. In 1 + 1 dimensions such a model is equivalent to a theory in which a boson field appears in the Lagrangian density rather than a fermion field. In this form, the Lagrangian density can be diagonalized and then quantized in terms of the transformed fields. The case of the chiral Schwinger model can be obtained from the general model and the physics with respect to the operator form is discussed. It is shown how the theory can be made nonanomalous by means of a Wess-Zumino field.

  18. Chiral Phase Transition in the Soft-Wall Model of AdS/QCD

    CERN Document Server

    Chelabi, Kaddour; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2015-01-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t'Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realize...

  19. The baryon mass calculation in the chiral soliton model at finite temperature and density

    International Nuclear Information System (INIS)

    In the mean-field approximation, we have studied the soliton which is embedded in a thermal medium within the chiral soliton model. The energy of the soliton or the baryon mass in the thermal medium has been carefully evaluated, in which we emphasize that the thermal effective potential in the soliton energy should be properly treated in order to derive a finite and well-defined baryon mass out of the thermal background. The result of the baryon mass at finite temperatures and densities in chiral soliton model are clearly presented. (author)

  20. 1/N/sup 2/ expansion of the mean field for lattice chiral and gauge models

    Energy Technology Data Exchange (ETDEWEB)

    Brihaye, Y.; Taormina, A.

    1985-08-21

    For lattice chiral and gauge models the authors develop an /sup 1//N/sup 2/ expansion of the mean-field approximation. Special attention is paid to the free energy for which the effect of fluctuations around the mean-field solution is presented as an /sup 1//N/sup 2/ expansion. The differences between U(N) and SU(N) are pointed out. Finally, for the chiral model the mean-field saddle-point technique is applied to compute the two-point correlation function. (author).

  1. Unified dark matter and dark energy description in a chiral cosmological model

    OpenAIRE

    Abbyazov, Renat R.; Chervon, Sergey V.

    2014-01-01

    We show the way of dark matter and dark energy presentation via ansatzs on the kinetic energies of the fields in the two-component chiral cosmological model. To connect a kinetic interaction of dark matter and dark energy with observational data the reconstruction procedure for the chiral metric component $h_{22}$ and the potential of (self)interaction $V$ has been developed. The reconstruction of $h_{22}$ and $V$ for the early and later inflation have been performed. The proposed model is co...

  2. Upper Higgs boson mass bounds from a chirally invariant lattice Higgs-Yukawa Model

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, P. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, Zeuthen (Germany)

    2010-02-15

    We establish the cutoff-dependent upper Higgs boson mass bound by means of direct lattice computations in the framework of a chirally invariant lattice Higgs-Yukawa model emulating the same chiral Yukawa coupling structure as in the Higgs-fermion sector of the Standard Model. As expected from the triviality picture of the Higgs sector, we observe the upper mass bound to decrease with rising cutoff parameter {lambda}. Moreover, the strength of the fermionic contribution to the upper mass bound is explored by comparing to the corresponding analysis in the pure {phi}{sup 4}-theory. (orig.)

  3. Non-local regularization of chiral quark models in the soliton sector

    CERN Document Server

    Ripka, G; Ripka, Georges; Golli, Bojan

    1999-01-01

    A chiral quark model is described which is regularized in terms of Lorentz invariant non-local interactions. The model is regularized to all loop orders and it ensures the proper quantization of the baryon number. It sustains bound hedgehog solitons which, after suitable centre of mass corrections, can adequately describe the nucleon.

  4. Quantum solitons of the nonlinear sigma-model with broken chiral symmetry

    CERN Document Server

    Kostyuk, A P; Chepilko, N M; Okazaki, T

    1995-01-01

    It is proved that the quantum-mechanical consideration of global breathing of a hedgehog-like field configuration leads to the dynamically stable soliton solutions in the nonlinear sigma-model without the Skyrme term. Such solutions exist only when chiral symmetry of the model is broken.

  5. SO(10) x SU(4) chiral preon model satisfying complementarity principle

    International Nuclear Information System (INIS)

    The authors extended the MAC principle to the case for semisimple metacolor gauge group and constructed an SO(10) x SU(4) chiral preon model which satisfies the complementarity principle. This model had a unique solution and thus predicted 4 generations of quarks and leptons without exotics. The generation gauge group was intruduced and the breaking of mass degeneracy among different generations was investigated

  6. Confinement and dynamical chiral symmetry breaking in a non-perturbative renormalizable quark model

    Science.gov (United States)

    Dudal, D.; Guimaraes, M. S.; Palhares, L. F.; Sorella, S. P.

    2016-02-01

    Inspired by the construction of the Gribov-Zwanziger action in the Landau gauge, we introduce a quark model exhibiting both confinement and chiral symmetry aspects. An important feature is the incorporation of spontaneous chiral symmetry breaking in a renormalizable fashion. The quark propagator in the condensed vacuum turns out to be of a confining type. Besides a real pole, it exhibits complex conjugate poles. The resulting spectral form is explicitly shown to violate positivity, indicative of its unphysical character. Moreover, the ensuing quark mass function fits well to existing lattice data. To further validate the physical nature of the model, we identify a massless pseudoscalar (i.e. a pion) in the chiral limit and present estimates for the ρ meson mass and decay constant.

  7. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  8. Competition and duality correspondence between chiral and superconducting channels in (2+1)-dimensional four-fermion models with fermion number and chiral chemical potentials

    CERN Document Server

    Ebert, D; Klimenko, K G; Zhukovsky, V C

    2016-01-01

    In this paper the duality correspondence between fermion-antifermion and difermion interaction channels is established in two (2+1)-dimensional Gross-Neveu type models with a fermion number chemical potential $\\mu$ and a chiral chemical potential $\\mu_5$. The role and influence of this property on the phase structure of the models are investigated. In particular, it is shown that the chemical potential $\\mu_5$ promotes the appearance of dynamical chiral symmetry breaking, whereas the chemical potential $\\mu$ contributes to the emergence of superconductivity.

  9. Efficient modeling of chiral media using SCN-TLM method

    Directory of Open Access Journals (Sweden)

    Yaich M.I.

    2004-01-01

    Full Text Available An efficient approach allowing to include linear bi-isotropic chiral materials in time-domain transmission line matrix (TLM calculations by employing recursive evaluation of the convolution of the electric and magnetic fields and susceptibility functions is presented. The new technique consists to add both voltage and current sources in supplementary stubs of the symmetrical condensed node (SCN of the TLM method. In this article, the details and the complete description of this approach are given. A comparison of the obtained numerical results with those of the literature reflects its validity and efficiency.

  10. A New Model of Holographic QCD and Chiral Condensate in Dense Matter

    CERN Document Server

    Seki, Shigenori

    2013-01-01

    We consider the model of holographic QCD with asymptotic freedom and gluon condensation in its vacuum. It consists of the color D4-branes and D0-branes as a background and the flavor D8-branes as a probe. By taking a specific field theory limit, the effective coupling decreases to vanish in UV region. We then introduce the uniformly distributed baryons in terms of the baryon vertices and study the density dependence of chiral condensate, which is evaluated using the worldsheet instanton method. In the confined phase, the chiral condensate as a function of density monotonically decreases in high baryon density. Such behavior is in agreement with the expectation, while in extremely low density it increases. We attribute this anomaly to the incorrect approximation of uniformity in very low density. In the deconfined phase the chiral condensate monotonically decreases in the whole region of density.

  11. Chiral Random Matrix Model at Finite Chemical Potential: Characteristic Determinant and Edge Universality

    CERN Document Server

    Liu, Yizhuang; Zahed, Ismail

    2016-01-01

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  12. QQqq Four-Quark Bound States in Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ming; ZHANG Hai-Xia; ZHANG Zong-Ye

    2008-01-01

    The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JP=1+, I=0 and for the ccnn (JP=1+, I=0) configuration, which is not bound but slightly above the D*D* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the chiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.

  13. Chiral random matrix model at finite chemical potential: Characteristic determinant and edge universality

    Science.gov (United States)

    Liu, Yizhuang; Nowak, Maciej A.; Zahed, Ismail

    2016-08-01

    We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.

  14. Surface second harmonic generation of chiral molecules using three-coupled-oscillator model

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Ou; Li Chun-Fei; Li Jun-Qing

    2006-01-01

    Based on the three-coupled-oscillator molecular model we proposed, the relation between the second-order susceptibilities of a chiral film and the molecular hyperpolarizabilities is given. The effect of microscopic parameters on the second-order susceptibilities is simulated numerically and the difference between the efficiencies of s-polarized second-harmonic fields induced by the left- and the right-handed circularly-polarized fundamental beams is discussed. The theoretical basis for studying second-order nonlinear optical properties of the chiral molecular media with a tripod-like structure is provided in this paper.

  15. Random matrix theory and higher genus integrability: the quantum chiral Potts model

    International Nuclear Information System (INIS)

    We perform a random matrix theory (RMT) analysis of the quantum four-state chiral Potts chain for different sizes of the chain up to size L 8. Our analysis gives clear evidence of a Gaussian orthogonal ensemble (GOE) statistics, suggesting the existence of a generalized time-reversal invariance. Furthermore, a change from the (generic) GOE distribution to a Poisson distribution occurs when the integrability conditions are met. The chiral Potts model is known to correspond to a (star-triangle) integrability associated with curves of genus higher than zero or one. Therefore, the RMT analysis can also be seen as a detector of 'higher genus integrability'. (author)

  16. Pion Form Factor in Chiral Limit of Hard-Wall AdS/QCD Model

    Energy Technology Data Exchange (ETDEWEB)

    Anatoly Radyushkin; Hovhannes Grigoryan

    2007-12-01

    We develop a formalism to calculate form factor and charge density distribution of pion in the chiral limit using the holographic dual model of QCD with hard-wall cutoff. We introduce two conjugate pion wave functions and present analytic expressions for these functions and for the pion form factor. They allow to relate such observables as the pion decay constant and the pion charge electric radius to the values of chiral condensate and hard-wall cutoff scale. The evolution of the pion form factor to large values of the momentum transfer is discussed, and results are compared to existing experimental data.

  17. Anomalies and the chiral magnetic effect in the Sakai-Sugimoto model

    OpenAIRE

    Rebhan, Anton; Schmitt, Andreas; Stricker, Stefan A.

    2009-01-01

    In the chiral magnetic effect an imbalance in the number of left- and right-handed quarks gives rise to an electromagnetic current parallel to the magnetic field produced in noncentral heavy-ion collisions. The chiral imbalance may be induced by topologically nontrivial gluon configurations via the QCD axial anomaly, while the resulting electromagnetic current itself is a consequence of the QED anomaly. In the Sakai-Sugimoto model, which in a certain limit is dual to large-N_c QCD, we discuss...

  18. NΩ and ΔΩ dibaryons in a SU(3) chiral quark model

    International Nuclear Information System (INIS)

    The binding energy of the six-quark system with strangeness s=-3 is investigated under the chiral SU(3) constituent quark model in the framework of RGM. The calculations of the single NΩ channel with spin S=2 and the single ΔΩ channel with spin S=3 are performed. The results show that both systems could be dibaryons and the interaction induced by the chiral field plays a very important role on forming bound states in the systems considered. The phase shifts and scattering lengths in corresponding channels are also given. (orig.)

  19. Chiral symmety breaking in 3-flavor Nambu-Jona Lasinio model in magnetic background

    Energy Technology Data Exchange (ETDEWEB)

    Chatterjee, Bhaswar; Mishra, Hiranmaya [Theory Division, Physical Research Laboratory, Navrangpura, Ahmedabad 380 009 (India); Mishra, Amruta [Department of Physics, Indian Institute of Technology, New Delhi-110016 (India)

    2011-07-15

    Effect of magnetic field on chiral symmetry breaking in a 3-flavor Nambu Jona Lasinio (NJL) model at finite temperature and densities is considered here using an explicit structure of ground state in terms of quark and antiquark condensates. While at zero chemical potential and finite temperature, magnetic field enhances the condensates, at zero temperature, the critical chemical potential decreases with increasing magnetic field.

  20. Chiral symmety breaking in 3-flavor Nambu-Jona Lasinio model in magnetic background

    International Nuclear Information System (INIS)

    Effect of magnetic field on chiral symmetry breaking in a 3-flavor Nambu Jona Lasinio (NJL) model at finite temperature and densities is considered here using an explicit structure of ground state in terms of quark and antiquark condensates. While at zero chemical potential and finite temperature, magnetic field enhances the condensates, at zero temperature, the critical chemical potential decreases with increasing magnetic field.

  1. Chiral symmety breaking in 3-flavor Nambu-Jona Lasinio model in magnetic background

    CERN Document Server

    Chatterjee, Bhaswar; Mishra, Amruta

    2011-01-01

    Effect of magnetic field on chiral symmetry breaking in a 3-flavor Nambu Jona Lasinio (NJL) model at finite temperature and densities is considered here using an explicit structure of ground state in terms of quark and antiquark condensates. While at zero chemical potential and finite temperature, magnetic field enhances the condensates, at zero temperature, the critical chemical potential decreases with increasing magnetic field.

  2. From Chiral quark dynamics with Polyakov loop to the hadron resonance gas model

    OpenAIRE

    Arriola, E. Ruiz; Megias, E.; Salcedo, L. L.

    2012-01-01

    Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.

  3. Gluonic contribution to the nucleon-delta mass difference in a chiral soliton bag model

    Energy Technology Data Exchange (ETDEWEB)

    Bourenane, M.; Stern, J.; Clement, G.

    1988-05-01

    A generalization of the Friedberg-Lee model, which minimally incorporates soft confinement of quarks and gluons and approximate chiral symmetry, is presented and applied to the computation of the gluonic contribution to the nucleon-delta mass difference. The value of the effective strong fine structure constant is estimated to be ..cap alpha../sub s/=0.65.

  4. Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model

    Institute of Scientific and Technical Information of China (English)

    宗红石; 吴小华; 侯丰尧; 赵恩广

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.

  5. Soliton Solutions of the Integrable Chiral Model in 2+1 Dimensions

    OpenAIRE

    Ioannidou, Theodora

    1997-01-01

    We present soliton and soliton-antisoliton solutions for the integrable chiral model in 2+1 dimensions with nontrivial (elastic) scattering. These solutions can be obtained either as the limiting cases of the ones already constructed by Ward or by adapting Uhlenbeck's method.

  6. Studying the baryon properties through chiral soliton model at finite temperature and denstity

    OpenAIRE

    Shu, Song; Li, Jia-Rong

    2014-01-01

    We have studied the chiral soliton model in a thermal vacuum. The soliton equations are solved at finite temperature and density. The temperature or density dependent soliton solutions are presented. The physical properties of baryons are derived from the soliton solutions at finite temperature and density. The temperature or density dependent variation of the baryon properties are discussed.

  7. a Chiral Schwinger Model, its Constraint Structure and Applications to its Quantization

    Science.gov (United States)

    Bracken, Paul

    The Jackiw-Rajaraman version of the chiral Schwinger model is studied as a function of the renormalization parameter. The constraints are obtained and they are used to carry out canonical quantization of the model by means of Dirac brackets. By introducing an additional scalar field, it is shown that the model can be made gauge invariant. The gauge invariant model is quantized by establishing a pair of gauge fixing constraints in order that the method of Dirac can be used.

  8. A Chiral Schwinger model, its Constraint Structure and Applications to its Quantization

    OpenAIRE

    Bracken, Paul

    2007-01-01

    The Jackiw-Rajaraman version of the chiral Schwinger model is studied as a function of the renormalization parameter. The constraints are obtained and they are used to carry out canonical quantization of the model by means of Dirac brackets. By introducing an additional scalar field, it is shown that the model can be made gauge invariant. The gauge invariant model is quantized by establishing a pair of gauge fixing constraints in order that the method of Dirac can be used.

  9. A Chiral Schwinger model, its Constraint Structure and Applications to its Quantization

    CERN Document Server

    Bracken, Paul

    2007-01-01

    The Jackiw-Rajaraman version of the chiral Schwinger model is studied as a function of the renormalization parameter. The constraints are obtained and they are used to carry out canonical quantization of the model by means of Dirac brackets. By introducing an additional scalar field, it is shown that the model can be made gauge invariant. The gauge invariant model is quantized by establishing a pair of gauge fixing constraints, so the method of Dirac can be used.

  10. CSOS models descending from chiral Potts models: degeneracy of the eigenspace and loop algebra

    Science.gov (United States)

    Au-Yang, Helen; Perk, Jacques H. H.

    2016-04-01

    Monodromy matrices of the {{\\boldsymbol{τ }}}2\\phantom{^{\\prime }} model are known to satisfy a Yang-Baxter equation with a six-vertex R-matrix as the intertwiner. The commutation relations of the elements of the monodromy matrices are completely determined by this R-matrix. We show the reason why in the superintegrable case the eigenspace is degenerate, but not in the general case. We then show that the eigenspaces of special CSOS models descending from the chiral Potts model are also degenerate. The existence of an L({{sl}}2) quantum loop algebra (or subalgebra) in these models is established by showing that the Serre relations hold for the generators. The highest weight polynomial (or the Drinfeld polynomial) of the representation is obtained by using the method of Baxter for the superintegrable case. As a byproduct, the eigenvalues of all such CSOS models are given explicitly.

  11. Chiral Gravitational Waves from Chiral Fermions

    CERN Document Server

    Anber, Mohamed M

    2016-01-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  12. Integrable String Models in Terms of Chiral Invariants of SU(n, SO(n, SP(n Groups

    Directory of Open Access Journals (Sweden)

    Victor D. Gershun

    2008-05-01

    Full Text Available We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativity equation to construct new integrable string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents in first case. We used the invariant local chiral currents of principal chiral models for SU(n, SO(n, SP(n groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor nonlocal currents to construct new nonlocal string equation.

  13. Chiral symmetry

    International Nuclear Information System (INIS)

    We present many varied chiral symmetry models at the quark level which consistently describe strong interaction hadron dynamics. The pattern that emerges is a nonstrange current quark mass scale mcur ≅ (34-69) MeV and a current quark mass ratio (ms/m)cur ≅ 5-6 along with no strange quark content in nucleons. (orig./WL)

  14. Structure of the vacuum in the color dielectric model: confinement and chiral symmetry

    International Nuclear Information System (INIS)

    Two of the most important properties of Quantum Chromodynamic (QCD), spontaneous symmetry breaking of the vacuum and quark confinement at low energy, are first presented. Some important effective models for hadronic physics are then described. Putting QCD on the lattice and using the block-spin method, the color-dielectric model effective Lagrangian is obtained. The structure of the vacuum and the behaviour of uniform quark matter at high intensity are investigated in this model. Its original formulation is extended to handle chiral symmetry (by use of sigma model) and to include negative energy orbitals. At high baryonic density, the model describes the two phase transitions which are expected in QCD: deconfinement of quarks and chiral symmetry restoration. Finally, a heavy meson composed by a charmed quark anti-quark pair, is constructed, and the valence quarks confinement and the vacuum structure around them are studied

  15. Highly nonlinear wave solutions in a dual to the chiral model

    Science.gov (United States)

    Rajeev, S. G.; Ranken, Evan

    2016-05-01

    We consider a two-dimensional scalar field theory with a nilpotent current algebra, which is dual to the Principal Chiral Model. The quantum theory is renormalizable and not asymptotically free; the theory is strongly coupled at short distances (encountering a Landau pole). We suggest it can serve as a toy model for λ ϕ4 theory in four dimensions, just as the principal chiral model is a useful toy model for Yang-Mills theory. We find some classical wave solutions that survive the strong coupling limit and quantize them by the collective variable method. They describe excitations with an unusual dispersion relation ω ∝|k |2/3 . Perhaps they are the "preons" at strong coupling, the bound states of which form massless particles over long distances.

  16. Highly nonlinear wave solutions in a dual to the chiral model

    CERN Document Server

    Rajeev, S G

    2016-01-01

    We consider a two-dimensional scalar field theory with a nilpotent current algebra, which is dual to the Principal Chiral Model. The quantum theory is renormalizable and not asymptotically free: the theory is strongly coupled at short distances (encountering a Landau pole). We suggest it can serve as a toy model for $\\lambda\\phi^{4}$ theory in four dimensions, just as the principal chiral model is a useful toy model for Yang-Mills theory. We find some classical wave solutions that survive the strong coupling limit and quantize them by the collective variable method. They describe excitations with an unusual dispersion relation $\\omega\\propto|k|^{\\frac{2}{3}}$ . Perhaps they are the "preons" at strong coupling, whose bound states form massless particles over long distances.

  17. Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules

    Science.gov (United States)

    Bahrami, M.; Donadi, S.; Ferialdi, L.; Bassi, A.; Curceanu, C.; di Domenico, A.; Hiesmayr, B. C.

    2013-06-01

    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate-creating quantum superpositions-and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond experimental reach. Instead, chiral molecules can offer promising candidates for testing collapse models.

  18. Chirality in Nonlinear Optics

    Science.gov (United States)

    Haupert, Levi M.; Simpson, Garth J.

    2009-05-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.

  19. UA(1) breaking and phase transition in chiral random matrix model

    CERN Document Server

    Sano, T; Ohtani, M

    2009-01-01

    We propose a chiral random matrix model which properly incorporates the flavor-number dependence of the phase transition owing to the \\UA(1) anomaly term. At finite temperature, the model shows the second-order phase transition with mean-field critical exponents for two massless flavors, while in the case of three massless flavors the transition turns out to be of the first order. The topological susceptibility satisfies the anomalous \\UA(1) Ward identity and decreases gradually with the temperature increased.

  20. The chiral de Rham complex and quantum non-linear sigma models

    International Nuclear Information System (INIS)

    In [J. Ekstrand, R. Heluani, J. Kaellen, M. Zabzine, Adv. Theor. Math. Phys. 13 (2009) 1221-1254; J. Ekstrand, R. Heluani, J. Kaellen, M. Zabzine, (arXiv:1003.4388 [hep-th])], the interpretation of the chiral de Rham complex as a formal quantization of 2d non-linear sigma models in the Hamiltonian framework was suggested and used to compute symmetry algebras for quantum models with non-flat target spaces. Here we review the construction.

  1. The chiral de Rham complex and quantum non-linear sigma models

    Energy Technology Data Exchange (ETDEWEB)

    Kaellen, J. [Department of Physics and Astronomy, Division of Theoretical Physics, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden)

    2011-07-15

    In [J. Ekstrand, R. Heluani, J. Kaellen, M. Zabzine, Adv. Theor. Math. Phys. 13 (2009) 1221-1254; J. Ekstrand, R. Heluani, J. Kaellen, M. Zabzine, (arXiv:1003.4388 [hep-th])], the interpretation of the chiral de Rham complex as a formal quantization of 2d non-linear sigma models in the Hamiltonian framework was suggested and used to compute symmetry algebras for quantum models with non-flat target spaces. Here we review the construction.

  2. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Directory of Open Access Journals (Sweden)

    Biernat Elmar P.

    2016-01-01

    Full Text Available We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.

  3. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    CERN Document Server

    Biernat, Elmar P; Ribeiro, J E; Stadler, A; Gross, F

    2015-01-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  4. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Science.gov (United States)

    Biernat, Elmar P.; Peña, M. T.; Ribeiro, J. E.; Stadler, A.; Gross, F.

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for π-π-scattering imposed by chiral symmetry.

  5. Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de Física, Universidade de Évora, 7000-671 Évora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-03-01

    We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.

  6. Chiral Symmetry Breaking on the Lattice a Study of the Strongly Coupled Lattice Schwinger Model

    CERN Document Server

    Berruto, F; Semenoff, Gordon W; Sodano, P

    1998-01-01

    We revisit the strong coupling limit of the Schwinger model on the lattice using staggered fermions and the hamiltonian approach to lattice gauge theories. Although staggered fermions have no continuous chiral symmetry, they posses a discrete axial invari ance which forbids fermion mass and which must be broken in order for the lattice Schwinger model to exhibit the features of the spectrum of the continuum theory. We show that this discrete symmetry is indeed broken spontaneously in the strong coupling li mit. Expanding around a gauge invariant ground state and carefully considering the normal ordering of the charge operator, we derive an improved strong coupling expansion and compute the masses of the low lying bosonic excitations as well as the chiral co ndensate of the model. We find very good agreement between our lattice calculations and known continuum values for these quantities already in the fourth order of strong coupling perturbation theory. We also find the exact ground state of the antiferromag ...

  7. A large N phase transition in the continuum two dimensional SU(N) X SU(N) principal chiral model

    OpenAIRE

    R. Narayanan; Neuberger, H.; Vicari, E.

    2008-01-01

    It is established by numerical means that the continuum large N principal chiral model in two dimensions has a phase transition in a smoothed two point function at a critical distance of the order of the correlation length.

  8. Chiral formulation for hyperKähler sigma-models on cotangent bundles of symmetric spaces

    Science.gov (United States)

    Kuzenko, Sergei M.; Novak, Joseph

    2008-12-01

    Starting with the projective-superspace off-shell formulation for four-dimensional Script N = 2 supersymmetric sigma-models on cotangent bundles of arbitrary Hermitian symmetric spaces, their on-shell description in terms of Script N = 1 chiral superfields is developed. In particular, we derive a universal representation for the hyperkähler potential in terms of the curvature of the symmetric base space. Within the tangent-bundle formulation for such sigma-models, completed recently in arXiv:0709.2633 and realized in terms of Script N = 1 chiral and complex linear superfields, we give a new universal formula for the superspace Lagrangian. A closed form expression is also derived for the Kähler potential of an arbitrary Hermitian symmetric space in Kähler normal coordinates.

  9. Susceptibilities and the Phase Structure of a Chiral Model with Polyakov Loops

    OpenAIRE

    Sasaki, C.; Friman, B.; Redlich, K.

    2006-01-01

    In an extension of the Nambu-Jona-Lasinio model where the quarks interact with the temporal gluon field, represented by the Polyakov loop, we explore the relation between the deconfinement and chiral phase transitions. The effect of Polyakov loop dynamics on thermodynamic quantities, on the phase structure at finite temperature and baryon density and on various susceptibilities is presented. Particular emphasis is put on the behavior and properties of the fluctuations of the (approximate) ord...

