Polarized antiquark distributions from chiral quark-soliton model summary of the results
Göke, K; Polyakov, M V; Urbano, D
2000-01-01
In these short notes we present a parametrization of the results obtained in the chiral quark-soliton model for polarized antiquark distributions $\\Delta\\bar u$, $\\Delta\\bar d$ and $\\Delta\\bar s$ at a low normalization point around mu=0.6 GeV.
Quark distribution functions in the chiral quark-soliton model cancellation of quantum anomalies
Göke, K; Polyakov, M V; Schweitzer, P; Urbano, D
2001-01-01
In the framework of the chiral quark-soliton model of the nucleon we investigate the properties of the polarized quark distribution. In particular we analyse the so called anomalous difference between the representations of the quark distribution functions in terms of occupied and non-occupied quark states. By an explicit analytical calculation it is shown that this anomaly is absent in the polarized isoscalar distribution \\Delta u + \\Delta d, which is ultaviolet finite. In the case of the polarized isovector quark distribution which is also needed for the regularization of the ultraviolet divergence.
The electroproduction of the $\\Delta$(1232) in the chiral quark-soliton model
Silva, A; Watabe, T; Fiolhais, M; Göke, K
2000-01-01
We calculate the ratios E2/M1 and C2/M1 for the electroproduction of the magnetic dipole amplitude M1 is also presented. The theory used is the chiral quark-soliton model, which is based in the instanton vaccum of the QCD. The calculations are performed in flavor SU(2) and SU(3) taking rotational ($1/N_c$) corrections into account. The results for the ratios agree qualitatively with the available data, although the magnitude of both ratios seems to underestimate the latest experimental results.
Silva, A; Urbano, D; Göke, K; Silva, Antonio; Kim, Hyun-CHul; Urbano, Diana; Goeke, Klaus
2005-01-01
We investigate three different axial-vector form factors of the nucleon, $G_A^{0}$, $G_A^3$, $G_A^8$, within the framework of the SU(3) chiral quark-soliton model, emphasizing their strangeness content. We take into account the rotational $1/N_c$ and linear strange quark ($m_s$) contributions using the symmetry-conserving SU(3) quantization and assuming isospin symmetry. The strange axial-vector form factor is also obtained and they all are discussed in the context of the parity-violating scattering of polarized electrons off the nucleon and its relevance to the strange vector form factors.
Silva, Antonio; Kim, Hyun-Chul
2013-01-01
We investigate the flavor decomposition of the electromagnetic form factors of the nucleon, based on the chiral quark-soliton model with symmetry-conserving quantization. We consider the rotational 1/N_c and linear strange-quark mass (m_s) corrections. To extend the results to higher momentum transfer, we take into account the kinematical relativistic effects. We discuss the results of the flavor-decomposed electromagnetic form factors in comparison with the recent experimental data. In order to see the effects of the strange quark, we compare the SU(3) results with those of SU(2). We finally discuss the transverse charge densities for both unpolarized and polarized nucleons.
Göke, K; Ossmann, J; Schweitzer, P; Silva, A; Urbano, D
2007-01-01
The nucleon form factors of the energy-momentum tensor are studied in the large-Nc limit in the framework of the chiral quark-soliton model for model parameters that simulate physical situations in which pions are heavy. This allows for a direct comparison to lattice QCD results.
The B=2 system in the chiral quark-soliton model with broken scale invariance
Sarti, Valentina Mantovani; Vento, Vicente
2013-01-01
We study the interaction between two B=1 states in the Chiral-Dilaton Model with scale invariance where baryons are described as non-topological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for the B=1 states we construct, via a product ansatz, three possible B=2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics. We investigate the behaviour of these solutions in the range of long and intermediate distances between the two solitons. Since the product ansatz breaks down as the two solitons get close, we explore the short range distances regime by building up a six quarks bag and by evaluating the interaction energy as a function of the inter-soliton separation. We calculate the interaction energy as a function of the inter-soliton distance for the B=2 system and we show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations conne...
Ossmann, J; Schweitzer, P; Urbano, D; Göke, K
2004-01-01
The unpolarized spin-flip isoscalar generalized parton distribution function (E^u+E^d)(x,xi,t) is studied in the large-Nc limit at a low normalization point in the framework of the chiral quark-soliton model. This is the first study of generalized parton distribution functions in this model, which appear only at the subleading order in the large-Nc limit. Particular emphasis is put therefore on the demonstration of the theoretical consistency of the approach. The forward limit of (E^u+E^d)(x,xi,t) of which only the first moment -- the anomalous isoscalar magnetic moment of the nucleon -- is known phenomenologically, is computed numerically. Observables sensitive to (E^u+E^d)(x,xi,t) are discussed.
Silva, A; Kim, H C; Urbano, D; Goeke, Klaus; Kim, Hyun-Chul; Silva, Antonio; Urbano, Diana
2006-01-01
We investigate parity-violating electroweak asymmetries in the elastic scattering of polarized electrons off protons within the framework of the chiral quark-soliton model ($\\chi$QSM). We use as input the former results of the electromagnetic and strange form factors and newly calculated SU(3) axial-vector form factors, all evaluated with the same set of four parameters adjusted several years ago to general mesonic and baryonic properties. Based on this scheme, which yields positive electric and magnetic strange form factors with a $\\mu_s=(0.08-0.13)\\mu_N$, we determine the parity-violating asymmetries of elastic polarized electron-proton scattering. The results are in a good agreement with the data of the A4, HAPPEX, and SAMPLE experiments and reproduce the full $Q^2$-range of the G0-data. We also predict the parity-violating asymmetries for the backward G0 experiment.
Hyun, Chang Ho; Lee, Hee-Jung
2016-01-01
We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.
The twist-3 parton distribution function e(x) in large-Nc chiral theory
Cebulla, C; Schweitzer, P; Urbano, D
2007-01-01
The chirally-odd twist-3 parton distribution function e(x) of the nucleon is studied in the large-Nc limit in the framework of the chiral quark-soliton model. It is demonstrated that in spite of properties not shared by other distribution functions, namely the appearance of a delta(x)-singularity and quadratic divergences in e(x), an equally reliable calculation is possible. Among the most remarkable results obtained in this work is the fact that the coefficient of the delta(x)-singularity can be computed exactly in this model, avoiding involved numerics. Our results complete existing studies in literature.
Molecular model for chirality phenomena.
Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G
2016-10-21
Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.
Rossi, P; Rossi, Paolo; Tan, Chung I
1995-01-01
Principal chiral models on a d-1 dimensional simplex are introduced and studied analytically in the large N limit. The d = 0 , 2, 4 and \\infty models are explicitly solved. Relationship with standard lattice models and with few-matrix systems in the double scaling limit are discussed.
Indian Academy of Sciences (India)
H Weigel
2003-11-01
In this talk I review studies of hadron properties in bosonized chiral quark models for the quark ﬂavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.
Generalized simplicial chiral models
Alimohammadi, M
2000-01-01
Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, we generalize the simplicial chiral models by replacing the term Tr$(AA^{\\d})$ in the Lagrangian of these models, by an arbitrary class function of $AA^{\\d}; V(AA^{\\d})$. This is the same method that has been used in defining the generalized two-dimensional Yang-Mills theories (gYM_2) from ordinary YM_2. We call these models, the " generalized simplicial chiral models ". With the help of the results of one-link integral over a U(N) matrix, we compute the large-N saddle-point equations for eigenvalue density function $\\ro (z)$ in the weak ($\\b >\\b_c$) and strong ($\\b <\\b_c$) regions. In d=2, where the model somehow relates to gYM_2 theory, we solve the saddle-point equations and find $\\ro (z)$ in two region, and calculate the explicit value of critical point $\\b_c$ for $V(B)=TrB^n (B=AA^{\\d})$. For $V(B)=Tr B^2,Tr B^3$ and Tr$B^4$, we study the critical behaviour of the model at d=2, and by calculating t...
Wang, X J; Wang, Xiao-Jun; Yan, Mu-Lin
1999-01-01
We study SU(3)$_L\\timesSU(3)_R$ chiral quark model of mesons up to next leading order of $1/N_c$ expansion. Composite vector and axial-vector mesons resonances are introduced via non-linear realization of chiral SU(3) and vector meson dominant. Effects of one-loop graphs of pseudoscalar, vector and axial-vector mesons is calculated systematically and the significant results are obtained. Correction of effective gluon interaction is studied too. The light quark masses are introduced via new mechanism which agree with phenomenology and the requirement of chiral symmetry. Up to powers four of derivatives, chiral effective lagrangian of mesons is derived and evaluated to next leading order of $1/N_c$. Low energy limit of the model is examined. Ten low energy coupling constants $L_i(i=1,2,...,10)$ in ChPT are obtained and agree with ChPT well.
Energy Technology Data Exchange (ETDEWEB)
Rahaman, Anisur, E-mail: anisur.rahman@saha.ac.in
2015-10-15
The vector type of interaction of the Thirring–Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring–Wess model in Rahaman (2015). The model was studied there with a Faddeevian class of regularization. Few ambiguity parameters were allowed there with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring–Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remains exactly solvable but also does not lose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model have been determined in the present scenario. The theoretical spectrum is found to contain a massive boson with ambiguity free mass and a massless boson.
Principal chiral model on superspheres
Energy Technology Data Exchange (ETDEWEB)
Mitev, V.; Schomerus, V. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Quella, T. [Amsterdam Univ. (Netherlands). Inst. for Theoretical Physics
2008-09-15
We investigate the spectrum of the principal chiral model (PCM) on odd-dimensional superspheres as a function of the curvature radius R. For volume-filling branes on S{sup 3} {sup vertical} {sup stroke} {sup 2}, we compute the exact boundary spectrum as a function of R. The extension to higher dimensional superspheres is discussed, but not carried out in detail. Our results provide very convincing evidence in favor of the strong-weak coupling duality between supersphere PCMs and OSP(2S+2 vertical stroke 2S) Gross-Neveu models that was recently conjectured by Candu and Saleur. (orig.)
An Extended Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANG Zong-Ye; YU You-Wen; WANG Ping; DAI Lian-Rong
2003-01-01
The chiral SU(3) quark model is extended by including the vector meson exchanges to describe the short range interactions. The phase shifts of NN scattering are studied in this model. Compared with the results of the chiral SU(3) quark model in which only the pseudo-scalar and scalar chiralfields are considered, the phase shifts of 1 So wave are obviously improved.
Chiral dynamics of baryons in the perturbative chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Pumsa-ard, K.
2006-07-01
In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints
Lambda Hypernuclei in a Chiral Hadronic Model
Institute of Scientific and Technical Information of China (English)
LIANG Yin-Hua; GUO Hua
2005-01-01
@@ Nuclear matter calculations in a chiral hadronic model have been performed. It has been found that the scalar and the vector potentials and binding energies per nucleon in the chiral hadronic model are very close to those of the microscopic relativistic Brueckner-Hartree-Fock calculations. The good results for finite nuclei can be obtained in the mean field approximation only if scalar mass ms and coupling constant gs have been improved with the fixed values of cs2 ≡ g2s(M/ms)2 as those given by the original parameter sets of the chiral hadronic model. Then the chiral hadronic model is extended to lambda hypernuclei. Our results predicted by the chiral hadronic model are compared with those by the nonlinear Walecka model. It has been shown that the hadronic model can also be used to describe lambda hypernuclei successfully.
NN Interaction in Chiral Constituent Quark Models
Valcarce, A; González, P
2003-01-01
We review the actual state in the description of the NN interaction by means of chiral constituent quark models. We present a series of relevant features that are nicely explained within the quark model framework.
Chiral Lagrangian and chiral quark model from confinement in QCD
Simonov, Yu A
2015-01-01
The effective chiral Lagrangian in both nonlocal form $L_{ECCL}$ and standard local form $L_{ECL}$ are derived in QCD using the confining kernel, obtained in the vacuum correlator formalism. As a result all coefficients of $L_{ECL}$ can be computed via $q\\bar q$ Green's functions. In the $p^2$ order of $L_{ECL}$ one obtains GOR relations and quark decay constants $f_a$ are calculated $a=1,...8$, while in the $p^4$ order the coefficients $L_1, L_2, L_3,L_4, L_5, L_6$ are obtained in good agreement with the values given by data. The chiral quark model is shown to be a simple consequence of $L_{ECCL}$ with defined coefficients. It is demonstrated that $L_{ECCL}$ gives an extension of the limiting low-energy Lagrangian $L_{ECL}$ to arbitrary momenta.
The Chiral Dipolar Hard Sphere Model.
Mazars, Martial
2009-01-01
Abstract A simple molecular model of chiral molecules is presented in this paper : the chiral dipolar hard sphere model. The discriminatory interaction between enantiomers is represented by electrostatic (or magnetic) dipoles-dipoles interactions : short ranged steric repulsion are represented by hard sphere potential and, in each molecule, two point dipoles are located inside the sphere. The model is described in detail and some of its elementary properties are given ; in particul...
Random matrix model approach to chiral symmetry
Verbaarschot, J J M
1996-01-01
We review the application of random matrix theory (RMT) to chiral symmetry in QCD. Starting from the general philosophy of RMT we introduce a chiral random matrix model with the global symmetries of QCD. Exact results are obtained for universal properties of the Dirac spectrum: i) finite volume corrections to valence quark mass dependence of the chiral condensate, and ii) microscopic fluctuations of Dirac spectra. Comparisons with lattice QCD simulations are made. Most notably, the variance of the number of levels in an interval containing $n$ levels on average is suppressed by a factor $(\\log n)/\\pi^2 n$. An extension of the random matrix model model to nonzero temperatures and chemical potential provides us with a schematic model of the chiral phase transition. In particular, this elucidates the nature of the quenched approximation at nonzero chemical potential.
A Molecular Model for Chiral Symmetry Breaking
Latinwo, Folarin; Stillinger, Frank; Debenedetti, Pablo
In this work, we present a new class of molecular models for chiral phenomena in condensed matter systems. A key feature of these models is the ability of the four-site (tetramer) ``molecules'' to inter-convert between two distinct chiral forms (enantiomers). Given this feature, we use analytical theory and computer simulations to investigate the emergent chiral properties (including symmetry breaking) over a range of conditions. In particular, we consider the single-molecule level and condensed-phase behavior of our model system. Interestingly, we find that our liquid-phase predictions are in excellent agreement with recent experimental reports on chiral self-sorting in isotropic liquids. From this perspective, our model demonstrates accurate predictive capabilities, as well as a platform for understanding the microscopic origins of a variety of chiral phenomena. In a broader context, we anticipate that this class of models will be relevant to chirality-dominated areas such as the pharmaceutical industry and pre-biotic geochemistry.
Pentaquarks in chiral color dielectric model
Indian Academy of Sciences (India)
S C Pathak
2006-04-01
Recent experiments indicate that a narrow baryonic state having strangeness +1 and mass of about 1540 MeV may be existing. Such a state was predicted in chiral model by Diakonov et al. In this work I compute the mass and width of this state in chiral color dielectric model. I show that the computed width is about 30 MeV. I find that the mass of the state can be fitted to the experimentally observed mass by invoking a color neutral vector field and its interaction with the quarks.
Transverse-momentum dependent parton distribution functions beyond leading twist in quark models
Lorcé, C; Schweitzer, P
2014-01-01
Higher-twist transverse momentum dependent parton distribution functions (TMDs) are a valuable probe of the quark-gluon dynamics in the nucleon, and play a vital role for the explanation of sizable azimuthal asymmetries in hadron production from unpolarized and polarized deep-inelastic lepton-nucleon scattering observed in experiments at CERN, DESY and Jefferson Lab. The associated observables are challenging to interpret, and still await a complete theoretical explanation, which makes guidance from models valuable. In this work we establish the formalism to describe unpolarized higher-twist TMDs in the light-front framework based on a Fock-space expansion of the nucleon state in terms of free on-shell parton states. We derive general expressions and present numerical results in a practical realization of this picture provided by the light-front constituent quark model. We review several other popular quark model approaches including free quark ensemble, bag, spectator and chiral quark-soliton model.
Chiral quark model with relativistic kinematics
Garcilazo, H
2003-01-01
The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.
Structure functions in the chiral bag model
Energy Technology Data Exchange (ETDEWEB)
Sanjose, V.; Vento, V.
1989-07-13
We calculate the structure functions of an isoscalar nuclear target for the deep inelastic scattering by leptons in an extended version of the chiral bag model which incorporates the qanti q structure of the pions in the cloud. Bjorken scaling and Regge behavior are satisfied. The model calculation reproduces the low-x behavior of the data but fails to explain the medium- to large-x behavior. Evolution of the quark structure functions seem inevitable to attempt a connection between the low-energy models and the high-energy behavior of quantum chromodynamics. (orig.).
Quasitriangular chiral WZW model in a nutshell
Klimcík, C
2001-01-01
We give the bare-bone description of the quasitriangular chiral WZW model for the particular choice of the Lu-Weinstein-Soibelman Drinfeld double of the affine Kac-Moody group. The symplectic structure of the model and its Poisson-Lie symmetry are completely characterized by two $r$-matrices with spectral parameter. One of them is ordinary and trigonometric and characterizes the $q$-current algebra. The other is dynamical and elliptic (in fact Felder's one) and characterizes the braiding of $q$-primary fields.
Strange Hadronic Matter in a Chiral Model
Institute of Scientific and Technical Information of China (English)
ZHANG Li-Liang; SONG Hong-Qiu; WANG Ping; SU Ru-Keng
2000-01-01
The strange hadronic matter with nucleon, Λ-hyperon and E-hyperon is studied by using a chiral symmetry model in a mean-field approximation. The saturation properties and stabilities of the strange hadronic matter are discussed. The result indicates a quite large strangeness fraction (fs) region where the strange hadronic matter is stable against particle emission. In the large fs region, the component dominates, resulting in a deep minimum in the curve of the binding energy per baryon EB versus the strangeness fraction fs with (EB, fs) -～ (-26.0MeV, 1.23).
Dihyperons in chiral color dielectric model
Indian Academy of Sciences (India)
S C Phatak
2003-11-01
The mass of the dibaryon having spin, parity =0+, isospin = 0 and strangeness -2 is computed using chiral color dielectric model. The bare wave function is constructed as a product of two color-singlet three-quark clusters and then it is properly antisymmetrized by considering appropriate exchange operators for spin, ﬂavor and color. Color magnetic energy due to gluon exchange, meson self energy and energy correction due to center of mass motion are computed. The calculation shows that the mass of the particle is 80 to 160 MeV less than twice mass.
Charge fluctuations in chiral models and the QCD phase transition
Skokov, V; Karsch, F; Redlich, K
2011-01-01
We consider the Polyakov loop-extended two flavor chiral quark--meson model and discuss critical phenomena related with the spontaneous breaking of the chiral symmetry. The model is explored beyond the mean-field approximation in the framework of the functional renormalisation group. We discuss properties of the net-quark number density fluctuations as well as their higher cumulants. We show that with the increasing net-quark number density, the higher order cumulants exhibit a strong sensitivity to the chiral crossover transition. We discuss their role as probes of the chiral phase transition in heavy-ion collisions at RHIC and LHC.
Moduli stabilisation for chiral global models
Energy Technology Data Exchange (ETDEWEB)
Cicoli, Michele [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Abdus Salam International Centre for Theoretical Physics, Trieste (Italy); Mayrhofer, Christoph [Heidelberg Univ. (Germany). Inst. fuer Theoretische Physik; Valandro, Roberto [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik
2011-10-15
We combine moduli stabilisation and (chiral) model building in a fully consistent global set-up in Type IIB/F-theory. We consider compactifications on Calabi-Yau orientifolds which admit an explicit description in terms of toric geometry. We build globally consistent compactifications with tadpole and Freed-Witten anomaly cancellation by choosing appropriate brane set-ups and world-volume fluxes which also give rise to SU(5)- or MSSM-like chiral models. We fix all the Kaehler moduli within the Kaehler cone and the regime of validity of the 4D effective field theory. This is achieved in a way compatible with the local presence of chirality. The hidden sector generating the non-perturbative effects is placed on a del Pezzo divisor that does not have any chiral intersections with any other brane. In general, the vanishing D-term condition implies the shrinking of the rigid divisor supporting the visible sector. However, we avoid this problem by generating r
Circular dichroism of graphene oxide： the chiral structure model
Institute of Scientific and Technical Information of China (English)
Jing CAO; Hua-Jie YIN; Rui SONG
2013-01-01
We have observed the circular dichroism signal of dilute graphene oxide （GO）, then systematically investigated the chirality of GO and established a probable chiral unit model, This study may open up a new field for understanding the structure of GO and lay the foundation for fabrication of GO-based materials.
Chirality on Surfaces: Modeling and Behaviour.
Energy Technology Data Exchange (ETDEWEB)
Paci, Irina; Szleifer, Igal; Ratner, Mark A.
2007-09-01
The research described in this product was performed in part in the Environmental Molecular Sciences Laboratory, a national scientific user facility sponsored by the Department of Energy's Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. Chirality has been a fascinating topic in chemistry, ever since its first observation by Biot in 1815. Its molecular basis was first understood by Pasteur in 1848. Enantiomers, identical in every way but mirror-images of each other, have similar physical properties, behave identically in chemical reactions with achiral molecules, but have very different interactions with chiral molecules. In recent decades, chirality has become an important direction in pharmaceutical research, as many drugs have stereoselective activity. This review focuses on a new aspect of chiral resolution on solid surfaces, and relationships between molecular structure, thermodynamic effects, and the result of chiral surface self-organization.
On SU(3 Effective Models and Chiral Phase Transition
Directory of Open Access Journals (Sweden)
Abdel Nasser Tawfik
2015-01-01
Full Text Available Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL model and Polyakov linear sigma-model (PLSM has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM a gluonic sector is integrated into LSM. The hadron resonance gas (HRG model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.
Thirring Model with Non-conserved Chiral Charge
Cabra, D C; Naón, C M
1994-01-01
We study the Abelian Thirring Model when the fermionic fields have non-conserved chiral charge: $\\Delta {\\cal Q}_5 =N$. One of the main features we find for this model is the dependence of the Virasoro central charge on both the Thirring coupling constant and $N$. We show how to evaluate correlation functions and in particular we compute the conformal dimensions for fermions and fermionic bilinears, which depend on the fermionic chiral charge. Finally we build primary fields with arbitrary conformal weight.
Ogino, Yoshiyuki; Asahi, Toru
2015-05-21
In this study, systems of complicated pathways involved in chiral drug metabolism were investigated. The development of chiral drugs resulted in significant improvement in the remedies available for the treatment of various severe sicknesses. Enantiopure drugs undergo various biological transformations that involve chiral inversion and thus result in the generation of multiple enantiomeric metabolites. Identification of the specific active substances determining a given drug׳s efficacy among such a mixture of different metabolites remains a challenge. To comprehend this complexity, we constructed a mathematical model representing the complicated metabolic pathways simultaneously involving chiral inversion. Moreover, this model is applied to the metabolism of thalidomide, which has recently been revived as a potentially effective prescription drug for a number of intractable diseases. The numerical simulation results indicate that retained chirality in the metabolites reflects the original chirality of the unmetabolized drug, and a higher level of enantiomeric purity is preserved during spontaneous degradation. In addition, chirality remaining after equilibration is directly related to the rate constant not only for chiral inversion but also for generation and degradation. Furthermore, the retention of chirality is quantitatively predictable using this combination of kinetic parameters. Our simulation results well explain the behavior of thalidomide in the practical biological experimental data. Therefore, this model promises a comprehensive understanding of dynamic metabolic systems involving chiral drugs that express multiple enantiospecific drug efficacies.
Chiral symmetry and the constituent quark model
Glozman, L Ya
1995-01-01
New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.
Baryons in chiral constituent quark model
Glozman, L Ya
1996-01-01
Beyond the spontaneous chiral symmetry breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a flavor-spin chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks. One cannot exclude, however, the possibility that this flavor-spin interaction has an appreciable vector- and higher meson exchange component.
Parton distributions for the pion in a chiral quark model
Ruiz-Arriola, E
2001-01-01
Parton distributions for the pion are studied in a chiral quark model characterized by a quark propagator for which a spectral representation is assumed. Electromagnetic and chiral symmetry constraints are imposed through the relevant Ward-Takahashi identities for flavoured vertex functions. Finiteness of the theory, requires the spectral function to be non-positive definite. Straightforward calculation yields the result that the pion structure function becomes one in the chiral limit, regardless of the details of the spectral function. LO and NLO evolution provide a satisfactory description of phenomenological parameterizations of the valence distribution functions but fails to describe gluon and sea distributions.
On SU(3) effective models and chiral phase-transition
Tawfik, Abdel Nasser
2015-01-01
The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...
Nucleon polarizabilities in the perturbative chiral quark model
Dong, Y; Gutsche, T; Kuckei, J; Lyubovitskij, V E; Pumsa-ard, K; Shen, P; Faessler, Amand; Gutsche, Th.
2006-01-01
The nucleon polarizabilities alpha(E) and beta(M) are studied in the context of the perturbative chiral quark model. We demonstrate that meson cloud effects are sufficient to explain the electric polarizability of nucleon. Contributions of excite quark states to the paramagnetic polarizability are dominant and cancel the diamagnetic polarizability arising from the chiral field. The obtained results are compared to data and other theoretical predictions.
KN Phase Shifts in Chiral SU（3） Quark Model
Institute of Scientific and Technical Information of China (English)
HUANGFei; ZHANGZong-Ye; YUYou-Wen
2004-01-01
The isospin I = 0 and I = 1 kaon-nucleon S and P partial waves phase shifts have been studied in the chiral SU(3) quark model by solving a resonating group method equation. When the parameters of the chiral fields are taken in a reasonable region, the numerical results of S-wave are in good agreement with the experimental data, and the P-wave phase shifts can also be explained qualitatively by the calculation of only central force considered.
Characteristics of the chiral phase transition in nonlocal quark models
Dumm, D G
2004-01-01
The characteristics of the chiral phase transition are analyzed within the framework of chiral quark models with nonlocal interactions in the mean field approximation (MFA). In the chiral limit, we show that there is a region of low values of the chemical potential in which the transition is a second order one. In that region, it is possible to perform a Landau expansion and determine the critical exponents which, as expected, turn out to be the MFA ones. Our analysis also allows to obtain semi-analytical expressions for the transition curve and the location of the tricritical point. For the case of finite current quark masses, we study the behavior of various thermodynamical and chiral response functions across the phase transition.
Chiral Dynamics of Baryons in a Lorentz Covariant Quark Model
Faessler, A; Lyubovitskij, V E; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.
2006-01-01
We develop a manifestly Lorentz covariant chiral quark model for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons. The approach is based on a non-linear chirally symmetric Lagrangian, which involves effective degrees of freedom - constituent quarks and the chiral (pseudoscalar meson) fields. In a first step, this Lagrangian can be used to perform a dressing of the constituent quarks by a cloud of light pseudoscalar mesons and other heavy states using the calculational technique of infrared dimensional regularization of loop diagrams. We calculate the dressed transition operators with a proper chiral expansion which are relevant for the interaction of quarks with external fields in the presence of a virtual meson cloud. In a second step, these dressed operators are used to calculate baryon matrix elements. Applications are worked out for the masses of the baryon octet, the meson-nucleon sigma terms, the magnetic moments of the baryon octet, the nucleon charge...
Yu, Lang; Huang, Mei
2015-01-01
We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.
Chiral soliton model vs. pentaquark structure for (1540)
Indian Academy of Sciences (India)
R Ramachandran
2005-09-01
The exotic baryon + (1540 MeV) is visualized as an expected (iso) rotational excitation in the chiral soliton model. It is also argued as a pentaquark baryon state in a constituent quark model with strong diquark correlations. I contrast these two points of view; observe the similarities and differences between the two pictures. Collective excitation, the characteristic of chiral soliton model, points toward small mixing of representations in the wake of (3) breaking. In contrast, constituent quark models prefer near `ideal' mixing, similar to - mixing.
Relation Between Chiral Susceptibility and Solutions of Gap Equation in Nambu--Jona-Lasinio Model
Zhao, Y; Liu, Y; Yuan, W; Chang, Lei; Liu, Yu-xin; Yuan, Wei; Zhao, Yue
2006-01-01
We study the solutions of the gap equation, the thermodynamic potential and the chiral susceptibility in and beyond the chiral limit at finite chemical potential in the Nambu--Jona-Lasinio (NJL) model. We give an explicit relation between the chiral susceptibility and the thermodynamic potential in the NJL model. We find that the chiral susceptibility is a quantity being able to represent the furcation of the solutions of the gap equation and the concavo-convexity of the thermodynamic potential in NJL model. It indicates that the chiral susceptibility can identify the stable state and the possibility of the chiral phase transition in NJL model.
Spontaneous magnetization of the integrable chiral Potts model
Energy Technology Data Exchange (ETDEWEB)
Au-Yang, Helen; Perk, Jacques H H, E-mail: helenperk@yahoo.com, E-mail: perk@okstate.edu [Department of Physics, Oklahoma State University, 145 Physical Sciences, Stillwater, OK 74078-3072 (United States)
2011-11-04
We show how Z-invariance in the chiral Potts model provides a strategy to calculate the pair correlation in the general integrable chiral Potts model using only the superintegrable eigenvectors. When the distance between the two spins in the correlation function becomes infinite it becomes the square of the order parameter. In this way, we show that the spontaneous magnetization can be expressed in terms of the inner products of the eigenvectors of the N asymptotically degenerate maximum eigenvalues. Using our previous results on these eigenvectors, we are able to obtain the order parameter as a sum almost identical to the one given by Baxter. This gives the known spontaneous magnetization of the chiral Potts model by an entirely different approach. (paper)
Spontaneous Magnetization of the Integrable Chiral Potts Model
Au-Yang, Helen
2010-01-01
We show how $Z$-invariance in the chiral Potts model provides a strategy to calculate the pair correlation in the general integrable chiral Potts model using only the superintegrable eigenvectors. When the distance between the two spins in the correlation function becomes infinite it becomes the square of the order parameter. In this way, we show that the spontaneous magnetization can be expressed in terms of the inner products of the eigenvectors of the $N$ asymptotically degenerate maximum eigenvalues. Using our previous results on these eigenvectors, we are able to obtain the order parameter as a sum almost identical to the one given by Baxter. This gives the known spontaneous magnetization of the chiral Potts model by an entirely different approach.
Distinguishing Standard Model Extensions using Monotop Chirality at the LHC
Allahverdi, Rouzbeh; Dutta, Bhaskar; Gao, Yu; Kamon, Teruki
2015-01-01
We present two minimal extensions of the standard model that gives rise to baryogensis and include heavy color-triplet scalars interacting with a light Majorana fermion that can be the dark matter (DM) candidate. The electroweak charges of the new scalars govern their couplings to quarks of different chirality, which leads to different collider signals. These models predict monotop events at the LHC and the energy spectrum of decay products of highly polarized top quarks can be used to establish the chiral nature of the interactions involving the heavy scalars and the DM.
Dissipative vibrational model for chiral recognition in olfaction
Tirandaz, Arash; Taher Ghahramani, Farhad; Shafiee, Afshin
2015-09-01
We examine the olfactory discrimination of left- and right-handed enantiomers of chiral odorants based on the odorant-mediated electron transport from a donor to an acceptor of the olfactory receptors embodied in a biological environment. The chiral odorant is effectively described by an asymmetric double-well potential whose minima are associated to the left- and right-handed enantiomers. The introduced asymmetry is considered an overall measure of chiral interactions. The biological environment is conveniently modeled as a bath of harmonic oscillators. The resulting spin-boson model is adapted by a polaron transformation to derive the corresponding Born-Markov master equation with which we obtain the elastic and inelastic electron tunneling rates. We show that the inelastic tunneling through left- and right-handed enantiomers occurs with different rates. The discrimination mechanism depends on the ratio of tunneling frequency to localization frequency.
Chiral transition, eigenmode localisation and Anderson-like models
Giordano, Matteo; Pittler, Ferenc
2016-01-01
We discuss chiral symmetry restoration and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We argue that the features of QCD relevant to both phenomena are the presence of order in the Polyakov line configuration, and the correlations that this induces between spatial links across time slices. This ties the fate of chiral symmetry and of localisation of the lowest Dirac eigenmodes to the confining properties of the theory. We then show numerical results obtained in a QCD-inspired Anderson-like toy model, derived by radically simplifying the QCD dynamics while keeping the important features mentioned above. The toy model reproduces all the important qualitative aspects of chiral symmetry breaking and localisation in QCD, thus supporting the central role played by the confinement/deconfinement transition in triggering both phenomena.
A New Cluster Updating for 2-D SU(2) × SU(2) Chiral Model
Zhang, Jianbo; Ji, Daren
1993-09-01
We propose a variant version of Wolff's cluster algorithm, which may be extended to SU(N) × SU(N) chiral model, and test it in 2-dimensional SU(2) × SU(2) chiral model. The results show that the new method can efficiently reduce the critical slowing down in SU(2) × SU(2) chiral model.
A Cluster Algorithm for the 2-D SU(3) × SU(3) Chiral Model
Ji, Da-ren; Zhang, Jian-bo
1996-07-01
To extend the cluster algorithm to SU(N) × SU(N) chiral models, a variant version of Wolff's cluster algorithm is proposed and tested for the 2-dimensional SU(3) × SU(3) chiral model. The results show that the new method can reduce the critical slowing down in SU(3) × SU(3) chiral model.
Strangeness s = -3 dibaryons in a chiral quark model
Lian-Rong, D; Chun-Ran, L; Lei, T; Lian-Rong, Dai; Dan, Zhang; Chun-Ran, Li; Lei, Tong
2006-01-01
The structures of $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ with strangeness $s=-3$ are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The first model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon(NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The effect from the vector meson fields is very similar to that from the one-gluon exchange interaction, both in the chiral SU(3) quark model and the extended chiral SU(3) quark model, the $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ systems are wealy bound states. The second model parameters are also taken from our previous work by fitting the KN scattering process. when the mixing of scalar mesons are considered, the $N\\Omega_{(2,1/2)}$ and $\\Delta\\Omega_{(3,3/2)}$ systems change into unbound...
Gapless chiral spin liquid in a kagome Heisenberg model
Bieri, Samuel; Messio, Laura; Bernu, Bernard; Lhuillier, Claire
2015-08-01
Motivated by recent experiments on the Heisenberg S =1 /2 quantum spin liquid candidate material kapellasite, we classify all possible chiral (time-reversal symmetry breaking) spin liquids with fermionic spinons on the kagome lattice. We obtain the phase diagram for the physically relevant extended Heisenberg model, comparing the energies of a wide range of microscopic variational wave functions. We propose that, at low temperature, kapellasite exhibits a gapless chiral spin liquid phase with spinon Fermi surfaces. This two-dimensional state inherits many properties of the nearby one-dimensional phase of decoupled antiferromagnetic spin chains, but also shows some remarkable differences. We discuss the spin structure factors and other physical properties.
H-particle in a chiral quark model
Shimizu, K
1999-01-01
In this paper we discuss the binding energy of the H-particle using a chiral quark model, where pion exchange plays an important role to reproduce the mass difference between the nucleon and DELTA resonance. Since the main source for the bound H-particle is believed to be the color magnetic interaction, which gives the nucleon and DELTA mass difference, it is very interesting to investigate whether the chiral quark model gives rise to the bound H-particle or not. We employ an extended resonating group method in order to take into account the possibility of a change of baryon wave functions when two baryons interact with each other. We found that a change of baryon size together with the Hamiltonian which consists of gluon, pseudoscalar meson and sigma meson exchange potentials gives rise to the bound H-particle. The binding energy is found to be about 25 MeV in a hybrid chiral quark model. Differences between the ordinary gluon dominant model and chiral quark models are also investigated. It is found that a p...
Self-consistent Models of Strong Interaction with Chiral Symmetry
Nambu, Y.; Pascual, P.
1963-04-01
Some simple models of (renormalizable) meson-nucleon interaction are examined in which the nucleon mass is entirely due to interaction and the chiral ( gamma {sub 5}) symmetry is "broken'' to become a hidden symmetry. It is found that such a scheme is possible provided that a vector meson is introduced as an elementary field. (auth)
MULTI-LAMBDA MATTER IN A CHIRAL HADRONIC MODEL
Institute of Scientific and Technical Information of China (English)
郭华; 杨树; 胡翔; 刘玉鑫
2001-01-01
Multi-lambda matter is investigated in the framework of a chiral hadronic model It is shown that multi-lambda matter consisting of {N, A} is a metastable state as the strangeness per baryon and the density of hadronic matter are varied. The effective lambda mass decreases as the baryon density increases, and remains larger than that of the nucleon.
Chiral matrix model of the semi-QGP in QCD
Pisarski, Robert D.; Skokov, Vladimir V.
2016-08-01
Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the
Realisation of chiral symmetry in the domain model of QCD
Kalloniatis, Alexander C
2003-01-01
The domain model for the QCD vacuum has previously been developed and shown to exhibit confinement of quarks and strong correlation of the local chirality of quark modes and duality of the background domain-like gluon field. Quark fluctuations satisfy a chirality violating boundary conditions parametrized by a random chiral angle $\\alpha_j$ on the $j-th$ domain. The free energy of an ensemble of $N\\to\\infty$ domains depends on $\\{\\alpha_j, j=1... N\\}$ through the logarithm of the quark determinant. Its parity odd part is given by the axial anomaly. The anomaly contribution to the free energy suppresses continuous axial U(1) degeneracy in the ground state, leaving only a residual axial Z(2) symmetry. This discrete symmetry and flavour $SU(N_f)_L\\times SU(N_f)_R$ chiral symmetry in turn are spontaneously broken with a quark condensate arising due to the asymmetry of the spectrum of Dirac operator. In order to illustrate the splitting between the $\\eta'$ from octet pseudoscalar mesons realised in the domain mode...
The baryon number two system in the Chiral Soliton Model
Sarti, Valentina Mantovani; Vento, Vicente; Park, Byung-Yoon
2012-01-01
We study the interaction between two B = 1 states in a Chiral Soliton Model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.