  10. The Quantum and Local Polyakov loop in Chiral Quark Models at Finite Temperature

    OpenAIRE

    Megias, E.; Arriola, E. Ruiz; Salcedo, L. L.

    2006-01-01

    We describe results for the confinement-deconfinement phase transition as predicted by the Nambu--Jona-Lasinio model where the local and quantum Polyakov loop is coupled to the constituent quarks in a minimal way (PNJL). We observe that the leading correlation of two Polyakov loops describes the chiral transition accurately. The effects of the current quark mass on the transition are also analysed.

  11. Strange quark matter in a chiral SU(3) quark mean field model

    OpenAIRE

    Wang, P.; Lyubovitskij, V. E.; Gutsche, Th.; Faessler, Amand

    2002-01-01

    We apply the chiral SU(3) quark mean field model to investigate strange quark matter. The stability of strange quark matter with different strangeness fraction is studied. The interaction between quarks and vector mesons destabilizes the strange quark matter. If the strength of the vector coupling is the same as in hadronic matter, strangelets can not be formed. For the case of beta equilibrium, there is no strange quark matter which can be stable against hadron emission even without vector m...

  12. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz.

    Science.gov (United States)

    Zamorano, M; Torres-Silva, H

    2006-04-01

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) "inverse skin effect" shows up at 1800 MHz, with respect to a 900 MHz source. PMID:16552096

  13. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    International Nuclear Information System (INIS)

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source

  14. Duality between chiral symmetry breaking and charged pion condensation at large $N_c$: Consideration of an NJL$_2$ model with baryon-, isospin- and chiral isospin chemical potentials

    CERN Document Server

    Ebert, D; Klimenko, K G

    2016-01-01

    In this paper we investigate the phase structure of a (1+1)-dimensional schematic quark model with four-quark interaction and in the presence of baryon ($\\mu_B$), isospin ($\\mu_I$) and chiral isospin ($\\mu_{I5}$) chemical potentials. It is established that in the large-$N_c$ limit ($N_c$ is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation (PC) one. The role and influence of this property on the phase structure of the model are studied. Moreover, it is shown that the chemical potential $\\mu_{I5}$ promotes the appearance of the charged PC phase with nonzero baryon density.

  15. A chiral matrix model of the semi-Quark Gluon Plasma in QCD

    CERN Document Server

    Pisarski, Robert D

    2016-01-01

    A chiral matrix model applicable to QCD with 2+1 flavors is developed. This requires adding a SU(3)_L x SU(3)_R x Z(3)_A nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y. Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. In addition to the usual symmetry breaking term, linear in the current quark mass m_qk, at a nonzero temperature T it is necessary to add a new term, ~ m_qk T^2. The parameters of the gluon part of the matrix model, including especially the deconfining transition temperature T_d = 270 MeV, are identical to that for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant the masses of the pions, kaons, eta, and eta'. The temperature for the chiral crossover at T_chi = 155 MeV is determined by adjusting the Yukawa coupling y. We find reasonable agreement with th...

  16. Chiral phase transition in a lattice fermion-gauge-scalar model with U(1) gauge symmetry

    International Nuclear Information System (INIS)

    The chiral phase transition induced by a charged scalar field is investigated numerically in a lattice fermion-gauge-scalar model with U(1) gauge symmetry, proposed recently as a model for dynamical fermion mass generation. For very strong gauge coupling the transition is of second order and its scaling properties are very similar to those of the Nambu-Jona-Lasinio model. However, in the vicinity of the tricritical point at somewhat weaker coupling, where the transition changes the order, the scaling behavior is different. Therefore it is worthwhile to investigate the continuum limit of the model at this point. (orig.)

  17. Understanding complex chiral plasmonics

    Science.gov (United States)

    Duan, Xiaoyang; Yue, Song; Liu, Na

    2015-10-01

    Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant

  18. Poisson bracket algebra for chiral group elements in the WZNW model

    CERN Document Server

    Bimonte, G; Simoni, A; Stern, A

    1992-01-01

    We examine the Wess-Zumino-Novikov-Witten (WZNW) model on a circle and compute the Poisson bracket algebra for left and right moving chiral group elements. Our computations apply for arbitrary groups and boundary conditions, the latter being characterized by the monodromy matrix. Unlike in previous treatments, they do not require specifying a particular parametrization of the group valued fields in terms of angles spanning the group. We do however find it necessary to make a gauge choice, as the chiral group elements are not gauge invariant observables. (On the other hand, the quadratic form of the Poisson brackets may be defined independent of a gauge fixing.) Gauge invariant observables can be formed from the monodromy matrix and these observables are seen to commute in the quantum theory.

  19. Poisson bracket algebra for chiral group elements in the WZNW model

    International Nuclear Information System (INIS)

    In this paper, the authors examine the Wess-Zumino-Novikov-Witten (WZNW) model on a circle and compute the Poisson bracket algebra for left- and right-moving chiral group elements. The authors' computations apply for arbitrary groups and arbitrary boundary conditions, the latter being characterized by the monodromy matrix. Unlike previous treatments, the Poisson brackets do not require specifying a particular parametrization of the group valued fields in terms of angles spanning the group. The authors do however find it necessary to make a gauge choice, as the chiral group elements are not gauge invariant observables. (On the other hand, the quadratic form of the Poisson brackets may be defined independently of a gauge fixing.) Gauge invariant observables can be formed from the monodromy matrix and these observbles are seen to commute in the quantum theory

  20. Three-flavor chiral effective model with four baryonic multiplets within the mirror assignment

    CERN Document Server

    Olbrich, L; Giacosa, F

    2016-01-01

    We study three-flavor octet baryons by using the so-called extended Linear Sigma Model (eLSM). Within a quark-diquark picture, the requirement of a mirror assignment naturally leads to the consideration of four spin-$\\frac{1}{2}$ baryon multiplets. A reduction of the Lagrangian to the two-flavor case leaves four doublets of nucleonic states which mix to form the experimentally observed states $N(939)$, $N(1440)$, $N(1535)$ and $N(1650)$. We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of the aforementioned states. By tracing their masses when chiral symmetry is restored, we conclude that the pairs $N(939)$, $N(1535)$ and $N(1440)$, $N(1650)$ form chiral partners.

  1. Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model

    CERN Document Server

    Alam, M Sohaib; Kundu, Arnab

    2012-01-01

    A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually p...

  2. Equation of state of isospin-asymmetric nuclear matter in relativistic mean-field models with chiral limits

    OpenAIRE

    Jiang, Wei-Zhou; Li, Bao-An; Chen, Lie-Wen

    2007-01-01

    Using in-medium hadron properties according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities and considering naturalness of the coupling constants, we have newly constructed several relativistic mean-field Lagrangians with chiral limits. The model parameters are adjusted such that the symmetric part of the resulting equation of state at supra-normal densities is consistent with that required by the collective flow data from high energy heavy-ion reactions, whi...

  3. The Star Square in the Baxter-Bazhanov Model and the Star-Triangle Relation in the Chiral Potts Model

    Science.gov (United States)

    Hu, Zhan-Ning

    In this letter, the connection is found between the "star-square" relation in the Baxter-Bazhanov model and the "star-triangle" relation in the chiral Potts model, which means that the tetrahedron equation of the Baxter-Bazhanov model is a consequence of the latter. The four additional constraints in the tetrahedron equation given by Kashaev et al. hold naturally in respect to the spherical trigonometry parametrizations.

  4. Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models

    CERN Document Server

    Pagura, V P; Noguera, S; Scoccola, N N

    2016-01-01

    We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature our results show that nonlocal models naturally lead to the Inverse Magnetic Catalysis effect.

  5. Generalized Ginzburg–Landau approach to inhomogeneous phases in nonlocal chiral quark models

    International Nuclear Information System (INIS)

    We analyze the presence of inhomogeneous phases in the QCD phase diagram within the framework of nonlocal chiral quark models. We concentrate in particular in the positions of the tricritical (TCP) and Lifshitz (LP) points, which are studied in a general context using a generalized Ginzburg–Landau approach. We find that for all the phenomenologically acceptable model parametrizations considered the TCP is located at a higher temperature and a lower chemical potential in comparison with the LP. Consequently, these models seem to favor a scenario in which the onset of the first order transition between homogeneous phases is not covered by an inhomogeneous, energetically favored phase

  6. Fragmentation functions of pions and kaons in the nonlocal chiral quark model

    Directory of Open Access Journals (Sweden)

    Kao Chung Wen

    2014-03-01

    Full Text Available We investigate the unpolarized pion and kaon fragmentation functions using the nonlocal chiral-quark model. In this model the interactions between the quarks and pseudoscalar mesons is manifested nonlocally. In addition, the explicit flavor SU(3 symmetry breaking effect is taken into account in terms of the current quark masses. The results of our model are evaluated to higher Q2 value Q2 = 4 GeV2 by the DGLAP evolution. Then we compare them with the empirical parametrizations. We find that our results are in relatively good agreement with the empirical parametrizations and the other theoretical estimations.

  7. Chirally Invariant Avatar in a Model of Neutrinos with Light Cone Reflection Symmetry

    CERN Document Server

    Chodos, Alan

    2016-01-01

    In previous work we developed a model of neutrinos based on a new symmetry, Light Cone Reflection (LCR), that interchanges spacelike and timelike intervals. In this paper we start with the four-dimensional model, and construct a two-dimensional avatar that obeys the same equations of motion, and preserves both the light-cone reflection symmetry and the chiral symmetry of the original theory. The avatar also contains the interaction that rendered the four-dimensional model gauge invariant. In an addendum, we make some remarks about how to determine the scalar field that enters into the definition of the LCR-covariant derivative.

  8. Model studies of the chiral and deconfinement transitions in QCD

    CERN Document Server

    Naylor, William R

    2015-01-01

    The Doctoral thesis of William Naylor. Gives the background of the three papers included, specifically introducing both the quark meson model and the NJL model, the basic formalism of thermal field theory, and functional renormalization group (including some details on numerically solving the FRG equation for the QM model).

  9. Vacuum phenomenology of the chiral partner of the nucleon in a linear sigma model with vector mesons

    International Nuclear Information System (INIS)

    We investigate a linear sigma model with global chiral U(2)RxU(2)L symmetry. The mesonic degrees of freedom are the standard scalar and pseudoscalar mesons and the vector and axial-vector mesons. The baryonic degrees of freedom are the nucleon, N, and its chiral partner, N*, which is usually identified with N(1535). The chiral partner is incorporated in the so-called mirror assignment, where the nucleon mass is not solely generated by the chiral condensate but also by a chirally invariant mass term, m0. The presence of (axial-) vector fields modifies the expressions for the axial-coupling constants of the nucleon, gAN, and its partner, gAN*. Using experimental data for the decays N*→Nπ and a1→πγ, as well as lattice results for gAN* we infer that in our model m0∼500 MeV, i.e., an appreciable amount of the nucleon mass originates from sources other than the chiral condensate. We test our model by evaluating the decay N*→Nη and the s-wave nucleon-pion scattering lengths a0(±).

  10. The chiral magnetic effect in hydrodynamical approach

    OpenAIRE

    Sadofyev, A. V.; Isachenkov, M. V.

    2010-01-01

    In quark-gluon plasma nonzero chirality can be induced by the chiral anomaly. When a magnetic field is applied to a system with nonzero chirality an electromagnetic current is induced along the magnetic field. This phenomenon is called the chiral magnetic effect. In this paper appearance of the chiral magnetic effect in hydrodynamical approximation is shown. We consider a hydrodynamical model for chiral liquid with two independent currents of left and right handed particles in the presence of...

  11. Microscopic nuclear structure models and methods: chiral symmetry, wobbling motion and γ–bands

    Science.gov (United States)

    Sheikh, Javid A.; Bhat, Gowhar H.; Dar, Waheed A.; Jehangir, Sheikh; Ganai, Prince A.

    2016-06-01

    A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of γ-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, γ-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering γ-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the γ-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of γ-bands observed up to the highest spin in dysposium, hafnium, mercury and uranium isotopes. Furthermore, several measurements related to chiral symmetry breaking and wobbling motion have been reported recently. These phenomena, which are possible only for triaxial nuclei, have been investigated using the TPSM approach. It is shown that doublet bands observed in lighter odd–odd Cs-isotopes can be considered as candidates for chiral symmetry breaking. Transverse wobbling motion recently observed in 135Pr has also been investigated and it is shown that TPSM approach provides a reasonable description of the measured properties.

  12. Chiral symmetry in the strong color-electric field in terms of Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    We examine the behavior of chiral symmetry in an external gluon field using Nambu-Jona-Lasinio model, which is an effective theory of QCD. The Dyson equation for the dynamical quark mass in the presence of the external color-electric field is obtained. By solving it in the color flux tube inside mesons, chiral symmetry would be restored in the flux tube of mesons and this result supports Chiral Bag picture for mesons. Next we consider the flux tubes formed in the central region for ultra-relativistic heavy-ion collisions, and find the chiral restoration occurs there, so that the current quark mass seems to be suitable in calculating the q-q-bar pair creation rate by the Schwinger formula in the flux-tube picture. (author)

  13. Chiral Superfluidity for QCD

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  14. The Effect of Logarithmic Mesonic Potential on the Magnetic Catalysis in the Chiral Quark-Sigma Model

    CERN Document Server

    Abu-Shady, M

    2015-01-01

    The chiral symmetry breaking in the presence of external magnetic field is studied in the framework of logarithmic quark-sigma model. The effective logarithmic mesonic potential is employed and is numerically solved in the mean-field approximation. We find that the chiral symmetry breaking enhances in comparison with the original sigma model. Two sets of parameterization are investigated in the present model. We find that increasing coupling constant enhances the breaking symmetry while increasing sigma mass inhibits enhancing chiral broken vacuum state. A comparison with the Numbu-Jona-Lasinio model and the Schwinger-Dyson equation is discussed. We conclude that the logarithmic sigma model enhances the magnetic catalysis in comparison with the original sigma model and other models.

  15. Eta and kaon production in a chiral quark model

    CERN Document Server

    Golli, Bojan

    2016-01-01

    We apply a coupled-channel formalism incorporating quasi-bound quark-model states to calculate pion scattering into eta N, K Lambda and K Sigma channels, as well eta p, eta n, K+Lambda, and K0Sigma+ photo-production processes. The meson-baryon and photon-baryon vertices are determined in a SU(3) version of the Cloudy Bag Model. Our model predicts sizable amplitudes in the P11, P13, P33 and S11 partial waves in agreement with the latest MAID isobar model and the recent partial-wave analyses of the Bonn-Gatchina group. We are able to give a quark-model explanation for the apparent resonance at 1685 MeV in the eta n channel.

  16. A chiral random matrix model with 2+1 flavors at finite temperature and density

    CERN Document Server

    Fujii, H

    2009-01-01

    Phase diagram of a chiral random matrix model with the degenerate ud quarks and the s quark at finite temperature and density is presented. The model exhibits a first-order transition at finite temperature for three massless flavors, owing to the U_A(1) breaking determinant term. We study the order of the transition with changing the quark masses and the quark chemical potential, and show that the first-order transition region expands as the chemical potential increases. We also discuss the behavior of the meson masses and the susceptibilities near the critical point.

  17. Kaon semileptonic decay (K_{l3}) form factor in the nonlocal chiral quark model

    CERN Document Server

    Nam, Seung-il

    2007-01-01

    We investigate the kaon semileptonic decay (K_{l3}) form factors within the framework of the nonlocal chiral quark model from the instanton vacuum, taking into account the effects of flavor SU(3) symmetry breaking. All theoretical calculations are carried out without any adjustable parameter. We also show that the present results satisfy the Callan-Treiman low-energy theorem as well as the Ademollo-Gatto theorem. It turns out that the effects of flavor SU(3) symmetry breaking are essential in reproducing the kaon semileptonic form factors. The present results are in a good agreement with experiments, and are compatible with other model calculations.

  18. Anomalous transport model study of chiral magnetic effects in heavy ion collisions

    CERN Document Server

    Sun, Yifeng; Li, Feng

    2016-01-01

    Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).

  19. Vacuum properties of open charmed mesons in a chiral symmetric model

    CERN Document Server

    Eshraim, Walaa I

    2014-01-01

    We present a $U(4)_R \\times U(4)_L$ chirally symmetric model, which in addition to scalar and pseudoscalar mesons also includes vector and axial-vector mesons. A part from the three new parameters pertaining to the charm degree of freedom, the parameters of the model are fixed from the $N_f=3$ flavor sector. We compute open charmed meson masses, weak decay constants, and the (OZI-dominant) strong decays of open charmed mesons. A precise description of decays of open charmed states is important for the CBM and PANDA experiments at the future FAIR facility.

  20. The early history of the integrable chiral Potts model and the odd-even problem

    Science.gov (United States)

    Perk, Jacques H. H.

    2016-04-01

    In the first part of this paper I shall discuss the round-about way of how the integrable chiral Potts model was discovered about 30 years ago. As there should be more higher-genus models to be discovered, this might be of interest. In the second part I shall discuss some quantum group aspects, especially issues of odd versus even N related to the Serre relations conjecture in our quantum loop subalgebra paper of 5 years ago and how we can make good use of coproducts, also borrowing ideas of Drinfeld, Jimbo, Deguchi, Fabricius, McCoy and Nishino.

  1. The Role of Stochastic Models in Interpreting the Origins of Biological Chirality

    Directory of Open Access Journals (Sweden)

    Gábor Lente

    2010-04-01

    Full Text Available This review summarizes recent stochastic modeling efforts in the theoretical research aimed at interpreting the origins of biological chirality. Stochastic kinetic models, especially those based on the continuous time discrete state approach, have great potential in modeling absolute asymmetric reactions, experimental examples of which have been reported in the past decade. An overview of the relevant mathematical background is given and several examples are presented to show how the significant numerical problems characteristic of the use of stochastic models can be overcome by non-trivial, but elementary algebra. In these stochastic models, a particulate view of matter is used rather than the concentration-based view of traditional chemical kinetics using continuous functions to describe the properties system. This has the advantage of giving adequate description of single-molecule events, which were probably important in the origin of biological chirality. The presented models can interpret and predict the random distribution of enantiomeric excess among repetitive experiments, which is the most striking feature of absolute asymmetric reactions. It is argued that the use of the stochastic kinetic approach should be much more widespread in the relevant literature.

  2. K- nuclear potentials from in-medium chirally motivated models

    Czech Academy of Sciences Publication Activity Database

    Cieplý, Aleš; Friedman, E.; Gal, A.; Gazda, Daniel; Mareš, Jiří

    2011-01-01

    Roč. 84, č. 4 (2011), 045206/1-045206/11. ISSN 0556-2813 R&D Projects: GA ČR GA202/09/1441 Institutional research plan: CEZ:AV0Z10480505 Keywords : p-wave interactions * coupled-channel model Subject RIV: BE - Theoretical Physics Impact factor: 3.308, year: 2011

  3. Two dimensional untwisted (4,4), twisted (4,4-bar) and chiral supersymmetric non linear σ-models

    International Nuclear Information System (INIS)

    D=2 N=(4,4) harmonic superspace analysis is developed. The underlying untwisted (4,4) non linear σ-models are studied. A method of deriving chiral (4,0) and (0,4) models is presented. The Lagrange superparameter leading to the constraint specifying the hyperkahler manifold structure is predicted and its relation to the matter superfield is stated in a covariant way. A known construction is recovered. We show also that (4,4) model is not a direct sum of the chiral ones. Finally a twisted (4,4-bar) model is obtained. (author). 28 refs

  4. SIMP model at NNLO in chiral perturbation theory

    DEFF Research Database (Denmark)

    Hansen, Martin Rasmus Lundquist; Langaeble, K.; Sannino, F.

    2015-01-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 to 2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By...... phenomenological constraints challenging the viability of the simplest realisation of the strongly interacting massive particle (SIMP) paradigm....

  5. Chiral condensate in the Schwinger model with Matrix Product Operators

    CERN Document Server

    Bañuls, Mari Carmen; Jansen, Karl; Saito, Hana

    2016-01-01

    Tensor network (TN) methods, in particular the Matrix Product States (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the non-zero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chir...

  6. Form factors, medium effects and vector mesons in the projected chiral soliton model

    International Nuclear Information System (INIS)

    The main goal of the present work has been the evaluation of baryonic form factors by means of the projected chiralquark-meson soliton model and various generalizations of it. In first place we have studied the Nambu-Jona-Lasinio model in the Hartree approximation for classical non-strange scalar and pseudoscalar couplings in the vacuum sector. In doing so, we have first bosonized the Lagrangian and applied three regularization schemes in order to render the theory finite. We have found that at least two physical quantities as the quark mass and the quark condensate are very sensitive to the actual scheme used. The procedures which allow to reproduce best the experimental values are both sharp cut-off methods. We have also shown that the chiral soliton model with explicit valence quarks can be considered as an approximation to the Hartree solution of the Nambu-Jona-lasinio model for quarks. In the framework of the linear chiral sigma model with quarks, sigma-, and pi-mesons we have discussed several nucleon form factors such as electromagnetic, axial and that for the pion-nucleon interaction. (orig./HSI)

  7. On Exotic Systems of Baryons in Chiral Soliton Models

    CERN Document Server

    Kopeliovich, Vladimir

    2016-01-01

    The role of zero mode quantum corrections to the energy of baryonic systems with exotic quantum numbers (strangeness) is discussed. A simple expression for the contribution depending on strange inertia is obtained in the $SU(3)-$collective coordinate quantization approach, and it is shown that this correction stabilizes the systems the stronger the greater their baryon number is. Furthemore, systems are considered which could be interpreted in the quark model language as containing additional $q\\bar q-$pairs. It is argued that a strange skyrmion crystal should have additional binding in comparison with the $SU(2)-$quantized neutron crystal.

  8. Quark contribution to the proton spin in the chiral quark-meson model

    Energy Technology Data Exchange (ETDEWEB)

    Stern, J. (Laboratoire de Physique Theorique, Universite des Sciences et de la Technologie Houari Boumediene, Alger (DZ)); Clement, G. (Departement de Physique, Ecole Normale Spuerieure, Vieux-Kouba, Alger (DZ))

    1988-12-01

    It has been argued that, to leading order in the 1/N/sub c/ expansion, very little of the spin of the proton is carried by the helicities of its constituent quarks, in accordance with the results of a recent EMC experiment. The authors investigate this question by a direct computation in the chiral quark-meson model, where the proton spin is generated by cranking a mean field hedgehog baryon. For not too small values of the quark-meson coupling constant, their results are consistent with the EMC data.

  9. Nucleon shape and electromagnetic form factors in the chiral constituent quark model

    CERN Document Server

    Dahiya, Harleen

    2010-01-01

    The electromagnetic form factors are the most fundamental quantities to describe the internal structure of the nucleon and the shape of a spatially extended particle is determined by its intrinsic quadrupole moment which can be related to the charge radii. We have calculated the electromagnetic form factors, nucleon charge radii and the intrinsic quadrupole moment of the nucleon in the framework of chiral constituent quark model. The results obtained are comparable to the latest experimental studies and also show improvement over some theoretical interpretations.

  10. $Z_b(10650)$ and $Z_b(10610)$ states in a chiral quark model

    OpenAIRE

    Li, M. T.; Wang, W L; Dong, Y. B.; Zhang, Z. Y.

    2012-01-01

    We perform a systematic study of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ systems by using effective interaction in our chiral quark model. Our results show that the interactions of $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ states are attractive, which consequently result in $B\\bar{B}^*$, $B^*\\bar{B}^*$, $D\\bar{D}^*$ and $D^*\\bar{D}^*$ bound states. The recent observed exotic-like hadrons of $Z_b(10610)$ and $Z_b(10650)$ are, therefore in our approach,...

  11. ΞΩ and Ξ*Ω dibaryons in SU(3) chiral quark model

    International Nuclear Information System (INIS)

    The binding energy of the six quark system with strangeness s = -5 is investigated by the SU(3) chiral constituent quark model. the single Ξ*Ω channel calculation with spin S = 0 and the coupled ΞΩ-Ξ*Ω channel calculation with spin S = 1 are considered. It is shown that in the spin S = 0 case, the binding energy of Ξ*Ω is ranged from 80.0 to 92.4 MeV, while in the S = 1 case, the additional Ξ*Ω channel increases the binding energy of ΞΩ to a range of 26.2-32.9 MeV

  12. Hadronic contributions to the muon anomaly in the Constituent Chiral Quark Model

    Science.gov (United States)

    Greynat, David

    2016-04-01

    The hadronic contributions to the anomalous magnetic moment of the muon which are relevant for the confrontation between theory and experiment at the present level of accuracy, are evaluated within the same framework: the constituent chiral quark model. This includes the contributions from the dominant hadronic vacuum polarization as well as from the next-to-leading order hadronic vacuum polarization, the contributions from the hadronic light-by-light scattering, and the contributions from the electroweak hadronic Zγγ vertex. They are all evaluated as a function of only one free parameter: the constituent quark mass. We also comment on the comparison between our results and other phenomenological evaluations.

  13. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  14. Scaling violation and the magnetic equation of state in chiral models

    CERN Document Server

    Almasi, Gabor Andras; Friman, Bengt; Redlich, Krzysztof

    2016-01-01

    The critical behavior of the order parameter at the chiral phase transition of strongly interacting matter and the corresponding magnetic equation of state is studied within effective models. We explore universal and non-universal structures near the critical point. These include the scaling functions, the leading corrections to scaling and the corresponding size of the critical region as well as their dependence on an external symmetry breaking field. We consider two models in the mean-field approximation, the quark-meson (QM) and the Polyakov loop extended quark-meson (PQM) models, and compare their critical properties with a purely bosonic theory, the $O(N)$ linear sigma (LS) model in the $N\\to\\infty$ limit. In these models the order parameter scaling function is found analytically using the high temperature expansion of the thermodynamic potential. The effects of a gluonic background on the non-universal scaling parameters are quantified within the PQM model.

  15. The projected chiral soliton model with vector mesons

    International Nuclear Information System (INIS)

    We investigate the solitonic sector of the massive Yang-Mills Lagrangian including σ-, π-, ω-, ρ-, A-mesons as well as valence quarks and apply it to the calculation of some baryonic properties. We perform the canonical quantization which requires the explicit elimination of the time-like components of the vector fields. A mean-field Fock state with hedgehog symmetry is defined as a product of a Slater determinant for the quarks in a 1s-state and coherent states for the mesons. We project this mean-field Fock state onto good spin and isospin by means of Peierls-Yoccoz operators and obtain, after fitting the nucleon mass, a NΔ splitting which is about 80% of the experimental value. A good description of electromagnetic and axial static properties as well as form factors of the nucleon is achieved. Furthermore, the spin content of the nucleon is analyzed in terms of the flavor singlet axial vector coupling constant giving g0A similar 0.44 independently of the input parameters. Finally, the proton-neutron hadronic mass spitting is estimated in the model giving Mn-Mp=2.38±0.55 MeV, the errors reflecting the uncertainty in the up and down quark masses. (orig.)

  16. Structures of (ΩΩ)0+ and (([1])Ω)1+ in Extended Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Zong-Ye; YU You-Wen; DAI Lian-Rong

    2003-01-01

    The structures of (ΩΩ)0+ and (([1])Ω)1+ are studied in the extended chiral SU(3) quark model in whichvector meson exchanges are included. The effect from the vector meson fields is very similar to that from the one-gluonexchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model,di-omega (ΩΩ)0+ is always deeply bound, with over one hundred MeV binding energy, and (([1])Ω)1+ 's binding energyis around 20 MeV. An analysis shows that the quark exchange effect plays a very important role for making di-omega(ΩΩ)0+ deeply bound.

  17. Path Integral Quantization of the Chiral Schwinger Model in Bosonized Form

    Science.gov (United States)

    Bracken, Paul

    The development of the Wess-Zumino action or one-cycle is reviewed from the path integral approach. This is related to the occurrence of anomalies in the theory, and generally signifies a breakdown of gauge invariance. The Jackiw-Rajaraman version of the chiral Schwinger model is studied by means of path integrals. It is shown how the model can be made gauge invariant by using a Wess-Zumino term to write a gauge invariant Lagrangian. The model is considered only in bosonized form without any reference to fermions. The constraints are determined. These components are then used to write a path integral quantization for the bosonized form of the model. Some physical quantities and information, in particular, propagators are derived from the path integral.

  18. Chiral symmetry restoration in the massive Thirring model at finite T and μ: dimensional reduction and the Coulomb gas

    International Nuclear Information System (INIS)

    We show that in certain limits the (1+1)-dimensional massive Thirring model at finite temperature T is equivalent to a one-dimensional Coulomb gas of charged particles at the same T. This equivalence is then used to explore the phase structure of the massive Thirring model. For strong coupling and T >>m (the fermion mass), the system is shown to behave as a free gas of 'molecules' (charge pairs in the Coulomb gas terminology) made of pairs of chiral condensates. This binding of chiral condensates is responsible for the restoration of chiral symmetry as T→∞. In addition, when a fermion chemical potential μ≠0 is included, the analogy with a Coulomb gas still holds with μ playing the role of a purely imaginary external electric field. For small T and μ we find a typical massive Fermi gas behaviour for the fermion density, whereas for large μ it shows chiral restoration by means of a vanishing effective fermion mass. Some similarities with the chiral properties of low-energy QCD at finite T and baryon chemical potential are discussed

  19. Chiral Quark-Meson model of N and DELTA with vector mesons

    International Nuclear Information System (INIS)

    Vector mesons rho, A1 and ω are introduced in the Chiral Quark-Meson Theory (CQMT) of N and Δ. We propose a new viewpoint for developing CQMT from QCD at the mean-field level. The SU(2) x SU(2) chiral Lagrangian incorporates universal coupling. Accordingly, rho is coupled to the conserved isospin current, A to the partially conserved axial-vector current (PCAC), and ω to the conserved baryon current. As a result the only parameter of the model not directly related to experiment is the quark-pion coupling constant. A fully self-consistent mean-field solution to the model is found for fields in the hedgehog ansatz. The vector mesons play a very important role in the system. They contribute significantly to the values of observables and produce a high-quality fit to many data. The classical stability of the system with respect to hedgehog excitations is analyzed through the use of the Quark-Meson RPA equations (QMRPA)

  20. (3+1)-dimensional light-front model with spontaneous breaking of chiral symmetry

    International Nuclear Information System (INIS)

    We investigate a (3+1)-dimensional toy model that exhibits spontaneous breakdown of chiral symmetry, both in a light-front (LF) Hamiltonian and in a Euclidean Schwinger-Dyson (SD) formulation. We show that both formulations are completely equivalent, provided the renormalization is properly done. The counterterm can be constructed explicitly by eliminating zero-mode degrees of freedom, giving rise to to an effective interaction: i.e., zero-mode dynamics, in the sense of an effective action, leads to a very simple set of modifications for the nonzero modes. We find that it is sufficient to renormalize terms that exist already in the canonical LF Hamiltonian independently. Chiral symmetry breaking is manifested via a open-quotes kinetic massclose quotes counterterm, which is eventually responsible for the mass generation of the physical fermion of the model. The vertex mass in the LF calculation must be taken to be the same as the current quark mass in the SD calculation. copyright 1997 The American Physical Society

  1. Molecular Modeling Study of Chiral Separation and Recognition Mechanism of β-Adrenergic Antagonists by Capillary Electrophoresis

    Directory of Open Access Journals (Sweden)

    Yifeng Chai

    2012-01-01

    Full Text Available Chiral separations of five β-adrenergic antagonists (propranolol, esmolol, atenolol, metoprolol, and bisoprolol were studied by capillary electrophoresis using six cyclodextrins (CDs as the chiral selectors. Carboxymethylated-β-cyclodextrin (CM-β-CD exhibited a higher enantioselectivity power compared to the other tested CDs. The influences of the concentration of CM-β-CD, buffer pH, buffer concentration, temperature, and applied voltage were investigated. The good chiral separation of five β-adrenergic antagonists was achieved using 50 mM Tris buffer at pH 4.0 containing 8 mM CM-β-CD with an applied voltage of 24 kV at 20 °C. In order to understand possible chiral recognition mechanisms of these racemates with CM-β-CD, host-guest binding procedures of CM-β-CD and these racemates were studied using the molecular docking software Autodock. The binding free energy was calculated using the Autodock semi-empirical binding free energy function. The results showed that the phenyl or naphthyl ring inserted in the hydrophobic cavity of CM-β-CD and the side chain was found to point out of the cyclodextrin rim. Hydrogen bonding between CM-β-CD and these racemates played an important role in the process of enantionseparation and a model of the hydrogen bonding interaction positions was constructed. The difference in hydrogen bonding formed with the –OH next to the chiral center of the analytes may help to increase chiral discrimination and gave rise to a bigger separation factor. In addition, the longer side chain in the hydrophobic phenyl ring of the enantiomer was not beneficial for enantioseparation and the chiral selectivity factor was found to correspond to the difference in binding free energy.

  2. Proton parton-distribution functions from the nonlocal Chiral-Quark model

    International Nuclear Information System (INIS)

    Full text: We investigate the parton distribution functions for the proton, employing the gauge invariant nonlocal chiral-quark model. By the virtue of the Drell-Yan-Levy relation, we compute the parton distribution and fragmentation (splitting) functions for the pion and kaon consistently within the present model at the low renormalization scale ∼1 GeV which are necessary for computing the fluctuations of the quarks inside the proton. All the model parameters are determined by the normalization condition for the parton distribution functions and the empirical data for the weak-decay constants for the pion and kaon. As for the initial constituent quark, we use a simple Gaussian-type distribution, developed at the nucleon rest frame. All the results are evolved to high-Q2 via the DGLAP equations, then compared with presently available experimental data. We also discuss the asymmetry for the sea-quark distributions in the proton.

  3. Some aspects of pion physics in the Nambu- and Jona-Lasinio model and chiral Lagrangians

    International Nuclear Information System (INIS)

    I discuss here to what extent the original two-flavour NJL model (which has a minimal number of adjustable parameters) reproduces pion observables. In particular, the sensitivity of the recently calculated electromagnetic mass shift to these NJL parameters is pointed out and a new way to fix them is suggested. A new set of O(1/Nc) diagrams, which are the first meson loop corrections to the RPA, is presented and its effect on the pionic Goldstone mode, its electromagnetic form factor, weak decay constant, and on the constituent quark mass m is discusseed. The relation of these NJL model results to some other chiral Lagrangians is pointed out, where ever possible. The here presented higher order diagrams indicate how one could systematically generate the next-order diagrams. It is, however, questionable whether the simplistic but mathematically manageable contact interaction of the NJL model should be maintained also in these higher order diagrams. (orig.)

  4. The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Gerhold, Philipp; Kallarackal, Jim [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-11-15

    The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling. (orig.)

  5. Are collapse models testable with quantum oscillating systems? The case of neutrinos, kaons, chiral molecules

    CERN Document Server

    Bahrami, M; Ferialdi, L; Bassi, A; Curceanu, C; Di Domenico, A; Hiesmayr, B C

    2013-01-01

    Collapse models provide a theoretical framework for understanding how classical world emerges from quantum mechanics. Their dynamics preserves (practically) quantum linearity for microscopic systems, while it becomes strongly nonlinear when moving towards macroscopic scale. The conventional approach to test collapse models is to create spatial superpositions of mesoscopic systems and then examine the loss of interference, while environmental noises are engineered carefully. Here we investigate a different approach: We study systems that naturally oscillate --creating quantum superpositions-- and thus represent a natural case-study for testing quantum linearity: neutrinos, neutral mesons, and chiral molecules. We will show how spontaneous collapses affect their oscillatory behavior, and will compare them with environmental decoherence effects. We will show that, contrary to what previously predicted, collapse models cannot be tested with neutrinos. The effect is stronger for neutral mesons, but still beyond ex...

  6. Modelling the Global Solar Corona: Filament Chirality Observations and Surface Simulations

    CERN Document Server

    Yeates, A R; Van Ballegooijen, A A

    2007-01-01

    The hemispheric pattern of solar filaments is considered in the context of the global magnetic field of the solar corona. In recent work Mackay and van Ballegooijen have shown how, for a pair of interacting magnetic bipoles, the observed chirality pattern could be explained by the dominant range of bipole tilt angles and helicity in each hemisphere. This study aims to test this earlier result through a direct comparison between theory and observations, using newly-developed simulations of the actual surface and 3D coronal magnetic fields over a 6-month period, on a global scale. In this paper we consider two key components of the study; firstly the observations of filament chirality for the sample of 255 filaments, and secondly our new simulations of the large-scale surface magnetic field. Based on a flux-transport model, these will be used as the lower boundary condition for the future 3D coronal simulations. Our technique differs significantly from those of other authors, where the coronal field is either a...

  7. Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Yogesh K. Murugesan

    2010-12-01

    Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.

  8. Phase diagram and the pseudogap state in a linear chiral homopolymer model

    Science.gov (United States)

    Sinelnikova, A.; Niemi, A. J.; Ulybyshev, M.

    2015-09-01

    The phase structure of a single self-interacting homopolymer chain is investigated in terms of a universal theoretical model, designed to describe the chain in the infrared limit of slow spatial variations. The effects of chirality are studied and compared with the influence of a short-range attractive interaction between monomers, at various ambient temperature values. In the high-temperature limit the homopolymer chain is in the self-avoiding random walk phase. At very low temperatures two different phases are possible: When short-range attractive interactions dominate over chirality, the chain collapses into a space-filling conformation. But when the attractive interactions weaken, there is a low-temperature unfolding transition and the chain becomes like a straight rod. Between the high- and low-temperature limits, several intermediate states are observed, including the θ regime and pseudogap state, which is a novel form of phase state in the context of polymer chains. Applications to polymers and proteins, in particular collagen, are suggested.

  9. A Three-Flavor Chiral Effective Model with Four Baryonic Multiplets within the Mirror Assignment

    CERN Document Server

    Olbrich, Lisa; Giacosa, Francesco; Rischke, Dirk H

    2015-01-01

    In the case of three quark flavors, (pseudo)scalar diquarks transform as antiquarks under chiral transformations. We construct four spin-1/2 baryonic multiplets from left- and right-handed quarks as well as left- and right-handed diquarks. The fact that two of these multiplets transform in a "mirror" way allows for chirally invariant mass terms. We then embed these baryonic multiplets into the Lagrangian of the so-called extended Linear Sigma Model, which features (pseudo)scalar and (axial-)vector mesons, as well as glueballs. Reducing the Lagrangian to the two-flavor case, we obtain four doublets of nucleonic states. These mix to produce four experimentally observed states with definite parity: the positive-parity nucleon $N(939)$ and Roper resonance $N(1440)$, as well as the negative-parity resonances $N(1535)$ and $N(1650)$. We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of the aforementioned states. Studying the limit of vanishing quark conden...

  10. Soft matrix elements in the non-local chiral quark model

    International Nuclear Information System (INIS)

    In presence of the hard scale amplitudes for high energy processes factorize into perturbative and soft part. While the former can be calculated within QCD, the latter has to be either obtained from experiment or treated by non-perturbative methods. One of the possibilities is to use low energy effective models, which incorporate dynamical chiral symmetry breaking, as a one of the most important phenomena at this scale. Moreover, realistic models have to take into account the non-local interactions. In the present talk we consider semibosonized Nambu-Jona-Lasinio model, where the non-locality emerges as a momentum dependence of constituent quark mass. Technically, it serves as a natural way of Lorentz covariant regulator of the loop integrals at high momenta, which is needed in order to make the calculations finite. On the other hand, momentum dependence of the mass forces us to replace standard local currents by the non-local ones. Their precise form is in general not restricted, therefore they have to be modelled. In order to demonstrate simple choice of the non-local vector current, we use the photon distribution amplitudes and an ansatz for the momentum dependence of mass allowing for analytic calculations. As an example of the more advanced applications of the non-local chiral quark model (NCQM), we consider recently proposed pion-photon transition distribution amplitudes (TDA). They are in some sense similar to the ordinary generalized parton distribution functions, however they are non diagonal in the states - instead of transition between two hadrons with different momenta we deal with the hadron and the real photon. TDA's appear as a universal non perturbative input in backward Compton scattering or hadron-antihadron annihilation into two photons. From the point of view of the NCQM's TDA's are very interesting objects to study, because they have to satisfy several properties originating from Lorentz invariance (so called polynomiality), Ward identities and

  11. Confinement, chiral symmetry breaking and continuum limits in quantum link models

    International Nuclear Information System (INIS)

    Using the example of compact U(1) lattice gauge theory we argue that quantum link models can be used to reproduce the physics of conventional Hamiltonian lattice gauge theories. In addition to the usual gauge coupling g, these models have a new parameter j which naturally cuts-off large electric flux quanta on each link while preserving exact U(1) gauge invariance. The j → ∞ limit recovers the conventional Hamiltonian. At strong couplings, the theory shows confinement and chiral symmetry breaking for all non-trivial values of j. The phase diagram of the 3+1 dimensional theory suggests that a coulomb phase is present at large but finite j. Setting g = 0, a new approach to the physics of compact U(1) gauge theory on the lattice emerges. In this case the parameter j takes over the role of the gauge coupling, and j → ∞ describes free photons

  12. SO(3) vortices and disorder in the 2d SU(2) chiral model

    CERN Document Server

    Kovács, T G

    1995-01-01

    We study the correlation function of the 2d SU(2) principal chiral model on the lattice. By rewriting the model in terms of Z(2) degrees of freedom coupled to SO(3) vortices we show that the vortices play a crucial role in disordering the correlations at low temperature. Using a series of exact transformations we prove that, if satisfied, certain inequalities between vortex correlations imply exponential fall-off of the correlation function at arbitrarily low temperatures. We also present some Monte Carlo evidence that these correlation inequalities are indeed satisfied. Our method can be easily translated to the language of 4d SU(2) gauge theory to establish the role of corresponding SO(3) monopoles in maintaining confinement at small couplings.

  13. Topological and non-topological solutions in the 3-phase model of hybrid chiral bag

    CERN Document Server

    Sveshnikov, K; Khalili, M; Fedorov, S M; Malakhov, Il.

    2002-01-01

    The 3-phase version of the hybrid chiral bag model, containing the phase of asymptotic freedom, the hadronization phase as well as the intermediate phase of constituent quarks, is proposed. For this model the self-consistent solutions, which take into account the fermion vacuum polarization effects, are found in 1+1 D. The renormalized total energy of the bag is studied as a function of its geometry and topological (baryon) number. It is shown that in the case of non-zero topological charge there exists a set of configurations being the local minima of the total energy of the bag and containing all the three phases, while in the non-topological case the minimum of the total energy of the bag corresponds to vanishing size of the phase of asymptotic freedom.

  14. Fermat Surface and Group Theory in Symmetry of Rapidity Family in Chiral Potts Model

    CERN Document Server

    Roan, Shi-shyr

    2013-01-01

    The present paper discusses various mathematical aspects about the rapidity symmetry in chiral Potts model (CPM) in the context of algebraic geometry and group theory . We re-analyze the symmetry group of a rapidity curve in $N$-state CPM, explore the universal group structure for all $N$, and further enlarge it to modular symmetries of the complete rapidity family in CPM. As will be shown in the article that all rapidity curves in $N$-state CPM constitute a Fermat hypersurface in $\\PZ^3$ of degree 2N as the natural generalization of the Fermat K3 elliptic surface $(N=2)$, we conduct a thorough algebraic geometry study about the rapidity fibration of Fermat surface and its reduced hyperelliptic fibration via techniques in algebraic surface theory. Symmetries of rapidity family in CPM and hyperelliptic family in $\\tau^{(2)}$-model are exhibited through the geometrical representation of the universal structural group in mathematics.

  15. Charge radii of octet and decuplet baryons in chiral constituent quark model

    Indian Academy of Sciences (India)

    Neetika Sharma; Harleen Dahiya

    2013-09-01

    The charge radii of the spin-$\\dfrac{1}{2}^{+}$ octet and spin-$\\dfrac{3}{2}^{+}$ decuplet baryons have been calculated in the framework of chiral constituent quark model ( CQM) using a general parametrization method (GPM). Our results are not only comparable with the latest experimental studies but also agree with other phenomenological models. The effects of (3) symmetry breaking pertaining to the strangeness contribution and GPM parameters pertaining to the one-, two- and three-quark contributions have also been investigated in detail and are found to be the key parameters in understanding the non-zero values for the neutral octet $(n, \\sum^{0}, \\Xi, )$ and decuplet $(^{0}, \\sum^{*0}, \\Xi^{*0})$ baryons.

  16. Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing

    CERN Document Server

    Mackay, Tom G

    2010-01-01

    Biomimetic nanoengineered metamaterials called chiral sculptured thin films (CSTFs) are attractive platforms for optical sensing because their porosity, morphology and optical properties can be tailored to order. Furthermore, their ability to support more than one surface-plasmon-polariton (SPP) wave at a planar interface with a metal offers functionality beyond that associated with conventional SPP--based sensors. An empirical model was constructed to describe SPP-wave propagation guided by the planar interface of a CSTF--infiltrated with a fluid which supposedly contains analytes to be detected--and a metal. The inverse Bruggeman homogenization formalism was first used to determine the nanoscale model parameters of the CSTF. These parameters then served as inputs to the forward Bruggeman homogenization formalism to determine the reference relative permittivity dyadic of the infiltrated CSTF. By solving the coresponding boundary-value problem for a modified Kretschmann configuration, the characteristics of t...

  17. A chiral soliton model constrained by gA/gV

    International Nuclear Information System (INIS)

    We present one example of a smooth chiral confinement model of the nucleon constrained (within a mean-field theory) by the measured gA/gV of the neutron. The resulting confining scalar potential for the quarks inside the nucleon has a maximum in the surface and approaches its asymptotic value from above. Low-energy properties of the nucleon (three quarks in their ground state) are not spoiled by this peculiar surface behaviour. The 'helicity argument' (only spin-carrying fields inside the nucleon contribute to gA/gV) we employed here further, sheds new light on the modelling of the hadrons in terms of hybrid skyrmions and on the description of the Nπ decay mode of excited baryon states

  18. Chiral phase transition scenarios from the vector meson extended Polyakov quark meson model

    CERN Document Server

    Kovács, Péter

    2015-01-01

    Chiral phase transition is investigated in an $SU(3)_L \\times SU(3)_R$ symmetric vector meson extended linear sigma model with additional constituent quarks and Polyakov loops (extended Polyakov quark meson model). The parameterization of the Lagrangian is done at zero temperature in a hybrid approach, where the mesons are treated at tree-level, while the constituent quarks at 1-loop level. The temperature and baryochemical potential dependence of the two assumed scalar condensates are calculated from the hybrid 1-loop level equations of states. The order of the phase transition along the $T=0$ and $\\mu_B=0$ axes are determined for various parameterization scenarios. We find that in order to have a first order phase transition at $T=0$ as a function of $\\mu_B$ a light isoscalar particle is needed.

  19. Pion-to-photon transition distribution amplitudes in the non-local chiral quark model

    CERN Document Server

    Kotko, Piotr

    2008-01-01

    We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDA's. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.

  20. Pion-to-Photon Transition Distribution Amplitudes in the Non-Local Chiral Quark Model

    Science.gov (United States)

    Kotko, P.; Praszałowicz, M.

    2009-01-01

    We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross-section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDAs. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.

  1. Topological and nontopological solutions for the chiral bag model with constituent quarks

    International Nuclear Information System (INIS)

    The three-phase version of the hybrid chiral bag model, containing the phase of asymptotic freedom, the hadronization phase as well as the intermediate phase of constituent quarks is proposed. For this model the self-consistent solutions of different topology are found in (1 + 1)D with due regard for fermion vacuum polarization effects. The renormalized total energy of the bag is studied as a function of its geometry and topological charge. It is shown that in the case of nonzero topological charge there exists a set of configurations being the local minima of the total energy of the bag and containing all the three phases, while in the nontopological case the minimum of the total energy of the bag corresponds to vanishing size of the phase of asymptotic freedom

  2. Adler function and hadronic contribution to the muon g-2 in a nonlocal chiral quark model

    International Nuclear Information System (INIS)

    The behavior of the vector Adler function at spacelike momenta is studied in the framework of a covariant chiral quark model with instantonlike quark-quark interaction. This function describes the transition between the high-energy asymptotically free region of almost massless current quarks to the low-energy hadronized regime with massive constituent quarks. The model reproduces the Adler function and V-A correlator extracted from the ALEPH and OPAL data on hadronic τ lepton decays, transformed into the Euclidean domain via dispersion relations. The leading order contribution from the hadronic part of the photon vacuum polarization to the anomalous magnetic moment of the muon, aμhvp(1), is estimated

  3. Chiral hybrid bag model with the boson field inside the bag

    International Nuclear Information System (INIS)

    The three-phase version of the hybrid chiral bag model, containing the phase of asymptotic freedom, the hadronization phase as well as the intermediate phase of constituent quarks, is proposed. For this model the self-consistent solution, which takes into account the fermion vacuum polarization effects, is found in (1+1) D. Within this solution the total energy of the bag, including the one-loop contribution from the Dirac's sea, is studied as the function of the bag geometry under condition of nonvanishing boson condensate density in the interior region. The existence and uniqueness of the ground state bag configuration, which minimizes the total energy and contains all the three phases, are shown. (author)

  4. B-decays and B- antiB mixing within a heavy-light chiral quark model

    CERN Document Server

    Eeg, J O

    2003-01-01

    We describe a recently developed heavy-light chiral quark model and show how it can be used to calculate decay amplitudes for heavy mesons. In particular, we discuss B- antiB mixing, B -> D antiD, B -> D eta' and the beta term for D* -> D gamma .

  5. Applications of chiral symmetry

    International Nuclear Information System (INIS)

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature Tχ implies that the ρ and a1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, mρ(Tχ) > mρ(0). The author conjectures that at Tχ the thermal ρ - a1, peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by Tχ. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates

  6. Chiral forces and molecular dissymmetry

    International Nuclear Information System (INIS)

    Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected

  7. $\\Delta$(1232) electroproduction amplitudes in chiral soliton models of the nucleon

    CERN Document Server

    Amoreira, L; Fiolhais, M; Amoreira, Luis; Alberto, Pedro; Fiolhais, Manuel

    2000-01-01

    The multipole amplitudes for the N - Delta electromagnetic transition are computed in the framework of the linear sigma model and the chiral chromodielectric model for small and moderate photon virtualities. The models include quark and meson degrees of freedom and the nucleon and the delta are clusters of three valence hedgehog quarks surrounded by meson clouds described by coherent states. Angular momentum and isospin projections are performed to endow model states representing the nucleon and the delta with proper quantum numbers. Recoil corrections involved in the process $\\gamma_{\\rm v} N \\to \\Delta$ are taken into account by performing linear momentum projection of the initial and final baryon states. The ratios $E2/M1$ and $C2/M1$ are in good agreement with the data in the two models, but the magnetic amplitude is better reproduced in the Linear Sigma Model. The ratios show little dependence with the model parameters. Both in the Linear Sigma Model and in the Chromodielectric Model the charged pions ar...

  8. Chiral symmetry breaking from two-loop effective potential of the holographic non-local NJL model

    International Nuclear Information System (INIS)

    We calculate the two-loop effective potential of the non-local Nambu–Jona–Lasinio (NJL) model derived from the Sakai–Sugimoto model in string theory. In contrast to the conventional NJL with 4-fermion contact interaction, the chiral symmetry was previously found to be dynamically broken for an arbitrary weak coupling at the one-loop level. As a confirmation, the approximate numerical solutions to the gap equation at the one-loop level are explicitly demonstrated for weak couplings. We then calculate the one- and two-loop contributions to the effective potential of the non-local NJL model and found that the two-loop contribution is negative. The two-loop potential for the chiral-symmetric vacuum is also negative but larger than the combined effective potential of the chiral broken vacuum at the two-loop level. The chiral symmetry breaking thus persists for the arbitrary weak coupling at the two-loop level. (paper)

  9. FDTD chiral brain tissue model for specific absorption rate determination under radiation from mobile phones at 900 and 1800 MHz

    Energy Technology Data Exchange (ETDEWEB)

    Zamorano, M; Torres-Silva, H [Departamento de Electronica, Universidad de Tarapaca, 18 de Septiembre 2222, Arica (Chile)

    2006-04-07

    A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.