Baryons in a chiral constituent quark model
Glozman, L Ya
1998-01-01
In the low-energy regime light and strange baryons should be considered as systems of constituent quarks with confining interaction and a chiral interaction that is mediated by Goldstone bosons as well as by vector and scalar mesons. The flavor-spin structure and sign of the short-range part of the spin-spin force reduces the $SU(6)_{FS}$ symmetry down to $SU(3)_F \\times SU(2)_S$, induces hyperfine splittings and provides correct ordering of the lowest states with positive and negative parity. There is a cancellation of the tensor force from pseudoscalar- and vector-exchanges in baryons. The spin-orbit interactions from $\\rho$-like and $\\omega$-like exchanges also cancel each other in baryons while they produce a big spin-orbit force in NN system. A unified description of light and strange baryon spectra calculated in a semirelativistic framework is presented. It is demonstrated that the same short-range part of spin-spin interaction between the constituent quarks induces a strong short-range repulsion in $NN...
Nonlocal Nambu-Jona-Lasinio model and chiral chemical potential
Frasca, Marco
2016-01-01
We derive the critical temperature in a nonlocal Nambu-Jona-Lasinio model with the presence of a chiral chemical potential. The model we consider uses a form factor derived from recent studies of the gluon propagator in Yang-Mills theory and has the property to fit in excellent way the form factor arising from the instanton liquid picture for the vacuum of the theory. Nambu-Jona-Lasinio model is derived form quantum chromodynamics providing all the constants of the theory without any need for fits. We show that the critical temperature in this case always exists and increases as the square of the chiral chemical potential. The expression we obtain for the critical temperature depends on the mass gap that naturally arises from Yang-Mills theory at low-energy as also confirmed by lattice computations.
ND^(*) and NB^(*) interactions in a chiral quark model
Yang, Dan; Zhang, Dan
2015-01-01
ND and ND^* interactions become a hot topic after the observation of new charmed hadrons \\Sigma_c(2800) and \\Lambda_c(2940)^+. In this letter, we have preliminary investigated S-wave ND and ND^* interactions with possible quantum numbers in the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving the resonating group method equation. The numerical results show that the interactions between N and D or N and D^* are both attractive, which are mainly from \\sigma exchanges between light quarks. Further bound-state studies indicate the attractions are strong enough to form ND or ND^* molecules, except for (ND)_{J=3/2} and (ND^*)_{J=3/2} in the chiral SU(3) quark model. In consequence ND system with J=1/2 and ND^* system with J=3/2 in the extended SU(3) quark model could correspond to the observed \\Sigma_c(2800) and \\Lambda_c(2940)^+, respectively. Naturally, the same method can be applied to research NB and NB^* interactions, and similar conclusions obtained, i.e. NB and NB^* attractive fo...
An Anderson-like model of the QCD chiral transition
Giordano, Matteo; Pittler, Ferenc
2016-01-01
We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...
K- nuclear potentials from in-medium chirally motivated models
Cieplý, A.; Friedman, E.; Gal, A.; Gazda, D.; Mareš, J.
2011-10-01
A self-consistent scheme for constructing K- nuclear optical potentials from subthreshold in-medium K¯N s-wave scattering amplitudes is presented and applied to analysis of kaonic atoms data and to calculations of K- quasibound nuclear states. The amplitudes are taken from a chirally motivated meson-baryon coupled-channel model, both at the Tomozawa-Weinberg leading order and at the next to leading order. Typical kaonic atoms potentials are characterized by a real part -ReVK-chiral=85±5 MeV at nuclear matter density, in contrast to half this depth obtained in some derivations based on in-medium K¯N threshold amplitudes. The moderate agreement with data is much improved by adding complex ρ- and ρ2-dependent phenomenological terms, found to be dominated by ρ2 contributions that could represent K¯NN→YN absorption and dispersion, outside the scope of meson-baryon chiral models. Depths of the real potentials are then near 180 MeV. The effects of p-wave interactions are studied and found secondary to those of the dominant s-wave contributions. The in-medium dynamics of the coupled-channel model is discussed and systematic studies of K- quasibound nuclear states are presented.
Can sigma models describe finite temperature chiral transitions?
Kocic, Aleksandar; Aleksandar KOCIC; John KOGUT
1995-01-01
Large-N expansions and computer simulations indicate that the universality class of the finite temperature chiral symmetry restoration transition in the 3D Gross-Neveu model is mean field theory. This is a counterexample to the standard 'sigma model' scenario which predicts the 2D Ising model universality class. We trace the breakdown of the standard scenario (dimensional reduction and universality) to the absence of canonical scalar fields in the model. We point out that our results could be generic for theories with dynamical symmetry breaking, such as Quantum Chromodynamics.
Deep inelastic structure functions in the chiral bag model
Energy Technology Data Exchange (ETDEWEB)
Sanjose, V. (Valencia Univ. (Spain). Dept. de Didactica de las Ciencias Experimentales); Vento, V. (Valencia Univ. (Spain). Dept. de Fisica Teorica; Centro Mixto CSIC/Valencia Univ., Valencia (Spain). Inst. de Fisica Corpuscular)
1989-10-02
We calculate the structure functions for deep inelastic scattering on baryons in the cavity approximation to the chiral bag model. The behavior of these structure functions is analyzed in the Bjorken limit. We conclude that scaling is satisfied, but not Regge behavior. A trivial extension as a parton model can be achieved by introducing the structure function for the pion in a convolution picture. In this extended version of the model not only scaling but also Regge behavior is satisfied. Conclusions are drawn from the comparison of our results with experimental data. (orig.).
Pion Effect of Nuclear Matter in a Chiral Sigma Model
Institute of Scientific and Technical Information of China (English)
HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong
2009-01-01
We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.
Soft Matrix Elements in Non-local Chiral Quark Model
Kotko, Piotr
2009-01-01
Using non-local chiral quark model and currents satisfying Ward-Takahashi identities we analyze Distribution Amplitudes (DA) of photon and pion-to-photon Transition Distribution Amplitudes (TDA) in the low energy regime. Photon DA's are calculated analytically up to twist-4 and reveal several interesting features of photon structure. TDA's calculated in the present model satisfy polynomiality condition. Normalization of vector TDA is fixed by the axial anomaly. We also compute relevant form factors and compare them with existing data. Axial form factor turns out to be much lower then the vector one, what indeed is seen in the experimental data.
On the Chiral Phase Transition in the Linear Sigma Model
Phat, T H; Hoa, L V; Phat, Tran Huu; Anh, Nguyen Tuan; Hoa, Le Viet
2004-01-01
The Cornwall-Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged.
Hyperpolarizabilities of Chiral Molecules Based on Three-Coupled-Oscillator Model
Institute of Scientific and Technical Information of China (English)
WANG Xiao-Ou; LI Jun-Qing; LI Chun-Fei
2004-01-01
@@ A chiral molecular model of three coupled oscillators is established. A set of coupling equations and hyperpolarizabilities for the chiral molecules with the tripod structure are presented. The expression of second-order nonlinear susceptibility is derived for an isotropic molecular system. The calculated hyperpolarizabilities of NPAN and NPP chiral molecules are consistent with the experimental results and the applicability of this model is validated.
Deconfinement and chiral transition in AdS/QCD wall models supplemented with a magnetic field
Dudal, David; Mertens, Thomas G
2016-01-01
We discuss the phenomenon of (inverse) magnetic catalysis for both the deconfinement and chiral transition. We discriminate between the hard and soft wall model, which we suitably generalize to include a magnetic field. Our findings show a critical deconfinement temperature going down, in contrast with the chiral restoration temperature growing with increasing magnetic field. This is at odds with contemporary lattice data, so the quest for a holographic QCD model capable of capturing inverse magnetic catalysis in the chiral sector remains open.
Connecting an effective model of confinement and chiral symmetry to lattice QCD
Fraga, E; Fraga, Eduardo; Mocsy, Agnes
2007-01-01
We construct an effective model for the chiral field and the Polyakov loop in which we can investigate the interplay between the approximate chiral symmetry restoration and the deconfinement of color in a thermal SU(3) gauge theory with three flavors of massive quarks. The phenomenological couplings between these two sectors can then be related to the recent lattice data on the renormalized Polyakov loop and the chiral condensate close to the critical region.
Chiral spin liquid in a frustrated anisotropic kagome Heisenberg model.
He, Yin-Chen; Sheng, D N; Chen, Yan
2014-04-04
Kalmeyer-Laughlin (KL) chiral spin liquid (CSL) is a type of quantum spin liquid without time-reversal symmetry, and it is considered as the parent state of an exotic type of superconductor--anyon superconductor. Such an exotic state has been sought for more than twenty years; however, it remains unclear whether it can exist in a realistic system where time-reversal symmetry is breaking (T breaking) spontaneously. By using the density matrix renormalization group, we show that KL CSL exists in a frustrated anisotropic kagome Heisenberg model, which has spontaneous T breaking. We find that our model has two topological degenerate ground states, which exhibit nonvanishing scalar chirality order and are protected by finite excitation gap. Furthermore, we identify this state as KL CSL by the characteristic edge conformal field theory from the entanglement spectrum and the quasiparticles braiding statistics extracted from the modular matrix. We also study how this CSL phase evolves as the system approaches the nearest-neighbor kagome Heisenberg model.
Finite-temperature corrections in the dilated chiral quark model
Kim, Y; Rho, M; Kim, Youngman; Lee, Hyun Kyu; Rho, Mannque
1995-01-01
We calculate the finite-temperature corrections in the dilated chiral quark model using the effective potential formalism. Assuming that the dilaton limit is applicable at some short length scale, we interpret the results to represent the behavior of hadrons in dense {\\it and} hot matter. We obtain the scaling law, \\frac{f_{\\pi}(T)}{f_{\\pi}} = \\frac{m_Q (T)}{m_Q} \\simeq \\frac{m_{\\sigma}(T)}{m_{\\sigma}} while we argue, using PCAC, that pion mass does not scale within the temperature range involved in our Lagrangian. It is found that the hadron masses and the pion decay constant drop faster with temperature in the dilated chiral quark model than in the conventional linear sigma model that does not take into account the QCD scale anomaly. We attribute the difference in scaling in heat bath to the effect of baryonic medium on thermal properties of the hadrons. Our finding would imply that the AGS experiments (dense {\\it and} hot matter) and the RHIC experiments (hot and dilute matter) will ``see" different hadron...
Chiral Phase Transition at Finite Isospin Density in Linear Sigma Model
Institute of Scientific and Technical Information of China (English)
SHU Song; LI Jia-Rong
2005-01-01
Using the linear sigma model, we have introduced the pion isospin chemical potential. The chiral phase transition is studied at finite temperatures and finite isospin densities. We have studied the μ - T phase diagram for the chiral phase transition and found the transition cannot happen below a certain low temperature because of the BoseEinstein condensation in this system. Above that temperature, the chiral phase transition is studied by the isotherms of pressure versus density. We indicate that the transition, in the chiral limit, is a first-order transition from a low-density phase to a high-density phase like a gas-liquid phase transition.
Explicit chiral symmetry breaking in Gross-Neveu type models
Energy Technology Data Exchange (ETDEWEB)
Boehmer, Christian
2011-07-25
This thesis is devoted to the study of a 1+1-dimensional, fermionic quantum field theory with Lagrangian L= anti {psi}i{gamma}{sup {mu}}{partial_derivative}{sub {mu}}{psi}-m{sub 0} anti {psi}{psi}+(g{sup 2})/(2)(anti {psi}{psi}){sup 2}+(G{sup 2})/(2)(anti {psi}i{gamma}{sub 5}{psi}){sup 2} in the limit of an infinite number of flavors, using semiclassical methods. The main goal of the present work was to see what changes if we allow for explicit chiral symmetry breaking, either by a bare mass term, or a splitting of the scalar and pseudo-scalar coupling constants, or both. In the first case, this becomes the massive NJL{sub 2} model. In the 2nd and 3rd cases we are dealing with a model largely unexplored so far. The first half of this thesis deals with the massive NJL{sub 2} model. Before attacking the phase diagram, it was necessary to determine the baryons of the model. We have carried out full numerical Hartree-Fock calculations including the Dirac sea. The most important result is the first complete phase diagram of the massive NJL{sub 2} model in ({mu},T,{gamma}) space, where {gamma} arises from m{sub 0} through mass renormalization. In the 2nd half of the thesis we have studied a generalization of the massless NJL{sub 2} model with two different (scalar and pseudoscalar) coupling constants, first in the massless version. Renormalization of the 2 coupling constants leads to the usual dynamical mass by dynamical transmutation, but in addition to a novel {xi} parameter interpreted as chiral quenching parameter. As far as baryon structure is concerned, the most interesting result is the fact that the new baryons interpolate between the kink of the GN model and the massless baryon of the NJL{sub 2} model, always carrying fractional baryon number 1/2. The phase diagram of the massless model with 2 coupling constants has again been determined numerically. At zero temperature we have also investigated the massive, generalized GN model with 3 parameters. It is well
Finite-Temperature Phase Structure in the Chiral σ-ω Model with Dilatons
Institute of Scientific and Technical Information of China (English)
ZHANG Xiao-Bing ZHANG Xiao-Bing; LI Xue-Qian; NING Ping-Zhi
2000-01-01
We investigate the finite-temperature phase structure in a scaled chiral model which includes the dilaton (glueball) field. It is shown that hot nuclear matter undergoes a discontinuous transition in the mean field of scalar mesons as well as the Lee-Wick abnormal transition. The corresponding behavior of the gluon condensate during the chiral phase transition is also studied.
Viet, Dao Xuan; Kawamura, Hikaru
2009-01-16
Ordering of the three-dimensional Heisenberg spin glass with Gaussian coupling is studied by extensive Monte Carlo simulations. The model undergoes successive chiral-glass and spin-glass transitions at nonzero temperatures T_{CG}>T_{SG}>0, exhibiting spin-chirality decoupling.
Chiral Dynamics and Dubna-Mainz-Taipei Dynamical Model for Pion-Photoproduction Reaction
Yang, Shin Nan
2010-01-01
We demonstrate that the Dubna-Mainz-Taipei (DMT) meson-exchange dynamical model, which starts from an effective chiral Lagrangian, for pion photoproduction provides an excellent and economic framework to describe both the pi^0 threshold production and the Delta deformation, two features dictated by chiral dynamics.
Selected problems of baryons spectroscopy: chiral soliton versus quark models
Kopeliovich, Vladimir B
2008-01-01
Inconsistency between rigid rotator and bound state models at arbitrary number of colors, rigid rotator -- soft rotator dilemma and some other problems of baryon spectroscopy are discussed in the framework of the chiral soliton approach (CSA). Consequences of the comparison of CSA results with simple quark models are considered and the $1/N_c$ expansion for the effective strange antiquark mass is presented, as it follows from the CSA. Strong dependence of the effective strange antiquark mass on the SU(3) multiplet is required to fit the CSA predictions. The difference of `good' and `bad' diquark masses, which is about 100 Mev, is in reasonable agreement with other estimates. Multibaryons (hypernuclei) with strangeness are described and some states of interest are predicted within CSA as well.
SIMP model at NNLO in chiral perturbation theory
DEFF Research Database (Denmark)
Hansen, Martin Rasmus Lundquist; Langaeble, K.; Sannino, F.
2015-01-01
We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 to 2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles....... By performing a consistent next-to-leading and next-to-next-to-leading order chiral perturbative investigation we demonstrate that the leading order analysis cannot be used to draw conclusions about the viability of the model. We further show that higher order corrections substantially increase the tension...... with phenomenological constraints challenging the viability of the simplest realisation of the strongly interacting massive particle (SIMP) paradigm....
Finite nuclei in relativistic models with a light chiral scalar meson
Furnstahl, R. J.; Serot, Brian D.
1993-05-01
Relativistic chiral models with a light scalar meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. The scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. These deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed.
Chiral magnetic conductivity in an interacting lattice model of parity-breaking Weyl semimetal
Buividovich, P. V.; Puhr, M.; Valgushev, S. N.
2015-11-01
We report on the mean-field study of the chiral magnetic effect (CME) in static magnetic fields within a simple model of parity-breaking Weyl semimetal given by the lattice Wilson-Dirac Hamiltonian with constant chiral chemical potential. We consider both the mean-field renormalization of the model parameters and nontrivial corrections to the CME originating from resummed ladder diagrams with arbitrary number of loops. We find that onsite repulsive interactions affect the chiral magnetic conductivity almost exclusively through the enhancement of the renormalized chiral chemical potential. Our results suggest that nontrivial corrections to the chiral magnetic conductivity due to interfermion interactions are not relevant in practice since they only become important when the CME response is strongly suppressed by the large gap in the energy spectrum.
Structure of pentaquarks Pc+ in the chiral quark model
Yang, Gang; Ping, Jialun; Wang, Fan
2017-01-01
The recent experimental results of the LHCb Collaboration suggested the existence of pentaquark states with a charmonium. To understand the structure of the states, a dynamical calculation of 5-quark systems with quantum numbers I JP=1/2 (1/2 )±,1/2 (3/2 )±and1/2 (5/2 )±is performed in the framework of the chiral quark model with the help of the Gaussian expansion method. The results show that there are several negative parity resonance states while all of the positive parity states are the scattering states. The Pc(4380 ) state is suggested to be the pentaquark state of Σc*D ¯. Although the energy of ΣcD ¯* is very close to the mass of Pc(4450 ), the inconsistent parity prevents the assignment. The calculated distances between quarks confirm the molecular nature of the states.
Axial form factor of the nucleon in the perturbative chiral quark model
Khosonthongkee, K; Faessler, Amand; Gutsche, T; Lyubovitskij, V E; Pumsa-ard, K; Yan, Y
2004-01-01
We apply the perturbative chiral quark model (PCQM) at one loop to analyze the axial form factor of the nucleon. This chiral quark model is based on an effective Lagrangian, where baryons are described by relativistic valence quarks and a perturbative cloud of Goldstone bosons as dictated by chiral symmetry. We apply the formalism to obtain analytical expressions for the axial form factor of the nucleon, which is given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core).
△△ Dibaryon Structure in Extended Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
DAI Lian-Rong
2005-01-01
@@ The structure of △△ dibaryon is studied in the extended chiral SU(3) quark model in which vector meson exchanges are included. The effect of the vector meson fields is very similar to that of the one-gluon exchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model, the resultant mass of the △△ dibaryon is lower than the threshold of the △△ channel but higher than that of the△Nπ channel.
Deconfinement, chiral transition and localisation in a QCD-like model
Giordano, Matteo; Katz, Sándor D.; Kovács, Tamás G.; Pittler, Ferenc
2017-02-01
We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension N T = 4. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice.
QCD topological susceptibility from the nonlocal chiral quark model
Nam, Seung-il
2016-01-01
We investigate the QCD topological susceptibility $\\chi_t$ by using the nonlocal chiral quark model (NL$\\chi$QM). This model is based on the liquid instanton QCD-vacuum configuration in which $\\mathrm{SU}(3)$ flavor symmetry is explicitly broken by the current quark mass $(m_{u,d},m_s)\\approx(5,135)$ MeV. To compute $\\chi_t$, the local topological charge density operator $Q_t(x)$ is derived from the effective partition function of NL$\\chi$QM. We take into account the contributions from the leading-order (LO) ones $\\sim\\mathcal{O}(N_c)$ in the $1/N_c$ expansion. We also verify that the analytical expression of $\\chi_t$ in NL$\\chi$QM satisfy the Witten-Veneziano (WV) and the Leutwyler-Smilga (LS) formulae. Once the average instanton size and inter-instanton distance are fixed with $\\bar{\\rho}=1/3$ fm and $\\bar{R}=1$ fm, respectively, all the associated model parameters are all determined self-consistently within the model, including the $\\eta$ and $\\eta'$ weak decay constants. We obtain the results such as $F_{...
Chiral condensate in the Schwinger model with matrix product operators
Energy Technology Data Exchange (ETDEWEB)
Banuls, Mari Carmen [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Saito, Hana [Tsukuba Univ. (Japan). Center for Computational Sciences
2016-03-15
Tensor network (TN) methods, in particular the Matrix Product States (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the non-zero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chiral symmetry breaking in the massless and massive cases and show that the method works very well and gives good control over a broad range of temperatures, essentially from zero to infinite temperature.
Non-leptonic decays in an extended chiral quark model
Eeg, J O
2012-01-01
We consider the color suppressed (nonfactorizable) amplitude for the decay mode $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $. We treat the $b$-quark in the heavy quark limit and the energetic light ($u,d,s$) quarks within a variant of Large Energy Effective Theory combined with an extension of chiral quark models. Our calculated amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ is suppressed by a factor of order $\\Lambda_{QCD}/m_b$ with respect to the factorized amplitude, as it should according to QCD-factorization. Further, for reasonable values of the (model dependent) gluon condensate and the constituent quark mass, the calculated nonfactorizable amplitude for $\\bar{B_{d}^0} \\rightarrow \\pi^0 \\pi^{0} $ can easily accomodate the experimental value. Unfortunately, the color suppressed amplitude is very sensitive to the values of these model dependent parameters. Therefore fine-tuning is necessary in order to obtain an amplitude compatible with the experimental result for $\\bar{B_{d}^0} \\rightarrow \\pi^...
Chiral condensate in the Schwinger model with matrix product operators
Bañuls, Mari Carmen; Cichy, Krzysztof; Jansen, Karl; Saito, Hana
2016-05-01
Tensor network (TN) methods, in particular the matrix product states (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the nonzero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chiral symmetry breaking in the massless and massive cases and show that the method works very well and gives good control over a broad range of temperatures, essentially from zero to infinite temperature.
Equation of State of Nuclear Matter in Chiral σ-ω Model
Institute of Scientific and Technical Information of China (English)
CHEN Wei; DONG Dong-Qiao; WEN De-Hua; LIU Guo-Tao; LIU Liang-Gang
2004-01-01
The equation of state of nuclear matter is studied in the 1-loop approximation of chiral linear σ-ω model.By introducing the density-dependent coupling constants, the problem of tachyon pole in the chiral σ-ω model is resolved.The 1-loop contributions ofσ and π mesons to the nucleon's binding energy are included, while the empirical properties of nuclear matter such as saturation density, binding energy, and incompressibility are well reproduced.
Triaxial projected shell model study of chiral rotation in odd-odd nuclei
Energy Technology Data Exchange (ETDEWEB)
Bhat, G.H. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Sheikh, J.A. [Department of Physics, University of Kashmir, Srinagar, 190 006 (India); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN 37996 (United States); Palit, R., E-mail: palit@tifr.res.in [Department of Nuclear and Atomic Physics, Tata Institute of Fundamental Research, Colaba, Mumbai, 400 005 (India)
2012-01-20
Chiral rotation observed in {sup 128}Cs is studied using the newly developed microscopic triaxial projected shell model (TPSM) approach. The observed energy levels and the electromagnetic transition probabilities of the nearly degenerate chiral dipole bands in this isotope are well reproduced by the present model. This demonstrates the broad applicability of the TPSM approach, based on a schematic interaction and angular-momentum projection technique, to explain a variety of low- and high-spin phenomena in triaxial rotating nuclei.
Weak magnetic field effects on chiral critical temperature in a nonlocal Nambu--Jona-Lasinio model
Loewe, M; Villavicencio, C; Zamora, R
2014-01-01
In this article we study the nonlocal Nambu--Jona-Lasinio model with a Gaussian regulator in the chiral limit. Finite temperature effects and the presence of a homogeneous magnetic field are considered. The magnetic evolution of the critical temperature for chiral symmetry restoration is then obtained. Here we restrict ourselves to the case of low magnetic field values, being this a complementary discussion to the exisiting analysis in nonlocal models in the strong magnetic field regime.
Antikaon induced Ξ production from a chiral model at NLO
Directory of Open Access Journals (Sweden)
Feijoo A.
2014-01-01
Full Text Available We study the meson-baryon interaction in the strangeness S = −1 sector using a chiral unitary approach, paying particular attention to the K̄N → KΞ reaction, especially important for constraining the next-to-leading order chiral terms, and considering also the effect of high spin hyperonic resonances. We also present results for the production of Ξ hyperons in nuclei
Molecular modeling study of chiral drug crystals: lattice energy calculations.
Li, Z J; Ojala, W H; Grant, D J
2001-10-01
The lattice energies of a number of chiral drugs with known crystal structures were calculated using Dreiding II force field. The lattice energies, including van der Waals, Coulombic, and hydrogen-bonding energies, of homochiral and racemic crystals of some ephedrine derivatives and of several other chiral drugs, are compared. The calculated energies are correlated with experimental data to probe the underlying intermolecular forces responsible for the formation of racemic species, racemic conglomerates, or racemic compounds, termed chiral discrimination. Comparison of the calculated energies among ephedrine derivatives reveals that a greater Coulombic energy corresponds to a higher melting temperature, while a greater van der Waals energy corresponds to a larger enthalpy of fusion. For seven pairs of homochiral and racemic compounds, correlation of the differences between the two forms in the calculated energies and experimental enthalpy of fusion suggests that the van der Waals interactions play a key role in the chiral discrimination in the crystalline state. For salts of the chiral drugs, the counter ions diminish chiral discrimination by increasing the Coulombic interactions. This result may explain why salt forms favor the formation of racemic conglomerates, thereby facilitating the resolution of racemates.
Chiral spin liquid in the extended Heisenberg model on the Kagome lattice
Hu, Wenjun; Zhu, Wei; Zhang, Yi; Gong, Shoushu; Becca, Federico; Sheng, Dongning; Donna Sheng Team
2015-03-01
We investigate the extended Heisenberg model on the Kagome lattice by using Gutzwiller projected fermionic states and the variational Monte Carlo technique. In particular, when both second- and third-neighbor super-exchanges are considered, we find that a gapped spin liquid described by non-trivial magnetic fluxes and long-range chiral-chiral correlations is energetically favored compared to the gapless U(1) Dirac state. Furthermore, the topological Chern number, obtained by integrating the Berry curvature, and the degeneracy of the ground state, by constructing linearly independent states, lead us to identify this flux state as the chiral spin liquid with C = 1 / 2 fractionalized Chern number.
Resurgence in $\\eta$-deformed Principal Chiral Models
Demulder, Saskia; Thompson, Daniel C
2016-01-01
We study the $SU(2)$ Principal Chiral Model (PCM) in the presence of an integrable $\\eta$-deformation. We put the theory on $\\mathbb{R}\\times S^1$ with twisted boundary conditions and then reduce the circle to obtain an effective quantum mechanics associated with the Whittaker-Hill equation. Using resurgent analysis we study the large order behaviour of perturbation theory and recover the fracton events responsible for IR renormalons. The fractons are modified from the standard PCM due to the presence of this $\\eta$-deformation but they are still the constituents of uniton-like solutions in the deformed quantum field theory. We also find novel $SL(2,\\mathbb{C})$ saddles, thus strengthening the conjecture that the semi-classical expansion of the path integral gives rise to a resurgent transseries once written as a sum over Lefschetz thimbles living in a complexification of the field space. We conclude by connecting our quantum mechanics to a massive deformation of the $\\mathcal{N}=2~$ $4$-d gauge theory with g...
Resurgence in η-deformed Principal Chiral Models
Demulder, Saskia; Dorigoni, Daniele; Thompson, Daniel C.
2016-07-01
We study the SU(2) Principal Chiral Model (PCM) in the presence of an integrable η-deformation. We put the theory on {R}× {S}^1 with twisted boundary conditions and then reduce the circle to obtain an effective quantum mechanics associated with the Whittaker-Hill equation. Using resurgent analysis we study the large order behaviour of perturbation theory and recover the fracton events responsible for IR renormalons. The fractons are modified from the standard PCM due to the presence of this η-deformation but they are still the constituents of uniton-like solutions in the deformed quantum field theory. We also find novel SL(2,{C}) saddles, thus strengthening the conjecture that the semi-classical expansion of the path integral gives rise to a resurgent transseries once written as a sum over Lefschetz thimbles living in a complexification of the field space. We conclude by connecting our quantum mechanics to a massive deformation of the {N} = 2 4-d gauge theory with gauge group SU(2) and N f = 2.
Energy Technology Data Exchange (ETDEWEB)
Saito, H; Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Ba nuls, M.C.; Cirac, J.I. [Max-Planck-Institut fuer Quantenoptik (MPQ), Garching (Germany); Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics
2014-12-15
We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.
Saito, Hana; Cichy, Krzysztof; Cirac, J Ignacio; Jansen, Karl
2014-01-01
We present our recent results for the tensor network (TN) approach to lattice gauge theories. TN methods provide an efficient approximation for quantum many-body states. We employ TN for one dimensional systems, Matrix Product States, to investigate the 1-flavour Schwinger model. In this study, we compute the chiral condensate at finite temperature. From the continuum extrapolation, we obtain the chiral condensate in the high temperature region consistent with the analytical calculation by Sachs and Wipf.
Non-chiral fusion rules, structure constants of $D_{m}$ minimal models
Rida, A
1999-01-01
We present a technique to construct, for $D_{m}$ unitary minimal models, the non-chiral fusion rules which determines the operator content of the operator product algebra. Using these rules we solve the bootstrap equations and therefore determine the structure constants of these models. Through this approach we emphasize the role played by some discrete symmetries in the classification of minimal models.
Phase structure of the massive chiral Gross-Neveu model from Hartree-Fock
Boehmer, Christian; Kraus, Sebastian; Thies, Michael
2008-01-01
The phase diagram of the massive chiral Gross-Neveu model (the massive Nambu-Jona-Lasinio model in 1+1 dimensions) is constructed. In the large N limit, the Hartree-Fock approach can be used. We find numerically a chiral crystal phase separated from a massive Fermi gas phase by a 1st order transition. Using perturbation theory, we also construct the critical sheet where the homogeneous phase becomes unstable in a 2nd order transition. A tricritical curve is located. The phase diagram is mapped out as a function of fermion mass, chemical potential and temperature and compared with the one of the discrete chiral Gross-Neveu model. As a by-product, we illustrate the crystal structure of matter at zero temperature for various densities and fermion masses.
Chiral Phase Transition in the Soft-Wall Model of AdS/QCD
Chelabi, Kaddour; Huang, Mei; Li, Danning; Wu, Yue-Liang
2015-01-01
We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t'Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realize...
Deconfinement, chiral transition and localisation in a QCD-like model
Giordano, Matteo; Kovacs, Tamas G; Pittler, Ferenc
2016-01-01
We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension $N_T=4$. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice.
Ebert, D; Klimenko, K G; Zhukovsky, V C
2016-01-01
In this paper the duality correspondence between fermion-antifermion and difermion interaction channels is established in two (2+1)-dimensional Gross-Neveu type models with a fermion number chemical potential $\\mu$ and a chiral chemical potential $\\mu_5$. The role and influence of this property on the phase structure of the models are investigated. In particular, it is shown that the chemical potential $\\mu_5$ promotes the appearance of dynamical chiral symmetry breaking, whereas the chemical potential $\\mu$ contributes to the emergence of superconductivity.
Orientifold ABJM Matrix Model: Chiral Projections and Worldsheet Instantons
Moriyama, Sanefumi
2016-01-01
We study the partition function of the orientifold ABJM theory, which is a superconformal Chern-Simons theory associated with the orthosymplectic supergroup. We find that the partition function associated with any orthosymplectic supergroup can be realized as that of a Fermi gas system whose density matrix is identical to that associated with the corresponding unitary supergroup with a projection to the even or odd chirality. Furthermore we propose an identity and use it to identify all of the Gopakumar-Vafa invariants for the worldsheet instanton effects systematically.
Directory of Open Access Journals (Sweden)
Yizhuang Liu
2016-08-01
Full Text Available We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.
The chiral phase transition in a random matrix model with molecular correlations
Wettig, T; Weidenmüller, H A; Wettig, Tilo
1995-01-01
The chiral phase transition of QCD is analyzed in a model combining random matrix elements of the Dirac operator with specially chosen non-random ones. The special form of the latter is motivated by the assumption that the fermionic quasi-zero modes associated with instanton and anti-instanton configurations determine the chiral properties of QCD. Our results show that the degree of correlation between these modes plays the decisive role. To reduce the value of the chiral condensate by more than a factor of 2 about 95 percent of the instantons and anti-instantons must form so-called molecules. This conclusion agrees with numerical results of the Stony Brook group.
QQqq Four-Quark Bound States in Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANG Ming; ZHANG Hai-Xia; ZHANG Zong-Ye
2008-01-01
The possibility of QQqq heavy-light four-quark bound states has been analyzed by means of the chiral SU(3) quark model, where Q is the heavy quark (c or b) and q is the light quark (u, d, or s). We obtain a bound state for the bbnn configuration with quantum number JP=1+, I=0 and for the ccnn (JP=1+, I=0) configuration, which is not bound but slightly above the D*D* threshold (n is u or d quark). Meanwhile, we also conclude that a weakly bound state in bbnn system can also be found without considering the chiral quark interactions between the two light quarks, yet its binding energy is weaker than that with the chiral quark interactions.
Chiral density wave versus pion condensation in the 1+1 dimensional NJL model
Adhikari, Prabal
2016-01-01
In this paper, we study the possibility of an inhomogeneous quark condensate in the 1+1 dimensional Nambu-Jona-Lasinio model in the large-$N_c$ limit at finite temperature $T$ and quark chemical potential $\\mu$ using dimensional regularization. The phase diagram in the $\\mu$--$T$ plane is mapped out. At zero temperature, an inhomogeneous phase with a chiral-density wave exists for all values of $\\mu>\\mu_c$. Performing a Ginzburg-Landau analysis, we show that in the chiral limit, the critical point and the Lifschitz point coincide. We also consider the competition between a chiral-density wave and a constant pion condensate at finite isospin chemical potential $\\mu_I$. The phase diagram in the $\\mu_I$--$\\mu$ plane is mapped out and shows a rich phase structure.
Energy Technology Data Exchange (ETDEWEB)
Liu, Yizhuang, E-mail: yizhuang.liu@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States); Nowak, Maciej A., E-mail: maciej.a.nowak@uj.edu.pl [M. Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University, PL-30348 Krakow (Poland); Zahed, Ismail, E-mail: ismail.zahed@stonybrook.edu [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)
2016-08-15
We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.
Liu, Yizhuang; Zahed, Ismail
2016-01-01
We derive an exact formula for the stochastic evolution of the characteristic determinant of a class of deformed Wishart matrices following from a chiral random matrix model of QCD at finite chemical potential. In the WKB approximation, the characteristic determinant describes a sharp droplet of eigenvalues that deforms and expands at large stochastic times. Beyond the WKB limit, the edges of the droplet are fuzzy and described by universal edge functions. At the chiral point, the characteristic determinant in the microscopic limit is universal. Remarkably, the physical chiral condensate at finite chemical potential may be extracted from current and quenched lattice Dirac spectra using the universal edge scaling laws, without having to solve the QCD sign problem.
Surface second harmonic generation of chiral molecules using three-coupled-oscillator model
Institute of Scientific and Technical Information of China (English)
Wang Xiao-Ou; Li Chun-Fei; Li Jun-Qing
2006-01-01
Based on the three-coupled-oscillator molecular model we proposed, the relation between the second-order susceptibilities of a chiral film and the molecular hyperpolarizabilities is given. The effect of microscopic parameters on the second-order susceptibilities is simulated numerically and the difference between the efficiencies of s-polarized second-harmonic fields induced by the left- and the right-handed circularly-polarized fundamental beams is discussed. The theoretical basis for studying second-order nonlinear optical properties of the chiral molecular media with a tripod-like structure is provided in this paper.
Pion Form Factor in Chiral Limit of Hard-Wall AdS/QCD Model
Energy Technology Data Exchange (ETDEWEB)
Anatoly Radyushkin; Hovhannes Grigoryan
2007-12-01
We develop a formalism to calculate form factor and charge density distribution of pion in the chiral limit using the holographic dual model of QCD with hard-wall cutoff. We introduce two conjugate pion wave functions and present analytic expressions for these functions and for the pion form factor. They allow to relate such observables as the pion decay constant and the pion charge electric radius to the values of chiral condensate and hard-wall cutoff scale. The evolution of the pion form factor to large values of the momentum transfer is discussed, and results are compared to existing experimental data.
The neutron electric dipole form factor in the perturbative chiral quark model
Dib, C; Gutsche, T; Kovalenko, S; Kuckei, J; Lyubovitskij, V E; Pumsa-ard, K; Dib, Claudio; Faessler, Amand; Gutsche, Thomas; Kovalenko, Sergey; Kuckei, Jan; Lyubovitskij, Valery E.; Pumsa-ard, Kem
2006-01-01
We calculate the electric dipole form factor of the neutron in a perturbative chiral quark model, parameterizing CP-violation of generic origin by means of effective electric dipole moments of the constituent quarks and their CP-violating couplings to the chiral fields. We discuss the relation of these effective parameters to more fundamental ones such as the intrinsic electric and chromoelectric dipole moments of quarks and the Weinberg parameter. From the existing experimental upper limits on the neutron EDM we derive constraints on these CP-violating parameters.
Random matrix theory and higher genus integrability: the quantum chiral Potts model
Energy Technology Data Exchange (ETDEWEB)
Angles d' Auriac, J.Ch. [Centre de Recherches sur les Tres Basses Temperatures, BP 166, Grenoble (France)]. E-mail: dauriac@polycnrs-gre.fr; Maillard, J.M.; Viallet, C.M. [LPTHE, Tour 16, Paris (France)]. E-mails: maillard@lpthe.jussieu.fr; viallet@lpthe.jussieu.fr
2002-06-14
We perform a random matrix theory (RMT) analysis of the quantum four-state chiral Potts chain for different sizes of the chain up to size L 8. Our analysis gives clear evidence of a Gaussian orthogonal ensemble (GOE) statistics, suggesting the existence of a generalized time-reversal invariance. Furthermore, a change from the (generic) GOE distribution to a Poisson distribution occurs when the integrability conditions are met. The chiral Potts model is known to correspond to a (star-triangle) integrability associated with curves of genus higher than zero or one. Therefore, the RMT analysis can also be seen as a detector of 'higher genus integrability'. (author)
T-\\mu phase diagram of the chiral quark model from a large flavor number expansion
Jakovác, A; Szép, Z; Szépfalusy, P; Szep, Zs.
2004-01-01
The chiral phase boundary of strong matter is determined in the T-\\mu plane from the chiral quark model, applying a non-perturbatively renormalised treatment, involving chains of pion-bubbles and 1-loop fermion contributions. In the absence of explicit symmetry breaking the second order portion of the phase boundary and the location of the tricritical point (TCP) are determined analytically. Sensitivity of the results to the renormalisation scale is carefully investigated. The softening of the sigma-pole near the second order transitions is confirmed.
Chiral and U(1) axial symmetry restoration in linear sigma models with two quark flavors
Michalski, S
2006-01-01
We study the restoration of chiral symmetry in linear sigma models with two quark flavors. The models taken into consideration have a U(2) x U(2) and an O(N) internal symmetry. The physical mesons of these models are sigma, pion, \\eta and a_0 where the latter two are not present in the O(N) model. Including two-loop contributions through sunset graphs we calculate the temperature behavior of the order parameter and the masses for explicit chiral symmetry breaking with and without a U(1) axial anomaly. Decay threshold effects introduced by the sunset graphs alter the temperature dependence of the condensate and consequently that of the masses as well. Chiral symmetry tends to be restored at higher temperatures in the two-loop approximation than in the Hartree-Fock approximation. To model a dynamical restoration of the U(1) axial symmetry we imply a temperature-dependent anomaly parameter that sharply drops at about 175 MeV. This triggers the restoration of chiral symmetry before the full symmetry is restored a...
Directory of Open Access Journals (Sweden)
IVAN GUTMAN
1999-11-01
Full Text Available The Noyori model of chiral amplification in the alkylation of aldehydes by means of dialkylzinc, catalyzed by chiral aminoalcohols, is further elaborated. A direct, but approximate, relation is obtained between the enantiomeric excess of the catalyst added and the enantiomeric excess of the product.
Energy Technology Data Exchange (ETDEWEB)
Sato, K.; Koide, Tomoi; Maruyama, Masahiro [Tohoku Univ., Faculty of Science, Sendai, Miyagi (Japan)
1999-08-01
There are various approaches to nonequilibrium system. We use the projection operator method investigated by F. Shibata and N. Hashitsume on the linear sigma model at finite temperature and density. We derive a differential equation of the time evolution for the order parameter and pion number density in chiral phase transition. (author)
From Chiral quark dynamics with Polyakov loop to the hadron resonance gas model
Arriola, E Ruiz; Salcedo, L L
2012-01-01
Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.
Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model
Institute of Scientific and Technical Information of China (English)
宗红石; 吴小华; 侯丰尧; 赵恩广
2004-01-01
A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.
The Strange Magnetic Moment of the Proton in the Chiral Quark Model
1998-01-01
The strange magnetic moment of the proton is small in the chiral quark model, because of a near cancellation between the quantum fluctuations that involve kaons and $s$-quarks and loops that involve radiative transitions between strange vector mesons and kaons.
Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Dash, B.K.
1986-11-01
Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment.
Integrable String Models in Terms of Chiral Invariants of SU(n, SO(n, SP(n Groups
Directory of Open Access Journals (Sweden)
Victor D. Gershun
2008-05-01
Full Text Available We considered two types of string models: on the Riemmann space of string coordinates with null torsion and on the Riemman-Cartan space of string coordinates with constant torsion. We used the hydrodynamic approach of Dubrovin, Novikov to integrable systems and Dubrovin solutions of WDVV associativity equation to construct new integrable string equations of hydrodynamic type on the torsionless Riemmann space of chiral currents in first case. We used the invariant local chiral currents of principal chiral models for SU(n, SO(n, SP(n groups to construct new integrable string equations of hydrodynamic type on the Riemmann space of the chiral primitive invariant currents and on the chiral non-primitive Casimir operators as Hamiltonians in second case. We also used Pohlmeyer tensor nonlocal currents to construct new nonlocal string equation.
Hadronization and Strangeness Production in a Chirally Symmetric Nonequilibrium Model
Rehberg, P
1999-01-01
The expansion and hadronization of a quark meson plasma is studied using an effective chiral interaction Lagrangian. The particles we consider are light as well as strange quarks, which can form pions, kaons and eta mesons via collision processes. The transport equations for the system are solved using a QMD type algorithm. We find that in chemical equilibrium at high temperatures the strange quark mass is considerably higher than the strange current quark mass and becomes even higher if we assume an initial state free of strange quarks. This leads to a considerably higher production threshold. In contrast to simpler scenarios, like thermodynamics of free quarks with their bare mass, we observe that strangeness production in a plasma is hindered and not favoured. The different particle species created during the evolution become separated in coordinate as well as in momentum space. We observe, as at CERN experiments, a larger mean momentum of kaons as compared to pions. Thus the radial collective velocity may...
Soldering Chiralities; 2, Non-Abelian Case
Wotzasek, C
1996-01-01
We study the non-abelian extension of the soldering process of two chiral WZW models of opposite chiralities, resulting in a (non-chiral) WZW model living in a 2D space-time with non trivial Riemanian curvature.
Thermodynamic phases and mesonic fluctuations in a chiral nucleon-meson model
Drews, Matthias; Klein, Bertram; Weise, Wolfram
2013-01-01
Studies of the QCD phase diagram must properly include nucleonic degrees of freedom and their thermodynamics in the range of baryon chemical potentials characteristic of nuclear matter. A useful framework for incorporating relevant nuclear physics constraints in this context is a chiral nucleon-meson effective Lagrangian. In the present paper, such a chiral nucleon-meson model is extended with systematic inclusion of mesonic fluctuations using the functional renormalization group approach. The resulting description of the nuclear liquid-gas phase transition shows a remarkable agreement with three-loop calculations based on in-medium chiral effective field theory. No signs of a chiral first-order phase transition and its critical endpoint are found in the region of applicability of the model, at least up to twice the density of normal nuclear matter and at temperatures T<100 MeV. Fluctuations close to the critical point of the first-order liquid-gas transition are also examined with a detailed study of the ...
Polyakov SU(3) extended linear $\\sigma$-model: Sixteen mesonic states in chiral phase-structure
Tawfik, Abdel Nasser
2014-01-01
The derivative of the grand potential in mean field approximation, non-strange and strange condensates and deconfinement phase-transition in thermal and dense hadronic medium are verified in extended SU(3) linear sigma-model (eLSM). In determining the chiral phase-transition, the chiral condensates sigma_x and sigma_y are analysed. The chiral mesonic phase-structures in temperature- and density-dependence are taken as free parameters to be fitted. These parameters are classified corresponding to scalar meson nonets; (pseudo)-scalar and (axial)-vector. For deconfinement phase-transition, effective Polyakov loop-potentials phi and phi^* are utilized. We investigated the in-medium effects on the masses of sixteen mesonic states states. The results are presented for two different forms for the effective Polyakov loop-potential and compared with other models with and without anomalous terms. The Polyakov loop potential in LSM has considerable effects on the chiral phase-transition in meson masses so that the resto...
Conformal symmetry vs. chiral symmetry breaking in the SU(3) sextet model
Drach, Vincent; Hietanen, Ari; Pica, Claudio; Sannino, Francesco
2015-01-01
We present new results for the SU(3) "sextet model" with two flavors transforming according to the two-index symmetric representation of the gauge group. The simulations are performed using unimproved Wilson fermions. We measure the meson and baryon spectrum of the theory for multiple bare quark masses at two different lattice spacings. To address the pressing issue of whether the model is inside or below the conformal window, we compare the spectrum to the expectations for a theory with spontaneous chiral symmetry breaking and to those of an IR conformal theory. Regardless of the answer (conformal or chirally broken), the theory is a cornerstone in our understanding of near-conformal and composite dynamics, ranging from Technicolor models to unparticle physics. It is also interesting for the composite dynamics of vector-like singlets with respect to the Standard Model interactions.
Highly nonlinear wave solutions in a dual to the chiral model
Rajeev, S G
2016-01-01
We consider a two-dimensional scalar field theory with a nilpotent current algebra, which is dual to the Principal Chiral Model. The quantum theory is renormalizable and not asymptotically free: the theory is strongly coupled at short distances (encountering a Landau pole). We suggest it can serve as a toy model for $\\lambda\\phi^{4}$ theory in four dimensions, just as the principal chiral model is a useful toy model for Yang-Mills theory. We find some classical wave solutions that survive the strong coupling limit and quantize them by the collective variable method. They describe excitations with an unusual dispersion relation $\\omega\\propto|k|^{\\frac{2}{3}}$ . Perhaps they are the "preons" at strong coupling, whose bound states form massless particles over long distances.
Highly nonlinear wave solutions in a dual to the chiral model
Rajeev, S. G.; Ranken, Evan
2016-05-01
We consider a two-dimensional scalar field theory with a nilpotent current algebra, which is dual to the Principal Chiral Model. The quantum theory is renormalizable and not asymptotically free; the theory is strongly coupled at short distances (encountering a Landau pole). We suggest it can serve as a toy model for λ ϕ4 theory in four dimensions, just as the principal chiral model is a useful toy model for Yang-Mills theory. We find some classical wave solutions that survive the strong coupling limit and quantize them by the collective variable method. They describe excitations with an unusual dispersion relation ω ∝|k |2/3 . Perhaps they are the "preons" at strong coupling, the bound states of which form massless particles over long distances.
Vector and axial vector mesons in a nonlocal chiral quark model
Villafañe, M F Izzo; Scoccola, N N
2016-01-01
Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.
Quark model with chiral-symmetry breaking and confinement in the Covariant Spectator Theory
Energy Technology Data Exchange (ETDEWEB)
Biernat, Elmer P. [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Pena, Maria Teresa [CFTP, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Departamento de FÃsica, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Ribiero, Jose' Emilio F. [CeFEMA, Instituto Superior TÃ©cnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; Stadler, Alfred [Departamento de FÃsica, Universidade de Ãvora, 7000-671 Ãvora, Portugal; Gross, Franz L. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
We propose a model for the quark-antiquark interaction in Minkowski space using the Covariant Spectator Theory. We show that with an equal-weighted scalar-pseudoscalar structure for the confining part of our interaction kernel the axial-vector Ward-Takahashi identity is preserved and our model complies with the Adler-zero constraint for pi-pi-scattering imposed by chiral symmetry.
Higgs-Yukawa model in chirally-invariant lattice field theory
Energy Technology Data Exchange (ETDEWEB)
Bulava, John [CERN, Geneva (Switzerland). Physics Department; Gerhold, Philipp; Kallarackal, Jim; Nagy, Attila [Humboldt Univ. Berlin (Germany). Inst. fuer Physik; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Knippschild, Bastian [National Taiwan Univ., Taipei (China). Dept. of Physics; Lin, C.J. David [National Chiao-Tung Univ., Hsinchu (China). Inst. of Physics; National Centre for Theoretical Sciences, Hsinchu (China). Div. of Physics; Nagai, Kei-Ichi [Nagoya Univ., Nagoya, Aichi (Japan). Kobayashi-Maskawa Institute; Ogawa, Kenji [Chung-Yuan Christian Univ., Chung-Li (China). Dept. of Physics
2012-10-15
Non-perturbative numerical lattice studies of the Higgs-Yukawa sector of the standard model with exact chiral symmetry are reviewed. In particular, we discuss bounds on the Higgs boson mass at the standard model top quark mass, and in the presence of heavy fermions. We present a comprehensive study of the phase structure of the theory at weak and very strong values of the Yukawa coupling as well as at non-zero temperature.
Vector and axial vector mesons in a nonlocal chiral quark model
Izzo Villafañe, M. F.; Gómez Dumm, D.; Scoccola, N. N.
2016-09-01
Basic features of nonstrange vector and axial vector mesons are analyzed in the framework of a chiral quark model that includes nonlocal four-fermion couplings. Unknown model parameters are determined from some input values of masses and decay constants, while nonlocal form factors are taken from a fit to lattice QCD results for effective quark propagators. Numerical results show a good agreement with the observed meson phenomenology.
QCD Equation of State From a Chiral Hadronic Model Including Quark Degrees of Freedom
Rau, Philip; Schramm, Stefan; Stöcker, Horst
2013-01-01
This work presents an effective model for strongly interacting matter and the QCD equation of state (EoS). The model includes both hadron and quark degrees of freedom and takes into account the transition of chiral symmetry restoration as well as the deconfinement phase transition. At low temperatures $T$ and baryonic densities $\\rho_B$ a hadron resonance gas is described using a SU(3)-flavor sigma-omega model and a quark phase is introduced in analogy to PNJL models for higher $T$ and $\\rho_B$. In this way, the correct asymptotic degrees of freedom are used in a wide range of $T$ and $\\rho_B$. Here, results of this model concerning the chiral and deconfinement phase transitions and thermodynamic model properties are presented. Large hadron resonance multiplicities in the transition region emphasize the importance of heavy-mass resonance states in this region and their impact on the chiral transition behavior. The resulting phase diagram of QCD matter at small chemical potentials is in line with latest lattic...
Modeling chiral criticality and its consequences for heavy-ion collisions
Almási, Gábor András; Redlich, Krzysztof
2016-01-01
We explore the critical fluctuations near the chiral critical endpoint (CEP) in a chiral effective model and discuss possible signals of the CEP, recently explored experimentally in nuclear collision. Particular attention is paid to the dependence of such signals on the location of the phase boundary and the EP relative to the chemical freeze-out conditions in nuclear collisions. We argue that in effective models, standard freeze-out fits to heavy-ion data should not be used directly. Instead, the relevant quantities should be examined on lines in the phase diagram that are defined self-consistently, within the framework of the model. We discuss possible choices for such an approach.
A Non—linear Non—ideal Model of Simulated Moving Bed Chromatography for Chiral Separations
Institute of Scientific and Technical Information of China (English)
卢建刚
2003-01-01
A non-linear non-ideal model,taking into account non-linear competitive isotherms,axial disperison,film mass transfer,intraparticle diffusion,and port periodic switching,was developed to simulate the dynamics of simulated moving bed chromatography(SMBC),The model equations were solved by a new efficient numerical technique of orthogonal collocation on finite elements with periodical movement of conceantration vector,The simulated SMBC performance is in accordance with the experimental results reported in the literature for separation of 1,1''''''''-bi-2-naphtol enantiomers using SMBC,This model is useful for design,operation ,optimization and scale-up of non-linear SMBC for chiral separations with significant non-ideal effects,especially for high solute concentration and small intraparticle diffusion coefficient or large chiral stationary phase particle.
Zhukovskii, V C; Khudyakov, V V
2000-01-01
The influence of an external constant and homogeneous magnetic field H on the phase structure of the P-symmetric, chiral invariant 3-dimensional field theory model with two four-fermion interaction structures is considered. An arbitrary small (nonzero) magnetic field is shown to induce spontaneous violation of the initial symmetry (magnetic catalysis). Moreover, vacuum of the model at H>0 can be either P-symmetric or chiral invariant, depending on the values of the coupling constants.
Dispersion Relation of σ Meson and Pion at Finite Nuclear Density in Chiral σ Model
Institute of Scientific and Technical Information of China (English)
DONG Dong-Qiao; CHEN Wei; WEN De-Hua; LIU Liang-Gang; Masahiro Nakano
2004-01-01
The propagators of pion and sigma meson at a finite nuclear density and zero temperature are studied in chiral σ model. Their dispersion relations are calculated numerically in one-loop approximation. In order to avoid the so-called tachyon pole appearing in the one-loop propagators of pion and sigma meson, we regard the mass of sigma meson mσ as a free parameter and adjust it to fit the nuclear saturation properties. For mσ equal to 3075 MeV, the tachyonpole does not appear at the normal nuclear density. Thus the dispersion relation can be calculated in chiral σ model in one-loop level for the first time.
Chirality and Z2 vortices in a Heisenberg spin model on the kagome lattice
Domenge, J.-C.; Lhuillier, C.; Messio, L.; Pierre, L.; Viot, P.
2008-05-01
The phase diagram of the classical J1-J2 model on the kagome lattice is investigated by using extensive Monte Carlo simulations. In a realistic range of parameters, this model has a low-temperature chiral-ordered phase without long-range spin order. We show that the critical transition marking the destruction of the chiral order is preempted by the first-order proliferation of Z2 point defects. The core energy of these vortices appears to vanish when approaching the T=0 phase boundary, where both Z2 defects and gapless magnons contribute to disordering the system at very low temperatures. This situation might be typical of a large class of frustrated magnets. Possible relevance for real materials is also discussed.
Modelling the Global Solar Corona II: Coronal Evolution and Filament Chirality Comparison
Yeates, A R; Van Ballegooijen, A A
2007-01-01
The hemispheric pattern of solar filaments is considered using newly-developed simulations of the real photospheric and 3D coronal magnetic fields over a 6-month period, on a global scale. The magnetic field direction in the simulation is compared directly with the chirality of observed filaments, at their observed locations. In our model the coronal field evolves through a continuous sequence of nonlinear force-free equilibria, in response to the changing photospheric boundary conditions and the emergence of new magnetic flux. In total 119 magnetic bipoles with properties matching observed active regions are inserted. These bipoles emerge twisted and inject magnetic helicity into the solar atmosphere. When we choose the sign of this active-region helicity to match that observed in each hemisphere, the model produces the correct chirality for up to 96% of filaments, including exceptions to the hemispheric pattern. If the emerging bipoles have zero helicity, or helicity of the opposite sign, then this percenta...
External Fields and Chiral Symmetry Breaking in the Sakai-Sugimoto Model
Johnson, Clifford V
2008-01-01
Using the Sakai-Sugimoto model we study the effect of an external magnetic field on the dynamics of fundamental flavours in both the confined and deconfined phases of a large N_c gauge theory. We find that an external magnetic field promotes chiral symmetry breaking, consistent with the ``magnetic catalysis'' observed in the field theory literature, and seen in other studies using holographic duals. The external field increases the separation between the deconfinement temperature and the chiral symmetry restoring temperature. In the deconfined phase we investigate the temperature-magnetic field phase diagram and observe, for example, there exists a maximum critical temperature (at which symmetry is restored) for very large magnetic field. We find that this and certain other phenomena persist for the Sakai-Sugimoto type models with probe branes of diverse dimensions. We comment briefly on the dynamics in the presence of an external electric field.
Zamorano, M.; Torres-Silva, H.
2006-04-01
A new electrodynamics model formed by chiral bioplasma, which represents the human head inner structure and makes it possible to analyse its behaviour when it is irradiated by a microwave electromagnetic field from cellular phones, is presented. The finite-difference time-domain (FDTD) numeric technique is used, which allows simulation of the electromagnetic fields, deduced with Maxwell's equations, and allows us to simulate the specific absorption rate (SAR). The results show the SAR behaviour as a function of the input power and the chirality factor. In considering the chiral brain tissue in the proposed human head model, the two more important conclusions of our work are the following: (a) the absorption of the electromagnetic fields from cellular phones is stronger, so the SAR coefficient is higher than that using the classical model, when values of the chiral factor are of order of 1; (b) 'inverse skin effect' shows up at 1800 MHz, with respect to a 900 MHz source.
Hu, Wen-Jun; Zhu, Wei; Zhang, Yi; Gong, Shoushu; Becca, Federico; Sheng, D. N.
2015-01-01
We investigate the extended Heisenberg model on the kagome lattice by using Gutzwiller projected fermionic states and the variational Monte Carlo technique. In particular, when both second- and third-neighbor superexchanges are considered, we find that a gapped spin liquid described by nontrivial magnetic fluxes and long-range chiral-chiral correlations is energetically favored compared to the gapless U(1) Dirac state. Furthermore, the topological Chern number, obtained by integrating the Berry curvature, and the degeneracy of the ground state, by constructing linearly independent states, lead us to identify this flux state as the chiral spin liquid with a C =1 /2 fractionalized Chern number.
Zamolodchikov's c-function for the Chiral Gross-Neveu Model
Cabra, D C
1993-01-01
We construct the Zamolodchikov's c-function for the Chiral Gross-Neveu Model up to two loops. We show that the c-function interpolates between the two known critical points of the theory, it is stationary at them and it decreases with the running coupling constant. In particular one can infer the non-existence of additional critical points in the region under investigation.
Electromagnetic form factors of the baryon octet in the perturbative chiral quark model
Cheedket, S; Gutsche, T; Faessler, A; Pumsa-ard, K; Yan, Y; Gutsche, Th.; Faessler, Amand
2002-01-01
We apply the perturbative chiral quark model at one loop to analyze the electromagnetic form factors of the baryon octet. The analytic expressions for baryon form factors, which are given in terms of fundamental parameters of low-energy pion-nucleon physics(weak pion decay constant, axial nucleon coupling, strong pion-nucleon form factor), and the numerical results for baryon magnetic moments, charge and magnetic radii are presented. Our results are in good agreement with experimental data.
Electromagnetic nucleon-delta transition in the perturbative chiral quark model
Pumsa-ard, K; Gutsche, T; Faessler, A; Cheedket, S; Gutsche, Th.; Faessler, Amand
2003-01-01
We apply the perturbative chiral quark model to the gamma N -> Delta transition. The four momentum dependence of the respective transverse helicity amplitudes A(1/2) and A(3/2) is determined at one loop in the pseudoscalar Goldstone boson fluctuations. Inclusion of excited states in the quark propagator is shown to result in a reasonable description of the experimental values for the helicity amplitudes at the real photon point.
Ebert, D; Klimenko, K G
2016-01-01
In this paper we investigate the phase structure of a (1+1)-dimensional schematic quark model with four-quark interaction and in the presence of baryon ($\\mu_B$), isospin ($\\mu_I$) and chiral isospin ($\\mu_{I5}$) chemical potentials. It is established that in the large-$N_c$ limit ($N_c$ is the number of colored quarks) there exists a duality correspondence between the chiral symmetry breaking phase and the charged pion condensation (PC) one. The role and influence of this property on the phase structure of the model are studied. Moreover, it is shown that the chemical potential $\\mu_{I5}$ promotes the appearance of the charged PC phase with nonzero baryon density.
A chiral matrix model of the semi-Quark Gluon Plasma in QCD
Pisarski, Robert D
2016-01-01
A chiral matrix model applicable to QCD with 2+1 flavors is developed. This requires adding a SU(3)_L x SU(3)_R x Z(3)_A nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y. Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. In addition to the usual symmetry breaking term, linear in the current quark mass m_qk, at a nonzero temperature T it is necessary to add a new term, ~ m_qk T^2. The parameters of the gluon part of the matrix model, including especially the deconfining transition temperature T_d = 270 MeV, are identical to that for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant the masses of the pions, kaons, eta, and eta'. The temperature for the chiral crossover at T_chi = 155 MeV is determined by adjusting the Yukawa coupling y. We find reasonable agreement with th...
Huang, Z; Huang, Zheng; Suzuki, Mahiko
1996-01-01
We obtain the general analytic solutions of the nonlinear \\sigma-model in 3+1 dimensions as the candidates for the disoriented chiral condensate (DCC). The nonuniformly isospin-orientated solutions are shown to be related to the uniformly oriented ones through the chiral (axial) rotations. We discuss the pion charge distribution arising from these solutions. The distribution dP/df=1/(2\\sqrt{f}) holds for the uniform solutions in general and the nonuniform solutions in the 1+1 boost invariant case. For the nonuniform solution in 1+1 without a boost-invariance and in higher dimensions, the distribution does not hold in the integrated form. However, it is applicable to the pions selected from a small segment in the momentum phase space. We suggest that the nonuniform DCC's may correspond to the mini-Centauro events.
Three-flavor chiral effective model with four baryonic multiplets within the mirror assignment
Olbrich, L; Giacosa, F
2016-01-01
We study three-flavor octet baryons by using the so-called extended Linear Sigma Model (eLSM). Within a quark-diquark picture, the requirement of a mirror assignment naturally leads to the consideration of four spin-$\\frac{1}{2}$ baryon multiplets. A reduction of the Lagrangian to the two-flavor case leaves four doublets of nucleonic states which mix to form the experimentally observed states $N(939)$, $N(1440)$, $N(1535)$ and $N(1650)$. We determine the parameters of the nucleonic part of the Lagrangian from a fit to masses and decay properties of the aforementioned states. By tracing their masses when chiral symmetry is restored, we conclude that the pairs $N(939)$, $N(1535)$ and $N(1440)$, $N(1650)$ form chiral partners.
Non-Abelian twisted kinks in chiral Gross-Neveu model with isospin
Thies, Michael
2015-01-01
The two-dimensional, massless Gross-Neveu model with Nc colors and SU(2) isospin is studied analytically in the large Nc limit. The chiral SU(2)L X SU(2)R symmetry is broken spontaneously in the vacuum. Twisted kinks connecting two arbitrary points on the vacuum manifold S3 are constructed, and their properties are explored. The phase diagram as a function of temperature, baryon- and isospin chemical potential is discussed, with special emphasis on inhomogeneous phases. The preferred form of the condensate is a product of the real kink crystal and the chiral spiral. Kink-kink scattering is solved, using the general solution of the multicomponent Bogoliubov-de Gennes equation recently presented by Takahashi.
Chiral phase transition in a planar four-Fermi model in a tilted magnetic field
Ramos, Rudnei O
2013-01-01
We study a planar four-Fermi Gross-Neveu model in the presence of a tilted magnetic field, with components parallel and perpendicular to the system's plane. We determine how this combination of magnetic field components, when applied simultaneously, affects the phase diagram of the model. It is shown that each component of the magnetic field causes a competing effect on the chiral symmetry in these fermionic systems. While the perpendicular component of the magnetic field tends to make the chiral symmetry breaking to become stronger, the effect of the parallel component of the field in these planar systems is to weaken the chiral symmetry. We show that this competing effect, when combined also with temperature and chemical potential, can lead to a rich phase diagram, with the emergence of multiple critical points and reentrant phase transitions. We also study how the presence of these multiple critical points and reentrant phases can manifest in the quantum Hall effect. Our results provide a possible way to p...
Chiral Symmetry Breaking and External Fields in the Kuperstein-Sonnenschein Model
Alam, M Sohaib; Kundu, Arnab
2012-01-01
A novel holographic model of chiral symmetry breaking has been proposed by Kuperstein and Sonnenschein by embedding non-supersymmetric probe D7 and anti-D7 branes in the Klebanov-Witten background. We study the dynamics of the probe flavours in this model in the presence of finite temperature and a constant electromagnetic field. In keeping with the weakly coupled field theory intuition, we find the magnetic field promotes spontaneous breaking of chiral symmetry whereas the electric field restores it. The former effect is universally known as the "magnetic catalysis" in chiral symmetry breaking. In the presence of an electric field such a condensation is inhibited and a current flows. Thus we are faced with a steady-state situation rather than a system in equilibrium. We conjecture a definition of thermodynamic free energy for this steady-state phase and using this proposal we study the detailed phase structure when both electric and magnetic fields are present in two representative configurations: mutually p...
Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models
Pagura, V. P.; Gómez Dumm, D.; Noguera, S.; Scoccola, N. N.
2017-02-01
We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature, our results show that nonlocal models naturally lead to the inverse magnetic catalysis effect.
Generalized Ginzburg–Landau approach to inhomogeneous phases in nonlocal chiral quark models
Energy Technology Data Exchange (ETDEWEB)
Carlomagno, J.P. [IFLP, CONICET – Dpto. de Física, FCE, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Gómez Dumm, D., E-mail: dumm@fisica.unlp.edu.ar [IFLP, CONICET – Dpto. de Física, FCE, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Scoccola, N.N. [CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Physics Department, Comisión Nacional de Energía Atómica, Av. Libertador 8250, 1429 Buenos Aires (Argentina); Universidad Favaloro, Solís 453, 1078 Buenos Aires (Argentina)
2015-05-18
We analyze the presence of inhomogeneous phases in the QCD phase diagram within the framework of nonlocal chiral quark models. We concentrate in particular in the positions of the tricritical (TCP) and Lifshitz (LP) points, which are studied in a general context using a generalized Ginzburg–Landau approach. We find that for all the phenomenologically acceptable model parametrizations considered the TCP is located at a higher temperature and a lower chemical potential in comparison with the LP. Consequently, these models seem to favor a scenario in which the onset of the first order transition between homogeneous phases is not covered by an inhomogeneous, energetically favored phase.
Magnetic catalysis and inverse magnetic catalysis in nonlocal chiral quark models
Pagura, V P; Noguera, S; Scoccola, N N
2016-01-01
We study the behavior of strongly interacting matter under an external constant magnetic field in the context of nonlocal chiral quark models within the mean field approximation. We find that at zero temperature the behavior of the quark condensates shows the expected magnetic catalysis effect, our predictions being in good quantitative agreement with lattice QCD results. On the other hand, in contrast to what happens in the standard local Nambu-Jona-Lasinio model, when the analysis is extended to the case of finite temperature our results show that nonlocal models naturally lead to the Inverse Magnetic Catalysis effect.
Fragmentation functions of pions and kaons in the nonlocal chiral quark model
Directory of Open Access Journals (Sweden)
Kao Chung Wen
2014-03-01
Full Text Available We investigate the unpolarized pion and kaon fragmentation functions using the nonlocal chiral-quark model. In this model the interactions between the quarks and pseudoscalar mesons is manifested nonlocally. In addition, the explicit flavor SU(3 symmetry breaking effect is taken into account in terms of the current quark masses. The results of our model are evaluated to higher Q2 value Q2 = 4 GeV2 by the DGLAP evolution. Then we compare them with the empirical parametrizations. We find that our results are in relatively good agreement with the empirical parametrizations and the other theoretical estimations.
Pion Structure at High and Low Energies in Chiral Quark Models
Ruiz-Arriola, E
2002-01-01
Low and high energy properties of the pion are reviewed in the framework of chiral quark models. Particular emphasis is put on the simplest version of the SU(2) NJL model as prototype. The role of gauge invariance in this kind of calculations is stressed. The results are used as initial conditions for perturbative QCD evolution equations. At leading order the quark model scale is $\\mu_0 \\sim 320 {\\rm MeV} $ as determined from the pion distribution functions and the pion distribution amplitudes.
Chirally Invariant Avatar in a Model of Neutrinos with Light Cone Reflection Symmetry
Chodos, Alan
2016-01-01
In previous work we developed a model of neutrinos based on a new symmetry, Light Cone Reflection (LCR), that interchanges spacelike and timelike intervals. In this paper we start with the four-dimensional model, and construct a two-dimensional avatar that obeys the same equations of motion, and preserves both the light-cone reflection symmetry and the chiral symmetry of the original theory. The avatar also contains the interaction that rendered the four-dimensional model gauge invariant. In an addendum, we make some remarks about how to determine the scalar field that enters into the definition of the LCR-covariant derivative.
Abu-Shady, M
2015-01-01
The chiral symmetry breaking in the presence of external magnetic field is studied in the framework of logarithmic quark-sigma model. The effective logarithmic mesonic potential is employed and is numerically solved in the mean-field approximation. We find that the chiral symmetry breaking enhances in comparison with the original sigma model. Two sets of parameterization are investigated in the present model. We find that increasing coupling constant enhances the breaking symmetry while increasing sigma mass inhibits enhancing chiral broken vacuum state. A comparison with the Numbu-Jona-Lasinio model and the Schwinger-Dyson equation is discussed. We conclude that the logarithmic sigma model enhances the magnetic catalysis in comparison with the original sigma model and other models.
Chiral rotational spectroscopy
Cameron, Robert P.; Götte, Jörg B.; Barnett, Stephen M.
2016-09-01
We introduce chiral rotational spectroscopy, a technique that enables the determination of the orientated optical activity pseudotensor components BX X, BY Y, and BZ Z of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample and provides an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral solely by virtue of their isotopic constitution and molecules with multiple chiral centers. A basic design for a chiral rotational spectrometer together with a model of its functionality is given. Our proposed technique offers the more familiar polarizability components αX X, αY Y, and αZ Z as by-products, which could see it find use even for achiral molecules.
Kalaydzhyan, Tigran
2014-01-01
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.
Roan, Shi-shyr
2010-01-01
We study the eigenvector problem in homogeneous superintegrable chiral Potts model (CPM) by the symmetry principal. Using duality and degeneracy symmetries of $\\tau^{(2)}$-model, we construct the complete eigenvectors in superintegrable CPM for an arbitrary Onsager sector. By duality in CPM, the Bethe state and the Fabricius-McCoy current for a sector in $\\tau^{(2)}$-model are constructed by employing algebraic-Bethe-ansatz techniques on its equivalent XXZ chain. The algebra-generators for the $sl_2$-loop-algebra symmetry of a $\\tau^{(2)}$-sector are determined by the Fabricius-McCoy current. Together with the loop-algebra and Onsager-algebra symmetries, we obtain the local-vector representation of $\\tau^{(2)}$- and CPM-eigenvectors. In this paper we also present the complete and precise constraints of quantum numbers for $\\tau^{(2)}$-sectors. By examining the relationship between solutions of Bethe equations, a new reflective symmetry, besides the duality relation, is found in the superintegrable $\\tau^{(2)}...
Shinisha, C B; Sunoj, Raghavan B
2010-09-08
The use of chiral auxiliaries is one of the most fundamental protocols employed in asymmetric synthesis. In the present study, stereoselectivity-determining factors in a chiral auxiliary-based asymmetric aldol reaction promoted by TiCl(4) are investigated by using density functional theory methods. The aldol reaction between chiral titanium enolate [derived from Evans propionyl oxazolidinone (1a) and its variants oxazolidinethione (1b) and thiazolidinethione (1c)] and benzaldehyde is examined by using transition-state modeling. Different stereochemical possibilities for the addition of titanium enolates to aldehyde are compared. On the basis of the coordination of the carbonyl/thiocarbonyl group of the chiral auxiliary with titanium, both pathways involving nonchelated and chelated transition states (TSs) are considered. The computed relative energies of the stereoselectivity-determining C-C bond formation TSs in the nonchelated pathway, for both 1a and 1c, indicate a preference toward Evans syn aldol product. The presence of a ring carbonyl or thiocarbonyl group in the chiral auxiliary renders the formation of neutral TiCl(3)-enolate, which otherwise is energetically less favored as compared to the anionic TiCl(4)-enolate. Hence, under suitable conditions, the reaction between titanium enolate and aldehyde is expected to be viable through chelated TSs leading to the selective formation of non-Evans syn aldol product. Experimentally known high stereoselectivity toward Evans syn aldol product is effectively rationalized by using the larger energy differences between the corresponding diastereomeric TSs. In both chelated and nonchelated pathways, the attack by the less hindered face of the enolate on aldehyde through a chair-like TS with an equatorial disposition of the aldehydic substituent is identified as the preferred mode. The steric hindrance offered by the isopropyl group and the possible chelation are identified as the key reasons behind the interesting
Chiral field theories as models for hadron substructure
Energy Technology Data Exchange (ETDEWEB)
Kahana, S.H.
1987-03-01
A model for the nucleon as soliton of quarks interacting with classical meson fields is described. The theory, based on the linear sigma model, is renormalizable and capable of including sea quarks straightforwardly. Application to nuclear matter is made in a Wigner-Seitz approximation.
Anomalous transport model study of chiral magnetic effects in heavy ion collisions
Sun, Yifeng; Li, Feng
2016-01-01
Using an anomalous transport model for massless quarks, we study the effect of magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in non-central heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision, which subsequently leads to a splitting between the elliptic flows of quarks and antiquarks as expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the Relativistic Heavy Ion Collider (RHIC).
Study of Ratio of Proton Momentum Distributions with a Chiral Quark Model
Institute of Scientific and Technical Information of China (English)
LIU Jian; DONG Yu-Bing
2005-01-01
The ratio between the anomalous magnetic moments of proton and neutron has recently been suggested to be connected to the ratio of proton momentum fractions carried by the valence quarks inside it. This moment fraction ratio is respectively evaluated by using constituent quark model and chiral quark model in order to check meson cloud effect. Our results show that the meson cloud effect is remarkable to the ratio of the proton momentum fractions, and therefore, this ratiois a sensitive test for the meson cloud effect as well as for the SU(6) symmetry breaking effect.
Generalized vector form factors of the pion in a chiral quark model
Broniowski, Wojciech
2008-01-01
Generalized vector form factors of the pion, related to the moments of the generalized parton distribution functions, are evaluated in the Nambu--Jona-Lasinio model with the Pauli-Villars regularization. The lowest moments (the electromagnetic and the gravitational form factors) are compared to recent lattice data, with fair agreement. Predictions for higher-order moments are also made. Relevant features of the generalized form factors in the chiral quark models are highlighted and the role of the QCD evolution for the higher-order GFFs is stressed.
Chen, X B; Chen, X S; Wang, F
2001-07-02
We perform a one-loop calculation of the strange quark polarization (Deltas) of the nucleon in an SU(3) chiral potential model. We find that if the intermediate quark excited states are summed over in a proper way, i.e., summed up to a given energy instead of given radial and orbital quantum numbers, Deltas turns out to be almost independent of all the model parameters: quark masses and potential strengths. The contribution from the quark-antiquark pair creation and annihilation " Z" diagrams is found to be significant. Our numerical results agree quite reasonably with experiments and lattice QCD calculations.
Eta and kaon production in a chiral quark model
Golli, Bojan
2016-01-01
We apply a coupled-channel formalism incorporating quasi-bound quark-model states to calculate pion scattering into eta N, K Lambda and K Sigma channels, as well eta p, eta n, K+Lambda, and K0Sigma+ photo-production processes. The meson-baryon and photon-baryon vertices are determined in a SU(3) version of the Cloudy Bag Model. Our model predicts sizable amplitudes in the P11, P13, P33 and S11 partial waves in agreement with the latest MAID isobar model and the recent partial-wave analyses of the Bonn-Gatchina group. We are able to give a quark-model explanation for the apparent resonance at 1685 MeV in the eta n channel.
Eta and kaon production in a chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Golli, B. [University of Ljubljana and J. Stefan Institute, Faculty of Education, Ljubljana (Slovenia); Sirca, S. [University of Ljubljana and J. Stefan Institute, Faculty of Mathematics and Physics, Ljubljana (Slovenia)
2016-09-15
We apply a coupled-channel formalism incorporating quasi-bound quark-model states to calculate pion scattering into ηN, KΛ and KΣ channels, as well ηp, ηn, K{sup +}Λ, and K{sup 0}Σ{sup +} photoproduction processes. The meson-baryon and photon-baryon vertices are determined in a SU(3) version of the Cloudy Bag Model. Our model predicts sizable amplitudes in the P{sub 11}, P{sub 13}, P{sub 33} and S{sub 11} partial waves in agreement with the latest MAID isobar model and the recent partial-wave analyses of the Bonn-Gatchina group. We are able to give a quark-model explanation for the apparent resonance near 1685 MeV in the ηn channel. (orig.)