  10. Disoriented chiral condensate dynamics with the SU(3) linear sigma model

    International Nuclear Information System (INIS)

    The SU(3) extension of the linear sigma model is employed to elucidate the effect of including strangeness on the formation of disoriented chiral condensates. By means of a Hartree factorization, approximate dispersion relations for the 18 scalar and pseudoscalar meson species are derived and their self-consistent solution makes it possible to trace out the thermal path of the two order parameters as well as delineate the region of instability within which spontaneous pair creation becomes possible. The results depend significantly on the employed sigma mass, with the highest values yielding the largest regions of instability. An approximate solution of the equations of motion for the order parameter in scenarios emulating uniform scaling expansions show that even with a rapid quench only the pionic modes grow unstable. Nevertheless, the rapid and oscillatory relaxation of the order parameters leads to enhanced production of both pions and (to a lesser degree) kaons. copyright 1999 The American Physical Society

  11. Analysis of the Bethe-ansatz equations of the chiral-invariant Gross-Neveu model

    International Nuclear Information System (INIS)

    The Bethe-ansatz equations of the chiral-invariant Gross-Neveu model are reduced to a simple form in which the parameters of the vacuum solution have been eliminated. The resulting system of equations involves only the rapidities of physical particles and a minimal set of complex parameters needed to distinguish the various internal symmetry states of these particles. The analysis is performed without invoking the time-honored assumption that the solutions of the Bethe-ansatz equations, in the infinite-volume limit, are comprised entirely of strings ('bound states'). Surprisingly, it is found that the correct description of the n-particle states involves no strings of length greater than two (except for special values of the momenta). (orig.)

  12. Chiral phase transition in the vector meson extended linear sigma model

    CERN Document Server

    Kovács, Péter; Wolf, György

    2015-01-01

    In the framework of an SU(3) (axial)vector meson extended linear sigma model with additional constituent quarks and Polyakov loops, we investigate the effects of (axial)vector mesons on the chiral phase transition. The parameters of the Lagrangian are set at zero temperature and we use a hybrid approach where in the effective potential the constituent quarks are treated at one-loop level and all the mesons at tree-level. We have four order parameters, two scalar condensates and two Polyakov loop variables and their temperature and baryochemical potential dependence are determined from the corresponding field equations. We also investigate the changes of the tree-level scalar meson masses in the hot and dense medium.

  13. Dimensional reduction of the chiral-continuous Gross-Neveu model

    International Nuclear Information System (INIS)

    We study the finite-temperature phase transition of the generalized Gross-Neveu model with continuous chiral symmetry in 2< d≤ 4 euclidean dimensions. The critical exponents are computed to the leading order in the 1/N expansion at both zero and finite temperatures. A dimensionally reduced theory is obtained after the introduction of thermal counterterms necessary to cancel thermal divergences that arise in the limit of high temperature. Although at zero temperature we have an infinitely and continuously degenerate vacuum state, we show that at finite temperature this degeneracy is discrete and, depending on the values of the bare parameters, we may have either total or partial restoration of symmetry. Finally we determine the universality class of the reduced theory by a simple analysis of the infrared structure of thermodynamic quantities computed using the reduced action as starting point. (author)

  14. Instantaneous Chiral Quark Model for Relativistic Mesons in a Hot and Dense Medium

    International Nuclear Information System (INIS)

    A chiral quark model with covariant instantaneous interactions is formulated using relativistic thermodynamic Green functions. The approach is applied to the description of mesons as relativistic bound state in hot and dense quark matter. The Schwinger-Dyson equation for the quark mass operator is obtained for a covariant four-point interaction kernel. The Salpeter equations for quark-antiquark bound states in a two-component relativistic quark plasma are given in the scalar-pseudoscalar as well as vector-axial-vector channels. The case of nonvanishing total momentum of bound state relative to the medium is considered. Numerical results for the meson mass spectrum and the pion decay constant at finite temperature are presented for the special case of a separable interaction which can be applied to the case of more realistic potentials. 36 refs., 7 figs

  15. Strong decays of N~*(1535) in an extended chiral quark model

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The strong decays of the N*(1535) resonance are investigated in an extended chiral quark model by including the low-lying qqqqq components in addition to the qqq component.The results show that these five-quark components in N*(1535) contribute significantly to the N*(1535)→ Nπ and N*(1535) → Nη decays.The contributions to the Nη decay come from both the lowest energy and the next-to-lowest energy five-quarks components,while the contributions to the Nπ decay come from only the latter one.Taking these contributions into account,the description for the strong decays of N*(1535) is improved,especially for the puzzling large ratio of the decays to Nη and Nπ.

  16. Spectral Properties and Chiral Symmetry Violations of (staggered) Domain Wall Fermions in the Schwinger Model

    CERN Document Server

    Hoelbling, Christian

    2016-01-01

    We follow up on a suggestion by Adams and construct explicit domain wall fermion operators with staggered kernels. We compare different domain wall formulations, namely the standard construction as well as Bori\\c{c}i's modified and Chiu's optimal construction, utilizing both Wilson and staggered kernels. In the process we generalize the staggered kernels to arbitrary even dimensions and introduce both truncated and optimal staggered domain wall fermions. Some numerical investigations are carried out in the (1+1)-dimensional setting of the Schwinger model, where we explore spectral properties of the bulk, effective and overlap Dirac operators in the free field case and on individual gauge configurations. We compare different formulations using the effective mass, deviations from normality and violations of the Ginsparg-Wilson relation as measures of chirality.

  17. Neutral kaon mixing beyond the standard model with nf=2+1 chiral fermions

    CERN Document Server

    Boyle, P A; Hudspith, R J

    2012-01-01

    We compute the hadronic matrix elements of the four-quark operators needed for the study of neutral kaon mixing beyond the Standard Model (SM). We use nf=2+1 flavours of domain-wall fermions (DWF) which exhibit good chiral-flavour symmetry. The renormalization is performed non-perturbatively through the RI-MOM scheme and our results are converted perturbatively to MSbar. The computation is performed on a single lattice spacing a=0.086 fm with a lightest unitary pion mass of 290 MeV. The various systematic errors, including the discretisation effects, are estimated and discussed. Our results confirm a previous quenched study, where large ratios of non-SM to SM matrix elements were obtained.

  18. The phase structure of a chirally invariant lattice Higgs-Yukawa model. Numerical simulations

    International Nuclear Information System (INIS)

    The phase diagram of a chirally invariant lattice Higgs-Yukawa model is explored by means of numerical simulations. The results revealing a rich phase structure are compared to analytical large Nf calculations which we performed earlier. The analytical and numerical results are in excellent agreement at large values of Nf. In the opposite case the large Nf computation still gives a good qualitative description of the phase diagram. In particular we find numerical evidence for the predicted ferrimagnetic phase at intermediate values of the Yukawa coupling constant and for the symmetric phase at strong Yukawa couplings. Emphasis is put on the finite size effects which can hide the existence of the latter symmetric phase. (orig.)

  19. The nonlocal chiral quark model and the muon g - 2 problem

    Science.gov (United States)

    Dorokhov, A. E.; Radzhabov, A. E.; Shamakhov, F. A.; Zhevlakov, A. S.

    2016-05-01

    In the first part of the review we discuss the effective nonlocal approach in the quantum field theory. It concerns primary the historical retrospective of this approach, and than we concentrate on the interaction of matter particles (fermions and bosons) with the (abelian and nonabelian) gauge fields. In the second part of the review we consider the hadronic corrections (vacuum polarization) to the anomalous magnetic moment of the muon g - 2 factor discussed within the SUf(2) nonlocal chiral quark model. This is considered in the leading and, partially, in the next-to-leading orders (the effect of the fermion propagator dressing due to pion field) of expansion in small parameter 1/ N c ( N c is the number of colors in QCD).

  20. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  1. Chiral Electronics

    OpenAIRE

    Kharzeev, Dmitri E.; Yee, Ho-Ung

    2012-01-01

    We consider the properties of electric circuits involving Weyl semimetals. The existence of the anomaly-induced chiral magnetic current in a Weyl semimetal subjected to magnetic field causes an interesting and unusual behavior of such circuits. We consider two explicit examples: i) a circuit involving the "chiral battery" and ii) a circuit that can be used as a "quantum amplifier" of magnetic field. The unique properties of these circuits stem from the chiral anomaly and may be utilized for c...

  2. Bioorganic modelling stereoselective reactions with chiral neutral ligand complexes as model systems for enzyme catalysis.

    Science.gov (United States)

    Kellogg, R M

    1982-01-01

    amateurs. A better understanding of non-covalent interactions may also provide the key to achieving also the twin goals of both speed and selectivity in bioorganic modelling. As far as enantioselectivity is concerned it is clear that this can be achieved fairly effectively by the use of relatively small, but appropriately placed, groups that force the substrate to complex in an enantioselective step with the ligand. In other words, the problem of enantioselectivity can be solved at the stage of complex forming, which is kinetically rapid. The p]roblem of rate enhancement lies in the mentarity with the transition state of the reaction being catalyzed. Again the achievement of this goal lies in ingenuity of design. Potential areas of applications of chiral crown ether (or cryptate) ligand systems in bioorganic modelling lie in, for example, the formation of carbon-carbon bonds, development of oxidative processes (i.e... PMID:7036410

  3. Two chiral preon models with SU(N) metacolor satisfying complementarity

    International Nuclear Information System (INIS)

    We have constructed two chiral preon models based on the group SU(N)/sub MC/ x SU(N+4)/sub F/ x U(1)/sub F/ (MC is gauged metacolor and F is global color flavor), the simplest (M = 0) version of a class of models SU(N)/sub MC/ x SU(N+M+4)/sub F/ x SU(M)/sub F/ x U(1)/sub F/ 2 studied by bars and Yankielowicz. In contrast with earlier work, our models satisfy the principle of complementarity between the Higgs and confining phases. In one model, N = 16 and four generations of ordinary quarks and leptons are found at the gauged SO(10) level. The second model predicts three quark-lepton families at the gauged SU(5) level without a right-handed neutrino. We also show that complementarity holds for the Mnot =0 models but that, for N = 15 or 16, the results at the gauged level are identical with the M = 0 case

  4. Sensitivity to properties of the phi-meson in the nucleon structure in the chiral soliton model

    Energy Technology Data Exchange (ETDEWEB)

    Mukhopadhyay, N.C.; Zhang, L. [Rensselaer Polytechnic Inst., Troy, NY (United States)

    1994-04-01

    The influence of the {phi}-meson on the nucleon properties in the chiral soliton model is discussed. Properties of the {phi}-meson and its photo- and electroproduction are of fundamental interest to CEBAF and its possible future extension. The quark model assigns {phi} an s{bar s} structure, thus forbidding the radiative decay {phi}{yields}{pi}{sup 0}{gamma}. Experimentally it is also found to be suppressed, yielding a branching fraction of 1.3{times}10{sup {minus}3}. However, {phi}{yields}{rho}{pi} and {phi}{yields}{pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} are not suppressed at all. Thus, it is possible to incorporate the widths of these decays into the framework of the chiral soliton model, by making use of a specific model for the compliance with OZI rule. Such a model is for example, the {omega}-{phi} mixing model. Consequence of this in the context of a chiral soliton model, which builds on the {pi}{rho}{omega}a{sub 1}(f{sub 1}) meson effective Lagrangian, is the context of this report.

  5. About 30 Years of Integrable Chiral Potts Model, Quantum Groups at Roots of Unity and Cyclic Hypergeometric Functions

    OpenAIRE

    Au-Yang, Helen; Perk, Jacques H. H.

    2016-01-01

    In this paper we discuss the integrable chiral Potts model, as it clearly relates to how we got befriended with Vaughan Jones, whose birthday we celebrated at the Qinhuangdao meeting. Remarkably we can also celebrate the birthday of the model, as it has been introduced about 30 years ago as the first solution of the star-triangle equations parametrized in terms of higher genus functions. After introducing the most general checkerboard Yang--Baxter equation, we specialize to the star-triangle ...

  6. Chiral geometry in multiple chiral doublet bands

    Science.gov (United States)

    Zhang, Hao; Chen, Qibo

    2016-02-01

    The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)

  7. Chiral superconductors

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  8. Currents and energy-momentum tensor in the chiral Schwinger model with general vector and axial-vector couplings

    International Nuclear Information System (INIS)

    Using the point-splitting procedure and the method of functional integration, we define currents in the chiral Schwinger model and compute the correlation funtions of currents with themselves and with the fundamental fields. We show that the ambiguities in the choice of the phase factor employed in the point-splitting procedure can be compensated by mixing of the currents with the gauge potential Aμ and εμνAν. A three-parameter family of conserved currents is found and the transformations they generate are identified. In order to construct the conserved energy-momentum tensor, it is necessary to allow for mixings with AμAν and gμνAαAα. We compute the two-point function of the energy-momentum tensor and the correlation functions of it with the fundamental fields. The physics of the chiral model is discussed in comparison with the vector model

  9. Chiral Crystal Growth under Grinding

    OpenAIRE

    Saito, Yukio; Hyuga, Hiroyuki

    2008-01-01

    To study the establishment of homochirality observed in the crystal growth experiment of chiral molecules from a solution under grinding, we extend the lattice gas model of crystal growth as follows. A lattice site can be occupied by a chiral molecule in R or S form, or can be empty. Molecules form homoclusters by nearest neighbor bonds. They change their chirality if they are isolated monomers in the solution. Grinding is incorporated by cutting and shafling the system randomly. It is shown ...

  10. Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not

    CERN Document Server

    Bar-Shalom, Shaouly

    2016-01-01

    We revisit models where a heavy chiral 4th generation doublet of fermions is embedded in a class of two Higgs doublets models (2HDM) with a discrete $Z_2$ symmetry, which couples the "heavy" scalar doublet only to the 4th generation fermions and the "light" one to the Standard Model (SM) fermions - the so-called 4G2HDM introduced by us several years ago. We study the constraints imposed on the 4G2HDM from direct searches of heavy fermions, from precision electroweak data (PEWD) and from the measured production and decay signals of the 125 GeV scalar, which in the 4G2HDM corresponds to the lightest CP-even scalar h. We then show that the recently reported excess in the $\\gamma\\gamma$ spectrum around 750 GeV can be accommodated by the heavy CP-even scalar of the 4G2HDM, H, resulting in a unique choice of parameter space: negligible mixing (sin\\alpha ~ O(0.001)) between the two CP-even scalars h,H and heavy 4th generation quark and lepton masses m_t',m_b' 900 GeV, respectively. Whether or not the 750 GeV \\gamma...

  11. Thimble regularization at work: From toy models to chiral random matrix theories

    Science.gov (United States)

    Di Renzo, F.; Eruzzi, G.

    2015-10-01

    We apply the Lefschetz thimble formulation of field theories to a couple of different problems. We first address the solution of a complex zero-dimensional ϕ4 theory. Although very simple, this toy model makes us appreciate a few key issues of the method. In particular, we will solve the model by a correct accounting of all the thimbles giving a contribution to the partition function and we will discuss a number of algorithmic solutions to simulate this (simple) model. We will then move to a chiral random matrix (CRM) theory. This is a somehow more realistic setting, giving us once again the chance to tackle the same couple of fundamental questions: How many thimbles contribute to the solution? How can we make sure that we correctly sample configurations on the thimble? Since the exact result is known for the observable we study (a condensate), we can verify that, in the region of parameters we studied, only one thimble contributes and that the algorithmic solution that we set up works well, despite its very crude nature. The deviation of results from phase quenched ones highlights that in a certain region of parameter space there is a quite important sign problem. In view of this, the success of our thimble approach is quite a significant one.

  12. Thimble regularization at work: from toy models to chiral random matrix theories

    CERN Document Server

    Di Renzo, Francesco

    2015-01-01

    We apply the Lefschetz thimble formulation of field theories to a couple of different problems. We first address the solution of a complex 0-dimensional phi^4 theory. Although very simple, this toy-model makes us appreciate a few key issues of the method. In particular, we will solve the model by a correct accounting of all the thimbles giving a contribution to the partition function and we will discuss a number of algorithmic solutions to simulate this (simple) model. We will then move to a chiral random matrix (CRM) theory. This is a somehow more realistic setting, giving us once again the chance to tackle the same couple of fundamental questions: how many thimbles contribute to the solution? how can we make sure that we correctly sample configurations on the thimble? Since the exact result is known for the observable we study (a condensate), we can verify that, in the region of parameters we studied, only one thimble contributes and that the algorithmic solution that we set up works well, despite its very ...

  13. An asymptotic safety scenario for gauged chiral Higgs-Yukawa models

    International Nuclear Information System (INIS)

    We investigate chiral Higgs-Yukawa models with a non-abelian gauged left-handed sector reminiscent to a sub-sector of the standard model. We discover a new weak-coupling fixed-point behavior that allows for ultraviolet complete RG trajectories which can be connected with a conventional long-range infrared behavior in the Higgs phase. This non-trivial ultraviolet behavior is characterized by asymptotic freedom in all interaction couplings, but a quasi conformal behavior in all mass-like parameters. The stable microscopic scalar potential asymptotically approaches flatness in the ultraviolet, however, with a non-vanishing minimum increasing inversely proportional to the asymptotically free gauge coupling. This gives rise to non-perturbative - though weak-coupling - threshold effects which induce ultraviolet stability along a line of fixed points. Despite the weak-coupling properties, the system exhibits non-Gaussian features which are distinctly different from its standard perturbative counterpart: e.g., on a branch of the line of fixed points, we find linear instead of quadratically running renormalization constants. Whereas the Fermi constant and the top mass are naturally of the same order of magnitude, our model generically allows for light Higgs boson masses. Realistic mass ratios are related to particular RG trajectories with a ''walking'' mid-momentum regime. (orig.)

  14. Signature and parity splitting in rotational bands and chiral bands. Double minimum potential model

    International Nuclear Information System (INIS)

    The effects of the signature and parity splitting in nuclear spectra and the properties of the chiral bands are analyzed basing on a one-dimensional Schrödinger equation with a double-minimum potential. Rotational bands in odd axial nuclei, alternating parity bands in even-even nuclei and the chiral bands in odd-odd nuclei are considered. The results obtained are discussed.

  15. Trigonometrical sums connected with the chiral Potts model, Verlinde dimension formula, two-dimensional resistor network, and number theory

    International Nuclear Information System (INIS)

    We have recently developed methods for obtaining exact two-point resistance of the complete graph minus N edges. We use these methods to obtain closed formulas of certain trigonometrical sums that arise in connection with one-dimensional lattice, in proving Scott’s conjecture on permanent of Cauchy matrix, and in the perturbative chiral Potts model. The generalized trigonometrical sums of the chiral Potts model are shown to satisfy recursion formulas that are transparent and direct, and differ from those of Gervois and Mehta. By making a change of variables in these recursion formulas, the dimension of the space of conformal blocks of SU(2) and SO(3) WZW models may be computed recursively. Our methods are then extended to compute the corner-to-corner resistance, and the Kirchhoff index of the first non-trivial two-dimensional resistor network, 2×N. Finally, we obtain new closed formulas for variant of trigonometrical sums, some of which appear in connection with number theory. -- Highlights: • Alternative derivation of certain trigonometrical sums of the chiral Potts model are given. • Generalization of these trigonometrical sums satisfy recursion formulas. • The dimension of the space of conformal blocks may be computed from these recursions. • Exact corner-to-corner resistance, the Kirchhoff index of 2×N are given

  16. Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the W jj

    Energy Technology Data Exchange (ETDEWEB)

    Ko, P.; Omura, Yuji; Yu, Chaehyun

    2012-01-01

    We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model (SM), which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the same sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.

  17. Charm-strange baryon strong decays in a chiral quark model

    CERN Document Server

    Liu, Lei-Hua; Zhong, Xian-Hui

    2012-01-01

    The strong decays of charm-strange baryons up to N=2 shell are studied in a chiral quark model. The theoretical predictions for the well determined charm-strange baryons, $\\Xi_c^*(2645)$, $\\Xi_c(2790)$ and $\\Xi_c(2815)$, are in good agreement with the experimental data. This model is also extended to analyze the strong decays of the other newly observed charm-strange baryons $\\Xi_c(2930)$, $\\Xi_c(2980)$, $\\Xi_c(3055)$, $\\Xi_c(3080)$ and $\\Xi_c(3123)$. Our predictions are given as follows. (i) $\\Xi_c(2930)$ might be the first $P$-wave excitation of $\\Xi_c'$ with $J^P=1/2^-$, favors the $|\\Xi_c'\\ ^2P_\\lambda 1/2^->$ or $|\\Xi_c'\\ ^4P_\\lambda 1/2^->$ state. (ii) $\\Xi_c(2980)$ might correspond to two overlapping $P$-wave states $|\\Xi_c'\\ ^2P_\\rho 1/2^->$ and $|\\Xi_c'\\ ^2P_\\rho 3/2^->$, respectively. The $\\Xi_c(2980)$ observed in the $\\Lambda_c^+\\bar{K}\\pi$ final state is most likely to be the $|\\Xi_c'\\ ^2P_\\rho 1/2^->$ state, while the narrower resonance with a mass $m\\simeq 2.97$ GeV observed in the $\\Xi_c^*(2645...

  18. Properties of mesons and nucleons in chiral topological models of QCD

    CERN Document Server

    Rakhimov, A

    2005-01-01

    The problem under consideration in this thesis has, actually, two aspects. The first one concerns the case when a nucleon is in free space that is in vacuum, while the second one studies a nucleon embedded into a nuclear environment. Both of these two aspects have been considered in the framework of chiral topological models of QCD. The whole content of the thesis may be divided into two main parts. In the first part the original Skyrme model with finite pion mass has been extended by inclusion of the light scalar - isoscalar sigma - meson. The Lagrangian has been further extended by explicit inclusion of sigma, rho and omega - mesons as well. In order to get a more complete picture of NN potential the appropriate meson - nucleon vertex form - factors are obtained. The second part of the thesis considers a nucleon immersed into a nuclear medium. For this purpose a medium modified Skyrme Lagrangian has been proposed. The Lagrangian describes well such well known medium effects as decreasing of nucleon mass and...

  19. A Chiral Composite Model for the 750 GeV Diphoton Resonance

    CERN Document Server

    Bai, Yang; Osborne, James; Stefanek, Ben A

    2016-01-01

    The 750 GeV diphoton resonance could be a big-pion of a new QCD-like strong dynamics with a confinement scale around a few TeV. The new fermion constituents of the big-pions, vector-like under the strong dynamics group, could be chiral under a $U(1)^\\prime$ gauge symmetry, such that their bare masses are related to the $U(1)^\\prime$-breaking and the new confinement scales. Based on a minimal GUT-motivated and gauge anomaly-free model, we have found that the 750 GeV resonance could have an observable branching ratio into $Z^\\prime \\gamma$. The $Z^\\prime$ naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson. Searching for an $\\ell^+ \\ell^- \\gamma$ 750 GeV resonance with the two lepton invariant mass away from the $Z$-boson pole can confirm our model. Furthermore, the heavier color-octet big-pion can decay into $Z^\\prime g$ and could also be discovered by the LHC Run 2.

  20. A lattice study of a chirally invariant Higgs-Yukawa model including a higher dimensional Φ{sup 6}-term

    Energy Technology Data Exchange (ETDEWEB)

    Chu, David Y.J. [National Chiao-Tung Univ., Hsinchu (China). Dept. of Electrophysics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [HISKP, Bonn (Germany); Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; Nagy, Attila [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2015-01-15

    We discuss the non-thermal phase structure of a chirally invariant Higgs-Yukawa model on the lattice in the presence of a higher dimensional Φ{sup 6}-term. For the exploration of the phase diagram we use analytical, lattice perturbative calculations of the constraint effective potential as well as numerical simulations. We also present first results of the effects of the Φ{sup 6}-term on the lower Higgs boson mass bounds.

  1. Energy-Momentum Tensor Form Factors of the Nucleon in Nuclear Matter in the Chiral Soliton Model

    Science.gov (United States)

    Yakhshiev, Ulugbek; Kim, Hyun-Chul; Schweitzer, Peter

    2013-08-01

    In the present talk, we report a recent investigation on the nucleon form factors of the energy-momentum tensor in nuclear matter, based on the in-medium modified chiral soliton model. The results in free space are in agreement with those from other approaches. We have discussed the changes of the energy-momentum tensor form factors in nuclear matter and the modification of the soliton structure due to the surrounding nuclear environment.

  2. Microscopic nuclear structure models and methods : Chiral symmetry, Wobbling motion and $\\gamma-$bands

    CERN Document Server

    Sheikh, J A; Dar, W A; Jehangir, S; Ganai, P A

    2015-01-01

    A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of $\\gamma$-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, $\\gamma$-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering $\\gamma$-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the $\\gamma$-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of $\\gamma$-bands observed up to the highest spin in Dysposium, Hafnium, Mercury and Uranium isotopes. Furthermore, several measurements related to chira...

  3. Nucleon structure functions and longitudinal spin asymmetries in the chiral quark constituent model

    CERN Document Server

    Dahiya, Harleen

    2016-01-01

    We have analysed the phenomenological dependence of the spin independent ($F_1^{p,n}$ and $F_2^{p,n}$) and the spin dependent ($g_1^{p,n}$) structure functions of the nucleon on the the Bjorken scaling variable $x$ using the unpolarized distribution functions of the quarks $q(x)$ and the polarized distribution functions of the quarks $\\Delta q(x)$ respectively. The chiral constituent quark model ($\\chi$CQM), which is known to provide a satisfactory explanation of the proton spin crisis and related issues in the nonperturbative regime, has been used to compute explicitly the valence and sea quark flavor distribution functions of $p$ and $n$. In light of the improved precision of the world data, the $p$ and $n$ longitudinal spin asymmetries ($A_1^p(x)$ and $A_1^n(x)$) have been calculated. The implication of the presence of the sea quarks has been discussed for ratio of polarized to unpolarized quark distribution functions for up and down quarks in the $p$ and $n$ $\\frac{\\Delta u^p(x)}{u^p(x)}$, $\\frac{\\Delta d...