The Role of Stochastic Models in Interpreting the Origins of Biological Chirality
Directory of Open Access Journals (Sweden)
Gábor Lente
2010-04-01
Full Text Available This review summarizes recent stochastic modeling efforts in the theoretical research aimed at interpreting the origins of biological chirality. Stochastic kinetic models, especially those based on the continuous time discrete state approach, have great potential in modeling absolute asymmetric reactions, experimental examples of which have been reported in the past decade. An overview of the relevant mathematical background is given and several examples are presented to show how the significant numerical problems characteristic of the use of stochastic models can be overcome by non-trivial, but elementary algebra. In these stochastic models, a particulate view of matter is used rather than the concentration-based view of traditional chemical kinetics using continuous functions to describe the properties system. This has the advantage of giving adequate description of single-molecule events, which were probably important in the origin of biological chirality. The presented models can interpret and predict the random distribution of enantiomeric excess among repetitive experiments, which is the most striking feature of absolute asymmetric reactions. It is argued that the use of the stochastic kinetic approach should be much more widespread in the relevant literature.
The nonstrange dibaryon and hidden-color effect in a chiral quark model
Dai, L. R.; Zhang, Y. N.; Sun, Y. L.; Shao, S. J.
2016-09-01
The exotic nonstrange ΔΔ dibaryon with I(JP) = 0(3+) has been confirmed by the experimental data reported by WASA-at-COSY Collaboration, and the result is consistent with our theoretical prediction in the chiral SU(3) quark model and extended chiral SU(3) quark model, showing that the effect from hidden-color channel ( CC is important. In the present work, we further investigate another exotic nonstrange ΔΔ dibaryon with I(JP) = 3(0+) in the chiral SU(3) quark model that describes the energies of baryon ground states and the nucleon-nucleon (NN) scattering data satisfactorily. We perform a dynamical coupled-channel study of the ΔΔ - CC system with I(JP) = 3(0+) within the framework of resonating group method (RGM). We find that the binding energy of I(JP) = 3(0+) state is about 22.3 MeV and a root-mean-square radius (RMS) of 1.03 fm in single-channel calculation. Then we extend the model to include the CC channel to further study the I(JP) = 3(0+) state and find that the binding energy is about 31.3 MeV and RMS is 0.97 fm in coupled-channel calculation. We can see that the CC channel coupling has a relatively large effect on this state. The color screening effect is further considered and we find that the bound state property will not change much. It is shown that the binding energy of this state is stably ranged around several tens of MeV; it means that its mass is always lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ.
The nonstrange dibaryon and hidden-color effect in a chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Dai, L.R.; Zhang, Y.N.; Sun, Y.L.; Shao, S.J. [Liaoning Normal University, Department of Physics, Dalian (China)
2016-09-15
The exotic nonstrange ΔΔ dibaryon with I(J{sup P}) = 0(3{sup +}) has been confirmed by the experimental data reported by WASA-at-COSY Collaboration, and the result is consistent with our theoretical prediction in the chiral SU(3) quark model and extended chiral SU(3) quark model, showing that the effect from hidden-color channel (CC) is important. In the present work, we further investigate another exotic nonstrange ΔΔ dibaryon with I(J{sup P}) = 3(0{sup +}) in the chiral SU(3) quark model that describes the energies of baryon ground states and the nucleon-nucleon (NN) scattering data satisfactorily. We perform a dynamical coupled-channel study of the ΔΔ-CC system with I(J{sup P}) = 3(0{sup +}) within the framework of resonating group method (RGM). We find that the binding energy of I(J{sup P}) = 3(0{sup +}) state is about 22.3 MeV and a root-mean-square radius (RMS) of 1.03 fm in single-channel calculation. Then we extend the model to include the CC channel to further study the I(J{sup P}) = 3(0{sup +}) state and find that the binding energy is about 31.3 MeV and RMS is 0.97 fm in coupled-channel calculation. We can see that the CC channel coupling has a relatively large effect on this state. The color screening effect is further considered and we find that the bound state property will not change much. It is shown that the binding energy of this state is stably ranged around several tens of MeV; it means that its mass is always lower than the threshold of the ΔΔ channel and higher than the mass of NΔπ. (orig.)
Light baryons in a constituent quark model with chiral dynamics
Glozman, L Ya; Plessas, W
1996-01-01
It is shown from rigorous three-body Faddeev calculations that the masses of all 14 lowest states in the N and \\Delta spectra can be described within a constituent quark model with a Goldstone-boson-exch ange interaction plus linear confinement between the constituent quarks.
Chiral condensate in the Schwinger model with Matrix Product Operators
Bañuls, Mari Carmen; Jansen, Karl; Saito, Hana
2016-01-01
Tensor network (TN) methods, in particular the Matrix Product States (MPS) ansatz, have proven to be a useful tool in analyzing the properties of lattice gauge theories. They allow for a very good precision, much better than standard Monte Carlo (MC) techniques for the models that have been studied so far, due to the possibility of reaching much smaller lattice spacings. The real reason for the interest in the TN approach, however, is its ability, shown so far in several condensed matter models, to deal with theories which exhibit the notorious sign problem in MC simulations. This makes it prospective for dealing with the non-zero chemical potential in QCD and other lattice gauge theories, as well as with real-time simulations. In this paper, using matrix product operators, we extend our analysis of the Schwinger model at zero temperature to show the feasibility of this approach also at finite temperature. This is an important step on the way to deal with the sign problem of QCD. We analyze in detail the chir...
Meson cloud effects on the pion quark distribution function in the chiral constituent quark model
Watanabe, Akira; Suzuki, Katsuhiko
2016-01-01
We investigate the valence quark distribution function of the pion $v^{\\pi}(x,Q^2)$ in the framework of the chiral constituent quark model and evaluate the meson cloud effects on $v^{\\pi}(x,Q^2)$. We explicitly demonstrate how the meson cloud effects affect $v^{\\pi}(x,Q^2)$ in detail. We find that the meson cloud correction causes an overall 32\\% reduction of the valence quark distribution and an enhancement at the small Bjorken $x$ regime. Besides, we also find that the dressing effect of the meson cloud will make the valence quark distribution to be softer in the large $x$ region.
Nucleon shape and electromagnetic form factors in the chiral constituent quark model
Dahiya, Harleen
2010-01-01
The electromagnetic form factors are the most fundamental quantities to describe the internal structure of the nucleon and the shape of a spatially extended particle is determined by its intrinsic quadrupole moment which can be related to the charge radii. We have calculated the electromagnetic form factors, nucleon charge radii and the intrinsic quadrupole moment of the nucleon in the framework of chiral constituent quark model. The results obtained are comparable to the latest experimental studies and also show improvement over some theoretical interpretations.
Qq(-Q)(-q)'States in Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANG Hai-Xia; ZHANG Min; ZHANG Zong-Ye
2007-01-01
We study the masses of Qq(-Q)(-q)'states with JPC = 0++, 1++, 1+- and 2++ in the chiral SU(3) quark model,where Q is the heavy quark (c or b) and q (q') is the light quark (u, d or s). According to our numerical results, it is improbable to make the interpretation of [cn(-c)(-n)]1++ and [cn(-c)(-n)]2++ (n = u, d) states as X(3872) and Y(3940),respectively. However, it is interesting to find the tetraquarks in the bq(-b)(-q)'system.
Scaling violation and the magnetic equation of state in chiral models
Almási, Gábor András; Tarnowski, Wojciech; Friman, Bengt; Redlich, Krzysztof
2017-01-01
The scaling behavior of the order parameter at the chiral phase transition, the so-called magnetic equation of state, of strongly interacting matter is studied within effective models. We explore universal and nonuniversal structures near the critical point. These include the scaling functions, the leading corrections to scaling, and the corresponding size of the scaling window as well as their dependence on an external symmetry breaking field. We consider two models in the mean-field approximation, the quark-meson and the Polyakov loop extended quark-meson (PQM) models, and compare their critical properties with a purely bosonic theory, the O (N ) linear sigma model in the N →∞ limit. In these models the order parameter scaling function is found analytically using the high temperature expansion of the thermodynamic potential. The effects of a gluonic background on the nonuniversal scaling parameters are studied within the PQM model.
Study of the N=∞ limit of quantized chiral models in one dimension
Ogielski, A. T.
1982-05-01
A systematic analysis of the N=∞ limit of quantized one-dimensional chiral models on the sphere SN and on the unitary group U(N) is presented. The theory of projective limits of probability spaces is used to investigate the N=∞ limit of Hilbert spaces, Hamiltonians, energy eigenstates, and correlation functions for both models. The results are as follows: Quantum mechanics of the SN model in the limit is isomorphic to that of a harmonic oscillator in infinite-dimensional Euclidean space. Although all N2 degrees of freedom are nontrivially involved in the matrix U(N) model and the situation is more complex here, its limit is essentially equivalent to the tensor product of an infinite-dimensional harmonic oscillator and the U(1) model. A separate analysis is devoted to the central sector of the U(N) model. In the case of the SU(N) group the U(1) factor is absent.
Scaling violation and the magnetic equation of state in chiral models
Almasi, Gabor Andras; Friman, Bengt; Redlich, Krzysztof
2016-01-01
The critical behavior of the order parameter at the chiral phase transition of strongly interacting matter and the corresponding magnetic equation of state is studied within effective models. We explore universal and non-universal structures near the critical point. These include the scaling functions, the leading corrections to scaling and the corresponding size of the critical region as well as their dependence on an external symmetry breaking field. We consider two models in the mean-field approximation, the quark-meson (QM) and the Polyakov loop extended quark-meson (PQM) models, and compare their critical properties with a purely bosonic theory, the $O(N)$ linear sigma (LS) model in the $N\\to\\infty$ limit. In these models the order parameter scaling function is found analytically using the high temperature expansion of the thermodynamic potential. The effects of a gluonic background on the non-universal scaling parameters are quantified within the PQM model.
Two chiral preon models with SU(N) metacolor satisfying complementarity
Geng, C. Q.; Marshak, R. E.
1987-04-01
We have constructed two chiral preon models based on the group SU(N)MC×SU(N+4)F×U(1)F (MC is gauged metacolor and F is global color flavor), the simplest (M=0) version of a class of models SU(N)MC×SU(N+M+4)F×SU(M)F×U(1)F 2 studied by bars and Yankielowicz. In contrast with earlier work, our models satisfy the principle of complementarity between the Higgs and confining phases. In one model, N=16 and four generations of ordinary quarks and leptons are found at the gauged SO(10) level. The second model predicts three quark-lepton families at the gauged SU(5) level without a right-handed neutrino. We also show that complementarity holds for the M≠0 models but that, for N=15 or 16, the results at the gauged level are identical with the M=0 case.
On Exotic Systems of Baryons in Chiral Soliton Models
Kopeliovich, Vladimir
2016-01-01
The role of zero mode quantum corrections to the energy of baryonic systems with exotic quantum numbers (strangeness) is discussed. A simple expression for the contribution depending on strange inertia is obtained in the $SU(3)-$collective coordinate quantization approach, and it is shown that this correction stabilizes the systems the stronger the greater their baryon number is. Furthemore, systems are considered which could be interpreted in the quark model language as containing additional $q\\bar q-$pairs. It is argued that a strange skyrmion crystal should have additional binding in comparison with the $SU(2)-$quantized neutron crystal.
Chiral symmetry and chiral-symmetry breaking
Energy Technology Data Exchange (ETDEWEB)
Peskin, M.E.
1982-12-01
These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)
Structures of (ΩΩ)0+ and (([1])Ω)1+ in Extended Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANG Zong-Ye; YU You-Wen; DAI Lian-Rong
2003-01-01
The structures of (ΩΩ)0+ and (([1])Ω)1+ are studied in the extended chiral SU(3) quark model in whichvector meson exchanges are included. The effect from the vector meson fields is very similar to that from the one-gluonexchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model,di-omega (ΩΩ)0+ is always deeply bound, with over one hundred MeV binding energy, and (([1])Ω)1+ 's binding energyis around 20 MeV. An analysis shows that the quark exchange effect plays a very important role for making di-omega(ΩΩ)0+ deeply bound.
Directory of Open Access Journals (Sweden)
Yifeng Chai
2012-01-01
Full Text Available Chiral separations of five β-adrenergic antagonists (propranolol, esmolol, atenolol, metoprolol, and bisoprolol were studied by capillary electrophoresis using six cyclodextrins (CDs as the chiral selectors. Carboxymethylated-β-cyclodextrin (CM-β-CD exhibited a higher enantioselectivity power compared to the other tested CDs. The influences of the concentration of CM-β-CD, buffer pH, buffer concentration, temperature, and applied voltage were investigated. The good chiral separation of five β-adrenergic antagonists was achieved using 50 mM Tris buffer at pH 4.0 containing 8 mM CM-β-CD with an applied voltage of 24 kV at 20 °C. In order to understand possible chiral recognition mechanisms of these racemates with CM-β-CD, host-guest binding procedures of CM-β-CD and these racemates were studied using the molecular docking software Autodock. The binding free energy was calculated using the Autodock semi-empirical binding free energy function. The results showed that the phenyl or naphthyl ring inserted in the hydrophobic cavity of CM-β-CD and the side chain was found to point out of the cyclodextrin rim. Hydrogen bonding between CM-β-CD and these racemates played an important role in the process of enantionseparation and a model of the hydrogen bonding interaction positions was constructed. The difference in hydrogen bonding formed with the –OH next to the chiral center of the analytes may help to increase chiral discrimination and gave rise to a bigger separation factor. In addition, the longer side chain in the hydrophobic phenyl ring of the enantiomer was not beneficial for enantioseparation and the chiral selectivity factor was found to correspond to the difference in binding free energy.
Blanco, Celia; Ribó, Josep M; Hochberg, David
2015-02-01
We derive the class of population balance equations (PBE), recently applied to model the Viedma deracemization experiment, from an underlying microreversible kinetic reaction scheme. The continuum limit establishing the relationship between the micro- and macroscopic processes and the associated particle fluxes erases the microreversible nature of the molecular interactions in the population growth rate functions and limits the scope of such PBE models to strict kinetic control. The irreversible binary agglomeration processes modeled in those PBEs contribute an additional source of kinetic control. These limitations are crucial regarding the question of the origin of biological homochirality, where the interest in any model lies precisely in its ability for absolute asymmetric synthesis and the amplification of the tiny inherent statistical chiral fluctuations about the ideal racemic composition up to observable enantiometric excess levels.
Caldas, H C G
2001-01-01
Feynman's functional formulation of statistical mechanics is used to study the renormalizability of the well known Linear Chiral Sigma Model in the presence of fermionic fields at finite temperature in an alternative way. It is shown that the renormalization conditions coincide with those of the zero temperature model.
Vanderheyden, B J; Vanderheyden, Benoit
2000-01-01
We consider a random matrix model which describes the competition between chiral symmetry breaking and the formation of quark Cooper pairs in QCD at finite density. We study the evolution of the phase structure in temperature and chemical potential with variations of the strength of the interaction in the quark-quark channel and demonstrate that the phase diagram can realize a total of six different topologies. A vector interaction representing single-gluon exchange reproduces a topology commonly encountered in previous QCD models, in which a low-density chiral broken phase is separated from a high-density diquark phase by a first-order line. The other five topologies either do not possess a diquark phase or display a new phase and new critical points. Since these five cases require large variations of the coupling constants away from the values expected for a vector interaction, we conclude that the phase diagram of finite density QCD has the topology suggested by single-gluon exchange and that this topology...
Emergent chiral spin liquid: fractional quantum Hall effect in a kagome Heisenberg model.
Gong, Shou-Shu; Zhu, Wei; Sheng, D N
2014-09-10
The fractional quantum Hall effect (FQHE) realized in two-dimensional electron systems under a magnetic field is one of the most remarkable discoveries in condensed matter physics. Interestingly, it has been proposed that FQHE can also emerge in time-reversal invariant spin systems, known as the chiral spin liquid (CSL) characterized by the topological order and the emerging of the fractionalized quasiparticles. A CSL can naturally lead to the exotic superconductivity originating from the condense of anyonic quasiparticles. Although CSL was highly sought after for more than twenty years, it had never been found in a spin isotropic Heisenberg model or related materials. By developing a density-matrix renormalization group based method for adiabatically inserting flux, we discover a FQHE in a spin-½ isotropic kagome Heisenberg model. We identify this FQHE state as the long-sought CSL with a uniform chiral order spontaneously breaking time reversal symmetry, which is uniquely characterized by the half-integer quantized topological Chern number protected by a robust excitation gap. The CSL is found to be at the neighbor of the previously identified Z2 spin liquid, which may lead to an exotic quantum phase transition between two gapped topological spin liquids.
Anomalous transport model study of chiral magnetic effects in heavy ion collisions
Sun, Yifeng; Ko, Che Ming; Li, Feng
2016-10-01
Using an anomalous transport model for massless quarks and antiquarks, we study the effect of a magnetic field on the elliptic flows of quarks and antiquarks in relativistic heavy ion collisions. With initial conditions from a blast wave model and assuming that the strong magnetic field produced in noncentral heavy ion collisions can last for a sufficiently long time, we obtain an appreciable electric quadrupole moment in the transverse plane of a heavy ion collision. The electric quadrupole moment subsequently leads to a splitting between the elliptic flows of quarks and antiquarks. The slope of the charge asymmetry dependence of the elliptic flow difference between positively and negatively charged particles is positive, which is expected from the chiral magnetic wave formed in the produced QGP and observed in experiments at the BNL Relativistic Heavy Ion Collider, only if the Lorentz force acting on the charged particles is neglected and the quark-antiquark scattering is assumed to be dominated by the chirality changing channel.
The Nucleon-Nucleon Interaction in a Chiral Constituent Quark Model
Stancu, F; Glozman, L Ya; Stancu, Fl.
1997-01-01
We study the short-range nucleon-nucleon interaction in a chiral constituent quark model by diagonalizing a Hamiltonian comprising a linear confinement and a Goldstone boson exchange interaction between quarks. The six-quark harmonic oscillator basis contains up to two excitation quanta. We show that the highly dominant configuration is $\\mid s^4p^2[42]_O [51]_{FS}>$ due to its specific flavour-spin symmetry. Using the Born-Oppenheimer approximation we find a strong effective repulsion at zero separation between nucleons in both $^3S_1$ and $^1S_0$ channels. The symmetry structure of the highly dominant configuration implies the existence of a node in the S-wave relative motion wave function at short distances. The amplitude of the oscillation of the wave function at short range will be however strongly suppressed. We discuss the mechanism leading to the effective short-range repulsion within the chiral constituent quark model as compared to that related with the one-gluon exchange interaction.
The Higgs boson resonance width from a chiral Higgs-Yukawa model on the lattice
Gerhold, Philipp; Kallarackal, Jim
2011-01-01
The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for quarks, leptons and the weak gauge bosons. We use a 4-dimensional Euclidean lattice formulation of the Higgs-Yukawa sector of the electroweak model to compute physical quantities in the path integral approach which is evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. The chiral symmetry of the model is incorporated by using the Neuberger overlap Dirac operator. The here considered Higgs-Yukawa model does not involve the weak gauge bosons and furthermore, only a degenerate doublet of top- and bottom quarks are incorporated. The goal of this work is to study the resonance properties of the Higgs boson and its sensitivity to the strength of the quartic self coupling.
Modeling Textural Processes during Self-Assembly of Plant-Based Chiral-Nematic Liquid Crystals
Directory of Open Access Journals (Sweden)
Yogesh K. Murugesan
2010-12-01
Full Text Available Biological liquid crystalline polymers are found in cellulosic, chitin, and DNA based natural materials. Chiral nematic liquid crystalline orientational order is observed frozen-in in the solid state in plant cell walls and is known as a liquid crystal analogue characterized by a helicoidal plywood architecture. The emergence of the plywood architecture by directed chiral nematic liquid crystalline self assembly has been postulated as the mechanism that leads to optimal cellulose fibril organization. In natural systems, tissue growth and development takes place in the presence of inclusions and secondary phases leaving behind characteristic defects and textures, which provide a unique testing ground for the validity of the liquid crystal self-assembly postulate. In this work, a mathematical model, based on the Landau-de Gennes theory of liquid crystals, is used to simulate defect textures arising in the domain of self assembly, due to presence of secondary phases representing plant cells, lumens and pit canals. It is shown that the obtained defect patterns observed in some plant cell walls are those expected from a truly liquid crystalline phase. The analysis reveals the nature and magnitude of the viscoelastic material parameters that lead to observed patterns in plant-based helicoids through directed self-assembly. In addition, the results provide new guidance to develop biomimetic plywoods for structural and functional applications.
Mizher, Ana Júlia
2008-01-01
We study the effects of CP violation on the nature of the chiral transition within the linear sigma model with two flavors of quarks. The finite-temperature effective potential containing contributions from nontrivial values for the parameter $\\theta$ is computed to one loop order and their minima structure is analyzed. Motivated by the possibility of observing the formation of CP-odd domains in high-energy heavy ion collisions, we also investigate the behavior of the effective potential in the presence of a strong magnetic background. We find that the nature of the chiral transition is influenced by both $\\theta$ and the magnetic field.
Energy Technology Data Exchange (ETDEWEB)
Mizher, Ana Julia, E-mail: anajulia@if.ufrj.b [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil); Fraga, Eduardo S., E-mail: fraga@if.ufrj.b [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)
2009-12-01
We study the effects of CP violation on the nature of the chiral transition within the linear sigma model with two flavors of quarks. The finite-temperature effective potential containing contributions from nontrivial values for the parameter theta is computed to one loop order and their minima structure is analyzed. Motivated by the possibility of observing the formation of CP-odd domains in high-energy heavy ion collisions, we also investigate the behavior of the effective potential in the presence of a strong magnetic background. We find that the nature of the chiral transition is influenced by both theta and the magnetic field.
Probing deconfinement in a chiral effective model with Polyakov loop at imaginary chemical potential
Morita, Kenji; Friman, Bengt; Redlich, Krzysztof
2011-01-01
The phase structure of the two-flavor Polyakov-loop extended Nambu-Jona-Lashinio model is explored at finite temperature and imaginary chemical potential with a particular emphasis on the confinement-deconfinement transition. We point out that the confined phase is characterized by a $\\cos3\\mu_I/T$ dependence of the chiral condensate on the imaginary chemical potential while in the deconfined phase this dependence is given by $\\cos\\mu_I/T$ and accompanied by a cusp structure induced by the Z(3) transition. We demonstrate that the phase structure of the model strongly depends on the choice of the Polyakov loop potential $\\mathcal{U}$. Furthermore, we find that by changing the four fermion coupling constant $G_s$, the location of the critical endpoint of the deconfinement transition can be moved into the real chemical potential region. We propose a new parameter characterizing the confinement-deconfinement transition.
Modeling chiral sculptured thin films as platforms for surface-plasmonic-polaritonic optical sensing
Mackay, Tom G
2010-01-01
Biomimetic nanoengineered metamaterials called chiral sculptured thin films (CSTFs) are attractive platforms for optical sensing because their porosity, morphology and optical properties can be tailored to order. Furthermore, their ability to support more than one surface-plasmon-polariton (SPP) wave at a planar interface with a metal offers functionality beyond that associated with conventional SPP--based sensors. An empirical model was constructed to describe SPP-wave propagation guided by the planar interface of a CSTF--infiltrated with a fluid which supposedly contains analytes to be detected--and a metal. The inverse Bruggeman homogenization formalism was first used to determine the nanoscale model parameters of the CSTF. These parameters then served as inputs to the forward Bruggeman homogenization formalism to determine the reference relative permittivity dyadic of the infiltrated CSTF. By solving the coresponding boundary-value problem for a modified Kretschmann configuration, the characteristics of t...
Energy Technology Data Exchange (ETDEWEB)
Baxter, R J [Mathematical Sciences Institute, Australian National University, Canberra, ACT 0200 (Australia)
2010-04-09
For the Ising model, the calculation of the spontaneous magnetization leads to the problem of evaluating a determinant. Yang did this by calculating the eigenvalues in the large-lattice limit. Montroll, Potts and Ward expressed it as a Toeplitz determinant and used Szego's theorem: this is almost certainly the route originally travelled by Onsager. For the corresponding problem in the superintegrable chiral Potts model, neither approach appears to work: here we show that the determinant D{sub PQ} can be expressed as that of a product of two Cauchy-like matrices. One can then use the elementary exact formula for the Cauchy determinant. One of course regains the known result, originally conjectured in 1989.
Fermat Surface and Group Theory in Symmetry of Rapidity Family in Chiral Potts Model
Roan, Shi-shyr
2013-01-01
The present paper discusses various mathematical aspects about the rapidity symmetry in chiral Potts model (CPM) in the context of algebraic geometry and group theory . We re-analyze the symmetry group of a rapidity curve in $N$-state CPM, explore the universal group structure for all $N$, and further enlarge it to modular symmetries of the complete rapidity family in CPM. As will be shown in the article that all rapidity curves in $N$-state CPM constitute a Fermat hypersurface in $\\PZ^3$ of degree 2N as the natural generalization of the Fermat K3 elliptic surface $(N=2)$, we conduct a thorough algebraic geometry study about the rapidity fibration of Fermat surface and its reduced hyperelliptic fibration via techniques in algebraic surface theory. Symmetries of rapidity family in CPM and hyperelliptic family in $\\tau^{(2)}$-model are exhibited through the geometrical representation of the universal structural group in mathematics.
Pion-to-photon transition distribution amplitudes in the non-local chiral quark model
Kotko, Piotr
2008-01-01
We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDA's. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.
Phase transitions and ordering structures of a model of a chiral helimagnet in three dimensions
Nishikawa, Yoshihiko; Hukushima, Koji
2016-08-01
Phase transitions in a classical Heisenberg spin model of a chiral helimagnet with the Dzyaloshinskii-Moriya interaction in three dimensions are numerically studied. By using the event-chain Monte Carlo algorithm recently developed for particle and continuous spin systems, we perform equilibrium Monte Carlo simulations for large systems up to about 106 spins. Without magnetic fields, the system undergoes a continuous phase transition with critical exponents of the three-dimensional XY model, and a uniaxial periodic helical structure emerges in the low-temperature region. In the presence of a magnetic field perpendicular to the axis of the helical structure, it is found that there exists a critical point on the temperature and magnetic-field phase diagram and that above the critical point the system exhibits a phase transition with strong divergence of the specific heat and the uniform magnetic susceptibility.
Low-Energy Kπ Phase Shifts in Chiral SU(3) Quark Model
Institute of Scientific and Technical Information of China (English)
HUANG Fei; ZHANG Zong-Ye; YU You-Wen
2005-01-01
The low-energy region kaon-pion S- and P-wave phase shifts with isospin I = 1/2 and I = 3/2 are dynamically studied in the chiral SU(3) quark model by solving a resonating group method equation. The model parameters are taken to be the values fitted by the energies of the baryon ground states and the kaon-nucleon elastic scattering phase shifts of different partial waves. As a preliminary study the s-channel q(-q) annihilation interactions are not included since they only act in the very short range and are subsequently assumed to be unimportant in the low-energy domain. The numerical results are in qualitative agreement with the experimental data.
Charge radii of octet and decuplet baryons in chiral constituent quark model
Indian Academy of Sciences (India)
Neetika Sharma; Harleen Dahiya
2013-09-01
The charge radii of the spin-$\\dfrac{1}{2}^{+}$ octet and spin-$\\dfrac{3}{2}^{+}$ decuplet baryons have been calculated in the framework of chiral constituent quark model ( CQM) using a general parametrization method (GPM). Our results are not only comparable with the latest experimental studies but also agree with other phenomenological models. The effects of (3) symmetry breaking pertaining to the strangeness contribution and GPM parameters pertaining to the one-, two- and three-quark contributions have also been investigated in detail and are found to be the key parameters in understanding the non-zero values for the neutral octet $(n, \\sum^{0}, \\Xi, )$ and decuplet $(^{0}, \\sum^{*0}, \\Xi^{*0})$ baryons.
Applications of chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Pisarski, R.D.
1995-03-01
The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.
Resurgence in quantum field theory: nonperturbative effects in the principal chiral model.
Cherman, Aleksey; Dorigoni, Daniele; Dunne, Gerald V; Ünsal, Mithat
2014-01-17
We explain the physical role of nonperturbative saddle points of path integrals in theories without instantons, using the example of the asymptotically free two-dimensional principal chiral model (PCM). Standard topological arguments based on homotopy considerations suggest no role for nonperturbative saddles in such theories. However, the resurgence theory, which unifies perturbative and nonperturbative physics, predicts the existence of several types of nonperturbative saddles associated with features of the large-order structure of the perturbation theory. These points are illustrated in the PCM, where we find new nonperturbative "fracton" saddle point field configurations, and suggest a quantum interpretation of previously discovered "uniton" unstable classical solutions. The fractons lead to a semiclassical realization of IR renormalons in the circle-compactified theory and yield the microscopic mechanism of the mass gap of the PCM.
Strong decays of N~*(1535) in an extended chiral quark model
Institute of Scientific and Technical Information of China (English)
无
2009-01-01
The strong decays of the N*(1535) resonance are investigated in an extended chiral quark model by including the low-lying qqqqq components in addition to the qqq component.The results show that these five-quark components in N*(1535) contribute significantly to the N*(1535)→ Nπ and N*(1535) → Nη decays.The contributions to the Nη decay come from both the lowest energy and the next-to-lowest energy five-quarks components,while the contributions to the Nπ decay come from only the latter one.Taking these contributions into account,the description for the strong decays of N*(1535) is improved,especially for the puzzling large ratio of the decays to Nη and Nπ.
Inoue, Yoshihisa
2004-01-01
Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S
Sensitivity to properties of the phi-meson in the nucleon structure in the chiral soliton model
Energy Technology Data Exchange (ETDEWEB)
Mukhopadhyay, N.C.; Zhang, L. [Rensselaer Polytechnic Inst., Troy, NY (United States)
1994-04-01
The influence of the {phi}-meson on the nucleon properties in the chiral soliton model is discussed. Properties of the {phi}-meson and its photo- and electroproduction are of fundamental interest to CEBAF and its possible future extension. The quark model assigns {phi} an s{bar s} structure, thus forbidding the radiative decay {phi}{yields}{pi}{sup 0}{gamma}. Experimentally it is also found to be suppressed, yielding a branching fraction of 1.3{times}10{sup {minus}3}. However, {phi}{yields}{rho}{pi} and {phi}{yields}{pi}{sup +}{pi}{sup {minus}}{pi}{sup 0} are not suppressed at all. Thus, it is possible to incorporate the widths of these decays into the framework of the chiral soliton model, by making use of a specific model for the compliance with OZI rule. Such a model is for example, the {omega}-{phi} mixing model. Consequence of this in the context of a chiral soliton model, which builds on the {pi}{rho}{omega}a{sub 1}(f{sub 1}) meson effective Lagrangian, is the context of this report.
Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not
Bar-Shalom, Shaouly; Soni, Amarjit
2017-03-01
We revisit models where a heavy chiral 4th generation doublet of fermions is embedded in a class of two Higgs doublets models (2HDM) with a discrete Z2 symmetry, which couples the ;heavy; scalar doublet only to the 4th generation fermions and the ;light; one to the Standard Model (SM) fermions - the so-called 4G2HDM introduced by us several years ago. We study the constraints imposed on the 4G2HDM from direct searches of heavy fermions, from precision electroweak data (PEWD) and from the measured production and decay signals of the 125 GeV scalar, which in the 4G2HDM corresponds to the lightest CP-even scalar h. We then show that the recently reported excess in the γγ spectrum around 750 GeV can be accommodated by the heavy CP-even scalar of the 4G2HDM, H, resulting in a unique choice of parameter space: negligible mixing (sin α ≲ O (10-3)) between the two CP-even scalars h , H and heavy 4th generation quark and lepton masses mt‧ ,mb‧ ≲ 400 GeV and mν‧ ,mτ‧ ≳ 900 GeV, respectively. Whether or not the 750 GeV γγ resonance is confirmed, interesting phenomenology emerges in q‧ - Higgs systems (q‧ =t‧ ,b‧), that can be searched for at the LHC. For example, the heavy scalar states of the model, S = H , A ,H+, may have BR (S →qbar‧q‧) ∼ O (1), giving rise to observable qbar‧q‧ signals on resonance, followed by the flavor changing q‧ decays t‧ → uh (u = u , c) and/or b‧ → dh (d = d , s , b). This leads to rather distinct signatures, with or without charged leptons, of the form qbar‧q‧ →(nj + mb + ℓW) S (j and b being light and b-quark jets, respectively), with n + m + ℓ = 6- 8 and unique kinematic features. These high jet-multiplicity signals appear to be very challenging and may need new search strategies for detection of such heavy chiral quarks. It is also shown that the flavor structure of the 4G2HDM can easily accommodate the interesting recent indications of a percent-level branching ratio in the
Kallin, Catherine; Berlinsky, John
2016-05-01
Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.
Thimble regularization at work: from toy models to chiral random matrix theories
Di Renzo, Francesco
2015-01-01
We apply the Lefschetz thimble formulation of field theories to a couple of different problems. We first address the solution of a complex 0-dimensional phi^4 theory. Although very simple, this toy-model makes us appreciate a few key issues of the method. In particular, we will solve the model by a correct accounting of all the thimbles giving a contribution to the partition function and we will discuss a number of algorithmic solutions to simulate this (simple) model. We will then move to a chiral random matrix (CRM) theory. This is a somehow more realistic setting, giving us once again the chance to tackle the same couple of fundamental questions: how many thimbles contribute to the solution? how can we make sure that we correctly sample configurations on the thimble? Since the exact result is known for the observable we study (a condensate), we can verify that, in the region of parameters we studied, only one thimble contributes and that the algorithmic solution that we set up works well, despite its very ...
Chiral heavy fermions in a two Higgs doublet model: 750 GeV resonance or not
Bar-Shalom, Shaouly
2016-01-01
We revisit models where a heavy chiral 4th generation doublet of fermions is embedded in a class of two Higgs doublets models (2HDM) with a discrete $Z_2$ symmetry, which couples the "heavy" scalar doublet only to the 4th generation fermions and the "light" one to the Standard Model (SM) fermions - the so-called 4G2HDM introduced by us several years ago. We study the constraints imposed on the 4G2HDM from direct searches of heavy fermions, from precision electroweak data (PEWD) and from the measured production and decay signals of the 125 GeV scalar, which in the 4G2HDM corresponds to the lightest CP-even scalar h. We then show that the recently reported excess in the $\\gamma\\gamma$ spectrum around 750 GeV can be accommodated by the heavy CP-even scalar of the 4G2HDM, H, resulting in a unique choice of parameter space: negligible mixing (sin\\alpha ~ O(0.001)) between the two CP-even scalars h,H and heavy 4th generation quark and lepton masses m_t',m_b' 900 GeV, respectively. Whether or not the 750 GeV \\gamma...
Chiral U(1) flavor models and flavored Higgs doublets: the top FB asymmetry and the W jj
Energy Technology Data Exchange (ETDEWEB)
Ko, P.; Omura, Yuji; Yu, Chaehyun
2012-01-01
We present U(1) flavor models for leptophobic Z' with flavor dependent couplings to the right-handed up-type quarks in the Standard Model (SM), which can accommodate the recent data on the top forward-backward (FB) asymmetry and the dijet resonance associated with a W boson reported by CDF Collaboration. Such flavor-dependent leptophobic charge assignments generally require extra chiral fermions for anomaly cancellation. Also the chiral nature of U(1)' flavor symmetry calls for new U(1)'-charged Higgs doublets in order for the SM fermions to have realistic renormalizable Yukawa couplings. The stringent constraints from the top FB asymmetry at the Tevatron and the same sign top pair production at the LHC can be evaded due to contributions of the extra Higgs doublets. We also show that the extension could realize cold dark matter candidates.
Chiral Decomposition For Non-Abelian Bosons
Braga, N R F; Braga, Nelson R. F.; Wotzasek, Clovis
1996-01-01
We study the non-abelian extension for the splitting of a scalar field into chiral components. Using this procedure we find a non ambiguous way of coupling a non abelian chiral scalar field to gravity. We start with a (non-chiral) WZW model covariantly coupled to a background metric and, after the splitting, arrive at two chiral Wess-Zumino-Witten (WZW) models coupled to gravity.
A Chiral Composite Model for the 750 GeV Diphoton Resonance
Bai, Yang; Osborne, James; Stefanek, Ben A
2016-01-01
The 750 GeV diphoton resonance could be a big-pion of a new QCD-like strong dynamics with a confinement scale around a few TeV. The new fermion constituents of the big-pions, vector-like under the strong dynamics group, could be chiral under a $U(1)^\\prime$ gauge symmetry, such that their bare masses are related to the $U(1)^\\prime$-breaking and the new confinement scales. Based on a minimal GUT-motivated and gauge anomaly-free model, we have found that the 750 GeV resonance could have an observable branching ratio into $Z^\\prime \\gamma$. The $Z^\\prime$ naturally has a large leptonic branching ratio because of its kinetic mixing with the hypercharge gauge boson. Searching for an $\\ell^+ \\ell^- \\gamma$ 750 GeV resonance with the two lepton invariant mass away from the $Z$-boson pole can confirm our model. Furthermore, the heavier color-octet big-pion can decay into $Z^\\prime g$ and could also be discovered by the LHC Run 2.
Possible $D\\bar{D}$ and $B\\bar{B}$ Molecular states in a chiral quark model
Li, M T; Dong, Y B; Zhang, Z Y
2012-01-01
We perform a systematic study of the bound state problem of $D\\bar{D}$ and $B\\bar{B}$ systems by using effective interaction in our chiral quark model. Our results show that both the interactions of $D\\bar{D}$ and $B\\bar{B}$ states are attractive, which consequently result in $I^G(J^{PC})=0^+(0^{++})$ $D\\bar{D}$ and $B\\bar{B}$ bound states.