  4. Properties of single cluster structure of $d^*(2380)$ in chiral SU(3) quark model

    CERN Document Server

    Lü, Qi-Fang; Dong, Yu-Bing; Shen, Peng-Nian; Zhang, Zong-Ye

    2016-01-01

    The structure of $d^*(2380)$ is re-studied with the single cluster structure in the chiral SU(3) quark model which has successfully been employed to explain the scattering and binding behaviors of baryonic systems. The mass and width are explicitly calculated with two types of trial wave functions. The result shows that the $(0s)^6 [6]_{orb}$ configuration is easy to convert to the configuration with the same $[6]_{orb}$ symmetry but $2\\hbar \\omega$ excitation back and forth, however, it is seldom to turn into a two-cluster configuration with a (1s) relative motion in between. The resultant mass and width are about $2394$MeV and $25$MeV, respectively, and the stable size is about $0.75fm$, which are consistent with both the results in the two-cluster configuration calculation and the data measured by the COSY collaboration. It seems that the observed $d^*$ is a six-quark dominated exotic state with a spherical shape and breath mode in the coordinate space. Moreover, if $d^*$ does have $2\\hbar \\omega$ excitati...

  5. Enantiodifferentiation of chiral baclofen by β-cyclodextrin using capillary electrophoresis: A molecular modeling approach

    Science.gov (United States)

    Suliman, FakhrEldin O.; Elbashir, Abdalla A.

    2012-07-01

    Using capillary electrophoresis baclofen (BF) enantiomers were separated only in the presence of β-cyclodextrin (βCD) as a chiral selector when added to the background electrolyte. Proton nuclear magnetic resonance and electrospray ionization mass spectrometry (ESI-MS) techniques were used to determine the structure of the BF-βCD inclusion complexes. From the MS data BF was found to form a 1:1 complex with α- and βCD, while the NMR data suggest location of the aromatic ring of BF into the cyclodextrin cavity. A molecular modeling study, using the semiempirical PM6 calculations was used to investigate the mechanism of enantiodifferentiation of BF with cyclodextrins. Optimization of the structures of the complexes by PM6 method indicated that separation is obtained in the presence of β-CD due to a large binding energy difference (ΔΔE) of 46.8 kJ mol-1 between S-BF-βCD and R-BF-βCD complexes. In the case of αCD complexes ΔΔE was 1.3 kJ mol-1 indicating poor resolution between the two enantiomers. Furthermore, molecular dynamic simulations show that the formation of more stable S-BF-βCD complex compared to R-BF-β-CD complex is primarily due to differences in intermolecular hydrogen bonding.

  6. Nucleon structure functions and longitudinal spin asymmetries in the chiral quark constituent model

    Science.gov (United States)

    Dahiya, Harleen; Randhawa, Monika

    2016-06-01

    We have analyzed the phenomenological dependence of the spin independent (F1p ,n and F2p ,n) and the spin dependent (g1p ,n) structure functions of the nucleon on the Bjorken scaling variable x using the unpolarized distribution functions of the quarks q (x ) and the polarized distribution functions of the quarks Δ q (x ) respectively. The chiral constituent quark model, which is known to provide a satisfactory explanation of the proton spin crisis and related issues in the nonperturbative regime, has been used to compute explicitly the valence and sea quark flavor distribution functions of p and n . In light of the improved precision of the world data, the p and n longitudinal spin asymmetries [A1p(x ) and A1n(x )] have been calculated. The implication of the presence of the sea quarks has been discussed for the ratio of polarized to unpolarized quark distribution functions for up and down quarks in the p and n Δ/up(x ) up(x ) , Δ/dp(x ) dp(x ) , Δ/un(x ) un(x ) , and Δ/dn(x ) dn(x ) . The ratio of the n and p structure functions Rn p(x )=F/2n(x ) F2p(x ) has also been presented. The results have been compared with the recent available experimental observations. The results on the spin sum rule have also been included and compared with data and other recent approaches.

  7. Chiral phase transitions in the linear sigma model in the Tsallis nonextensive statistics

    CERN Document Server

    Ishihara, Masamichi

    2016-01-01

    We studied chiral phase transitions in the Tsallis nonextensive statistics which has two parameters, the temperature $T$ and entropic parameter $q$. The linear sigma model was used in this study. The critical temperature, condensate, masses, and energy density were calculated under the massless free particle approximation. The critical temperature decreases as $q$ increases. The condensate at $q>1$ is smaller than that at $q=1$. The sigma mass at $q>1$ is heavier than the mass at $q=1$ at high temperature, while the sigma mass at $q>1$ is lighter than the mass at $q=1$ at low temperature. The pion mass at $q>1$ is heavier than the mass at $q=1$. The energy density increases remarkably as $q$ increases. The $q$ dependence in the case of the $q$-expectation value is weaker than that in the case of the conventional expectation value with a Tsallis distribution. The parameter $q$ should be smaller than $4/3$ from energetic point of view. The validity of the Tsallis statistics can be determined by the difference i...

  8. A Lattice Non-Perturbative Definition of an SO(10) Chiral Gauge Theory and Its Induced Standard Model

    OpenAIRE

    Wen, Xiao-Gang

    2013-01-01

    The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently. The standard model is defined perturbatively and describes all elementary particles (except gravitons) very well. However, for a long time, we do not know if we can have a non-perturbative definition of the standard model as a Hamiltonian quantum mechanical theory. Here we propose a way to give a modified standard model (with 48 two-component Weyl fermions) a non...

  9. A lattice non-perturbative definition of an SO(10) chiral gauge theory and its induced standard model

    OpenAIRE

    Wen, Xiao-Gang

    2013-01-01

    The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently. The standard model is defined perturbatively and describes all elementary particles (except gravitons) very well. However, for a long time, we do not know if we can have a non-perturbative definition of standard model as a Hamiltonian quantum mechanical theory. In this paper, we propose a way to give a modified standard model (with 48 two-component Weyl fermions)...

  10. Dynamic Chirality in Nuclei

    International Nuclear Information System (INIS)

    Chirality has recently been proposed as a novel feature of rotating nuclei [1]. Because the chiral symmetry is dichotomic, its spontaneous breaking by the axial angular momentum vector leads to doublets of closely lying rotational bands of the same parity. To investigate nuclear chirality, next to establish the existence of almost degenerate rotational bands, it is necessary to measure also other observables and compare them to the model predictions. The crucial test for the suggested nuclei as candidates to express chirality is based on precise lifetime measurements. Two lifetime experiments and theoretical approaches for the description of the experimental results will be presented. Lifetimes of exited states in 134Pr were measured [2,3] by means of the recoil distance Doppler-shift and Doppler-shift attenuation techniques. The branching ratios and the electric or magnetic character of the transitions were also investigated [3]. The experiments were performed at IReS, Strasbourg, using the EUROBALL IV spectrometer, in conjunction with the inner bismuth germanate ball and the Cologne coincidence plunger apparatus. Exited states in 134Pr were populated in the fusion-evaporation reaction 119Sn(19F, 4n)134Pr. The possible chiral interpretation of twin bands was investigated in the two-quasiparticle triaxial rotor [1] and interacting boson-fermion-fermion models [4]. Both theoretical approaches can describe the level-scheme of 134Pr. The analysis of the wave functions has shown that the possibility for the angular momenta of the proton, neutron, and core to find themselves in the favorable, almost orthogonal geometry, is present but is far from being dominant [3,5]. The structure is characterized by large β and γ fluctuations. The existence of doublets of bands in 134Pr can be attributed to weak chirality dominated by shape fluctuations. In a second experiment branching ratios and lifetimes in 136Pm were measured by means of the recoil distance Doppler-shift and

  11. The K¯N→KΞ reaction in coupled channel chiral models up to next-to-leading order

    International Nuclear Information System (INIS)

    We study the meson-baryon interaction in S-wave in the strangeness S=−1 sector using a chiral unitary approach based on a next-to-leading order chiral SU(3) Lagrangian. We fit our model to the large set of experimental data in different two-body channels. We pay particular attention to the K¯N→KΞ reaction, where the effect of the next-to-leading order terms in the Lagrangian are sufficiently large to be observed, since at tree level the cross section of this reaction is zero. For these channels we improve our approach by phenomenologically taking into account effects of the high spin hyperonic resonances

  12. Torons, chiral symmetry breaking and U(1) problem in σ-model and gauge theories. Part 2

    International Nuclear Information System (INIS)

    The main point of this work is the physical consenquences of the existence of fractional charge in the σ-models and espesially in the physically interesting theory QCD. It is shown that the corresponding fluctuations ensure spontaneous breaking of the chiral symmetry and give a nonzero contribution to the chiral condensate. Toron solution is determined on the manifold with boundary. In this case many questions arise such as: global boundary conditions, the stability of the solution, self-adjointness of Dirac operator, single-valuedness of the physical values and so on. These questions are interconnected and turn out to be self cobsistent only for the special choice of the topological number (Q=1/2 for SU(2)). It is shown that in the Dirac's spectrum of the quarks the gap between zero and the continuum is absent. 50 refs.; 10 figs

  13. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  14. An explicit construction of the quantum group in chiral WZW-models

    CERN Document Server

    Gaberdiel, M R

    1994-01-01

    It is shown how a chiral Wess-Zumino-Witten theory with globally defined vertex operators and a one-to-one correspondence between fields and states can be constructed. The Hilbert space of this theory is the direct sum of tensor products of representations of the chiral algebra and finite dimensional internal parameter spaces. On this enlarged space there exists a natural action of Drinfeld's quasi quantum group A_{g,t}, which commutes with the action of the chiral algebra and plays the r\\^{o}le of an internal symmetry algebra. The R matrix describes the braiding of the chiral vertex operators and the coassociator \\Phi gives rise to a modification of the duality property. For generic q the quasi quantum group is isomorphic to the coassociative quantum group U_{q}(g) and thus the duality property of the chiral theory can be restored. This construction has to be modified for the physically relevant case of integer level. The quantum group has to be replaced by the corresponding truncated quasi quantum group, wh...

  15. CHIRAL SYMMETRIES IN NUCLEAR PHYSICS

    International Nuclear Information System (INIS)

    The theoretical concepts of a chirally symmetric meson field theory are reviewed and an overview of the most relevant applications in nuclear physics is given. This includes a unified description of the vacuum properties of hadrons, finite nuclei and hot, dense and strange nuclear matter in an extended chiral SU(3)L/SU(3)R σ-ω model

  16. Quarkyonic Chiral Spirals

    CERN Document Server

    Kojo, Toru; McLerran, Larry; Pisarski, Robert D

    2009-01-01

    We consider the formation of chiral density waves in Quarkyonic matter, which is a phase where cold, dense quarks experience confining forces. We model confinement following Gribov and Zwanziger, taking the gluon propagator, in Coulomb gauge and momentum space, as 1/(p^2)^2. We assume that the number of colors, N, is large, and that the quark chemical potential, mu, is much larger than renormalization mass scale, Lambda_QCD. To leading order in 1/N and Lambda_QCD, a gauge theory with Nf flavors of massless quarks in 3+1 dimensions naturally reduces to a gauge theory in 1+1 dimensions, with an enlarged flavor symmetry of SU(2Nf). Through an anomalous chiral rotation, in two dimensions a Fermi sea of massless quarks maps directly onto the corresponding theory in vacuum. A chiral condensate forms locally, and varies with the spatial position, z, as . Following Schon and Thies, we term this two dimensional pion condensate a (Quarkyonic) chiral spiral. Massive quarks also exhibit chiral spirals, with the magnitude...

  17. Chiral Quirkonium Decays

    CERN Document Server

    Fok, R

    2011-01-01

    We calculate the two-body decay rates of "quirkonium" states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)_ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the Standard Model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vector-like representation. The differences in the dominant decay channels between "chiral quirkonia" versus "vector-like quirkonia" are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, t\\bar{t}, t\\bar{b} / b\\bar{t}, and gamma+H, which never dominate for vector-like quirkonia. Additionally, the channels WW, WZ, ZZ, and W+gamma, are shared among both chiral and vector-like quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vector-like quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the ...

  18. Chiral quirkonium decays

    International Nuclear Information System (INIS)

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between 'chiral quirkonia' versus 'vectorlike quirkonia' are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, tt, tb/bt, and γH, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and Wγ, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  19. A Conformational Model for MTPA Esters of Chiral N-(2-Hydroxyalkylacrylamides

    Directory of Open Access Journals (Sweden)

    Eduardo M. Rustoy

    2014-01-01

    Full Text Available The absolute stereochemistry of novel chiral N-(2-hydroxylalkylacrylamides prepared by a lipase-catalyzed resolution was successfully determined by 1H NMR of their MTPA esters. The method was validated for this particular case by computational experiments.

  20. Predictability of enantiomeric chromatographic behavior on various chiral stationary phases using typical reversed phase modeling software.

    Science.gov (United States)

    Wagdy, Hebatallah A; Hanafi, Rasha S; El-Nashar, Rasha M; Aboul-Enein, Hassan Y

    2013-09-01

    Pharmaceutical companies worldwide tend to apply chiral chromatographic separation techniques in their mass production strategy rather than asymmetric synthesis. The present work aims to investigate the predictability of chromatographic behavior of enantiomers using DryLab HPLC method development software, which is typically used to predict the effect of changing various chromatographic parameters on resolution in the reversed phase mode. Three different types of chiral stationary phases were tested for predictability: macrocyclic antibiotics-based columns (Chirobiotic V and T), polysaccharide-based chiral column (Chiralpak AD-RH), and protein-based chiral column (Ultron ES-OVM). Preliminary basic runs were implemented, then exported to DryLab after peak tracking was accomplished. Prediction of the effect of % organic mobile phase on separation was possible for separations on Chirobiotic V for several probes: racemic propranolol with 97.80% accuracy; mixture of racemates of propranolol and terbutaline sulphate, as well as, racemates of propranolol and salbutamol sulphate with average 90.46% accuracy for the effect of percent organic mobile phase and average 98.39% for the effect of pH; and racemic warfarin with 93.45% accuracy for the effect of percent organic mobile phase and average 99.64% for the effect of pH. It can be concluded that Chirobiotic V reversed phase retention mechanism follows the solvophobic theory. PMID:23775938

  1. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.

    Science.gov (United States)

    Sunoj, Raghavan B

    2016-05-17

    In asymmetric catalysis, a chiral catalyst bearing chiral center(s) is employed to impart chirality to developing stereogenic center(s). A rich and diverse set of chiral catalysts is now available in the repertoire of synthetic organic chemistry. The most recent trends point to the emergence of axially chiral catalysts based on binaphthyl motifs, in particular, BINOL-derived phosphoric acids and phosphoramidites. More fascinating ideas took shape in the form of cooperative multicatalysis wherein organo- and transition-metal catalysts are made to work in concert. At the heart of all such manifestations of asymmetric catalysis, classical or contemporary, is the stereodetermining transition state, which holds a perennial control over the stereochemical outcome of the catalytic process. Delving one step deeper, one would find that the origin of the stereoselectivity is delicately dependent on the relative stabilization of one transition state, responsible for the formation of the predominant stereoisomer, over the other transition state for the minor stereoisomer. The most frequently used working hypothesis to rationalize the experimentally observed stereoselectivity places an undue emphasis on steric factors and tends to regard the same as the origin of facial discrimination between the prochiral faces of the reacting partners. In light of the increasing number of asymmetric catalysts that rely on hydrogen bonding as well as other weak non-covalent interactions, it is important to take cognizance of the involvement of such interactions in the sterocontrolling transition states. Modern density functional theories offer a pragmatic and effective way to capture non-covalent interactions in transition states. Aided by the availability of such improved computational tools, it is quite timely that the molecular origin of stereoselectivity is subjected to more intelligible analysis. In this Account, we describe interesting molecular insights into the stereocontrolling

  2. Punctuated Chirality

    Science.gov (United States)

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-12-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  3. Punctuated Chirality

    CERN Document Server

    Gleiser, Marcelo; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  4. Quarks, baryons and chiral symmetry

    CERN Document Server

    Hosaka, Atsushi

    2001-01-01

    This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w

  5. Chiral perturbation theory

    International Nuclear Information System (INIS)

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  6. Spectral study of a chiral limit without chiral condensate

    OpenAIRE

    Bietenholz, Wolfgang; Hip, Ivan

    2009-01-01

    Random Matrix Theory (RMT) has elaborated successful predictions for Dirac spectra in field theoretical models. However, a generic assumption by RMT has been a non-vanishing chiral condensate $\\Sigma$ in the chiral limit. Here we consider the 2-flavour Schwinger model, where this assumption does not hold. We simulated this model with dynamical overlap hypercube fermions, and entered terra incognita by analysing this Dirac spectrum. The usual RMT prediction for the unfolded level spacing distr...

  7. Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities. PMID:17597467

  8. Chiral morphing

    CERN Document Server

    Chang, N P

    1994-01-01

    Chiral symmetry undergoes a metamorphosis at T.sub(c). For T < T.sub(c), the usual Noether charge, \\Qa, is dynamically broken by the vacuum. Above T.sub(c), chiral symmetry undergoes a subtle change, and the Noether charge \\underline{{\\em morphs}} into \\Qbeta, with the thermal vacuum now becoming invariant under \\Qbeta. This vacuum is however not invariant under the old \\Qa transformations. As a result, the pion remains strictly massless at high T. The pion propagates in the early universe with a halo. New order parameters are proposed to probe the structure of the new thermal vacuum.

  9. Chiral transparency

    International Nuclear Information System (INIS)

    Color transparency is the vanishing of initial and final state interactions, predicted by QCD to occur in high momentum transfer quasielastic nuclear reactions. For specific reactions involving nucleons, the initial and final state interactions are expected to be dominated by exchanges of pions. We argue that these interactions are also suppressed in high momentum transfer nuclear quasielastic reactions; this is open-quotes chiral transparency.close quotes We show that studies of the e3He→e'Δ++nn reaction could reveal the influence of chiral transparency. copyright 1997 The American Physical Society

  10. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  11. On the p4-corrections to K → 3π decay amplitudes in nonlinear and linear chiral models

    International Nuclear Information System (INIS)

    The calculations of isotopic amplitudes and their results for the direct CP-violating charge asymmetry in K± → 3π decays within the nonlinear and linear (σ-model) chiral Lagrangian approach are compared with each other. It is shown, that the latter, taking into account intermediate scalar resonances, does not reproduce the p4-corrections of the nonlinear approach introduced by Gasser and Leutwyler, being saturated mainly by vector resonance exchange. The resulting differences concerning the CP violation effect are traced in some detail. (author). 31 refs., 1 tab

  12. Hypernucleus-16O in the density-dependent Hartree approach based on the chiralmodel

    International Nuclear Information System (INIS)

    A relativistic density-dependent interaction has been used to study hypernucleus 16O. The density-dependent coupling constants of the relativistic effective Hartree-Lagrangian are obtained from the relativistic Brueckner-Bethe-Goldstone results of nuclear matter in the chiralmodel. With these density-dependent coupling constants, the bound states and the single-particle energy spectra of the hypernuclei Λ16O and Σ16O are obtained. The theoretical results of Λ16O are in agreement with the experimental data fairly well

  13. Synthesis, molecular modeling, and biological evaluation of novel chiral thiosemicarbazone derivatives as potent anticancer agents.

    Science.gov (United States)

    Taşdemir, Demet; Karaküçük-İyidoğan, Ayşegül; Ulaşli, Mustafa; Taşkin-Tok, Tuğba; Oruç-Emre, Emİne Elçİn; Bayram, Hasan

    2015-02-01

    A series of new chiral thiosemicarbazones derived from homochiral amines in both enantiomeric forms were synthesized and evaluated for their in vitro antiproliferative activity against A549 (human alveolar adenocarcinoma), MCF-7 (human breast adenocarcinoma), HeLa (human cervical adenocarcinoma), and HGC-27 (human stomach carcinoma) cell lines. Some of compounds showed inhibitory activities on the growth of cancer cell lines. Especially, compound exhibited the most potent activity (IC50 4.6 μM) against HGC-27 as compared with the reference compound, sindaxel (IC50 10.3 μM), and could be used as a lead compound to search new chiral thiosemicarbazone derivatives as antiproliferative agents. PMID:25399965

  14. Three-dimensional imaging of the nucleon in momentum space

    CERN Document Server

    Lorce, Cedric

    2011-01-01

    Transverse-momentum dependent parton distributions (TMDs) are studied in the framework of quark models. Results for the six T-even TMDs are obtained from the overlap of three-quark light-cone wave functions, using both the chiral quark-soliton model and a light-cone constituent quark model. Furthermore, quark model relations among TMDs are reviewed and their physical origin is discussed in terms of rotational-symmetry properties of the nucleon state in its rest frame.

  15. Lattice simulation of the SU(2) chiral model at zero and non-zero pion density

    CERN Document Server

    Rindlisbacher, Tobias

    2015-01-01

    We propose a flux representation based lattice formulation of the partition function corresponding to the SU(2) principal chiral Lagrangian, including a chemical potential and scalar/pseudo-scalar source terms. Lattice simulations are then used to obtain non-perturbative properties of the theory, in particular its mass spectrum at zero and non-zero pion density. We also sketch a method to efficiently measure general one- and two-point functions during the worm updates.

  16. Structures of(ΩΩ)0+and([1]Ω)1+in Extended Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    ZHANGZong-Ye; YUYou-Wen; DAILian-Rong

    2003-01-01

    The structures of (ΩΩ)0+ and ([1]Ω)1+ are studied in the extended chiral SU(3) quark model in which vector meson exchanges are included. The effect from the vector meson fields is very similar to that from the one-gluon exchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model,di-omega (ΩΩ)0+ is always deeply bound, with over one hundred MeV binding energy, and ([1]Ω)1+ 's binding energy is around 20 MeV. An analysis shows that the quark exchange effect plays a very important role for making di-omega (ΩΩ)0+ deeply bound.

  17. The η′N interaction from a chiral effective model and η′-N bound state

    International Nuclear Information System (INIS)

    The η′ mass reduction in the nuclear medium is expected owing to the degeneracy of the pseudoscalar-singlet and octet mesons in the restoration of the spontaneous chiral symmetry breaking. In this study, we investigate the η′N 2body interaction, which is the fundamental interaction of the in-medium η′ properties, using the linear sigma model as a chiral effective model. The η′N interaction in the linear sigma model comes from the scalar meson exchange with U A(1) symmetry effect and is found to be fairly strong attraction. The transition amplitude of η′N to the ηN channel is relatively small compared to that of elastic channel. From the analysis of the η′N 2body system, we find a η′N bound state with the binding energy 12.3-3.3iMeV. We expect that this strongly attractive two body interaction leads to a deep and attractive optical potential

  18. Two-loop renormalization group restrictions on the standard model and the fourth chiral family

    International Nuclear Information System (INIS)

    In the framework of the two-loop renormalization group, the restrictions on the Higgs mass from the electroweak vacuum stability and from the absence of the strong coupling are refined, while the more precise value of the top mass is taken into account. When the SM cutoff is equal to the Planck scale, the Higgs mass must be MH=(161.3±20.6)+4-10 GeV and MH≥140.7+10-10 GeV, where the MH corridor is the theoretical one and the errors are due to the top-mass uncertainty. The SM two-loop β functions are generalized to the case with massive neutrinos from extra families. The requirement of self-consistency of the perturbative SM as an underlying theory up to the Planck scale excludes a fourth chiral family. Under the precision-experiment restriction MH≤215 GeV, the fourth chiral family, if alone, is excluded even when the SM is regarded as an effective theory. Nevertheless a pair of chiral families constituting a vector-like one could exist. (orig.)

  19. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    International Nuclear Information System (INIS)

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  20. The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Kallarackal, Jim

    2011-04-28

    Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the

  1. Interweaving Chiral Spirals

    CERN Document Server

    Kojo, Toru; Fukushima, Kenji; McLerran, Larry; Pisarski, Robert D

    2011-01-01

    We elaborate how to construct the interweaving chiral spirals in (2+1) dimensions, that is defined as a superposition of differently oriented chiral spirals. We divide the two-dimensional Fermi sea into distinct wedges characterized by the opening angle 2 Theta and the depth Q \\simeq pF, where pF is the Fermi momentum. Each wedge earns an energy gain by forming a single chiral spiral. The optimal values for Theta and Q are chosen by the balance between this energy gain and the energy costs from the deformed Fermi surface (dominant at large Theta) and patch-patch interactions (dominant at small Theta). We estimate these energy gains and costs by means of the expansions in terms of 1/Nc, Lambda_QCD/Q, and Theta using a non-local four-Fermi interaction model: At small 1/Nc the mass gap (chiral condensate) is large enough and the interaction among quarks and the condensate is local in momentum space thanks to the form factor in our non-local model. The fact that patch-patch interactions lie only near the patch bo...

  2. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  3. Fluctuations and the Phase Transition in a Chiral Model with Polyakov Loops%引入Polyakov环路的手征模型中的涨落与相变

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We explore the NJL model with Polyakov loops for a system of three colors and two flavors within the mean-field approximation, where both chiral symmetry and confinement are taken into account. We focus on the phase structure of the model and study the chiral and Polyakov loop susceptibilities.

  4. Punctuated Chirality

    OpenAIRE

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high int...

  5. Parametrization of a nonlocal chiral quark model in the instantaneous three-flavor case. Basic formulas and tables

    International Nuclear Information System (INIS)

    We describe the basic formulation of the parametrization scheme for the instantaneous nonlocal chiral quark model in the three-flavor case. We choose to discuss the Gaussian, Lorentzian-type, Woods-Saxon and sharp cutoff (NJL) functional forms of the momentum dependence for the form factor of the separable interaction. The four parameters: light and strange quark masses, coupling strength (GS) and range of the interaction (Λ) have been fixed by the same phenomenological inputs: pion and kaon masses, pion decay constant and light quark mass in vacuum. The Woods-Saxon and Lorentzian-type form factors are suitable for an interpolation between sharp cutoff and soft momentum dependence. Results are tabulated for applications in models of hadron structure and quark matter at finite temperatures and chemical potentials where separable models have been proven successfully

  6. Chiral streamers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Dandan; Cao, Xin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, Xinpei, E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Comonwealth Scientific and Industrial Research Organization, P.O. Box 218, Sydney, New South Wales 2070 (Australia)

    2015-10-15

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  7. Chiral streamers

    Science.gov (United States)

    Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya Ken

    2015-10-01

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  8. Pion- and strangeness-baryon $\\sigma$ terms in the extended chiral constituent quark model

    OpenAIRE

    An, C. S.; Saghai, B.