Mizher, Ana Júlia; Fraga, Eduardo S.
2008-01-01
We study the effects of CP violation on the nature of the chiral transition within the linear sigma model with two flavors of quarks. The finite-temperature effective potential containing contributions from nontrivial values for the parameter $\\theta$ is computed to one loop order and their minima structure is analyzed. Motivated by the possibility of observing the formation of CP-odd domains in high-energy heavy ion collisions, we also investigate the behavior of the effective potential in t...
Collins, Michael J.
2001-01-01
Presents a remarkable demonstration on chiralty in molecules and the existence of enantiomers, also known as non-superimposable mirror images. Uses a mirror, a physical model of a molecule, and a bit of trickery involving the non-superimposable mirror image. (Author/NB)
On the azimuthal asymmetries in DIS
Efremov, E V; Göke, K; Urbano, D
2000-01-01
Using the recent experimental data on the left right asymmetry in fragmentation of transversely polarized quarks and the theoretical calculation of the proton transversity distribution in the effective chiral quark soliton model we explain the azimuthal asymmetries in semi-inclusive hadron production on longitudinal (HERMES) and transversely (SMC) polarized targets with no free parameters. On this basis we state that the proton transversity distribution could be successfully measured in future DIS experiments with longitudinally polarized target.
Energy Technology Data Exchange (ETDEWEB)
Huang, Z. [Department of Physics, University of Arizona, Tucson, Arizona 85741 (United States); Suzuki, M. [Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (United States)
1996-01-01
We obtain the general solutions of the nonlinear {sigma} model in 3+1 dimensions as the candidates for the disoriented chiral condensate (DCC). The nonuniformly isospin-oriented solutions are shown to be related to the uniformly oriented ones through the chiral (axial) rotations. We discuss the pion charge distribution arising from these solutions. The distribution {ital dP}/{ital d}{ital f}=1/(2 {radical}{ital f} ) holds for the uniform solutions in general and the nonuniform solutions in the 1+1 boost-invariant case. For the nonuniform solution in 1+1 without boost invariance and in higher dimensions, the distribution does not hold in the integrated form. However, it is applicable to the pions selected from a small segment in the momentum phase space. We suggest that the nonuniform DCC{close_quote}s may correspond to the mini-Centauro events. {copyright} {ital 1996 The American Physical Society.}
Phase diagram and two-particle structure of the $Z_3$-chiral Potts model
Von Gehlen, G
1992-01-01
We calculate the low-lying part of the spectrum of the $Z_3$-symmetrical chiral Potts quantum chain in its self-dual and integrable versions, using numerical diagonalisation of the hamiltonian for $N \\leq 12$ sites and extrapolation $N \\ra \\infty$. From the sequences of levels crossing we show that the massive phases have oscillatory correlation functions. We calculate the wave vector scaling exponent. In the high-temperature massive phase the pattern of the low-lying levels can be explained assuming the existence of two particles, with $Z_3$-charge $Q\\!=\\!1$ and $Q\\!=\\!2$, and their scattering states. In the superintegrable case the $Q\\!=\\!2$-particle has twice the mass of the $Q\\!=\\!1$-particle. Exponential convergence in $N$ is observed for the single particle gaps, while power convergence is seen for the scattering levels. In the high temperature limit of the self-dual model the parity violation in the particle dispersion relation is equivalent to the presence of a macroscopic momentum $P_m = \\pm \\vph/3$,...
Nucleon structure functions and longitudinal spin asymmetries in the chiral quark constituent model
Dahiya, Harleen
2016-01-01
We have analysed the phenomenological dependence of the spin independent ($F_1^{p,n}$ and $F_2^{p,n}$) and the spin dependent ($g_1^{p,n}$) structure functions of the nucleon on the the Bjorken scaling variable $x$ using the unpolarized distribution functions of the quarks $q(x)$ and the polarized distribution functions of the quarks $\\Delta q(x)$ respectively. The chiral constituent quark model ($\\chi$CQM), which is known to provide a satisfactory explanation of the proton spin crisis and related issues in the nonperturbative regime, has been used to compute explicitly the valence and sea quark flavor distribution functions of $p$ and $n$. In light of the improved precision of the world data, the $p$ and $n$ longitudinal spin asymmetries ($A_1^p(x)$ and $A_1^n(x)$) have been calculated. The implication of the presence of the sea quarks has been discussed for ratio of polarized to unpolarized quark distribution functions for up and down quarks in the $p$ and $n$ $\\frac{\\Delta u^p(x)}{u^p(x)}$, $\\frac{\\Delta d...
Sigma terms of octet baryons in the extended chiral constituent quark model
An, C S
2014-01-01
{\\bf Background:} Quantitative insight into the respective roles played by the valence flavors and the sea quark-antiquark pairs in the baryons is crucial in deepening our comprehension of nonperturbative QCD. {\\bf Purpose:} Study the meson-baryon $\\sigma$-terms for the ground-state octet baryons $B \\equiv N,~\\Lambda,~\\Sigma,~\\Xi$. {\\bf Methods:} Within an extended chiral constituent quark model, we investigate contributions from all possible five-quark components to the $\\sigma$-terms. The probabilities of the quark-antiquark components in the baryons wave functions are calculated by taking the baryons to be admixtures of three- and five-quark components, with the relevant transitions handled {\\it via} the $^{3}P_{0}$ mechanism. {\\bf Results:} Predictions are obtained by using input parameters taken from the literature. Numerical results for the meson-nucleon and the dimensionless ${\\sigma}$-terms, $\\bar {\\sigma}_{Bl}$ and $\\bar {\\sigma}_{Bs}$, are reported. {\\bf Conclusions:} Our results turn out to be, in ...
Suliman, FakhrEldin O.; Elbashir, Abdalla A.
2012-07-01
Using capillary electrophoresis baclofen (BF) enantiomers were separated only in the presence of β-cyclodextrin (βCD) as a chiral selector when added to the background electrolyte. Proton nuclear magnetic resonance and electrospray ionization mass spectrometry (ESI-MS) techniques were used to determine the structure of the BF-βCD inclusion complexes. From the MS data BF was found to form a 1:1 complex with α- and βCD, while the NMR data suggest location of the aromatic ring of BF into the cyclodextrin cavity. A molecular modeling study, using the semiempirical PM6 calculations was used to investigate the mechanism of enantiodifferentiation of BF with cyclodextrins. Optimization of the structures of the complexes by PM6 method indicated that separation is obtained in the presence of β-CD due to a large binding energy difference (ΔΔE) of 46.8 kJ mol-1 between S-BF-βCD and R-BF-βCD complexes. In the case of αCD complexes ΔΔE was 1.3 kJ mol-1 indicating poor resolution between the two enantiomers. Furthermore, molecular dynamic simulations show that the formation of more stable S-BF-βCD complex compared to R-BF-β-CD complex is primarily due to differences in intermolecular hydrogen bonding.
Sheikh, J A; Dar, W A; Jehangir, S; Ganai, P A
2015-01-01
A systematic investigation of the nuclear observables related to the triaxial degree of freedom is presented using the multi-quasiparticle triaxial projected shell model (TPSM) approach. These properties correspond to the observation of $\\gamma$-bands, chiral doublet bands and the wobbling mode. In the TPSM approach, $\\gamma$-bands are built on each quasiparticle configuration and it is demonstrated that some observations in high-spin spectroscopy that have remained unresolved for quite some time could be explained by considering $\\gamma$-bands based on two-quasiparticle configurations. It is shown in some Ce-, Nd- and Ge-isotopes that the two observed aligned or s-bands originate from the same intrinsic configuration with one of them as the $\\gamma$-band based on a two-quasiparticle configuration. In the present work, we have also performed a detailed study of $\\gamma$-bands observed up to the highest spin in Dysposium, Hafnium, Mercury and Uranium isotopes. Furthermore, several measurements related to chira...
Properties of single cluster structure of $d^*(2380)$ in chiral SU(3) quark model
Lü, Qi-Fang; Dong, Yu-Bing; Shen, Peng-Nian; Zhang, Zong-Ye
2016-01-01
The structure of $d^*(2380)$ is re-studied with the single cluster structure in the chiral SU(3) quark model which has successfully been employed to explain the scattering and binding behaviors of baryonic systems. The mass and width are explicitly calculated with two types of trial wave functions. The result shows that the $(0s)^6 [6]_{orb}$ configuration is easy to convert to the configuration with the same $[6]_{orb}$ symmetry but $2\\hbar \\omega$ excitation back and forth, however, it is seldom to turn into a two-cluster configuration with a (1s) relative motion in between. The resultant mass and width are about $2394$MeV and $25$MeV, respectively, and the stable size is about $0.75fm$, which are consistent with both the results in the two-cluster configuration calculation and the data measured by the COSY collaboration. It seems that the observed $d^*$ is a six-quark dominated exotic state with a spherical shape and breath mode in the coordinate space. Moreover, if $d^*$ does have $2\\hbar \\omega$ excitati...
Choi, Ho-Meoyng
2014-01-01
We discuss the link between the chiral symmetry of QCD and the numerical results of the light-front quark model (LFQM), analyzing both the two-point and three-point functions of a pseudoscalar meson from the perspective of the vacuum fluctuation consistent with the chiral symmetry of QCD. The two-point and three-point functions are exemplified in this work by the twist-2 and twist-3 distribution amplitudes of a pseudoscalar meson and the pion elastic form factor, respectively. The present analysis of the pseudoscalar meson commensurates with the previous analysis of the vector meson two-point function and fortifies our observation that the light-front quark model with effective degrees of freedom represented by the constituent quark and antiquark may provide the view of effective zero-mode cloud around the quark and antiquark inside the meson. Consequently, the constituents dressed by the zero-mode cloud may be expected to satisfy the chiral symmetry of QCD. Our results appear consistent with this expectation...
DEFF Research Database (Denmark)
Esparza-Isunza, T.; González-Brambila, M.; Gani, Rafiqul
2015-01-01
In this study we consider the theoretical coupling of an otherwise thermodynamically limited ω-transaminase reaction to an Oppenauer oxidation, in order to shift the equilibria of both reactions, with the aim of achieving a significant (and important) increase in the yield of the desired chiral a...... a significant increase in the yield of the chiral amine product may be obtained. Finally, the role of the different parameters involved in the process model has been analyzed....
Energy Technology Data Exchange (ETDEWEB)
Floss, H.G. [Univ. of Washington, Seattle, WA (United States)
1994-12-01
This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.
Quark structure of chiral solitons
Diakonov, D
2004-01-01
There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.
Suzuki, Nozomu; Wang, Yichun; Elvati, Paolo; Qu, Zhi-Bei; Kim, Kyoungwon; Jiang, Shuang; Baumeister, Elizabeth; Lee, Jaewook; Yeom, Bongjun; Bahng, Joong Hwan; Lee, Jaebeom; Violi, Angela; Kotov, Nicholas A
2016-02-23
Chiral nanostructures from metals and semiconductors attract wide interest as components for polarization-enabled optoelectronic devices. Similarly to other fields of nanotechnology, graphene-based materials can greatly enrich physical and chemical phenomena associated with optical and electronic properties of chiral nanostructures and facilitate their applications in biology as well as other areas. Here, we report that covalent attachment of l/d-cysteine moieties to the edges of graphene quantum dots (GQDs) leads to their helical buckling due to chiral interactions at the "crowded" edges. Circular dichroism (CD) spectra of the GQDs revealed bands at ca. 210-220 and 250-265 nm that changed their signs for different chirality of the cysteine edge ligands. The high-energy chiroptical peaks at 210-220 nm correspond to the hybridized molecular orbitals involving the chiral center of amino acids and atoms of graphene edges. Diverse experimental and modeling data, including density functional theory calculations of CD spectra with probabilistic distribution of GQD isomers, indicate that the band at 250-265 nm originates from the three-dimensional twisting of the graphene sheet and can be attributed to the chiral excitonic transitions. The positive and negative low-energy CD bands correspond to the left and right helicity of GQDs, respectively. Exposure of liver HepG2 cells to L/D-GQDs reveals their general biocompatibility and a noticeable difference in the toxicity of the stereoisomers. Molecular dynamics simulations demonstrated that d-GQDs have a stronger tendency to accumulate within the cellular membrane than L-GQDs. Emergence of nanoscale chirality in GQDs decorated with biomolecules is expected to be a general stereochemical phenomenon for flexible sheets of nanomaterials.
Optical Mueller Matrix Modeling of Chiral AlxIn1-xN Nanospirals
2014-01-01
Metamaterials in the form of chiral nanostructures have shown great potential for applications such as chemical and biochemical sensors and broadband or wavelength tunable circular polarizers. Here we demonstrate a method to produce tailored transparent chiral nanostructures with the wide-bandgap semiconductor AlxIn1 − xN. A series of anisotropic and transparent films of AlxIn1 − xN were produced using curved-lattice epitaxial growth on metallic buffer layers. By controlling the sample orient...
Kojo, Toru; McLerran, Larry; Pisarski, Robert D
2009-01-01
We consider the formation of chiral density waves in Quarkyonic matter, which is a phase where cold, dense quarks experience confining forces. We model confinement following Gribov and Zwanziger, taking the gluon propagator, in Coulomb gauge and momentum space, as 1/(p^2)^2. We assume that the number of colors, N, is large, and that the quark chemical potential, mu, is much larger than renormalization mass scale, Lambda_QCD. To leading order in 1/N and Lambda_QCD, a gauge theory with Nf flavors of massless quarks in 3+1 dimensions naturally reduces to a gauge theory in 1+1 dimensions, with an enlarged flavor symmetry of SU(2Nf). Through an anomalous chiral rotation, in two dimensions a Fermi sea of massless quarks maps directly onto the corresponding theory in vacuum. A chiral condensate forms locally, and varies with the spatial position, z, as . Following Schon and Thies, we term this two dimensional pion condensate a (Quarkyonic) chiral spiral. Massive quarks also exhibit chiral spirals, with the magnitude...
Numerical modelling of chirality-induced bi-directional swimming of artificial flagella
Namdeo, S.; Khaderi, S. N.; Onck, P. R.
2014-01-01
Biomimetic micro-swimmers can be used for various medical applications, such as targeted drug delivery and micro-object (e. g. biological cells) manipulation, in lab-on-a-chip devices. Bacteria swim using a bundle of flagella (flexible hair-like structures) that form a rotating cork-screw of chiral
A Conformational Model for MTPA Esters of Chiral N-(2-Hydroxyalkylacrylamides
Directory of Open Access Journals (Sweden)
Eduardo M. Rustoy
2014-01-01
Full Text Available The absolute stereochemistry of novel chiral N-(2-hydroxylalkylacrylamides prepared by a lipase-catalyzed resolution was successfully determined by 1H NMR of their MTPA esters. The method was validated for this particular case by computational experiments.
Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.
Sunoj, Raghavan B
2016-05-17
In asymmetric catalysis, a chiral catalyst bearing chiral center(s) is employed to impart chirality to developing stereogenic center(s). A rich and diverse set of chiral catalysts is now available in the repertoire of synthetic organic chemistry. The most recent trends point to the emergence of axially chiral catalysts based on binaphthyl motifs, in particular, BINOL-derived phosphoric acids and phosphoramidites. More fascinating ideas took shape in the form of cooperative multicatalysis wherein organo- and transition-metal catalysts are made to work in concert. At the heart of all such manifestations of asymmetric catalysis, classical or contemporary, is the stereodetermining transition state, which holds a perennial control over the stereochemical outcome of the catalytic process. Delving one step deeper, one would find that the origin of the stereoselectivity is delicately dependent on the relative stabilization of one transition state, responsible for the formation of the predominant stereoisomer, over the other transition state for the minor stereoisomer. The most frequently used working hypothesis to rationalize the experimentally observed stereoselectivity places an undue emphasis on steric factors and tends to regard the same as the origin of facial discrimination between the prochiral faces of the reacting partners. In light of the increasing number of asymmetric catalysts that rely on hydrogen bonding as well as other weak non-covalent interactions, it is important to take cognizance of the involvement of such interactions in the sterocontrolling transition states. Modern density functional theories offer a pragmatic and effective way to capture non-covalent interactions in transition states. Aided by the availability of such improved computational tools, it is quite timely that the molecular origin of stereoselectivity is subjected to more intelligible analysis. In this Account, we describe interesting molecular insights into the stereocontrolling
Nonequilibrium chiral perturbation theory and disoriented chiral condensates
Nicola, A G
1999-01-01
We analyse the extension of Chiral Perturbation Theory to describe a meson gas out of thermal equilibrium. For that purpose, we let the pion decay constant be a time-dependent function and work within the Schwinger-Keldysh contour technique. A useful connection with curved space-time QFT allows to consistently renormalise the model, introducing two new low-energy constants in the chiral limit. We discuss the applicability of our approach within a Relativistic Heavy-Ion Collision environment. In particular, we investigate the formation of Disoriented Chiral Condensate domains in this model, via the parametric resonance mechanism.
Chiral Nanoscience and Nanotechnology
Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao
2008-01-01
The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology describes the nanoscale appr...
Structures of（ΩΩ）0＋and（[1]Ω）1＋in Extended Chiral SU（3） Quark Model
Institute of Scientific and Technical Information of China (English)
ZHANGZong-Ye; YUYou-Wen; DAILian-Rong
2003-01-01
The structures of (ΩΩ)0+ and ([1]Ω)1+ are studied in the extended chiral SU(3) quark model in which vector meson exchanges are included. The effect from the vector meson fields is very similar to that from the one-gluon exchange (OGE) interaction. Both in the chiral SU(3) quark model and in the extended chiral SU(3) quark model,di-omega (ΩΩ)0+ is always deeply bound, with over one hundred MeV binding energy, and ([1]Ω)1+ 's binding energy is around 20 MeV. An analysis shows that the quark exchange effect plays a very important role for making di-omega (ΩΩ)0+ deeply bound.
On Chiral Space Groups and Chiral Molecules
Institute of Scientific and Technical Information of China (English)
无
2003-01-01
This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations). For a chiral molecule, which must crystallize in a chiral space group, the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.
On Chiral Space Groups and Chiral Molecules
Institute of Scientific and Technical Information of China (English)
NgSeikWng; HUSheng－Zhi
2003-01-01
This note explains the relationship (as well as the absence of a relationship) between chiral space groups and chiral molecules (which have absolute configurations).For a chiral molecule,which must crystallize in a chiral space group,the outcome of the absolute configuration determination must be linked to some other properties of the chiral crystal such as its optical activity for the observation to the relevant.
Lattice simulation of the SU(2) chiral model at zero and non-zero pion density
Rindlisbacher, Tobias
2015-01-01
We propose a flux representation based lattice formulation of the partition function corresponding to the SU(2) principal chiral Lagrangian, including a chemical potential and scalar/pseudo-scalar source terms. Lattice simulations are then used to obtain non-perturbative properties of the theory, in particular its mass spectrum at zero and non-zero pion density. We also sketch a method to efficiently measure general one- and two-point functions during the worm updates.
Mechanism of chirality conversion by periodic change of temperature: Role of chiral clusters
Katsuno, Hiroyasu; Uwaha, Makio
2016-01-01
By grinding crystals in a solution, the chirality of crystal structure (and the molecular chirality for the case of chiral molecules as well) can be converted, and the cause of the phenomenon is attributed to crystal growth with chiral clusters. We show that the recently found chirality conversion with a periodic change of temperature can also be explained by crystal growth with chiral clusters. With the use of a generalized Becker-Döring model, which includes enantio-selective incorporation of small chiral clusters to large solid clusters, the change of cluster distribution and the mass flow between clusters are studied. The chiral clusters act as a reservoir to pump out the minority species to the majority, and the exponential amplification of the enantiomeric excess found in the experiment is reproduced in the numerical calculation.
The Higgs boson resonance from a chiral Higgs-Yukawa model on the lattice
Energy Technology Data Exchange (ETDEWEB)
Kallarackal, Jim
2011-04-28
Despite the fact that the standard model of particle physics has been confirmed in many high energy experiments, the existence of the Higgs boson is not assured. The Higgs boson is a central part of the electroweak theory and is crucial to generate masses for fermions and the weak gauge bosons. The goal of this work is to set limits on the mass and the decay width of the Higgs boson. The basis to compute the physical quantities is the path integral which is here evaluated by means of Monte Carlo simulations thus allowing for fully non perturbative calculations. A polynomial hybrid Monte Carlo algorithm is used to incorporate dynamical fermions. The chiral symmetry of the electroweak model is incorporated by using the Neuberger overlap operator. Here, the standard model is considered in the limit of a Higgs-Yukawa sector which does not contain the weak gauge bosons and only a degenerate doublet of top- and bottom quarks are incorporated. Results from lattice perturbation theory up to one loop of the Higgs boson propagator are compared with those obtained from Monte Carlo simulations at three different values of the Yukawa coupling. At all values of the investigated couplings, the perturbative results agree very well with the Monte Carlo data. A main focus of this work is the investigation of the resonance parameters of the Higgs boson. The resonance width and the resonance mass are investigated at weak and at large quartic couplings. The parameters of the model are chosen such that the Higgs boson can decay into any even number of Goldstone bosons. Thus, the Higgs boson does not appear as an asymptotic stable state but as a resonance. In all considered cases the Higgs boson resonance width lies below 10% of the resonance mass. The obtained resonance mass is compared with the mass obtained from the Higgs boson propagator. The results agree perfectly at all values of the quartic coupling considered. Finally, the effect of a heavy fourth generation of fermions on the
Kojo, Toru; Fukushima, Kenji; McLerran, Larry; Pisarski, Robert D
2011-01-01
We elaborate how to construct the interweaving chiral spirals in (2+1) dimensions, that is defined as a superposition of differently oriented chiral spirals. We divide the two-dimensional Fermi sea into distinct wedges characterized by the opening angle 2 Theta and the depth Q \\simeq pF, where pF is the Fermi momentum. Each wedge earns an energy gain by forming a single chiral spiral. The optimal values for Theta and Q are chosen by the balance between this energy gain and the energy costs from the deformed Fermi surface (dominant at large Theta) and patch-patch interactions (dominant at small Theta). We estimate these energy gains and costs by means of the expansions in terms of 1/Nc, Lambda_QCD/Q, and Theta using a non-local four-Fermi interaction model: At small 1/Nc the mass gap (chiral condensate) is large enough and the interaction among quarks and the condensate is local in momentum space thanks to the form factor in our non-local model. The fact that patch-patch interactions lie only near the patch bo...
Light-by-Light Hadronic Corrections to the Muon G-2 Problem Within the Nonlocal Chiral Quark Model
Dorokhov, A. E.; Radzhabov, A. E.; Zhevlakov, A. S.
2017-03-01
Results of calculation of the light-by-light contribution from the lightest neutral pseudoscalar and scalar mesons and the dynamical quark loop to the muon anomalous magnetic moment are discussed in the framework of the nonlocal SU(3) × SU(3) chiral quark model. The model is based on four-quark interaction of the Nambu-Jona-Lasinio type and Kobayashi-Maskawa-`t Hooft six-quark interaction. The full kinematic dependence of vertices with off-shell mesons and photons in intermediate states in the light-by-light scattering amplitude is taken into account. All calculations are elaborated in explicitly gauge-invariant manner. These results complete calculations of all hadronic light-by-light scattering contributions to aμ in the leading order in the 1/Nc expansion. The final result does not allow the discrepancy between the experiment and the Standard Model to be explained.
Chiral phases of fundamental and adjoint quarks
Energy Technology Data Exchange (ETDEWEB)
Natale, A. A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC 09210-170, Santo André, SP (Brazil); Instituto de Física Teórica - UNESP Rua Dr. Bento T. Ferraz, 271, Bl.II - 01140-070, São Paulo, SP (Brazil)
2016-01-22
We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.
Barik, N.; Mishra, R. N.; Mohanty, D. K.; Panda, P. K.; Frederico, T.
2013-07-01
We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations. The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.
Cameron, R.P.; Cameron, J. A.; Barnett, S. M.
2016-01-01
We explain that Stegosaurus exhibited exterior chirality and observe that the largest plate in particular of USNM 4394, USNM 4714, DMNS 2818 and NHMUK R36730 appears to have tilted to the right rather than to the left in each case. Several instances in which Stegosaurus specimens have been confused with their distinct, hypothetical mirror-image forms are highlighted. We believe our findings to be consistent with the hypothesis that Stegosaurus's plates acted primarily as display structures. A...
Dufour, Jérôme; Mila, Frédéric
2016-09-01
We show that, when N is a multiple of 6 (N =6 m , where m is an integer), the SU (N) Heisenberg model on the honeycomb lattice with m particles per site has a clear tendency toward chiral order as soon as m ≥2 . This conclusion has been reached by a systematic variational Monte Carlo investigation of Gutzwiller projected wave functions as a function of m between the case of one particle per site (m =1 ), for which the ground state has recently been shown to be in a plaquette singlet state, and the m →∞ limit, where a mean-field approach has established that the ground state has chiral order. This demonstrates that the chiral phase can indeed be stabilized for not too large values of m , opening the way to its experimental realizations in other lattices.
Field induced spin chirality and chirality switching in magnetic multilayers
Energy Technology Data Exchange (ETDEWEB)
Tartakovskaya, Elena V., E-mail: elena_tartakovskaya@yahoo.com [Institute of Magnetism NAS of Ukraine, Vernadsky blvd 36b, 03142 Kiev (Ukraine); Institute of High Technologies, Taras Shevchenko National University of Kiev, 03022 Kiev (Ukraine)
2015-05-01
The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman–Kittel–Kasuya–Yosida and the Dsyaloshinsky–Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness. - Highlights: • Field-induced spin chirality in magnetic multilayers is explained. • The roles of the RKKY, the DM and the Zeeman interactions are clarified. • Theoretical analysis of the chirality factor is in agreement with experimental data.
Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics
Ruggieri, M; Chernodub, M
2016-01-01
We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.
de Boer, Theo; Bijma, R; Ensing, K
1999-01-01
A two-factor central composite design was used to determine a mathematical model for prediction of the optimal conditions for the separation of the enantiomers of some widely used beta(2)-sympathicomimetic drugs (beta(2)-agonists) by capillary electrophoresis using cyclodextrins (CD) as a chiral sel
Effects from inhomogeneities in the chiral transition
Taketani, B G; Taketani, Bruno G.; Fraga, Eduardo S.
2006-01-01
We consider an approximation procedure to evaluate the finite-temperature one-loop fermionic density in the presence of a chiral background field which systematically incorporates effects from inhomogeneities in the chiral field through a derivative expansion. We apply the method to the case of a simple low-energy effective chiral model which is commonly used in the study of the chiral phase transition, the linear sigma-model coupled to quarks. The modifications in the effective potential and their consequences for the bubble nucleation process are discussed.
Chirally motivated K - nuclear potentials
Cieplý, A.; Friedman, E.; Gal, A.; Gazda, D.; Mareš, J.
2011-08-01
In-medium subthreshold Kbar N scattering amplitudes calculated within a chirally motivated meson-baryon coupled-channel model are used self consistently to confront K- atom data across the periodic table. Substantially deeper K- nuclear potentials are obtained compared to the shallow potentials derived in some approaches from threshold Kbar N amplitudes, with Re VK-chiral = - (85 ± 5) MeV at nuclear matter density. When Kbar NN contributions are incorporated phenomenologically, a very deep K- nuclear potential results, Re VK-chiral + phen . = - (180 ± 5) MeV, in agreement with density dependent potentials obtained in purely phenomenological fits to the data. Self consistent dynamical calculations of K--nuclear quasibound states generated by VK-chiral are reported and discussed.
Spontaneous chiral symmetry breaking in the Tayler instability
Del Sordo, Fabio; Brandenburg, Axel; Mitra, Dhrubaditya
2011-01-01
The chiral symmetry breaking properties of the Tayler instability are discussed. Effective amplitude equations are determined in one case. This model has three free parameters that are determined numerically. Comparison with chiral symmetry breaking in biochemistry is made.
Dynamical quark loop light-by-light contribution to muon g-2 within the nonlocal chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Dorokhov, A.E. [Bogoliubov Laboratory of Theoretical Physics, JINR, Dubna (Russian Federation); M.V. Lomonosov Moscow State University, N.N. Bogoliubov Institute of Theoretical Problems of Microworld, Moscow (Russian Federation); Radzhabov, A.E. [Institute for System Dynamics and Control Theory SB RAS, Irkutsk (Russian Federation); Zhevlakov, A.S. [Institute for System Dynamics and Control Theory SB RAS, Irkutsk (Russian Federation); Tomsk State University, Department of Physics, Tomsk (Russian Federation)
2015-09-15
The hadronic corrections to the muon anomalous magnetic moment a{sub μ}, due to the gauge-invariant set of diagrams with dynamical quark loop light-by-light scattering insertions, are calculated in the framework of the nonlocal chiral quark model. These results complete calculations of all hadronic light-by-light scattering contributions to a{sub μ} in the leading order in the 1/N{sub c} expansion. The result for the quark loop contribution is a{sub μ}{sup HLbL,Loop} = (11.0 ± 0.9) @ x 10{sup -10}, and the total result is a{sub μ}{sup HLbL,NχQM} = (16.8 ± 1.2) @ x 10{sup -10}. (orig.)
Barik, N; Mohanty, D K; Panda, P K; Frederico, T
2013-01-01
We have calculated the properties of nuclear matter in a self-consistent manner with quark-meson coupling mechanism incorporating structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon, is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious centre of mass motion as well as those due to other residual interactions such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration; have been considered in a perturbation manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to sigma and omega mesons through mean field approximations. The relevant parameters of the interaction are obtained self consistently while realizing the saturation properties such as the binding energy, pressure a...
Lindner, Manfred
2007-01-01
Boltzmann equations are often used to describe the non-equilibrium time-evolution of many-body systems in particle physics. Prominent examples are the computation of the baryon asymmetry of the universe and the evolution of the quark-gluon plasma after a relativistic heavy ion collision. However, Boltzmann equations are only a classical approximation of the quantum thermalization process, which is described by so-called Kadanoff-Baym equations. This raises the question how reliable Boltzmann equations are as approximations to the complete Kadanoff-Baym equations. Therefore, we present in this article a detailed comparison of Boltzmann and Kadanoff-Baym equations in the framework of a chirally invariant Yukawa-type quantum field theory including fermions and scalars. The obtained numerical results reveal significant differences between both types of equations. Apart from quantitative differences, on a qualitative level the late-time universality respected by Kadanoff-Baym equations is severely restricted in th...
Spatial control of chirality in supramolecular aggregates.
Castriciano, Maria A; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù
2017-03-09
Chirality is one of the most intriguing properties of matter related to a molecule's lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic.
Spatial control of chirality in supramolecular aggregates
Castriciano, Maria A.; Gentili, Denis; Romeo, Andrea; Cavallini, Massimiliano; Scolaro, Luigi Monsù
2017-01-01
Chirality is one of the most intriguing properties of matter related to a molecule’s lack of mirror symmetry. The transmission of chirality from the molecular level up to the macroscopic scale has major implications in life sciences but it is also relevant for many chemical applications ranging from catalysis to spintronic. These technological applications require an accurate control of morphology, homogeneity and chiral handedness of thin films and nanostructures. We demonstrate a simple approach to specifically transfer chirality to the model supramolecular system of J aggregates of the protonated form of tetrakis(4-sulfonatophenyl)-porphyrin by utilizing a soft lithography technique. This approach successfully allows the fabrication of an ordered distribution of sub-micrometric structures in precise and controllable positions with programmed chirality, providing a fundamental breakthrough toward the exploitation of chiral supramolecular aggregates in technological applications, such as sensors, non-linear optics and spintronic. PMID:28275239
Asymmetric synthesis using chiral-encoded metal
Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander
2016-08-01
The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity.
Chiral Nanoscience and Nanotechnology
Directory of Open Access Journals (Sweden)
Dibyendu S. Bag
2008-09-01
Full Text Available The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology describes the nanoscale approaches to chiraltechnology such as asymmetric synthesis and catalysis, chiral separation and detection, and enantiomericanalysis. Chiral sensors have also been included. The state-of-the-art chiral research at DMSRDE,Kanpur isalso presented.Defence Science Journal, 2008, 58(5, pp.626-635, DOI:http://dx.doi.org/10.14429/dsj.58.1685
Pan, Zan; Chang, Chao-Hsi; Zong, Hong-Shi
2016-01-01
To investigate finite-volume effects on the chiral symmetry restoration and the deconfinement transition and some impacts of possible global topological background for a quantum chromodynamics (QCD) system with $N_f=2$ (two quark flavors), we apply the Polyakov-loop extended Nambu-Jona-Lasinio model by introducing a chiral chemical potential $\\mu_5$ artificially. The final numerical results indicate that the introduced chiral chemical potential does not change the critical exponents but shifts the location of critical end point (CEP) significantly; the ratios for the chiral chemical potentials and temperatures at CEP, $\\mu_c/\\mu_{5c}$ and $T_c/T_{5c}$, are significantly affected by the system size $R$. The behavior is that $T_c$ increases slowly with $\\mu_5$ when $R$ is large and $T_c$ decreases first and then increases with $\\mu_5$ when $R$ is small. It is also found that for a fixed $\\mu_5$, there is a $R_{\\text{min}}$, where the critical end point vanishes, and the whole phase diagram becomes a crossover w...
Institute of Scientific and Technical Information of China (English)
FAN Jian-Fen; LU Yun-Xiang; WANG Qiu-Xia; WU Li-Fen
2005-01-01
AM1 transition state (TS) models were developed for the enantioselectivities in the reductions of α- and β-aminoketones catalyzed by (S)-4-benzyl-5,5-diphenyl-1,3,2-oxazaborolidine. The result showed that β-aminoketone gave better enantioselectivity than its α-analog. Different chiralities of the final products were obtained, R for the former and S for the latter. These semiempirical TS models are consistent with the experimental data.
Energy Technology Data Exchange (ETDEWEB)
Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)
2015-06-01
Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.
Laser Writing of Multiscale Chiral Polymer Metamaterials
Directory of Open Access Journals (Sweden)
E. P. Furlani
2012-01-01
Full Text Available A new approach to metamaterials is presented that involves laser-based patterning of novel chiral polymer media, wherein chirality is realized at two distinct length scales, intrinsically at the molecular level and geometrically at a length scale on the order of the wavelength of the incident field. In this approach, femtosecond-pulsed laser-induced two-photon lithography (TPL is used to pattern a photoresist-chiral polymer mixture into planar chiral shapes. Enhanced bulk chirality can be realized by tuning the wavelength-dependent chiral response at both the molecular and geometric level to ensure an overlap of their respective spectra. The approach is demonstrated via the fabrication of a metamaterial consisting of a two-dimensional array of chiral polymer-based L-structures. The fabrication process is described and modeling is performed to demonstrate the distinction between molecular and planar geometric-based chirality and the effects of the enhanced multiscale chirality on the optical response of such media. This new approach to metamaterials holds promise for the development of tunable, polymer-based optical metamaterials with low loss.
Multi-particle structure in the Z_n-chiral Potts models
Von Gehlen, G
1993-01-01
We calculate the lowest translationally invariant levels of the Z_3- and Z_4-symmetrical chiral Potts quantum chains, using numerical diagonalization of the hamiltonian for N <= 12 and N <= 10 sites, respectively, and extrapolating N to infinity. In the high-temperature massive phase we find that the pattern of the low-lying zero momentum levels can be explained assuming the existence of n-1 particles carrying Z_n-charges Q = 1, ... , n-1 (mass m_Q), and their scattering states. In the superintegrable case the masses of the n-1 particles become proportional to their respective charges: m_Q = Q m_1. Exponential convergence in N is observed for the single particle gaps, while power convergence is seen for the scattering levels. We also verify that qualitatively the same pattern appears for the self-dual and integrable cases. For general Z_n we show that the energy-momentum relations of the particles show a parity non-conservation asymmetry which for very high temperatures is exclusive due to the presence ...
Meson Effects on the Chiral Condensate at Finite Density
Institute of Scientific and Technical Information of China (English)
HUANG Mei; ZHUANG Peng-Fei; ZHAO Wei-Qin
2002-01-01
Meson corrections on the chiral condensate up to next-to-leading order in a 1/Nc expansion at finite densityare investigated in the NJL model with explicit chiral symmetry breaking. Compared with mean-field results, the chiralphase transition is still of the first order while the properties near the critical density for chiral phase transition are foundto change significantly.
Chiral doublet bands and energy-level crossing
Institute of Scientific and Technical Information of China (English)
QI Bin; MENG Jie; ZHANG Shuang-Quan; WANG Shou-Yu; PENG Jing
2009-01-01
Different definitions for chiral doublet bands based on excitation energies, B(E2) and B(M1) respectively are discussed in the triaxial particle rotor model. For the ideal chiral geometry, the selection rules of the electromagnetic transitions in different band definitions are illustrated. It is also shown that the energy-level crossings between chiral doublet bands may occur.
Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates
Directory of Open Access Journals (Sweden)
Tomoya Hayata
2015-05-01
Full Text Available We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.
Inhomogeneous Polyakov loop induced by inhomogeneous chiral condensates
Energy Technology Data Exchange (ETDEWEB)
Hayata, Tomoya, E-mail: hayata@riken.jp [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan); Yamamoto, Arata [Department of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)
2015-05-11
We study the spatial inhomogeneity of the Polyakov loop induced by inhomogeneous chiral condensates. We formulate an effective model of gluons on the background fields of chiral condensates, and perform its lattice simulation. On the background of inhomogeneous chiral condensates, the Polyakov loop exhibits an in-phase spatial oscillation with the chiral condensates. We also analyze the heavy quark potential and show that the inhomogeneous Polyakov loop indicates the inhomogeneous confinement of heavy quarks.