    2014-01-01

    Within an extended chiral constituent quark formalism, we investigate contributions from all possible five-quark components in the octet baryons to the pion-baryon ($\\sigma_{\\pi B}$) and strangeness-baryon ($\\sigma_{s B}$) sigma terms; $B \\equiv N,~\\Lambda,~\\Sigma,~\\Xi$. The probabilities of the quark-antiquark components in the ground-state baryon octet wave functions are calculated by taking the baryons to be admixtures of three- and five-quark components, with the relevant transitions hand...

  9. QCD chiral symmetry restoration with a large number of quarks in a model with a confining propagator and dynamically massive gluons

    OpenAIRE

    Capdevilla, R. M.; Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil); Natale, A. A.

    2015-01-01

    Considering a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass, we verify that the chiral symmetry is restored for a large number of quarks $n_{f}\\approx 7-13$. We discuss the uncertainty in the results, that is related to the determination of the string tension ($K_{F}$), appearing in the confining propagator, and the effective gluon mass ($m_{g}$) at large $n_{f}$.

  10. Field induced spin chirality and chirality switching in magnetic multilayers

    International Nuclear Information System (INIS)

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman–Kittel–Kasuya–Yosida and the Dsyaloshinsky–Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness. - Highlights: • Field-induced spin chirality in magnetic multilayers is explained. • The roles of the RKKY, the DM and the Zeeman interactions are clarified. • Theoretical analysis of the chirality factor is in agreement with experimental data

  11. Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics

    CERN Document Server

    Ruggieri, M; Chernodub, M

    2016-01-01

    We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.

  12. Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model

    International Nuclear Information System (INIS)

    The third moment d2 of the twist-3 part of the nucleon spin structure function g2 is generalized to arbitrary momentum transfer Q2 and is evaluated in heavy baryon chiral perturbation theory (HBChPT) up to order Ο(p4) and in a unitary isobar model (MAID). We show how to link d2 as well as higher moments of the nucleon spin structure functions g1 and g2 to nucleon spin polarizabilities. We compare our results with the most recent experimental data, and find a good description of these available data within the unitary isobar model. We proceed to extract the twist-4 matrix element f2 which appears in the 1/Q2 suppressed term in the twist expansion of the spin structure function g1 for proton and neutron

  13. The superfield method for the calculation of effective potentials applied to chiral superfields: Wess-Zumino and O'Raifeartaigh models

    International Nuclear Information System (INIS)

    The superfield method is applied to the effective potential calculation in supersymmetric models. The Weinberg and Jackiw methods are discussed in the context of supersymmetric field theories, highlighting the greater simplicity obtained when the Feynman super diagrams are used. The chiral superfield propagators are derived and their relations with components field are commented. (L.C.J.A.)

  14. Chiral Symmetry Restoration from a Boundary

    CERN Document Server

    Tiburzi, B C

    2013-01-01

    The boundary of a manifold can alter the phase of a theory in the bulk. We explore the possibility of a boundary-induced phase transition for the chiral symmetry of QCD. In particular, we investigate the consequences of imposing homogeneous Dirichlet boundary conditions on the quark fields. Such boundary conditions are employed on occasion in lattice gauge theory computations, for example, when including external electromagnetic fields, or when computing quark propagators with a reduced temporal extent. Homogeneous Dirichlet boundary conditions force the chiral condensate to vanish at the boundary, and thereby obstruct the spontaneous breaking of chiral symmetry in the bulk. As the restoration of chiral symmetry due to a boundary is a non-perturbative phenomenon, we utilize the sigma model to exemplify the issues. Using this model, we find that chiral symmetry is completely restored if the length of the compact direction is less than 2.0 fm. For lengths greater than about 4 fm, an approximately uniform chiral...

  15. Chirality and protein folding

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinska, Joanna I; Cieplak, Marek [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland)

    2005-05-11

    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.

  16. Chirality and protein folding

    Science.gov (United States)

    Kwiecinska, Joanna I.; Cieplak, Marek

    2005-05-01

    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.

  17. Implications of Local Chiral Symmetry Breaking

    CERN Document Server

    La, H S

    2003-01-01

    The spontaneous symmetry breaking of a local chiral symmetry to its diagonal vector symmetry naturally realizes a complete geometrical structure more general than that of Yang-Mills (YM) theory, rather similar to that of gravity. A good example is the Quantum Chromodynamics (QCD) with respect to the Chiral Color model. Also, a new anomaly-free particle content for a Chiral Color model is introduced: the Chiral Color can be realized without introducing whole new generations of quarks and leptons, but by simply enlarging each generation with new exotic fermions.

  18. A Chiral Granular Gas

    Science.gov (United States)

    Tsai, J.-C.; Ye, Fangfu; Rodriguez, Juan; Gollub, J. P.; Lubensky, T. C.

    2005-05-01

    Inspired by rattleback toys, we created small chiral wires that rotate in a preferred direction on a vertically oscillating platform and quantified their motion with experiment and simulation. We demonstrate experimentally that angular momentum of rotation about particle centers of mass is converted to collective angular momentum of center-of-mass motion in a granular gas of these wires, and we introduce a continuum model that explains our observations.

  19. Chiral Particle Separation by a Nonchiral Microlattice

    Science.gov (United States)

    Bogunovic, Lukas; Fliedner, Marc; Eichhorn, Ralf; Wegener, Sonja; Regtmeier, Jan; Anselmetti, Dario; Reimann, Peter

    2012-09-01

    We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Microparticles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relative to the fluid flow.

  20. Dynamical quark loop light-by-light contribution to muon g-2 within the nonlocal chiral quark model

    International Nuclear Information System (INIS)

    The hadronic corrections to the muon anomalous magnetic moment aμ, due to the gauge-invariant set of diagrams with dynamical quark loop light-by-light scattering insertions, are calculated in the framework of the nonlocal chiral quark model. These results complete calculations of all hadronic light-by-light scattering contributions to aμ in the leading order in the 1/Nc expansion. The result for the quark loop contribution is aμHLbL,Loop = (11.0 ± 0.9) @ x 10-10, and the total result is aμHLbL,NχQM = (16.8 ± 1.2) @ x 10-10. (orig.)

  1. Sensitivity of predictions in an effective model: Application to the chiral critical end point position in the Nambu-Jona-Lasinio model

    International Nuclear Information System (INIS)

    The measurement of the position of the chiral critical end point (CEP) in the QCD phase diagram is under debate. While it is possible to predict its position by using effective models specifically built to reproduce some of the features of the underlying theory (QCD), the quality of the predictions (e.g., the CEP position) obtained by such effective models, depends on whether solving the model equations constitute a well- or ill-posed inverse problem. Considering these predictions as being inverse problems provides tools to evaluate if the problem is ill-conditioned, meaning that infinitesimal variations of the inputs of the model can cause comparatively large variations of the predictions. If it is ill-conditioned, it has major consequences because of finite variations that could come from experimental and/or theoretical errors. In the following, we shall apply such a reasoning on the predictions of a particular Nambu-Jona-Lasinio model within the mean field + ring approximations, with special attention to the prediction of the chiral CEP position in the (T-μ) plane. We find that the problem is ill-conditioned (i.e. very sensitive to input variations) for the T-coordinate of the CEP, whereas, it is well-posed for the μ-coordinate of the CEP. As a consequence, when the chiral condensate varies in a 10MeV range, μ CEP varies far less. As an illustration to understand how problematic this could be, we show that the main consequence when taking into account finite variation of the inputs, is that the existence of the CEP itself cannot be predicted anymore: for a deviation as low as 0.6% with respect to vacuum phenomenology (well within the estimation of the first correction to the ring approximation) the CEP may or may not exist. (orig.)

  2. Sensitivity of predictions in an effective model: Application to the chiral critical end point position in the Nambu-Jona-Lasinio model

    Energy Technology Data Exchange (ETDEWEB)

    Biguet, Alexandre; Hansen, Hubert; Brugiere, Timothee [Universite Claude Bernard de Lyon, Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Villeurbanne Cedex (France); Costa, Pedro [Universidade de Coimbra, Centro de Fisica Computacional, Departamento de Fisica, Coimbra (Portugal); Borgnat, Pierre [CNRS, l' Ecole normale superieure de Lyon, Laboratoire de Physique, Lyon Cedex 07 (France)

    2015-09-15

    The measurement of the position of the chiral critical end point (CEP) in the QCD phase diagram is under debate. While it is possible to predict its position by using effective models specifically built to reproduce some of the features of the underlying theory (QCD), the quality of the predictions (e.g., the CEP position) obtained by such effective models, depends on whether solving the model equations constitute a well- or ill-posed inverse problem. Considering these predictions as being inverse problems provides tools to evaluate if the problem is ill-conditioned, meaning that infinitesimal variations of the inputs of the model can cause comparatively large variations of the predictions. If it is ill-conditioned, it has major consequences because of finite variations that could come from experimental and/or theoretical errors. In the following, we shall apply such a reasoning on the predictions of a particular Nambu-Jona-Lasinio model within the mean field + ring approximations, with special attention to the prediction of the chiral CEP position in the (T-μ) plane. We find that the problem is ill-conditioned (i.e. very sensitive to input variations) for the T-coordinate of the CEP, whereas, it is well-posed for the μ-coordinate of the CEP. As a consequence, when the chiral condensate varies in a 10MeV range, μ {sub CEP} varies far less. As an illustration to understand how problematic this could be, we show that the main consequence when taking into account finite variation of the inputs, is that the existence of the CEP itself cannot be predicted anymore: for a deviation as low as 0.6% with respect to vacuum phenomenology (well within the estimation of the first correction to the ring approximation) the CEP may or may not exist. (orig.)

  3. Stable Pentaquarks from Strange Chiral Multiplets

    Energy Technology Data Exchange (ETDEWEB)

    Silas Beane

    2004-12-01

    The assumption of strong diquark correlations in the QCD spectrum suggests flavor multiplets of hadrons that are degenerate in the chiral limit. Generally it would be unnatural for there to be degeneracy in the hadron spectrum that is not protected by a QCD symmetry. Here we show--for pentaquarks constructed from diquarks--that these degeneracies can be naturally protected by the full chiral symmetry of QCD. The resulting chiral multiplet structure recovers the ideally-mixed pentaquark mass spectrum of the diquark model, and interestingly, requires that the axial couplings of the pentaquarks to states outside the degenerate multiplets vanish in the chiral limit. This result suggests that if these hadrons exist, they are stable in the chiral limit and therefore have widths that scale as the fourth power of the kaon mass over the chiral symmetry breaking scale. Natural-size widths are of order a few MeV.

  4. Asymmetric synthesis using chiral-encoded metal.

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-01-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity. PMID:27562028

  5. Chirally-modified metal surfaces: energetics of interaction with chiral molecules.

    Science.gov (United States)

    Dementyev, Petr; Peter, Matthias; Adamovsky, Sergey; Schauermann, Swetlana

    2015-09-21

    Imparting chirality to non-chiral metal surfaces by adsorption of chiral modifiers is a highly promising route to create effective heterogeneously catalyzed processes for the production of enantiopure pharmaceuticals. One of the major current challenges in heterogeneous chiral catalysis is the fundamental-level understanding of how such chirally-modified surfaces interact with chiral and prochiral molecules to induce their enantioselective transformations. Herein we report the first direct calorimetric measurement of the adsorption energy of chiral molecules onto well-defined chirally-modified surfaces. Two model modifiers 1-(1-naphthyl)ethylamine and 2-methylbutanoic acid were used to impart chirality to Pt(111) and their interaction with propylene oxide was investigated by means of single-crystal adsorption calorimetry. Differential adsorption energies and absolute surface uptakes were obtained for the R- and S-enantiomers of propylene oxide under clean ultrahigh vacuum conditions. Two types of adsorption behavior were observed for different chiral modifiers, pointing to different mechanisms of imparting chirality to metal surfaces. The results are analyzed and discussed in view of previously reported stereoselectivity of adsorption processes. PMID:26256836

  6. Chiral mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  7. Chiral separation of asenapine enantiomers by capillary electrophoresis and characterization of cyclodextrin complexes by NMR spectroscopy, mass spectrometry and molecular modeling.

    Science.gov (United States)

    Szabó, Zoltán-István; Tóth, Gergő; Völgyi, Gergely; Komjáti, Balázs; Hancu, Gabriel; Szente, Lajos; Sohajda, Tamás; Béni, Szabolcs; Muntean, Daniela-Lucia; Noszál, Béla

    2016-01-01

    The enantiomers of asenapine maleate (ASN), a novel antipsychotic against schizophrenia and mania with bipolar I disorder have been separated by cyclodextrin (CD) modified capillary zone electrophoresis for the first time. 15 different CDs were screened as complexing agents and chiral selectors, investigating the stability of the inclusion complexes and their enantiodiscriminating capacities. Although initially, none of the applied chiral selectors gave baseline separation, β-CD proved to be the most effective chiral selector. In order to improve resolution, an orthogonal experimental design was employed, altering the concentration of background electrolyte, organic modifier, pH, capillary temperature and applied voltage in a multivariate manner. The developed method (160 mM TRIS-acetate buffer pH 3.5, 7 mM β-CD, at 20 °C, applying 15 kV) was successful for baseline separation of ASN enantiomers (R(s)=2.40±0.04). Our method was validated according to ICH guidelines and proved to be sensitive, linear, accurate and precise for the chiral separation of ASN. Properties of the inclusion complexes, such as stoichiometry, atomic level intermolecular host-guest connections are proposed on the basis of ROESY NMR measurement, ESI-MS spectrometry and molecular modeling studies. It was found that the ASN-β-CD complex is of 1:1 composition, and either of the aromatic rings can be accommodated in the β-CD cavity. PMID:26440287

  8. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model

    International Nuclear Information System (INIS)

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized σ-ω model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the resulting freeze

  9. Chiral Baryon with Quantized Pions

    CERN Document Server

    McNeil, J A

    1993-01-01

    We study a hybrid chiral model for the nucleon based on the linear sigma model with explicit quarks. We solve the model using a Fock-space configuration consisting of three quarks plus three quarks and a pion as the ground state ansatz in place of the ``hedgehog'' ansatz. We minimize the expectation value of the chiral hamiltonian in this ground state configuration and solve the resulting equations for nucleon quantum numbers. We calculate the canonical set of nucleon observables and compare with previous work.

  10. Chiral symmetry in rotating systems

    Science.gov (United States)

    Malik, Sham S.

    2015-08-01

    The triaxial rotating system at critical angular momentum I ≥Iband exhibits two enatiomeric (the left- and right-handed) forms. These enatiomers are related to each other through dynamical chiral symmetry. The chiral symmetry in rotating system is defined by an operator χ ˆ =Rˆy (π) T ˆ, which involves the product of two distinct symmetries, namely, continuous and discrete. Therefore, new guidelines are required for testing its commutation with the system Hamiltonian. One of the primary objectives of this study is to lay down these guidelines. Further, the possible impact of chiral symmetry on the geometrical arrangement of angular momentum vectors and investigation of observables unique to nuclear chiral-twins is carried out. In our model, the angular momentum components (J1, J2, J3) occupy three mutually perpendicular axes of triaxial shape and represent a non-planar configuration. At certain threshold energy, the equation of motion in angular momentum develops a second order phase transition and as a result two distinct frames (i.e., the left- and right-handed) are formed. These left- and right-handed states correspond to a double well system and are related to each other through chiral operator. At this critical angular momentum, the centrifugal and Coriolis interactions lower the barrier in the double well system. The tunneling through the double well starts, which subsequently lifts the degeneracy among the rotational states. A detailed analysis of the behavior of rotational energies, spin-staggering, and the electromagnetic transition probabilities of the resulting twin-rotational bands is presented. The ensuing model results exhibit similarities with many observed features of the chiral-twins. An advantage of our formalism is that it is quite simple and it allows us to pinpoint the understanding of physical phenomenon which lead to chiral-twins in rotating systems.

  11. Spontaneous Mirror Symmetry Breaking in the Limited Enantioselective Autocatalysis Model: Abyssal Hydrothermal Vents as Scenario for the Emergence of Chirality in Prebiotic Chemistry

    CERN Document Server

    Ribó, Josep M; El-Hachemi, Zoubir; Moyano, Albert; Blanco, Celia; Hochberg, David; 10.1089/ast.2012.0904

    2013-01-01

    The emergence of chirality in enantioselective autocatalysis for compounds unable to transform according to the Frank-like reaction network is discussed with respect to the controversial limited enantioselectivity (LES) model composed of coupled enantioselective and non-enantioselective autocatalyses. The LES model cannot lead to spontaneous mirror symmetry breaking (SMSB) either in closed systems with a homogeneous temperature distribution nor in closed systems with a stationary non-uniform temperature distribution. However, simulations of chemical kinetics in a two-compartment model demonstrate that SMSB may occur if both autocatalytic reactions are spatially separated at different temperatures in different compartments but coupled under the action of a continous internal flow. In such conditions the system can evolve, for certain reaction and system parameters, towards a chiral stationary state, i.e., the system is able to reach a bifurcation point leading to SMSB. Numerical simulations using reasonable ch...

  12. Chiral doublet bands and energy-level crossing

    Institute of Scientific and Technical Information of China (English)

    QI Bin; MENG Jie; ZHANG Shuang-Quan; WANG Shou-Yu; PENG Jing

    2009-01-01

    Different definitions for chiral doublet bands based on excitation energies, B(E2) and B(M1) respectively are discussed in the triaxial particle rotor model. For the ideal chiral geometry, the selection rules of the electromagnetic transitions in different band definitions are illustrated. It is also shown that the energy-level crossings between chiral doublet bands may occur.

  13. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Energy Technology Data Exchange (ETDEWEB)

    Hayata, Tomoya, E-mail: hayata@riken.jp [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Yamamoto, Arata [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

    2015-05-11

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  14. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Directory of Open Access Journals (Sweden)

    Tomoya Hayata

    2015-05-01

    Full Text Available We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  15. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    Science.gov (United States)

    Hayata, Tomoya; Yamamoto, Arata

    2015-05-01

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.

  16. Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates

    OpenAIRE

    Tomoya Hayata; Arata Yamamoto

    2015-01-01

    We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement...

  17. Integrable hydrodynamic equations for initial chiral currents and infinite hydrodynamic chains from WZNW model and string model of WZNW type with SU(2), SO(3), SP(2), SU(∞), SO(∞), SP(∞) constant torsions

    Science.gov (United States)

    Cirilo-Lombardo, D. J.; Gershun, V. D.

    2014-09-01

    The WZNW and string models are considered in terms of the initial and invariant chiral currents assuming that the internal and external torsions coincide (anticoincide) and they are the structure constants of the SU(n), SO(n), SP(n) Lie algebras. These models are the auxiliary problems in order to construct integrable equations of hydrodynamic type. It was shown that the WZNW and string models in terms of invariant chiral currents are integrable for the constant torsion associated with the structure constants of the SU(2), SO(3), SP(2) and SU(3) algebras only. The equation of motion for the density of the first Casimir operator was obtained in the form of the inviscid Burgers equation. The solution of this equation is presented through the Lambert function. Also, a new equation of motion for the initial chiral current was found. The integrable infinite hydrodynamic chains obtained from the WZNW and string models are given in terms of invariant chiral currents with the SU(2), SO(3), SP(2) and with SU(∞), SO(∞), SP(∞) constant torsions. Also, the equations of motion for the density of any Casimir operator and new infinite-dimensional equations of hydrodynamic type for the initial chiral currents through the symmetric structure constant of SU(∞), SO(∞), SP(∞) algebras are obtained.

  18. Liquid chromatography with mass spectrometry enantioseparation of pomalidomide on cyclodextrin-bonded chiral stationary phases and the elucidation of the chiral recognition mechanisms by NMR spectroscopy and molecular modeling.

    Science.gov (United States)

    Szabó, Zoltán-István; Szőcs, Levente; Horváth, Péter; Komjáti, Balázs; Nagy, József; Jánoska, Ádám; Muntean, Daniela-Lucia; Noszál, Béla; Tóth, Gergő

    2016-08-01

    A sensitive and validated liquid chromatography with mass spectrometry method was developed for the enantioseparation of the racemic mixture of pomalidomide, a novel, second-generation immunomodulatory drug, using β-cyclodextrin-bonded stationary phases. Four cyclodextrin columns (β-, hydroxypropyl-β-, carboxymethyl-β-, and sulfobutyl-β-cyclodextrin) were screened and the effects of eluent composition, flow rate, temperature, and organic modifier on enantioseparation were studied. Optimized parameters, offering baseline separation (resolution = 2.70 ± 0.02) were the following: β-cyclodextrin stationary phase, thermostatted at 15°C, and mobile phase consisting of methanol/0.1% acetic acid 10:90 v/v, delivered with 0.8 mL/min flow rate. For the optimized parameter at multiple reaction monitoring mode 274.1-201.0 transition with 20 eV collision energy and 100 V fragmentor voltage the limit of detection and limit of quantitation were 0.75 and 2.00 ng/mL, respectively. Since enantiopure standards were not available, elution order was determined upon comparison of the circular dichroism signals of the separated pomalidomide enantiomers with that of enantiopure thalidomide. The mechanisms underlying the chiral discrimination between the enantiomers were also investigated. Pomalidomide-β-cyclodextrin inclusion complex was characterized using nuclear magnetic resonance spectroscopy and molecular modeling. The thermodynamic aspects of chiral separation were also studied. PMID:27279456

  19. Formation of Enhanced Uniform Chiral Fields in Symmetric Dimer Nanostructures.

    Science.gov (United States)

    Tian, Xiaorui; Fang, Yurui; Sun, Mengtao

    2015-01-01

    Chiral fields with large optical chirality are very important in chiral molecules analysis, sensing and other measurements. Plasmonic nanostructures have been proposed to realize such super chiral fields for enhancing weak chiral signals. However, most of them cannot provide uniform chiral near-fields close to the structures, which makes these nanostructures not so efficient for applications. Plasmonic helical nanostructures and blocked squares have been proved to provide uniform chiral near-fields, but structure fabrication is a challenge. In this paper, we show that very simple plasmonic dimer structures can provide uniform chiral fields in the gaps with large enhancement of both near electric fields and chiral fields under linearly polarized light illumination with polarization off the dimer axis at dipole resonance. An analytical dipole model is utilized to explain this behavior theoretically. 30 times of volume averaged chiral field enhancement is gotten in the whole gap. Chiral fields with opposite handedness can be obtained simply by changing the polarization to the other side of the dimer axis. It is especially useful in Raman optical activity measurement and chiral sensing of small quantity of chiral molecule. PMID:26621558

  20. Non-leptonic decays of K-mesons within the chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bergan, A.E.

    1996-12-31

    This theses is based upon four previously printed paper. The main result of the first paper was that a very small contribution to K{sup o}-anti K{sup o} was found for the siamese penguin diagram with a momentum dependent penguin coefficient. The calculation was done with different regularizations. The same momentum dependent penguin interaction was used in the second paper. Dimensional regularization made it possible to calculate analytical results for K{yields}{phi}, and a relatively small g{sub 8}{sup 1/2} factor was found due to large subleading terms. In the third paper nonperturbative effects on the B{sub K} parameter were obtained. To order (G{sup 3}) a vanishing result appeared due to a complete cancellation among the 20 contributing diagrams. In the fourth paper a calculation was made of K{yields}{phi} which included non-diagonal self-energy effects due to the s{yields}d transition. This calculation made it possible to include a heavy top quark. The calculation was done in two ways. First the unphysical K{yields}{phi} transition was calculated. The result was then related to the physical K{yields}2{phi} decay due to chiral symmetry. Then the same result was obtained by a direct calculation of K{yields}2{phi}. In the CP-conserving case the contribution was small while the CP-violating part was sizable. Due to a large cancellation between the operator Q{sub 6} and Q{sub 8} the contribution was of the same size as {epsilon}/{epsilon} itself. 76 refs.

  1. Chiral particle separation by a non-chiral micro-lattice

    OpenAIRE

    Bogunovic, Lukas; Fliedner, Marc; Eichhorn, Ralf; Wegener, Sonja; Regtmeier, Jan; Anselmetti, Dario; Reimann, Peter

    2012-01-01

    We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Micro-particles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of ...

  2. Painlevé test for integrability and exact solutions for the field equations for Charap's chiral invariant model of the pion dynamics

    Indian Academy of Sciences (India)

    Susanto Chakraborty; Pranab Krishna Chanda

    2006-06-01

    It has been shown that the field equations for Charap's chiral invariant model of the pion dynamics pass the Painlevé test for complete integrability in the sense of Weiss et al. The truncation procedure of the same analysis leads to auto-Backlund transformation between two pairs of solutions. With the help of this transformation non-trivial exact solutions have been rediscovered.

  3. Anomalous Chiral Superfluidity

    OpenAIRE

    Lublinsky, Michael(Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel); Zahed, Ismail

    2009-01-01

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavour anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is ...

  4. Chiral crossover, deconfinement and quarkyonic matter within a Nambu-Jona Lasinio model with the Polyakov loop

    CERN Document Server

    Abuki, H; Gatto, R; Nardulli, G; Ruggieri, M

    2008-01-01

    We study the interplay between the chiral and the deconfinement transitions, both at high temperature and high quark chemical potential, by a non local Nambu-Jona Lasinio model with the Polyakov loop in the mean field approximation and requiring neutrality of the ground state. We consider three forms of the effective potential of the Polyakov loop: two of them with a fixed deconfinement scale, cases I and II, and the third one with a $\\mu$ dependent scale, case III. In the cases I and II, at high chemical potential $\\mu$ and low temperature $T$ the main contribution to the free energy is due to the Z(3)-neutral three-quark states, mimicking the quarkyonic phase of the large $N_c$ phase diagram. On the other hand in the case III the quarkyonic window is shrunk to a small region. Finally we comment on the relations of these results to lattice studies and on possible common prospects. We also briefly comment on the coexistence of quarkyonic and color superconductive phases.