Molecular chirality at surfaces
Energy Technology Data Exchange (ETDEWEB)
Ernst, Karl-Heinz [Empa, Swiss Federal Laboratories for Materials Science and Technology, Ueberlandstrasse 129, 8600 Duebendorf (Switzerland); Organic Chemistry Institute, University Zurich, 8057 Zuerich (Switzerland)
2012-11-15
With the adsorption of larger molecules being increasingly tackled by surface scientists, the aspect of chirality often plays a role. This paper gives a topical review of molecular chirality at surfaces and gives a phenomenological overview of different aspects of adsorption and self-assembly of chiral and prochiral molecules and the principles of mirror-symmetry breaking at a surface. After a brief introduction into the history of molecular chirality and the important role it played for understanding the spatial structure of molecules, definitions of chirality are presented. Topics treated here are principle ways to create single chiral adsorbates, chiral ensembles, and monolayers by achiral molecules, adsorption of intrinsically chiral molecules at achiral and chiral surfaces, long-range symmetry breaking in two-dimensional (2D) crystals due to additional chiral bias, chiral restructuring of solid surfaces under the influence of chiral molecules, switching the handedness of adsorbates, and chirality at the liquid/air interface. An outlook onto further potential research directions and recommendations for further reading, including nonsurface-related sources of chiral topics completes this paper. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Szabó, Zoltán-István; Szőcs, Levente; Horváth, Péter; Komjáti, Balázs; Nagy, József; Jánoska, Ádám; Muntean, Daniela-Lucia; Noszál, Béla; Tóth, Gergő
2016-08-01
A sensitive and validated liquid chromatography with mass spectrometry method was developed for the enantioseparation of the racemic mixture of pomalidomide, a novel, second-generation immunomodulatory drug, using β-cyclodextrin-bonded stationary phases. Four cyclodextrin columns (β-, hydroxypropyl-β-, carboxymethyl-β-, and sulfobutyl-β-cyclodextrin) were screened and the effects of eluent composition, flow rate, temperature, and organic modifier on enantioseparation were studied. Optimized parameters, offering baseline separation (resolution = 2.70 ± 0.02) were the following: β-cyclodextrin stationary phase, thermostatted at 15°C, and mobile phase consisting of methanol/0.1% acetic acid 10:90 v/v, delivered with 0.8 mL/min flow rate. For the optimized parameter at multiple reaction monitoring mode 274.1-201.0 transition with 20 eV collision energy and 100 V fragmentor voltage the limit of detection and limit of quantitation were 0.75 and 2.00 ng/mL, respectively. Since enantiopure standards were not available, elution order was determined upon comparison of the circular dichroism signals of the separated pomalidomide enantiomers with that of enantiopure thalidomide. The mechanisms underlying the chiral discrimination between the enantiomers were also investigated. Pomalidomide-β-cyclodextrin inclusion complex was characterized using nuclear magnetic resonance spectroscopy and molecular modeling. The thermodynamic aspects of chiral separation were also studied.
Kane-Maguire, Leon A P; Wallace, Gordon G
2010-07-01
This critical review describes the preparation and properties of a relatively new class of chiral macromolecules, namely chiral conducting polymers. It focuses in particular on examples based on polypyrrole, polythiophene and polyaniline. They possess remarkable properties, combining not only chirality with electrical conductivity but also the ability to undergo facile redox and pH switching. These unique properties have opened up a range of exciting new potential applications, including as chiral sensors, as novel stationary phases for chiral separations, and as chiral electrodes for electrochemical asymmetric synthesis (153 references).
Non-leptonic decays of K-mesons within the chiral quark model
Energy Technology Data Exchange (ETDEWEB)
Bergan, A.E.
1996-12-31
This theses is based upon four previously printed paper. The main result of the first paper was that a very small contribution to K{sup o}-anti K{sup o} was found for the siamese penguin diagram with a momentum dependent penguin coefficient. The calculation was done with different regularizations. The same momentum dependent penguin interaction was used in the second paper. Dimensional regularization made it possible to calculate analytical results for K{yields}{phi}, and a relatively small g{sub 8}{sup 1/2} factor was found due to large subleading terms. In the third paper nonperturbative effects on the B{sub K} parameter were obtained. To order (G{sup 3}) a vanishing result appeared due to a complete cancellation among the 20 contributing diagrams. In the fourth paper a calculation was made of K{yields}{phi} which included non-diagonal self-energy effects due to the s{yields}d transition. This calculation made it possible to include a heavy top quark. The calculation was done in two ways. First the unphysical K{yields}{phi} transition was calculated. The result was then related to the physical K{yields}2{phi} decay due to chiral symmetry. Then the same result was obtained by a direct calculation of K{yields}2{phi}. In the CP-conserving case the contribution was small while the CP-violating part was sizable. Due to a large cancellation between the operator Q{sub 6} and Q{sub 8} the contribution was of the same size as {epsilon}/{epsilon} itself. 76 refs.
Ruggieri, M
2016-01-01
In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a quark-meson model with vacuum fluctuations included. Vacuum fluctuations give a divergent contribution to the vacuum energy, so the latter has to be renormalized before computing physical quantities. The vacuum term is important for restoration of chiral symmetry at finite temperature and $\\mu_5\
Campbell, Kirby R; Campagnola, Paul J
2017-03-02
Extensive remodeling of the extracellular matrix (ECM) occurs in many epithelial cancers. For example, in ovarian cancer, upregulation of collagen isoform type III has been linked to invasive forms of the disease, and this change may be a potential biomarker. To examine this possibility, we implemented wavelength-dependent second harmonic generation circular dichroism (SHG-CD) imaging microscopy to quantitatively determine changes in chirality in ECM models comprised of different Col I/Col III composition. In these models, Col III was varied between 0 and 40%, and we found increasing Col III results in reduced net chirality, consistent with structural biology studies of Col I and III in tissues where the isoforms comingle in the same fibrils. We further examined the wavelength dependence of the SHG-CD to both optimize the response and gain insight into the underlying mechanism. We found using shorter SHG excitation wavelengths resulted in increased SHG-CD sensitivity, where this is consistent with the electric-dipole-coupled oscillator model suggested previously for the nonlinear chirality response from thin films. Moreover, the sensitivity is further consistent with the wavelength dependency of SHG intensity fit to a two-state model of the two-photon absorption in collagen. We also provide experimental calibration protocols to implement the SHG-CD modality on a laser scanning microscope. We last suggest that the technique has broad applicability in probing a wide range of diseased states with changes in collagen molecular structure.
Baskaran, G.
1989-01-01
Using a nonmean-field approach the triangular-lattice S = 1/2 Heisenberg antiferromagnet with nearest- and next-nearest-neighbor couplings is shown undergo an Ising-type phase transition into a chiral-symmetry-broken phase (Kalmeyer-Laughlin-like state) at small T. Removal of next-nearest-neighbor coupling introduces a local Z2 symmetry, thereby suppressing any finite-T chiral order.
Changlani, Hitesh; Kumar, Krishna; Clark, Bryan; Fradkin, Eduardo
Frustrated spin systems in two dimensions provide a fertile ground for discovering exotic states of matter, often with topologically non-trivial properties. In this work, we investigate the possible existence of a chiral spin liquid state in the spin 1/2 XXZ model on the frustrated kagome lattice in the presence of a magnetic field. This model is equivalent to a hard-core bosonic one with density-density interactions at finite filling fraction. Motivated by previous field theoretic predictions utilizing a Chern-Simons theory adapted for this lattice, we focus our attention to understanding the XY limit for the 2/3 magnetization plateau (equivalent to a system of hard-core bosons at 1/6 filling with weak nearest-neighbor repulsive interactions). Performing exact or accurate numerical computations, and based on energetics and construction of minimally entangled states and associated modular matrices, we provide evidence for such a spin liquid. We study the nature of this phase and examine its stability to additional interactions. We acknowledge support from the SciDAC program under Award Number DE-FG02-12ER46875.
Indian Academy of Sciences (India)
Susanto Chakraborty; Pranab Krishna Chanda
2006-06-01
It has been shown that the field equations for Charap's chiral invariant model of the pion dynamics pass the Painlevé test for complete integrability in the sense of Weiss et al. The truncation procedure of the same analysis leads to auto-Backlund transformation between two pairs of solutions. With the help of this transformation non-trivial exact solutions have been rediscovered.
Field induced spin chirality and chirality switching in magnetic multilayers
Tartakovskaya, Elena V.
2015-05-01
The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman-Kittel-Kasuya-Yosida and the Dsyaloshinsky-Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness.
Xiao, Li-Ye; Zhong, Xian-Hui
2016-01-01
A combined analysis of the reactions $\\pi^-p\\rightarrow K^0\\Lambda$ and $\\eta n$ is carried out with a chiral quark model. The data in the center-of-mass (c.m.) energy range from threshold up to $W\\simeq 1.8$ GeV are reasonably described. For $\\pi^-p\\rightarrow K^0\\Lambda$, it is found that $N(1535)S_{11}$ and $N(1650)S_{11}$ paly crucial roles near threshold. The $N(1650)S_{11}$ resonance contributes to the reaction through configuration mixing with $N(1535)S_{11}$. The constructive interference between $N(1535)S_{11}$ and $N(1650)S_{11}$ is responsible for the peak structure around threshold in the total cross section. The $n$-pole, $u$- and $t$-channel backgrounds provide significant contributions to the reaction as well. While, for the $\\pi^-p\\rightarrow \\eta n$ process, the "first peak" in the total cross section is dominant by $N(1535)S_{11}$, which has a sizeable destructive interference with $N(1650)S_{11}$. Around $P_\\pi \\simeq $ 1.0 GeV/c ($W\\simeq 1.7$ GeV), there seems to be a small bump structure...
Chirality and gravitational parity violation.
Bargueño, Pedro
2015-06-01
In this review, parity-violating gravitational potentials are presented as possible sources of both true and false chirality. In particular, whereas phenomenological long-range spin-dependent gravitational potentials contain both truly and falsely chiral terms, it is shown that there are models that extend general relativity including also coupling of fermionic degrees of freedom to gravity in the presence of torsion, which give place to short-range truly chiral interactions similar to that usually considered in molecular physics. Physical mechanisms which give place to gravitational parity violation together with the expected size of the effects and their experimental constraints are discussed. Finally, the possible role of parity-violating gravity in the origin of homochirality and a road map for future research works in quantum chemistry is presented.
Chiral Superfluidity for the Heavy Ion Collisions
Kalaydzhyan, T
2013-01-01
We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the "superfluid" component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate tempera...
Chiral magnetic effect in condensed matter systems
Li, Qiang; Kharzeev, Dmitri E.
2016-12-01
The chiral magnetic effect (CME) is the generation of electrical current induced by chirality imbalance in the presence of magnetic field. It is a macroscopic manifestation of the quantum chiral anomaly [S. L. Adler. Axial-vector vertex in spinor electrodynamics. Physical Review, 177, 2426 (1969), J. S. Bell and R. Jackiw. A PCAC puzzle: π 0 γγin the σ-model. Il Nuovo Cimento A, 60, 47-61 (1969)] in systems possessing charged chiral fermions. In quark-gluon plasma containing nearly massless quarks, the chirality imbalance is sourced by the topological transitions. In condensed matter systems, the chiral quasiparticles emerge in gapless semiconductors with two energy bands having pointlike degeneracies opening the path to the study of chiral anomaly [H. B. Nielsen and M. Ninomiya. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Physics Letters B, 130, 389-396 (1983)]. Recently, these novel materials - so-called Dirac and Weyl semimetals have been discovered experimentally, are suitable for the investigation of the CME in condensed matter experiments. Here we report on the first experimental observation of the CME in a 3D Dirac semimetal ZrTe5 [Q. Li, D. E. Kharzeev, C. Zhang, Y. Huang, I. Pletikosić, A. V. Fedorov, R. D. Zhong, J. A. Schneeloch, G. D. Gu, and T. Valla. Chiral magnetic effect in ZrTe5. Nature Physics (2016) doi:10.1038/nphys3648].
Chiroptical studies on supramolecular chirality of molecular aggregates.
Sato, Hisako; Yajima, Tomoko; Yamagishi, Akihiko
2015-10-01
The attempts of applying chiroptical spectroscopy to supramolecular chirality are reviewed with a focus on vibrational circular dichroism (VCD). Examples were taken from gels, solids, and monolayers formed by low-molecular mass weight chiral gelators. Particular attention was paid to a group of gelators with perfluoroalkyl chains. The effects of the helical conformation of the perfluoroalkyl chains on the formation of chiral architectures are reported. It is described how the conformation of a chiral gelator was determined by comparing the experimental and theoretical VCD spectra together with a model proposed for the molecular aggregation in fibrils. The results demonstrate the potential utility of the chiroptical method in analyzing organized chiral aggregates.
Fluctuations of Goldstone modes and the chiral transition in QCD
Karsch, Frithjof
2008-01-01
We provide evidence for the influence of thermal fluctuations of Goldstone modes on the chiral condensate at finite temperature. We show that at fixed temperature, T
Speciation and gene flow between snails of opposite chirality.
Directory of Open Access Journals (Sweden)
Angus Davison
2005-09-01
Full Text Available Left-right asymmetry in snails is intriguing because individuals of opposite chirality are either unable to mate or can only mate with difficulty, so could be reproductively isolated from each other. We have therefore investigated chiral evolution in the Japanese land snail genus Euhadra to understand whether changes in chirality have promoted speciation. In particular, we aimed to understand the effect of the maternal inheritance of chirality on reproductive isolation and gene flow. We found that the mitochondrial DNA phylogeny of Euhadra is consistent with a single, relatively ancient evolution of sinistral species and suggests either recent "single-gene speciation" or gene flow between chiral morphs that are unable to mate. To clarify the conditions under which new chiral morphs might evolve and whether single-gene speciation can occur, we developed a mathematical model that is relevant to any maternal-effect gene. The model shows that reproductive character displacement can promote the evolution of new chiral morphs, tending to counteract the positive frequency-dependent selection that would otherwise drive the more common chiral morph to fixation. This therefore suggests a general mechanism as to how chiral variation arises in snails. In populations that contain both chiral morphs, two different situations are then possible. In the first, gene flow is substantial between morphs even without interchiral mating, because of the maternal inheritance of chirality. In the second, reproductive isolation is possible but unstable, and will also lead to gene flow if intrachiral matings occasionally produce offspring with the opposite chirality. Together, the results imply that speciation by chiral reversal is only meaningful in the context of a complex biogeographical process, and so must usually involve other factors. In order to understand the roles of reproductive character displacement and gene flow in the chiral evolution of Euhadra, it will be
Liu, Keh-Fei
2016-01-01
The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.
Tawfik, Abdel Nasser
2015-01-01
Effects of external magnetic field on various properties of the quantum chromodynamics under extreme conditions of temperature and density have been analysed. To this end, we use SU(3) Polyakov linear sigma-model and assume that the external magnetic field eB adds some restrictions to the quarks energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization. This requires an additional temperature to drive the system through the chiral phase-transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase-transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of magnetic field on chiral phase-transition. We found that both critical temperature T_c and critical chemical potential increase with increasing the magnetic f...
Kumar, Krishna; Changlani, Hitesh J.; Clark, Bryan K.; Fradkin, Eduardo
2016-10-01
We perform an exact-diagonalization study of the spin-1/2 XXZ Heisenberg antiferromagnet on the kagome lattice at finite magnetization m =2/3 with an emphasis on the X Y point (Jz=0 ) and in the presence of a small chiral term. Recent analytic work by Kumar et al. [K. Kumar, K. Sun, and E. Fradkin, Phys. Rev. B 90, 174409 (2014), 10.1103/PhysRevB.90.174409] on the same model, using a newly developed flux attachment transformation, predicts a plateau at this value of the magnetization described by a chiral spin liquid (CSL) with a spin Hall conductance of σx y=1/2 . Such a state is topological in nature, has a ground-state degeneracy, and exhibits fractional excitations. We analyze the degeneracy structure in the low-energy manifold, identify the candidate topological states, and use them to compute the modular matrices and Chern numbers, all of which strongly agree with expected theoretical behavior for the σx y=1/2 CSL. In the limit of zero chirality, we find on most (not all) clusters that the topological invariants are still those of a CSL.
Ahmed, Mohammad W.; Gao, Haiyan; Weller, Henry R.; Holstein, Barry
2007-10-01
.5 GeV with BABAR / A. Denig. The pion vector form-factor and (g-2)u / C. Smith. Partially quenched CHPT results to two loops / J. Bijnens. Pion-pion scattering with mixed action lattice QCD / P.F. Bedaque. Meson systems with Ginsparg-Wilson valence quarks / A. Walker-Loud. Low energy constants from the MILC collaboration / C. Bernard. Finite volume effects: lattice meets CHPT / G. Schierholz. Lattice QCD simulations with two light dynamical (Wilson) quarks / L. Giusti. Do we understand the low-energy constant L8? / M. Golterman. Quark mass dependence of LECs in the two-flavour sector / M. Schmid. Progress report on the [Pie symbol]0 Lifetime experiment (PRIMEX) at Jlab / D.E. McNulty. Determination of the charged pion polarizabilities / L.V. Fil'kov. Proposed measurement of electroproduction of [Pie symbol]0 near threshold using a large acceptance spectrometer / R.A. Lindgren. The [Pie symbol] meson in [Pie symbol]K scattering / B. Moussallam. Strangeness -1 Meson-Baryon scattering S-wave / J.A. Oller. Results on light mesons decays and dynamics at KLOE / M. Martini. Studies of decays of [symbol] and [symbol] mesons with WASA detector / A. Kupsc. Heavy Quark-Diquark symmetry and X PT for doubly heavy baryons / T. Mehen. HHChPT applied to the charmed-strange parity partners/ R.P. Springer. Study of pion structure through precise measurements of the [Pie symbol]+ --> e+[symbol] decay / D. Pocanic. Exceptional and non-exceptional contributions to the radiative [Pie symbol] decay / V. Mateu. Leading chiral logarithms from unitarity, analyticity and the Roy equations / A. Fuhrer. All orders symmetric subtraction of the nonlinear sigma model in D=4 / A. Quadri -- pt. C. Chiral dynamics in few-nucleon systems. Working group summary: chiral dynamics in few-nucleon systems / H.W Hammer, N. Kalantar-Nayestanaki, and D.R. Phillips. Power counting in nuclear chiral effective field theory / U. van Kolck. On the consistency of Weinberg's power counting / U-G Mei ner. Renormalization
Chiral Rotational Spectroscopy
Cameron, Robert P; Barnett, Stephen M
2015-01-01
We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.
On chiral and non chiral 1D supermultiplets
Energy Technology Data Exchange (ETDEWEB)
Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica
2011-07-01
In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)
Kondratyuk, S; Myhrer, F; Scholten, O
2004-01-01
The Adler-Weisberger and Goldberger-Miyazawa-Oehme sum rules are calculated within a relativistic, unitary and crossing symmetric dynamical model for pion-nucleon scattering using two different methods: 1) by evaluating of the scattering amplitude at the corresponding low-energy kinematics and 2) by evaluating the sum-rule integrals with the calculated total cross section. The discrepancy between the results of the two methods provides a measure of the breaking of analyticity and chiral symmetry in the model. The contribution of the $\\Delta$ resonance, including its dressing with meson loops, is discussed in some detail and found to be small.
Distinguishing Standard Model Extensions using MonoTop Chirality at the LHC
Mueller, Ryan; Allahverdi, Rouzbeh; Dalchenko, Mykhailo; Dutta, Bhaskar; Flórez, Andrés; Gao, Yu; Kamon, Teruki; Kolev, Nikolay; Segura, Manuel
2017-01-01
Spectral analysis of the top quark final states is a promising method to distinguish physics beyond the standard model (BSM) from the SM. Many BSM physics with top quark final states feature top quarks with right or left handed polarized helicity. The energy spectrum of the top quark decay products can be used to distinguish the top quark helicity. A Delphes simulation of a minimal standard model extension featuring a color scalar triplet that decays into a left handed top and a dark matter (DM) candidate is compared with a right handed model to demonstrate how such an energy spectrum varies and differentiates models. Both the hadronic and leptonic decay channels of the top quark are considered in the analysis. In the hadronic channel the right and left handed models are separated at 95% CL with a production cross section of 20 fb and 100 fb-1 integrated luminosity of 13 TeV proton-proton collisions at the LHC.
Cooperative expression of atomic chirality in inorganic nanostructures
Wang, Peng-Peng; Yu, Shang-Jie; Govorov, Alexander O.; Ouyang, Min
2017-02-01
Cooperative chirality phenomena extensively exist in biomolecular and organic systems via intra- and inter-molecular interactions, but study of inorganic materials has been lacking. Here we report, experimentally and theoretically, cooperative chirality in colloidal cinnabar mercury sulfide nanocrystals that originates from chirality interplay between the crystallographic lattice and geometric morphology at different length scales. A two-step synthetic scheme is developed to allow control of critical parameters of these two types of handedness, resulting in different chiral interplays expressed as observables through materials engineering. Furthermore, we adopt an electromagnetic model with the finite element method to elucidate cooperative chirality in inorganic systems, showing excellent agreement with experimental results. Our study enables an emerging class of nanostructures with tailored cooperative chirality that is vital for fundamental understanding of nanoscale chirality as well as technology applications based on new chiroptical building blocks.
Extrinsic electromagnetic chirality in metamaterials
Plum, E.; Fedotov, V. A.; Zheludev, N. I.
2009-01-01
Three- and two-dimensional chirality arising from the mutual orientation of non-chiral planar metamaterial structures and the incident electromagnetic wave (extrinsic chirality) lead to pronounced optical activity, circular dichroism and asymmetric transmission indistinguishable from those seen in media consisting of three- and two-dimensionally chiral molecules (intrinsic chirality).
Popov, Alexander P.; Gloria Pini, Maria; Rettori, Angelo
2016-03-01
The metastable states of a finite-size chain of N classical spins described by the chiral XY-model on a discrete one-dimensional lattice are calculated by means of a general theoretical method recently developed by one of us. This method allows one to determine all the possible equilibrium magnetic states in an accurate and systematic way. The ground state of a chain consisting of N classical XY spins is calculated in the presence of (i) a symmetric ferromagnetic exchange interaction, favoring parallel alignment of nearest neighbor spins, (ii) a uniaxial anisotropy, favoring a given direction in the film plane, and (iii) an antisymmetric Dzyaloshinskii-Moriya interaction (DMI), favoring perpendicular alignment of nearest neighbor spins. In addition to the ground state with a non-uniform helical spin arrangement, which originates from the energy competition in the finite-size chain with open boundary conditions, we have found a considerable number of higher-energy equilibrium states. In the investigated case of a chain with N=10 spins and a DMI much smaller than the in-plane uniaxial anisotropy, it turns out that a metastable (unstable) state of the finite chain is characterized by a configuration where none (at least one) of the inner spins is nearly parallel to the hard axis. The role of the DMI is to establish a unique rotational sense for the helical ground state. Moreover, the number of both metastable and unstable equilibrium states is doubled with respect to the case of zero DMI. This produces modifications in the Peierls-Nabarro potential encountered by a domain wall during its displacement along the discrete spin chain.
A chiral quark model for meson electro-production in the S11 partial wave
Golli, Bojan
2011-01-01
We calculate the meson scattering and electroproduction amplitudes in the S11 partial wave in a coupled-channel approach that incorporates quasi-bound quark-model states. Using the quark wave functions and the quark-meson interaction from the Cloudy Bag Model, we obtain consistent predictions for the partial widths of the N(1535) and the N(1650) resonances as well as for the pion, eta and kaon electroproduction amplitudes. Our model suggests that the N(1535) resonance is dominantly a genuine three-quark state rather than a quasi-bound state of mesons and baryons.
Institute of Scientific and Technical Information of China (English)
ZHAO Xu; WANG Yan; YU Zhi-Ping
2006-01-01
@@ Current-voltage characteristics of ballistic carbon-nanotube field-effect transistors are characterized with an it-erative simulation program. The influence of carbon-nanotube chirality and diameter on the output current is considered. An analytical current-voltage expression under the quantum capacitance limit and low-voltage application is derived. Our simulation results are compared with actual measurement data.
Gelation induced supramolecular chirality: chirality transfer, amplification and application.
Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua
2014-08-14
Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.
Directory of Open Access Journals (Sweden)
Andrianov Alexander
2017-01-01
Full Text Available The chiral imbalance (ChI is given by a difference between the numbers of RH and LH quarks which may occur in the fireball after heavy ion collision. To characterize it adiabatically a quark chiral (axial chemical potential must be introduced taking into account emergence of a ChI in such a phase. In this report the phenomenology of formation of Local spatial Parity Breaking (LPB in the hot and dense baryon matter is discussed and its simulation within a number of QCD-inspired models is outlined. The appearance of new states in the spectra of scalar, pseudoscalar and vector particles in such a matter is elucidated. In particular, from the effective vector meson theory in the presence of Chern-Simons interaction it is demonstrated that the spectrum of massive vector mesons splits into three polarization components with different effective masses. The asymmetry in production of longitudinally and transversely polarized states of ρ and ω mesons for various values of the dilepton invariant mass can serve as a characteristic indication of the LPB in PHENIX, STAR and ALICE experiments.
Chirally extended quantum chromodynamics
Brower, R C; Tan, C I; Richard C Brower; Yue Shen; Chung-I Tan
1994-01-01
We propose an extended Quantum Chromodynamics (XQCD) Lagrangian in which the fermions are coupled to elementary scalar %\\sigma and \\pi fields through a Yukawa coupling which preserves chiral invariance. Our principle motivation is to find a new lattice formulation for QCD which avoids the source of critical slowing down usually encountered as the bare quark mass is tuned to the chiral limit. The phase diagram and the weak coupling limit for XQCD are studied. They suggest a conjecture that the continuum limit of XQCD is the same as the continuum limit of conventional lattice formulation of QCD. As examples of such universality, we present the large N solutions of two prototype models for XQCD, in which the mass of the spurious pion and sigma resonance go to infinity with the cut-off. Even if the universality conjecture turns out to be false, we believe that XQCD will still be useful as a low energy effective action for QCD phenomenology on the lattice. Numerical simulations are recommended to further investiga...
Classification of the chiral Z2XZ2 fermionic models in the heterotic superstring
Faraggi, A E; Nooij, S E M; Rizos, J
2004-01-01
The first particle physics observable whose origin may be sought in string theory is the triple replication of the matter generations. The class of Z2XZ2 orbifolds of six dimensional compactified tori, that have been most widely studied in the free fermionic formulation, correlate the family triplication with the existence of three twisted sectors in this class. In this work we seek an improved understanding of the geometrical origin of the three generation free fermionic models. Using fermionic and orbifold techniques we classify the Z2XZ2 orbifold with symmetric shifts on six dimensional compactified internal manifolds. We show that perturbative three generation models are not obtained in the case of Z2XZ2 orbifolds with symmetric shifts on complex tori, and that the perturbative three generation models in this class necessarily employ an asymmetric shift. We present a class of three generation models in which the SO(10) gauge symmetry cannot be broken perturbatively, while preserving the Standard Model mat...
Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Das, M.
1987-05-01
The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.
Conformal symmetry vs. chiral symmetry breaking in the SU(3) sextet model
DEFF Research Database (Denmark)
Drach, Vincent; Hansen, Martin; Hietanen, Ari;
2015-01-01
We present new results for the SU(3) "sextet model" with two flavors transforming according to the two-index symmetric representation of the gauge group. The simulations are performed using unimproved Wilson fermions. We measure the meson and baryon spectrum of the theory for multiple bare quark ...
Emerging chirality in nanoscience.
Wang, Yong; Xu, Jun; Wang, Yawen; Chen, Hongyu
2013-04-07
Chirality in nanoscience may offer new opportunities for applications beyond the traditional fields of chirality, such as the asymmetric catalysts in the molecular world and the chiral propellers in the macroscopic world. In the last two decades, there has been an amazing array of chiral nanostructures reported in the literature. This review aims to explore and categorize the common mechanisms underlying these systems. We start by analyzing the origin of chirality in simple systems such as the helical spring and hair vortex. Then, the chiral nanostructures in the literature were categorized according to their material composition and underlying mechanism. Special attention is paid to highlight systems with original discoveries, exceptional structural characteristics, or unique mechanisms.
Exact thermodynamics and phase diagram of integrable t-J model with chiral interaction
Tavares, T. S.; Ribeiro, G. A. P.
2016-09-01
We study the phase diagram and finite temperature properties of an integrable generalization of the one-dimensional super-symmetric t-J model containing interactions explicitly breaking parity-time reversal (PT) symmetries. To this purpose, we apply the quantum transfer matrix method which results in a finite set of non-linear integral equations. We obtain numerical solutions to these equations leading to results for thermodynamic quantities as a function of temperature, magnetic field, particle density and staggering parameter. Studying the maxima lines of entropy at low but non zero temperature reveals the phase diagram of the model. There are ten different phases which we may classify in terms of the qualitative behaviour of auxiliary functions, closely related to the dressed energy functions.
Pion scattering and electro-production on nucleons in the resonance region in chiral quark models
Sirca, Simon; Fiolhais, Manuel; Alberto, Pedro
2011-01-01
Pion scattering and electro-production amplitudes have been computed in a coupled-channel framework incorporating quasi-bound quark-model states, based on the Cloudy Bag model. All relevant low-lying nucleon resonances in the P33, P11, and S11 partial waves have been covered, including the Delta(1232), the N*(1440), N*(1535), and N*(1650). Consistent results have been obtained for elastic and inelastic scattering (two-pion, eta-N, and K-Lambda channels), as well as for electro-production. The meson cloud has been shown to play a major role, in particular in electro-magnetic observables in the P33 and P11 channels.
Spectral study of a chiral limit without chiral condensate
Bietenholz, Wolfgang
2009-01-01
Random Matrix Theory (RMT) has elaborated successful predictions for Dirac spectra in field theoretical models. However, a generic assumption by RMT has been a non-vanishing chiral condensate $\\Sigma$ in the chiral limit. Here we consider the 2-flavour Schwinger model, where this assumption does not hold. We simulated this model with dynamical overlap hypercube fermions, and entered terra incognita by analysing this Dirac spectrum. The usual RMT prediction for the unfolded level spacing distribution in a unitary ensemble is precisely confirmed. The microscopic spectrum does not perform a Banks-Casher plateau. Instead the obvious expectation is a density of the lowest eigenvalue $\\lambda_{1}$ which increases $\\propto \\lambda_{1}^{1/3}$. That would correspond to a scale-invariant parameter $\\propto \\lambda V^{3/4}$, which is, however, incompatible with our data. Instead we observe to high precision a scale-invariant parameter $z \\propto \\lambda V^{5/8}$. This surprising result implies a microscopic spectral den...
Feijoo, A; Ramos, A
2015-01-01
The meson-baryon interaction in s-wave in the strangeness S=-1 sector has been studied, employing a chiral SU(3) Lagrangian up to next-to-leading order (NLO) and implementing unitarization in coupled channels. The parameters of the Lagrangian have been fitted to a large set of experimental data in different two-body channels, paying special attention to the $\\bar{K} N \\rightarrow K \\Xi$ reaction, which is particularly sensitive to the NLO terms. With the aim of improving the model in the $K\\Xi$ production channels, effects of the high spin hyperon resonances $\\Sigma(2030)$ and $\\Sigma(2250)$ have been taken into account phenomenologically.
Institute of Scientific and Technical Information of China (English)
郑仰东; 李俊庆; 李淳飞
2002-01-01
Sum-frequency generation (SFG) is investigated using the two-coupled-oscillator molecular model. The influence of the polarization states and angles of two incident beams on reflected and transmitted sum-frequency lights is discussed by considering the circular birefringence in a chiral medium. The different response of media with two kinds of enantiomers to polarization states of incident beams is also discussed. Furthermore, the relations between the SFG spectrum and the polarization states are studied. The theoretical result is consistent with a known experimental fact.
Heavy-Light Mesons in Chiral AdS/QCD
Liu, Yizhuang
2016-01-01
We discuss a minimal holographic model for the description of heavy-light and light mesons with chiral symmetry, defined in a slab of AdS space. The model consists of a pair of chiral Yang-Mills and tachyon fields with specific boundary conditions that break spontaneously chiral symmetry in the infrared. The heavy-light spectrum and decay constants are evaluated explicitly. In the heavy mass limit the model exhibits both heavy-quark and chiral symmetry and allows for the explicit derivation of the one-pion axial couplings to the heavy-light mesons.
Feng, Zhang; Li, Ma; Yan, Yang; Jihai, Tang; Xiao, Li; Wanglin, Li
2013-01-01
A novel method to indicate the degree of chirality in polyaniline (PANI) was developed. The (D-camphorsulfonic acid)- and (HCl)-PANI-based electrodes exhibited significantly different electrochemical performances in D- and L-Alanine (Ala) aqueous solution, respectively, which can be used for the characterization the optical activity of chiral PANI. Cyclic voltammogram, tafel, and open circuit potential of PANI-based electrodes were measured within D- and L-Ala electrolyte solution, respectively. The open circuit potentials under different reacting conditions were analyzed by Doblhofer model formula, in which [C(+)](poly1)/[C(+)](poly2) was used as a parameter to characterize the degree of chirality in chiral PANI. The results showed that [C(+)](poly1)/[C(+)](poly2) can be increased with increasing concentrations of (1S)-(+)- and (1R)-(-)-10-camphorsulfonic acid. In addition, we detected that appropriate response time and lower temperature are necessary to improve the degree of chirality.
Guo, Zhen; Du, Yu; Liu, Xianbin; Ng, Siu-Choon; Chen, Yuan; Yang, Yanhui
2010-04-01
Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.
Energy Technology Data Exchange (ETDEWEB)
Guo Zhen; Liu Xianbin; Ng, Siu-Choon; Chen Yuan; Yang Yanhui [School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459 (Singapore); Du Yu, E-mail: du_yu@jlu.edu.cn, E-mail: yhyang@ntu.edu.sg [College of Electronic Science and Engineering, Jilin University, Changchun 130012 (China)
2010-04-23
Chiral porous materials have attracted burgeoning attention on account of their potential applications in many areas, such as enantioseparation, chiral catalysis, chemical sensors and drug delivery. In this report, chiral mesoporous silica (CMS) materials with various pore sizes and structures were prepared using conventional achiral templates (other than chiral surfactant) and a chiral cobalt complex as co-template. The synthesized CMS materials were characterized by x-ray diffraction, nitrogen physisorption, scanning electron microscope and transmission electron microscope. These CMS materials, as carriers, were demonstrated to be able to control the enantioselective release of a representative chiral drug (metoprolol). The release kinetics, as modeled by the power law equation, suggested that the release profiles of metoprolol were remarkably dependent on the pore diameter and pore structure of CMS materials. More importantly, R- and S-enantiomers of metoprolol exhibited different release kinetics on CMS compared to the corresponding achiral mesoporous silica (ACMS), attributable to the existence of local chirality on the pore wall surface of CMS materials. The chirality of CMS materials on a molecular level was further substantiated by vibrational circular dichroism measurements.
Kim, Cheol-Joo; Sánchez-Castillo, A.; Ziegler, Zack; Ogawa, Yui; Noguez, Cecilia; Park, Jiwoong
2016-06-01
Chiral materials possess left- and right-handed counterparts linked by mirror symmetry. These materials are useful for advanced applications in polarization optics, stereochemistry and spintronics. In particular, the realization of spatially uniform chiral films with atomic-scale control of their handedness could provide a powerful means for developing nanodevices with novel chiral properties. However, previous approaches based on natural or grown films, or arrays of fabricated building blocks, could not offer a direct means to program intrinsic chiral properties of the film on the atomic scale. Here, we report a chiral stacking approach, where two-dimensional materials are positioned layer-by-layer with precise control of the interlayer rotation (θ) and polarity, resulting in tunable chiral properties of the final stack. Using this method, we produce left- and right-handed bilayer graphene, that is, a two-atom-thick chiral film. The film displays one of the highest intrinsic ellipticity values (6.5 deg μm-1) ever reported, and a remarkably strong circular dichroism (CD) with the peak energy and sign tuned by θ and polarity. We show that these chiral properties originate from the large in-plane magnetic moment associated with the interlayer optical transition. Furthermore, we show that we can program the chiral properties of atomically thin films layer-by-layer by producing three-layer graphene films with structurally controlled CD spectra.
Sen, Srimoyee
2016-01-01
We study shock waves in relativistic chiral matter. We argue that the conventional Rankine- Hugoinot relations are modified due to the presence of chiral transport phenomena. We show that the entropy discontinuity in a weak shock wave is linearly proportional to the pressure discontinuity when the effect of chiral transport becomes sufficiently large. We also show that rarefaction shock waves, which do not exist in usual nonchiral fluids, can appear in chiral matter. These features are exemplified by shock propagation in dense neutrino matter in the hydrodynamic regime.
Anomalous chiral superfluidity
Energy Technology Data Exchange (ETDEWEB)
Lublinsky, Michael, E-mail: lublinsky@phys.uconn.ed [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Physics Department, Ben-Gurion University, Beer Sheva 84105 (Israel); Zahed, Ismail [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States)
2010-02-08
We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavor anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy-momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is briefly noted.
Doped Chiral Polymer Metamaterials Project
National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...
Open Problems in Understanding the Nuclear Chirality
Meng, Jie
2010-01-01
Open problems in the interpretation of the observed pair of near degenerate $\\Delta I = 1$ bands with the same parity as the chiral doublet bands are discussed. The ambiguities for the existing fingerprints of the chirality in atomic nuclei and problems in existing theory are discussed, including the description of quantum tunneling in the mean field approximation as well as the deformation, core polarization and configuration of particle rotor model (PRM). Future developments of the theoretical approach are prospected.
Notes on exotic anti-decuplet of baryons
Polyakov, M V
2004-01-01
We emphasize the importance of identifying non-exotic SU(3) partners of the Theta^+ pentaquark, and indicate possible ways how to do it. We also use the soliton picture of baryons to relate Reggeon couplings of various baryons. These relations are used to estimate the Theta^+ production cross section in high energy processes. We show that the corresponding cross sections are significantly suppressed relative to the production cross sections of usual baryons. Finally, we present spin non-flip form factors of the anti-decuplet baryons in the framework of the chiral quark soliton model.
Extraction of radiative decay width for the non-strange partner of Theta^+
Azimov, Ya I; Polyakov, M V; Strakovsky, I I; Azimov, Ya.