  5. Unified theory of γd→np, π0d, πNN, and pp→ppγ and the chiral bag model

    International Nuclear Information System (INIS)

    A unified theory of photopion reactions in two-nucleon systems (γd→pn, π0d, and πNN) and NN bremsstrahlung (NN→NNγ) is presented. By exposing the two-body [BB, where B = N or Δ(1232)] and three-body (πBB and γBB) unitarity, we derive a set of coupled integral equations to determine the amplitudes for these reactions. These equations have the same kernel as the equations one gets for the BB-πBB system. The two-body input amplitudes are the result of a coupled channel unitary theory for πN→πN and pion photoproduction on a single baryon, within the framework of a gauge and chirally invariant Lagrangian, which is obtained from the chiral bag model Lagrangian. The renormalization due to the πB interaction is incorporated in a consistent manner

  6. Chiral symmetry on the lattice

    International Nuclear Information System (INIS)

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model

  7. Holographic Chiral Electric Separation Effect

    OpenAIRE

    Pu, Shi; Wu, Shang-Yu; Yang, Di-Lun

    2014-01-01

    We investigate the chiral electric separation effect, where an axial current is induced by an electric field in the presence of both vector and axial chemical potentials, in a strongly coupled plasma via the Sakai-Sugimoto model with an $U(1)_R\\times U(1)_L$ symmetry. By introducing different chemical potentials in $U(1)_R$ and $U(1)_L$ sectors, we compute the axial direct current (DC) conductivity stemming from the chiral current and the normal DC conductivity. We find that the axial conduct...

  8. Chiral symmetry on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.

  9. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  10. The chiral symplectic universality class

    OpenAIRE

    Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi

    2003-01-01

    We report a numerical investigation of localization in the SU(2) model without diagonal disorder. At the band center, chiral symmetry plays an important role. Our results indicate that states at the band center are critical. States away from the band center but not too close to the edge of the spectrum are metallic as expected for Hamiltonians with symplectic symmetry.

  11. Nonlinear principle and Skyrme-I model for characteristics of nucleon within Chiral limits

    International Nuclear Information System (INIS)

    A modification of the Skyrme model basing on the nonlinear invariance principle is proposed. In this modified model a sector of hedgehog soliton describes rather well the nucleons. It has a lot of quantitative and quantitative advantages in comparison to the usual Skyrme model and requires new rate between topological and baryon number current. (author). 20 refs., 1 fig., 2 tabs

  12. Chiral Rotational Spectroscopy

    CERN Document Server

    Cameron, Robert P; Barnett, Stephen M

    2015-01-01

    We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.

  13. Speciation and gene flow between snails of opposite chirality.

    Directory of Open Access Journals (Sweden)

    Angus Davison

    2005-09-01

    Full Text Available Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent "single-gene speciation" or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal-effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation. This therefore suggests a general mechanism as to how chiral variation arises in snails. In populations that contain both chiral morphs, two different situations are then possible. In the first, gene flow is substantial between morphs even without interchiral mating, because of the maternal inheritance of chirality. In the second, reproductive isolation is possible but unstable, and will also lead to gene flow if intrachiral matings occasionally produce offspring with the opposite chirality. Together, the results imply that speciation by chiral reversal is only meaningful in the context of a complex biogeographical process, and so must usually involve other factors. In order to understand the roles of reproductive character displacement and gene flow in the chiral evolution of Euhadra, it will be

  14. From the double-stranded helix to the chiral nematic phase of B-DNA: a molecular model

    CERN Document Server

    Tombolato, F

    2004-01-01

    B-DNA solutions of suitable concentration form left-handed chiral nematic phases (cholesterics). Such phases have also been observed in solutions of other stiff or semiflexible chiral polymers; magnitude and handedness of the cholesteric pitch are uniquely related to the molecular features. In this work we present a theoretical method and a numerical procedure which, starting from the structure of polyelectrolytes, lead to the prediction of the cholesteric pitch. Molecular expressions for the free energy of the system are obtained on the basis of steric and electrostatic interactions between polymers; the former are described in terms of excluded volume, while a mean field approximation is used for the latter. Calculations have been performed for 130 bp fragments of B-DNA. The theoretical predictions provide an explanation for the experimental behavior, by showing the counteracting role played by shape and charge chirality of the molecule.

  15. Dynamics and Stability of Chiral Fluid

    OpenAIRE

    Mishustin, Igor N.; Koide, Tomoi; Denicol, Gabriel S.; Torrieri, Giorgio

    2014-01-01

    Starting from the linear sigma model with constituent quarks we derive the chiral fluid dynamics where hydrodynamic equations for the quark fluid are coupled to the equation of motion for the order-parameter field. In a static system at thermal equilibrium this model leads to a chiral phase transition which, depending on the choice of the quark-meson coupling constant, could be a crossover or a first order one. We investigate the stability of the chiral fluid in the static and expanding backg...

  16. SU(3) Polyakov Linear $\\sigma$-Model in Magnetic Field: Thermodynamics, Higher-Order Moments, Chiral Phase Structure and Meson Masses

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    Effects of external magnetic field on various properties of the quantum chromodynamics under extreme conditions of temperature and density have been analysed. To this end, we use SU(3) Polyakov linear sigma-model and assume that the external magnetic field eB adds some restrictions to the quarks energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization. This requires an additional temperature to drive the system through the chiral phase-transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase-transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of magnetic field on chiral phase-transition. We found that both critical temperature T_c and critical chemical potential increase with increasing the magnetic f...

  17. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  18. Integrable hydrodynamic equations for initial chiral currents and infinite hydrodynamic chains from WZNW model and string model of WZNW type with SU(2), SO(3), SP(3), SU(1), SO(1), SP(inf) constant torsions

    CERN Document Server

    Cirilo-Lombardo, Diego J

    2013-01-01

    The WZNW and string models were considered in the terms of the initial and invariant chiral currents in assumption that the internal and external torsions coincide (anticoincide) and they are the structure constant of the SU(n), SO(n), SP(n) Lie algebras. It was shown that the WZNW and string models in terms of invariant chiral currents are integrable for the constant torsion associated with the structure constant of the SU(2), SO(3), SP(2) and SU(3) algebras only. The equation of motion for the density of the first Casimir operator was obtained in the form of the inviscid Burgers equation. The solution of this equation was presented through the Lambert function. Also, new equation of motion for the initial chiral current was received. The integrable in?nite dimensional hydrodynamic chains were considered for the WZNW and string models in terms of invariant chiral currents with the SU(2), SO(3), SP(2) constant torsions and for the models with the SU(1), SO(1), SP(1) constant torsions. Also the equations of mo...

  19. Personal recollections on chiral symmetry breaking

    Science.gov (United States)

    Kobayashi, Makoto

    2016-07-01

    The author's work on the mass of pseudoscalar mesons is briefly reviewed. The emergence of the study of CP violation in the renormalizable gauge theory from consideration of chiral symmetry in the quark model is discussed.

  20. Implications of the stability and triviality bounds on the standard model with three and four chiral generations

    International Nuclear Information System (INIS)

    We revisit the stability and triviality bounds on the Higgs boson mass in the context of the standard model with three and four generations (SM3 and SM4, respectively). In light of the recent results from LHC, the triviality bound in the SM3 has now become obsolete, and the stability bound implies for a Higgs mass of e.g. mH=115 GeV the onset of new physics before Λ=650 TeV, whereas there are no limits for mH≥133 GeV. For the SM4, the stability and triviality curves intersect and bound a finite region. As a consequence, the fourth generation fermions place stringent theoretical limits on the Higgs mass, and there is a maximal scale beyond which the theory cannot be perturbatively valid. We find that the Higgs mass cannot exceed 700 GeV for any values of the fourth generation fermion masses. Turning the argument around, the absence of a Higgs signal for mH≤600 GeV excludes a fourth generation with quark masses below 300 GeV and lepton masses below 350 GeV. In particular, the quark bounds also hold for the small mixing scenarios for which the direct limits from Tevatron and LHC are not applicable, and the lepton bounds we obtain are stronger than the collider limits. If a Higgs boson lighter than 700 GeV is not observed, a fourth generation of chiral fermions with perturbative Yukawa couplings will be conclusively excluded for the full range of parameters.

  1. Center vortices, confinement and chiral symmetry breaking

    International Nuclear Information System (INIS)

    The center vortex model, proposed as an explanation of confinement in non-abelian gauge theories is introduced. Some checks of the confinement properties of center vortices in SU(2) lattice gauge theory with improved Luescher-Weisz gauge action are presented. Phenomena related to chiral symmetry, such as topological charge and spontaneous chiral symmetry breaking (SCSB) are studied within the vortex model. In particular the influence of center vortices on the low-lying spectrum of the Dirac operator is analyzed. (author)

  2. Interfacial energies of systems of chiral molecules

    OpenAIRE

    Braides, Andrea; Garroni, Andrea; Palombaro, Mariapia

    2016-01-01

    We consider a simple model for the assembly of chiral molecules in two dimensions driven by maximization of the contact area. We derive a macroscopic model described by a parameter taking nine possible values corresponding to the possible minimal microscopic patterns and modulated phases of the chiral molecules. We describe the overall behaviour by means of an interaction energy of perimeter type between such phases. This energy is a crystalline perimeter energy, highlighting preferred direct...

  3. QCD Chiral restoration at finite $T$ under the Magnetic field: Studies based on the instanton vacuum model

    CERN Document Server

    Kao, Chung Wen

    2011-01-01

    We investigate the chiral restoration at finite temperature $(T)$ under the strong external magnetic field $\\vec{B}=B_{0}\\hat{z}$ of the SU(2) light-flavor QCD matter. We employ the instanton-liquid QCD vacuum configuration accompanied with the linear Schwinger method for inducing the magnetic field. The Harrington-Shepard caloron solution is used to modify the instanton parameters, i.e. the average instanton size $(\\bar{\\rho})$ and inter-instanton distance $(\\bar{R})$, as functions of $T$. In addition, we include the meson-loop corrections (MLC) as the large-$N_{c}$ corrections because they are critical for reproducing the universal chiral restoration pattern. We present the numerical results for the constituent-quark mass as well as chiral condensate which signal the spontaneous breakdown of chiral-symmetry (SB$\\chi$S), as functions of $T$ and $B$. Besides we find that the changes for the $F_\\pi$ and $m_\\pi$ due to the magnetic field is relatively small, in comparison to those caused by the finite $T$ effec...

  4. Modelling of Chirality-Dependent Current-Voltage Characteristics of Carbon-Nanotube Field-Effect Transistors

    Institute of Scientific and Technical Information of China (English)

    ZHAO Xu; WANG Yan; YU Zhi-Ping

    2006-01-01

    @@ Current-voltage characteristics of ballistic carbon-nanotube field-effect transistors are characterized with an it-erative simulation program. The influence of carbon-nanotube chirality and diameter on the output current is considered. An analytical current-voltage expression under the quantum capacitance limit and low-voltage application is derived. Our simulation results are compared with actual measurement data.

  5. Classification of the chiral Z2XZ2 fermionic models in the heterotic superstring

    CERN Document Server

    Faraggi, A E; Nooij, S E M; Rizos, J

    2004-01-01

    The first particle physics observable whose origin may be sought in string theory is the triple replication of the matter generations. The class of Z2XZ2 orbifolds of six dimensional compactified tori, that have been most widely studied in the free fermionic formulation, correlate the family triplication with the existence of three twisted sectors in this class. In this work we seek an improved understanding of the geometrical origin of the three generation free fermionic models. Using fermionic and orbifold techniques we classify the Z2XZ2 orbifold with symmetric shifts on six dimensional compactified internal manifolds. We show that perturbative three generation models are not obtained in the case of Z2XZ2 orbifolds with symmetric shifts on complex tori, and that the perturbative three generation models in this class necessarily employ an asymmetric shift. We present a class of three generation models in which the SO(10) gauge symmetry cannot be broken perturbatively, while preserving the Standard Model mat...

  6. On stability of solutions of the U(N) chiral model in two dimensions

    International Nuclear Information System (INIS)

    We discuss the stability properties of classical solutions of the U(N) sigma models in two Euclidean dimensions. We show that all nontrivial solutions are unstable. For a general case we exhibit one mode of instability; in some special cases (corresponding to a grassmannian solution and an instantonic grassmannian embedding) we exhibit two such independent modes. (orig.)

  7. Mechanical separation of chiral dipoles by chiral light

    CERN Document Server

    Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.

  8. Chiral recognition of metalaxyl enantiomers by human serum albumin: evidence from molecular modeling and photophysical approach.

    Science.gov (United States)

    Ding, Fei; Li, Xiu-Nan; Diao, Jian-Xiong; Sun, Ye; Zhang, Li; Sun, Ying

    2012-06-01

    Metalaxyl is an acylamine fungicide, belonging to the most widely known member of the amide group. This task is aimed to scrutinize binding region and spatial structural change of principal vector human serum albumin (HSA) complex with (R)-/(S)-metalaxyl by exploiting molecular modeling, steady-state and time-resolved fluorescence, and circular dichroism (CD) approaches. According to molecular modeling, (R)-metalaxyl is situated within subdomains IIA and IIIA and the affinity of site I with (R)-metalaxyl is greater than site II, whereas (S)-metalaxyl is only located at subdomain IIA and the affinity of (S)-metalaxyl with site I is superior compared with that with (R)-metalaxyl. This coincides with the competitive ligand binding, guanidine hydrochloride-induced unfolding of protein, and hydrophobic 8-anilino-1-naphthalenesulfonic acid experiments; the acting forces between (R)-/(S)-metalaxyl and HSA are hydrophobic, π-π interactions, and hydrogen bonds, as derived from molecular modeling. Fluorescence emission manifested that the complex of (R)-/(S)-metalaxyl to HSA is the formation of adduct with an affinity of 10(4) M(-1), which corroborates the time-resolved fluorescence that the static type was operated. Furthermore, the changes of far-UV CD spectra evidence the polypeptide chain of HSA partially unfolded after conjugation with (R)-/(S)-metalaxyl. Through this work, we envisage that it can offer central clues on the biodistribution, absorption, and bioaccumulation of (R)-/(S)-metalaxyl. PMID:22544615

  9. Spectral study of a chiral limit without chiral condensate

    CERN Document Server

    Bietenholz, Wolfgang

    2009-01-01

    Random Matrix Theory (RMT) has elaborated successful predictions for Dirac spectra in field theoretical models. However, a generic assumption by RMT has been a non-vanishing chiral condensate $\\Sigma$ in the chiral limit. Here we consider the 2-flavour Schwinger model, where this assumption does not hold. We simulated this model with dynamical overlap hypercube fermions, and entered terra incognita by analysing this Dirac spectrum. The usual RMT prediction for the unfolded level spacing distribution in a unitary ensemble is precisely confirmed. The microscopic spectrum does not perform a Banks-Casher plateau. Instead the obvious expectation is a density of the lowest eigenvalue $\\lambda_{1}$ which increases $\\propto \\lambda_{1}^{1/3}$. That would correspond to a scale-invariant parameter $\\propto \\lambda V^{3/4}$, which is, however, incompatible with our data. Instead we observe to high precision a scale-invariant parameter $z \\propto \\lambda V^{5/8}$. This surprising result implies a microscopic spectral den...

  10. An epistemological note on chirality

    International Nuclear Information System (INIS)

    The terms ''chiral'' and ''achiral'' are sharply defined when applied to geometric figures or models. The same terms are also commonly used to refer to the real systems to which these models have been adjoined. e.g., molecules, solvents, or reagents. Here, the terms are not sharply defined but depend upon conditions or measurement. The contrast between the geometric and operational usages is discussed in detail

  11. Chiral Primaries in Strange Metals

    OpenAIRE

    Isachenkov, Mikhail(DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg, Germany); Kirsch, Ingo; Schomerus, Volker

    2014-01-01

    It was suggested recently that the study of 1-dimensional QCD with fermions in the adjoint representation could lead to an interesting toy model for strange metals and their holographic formulation. In the high density regime, the infrared physics of this theory is described by a constrained free fermion theory with an emergent N=(2,2) superconformal symmetry. In order to narrow the choice of potential holographic duals, we initiate a systematic search for chiral primaries in this model. We a...

  12. Chiral Ground States in a Frustrated Holographic Superconductor

    CERN Document Server

    Nishida, Mitsuhiro

    2015-01-01

    Frustration is an important phenomenon in condensed matter physics because it can introduce a new order parameter such as chirality. Towards understanding a mechanism of the frustration in strongly correlated systems, we study a holographic superconductor model with three scalar fields and an interband Josephson coupling, which is important for the frustration. We analyze free energy of solutions of the model to determine ground states. We find chiral ground states, which have nonzero chirality.

  13. The pion-nucleon Σ-term in a chiral quark model

    International Nuclear Information System (INIS)

    The pion/nucleon Σ-term is calculated in a linear σ-model based on the U(3) x U(3) quark effective Lagrangian. The importance of the pole diagram with the scalar meson f0(400 - 1200) is demonstrated. For the mass of this meson the value 400 MeV was chosen, which corresponds to the theoretical predictions taking into account singlet-octet mixing of scalar isoscalar mesons and glueball on the one hand and to recent experimental data on the other. The resulting value σ = 75 MeV is in agreement with the latest analysis of experimental data on the π-N scattering. It is shown that the hypothesis of the content of strange quarks in the valence structure of a nucleon is not necessary to reach agreement with experimental data. (Authors)

  14. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  15. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Science.gov (United States)

    Guo, Zhen; Du, Yu; Liu, Xianbin; Ng, Siu-Choon; Chen, Yuan; Yang, Yanhui

    2010-04-01

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  16. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    Energy Technology Data Exchange (ETDEWEB)

    Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)

    2010-04-23

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  17. Enantioselectively controlled release of chiral drug (metoprolol) using chiral mesoporous silica materials

    International Nuclear Information System (INIS)

    Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.

  18. Chiral dimethylamine flutamide derivatives-modeling, synthesis, androgen receptor affinities and carbon-11 labeling

    International Nuclear Information System (INIS)

    Most prostate cancers are androgen dependent upon initial diagnosis. On the other hand, some very aggressive forms of prostate cancer were shown to have lost the expression of the androgen receptor (AR). Although the AR is routinely targeted in endocrine treatment, the clinical outcome remains suboptimal. Therefore, it is crucial to demonstrate the presence and activity of the AR in each case of prostate cancer, before and after treatment. While noninvasive positron emission tomography (PET) has the potential to determine AR expression of tumor cells in vivo, fully optimized PET imaging agents are not yet available. Based on molecular modeling, three novel derivatives of hydroxyflutamide (Compounds 1-3) were designed and synthesized. They contain an electron-rich group (dimethylamine) located on the methyl moiety, which may confer a better stability to the molecule in vivo. Compounds 1-3 have AR binding that is similar or higher than that of the currently used commercial drugs. An automated carbon-11 radiolabeling route was developed, and the compounds were successfully labeled with a 10-15% decay-corrected radiochemical yield, 99% radiochemical purity and a specific activity of 4Ci/μmol end of bombardment (n=15). These labeled biomarkers may facilitate the future quantitative molecular imaging of AR-positive prostate cancer using PET and may also allow for image-guided treatment of prostate cancer

  19. Chiral transition of fundamental and adjoint quarks

    OpenAIRE

    Capdevilla, R. M.; Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil); Natale, A. A.

    2014-01-01

    The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagat...

  20. Unphysical phases in staggered chiral perturbation theory

    Science.gov (United States)

    Aubin, Christopher; Colletti, Katrina; Davila, George

    2016-04-01

    We study the phase diagram for staggered quarks using chiral perturbation theory. In beyond-the-standard-model simulations using a large number (>8 ) of staggered fermions, unphysical phases appear for coarse enough lattice spacing. We argue that chiral perturbation theory can be used to interpret one of these phases. In addition, we show that only three broken phases for staggered quarks exist, at least for lattice spacings in the regime a2≪ΛQCD2 .

  1. Chiral bags, skyrmions and quarks in nuclei

    International Nuclear Information System (INIS)

    Recent developments on an intriguing connection between the quark-bag description of the baryons (nucleons in particular) and the Skyrmion model are discussed in terms of the constraints coming from chiral anomalies. Topics treated are the leaking baryon charge, axial charge and energy density; the role of chiral anomalies; the role of Skyrme's quartic term and the connection to the meson degrees of freedom; and finally some qualitative implications in nuclei. The presentation is purposely descriptive and intuitive instead of mathematically precise

  2. Proton Spin Based On Chiral Dynamics

    OpenAIRE

    Weber, H. J.

    1999-01-01

    Chiral spin fraction models agree with the proton spin data only when the chiral quark-Goldstone boson couplings are pure spinflip. For axial-vector coupling from soft-pion physics this is true for massless quarks but not for constituent quarks. Axial-vector quark-Goldstone boson couplings with {\\bf constituent} quarks are found to be inconsistent with the proton spin data.

  3. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model; Einfluss schwerer hadronischer Zustaende auf das QCD-Phasendiagramm und die Ausfrierbedingungen in einem hadronischen chiralen Modell

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, G.

    2006-07-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized {sigma}-{omega} model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the

  4. Enantioselective Syntheses of Lignin Models: An Efficient Synthesis of β-O-4 Dimers and Trimers by Using the Evans Chiral Auxiliary.

    Science.gov (United States)

    Njiojob, Costyl N; Bozell, Joseph J; Long, Brian K; Elder, Thomas; Key, Rebecca E; Hartwig, William T

    2016-08-22

    We describe an efficient five-step, enantioselective synthesis of (R,R)- and (S,S)-lignin dimer models possessing a β-O-4 linkage, by using the Evans chiral aldol reaction as a key step. Mitsunobu inversion of the (R,R)- or (S,S)-isomers generates the corresponding (R,S)- and (S,R)-diastereomers. We further extend this approach to the enantioselective synthesis of a lignin trimer model. These lignin models are synthesized with excellent ee (>99 %) and high overall yields. The lignin dimer models can be scaled up to provide multigram quantities that are not attainable by using previous methodologies. These lignin models will be useful in degradation studies probing the selectivity of enzymatic, microbial, and chemical processes that deconstruct lignin. PMID:27459234

  5. Top Forward-backward asymmetry at the Tevatron vs. Charge asymmetry at the LHC in chiral $U(1)'$ models with flavored Higgs fields

    CERN Document Server

    Ko, P; Yu, Chaehyun

    2013-01-01

    An extra $U(1)'$ model with $Z'$ coupled only to the right-handed (RH) up-type quarks has been one of the popular models for the Tevatron top forward-backward asymmetry (FBA), and has been excluded by the same-sign top-pair productions at the LHC. However, the original $Z'$ model is not physical, since the up-type quarks are massless including the top quark. This disaster can be evaded if the Higgs sector is extended by including new Higgs doublets with nonzero $U(1)'$ charges. We find that some parameter regions could achieve not only the top FBA at the Tevatron, but also the charge asymmetry at the LHC without exceeding the upper limit of the same-sign top-quark pair production at the LHC. The lesson is that it is mandatory to extend the Higgs sector whenever one considers chiral gauge symmetries beyond the SM gauge group. Otherwise some fermions remain massless, and thus it is meaningless to work on phenomenology without the extra Higgs doublets with new chiral gauge charges.

  6. Wormholes from Chiral Fields

    International Nuclear Information System (INIS)

    In this paper, Lorentzian wormholes with a phantom field and chiral matter fields have been obtained. In addition, it is shown that for different values of the gravitational coupling of the chiral fields, the wormhole geometry changes. Finally, the stability of the corresponding wormholes is studied and it is shown that are unstable (eg. Ellis's wormhole instability)

  7. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast to the...

  8. Chiral transition of fundamental and adjoint quarks

    Energy Technology Data Exchange (ETDEWEB)

    Capdevilla, R.M. [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Doff, A., E-mail: agomes@utfpr.edu.br [Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR (Brazil); Natale, A.A., E-mail: natale@ift.unesp.br [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil)

    2014-01-20

    The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one.

  9. Chiral transition of fundamental and adjoint quarks

    International Nuclear Information System (INIS)

    The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one

  10. Chirally motivated K{sup -} nuclear potentials

    Energy Technology Data Exchange (ETDEWEB)

    Cieply, A. [Nuclear Physics Institute, 25068 Rez (Czech Republic); Friedman, E. [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); Gal, A., E-mail: avragal@vms.huji.ac.il [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); Gazda, D.; Mares, J. [Nuclear Physics Institute, 25068 Rez (Czech Republic)

    2011-08-26

    In-medium subthreshold K-bar N scattering amplitudes calculated within a chirally motivated meson-baryon coupled-channel model are used self consistently to confront K{sup -} atom data across the periodic table. Substantially deeper K{sup -} nuclear potentials are obtained compared to the shallow potentials derived in some approaches from threshold K-bar N amplitudes, with ReV{sub K}{sup chiral}=-(85{+-}5) MeV at nuclear matter density. When K-bar NN contributions are incorporated phenomenologically, a very deep K{sup -} nuclear potential results, ReV{sub K}{sup chiral+phen.}=-(180{+-}5) MeV, in agreement with density dependent potentials obtained in purely phenomenological fits to the data. Self consistent dynamical calculations of K{sup -}-nuclear quasibound states generated by V{sub K}{sup chiral} are reported and discussed.

  11. OSp(1,4)-superfields in chiral representation

    International Nuclear Information System (INIS)

    The properties of OSp(1.4)-superfields in splitting (chiral)parametrization of the superspace of OSp(1.4)/O(1.3) are studied. The connection is found between the real and chiral bases in superspace and construct covariant derivatives and invariant integration measures in chiral bases. The group structure of chiral representations of OSp(1.4) is studied in detail. The simplest linear OSp(1.4)-invariant models are presented: the OSp(1.4)-analog of the Wess-Zumino model and OSp(1.4)-extension of the Yang-Mills theory. The relation of the described formalism to supergravity is also discussed

  12. Chiral Magnetic "Superfluidity"

    CERN Document Server

    Sadofyev, Andrey V

    2015-01-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will {\\it not} contribute to the drag experienced by an impurity. We argue on very general basis that those systems with a strong magnetic field would exhibit the behavior of 'superfluidity" -- the motion of the heavy impurity is frictionless, in analog to the case of a superfluid. However, this "superfluidity" exists even for chiral media at finite temperature and only in the directional longitudinal with the magnetic field, in contrast to the ordinary superfluid. We will call this novel phenomenon as the Chiral Magnetic "Superfluidity". We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion ...