2005-01-01
Using the results of the GRAAL collaboration on the \\eta photoproduction from the neutron target, we attempt to extract the partial radiative width of the possible new nucleon resonance N^*(1675). The obtained estimates support this resonance to be a very attractive candidate for the non-strange member of the exotic antidecuplet of baryons -- a partner of the \\Theta^+ pentaquark. Our phenomenological value for the transition magnetic moment \\mu(n^* n), appears to be in good agreement with predictions of the Chiral Quark Soliton Model.
Tensor form factors of the octet hyperons in QCD
kucukarslan, A; Ozpineci, A
2016-01-01
Light-cone QCD sum rules to leading order in QCD are used to investigate the tensor form factors of the $\\Sigma-\\Sigma$, $\\Xi-\\Xi$ and $ \\Sigma-\\Lambda$ transitions in the range $1 GeV^2 \\leq Q^2 \\leq 10 GeV^2$. The DAs of $\\Sigma$, $\\Xi$ and $\\Lambda$ baryon have been calculated without higher order terms. Then, study including higher order corrections have been done for $\\Sigma$ and $\\Lambda$ baryon. The result of form factors are obtained using these two DAs. We make a comparison with the predictions of the chiral quark soliton model.
Energy Technology Data Exchange (ETDEWEB)
Zeeb, G.
2006-07-01
In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized {sigma}-{omega} model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the
Energy Technology Data Exchange (ETDEWEB)
Jacobson, Orit [Department of Medical Biophysics and Nuclear Medicine, Hebrew University of Jerusalem, Hadassah Hospital, Jerusalem 91120 (Israel); Laky, Desideriu [Department of Medical Biophysics and Nuclear Medicine, Hebrew University of Jerusalem, Hadassah Hospital, Jerusalem 91120 (Israel); Carlson, Kathryn E. [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); Elgavish, Sharona [Bioinformatics Unit, Hebrew University of Jerusalem, Jerusalem 91120 (Israel); Gozin, Michael [School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Even-Sapir, Einat [Department of Nuclear Medicine, Tel Aviv Sourasky Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv 64239 (Israel); Leibovitc, Ilan [Department of Urology, Meir Medical Center, Sackler School of Medicine, Tel Aviv University, Kfar Sava 44281 (Israel); Gutman, Mordechai [Department of Surgery A, Sapir Medical Center, Sackler School of Medicine, Tel Aviv University, Kfar Sava 44281 (Israel); Chisin, Roland [Department of Medical Biophysics and Nuclear Medicine, Hebrew University of Jerusalem, Hadassah Hospital, Jerusalem 91120 (Israel); Katzenellenbogen, John A. [Department of Chemistry, University of Illinois, Urbana, IL 61801 (United States); Mishani, Eyal [Department of Medical Biophysics and Nuclear Medicine, Hebrew University of Jerusalem, Hadassah Hospital, Jerusalem 91120 (Israel)]. E-mail: mishani@md.huji.ac.il
2006-08-15
Most prostate cancers are androgen dependent upon initial diagnosis. On the other hand, some very aggressive forms of prostate cancer were shown to have lost the expression of the androgen receptor (AR). Although the AR is routinely targeted in endocrine treatment, the clinical outcome remains suboptimal. Therefore, it is crucial to demonstrate the presence and activity of the AR in each case of prostate cancer, before and after treatment. While noninvasive positron emission tomography (PET) has the potential to determine AR expression of tumor cells in vivo, fully optimized PET imaging agents are not yet available. Based on molecular modeling, three novel derivatives of hydroxyflutamide (Compounds 1-3) were designed and synthesized. They contain an electron-rich group (dimethylamine) located on the methyl moiety, which may confer a better stability to the molecule in vivo. Compounds 1-3 have AR binding that is similar or higher than that of the currently used commercial drugs. An automated carbon-11 radiolabeling route was developed, and the compounds were successfully labeled with a 10-15% decay-corrected radiochemical yield, 99% radiochemical purity and a specific activity of 4Ci/{mu}mol end of bombardment (n=15). These labeled biomarkers may facilitate the future quantitative molecular imaging of AR-positive prostate cancer using PET and may also allow for image-guided treatment of prostate cancer.
Study of Dynamical Chiral Symmetry Breaking in (2 + 1 Dimensional Abelian Higgs Model
Directory of Open Access Journals (Sweden)
Jian-Feng Li
2010-04-01
Full Text Available In this paper, we study the dynamical mass generation in the Abelian Higgs model in 2 + 1 dimensions. Instead of adopting the approximations in [Jiang H et al., J. Phys. A 41 2008 255402.], we numerically solve the coupled Dyson–Schwinger Equations (DSEs for the fermion and gauge boson propagators using a specific truncation for the fermion-photon vertex ansatz and compare our results with the corresponding ones in the above mentioned paper. It is found that the results quoted in the above paper remain qualitatively unaffected by refining the truncation scheme of the DSEs, although there exist large quantitative differences between the results presented in the above paper and ours. In addition, our numerical results show that the critical number of fermion flavor Nc decreases steeply with the the gauge boson mass ma (or the ratio of the Higgs mass mh to the gauge boson mass ma, r = mh/ma increasing. It is thus easier to generate a finite fermion mass by the mechanism of DCSB for a small ratio r for a given ma.
Combined analysis of the π-p →K0Λ , η n reactions in a chiral quark model
Xiao, Li-Ye; Ouyang, Fan; Wang, Kai-Lei; Zhong, Xian-Hui
2016-09-01
A combined analysis of the reactions π-p →K0Λ and η n is carried out with a chiral quark model. The data in the center-of-mass (c.m.) energy range from threshold up to W ≃1.8 GeV are reasonably described. For π-p →K0Λ , it is found that N (1535 ) S11 and N (1650 ) S11 play crucial roles near threshold. The N (1650 ) S11 resonance contributes to the reaction through configuration mixing with N (1535 ) S11 . The constructive interference between N (1535 ) S11 and N (1650 ) S11 is responsible for the peak structure around threshold in the total cross section. The n -pole, u -, and t -channel backgrounds provide significant contributions to the reaction as well. For the π-p →η n process, the "first peak" in the total cross section is dominated by N (1535 ) S11 , which has a sizeable destructive interference with N (1650 ) S11 . Around Pπ≃ 1.0 GeV/c (W ≃1.7 GeV), there seems to be a small bump structure in the total cross section, which might be explained by the interference between the u channel and N (1650 ) S11 . The N (1520 ) D13 resonance affects the angle distributions of the cross sections notably, although no obvious effects are seen in the total cross section. The role of P -wave state N (1720 ) P13 should be further confirmed by future experiments. If N (1720 ) P13 has a narrow width of Γ ≃120 MeV as found in our previous work by a study of the π0 photoproduction processes, obvious evidence should be seen in the π-p →K0Λ and η n processes as well. Finally, we give our predictions of the s -channel isospin-1/2 resonance contributions to the π N →π N reactions.
Reducible chiral metamaterials
Ciattoni, Alessandro; Rizza, Carlo
2016-01-01
We introduce the concept of 3D reducible metamaterials whose constituent permittivity can be modelled by a factorized profile. The separated cartesian coordinates dependence, easily achieved in all-optical reconfigurable materials, allows to physically regard a reducible metamaterial as a superposition of three fictitious 1D generating media. We prove that, in the long-wavelength limit, the electromagnetic response of reducible metamaterials can be reconstructed from the properties of the 1D generating media whose interplay provides large freedom to control the electromagnetic chirality. Our approach introduces an unprecedented decomposition strategy in metamaterial science which allows the full ab-initio and flexible design of a complex 3D bianisotropic response by using 1D metamaterials as basic building blocks.
Application of cyclodextrins in chiral capillary electrophoresis.
Rezanka, Pavel; Navrátilová, Klára; Rezanka, Michal; Král, Vladimír; Sýkora, David
2014-10-01
CE represents a very powerful separation tool in the area of chiral separations. CD-mediated chiral CE is a continuously flourishing technique within the frame of the electromigration methods. In this review, a brief overview of the synthetic procedures leading to modified CDs is provided first. Next, selected aspects related to the utilization of CDs in chiral CE are discussed specifically in the view of recently published data. Advantages of CDs and basic principles of chiral CE are remained. The topic of the determination of binding constants is touched. Particular attention is paid to the effort aiming at better understanding of the molecular level of the enantiorecognition between CDs and the analyte in the solution. Powerful approaches extensively utilized in this field are NMR, molecular modeling, and computer simulations. Then, a summary of applications of CDs in the CE enantioseparations is given, covering years 2008-2013. Finally, the general trend of modified CDs use in separation science is statistically evaluated.
Chiral transition of fundamental and adjoint quarks
Energy Technology Data Exchange (ETDEWEB)
Capdevilla, R.M. [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Doff, A., E-mail: agomes@utfpr.edu.br [Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR (Brazil); Natale, A.A., E-mail: natale@ift.unesp.br [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil)
2014-01-20
The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one.
Tawfik, Abdel Nasser; Magdy, Niseem
2015-01-01
Effects of an external magnetic field on various properties of quantum chromodynamics (QCD) matter under extreme conditions of temperature and density (chemical potential) have been analyzed. To this end, we use SU(3) Polyakov linear-σ model and assume that the external magnetic field (e B ) adds some restrictions to the quarks' energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization, which assumes that the cyclotron orbits of charged particles in a magnetic field should be quantized. This requires an additional temperature to drive the system through the chiral phase transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities (energy density and trace anomaly) and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of the magnetic field on the chiral phase transition. We found that both critical temperature Tc and critical chemical potential increase with increasing magnetic field, e B . Last but not least, the magnetic effects of the thermal evolution of four scalar and four pseudoscalar meson states are studied. We concluded that the meson masses decrease as the temperature increases up to Tc. Then, the vacuum effect becomes dominant and rapidly increases with the temperature T . At low T , the scalar meson masses normalized to the lowest Matsubara frequency rapidly decrease as T increases. Then, starting from Tc, we find that the thermal dependence almost vanishes. Furthermore, the meson masses increase with increasing magnetic field. This gives a characteristic phase diagram of T vs external magnetic field e B . At high T , we find that the masses of almost all meson states become temperature independent. It is worthwhile to highlight that the various meson
Applications of chiral symmetry
Pisarski, R D
1995-01-01
I discuss several topics in the applications of chiral symmetry at nonzero temperature, including: where the rho goes, disoriented chiral condensates, and the phase diagram for QCD with 2+1 flavors. (Based upon talks presented at the "Workshop on Finite Temperature QCD", Wuhan, P.R.C., April, 1994.)
Nanoconfinement-Induced Structures in Chiral Liquid Crystals
2013-01-01
We employ Monte Carlo simulations in a specialized isothermal-isobaric and in the grand canonical ensemble to study structure formation in chiral liquid crystals as a function of molecular chirality. Our model potential consists of a simple Lennard-Jones potential, where the attractive contribution has been modified to represent the orientation dependence of the interaction between a pair of chiral liquid-crystal molecules. The liquid crystal is confined between a pair of planar and atomicall...
pi-pi interaction amplitudes with chiral constraints
Kaminski, Robert
2000-01-01
The pi-pi interaction amplitudes have been calculated using a three coupled channel model both with and without constraints imposed by chiral models. Roy's equations have been used to compare the amplitudes and to study the role played by chiral constraints in the pi-pi interaction.
Geometrical approach to central molecular chirality: a chirality selection rule
Capozziello, S.; Lattanzi, A
2004-01-01
Chirality is of primary importance in many areas of chemistry and has been extensively investigated since its discovery. We introduce here the description of central chirality for tetrahedral molecules using a geometrical approach based on complex numbers. According to this representation, for a molecule having n chiral centres, it is possible to define an index of chirality. Consequently a chirality selection rule has been derived which allows the characterization of a molecule as achiral, e...
Study of surface plasmon chirality induced by Archimedes' spiral grooves.
Ohno, Tomoki; Miyanishi, Shintaro
2006-06-26
A chirality of surface plasmons excited on a silver film with Archimedes' spiral grooves during incidence of a circularly polarized light is analytically and numerically studied by using the finite-difference time-domain (FDTD) modeling method. We found that the surface of a plasmon has selective chirality, which is given by the sum of the chiralities of the incident light and the spiral structure. The surface plasmons with the chirality lead to zero-order, first-order, and high-order evanescent Bessel beams with electric charge distributions on the film. This selectivity could be widely applied for chiral detection of the incident light and chiral excitation of several optical modes in nanophotonics.
Chiral nucleon-nucleon forces in nuclear structure calculations
Directory of Open Access Journals (Sweden)
Coraggio L.
2016-01-01
Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.
Molecular-Level Design of Heterogeneous Chiral Catalysis
Energy Technology Data Exchange (ETDEWEB)
Francisco Zaera
2012-03-21
The following is a proposal to continue our multi-institutional research on heterogeneous chiral catalysis. Our team combines the use of surface-sensitive analytical techniques for the characterization of model systems with quantum and statistical mechanical calculations to interpret experimental data and guide the design of future research. Our investigation focuses on the interrelation among the three main mechanisms by which enantioselectivity can be bestowed to heterogeneous catalysts, namely: (1) by templating chirality via the adsorption of chiral supramolecular assemblies, (2) by using chiral modifiers capable of forming chiral complexes with the reactant and force enantioselective surface reactions, and (3) by forming naturally chiral surfaces using imprinting chiral agents. Individually, the members of our team are leaders in these various aspects of chiral catalysis, but the present program provides the vehicle to generate and exploit the synergies necessary to address the problem in a comprehensive manner. Our initial work has advanced the methodology needed for these studies, including an enantioselective titration procedure to identify surface chiral sites, infrared spectroscopy in situ at the interface between gases or liquids and solids to mimic realistic catalytic conditions, and DFT and Monte Carlo algorithms to simulate and understand chirality on surfaces. The next step, to be funded by the monies requested in this proposal, is to apply those methods to specific problems in chiral catalysis, including the identification of the requirements for the formation of supramolecular surface structures with enantioselective behavior, the search for better molecules to probe the chiral nature of the modified surfaces, the exploration of the transition from supramolecular to one-to-one chiral modification, the correlation of the adsorption characteristics of one-to-one chiral modifiers with their physical properties, in particular with their configuration
Spectral signatures of chirality
DEFF Research Database (Denmark)
Pedersen, Jesper Goor; Mortensen, Asger
2009-01-01
We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...
Chiral supergravity and anomalies
Mielke, E W; Macias, Alfredo; Mielke, Eckehard W.
1999-01-01
Similarily as in the Ashtekar approach, the translational Chern-Simons term is, as a generating function, instrumental for a chiral reformulation of simple (N=1) supergravity. After applying the algebraic Cartan relation between spin and torsion, the resulting canonical transformation induces not only decomposition of the gravitational fields into selfdual and antiselfdual modes, but also a splitting of the Rarita-Schwinger fields into their chiral parts in a natural way. In some detail, we also analyze the consequences for axial and chiral anomalies.
Spintronics and chirality: spin selectivity in electron transport through chiral molecules.
Naaman, Ron; Waldeck, David H
2015-04-01
Recent experiments have demonstrated that the electron transmission yield through chiral molecules depends on the electron spin orientation. This phenomenon has been termed the chiral-induced spin selectivity (CISS) effect, and it provides a challenge to theory and promise for organic molecule-based spintronic devices. This article reviews recent developments in our understanding of CISS. Different theoretical models have been used to describe the effect; however, they all presume an unusually large spin-orbit coupling in chiral molecules for the effect to display the magnitudes seen in experiments. A simplified model for an electron's transport through a chiral potential suggests that these large couplings can be manifested. Techniques for measuring spin-selective electron transport through molecules are overviewed, and some examples of recent experiments are described. Finally, we present results obtained by studying several systems, and we describe the possible application of the CISS effect for memory devices.
Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential
Braguta, V V
2016-01-01
In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.
Mutti, Francesco G; Gullotti, Michele; Casella, Luigi; Santagostini, Laura; Pagliarin, Roberto; Andersson, K Kristoffer; Iozzi, Maria Francesca; Zoppellaro, Giorgio
2011-05-28
The new poly-imidazole N(8) ligand (S)-2-piperazinemethanamine-1,4-bis[2-((N-(1-acetoxy-3-(1-methyl-1H-imidazol-4-yl))-2-(S)-propyl)-(N-(1-methyl-1H-imidazol-2-ylmethyl)))ethyl]-N-(phenylmethyl)-N-(acetoxy), also named (S)-Pz-(C2-(HisIm))(2) (L), containing three chiral (S) centers, was obtained by a multi-step synthesis and used to prepare dinuclear [Cu(2)(L)](4+) and trinuclear [Cu(3)(L)](6+) copper(II) complexes. Low-temperature EPR experiments performed on [Cu(2)(L)](4+) demonstrated that the two S = ½ centers behaved as independent paramagnetic units, while the EPR spectra used to study the trinuclear copper complex, [Cu(3)(L)](6+), were consistent with a weakly coupled three-spin ½ system. Theoretical models for the two complexes were obtained by DFT/RI-BP86/TZVP geometry optimization, where the structural and electronic characteristics nicely supported the EPR experimental findings. In addition, the theoretical analysis unveiled that the conformational flexibility encoded in both [Cu(2)(L)](4+) and [Cu(3)(L)](6+) arises not only from the presence of several σ-bonds and the bulky residues attached to the (S)-Pz-(C2-(HisIm))(2) ligand scaffold, but also from the poor coordination ability of the tertiary amino groups located in the ligand side-chains containing the imidazole units towards the copper(II) ions. Both the dinuclear and trinuclear complexes are efficient catalysts in the stereoselective oxidation of several catechols and flavonoid compounds, yielding the corresponding quinones. The structural features of the substrate-catalyst adduct intermediates were assessed by searching the conformational space of the molecule through MMFF94/Monte Carlo (MMFF94/MC) methods. The conformational flexibility of the bound ligand in the complexes proves to be beneficial for substrate binding and recognition. For the dinuclear complex, chiral recognition of the optically active substrates derives from weak electrostatic interactions between bound substrates and
Heavy-tailed chiral random matrix theory
Kanazawa, Takuya
2016-05-01
We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.
Heavy-tailed chiral random matrix theory
Kanazawa, Takuya
2016-01-01
We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.
Van Den Broek, Martijn; Van Den Broeck, Christian
2007-01-01
We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.
van den Broek, M; Van den Broeck, C
2008-04-04
We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.
Novozhilov, V Yu; Novozhilov, Victor; Novozhilov, Yuri
2002-01-01
We discuss specific features of color chiral solitons (asymptotics, possibility of confainment, quantization) at example of isolated SU(2) color skyrmions, i.e. skyrmions in a background field which is the vacuum field forming the gluon condensate.
Chiral diamine-silver(I)-alkene complexes: a quantum chemical and NMR study
DEFF Research Database (Denmark)
Kieken, Elsa; Wiest, Olaf; Helquist, Paul
2005-01-01
The ability of chiral diamine silver complexes to bind chiral and prochiral alkenes has been analyzed in detail. The stereoselectivity in binding of alkenes to a chiral ethanediamine silver complex has been investigated by NMR. The low-energy conformations of several small model complexes have be...
Chiral Boson Theory on the Light-Front
Srivastava, P P
1999-01-01
The {\\it front form} framework for describing the quantized theory of chiral boson is discussed. It avoids the conflict with the requirement of the principle of microcausality as is found in the conventional equal- time treatment. The discussion of the Floreanini-Jackiw model and its modified version for describing the chiral boson becomes very transparent on the light-front.
Electrodynamics of chiral matter
Qiu, Zebin; Cao, Gaoqing; Huang, Xu-Guang
2017-02-01
Many-body systems with chiral fermions can exhibit novel transport phenomena that violate parity and time-reversal symmetries, such as the chiral magnetic effect, the anomalous Hall effect, and the anomalous generation of charge. Based on the Maxwell-Chern-Simons electrodynamics, we examine some electromagnetic and optical properties of such systems including the electrostatics, the magnetostatics, the propagation of electromagnetic waves, the novel optical effects, etc.
Directory of Open Access Journals (Sweden)
Goldstein Gary R.
2015-01-01
Full Text Available Nucleon spin structure, transversity and the tensor charge are of central importance to understanding the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the proton via twist 3 GPDs is shown. The “flexible parametrization” of chiral even GPDs is reviewed and its transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on π0 and η electroproduction.
Tabani, Hadi; Mahyari, Mojtaba; Sahragard, Ali; Fakhari, Ali Reza; Shaabani, Ahmad
2015-01-01
Introducing a new class of chiral selectors is an interesting work and this issue is still one of the hot topics in separation science and chirality. In this study, for the first time, sulfated maltodextrin (MD) was synthesized as a new anionic chiral selector and then it was successfully applied for the enantioseparation of five basic drugs (amlodipine, hydroxyzine, fluoxetine, tolterodine, and tramadol) as model chiral compounds using CE. This chiral selector has two recognition sites: a helical structure and a sulfated group which contribute to three corresponding driving forces; inclusion complexation, electrostatic interaction, and hydrogen binding. Under the optimized condition (buffer solution: 50 mM phosphate (pH 3.0) and 2% w/v sulfated MD; applied voltage: 18 kV; temperature: 20°C), baseline enantioseparation was observed for all mentioned chiral drugs. When instead of sulfated MD neutral MD was used under the same condition, no enantioseparation was observed which means the resolution power of sulfated MD is higher than neutral MD due to the electrostatic interaction between sulfated groups and protonated chiral drugs. Also, the countercurrent mobility of negatively charged MD (sulfated MD) allows more interactions between the chiral selector and chiral drugs and this in turn results in a successful resolution for the enantiomers. Furthermore, a higher concentration of neutral MD (approximately five times) is necessary to achieve the equivalent resolution compared with the negatively charged MD.
Chiral charge erasure via thermal fluctuations of magnetic helicity
Long, Andrew J.; Sabancilar, Eray
2016-05-01
We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ gtrsim 1/(αμ5), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ5 parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δScript H ~ λT and τ ~ αλ3T2 for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t ~ T3/(α5μ54) until it reaches an equilibrium value Script H ~ μ5T2/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ5 < T/α, this avenue for chiral charge erasure is found to be slower than the chiral magnetic effect for which t ~ T/(α3μ52). This mechanism for chiral charge erasure can be important for the hypercharge sector of the Standard Model as well as extensions including U(1) gauge interactions, such as asymmetric dark matter models.
Chiral charge erasure via thermal fluctuations of magnetic helicity
Energy Technology Data Exchange (ETDEWEB)
Long, Andrew J. [Kavli Institute for Cosmological Physics, University of Chicago,Chicago, Illinois 60637 (United States); Sabancilar, Eray [Institut de Théorie des Phénoménes Physiques, Ecole Polytechnique Fédérale de Lausanne,CH-1015 Lausanne (Switzerland)
2016-05-11
We consider a relativistic plasma of fermions coupled to an Abelian gauge field and carrying a chiral charge asymmetry, which might arise in the early Universe through baryogenesis. It is known that on large length scales, λ≳1/(αμ{sub 5}), the chiral anomaly opens an instability toward the erasure of chiral charge and growth of magnetic helicity. Here the chemical potential μ{sub 5} parametrizes the chiral asymmetry and α is the fine-structure constant. We study the process of chiral charge erasure through the thermal fluctuations of magnetic helicity and contrast with the well-studied phenomenon of Chern-Simons number diffusion. Through the fluctuation-dissipation theorem we estimate the amplitude and time scale of helicity fluctuations on the length scale λ, finding δ H∼λT and τ∼αλ{sup 3}T{sup 2} for a relativistic plasma at temperature T. We argue that the presence of a chiral asymmetry allows the helicity to grow diffusively for a time t∼T{sup 3}/(α{sup 5}μ{sub 5}{sup 4}) until it reaches an equilibrium value H∼μ{sub 5}T{sup 2}/α, and the chiral asymmetry is partially erased. If the chiral asymmetry is small, μ{sub 5}
Helical Ordering in Chiral Block Copolymers
Zhao, Wei; Hong, Sung Woo; Chen, Dian; Grason, Gregory; Russell, Thomas
2012-02-01
Introducing molecular chirality into the segments of block copolymers can influence the nature of the resultant morphology. Such an effect was found for poly(styrene-b-L-lactide) (PS-b-PLLA) diblock copolymers where hexagonally packed PLLA helical microdomains (H* phase) form in a PS matrix. However, molecular ordering of PLLA within the helical microdomains and the transfer of chirality from the segmental level to the mesoscale is still not well understood. We developed a field theoretic model to describe the interactions between segments of chiral blocks, which have the tendency to form a ``cholesteric'' texture. Based on the model, we calculated the bulk morphologies of chiral AB diblock copolymers using self-consistent field theory (SCFT). Experiments show that the H* phase only forms when microphase separation between PS and PLLA block happens first and crystallization of PLLA block is suppressed or happens within confined microdomain. Hence, crystalline ordering is not necessary for H* phase formation. The SCFT offers the chance to explore the range of thermodynamic stability of helical structures in the phase diagram of chiral block copolymer melts, by tuning parameters not only like the block segregation strength and composition, but also new parameters such as the ratio between preferred helical pitch to the radius of gyration and the Frank elastic constant for inter-segment distortions.
Field-enlarging transformations and chiral theories
Sladkowski, J
1995-01-01
A field-enlarging transformation in the chiral electrodynamics is performed. This introduces an additional gauge symmetry to the model that is unitary and anomaly-free and allows for comparison of different models discussed in the literature. The problem of superfluous degrees of freedom and their influence on quantization is discussed. Several "mysteries" are explained from this point of view.
Vector solitons in nonlinear isotropic chiral metamaterials
Tsitsas, N L; Frantzeskakis, D J
2011-01-01
Starting from the Maxwell equations, we used the reductive perturbation method to derive a system of two coupled nonlinear Schr\\"{o}dinger (NLS) equations for the two Beltrami components of the electromagnetic field propagating along a fixed direction in an isotropic nonlinear chiral metamaterial. With single-resonance Lorentz models for the permittivity and permeability and a Condon model for the chirality parameter, in certain spectral regimes, one of the two Beltrami components exhibits a negative real refractive index when nonlinearity is ignored and the chirality parameter is sufficiently large.We found that, inside such a spectral regime, there may exist a subregime wherein the system of the NLS equations can be approximated by the Manakov system. Bright-bright, dark-dark, and dark-bright vector solitons can be formed in that spectral subregime.
Vector solitons in nonlinear isotropic chiral metamaterials
Energy Technology Data Exchange (ETDEWEB)
Tsitsas, N L [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografos, Athens 15773 (Greece); Lakhtakia, A [Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802-6812 (United States); Frantzeskakis, D J, E-mail: dfrantz@phys.uoa.gr [Department of Physics, University of Athens, Panepistimiopolis, Zografos, Athens 15784 (Greece)
2011-10-28
Starting from the Maxwell equations, we used the reductive perturbation method to derive a system of two coupled nonlinear Schroedinger (NLS) equations for the two Beltrami components of the electromagnetic field propagating along a fixed direction in an isotropic nonlinear chiral metamaterial. With single-resonance Lorentz models for the permittivity and permeability and a Condon model for the chirality parameter, in certain spectral regimes, one of the two Beltrami components exhibits a negative-real refractive index when nonlinearity is ignored and the chirality parameter is sufficiently large. We found that, inside such a spectral regime, there may exist a subregime wherein the system of the NLS equations can be approximated by the Manakov system. Bright-bright, dark-dark, and dark-bright vector solitons can be formed in that spectral subregime. (paper)
Anomalous properties of spin-extended chiral fermions
Elbistan, M
2015-01-01
The spin-extended semiclassical chiral fermion (we call the S-model), which had been used to derive the twisted Lorentz symmetry of the "spin-enslaved" chiral chiral fermion (we call the c-model) is equivalent to the latter in the free case, however coupling to an external electromagnetic field yields inequivalent systems. The difference is highlighted by the inconsistency of spin enslavement within the spin-extended framework. The S-model exhibits nevertheless similar though slightly different anomalous properties as the usual c-model does.
Chiral Random Matrix Theory and Chiral Perturbation Theory
Damgaard, P H
2011-01-01
Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.
Chiral Random Matrix Theory and Chiral Perturbation Theory
Energy Technology Data Exchange (ETDEWEB)
Damgaard, Poul H, E-mail: phdamg@nbi.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)
2011-04-01
Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.
Superconductivity in a chiral nanotube
Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.
2017-02-01
Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.
Chiral anomalies and differential geometry
Energy Technology Data Exchange (ETDEWEB)
Zumino, B.
1983-10-01
Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)
Molecular-level Design of Heterogeneous Chiral Catalysts
Energy Technology Data Exchange (ETDEWEB)
Gellman, Andrew John [Carnegie Mellon University; Sholl, David S. [Georgia Institute of Technology; Tysoe, Wilfred T. [University of Wisconsin - Milwaukee; Zaera, Francisco [University of California at Riverside
2013-04-28
Understanding and controlling selectivity is one of the key challenges in heterogeneous catalysis. Among problems in catalytic selectivity enantioselectivity is perhaps the most the most challenging. The primary goal of the project on “Molecular-level Design of Heterogeneous Chiral Catalysts” is to understand the origins of enantioselectivity on chiral heterogeneous surfaces and catalysts. The efforts of the project team include preparation of chiral surfaces, characterization of chiral surfaces, experimental detection of enantioselectivity on such surfaces and computational modeling of the interactions of chiral probe molecules with chiral surfaces. Over the course of the project period the team of PI’s has made some of the most detailed and insightful studies of enantioselective chemistry on chiral surfaces. This includes the measurement of fundamental interactions and reaction mechanisms of chiral molecules on chiral surfaces and leads all the way to rationale design and synthesis of chiral surfaces and materials for enantioselective surface chemistry. The PI’s have designed and prepared new materials for enantioselective adsorption and catalysis. Naturally Chiral Surfaces • Completion of a systematic study of the enantiospecific desorption kinetics of R-3-methylcyclohexanone (R-3-MCHO) on 9 achiral and 7 enantiomeric pairs of chiral Cu surfaces with orientations that span the stereographic triangle. • Discovery of super-enantioselective tartaric acid (TA) and aspartic acid (Asp) decomposition as a result of a surface explosion mechanism on Cu(643)R&S. Systematic study of super-enantiospecific TA and Asp decomposition on five enantiomeric pairs of chiral Cu surfaces. • Initial observation of the enantiospecific desorption of R- and S-propylene oxide (PO) from Cu(100) imprinted with {3,1,17} facets by L-lysine adsorption. Templated Chiral Surfaces • Initial observation of the enantiospecific desorption of R- and S-PO from Pt(111) and Pd(111
Chiral effects in the confining QCD vacuum
Simonov, Yu A
1994-01-01
Configurations are introduced into the standard instanton vacuum model. This drastically improves theoretical properties of the vacuum: instanton size density $d(\\rho)$ stabilizes at $\\rho\\sim 0.2 fm$, all chiral effects are formulated in a gauge-invariant way and quarks are confined. An interesting interplay of chiral and confining dynamics is observed; for the realistic values of parameters the Georgi-Manohar picture emerges with chiral radius $R_{ch}\\sim \\rho\\sim 0.2 fm$ much less than confining radius $R_c\\sim$ hadron radius $\\sim 1 fm$. In the limit $R_{ch}\\ll R_c$ the chiral mass $M_{ch}(p)$ is unaffected by confinement and can be taken in the local limit $M_{ch}(p=0)$. Different types of effective chiral Lagrangians (ECL) are obtained, containing all or a part of gluon, quark and Nambu--Goldstone--meson fields. The ECL are manifestly gauge--invariant and in the limit of no gluon fields coincide with those found previously. The problem of the double role of the pion -- as a Goldstone meson or as a $q\\ba...
Dimensional structural constants from chiral and conformal bosonization of QCD
Andrianov, A A; Ebert, D; Mann, T F; Mann, Th. Feld
1997-01-01
We derive the dimensional non-perturbative part of the QCD effective ac= tion for scalar and pseudoscalar meson fields by means of chiral and conformal bosonization. The related structural coupling constants L_5 and L_8 of th= e chiral lagrangian are estimated using general relations which are valid i= n a variety of chiral bosonization models without explicit reference to model parameters. The asymptotics for large scalar fields in QCD is elaborated,= and model-independent constraints on dimensional coupling constants of the effective meson lagrangian are evaluated. We determine also the interacti= on between scalar quarkonium and the gluon density and obtain the scalar glueball-quarkonium potential.
Chiral Synthons in Pesticide Syntheses
Feringa, Bernard
1988-01-01
The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the implicatio
Chiral fermions on the lattice
Jahn, O; Jahn, Oliver; Pawlowski, Jan M.
2002-01-01
We discuss topological obstructions to putting chiral fermions on an even dimensional lattice. The setting includes Ginsparg-Wilson fermions, but is more general. We prove a theorem which relates the total chirality to the difference of generalised winding numbers of chiral projection operators. For an odd number of Weyl fermions this implies that particles and anti-particles live in topologically different spaces.
Chiral bosonization for non-commutative fields
Das, A; Méndez, F; López-Sarrion, J; Das, Ashok; Gamboa, Jorge; M\\'endez, Fernando; L\\'opez-Sarri\\'on, Justo
2004-01-01
A model of chiral bosons on a non-commutative field space is constructed and new generalized bosonization (fermionization) rules for these fields are given. The conformal structure of the theory is characterized by a level of the Kac-Moody algebra equal to $(1+ \\theta^2)$ where $\\theta$ is the non-commutativity parameter and chiral bosons living in a non-commutative fields space are described by a rational conformal field theory with the central charge of the Virasoro algebra equal to 1. The non-commutative chiral bosons are shown to correspond to a free fermion moving with a speed equal to $ c^{\\prime} = c \\sqrt{1+\\theta^2} $ where $c$ is the speed of light. Lorentz invariance remains intact if $c$ is rescaled by $c \\to c^{\\prime}$. The dispersion relation for bosons and fermions, in this case, is given by $\\omega = c^{\\prime} | k|$.
Dynamics of the chiral phase transition
van Hees, H; Meistrenko, A; Greiner, C
2013-01-01
The intention of this study is the search for signatures of the chiral phase transition in heavy-ion collisions. To investigate the impact of fluctuations, e.g., of the baryon number, at the transition or at a critical point, the linear sigma model is treated in a dynamical (3+1)-dimensional numerical simulation. Chiral fields are approximated as classical mean fields, and quarks are described as quasi particles in a Vlasov equation. Additional dynamics is implemented by quark-quark and quark-sigma-field interactions. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.
Probing Chiral Interactions in Light Nuclei
Energy Technology Data Exchange (ETDEWEB)
Nogga, A; Barrett, B R; Meissner, U; Witala, H; Epelbaum, E; Kamada, H; Navratil, P; Glockle, W; Vary, J P
2004-01-08
Chiral two- and three-nucleon interactions are studied in a few-nucleon systems. We investigate the cut-off dependence and convergence with respect to the chiral expansion. It is pointed out that the spectra of light nuclei are sensitive to the three-nucleon force structure. As an example, we present calculations of the 1{sup +} and 3{sup +} states of {sup 6}Li using the no-core shell model approach. The results show contributions of the next-to-next-to-leading order terms to the spectra, which are not correlated to the three-nucleon binding energy prediction.
Testa, B; Reist, M; Carrupt, P A
2000-07-01
The two enantiomers of a chiral drug may have vastly different pharmacodynamic and pharmacokinetic properties. As a result, the research and development of chiral drugs raises specific problems some of which are discussed here. Thus, various pharmacokinetic interactions may involve two enantiomers, as seen for example when one enantiomer inhibits the metabolism of the other and modifies its effects. A different situation occurs when a third compound stereoselectively inhibits the metabolism of one of the two enantiomers. Another problem examined here results from the lack of configurational stability of some chiral drugs, a little known phenomenon whose consequences can be of pharmacological or pharmaceutical significance depending on the rate of the reaction of racemization or epimerisation. In-depth investigations are needed before choosing between a eutomer or a racemate.
Doped Chiral Polymer Metamaterials
Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)
2017-01-01
Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.
Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter
2016-01-01
At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...
The Quantum Group Structure of 2D Gravity and Minimal Models; 2, The Genus-Zero Chiral Bootstrap
Cremmer, E; Roussel, J F; Gervais, Jean-Loup
1994-01-01
The F and B matrices associated with Virasoro null vectors are derived in closed form by making use of the operator-approach suggested by the Liouville theory, where the quantum-group symmetry is explicit. It is found that the entries of the fusing and braiding matrices are not simply equal to quantum-group symbols, but involve additional coupling constants whose derivation is one aim of the present work. Our explicit formulae are new, to our knowledge, in spite of the numerous studies of this problem. The relationship between the quantum-group-invariant (of IRF type) and quantum-group-covariant (of vertex type) chiral operator-algebras is fully clarified, and connected with the transition to the shadow world for quantum-group symbols. The corresponding 3-j-symbol dressing is shown to reduce to the simpler transformation of Babelon and one of the author (J.-L. G.) in a suitable infinite limit defined by analytic continuation. The above two types of operators are found to coincide when applied to states with L...
Dynamic aspect of the chiral phase transition in the mode coupling theory
Ohnishi, K; Ohta, K
2005-01-01
We analyze the dynamic aspect of the chiral phase transition. We apply the mode coupling theory to the linear sigma model and derive the kinetic equation for the chiral phase transition. We challenge Hohenberg and Halperin's classification scheme of dynamic critical phenomena in which the dynamic universality class of the chiral phase transition has been identified with that of the antiferromagnet. We point out a crucial difference between the chiral dynamics and the antiferromagnet system. We also calculate the dynamic critical exponent for the chiral phase transition. Our result is $z=1-\\eta/2\\cong 0.98$ which is contrasted with $z=d/2=1.5$ of the antiferromagnet.
Hu, Li; Fang, Yurui
2016-01-01
Plasmonic chirality exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response. Previous reports on plasmonic chirality explanations are mainly based on phase retardation and coupling. We propose a quantitative model similar to the chiral molecules for explaining the mechanism of the intrinsic plasmonic chirality quantitatively based on the interplay and mixing of electric and magnetic dipole modes, which forms a mixed electric and magnetic polarizability. The analysis method is also suitable for small chiral object down to quasi-static limit without phase delay and expected to be a universal rule.