  13. The anomalous Hall conductivity due to the vector spin chirality

    OpenAIRE

    Taguchi, Katsuhisa; Tatara, Gen

    2008-01-01

    We study theoretically the anomalous Hall effect due to the vector spin chirality carried by the local spins in the $s$-$d$ model. We will show that the vector spin chirality indeed induces local Hall effect in the presence of the electron spin polarization, while the global Hall effect vanishes if electron transport is homogeneous. This anomalous Hall effect can be interpreted in terms of the rotational component of the spin current associated with the vector chirality.

  14. Chiral Magnetic Effect and Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    FU Wei-Jie; LIU Yu-Xin; WU Yue-Liang

    2011-01-01

    We study the influence of the chiral phase transition on the chiral magnetic effect.The azimuthal chargeparticle correlations as functions of the temperature are calculated.It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition.It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value.We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.

  15. Chiral symmetry in hadron physics methods and ideas of chiral symmetry

    International Nuclear Information System (INIS)

    Methods and ideas of chiral symmetry is presented based on a lecture note to help the future researches in hadron dynamics along with the chiral symmetry. The chiral symmetry was originally developed as the symmetry between currents before the discovery of QCD. It has come to be understood in principle by now that the symmetry is spontaneously broken and only the part of flavor symmetry remains explicitly. In QCD, however, the chiral symmetry has come to be regarded as the base of the symmetry of the global flavor space of quarks. One of the recent topics of the lattice gauge theory is how the hadron properties will change when the broken symmetry is going to be restored. Since the chiral symmetry is global, it is different from gauge symmetry which is local. It explains the degeneracy of hadron masses and relations between the elements of S-matrix in which same number of particles are included. In practice, however, the symmetry of the axial part is spontaneously broken and pions which behave like gauge particles come to play. Chiral symmetry is defined as the (internal) flavor symmetry for the two independent chirality states of quarks. It discriminates two different fundamental quarks defined for the Lorentz groups O(4) - SL(2, C). The symmetry transformation itself is, however, different from the chirality. They should not be confused. In this lecture note, fundamental properties of pions are described on the basis of the interaction with nucleons at first. General properties of the chiral symmetry and some of the low energy theorems on current algebra are introduced. Then, linear sigma model and nonlinear sigma model are introduced. Then the Skyrme-model, which provides an idea as important as quarks, is explained. One of the interesting topics at present is to restore the broken axial symmetry experimentally to investigate the mechanism of symmetry breaking. (S. Funahashi)

  16. pi-pi interaction amplitudes with chiral constraints

    OpenAIRE

    Kaminski, Robert

    2000-01-01

    The pi-pi interaction amplitudes have been calculated using a three coupled channel model both with and without constraints imposed by chiral models. Roy's equations have been used to compare the amplitudes and to study the role played by chiral constraints in the pi-pi interaction.

  17. Dirac Bracket Quantization of Bosonized chiral QCD2

    International Nuclear Information System (INIS)

    We systematically derive the bosonized form of the chiral QCD2 Zagrangean exchibiting explicitely the anomalous breaking of gauge invariance and quantize it using Dirac's algorithm for constrained systems. As a side product we also discuss the Hamiltonean formalism for the principal sigma model, and derive the commutation relations of the chiral currents in both models. (author)

  18. Molecular modeling of the binding mode of chiral metal complexes A- and A-[Co(phen)2dppz]3+ with B-DNA

    Institute of Scientific and Technical Information of China (English)

    杨频; 韩大雄

    2000-01-01

    Molecular modeling methods have been applied to the structural characterization of the interaction between chiral metal complexes [Co(phen)2dppz]3+ (where phen = 1, 10-phenanthroline, dppz = dipyrido[3,2-a: 2’, 3’-c]phenazine) and the oligonucleotide (B-DNA fragment). The natures of two kinds of the binding modes, which are currently intense controversy, have been explored. Barton proposed that there is enantio-selective DMA binding by the octahedral complexes and intercalative access by these complexes from the major groove; but Norden suggested that both enantiomers bind extremely strongly to DNA from the minor groove without any noticeable enantio-selectivity. Our results support and extend structural models based upon Norden’s studies, and conflict with Barton’s model.

  19. Molecular modeling of the binding mode of chiral metal complexes △- and (A)-[Co(phen)2dppz]3+ with B-DNA

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Molecular modeling methods have been applied to the structural characterization of the interaction between chiral metal complexes [Co(phen)2dppz]3+ (where phen = 1, 10-phenanthroline, dppz = dipyrido[3,2-a: 2′, 3′-c]phenazine) and the oligonucleotide (B-DNA fragment). The natures of two kinds of the binding modes, which are currently intense controversy, have been explored. Barton proposed that there is enantio-selective DNA binding by the octahedral complexes and intercalative access by these complexes from the major groove; but Norden suggested that both enantiomers bind extremely strongly to DNA from the minor groove without any noticeable enantio-selectivity. Our results support and extend structural models based upon Norden's studies, and conflict with Barton's model.

  20. Interplay between chiral and deconfinement phase transitions

    Directory of Open Access Journals (Sweden)

    Mukherjee T.K.

    2011-04-01

    Full Text Available By using the dressed Polyakov loop or dual chiral condensate as an equivalent order parameter of the deconfinement phase transition, we investigate the relation between the chiral and deconfinement phase transitions at finite temperature and density in the framework of three-flavor Nambu-Jona-Lasinio (NJL model. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole (T,µ plane. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent. For each flavor, the transition temperature for chiral restoration $T^{mathcal{X}}_c$ is smaller than that of the dressed Polyakov loop $T^{mathcal{D}}_c$ in the low baryon density region where the transition is a crossover, and, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. Therefore, there are two critical end points, i.e, $T^{u,d}_{CEP}$ and $T^{s}_{CEP}$ at finite density. We also explain the feature of $T^{mathcal{X}}_c$ = $T^{mathcal{D}}_c$ in the case of 1st and 2nd order phase transitions, and $T^{mathcal{X}}_c$ < $T^{mathcal{D}}_c$ in the case of crossover, and expect this feature is general and can be extended to full QCD theory.

  1. Interplay between chiral and deconfinement phase transitions

    CERN Document Server

    Xu, Fukun; Chen, Huan; Huang, Mei

    2011-01-01

    By using the dressed Polyakov loop or dual chiral condensate as an equivalent order parameter of the deconfinement phase transition, we investigate the relation between the chiral and deconfinement phase transitions at finite temperature and density in the framework of three-flavor Nambu--Jona-Lasinio (NJL) model. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole $(T,\\mu)$ plane. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent. For each flavor, the transition temperature for chiral restoration $T_c^{\\chi}$ is smaller than that of the dressed Polyakov loop $T_c^{{\\cal D}}$ in the low baryon density region where the transition is a crossover, and, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. Therefore, there are two critical end points, i.e, $T_{CEP}^{u,d}$ and $T_{CEP}^{s}$ a...

  2. Chiral symmetry and functional integral

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa Saravi, R.E.; Muschietti, M.A.; Schaposnik, F.A.; Solomin, J.E.

    1984-10-15

    The change in the fermionic functional integral measure under chiral rotations is analyzed. Using the zeta-function method, the evaluation of chiral Jacobians to theories including non-hermitian Dirac operators D, can be extended in a natural way. (This being of interest, for example, in connection with the Weinberg-Salam model or with the relativistic string theory). Results are compared with those obtained following other approaches, the possible discrepancies are analyzed and the equivalence of the different methods under certain conditions on D is proved. Also shown is how to compute the Jacobian for the case of a finite chiral transformation and this result is used to develop a sort of path-integral version of bosonization in d = 2 space-time dimensions. This result is used to solve in a very simple and economical way relevant d = 2 fermionic models. Furthermore, some interesting features in connection with the theta-vacuum in d = 2,4 gauge theories are discussed.

  3. Chiral symmetry breaking and vacuum polarization in a bag

    CERN Document Server

    Yasui, S

    2006-01-01

    We study the effects of a finite quark mass in the hedgehog configuration in the two phase chiral bag model. We discuss the chiral properties, such as the fractional baryon number and the chiral Casimir energy, by using the Debye expansion for the analytical calculation and the Strutinsky's smearing method for the numerical computation. It is shown that the fractional baryon number carried by massive quarks in the vacuum is canceled by that in the meson sector. A finite term of the chiral Casimir energy is obtained with subtraction of the logarithmic divergence term.

  4. Partial restoration of chiral symmetry in the color flux tube

    CERN Document Server

    Iritani, Takumi; Hashimoto, Shoji

    2015-01-01

    Using the quark eigenmodes computed on the lattice with the overlap-Dirac operator, we investigate the spatial distribution of the chiral condensate around static color sources corresponding to quark-antiquark and three-quark systems. A flux structure of chromo fields appears in the presence of such color charges. The magnitude of the chiral condensate is reduced inside the color flux, which implies partial restoration of chiral symmetry inside hadrons. Taking a static baryon source in a periodic box as a toy model of the nuclear matter, we estimate the magnitude of the chiral symmetry restoration as a function of baryon matter density.

  5. Chiral nucleon-nucleon forces in nuclear structure calculations

    Directory of Open Access Journals (Sweden)

    Coraggio L.

    2016-01-01

    Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  6. Chiral nucleon-nucleon forces in nuclear structure calculations

    CERN Document Server

    Coraggio, L; Holt, J W; Itaco, N; Machleidt, R; Marcucci, L E; Sammarruca, F

    2016-01-01

    Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  7. Chiral supergravity and anomalies

    CERN Document Server

    Mielke, E W; Macias, Alfredo; Mielke, Eckehard W.

    1999-01-01

    Similarily as in the Ashtekar approach, the translational Chern-Simons term is, as a generating function, instrumental for a chiral reformulation of simple (N=1) supergravity. After applying the algebraic Cartan relation between spin and torsion, the resulting canonical transformation induces not only decomposition of the gravitational fields into selfdual and antiselfdual modes, but also a splitting of the Rarita-Schwinger fields into their chiral parts in a natural way. In some detail, we also analyze the consequences for axial and chiral anomalies.

  8. Synthesis of Chiral Cyclopentenones.

    Science.gov (United States)

    Simeonov, Svilen P; Nunes, João P M; Guerra, Krassimira; Kurteva, Vanya B; Afonso, Carlos A M

    2016-05-25

    The cyclopentenone unit is a very powerful synthon for the synthesis of a variety of bioactive target molecules. This is due to the broad diversity of chemical modifications available for the enone structural motif. In particular, chiral cyclopentenones are important precursors in the asymmetric synthesis of target chiral molecules. This Review provides an overview of reported methods for enantioselective and asymmetric syntheses of cyclopentenones, including chemical and enzymatic resolution, asymmetric synthesis via Pauson-Khand reaction, Nazarov cyclization and organocatalyzed reactions, asymmetric functionalization of the existing cyclopentenone unit, and functionalization of chiral building blocks. PMID:27101336

  9. Chiral selection and frequency response of spiral waves in reaction-diffusion systems under a chiral electric field

    Science.gov (United States)

    Li, Bing-Wei; Cai, Mei-Chun; Zhang, Hong; Panfilov, Alexander V.; Dierckx, Hans

    2014-05-01

    Chirality is one of the most fundamental properties of many physical, chemical, and biological systems. However, the mechanisms underlying the onset and control of chiral symmetry are largely understudied. We investigate possibility of chirality control in a chemical excitable system (the Belousov-Zhabotinsky reaction) by application of a chiral (rotating) electric field using the Oregonator model. We find that unlike previous findings, we can achieve the chirality control not only in the field rotation direction, but also opposite to it, depending on the field rotation frequency. To unravel the mechanism, we further develop a comprehensive theory of frequency synchronization based on the response function approach. We find that this problem can be described by the Adler equation and show phase-locking phenomena, known as the Arnold tongue. Our theoretical predictions are in good quantitative agreement with the numerical simulations and provide a solid basis for chirality control in excitable media.

  10. Molecular-Level Design of Heterogeneous Chiral Catalysis

    International Nuclear Information System (INIS)

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration

  11. Molecular-Level Design of Heterogeneous Chiral Catalysis

    Energy Technology Data Exchange (ETDEWEB)

    Francisco Zaera

    2012-03-21

    The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration

  12. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  13. Heavy-tailed chiral random matrix theory

    CERN Document Server

    Kanazawa, Takuya

    2016-01-01

    We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.

  14. The quest for chirality

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, W.A. [Department of Chemistry Stanford University, Stanford, California 94305 (United States)

    1996-07-01

    The indispensable role played by homochirality and chiral homogeneity in the self-replication of crucial biomolecules is stressed, with the conclusion that life could neither exist nor originate without these chiral molecular attributes. Hypotheses historically proposed for the origin of chiral molecules on Earth are reviewed, including biogenic theories as well as abiotic theories embracing both indeterminate and determinate mechanisms. Indeterminate mechanisms, including autocatalytic symmetry breaking, asymmetric adsorption on quartz and clay minerals, and asymmetric syntheses in chiral crystals, are discussed and evaluated in the context of the prebiotic environment. Abiotic determinate mechanisms based on electric, magnetic and gravitational fields, on circularly polarized light (CPL), and on parity violation effects are summarized, with the emphasis that only CPL has proved practicable experimentally, but that it would be implausible on the primitive Earth. Mechanisms for the amplification of small, indigenous enantiomeric excesses are discussed, with one involving the partial polymerization of amino acids and the partial hydrolysis of polypeptides suggested as potentially viable prebiotically. Aspects of the turbulent, chirality-destructive primeval environment are described, with the conclusion that all of the above mechanisms for the {ital terrestrial} prebiotic origin of chirality would be non-viable, and that an alternative extraterrestrial source for the accumulation of chiral molecules on primitive Earth must have been operative. A scenario for this is outlined, in which we postulate that asymmetric photolysis of the organic mantles on interstellar grains in molecular clouds by circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae produces chiral molecules in the grain mantles. (Abstract Truncated)

  15. Chiral separation in microflows

    OpenAIRE

    Kostur, Marcin; Schindler, Michael; Talkner, Peter; Hänggi, Peter

    2005-01-01

    Molecules that only differ by their chirality, so called enantiomers, often possess different properties with respect to their biological function. Therefore, the separation of enantiomers presents a prominent challenge in molecular biology and belongs to the ``Holy Grail'' of organic chemistry. We suggest a new separation technique for chiral molecules that is based on the transport properties in a microfluidic flow with spatially variable vorticity. Because of their size the thermal fluctua...

  16. Chiral Odd GPDs

    Directory of Open Access Journals (Sweden)

    Goldstein Gary R.

    2015-01-01

    Full Text Available Nucleon spin structure, transversity and the tensor charge are of central importance to understanding the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the proton via twist 3 GPDs is shown. The “flexible parametrization” of chiral even GPDs is reviewed and its transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on π0 and η electroproduction.

  17. Chiral density wave in nuclear matter

    International Nuclear Information System (INIS)

    Inspired by recent work on inhomogeneous chiral condensation in cold, dense quark matter within models featuring quark degrees of freedom, we investigate the chiral density-wave solution in nuclear matter at zero temperature and nonvanishing baryon number density in the framework of the so-called extended linear sigma model (eLSM). The eLSM is an effective model for the strong interaction based on the global chiral symmetry of quantum chromodynamics (QCD). It contains scalar, pseudoscalar, vector, and axial-vector mesons as well as baryons. In the latter sector, the nucleon and its chiral partner are introduced as parity doublets in the mirror assignment. The eLSM simultaneously provides a good description of hadrons in vacuum as well as nuclear matter ground-state properties. We find that an inhomogeneous phase in the form of a chiral density wave is realized, but only for densities larger than 2.4ρ0, where ρ0 is the nuclear matter ground-state density

  18. The non chiral fusion rules in rational conformal field theories

    CERN Document Server

    Rida, A

    1999-01-01

    We introduce a general method to construct the non chiral fusion rules in rational conformal field theories. We are particularly interested by the models of the complementary series or like-D series which are solutions of modular invariant partition function. The form proposed of the non chiral fusion rules has a structure of Zn grading.

  19. Chiral Boson Theory on the Light-Front

    CERN Document Server

    Srivastava, P P

    1999-01-01

    The {\\it front form} framework for describing the quantized theory of chiral boson is discussed. It avoids the conflict with the requirement of the principle of microcausality as is found in the conventional equal- time treatment. The discussion of the Floreanini-Jackiw model and its modified version for describing the chiral boson becomes very transparent on the light-front.

  20. Relation between color-deconfinement and chiral restoration

    OpenAIRE

    Fukushima, Kenji

    2003-01-01

    We discuss the relation between the Polyakov loop and the chiral order parameter at finite temperature by using an effective model. We clarify why and how the pseudo-critical temperature associated with the Polyakov loop should coincide with that of the chiral condensate.

  1. Spin and Orbital Angular Momentum Distribution Functions of the Nucleon

    OpenAIRE

    Wakamatsu, M.; Watabe, T

    1999-01-01

    A theoretical prediction is given for the spin and orbital angular momentum distribution functions of the nucleon within the framework of an effective quark model of QCD, i.e. the chiral quark soliton model. An outstanding feature of the model is that it predicts fairly small quark spin fraction of the nucleon $\\Delta \\Sigma \\simeq 0.35$, which in turn dictates that the remaining 65% of the nucleon spin is carried by the orbital angular momentum of quarks and antiquarks at the model energy sc...

  2. Chiral diamine-silver(I)-alkene complexes: a quantum chemical and NMR study

    DEFF Research Database (Denmark)

    Kieken, Elsa; Wiest, Olaf; Helquist, Paul; Cucciolito, Maria E.; Flores, Germana; Vitagliano, Aldo; Norrby, Per-Ola

    2005-01-01

    The ability of chiral diamine silver complexes to bind chiral and prochiral alkenes has been analyzed in detail. The stereoselectivity in binding of alkenes to a chiral ethanediamine silver complex has been investigated by NMR. The low-energy conformations of several small model complexes have be...

  3. Bag Model Prediction for the Nucleon's Chiral-odd Twist-3 Distribution $h_L(x,Q^2)$ at High $Q^2$

    CERN Document Server

    Kanazawa, Y; Koike, Yuji

    1997-01-01

    We study the Q^2 evolution of the nucleon's chiral-odd twist-3 distribution h_L(x,Q^2) starting from the MIT bag model calculation. A simple GLAP equation for h_L(x,Q^2) obtained at large N_c is used for the Q^2 evolution. The correction due to the finite value of N_c is O(1/N_c^2)\\sim 10% level. It turns out that the twist-3 contribution to h_L(x,Q^2) is significantly reduced at Q^2=10 GeV^2 in contrast to the g_2(x,Q^2) case. This is due to the fact that the corresponding anomalous dimension for h_L is larger than that for g_2 at small n (spin).

  4. Chiral superfluidity for the heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)

    2013-02-15

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate temperatures (T{sub c}model.

  5. Absence of equilibrium chiral magnetic effect

    CERN Document Server

    Zubkov, M A

    2016-01-01

    We analyse the $3+1$ D equilibrium chiral magnetic effect (CME). We apply derivative expansion to the Wigner transform of the two - point Green function. This technique allows us to express the response of electric current to external electromagnetic field strength through the momentum space topological invariant. We consider the wide class of the lattice regularizations of quantum field theory (that includes, in particular, the regularization with Wilson fermions) and also certain lattice models of solid state physics (including those of Dirac semimetals). It appears, that in these models the mentioned topological invariant vanishes identically at nonzero chiral chemical potential. That means, that the bulk equilibrium CME is absent in those systems.

  6. On the early chiral unification

    International Nuclear Information System (INIS)

    A unified model of electromagnetic, strong and weak interactions based on the semisimple gauge group G=SU(8)sub(L)xSU(8)sub(R) is presented. Leptons and fractionally charged quarks are asigned to fundamental representations Fsub(L)=(usub(i)dsub(i)νsub(e)e)sub(L), Fsub(R)(usub(i)dsub(i)νsub(e)e)sub(R) and similarly for the other families. The model leads to low unification mass M=106-108 GeV and admissible value for the Weinberg parameter sin2THETAsub(W)=1/3. The model contains chiral colour group SU(3)sub(L)xSU(3)sub(R) and permits the existence of light axial gluons (msub(A) approximately 1 GeV) alongside with the massless vector gluons. The barion number is conserved in the model. Triangular anomalies are absent when mirror fermions of opposite chirality are added. The model admits the hierarchy of symmetry breaking and presence of intermediate scales Msub(n) so that Msub(W)<< Msub(n)<< M. In the low energy region the results of Salam-Weinberg model are reproduced

  7. Spontaneous chiral symmetry breaking in collective active motion

    Science.gov (United States)

    Breier, Rebekka E.; Selinger, Robin L. B.; Ciccotti, Giovanni; Herminghaus, Stephan; Mazza, Marco G.

    2016-02-01

    Chiral symmetry breaking is ubiquitous in biological systems, from DNA to bacterial suspensions. A key unresolved problem is how chiral structures may spontaneously emerge from achiral interactions. We study a simple model of active swimmers in three dimensions that effectively incorporates hydrodynamic interactions. We perform large-scale molecular dynamics simulations (up to 106 particles) and find long-lived metastable collective states that exhibit chiral organization although the interactions are achiral. We elucidate under which conditions these chiral states will emerge and grow to large scales. To explore the complex phase space available to the system, we perform nonequilibrium quenches on a one-dimensional Lebwohl-Lasher model with periodic boundary conditions to study the likelihood of formation of chiral structures.

  8. Chiral rings and anomalies in supersymmetric gauge theory

    International Nuclear Information System (INIS)

    Motivated by recent work of Dijkgraaf and Vafa, we study anomalies and the chiral ring structure in a supersymmetric U(N) gauge theory with an adjoint chiral superfield and an arbitrary superpotential. A certain generalization of the Konishi anomaly leads to an equation which is identical to the loop equation of a bosonic matrix model. This allows us to solve for the expectation values of the chiral operators as functions of a finite number of 'integration constants'. From this, we can derive the Dijkgraaf-Vafa relation of the effective superpotential to a matrix model. Some of our results are applicable to more general theories. For example, we determine the classical relations and quantum deformations of the chiral ring of N=1 super Yang-Mills theory with SU(N) gauge group, showing, as one consequence, that all supersymmetric vacua of this theory have a nonzero chiral condensate. (author)

  9. Chiral anomalies and differential geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  10. Molecular-level Design of Heterogeneous Chiral Catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Gellman, Andrew John [Carnegie Mellon University; Sholl, David S. [Georgia Institute of Technology; Tysoe, Wilfred T. [University of Wisconsin - Milwaukee; Zaera, Francisco [University of California at Riverside

    2013-04-28

    Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111

  11. Chiral Invariance of Massive Fermions

    OpenAIRE

    Das, A.(University of Arizona, Tucson, AZ, 85721, USA); Hott, M

    1994-01-01

    We show that a massive fermion theory, while not invariant under the conventional chiral transformation, is invariant under a $m$-deformed chiral transformation. These transformations and the associated conserved charges are nonlocal but reduce to the usual transformations and charges when $m=0$. The $m$-deformed charges commute with helicity and satisfy the conventional chiral algebra.

  12. Chiral Synthons in Pesticide Syntheses

    NARCIS (Netherlands)

    Feringa, Bernard

    1988-01-01

    The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the implicatio

  13. Chiral Electroweak Currents in Nuclei

    CERN Document Server

    Riska, D O

    2016-01-01

    The development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown's role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  14. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  15. Chiral Quantum Optics

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter

    2016-01-01

    At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...

  16. Dimensional structural constants from chiral and conformal bosonization of QCD

    CERN Document Server

    Andrianov, A A; Ebert, D; Mann, T F; Mann, Th. Feld

    1997-01-01

    We derive the dimensional non-perturbative part of the QCD effective ac= tion for scalar and pseudoscalar meson fields by means of chiral and conformal bosonization. The related structural coupling constants L_5 and L_8 of th= e chiral lagrangian are estimated using general relations which are valid i= n a variety of chiral bosonization models without explicit reference to model parameters. The asymptotics for large scalar fields in QCD is elaborated,= and model-independent constraints on dimensional coupling constants of the effective meson lagrangian are evaluated. We determine also the interacti= on between scalar quarkonium and the gluon density and obtain the scalar glueball-quarkonium potential.

  17. Weighted power counting and chiral dimensional regularization

    CERN Document Server

    Anselmi, Damiano

    2014-01-01

    We define a modified dimensional-regularization technique that overcomes several difficulties of the ordinary technique, and is specially designed to work efficiently in chiral and parity violating quantum field theories, in arbitrary dimensions greater than 2. When the dimension of spacetime is continued to complex values, spinors, vectors and tensors keep the components they have in the physical dimension, therefore the gamma matrices are the standard ones. Propagators are regularized with the help of evanescent higher-derivative kinetic terms, which are of Majorana type in the case of chiral fermions. If the new terms are organized in a clever way, weighted power counting provides an efficient control on the renormalization of the theory, and allows us to show that the resulting chiral dimensional regularization is consistent to all orders. The new technique considerably simplifies the proofs of properties that hold to all orders, and makes them suitable to be generalized to wider classes of models. Typica...

  18. Physical properties of the chiral quantum baryon

    International Nuclear Information System (INIS)

    It is presented an account to understand the quantum chiral baryon, which a stable chiral soliton with baryon number one obtained after first quantization by collective coordinates. Starting from the exact series solution to the non-linear sigma model with the hedge-hog configuration, the values of several physical quantities (mass, axial weak coupling, gyromagnetic ratios and radii) as a function of the order of Pade approximants used as approximanted representations of the solution, are calculated. It turns out that consistent results may be obtained, but a better approximation should be developed. (author)

  19. Probing Chiral Interactions in Light Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P

    2004-01-08

    Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.

  20. Baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.