Local topological and chiral properties of QCD
De Forcrand, Philippe; Laermann, E; Lagaë, J F; Pérez-Garcia, M; Stamatescu, I O; Forcrand, Ph. de
1999-01-01
To elucidate the role played by instantons in chiral symmetry breaking, we explore their properties in full QCD, around the critical temperature. We study in particular spatial correlations between low-lying Dirac eigenmodes and instantons. Our measurements are compared with the predictions of instanton-based models.
Chiral Thermodynamics in a finite box
Juričić, Ana
2016-01-01
Finite-volume modifications of the two-flavor chiral phase diagram are investigated within an effective quark-meson model in various mean-field approximations. The role of vacuum fluctuations and boundary conditions, their influence on higher cumulants and signatures of a possible pseudo-critical endpoint are amplified with smaller volumes.
Examining a possible cascade effect in chiral symmetry breaking
Fariborz, Amir H
2016-01-01
We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.
Spontaneous transmission of chirality through multiple length scales.
Iski, Erin V; Tierney, Heather L; Jewell, April D; Sykes, E Charles H
2011-06-20
The hierarchical transfer of chirality in nature, from the nano-, to meso-, to macroscopic length scales, is very complex, and as of yet, not well understood. The advent of scanning probes has allowed chirality to be monitored at the single molecule or monolayer level and has opened up the possibility to track enantiospecific interactions and chiral self-assembly with molecular-scale detail. This paper describes the self-assembly of a simple, model molecule (naphtho[2,3-a]pyrene) that is achiral in the gas phase, but becomes chiral when adsorbed on a surface. This polyaromatic hydrocarbon forms a stable and reversibly ordered system on Cu(111) in which the transmission of chirality from single surface-bound molecules to complex 2D chiral architectures can be monitored as a function of molecular packing density and surface temperature. In addition to the point chirality of the surface-bound molecule, the unit cell of the molecular domains was also found to be chiral due to the incommensurate alignment of the molecular rows with respect to the underlying metal lattice. These molecular domains always aggregated in groups of three, all of the same chirality, but with different rotational orientations, forming homochiral "tri-lobe" ensembles. At a larger length scale, these tri-lobe ensembles associated with nearest-neighbor tri-lobe units of opposite chirality at lower packing densities before forming an extended array of homochiral tri-lobe ensembles at higher converges. This system displayed chirality at a variety of size scales from the molecular (≈1 nm) and domain (≈5 nm) to the tri-lobe ensemble (≈10 nm) and extended array (>25 nm) levels. The chirality of the tri-lobe ensembles dictated how the overall surface packing occurred and both homo- and heterochiral arrays could be reproducibly and reversibly formed and interchanged as a function of surface coverage. Finally, these chirally templated surfaces displayed remarkable enantiospecificity for
Reconfigurable self-assembly through chiral control of interfacial tension.
Gibaud, Thomas; Barry, Edward; Zakhary, Mark J; Henglin, Mir; Ward, Andrew; Yang, Yasheng; Berciu, Cristina; Oldenbourg, Rudolf; Hagan, Michael F; Nicastro, Daniela; Meyer, Robert B; Dogic, Zvonimir
2012-01-04
From determining the optical properties of simple molecular crystals to establishing the preferred handedness in highly complex vertebrates, molecular chirality profoundly influences the structural, mechanical and optical properties of both synthetic and biological matter on macroscopic length scales. In soft materials such as amphiphilic lipids and liquid crystals, the competition between local chiral interactions and global constraints imposed by the geometry of the self-assembled structures leads to frustration and the assembly of unique materials. An example of particular interest is smectic liquid crystals, where the two-dimensional layered geometry cannot support twist and chirality is consequently expelled to the edges in a manner analogous to the expulsion of a magnetic field from superconductors. Here we demonstrate a consequence of this geometric frustration that leads to a new design principle for the assembly of chiral molecules. Using a model system of colloidal membranes, we show that molecular chirality can control the interfacial tension, an important property of multi-component mixtures. This suggests an analogy between chiral twist, which is expelled to the edges of two-dimensional membranes, and amphiphilic surfactants, which are expelled to oil-water interfaces. As with surfactants, chiral control of interfacial tension drives the formation of many polymorphic assemblages such as twisted ribbons with linear and circular topologies, starfish membranes, and double and triple helices. Tuning molecular chirality in situ allows dynamical control of line tension, which powers polymorphic transitions between various chiral structures. These findings outline a general strategy for the assembly of reconfigurable chiral materials that can easily be moved, stretched, attached to one another and transformed between multiple conformational states, thus allowing precise assembly and nanosculpting of highly dynamical and designable materials with complex
Chiral magnetic effect without chirality source in asymmetric Weyl semimetals
Kharzeev, Dmitri; Meyer, Rene
2016-01-01
We describe a new type of the Chiral Magnetic Effect (CME) that should occur in Weyl semimetals with an asymmetry in the dispersion relations of the left- and right-handed chiral Weyl fermions. In such materials, time-dependent pumping of electrons from a non-chiral external source generates a non-vanishing chiral chemical potential. This is due to the different capacities of the left- and right-handed (LH and RH) chiral Weyl cones arising from the difference in the density of states in the LH and RH cones. The chiral chemical potential then generates, via the chiral anomaly, a current along the direction of an applied magnetic field even in the absence of an external electric field. The source of chirality imbalance in this new setup is thus due to the band structure of the system and the presence of (non-chiral) electron source, and not due to the parallel electric and magnetic fields. We illustrate the effect by an argument based on the effective field theory, and by the chiral kinetic theory calculation f...
Barnea, N
2000-01-01
A system of nontopological solitons interacting through meson exchange is used to model dense nuclear matter. The models studied are of the Friedberg-Lee type, which exhibit dynamical bag formation due to the coupling of quarks to a scalar composite gluon field sigma. It is shown in the Wigner-Seitz approximation that the high density behavior of such models depends essentially on the leading power of the quark-sigma coupling vertex. By insisting that the parameters of any soliton model be chosen to reproduce single nucleon properties, this high-density behavior then selects a promising class of models that better fit the empirical results -- the chiral chromodielectric models. The presence of a scalar meson is shown to provide saturation as well as an increase of the proton charge radius with nuclear density. We go beyond the usual Wigner-Seitz approximation by introducing the disorder necessary to reproduce the liquid state, using the significant structure theory of physical chemistry. We study nuclear matt...
Numerical study of chiral plasma instability within the classical statistical field theory approach
Buividovich, P V
2015-01-01
We report on a numerical study of the real-time dynamics of chirally imbalanced lattice Dirac fermions coupled to dynamical electromagnetic field. To this end we use the classical statistical field theory approach, in which the quantum evolution of fermions is simulated exactly, and electromagnetic fields are treated as classical. Motivated by recent experiments on chirally imbalanced Dirac semimetals, we use the Wilson-Dirac lattice Hamiltonian for fermions in order to model the emergent nature of chiral symmetry at low energies. In general, we observe that the backreaction of fermions on the electromagnetic field prevents the system from acquiring large chirality imbalance. In the case of chirality pumping in parallel electric and magnetic fields, electric field is screened by the produced on-shell fermions and the accumulation of chirality is hence stopped. In the case of evolution with initially present chirality imbalance, axial charge tends to decay at the expense of nonzero helicity of electromagnetic ...
Detecting the chirality for coupled quantum dots
Energy Technology Data Exchange (ETDEWEB)
Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com
2008-04-21
We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.
Sum-Frequency Generation from Chiral Media and Interfaces
Energy Technology Data Exchange (ETDEWEB)
Ji, Na [Univ. of California, Berkeley, CA (United States)
2006-02-13
Sum frequency generation (SFG), a second-order nonlinear optical process, is electric-dipole forbidden in systems with inversion symmetry. As a result, it has been used to study chiral media and interfaces, systems intrinsically lacking inversion symmetry. This thesis describes recent progresses in the applications of and new insights into SFG from chiral media and interfaces. SFG from solutions of chiral amino acids is investigated, and a theoretical model explaining the origin and the strength of the chiral signal in electronic-resonance SFG spectroscopy is discussed. An interference scheme that allows us to distinguish enantiomers by measuring both the magnitude and the phase of the chiral SFG response is described, as well as a chiral SFG microscope producing chirality-sensitive images with sub-micron resolution. Exploiting atomic and molecular parity nonconservation, the SFG process is also used to solve the Ozma problems. Sum frequency vibrational spectroscopy is used to obtain the adsorption behavior of leucine molecules at air-water interfaces. With poly(tetrafluoroethylene) as a model system, we extend the application of this surface-sensitive vibrational spectroscopy to fluorine-containing polymers.
Mechanistic insights on cooperative asymmetric multicatalysis using chiral counterions.
Jindal, Garima; Sunoj, Raghavan B
2014-08-15
Cooperative multicatalytic methods are steadily gaining popularity in asymmetric catalysis. The use of chiral Brønsted acids such as phosphoric acids in conjunction with a range of transition metals has been proven to be effective in asymmetric synthesis. However, the lack of molecular-level understanding and the accompanying ambiguity on the role of the chiral species in stereoinduction continues to remain an unresolved puzzle. Herein, we intend to disclose some novel transition state models obtained through DFT(B3LYP and M06) computations for a quintessential reaction in this family, namely, palladium-catalyzed asymmetric Tsuji-Trost allylation of aldehydes. The aldehyde is activated as an enamine by the action of a secondary amine (organocatalysis), which then adds to an activated Pd-allylic species (transition metal catalysis) generated through the protonation of allyic alcohol by chiral BINOL-phosphoric acid (Brønsted acid catalysis). We aim to decipher the nature of chiral BINOL-phosphates and their role in creating a quaternary chiral carbon atom in this triple catalytic system. The study reports the first transition state model capable of rationalizing chiral counterion-induced enantioselectivity. It is found that the chiral phosphate acts as a counterion in the stereocontrolling event rather than the conventional ligand mode.
Nature of chiral spin liquids on the kagome lattice
Wietek, Alexander; Sterdyniak, Antoine; Läuchli, Andreas M.
2015-09-01
We investigate the stability and the nature of the chiral spin liquids which were recently uncovered in extended Heisenberg models on the kagome lattice. Using a Gutzwiller projected wave function approach, i.e., a parton construction, we obtain large overlaps with ground states of these extended Heisenberg models. We further suggest that the appearance of the chiral spin liquid in the time-reversal invariant case is linked to a classical transition line between two magnetically ordered phases.
Tsui, Hung-Wei; Franses, Elias I; Wang, Nien-Hwa Linda
2014-02-01
Various displacement models in the literature have been widely used for understanding the adsorption mechanisms of solutes in various chromatography systems. The models were used for describing the often-observed linear plots of the logarithms of the retention factor versus the logarithms of the polar modifier concentration CI(0). The slopes of such a plot was inferred to be equal to the number of the displaced modifier molecules upon adsorption of one solute molecule, and were generally found to be greater than 1. In this study, the retention factors of four structurally related chiral solutes, ethyl lactate (EL), methyl mandelate (MM), benzoin (B), and pantolactone (PL), were measured for the amylose tris[(S)-α-methylbenzylcarbamate] sorbent, or AS, as a function of the concentration of isopropanol (IPA) in n-hexane. With increasing IPA concentration CI(0), the slopes increase from less than 1, at a concentration range from 0.13 to 1.3M, to slightly more than 1 at higher concentrations. Such slopes cannot be explained by the conventional retention models. It was found previously for monovalent solutes that such slopes can only be explained when the aggregation of the mobile phase modifier, isopropyl alcohol, was accounted for. A new retention model is presented here, accounting for alcohol aggregation, multivalent solute adsorption, multivalent solute-alcohol complexation, alcohol adsorption, and solute intra hydrogen-bonding, which occur in these four solutes. The slope is found to be controlled by three key dimensionless groups, the fraction of the sorbent binding sites covered by IPA, the fraction of the solute molecules in complex form, and the fraction of the IPA molecules in aggregate form. The limiting slope at a very high IPA concentration is equal to the value of (x+y)/n, where x is the number of the solute-sorbent binding sites and y is the number of the alcohol molecules in the solute-alcohol complex, and n is the alcohol aggregation number. The model
Klevansky, S P
2016-01-01
Recently Dai and Pennington have performed a comprehensive analysis of essentially all pion and kaon pair production data from two-photon collisions below 1.5 GeV, including all high statistics results from Belle, as well as the older data from Mark II at SLAC, CELLO at DESY, and Crystal Ball at SLAC. Imposing the basic constraints required by analyticity, unitarity, and crossing symmetry and making use of Low's low energy theorem for QED, they are able to extract the final-state strong-interaction scattering amplitudes for the intermediate pi pi->pi pi and pi pi-> K\\bar K reactions in a model-independent fashion. In addition, they provide good fits to the respective gamma gamma-> pi pi cross-sections that are known in the low-energy sector in the restricted angular range, | cos theta|pi pi cross-sections integrated over the full angular range. In this work, we use a version of chiral perturbation theory developed by Oller and Oset to evaluate the final-state strong-interaction amplitudes directly theoretical...
Garron, Nicolas; Lytle, Andew T
2016-01-01
We compute the hadronic matrix elements of the four-quark operators relevant for $K^0-{\\bar K^0}$ mixing beyond the Standard Model. Our results are from lattice QCD simulations with $n_f=2+1$ flavours of domain-wall fermion, which exhibit continuum-like chiral-flavour symmetry. The simulations are performed at two different values of the lattice spacing ($a\\sim0.08$ and $a\\sim 0.11 \\, \\fm $) and with lightest unitary pion mass $\\sim 300\\, \\MeV$. For the first time, the full set of relevant four-quark operators is renormalised non-perturbatively through RI-SMOM schemes; a detailed description of the renormalisation procedure is presented in a companion paper. We argue that the intermediate renormalisation scheme is responsible for the discrepancies found by different collaborations. We also study different normalisations and determine the matrix elements of the relevant four-quark operators with a precision of $\\sim 5\\%$ or better.
Chiral assembly of weakly curled hard rods: Effect of steric chirality and polarity
Energy Technology Data Exchange (ETDEWEB)
Wensink, H. H., E-mail: wensink@lps.u-psud.fr; Morales-Anda, L. [Laboratoire de Physique des Solides–UMR 8502, Université Paris-Sud & CNRS, 91405 Orsay (France)
2015-10-14
We theoretically investigate the pitch of lyotropic cholesteric phases composed of slender rods with steric chirality transmitted via a weak helical deformation of the backbone. In this limit, the model is amenable to analytical treatment within Onsager theory and a closed expression for the pitch versus concentration and helical shape can be derived. Within the same framework, we also briefly review the possibility of alternative types of chiral order, such as twist-bend or screw-like nematic phases, finding that cholesteric order dominates for weakly helical distortions. While long-ranged or “soft” chiral forces usually lead to a pitch decreasing linearly with concentration, steric chirality leads to a much steeper decrease of quadratic nature. This reveals a subtle link between the range of chiral intermolecular interaction and the pitch sensitivity with concentration. A much richer dependence on the thermodynamic state is revealed for polar helices where parallel and anti-parallel pair alignments along the local director are no longer equivalent. It is found that weak temperature variations may lead to dramatic changes in the pitch, despite the lyotropic nature of the assembly.
Cell chirality: emergence of asymmetry from cell culture.
Wan, Leo Q; Chin, Amanda S; Worley, Kathryn E; Ray, Poulomi
2016-12-19
Increasing evidence suggests that intrinsic cell chirality significantly contributes to the left-right (LR) asymmetry in embryonic development, which is a well-conserved characteristic of living organisms. With animal embryos, several theories have been established, but there are still controversies regarding mechanisms associated with embryonic LR symmetry breaking and the formation of asymmetric internal organs. Recently, in vitro systems have been developed to determine cell chirality and to recapitulate multicellular chiral morphogenesis on a chip. These studies demonstrate that chirality is indeed a universal property of the cell that can be observed with well-controlled experiments such as micropatterning. In this paper, we discuss the possible benefits of these in vitro systems to research in LR asymmetry, categorize available platforms for single-cell chirality and multicellular chiral morphogenesis, and review mathematical models used for in vitro cell chirality and its applications in in vivo embryonic development. These recent developments enable the interrogation of the intracellular machinery in LR axis establishment and accelerate research in birth defects in laterality.This article is part of the themed issue 'Provocative questions in left-right asymmetry'.
Chiral damping of magnetic domain walls
Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2016-03-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).
Chiral damping of magnetic domain walls
Jué, Emilie
2015-12-21
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Spiral Galaxies as Chiral Objects?
Capozziello, S; Capozziello, Salvatore; Lattanzi, Alessandra
2005-01-01
Spiral galaxies show axial symmetry and an intrinsic 2D-chirality. Environmental effects can influence the chirality of originally isolated stellar systems and a progressive loss of chirality can be recognised in the Hubble sequence. We point out a preferential modality for genetic galaxies as in microscopic systems like aminoacids, sugars or neutrinos. This feature could be the remnant of a primordial symmetry breaking characterizing systems at all scales.
Chiral symmetry and scalar meson in hadron and nuclear physics
Kunihiro, T
1995-01-01
After giving a short introduction to the Nambu-Jona-Lasinio model with an anomaly term, we show the importance of the scalar-scalar correlation in the low-energy hadron dynamics, which correlation may be summarized by a scalar-isoscalar meson, the sigma meson. The discussion is based on the chiral quark model with the sigma-meson degrees of freedom. Possible experiments are proposed to produce the elusive meson in a nucleus and detect it. In relation to a precursory soft mode for the chiral transition, the reason is clarified why the dynamic properties of the superconductor may be described by the diffusive time-dependent Ginzburg-Landau (TDGL) equation. We indicate the chiral symmetry plays a significant role also in nuclei; one may say that the stability of nuclei is due to the chiral symmetry of QCD.
Shukla, N.; Yang, D.; Gellman, A. J.
2016-06-01
Tetrahexahedral (THH, 24-sided) Au nanoparticles modified with D- or L-cysteine (Cys) have been used as enantioselective separators of the chiral pharmaceutical propranolol (PLL) in solution phase. Polarimetry has been used to measure the rotation of linearly polarized light by solutions containing mixtures of PLL and Cys/THH-Au NPs with varying enantiomeric excesses of each. Polarimetry yields clear evidence of enantiospecific adsorption of PLL onto the Cys/THH-Au NPs. This extends prior work using propylene oxide as a test chiral probe, by using the crystalline THH Au NPs with well-defined facets to separate a real pharmaceutical. This work suggests that chiral nanoparticles, coupled with a density separation method such as centrifugation, could be used for enantiomeric purification of real pharmaceuticals. A simple robust model developed earlier has also been used to extract the enantiospecific equilibrium constants for R- and S-PLL adsorption onto the D- and L-Cys/THH-Au NPs.
Chiral Biomarkers in Meteorites
Hoover, Richard B.
2010-01-01
The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be
Ruggieri, M.; Peng, G. X.
2016-05-01
In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.
Free-standing chiral plasmonics
Leong, Eunice Sok Ping; Deng, Jie; Wu, Siji; Khoo, Eng Huat; Liu, Yan Jun
2014-11-01
Chiral plasmonic nanostructures offer the ability to achieve strong optical circular dichroism (CD) activity over a broad spectral range, which has been challenging for chiral molecules. Chiral plasmonic nanostructures have been extensively studied based on top-down and bottom-up fabrication techniques. Particularly, in the top-down electron-beam lithography, 3D plasmonic nanostructure fabrication involves layer-by-layer patterning and complex alignment, which is time-consuming and causes many defects in the structures. Here, we present a free-standing 3D chiral plamonic nanostructures using the electron-beam lithography technique with much simplified fabrication processes. The 3D chiral plasmonic nanostructures consist of a free-standing ultrathin silicon nitride membrane with well-aligned L-shape metal nanostructures on one side and disk-shape ones on the other side. The free-standing membrane provides an ultra-smooth metal/dielectric interface and uniformly defines the gap between the upper and lower layers in an array of chiral nanostructures. Such free-standing chiral plasmonic nanostructures exhibit strong CD at optical frequencies, which can be engineered by simply changing the disk size on one side of the membrane. Experimental results are in good agreement with the finite-difference time-domain simulations. Such free-standing chiral plasmonics holds great potential for chirality analysis of biomolecules, drugs, and chemicals.
Fiorilla, Salvatore; Weise, Wolfram
2011-01-01
We calculate the equation of state of nuclear matter for arbitrary isospin-asymmetry up to three loop order in the free energy density in the framework of in-medium chiral perturbation theory. In our approach 1\\pi- and 2\\pi-exchange dynamics with the inclusion of the \\Delta-isobar excitation as an explicit degree of freedom, corresponding to the long- and intermediate-range correlations, are treated explicitly. Few contact terms fixed to reproduce selected known properties of nuclear matter encode the short-distance physics. Two-body as well as three-body forces are systematically included. We find a critical temperature of about 15 MeV for symmetric nuclear matter. We investigate the dependence of the liquid-gas first-order phase transition on isospin-asymmetry. In the same chiral framework we calculate the chiral condensate of isospin-symmetric nuclear matter at finite temperatures. The contribution of the \\Delta-isobar excitation is essential for stabilizing the condensate. As a result, we find no indicati...
Some aspects of chirality: Fermion masses and chiral p-forms
Energy Technology Data Exchange (ETDEWEB)
Kleppe, A.
1997-05-01
The properties of fermion mass matrices are investigated from different points of view, both within the minimal Standard Model and in extensions of the model. It is shown how mass matrix invariants are used to define the measurables of the quark mixing matrix as invariant functions of the mass matrices. One model is presented where the family pattern is suggested to originate from a kind of mass scaling. A Lagrangian density is defined for an entire charge sector, such that the existence of a Dirac field with mass m{sub 0} implies the existence of other Dirac fields where the corresponding quanta have masses Rm{sub 0}, R{sup 2}m{sub 0}, .. which are obtained by a discrete scale transformation. This suggests a certain type of democratic fermion mass matrices. Also extensions of the minimal Standard Model are investigated, obtained by including right-handed neutrinos in the model. The Standard Model extended by two right-handed neutrinos gives rise to a mass spectrum with two massive and three massless neutrinos. The phenomenological consequences of this model are discussed. The neutrino mass matrix in such a scheme has what is defined as a democratic texture. They are studied for the cases with two and three right-handed neutrinos, resp. The chiral fields that we find in the Standard Model have certain similarities with self-dual fields. Among other things, both chiral and self-dual fields suffer species doubling on the lattice. Chiral p-forms are self-dual fields that appear in twice odd dimensions. Chiral p-forms violate manifest covariance, in the same sense as manifest covariance is violated by non-covariant gauges in electrodynamics. It is shown that a covariant action can nevertheless be formulated for chiral p-forms, by introducing an infinite set of gauge fields in a carefully controlled way.
Criteria of backscattering in chiral one-way photonic crystals
Cheng, Pi-Ju; Chang, Shu-Wei
2016-03-01
Optical isolators are important devices in photonic circuits. To reduce the unwanted reflection in a robust manner, several setups have been realized using nonreciprocal schemes. In this study, we show that the propagating modes in a strongly-guided chiral photonic crystal (no breaking of the reciprocity) are not backscattering-immune even though they are indeed insensitive to many types of scatters. Without the protection from the nonreciprocity, the backscattering occurs under certain circumstances. We present a perturbative method to calculate the backscattering of chiral photonic crystals in the presence of chiral/achiral scatters. The model is, essentially, a simplified analogy to the first-order Born approximation. Under reasonable assumptions based on the behaviors of chiral photonic modes, we obtained the expression of reflection coefficients which provides criteria for the prominent backscattering in such chiral structures. Numerical examinations using the finite-element method were also performed and the results agree well with the theoretical prediction. From both our theory and numerical calculations, we find that the amount of backscattering critically depends on the symmetry of scatter cross sections. Strong reflection takes place when the azimuthal Fourier components of scatter cross sections have an order l of 2. Chiral scatters without these Fourier components would not efficiently reflect the chiral photonic modes. In addition, for these chiral propagating modes, disturbances at the most significant parts of field profiles do not necessarily result in the most effective backscattering. The observation also reveals what types of scatters or defects should be avoided in one-way applications of chiral structures in order to minimize the backscattering.
Plasmonic hole arrays with extreme optical chirality in linear and nonlinear regimes
Gorkunov, Maxim V.; Kondratov, Alexei V.; Darinskii, Alexander N.; Artemov, Vladimir V.; Rogov, Oleg Y.; Gainutdinov, Radmir V.
2016-04-01
Metamaterials with high optical activity (OA) and circular dichroism (CD) are desired for various prospective applications ranging from circular light polarizing to enhanced chiral sensing and biosensing. Modern techniques allow fabricating subwavelength arrays of holes of complex chiral shapes that exhibit extreme optical chirality: their OA and CD take the whole range of possible values in the visible. In order to understand the nature of extreme chirality, we performed the electromagnetic finite difference time domain simulations for the hole shapes resolved by atomic force microscopy. The analysis of the simulation data allowed us to develop an analytical chiral coupled-mode model that nicely fits the results and explains the extreme chirality as determined by the Fano-type transmission resonance due to the interference of a weak background channel and a resonant plasmon channel. The model shows critical importance of the dissipation losses, the hole shape symmetry and chirality. In a planar 2D-chiral hole array, the mirror asymmetry can be induced by the difference of dielectric materials adjacent to the array sides and even their weak deviation results in remarkably strong OA and CD. We note that such deviations can arise due to the dielectric nonlinearity and discuss how 2D-chiral metamaterials in symmetric environment can acquire optical chirality due to the nonlinear symmetry breaking.
Extending Chiral Perturbation Theory with an Isosinglet Scalar
Hansen, Martin; Sannino, Francesco
2016-01-01
We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology and lattice investigations. By construction our results encompass several interesting limits, ranging from the dilaton to the linear sigma model.
Extending chiral perturbation theory with an isosinglet scalar
Hansen, Martin; Langæble, Kasper; Sannino, Francesco
2017-02-01
We augment the chiral Lagrangian by an isosinglet scalar and compute the one-loop radiative corrections to the pion mass and decay constant, as well as the scalar mass. The calculations are carried out for different patterns of chiral symmetry breaking of immediate relevance for phenomenology and lattice investigations. By construction our results encompass several interesting limits, ranging from the dilaton to the linear sigma model.
Ruggieri, M; Peng, G X
2016-01-01
We study the influence of external electric, $E$, and magnetic, $B$, fields parallel to each other, and of a chiral chemical potential, $\\mu_5$, on the chiral phase transition of Quantum Chromodynamics. Our theoretical framework is a Nambu-Jona-Lasinio model with a contact interaction. Within this model we compute the critical temperature of chiral symmetry restoration, $T_c$, as a function of the chiral chemical potential and field strengths. We find that the fields inhibit and $\\mu_5$ enhances chiral symmetry breaking, in agreement with previous studies.
Binary mixtures of chiral gases
Presilla, Carlo
2015-01-01
A possible solution of the well known paradox of chiral molecules is based on the idea of spontaneous symmetry breaking. At low pressure the molecules are delocalized between the two minima of a given molecular potential while at higher pressure they become localized in one minimum due to the intermolecular dipole-dipole interactions. Evidence for such a phase transition is provided by measurements of the inversion spectrum of ammonia and deuterated ammonia at different pressures. In particular, at pressure greater than a critical value no inversion line is observed. These data are well accounted for by a model previously developed and recently extended to mixtures. In the present paper, we discuss the variation of the critical pressure in binary mixtures as a function of the fractions of the constituents.
Chiral nanophotonics chiral optical properties of plasmonic systems
Schäferling, Martin
2017-01-01
This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .
Isothermal Titration Calorimetry of Chiral Polymeric Nanoparticles.
Werber, Liora; Preiss, Laura C; Landfester, Katharina; Muñoz-Espí, Rafael; Mastai, Yitzhak
2015-09-01
Chiral polymeric nanoparticles are of prime importance, mainly due to their enantioselective potential, for many applications such as catalysis and chiral separation in chromatography. In this article we report on the preparation of chiral polymeric nanoparticles by miniemulsion polymerization. In addition, we describe the use of isothermal titration calorimetry (ITC) to measure the chiral interactions and the energetics of the adsorption of enantiomers from aqueous solutions onto chiral polymeric nanoparticles. The characterization of chirality in nano-systems is a very challenging task; here, we demonstrate that ITC can be used to accurately determine the thermodynamic parameters associated with the chiral interactions of nanoparticles. The use of ITC to measure the energetics of chiral interactions and recognition at the surfaces of chiral nanoparticles can be applied to other nanoscale chiral systems and can provide further insight into the chiral discrimination processes of nanomaterials.
Screw split ring resonator as building block of three-dimensional chiral metamaterials
Energy Technology Data Exchange (ETDEWEB)
Liao, Yong, E-mail: liaoy@cqu.edu.cn [Key Laboratory of Aerocraft Tracking Telemetering and Command and Communication, Ministry of Education, Chongqing University, Chongqing 400044 (China); State Key Laboratory of Integrated Services Networks, Xidian University, Xian 710071 (China); Yang, Shizhong [Key Laboratory of Aerocraft Tracking Telemetering and Command and Communication, Ministry of Education, Chongqing University, Chongqing 400044 (China); Shi, Lina [Key Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029 (China)
2014-01-17
We proposed and numerically investigated the influence of spatial topology on the infrared frequency region response of chiral metamaterials based on discrete deformed split ring resonators. Compared with the well studied continuous helix, the proposed metamaterials with discrete topology exhibit broad band chiral electromagnetic response. It is shown that the conversion between left and right circular polarization waves for our model is much broader than the continuous helix model. The observed cross-coupling between electric and magnetic fields results from the chiral electric currents on the resonators due to the broken mirror symmetry. The findings are useful for the design of future real three-dimensional chiral metamaterials with tunable optical response.
Lattice realization of the generalized chiral symmetry in two dimensions
Kawarabayashi, Tohru; Aoki, Hideo; Hatsugai, Yasuhiro
2016-12-01
While it has been pointed out that the chiral symmetry, which is important for the Dirac fermions in graphene, can be generalized to tilted Dirac fermions as in organic metals, such a generalized symmetry was so far defined only for a continuous low-energy Hamiltonian. Here we show that the generalized chiral symmetry can be rigorously defined for lattice fermions as well. A key concept is a continuous "algebraic deformation" of Hamiltonians, which generates lattice models with the generalized chiral symmetry from those with the conventional chiral symmetry. This enables us to explicitly express zero modes of the deformed Hamiltonian in terms of that of the original Hamiltonian. Another virtue is that the deformation can be extended to nonuniform systems, such as fermion-vortex systems and disordered systems. Application to fermion vortices in a deformed system shows how the zero modes for the conventional Dirac fermions with vortices can be extended to the tilted case.
Tailoring the chirality of light emission with spherical Si-based antennas.
Zambrana-Puyalto, Xavier; Bonod, Nicolas
2016-05-21
Chirality of light is of fundamental importance in several enabling technologies with growing applications in life sciences, chemistry and photodetection. Recently, some attention has been focused on chiral quantum emitters. Consequently, optical antennas which are able to tailor the chirality of light emission are needed. Spherical nanoresonators such as colloids are of particular interest to design optical antennas since they can be synthesized at a large scale and they exhibit good optical properties. Here, we show that these colloids can be used to tailor the chirality of a chiral emitter. To this purpose, we derive an analytic formalism to model the interaction between a chiral emitter and a spherical resonator. We then compare the performances of metallic and dielectric spherical antennas to tailor the chirality of light emission. It is seen that, due to their strong electric dipolar response, metallic spherical nanoparticles spoil the chirality of light emission by yielding achiral fields. In contrast, thanks to the combined excitation of electric and magnetic modes, dielectric Si-based particles feature the ability to inhibit or to boost the chirality of light emission. Finally, it is shown that dual modes in dielectric antennas preserve the chirality of light emission.
Chiral fermions in asymptotically safe quantum gravity
Energy Technology Data Exchange (ETDEWEB)
Meibohm, J. [Gothenburg University, Department of Physics, Goeteborg (Sweden); Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); Pawlowski, J.M. [Universitaet Heidelberg, Institut fuer Theoretische Physik, Heidelberg (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung mbH, ExtreMe Matter Institute EMMI, Darmstadt (Germany)
2016-05-15
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions. (orig.)
Chiral fermions in asymptotically safe quantum gravity
Meibohm, Jan
2016-01-01
We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck-scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works \\cite{Christiansen:2015rva, Meibohm:2015twa}, concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models, regardless of the number of fermion flavours. This suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.
Chiral Floquet Phases of Many-Body Localized Bosons
Po, Hoi Chun; Fidkowski, Lukasz; Morimoto, Takahiro; Potter, Andrew C.; Vishwanath, Ashvin
2016-10-01
We construct and classify chiral topological phases in driven (Floquet) systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-body localization (MBL) in the bulk are argued to lead to stable chiral phases. These chiral phases do not require any symmetry and in fact owe their existence to the absence of energy conservation in driven systems. Surprisingly, we show that they are classified by a quantized many-body index, which is well defined for any MBL Floquet system. The value of this index, which is always the logarithm of a positive rational number, can be interpreted as the entropy per Floquet cycle pumped along the edge, formalizing the notion of quantum-information flow. We explicitly compute this index for specific models and show that the nontrivial topology leads to edge thermalization, which provides an interesting link between bulk topology and chaos at the edge. We also discuss chiral Floquet phases in interacting fermionic systems and their relation to chiral bosonic phases.
Preferential Rotation of Chiral Dipoles in Isotropic Turbulence
Kramel, Stefan; Voth, Greg A.; Tympel, Saskia; Toschi, Federico
2016-10-01
We introduce a new particle shape which shows preferential rotation in three dimensional homogeneous isotropic turbulence. We call these particles chiral dipoles because they consist of a rod with two helices of opposite handedness, one at each end. 3D printing is used to fabricate these particles with a length in the inertial range and their rotations are tracked in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles preferentially align with their long axis along the extensional eigenvectors of the strain rate tensor, and the helical ends respond to the extensional strain rate with a mean spinning rate that is nonzero. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using velocity gradients along Lagrangian trajectories from high resolution direct numerical simulations. The statistics of chiral dipole spinning determined with this model show surprisingly good agreement with the measured spinning of much larger chiral dipoles in the experiments.
Dileptons and Chiral Symmetry Restoration
Hohler, P M
2015-01-01
We report on recent work relating the medium effects observed in dilepton spectra in heavy-ion collisions to potential signals of chiral symmetry restoration. The key connection remains the approach to spectral function degeneracy between the vector-isovector channel with its chiral partner, the axialvector-isovector channel. Several approaches are discussed to elaborate this connection, namely QCD and Weinberg sum rules with input for chiral order parameters from lattice QCD, and chiral hadronic theory to directly evaluate the medium effects of the axialvector channel and the pertinent pion decay constant as function of temperature. A pattern emerges where the chiral mass splitting between rho and a_1 burns off and is accompanied by a strong broadening of the spectral distributions.
Applications Of Chiral Perturbation Theory
Mohta, V
2005-01-01
Effective field theory techniques are used to describe the spectrum and interactions of hadrons. The mathematics of classical field theory and perturbative quantum field theory are reviewed. The physics of effective field theory and, in particular, of chiral perturbation theory and heavy baryon chiral perturbation theory are also reviewed. The geometry underlying heavy baryon chiral perturbation theory is described in detail. Results by Coleman et. al. in the physics literature are stated precisely and proven. A chiral perturbation theory is developed for a multiplet containing the recently- observed exotic baryons. A small coupling expansion is identified that allows the calculation of self-energy corrections to the exotic baryon masses. Opportunities in lattice calculations are discussed. Chiral perturbation theory is used to study the possibility of two multiplets of exotic baryons mixed by quark masses. A new symmetry constraint on reduced partial widths is identified. Predictions in the literature based ...
Peng, J; Zhang, S Q
2003-01-01
The chiral doublets for nuclei in $A\\sim100$ and $A\\sim130$ regions have been studied with the particle-rotor model. The experimental spectra of chiral partners bands for four N=75 isotones in $A\\sim130$ region have been well reproduced by the calculation with the configuration $\\pi h_{11/2}\\otimes\
Chiral deformations of conformal field theories
Dijkgraaf, Robbert
1997-02-01
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the W1+∞ algebra, that is treated in detail.
Chiral Deformations of Conformal Field Theories
Dijkgraaf, R
1996-01-01
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the $W_{1+\\infty}$ algebra, that is treated in detail.
Chiral deformations of conformal field theories
Energy Technology Data Exchange (ETDEWEB)
Dijkgraaf, R. [Amsterdam Univ. (Netherlands). Dept. of Math.
1997-06-02
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the W{sub 1+{infinity}} algebra, that is treated in detail. (orig.).
Chiral Deformations of Conformal Field Theories
Dijkgraaf, R.
1996-01-01
We study general perturbations of two-dimensional conformal field theories by holomorphic fields. It is shown that the genus one partition function is controlled by a contact term (pre-Lie) algebra given in terms of the operator product expansion. These models have applications to vertex operator algebras, two-dimensional QCD, topological strings, holomorphic anomaly equations and modular properties of generalized characters of chiral algebras such as the $W_{1+\\infty}$ algebra, that is treat...
Circular Intensity Differential Scattering of chiral molecules
Energy Technology Data Exchange (ETDEWEB)
Bustamante, C.J.
1980-12-01
In this thesis a theory of the Circular Intensity Differential Scattering (CIDS) of chiral molecules as modelled by a helix oriented with respect to the direction of incidence of light is presented. It is shown that a necessary condition for the existence of CIDS is the presence of an asymmetric polarizability in the scatterer. The polarizability of the scatterer is assumed generally complex, so that both refractive and absorptive phenomena are taken into account.
A chiral quark model for meson electro-production in the region of D-wave resonances
Golli, Bojan
2013-01-01
The meson scattering and electroproduction amplitudes in the D13, D33 and D15 partial waves are calculated in a coupled-channel formalism incorporating quasi-bound quark-model states, extending our previous studies of the P11, P33 and S11 partial waves. The vertices of the baryon-meson interaction including the s- and d-wave pions and $\\rho$-mesons, the s-wave $\\eta$-meson, and the $s$- and p-wave $\\sigma$-mesons are determined in the Cloudy Bag Model, with some changes of the parameters to reproduce the widths of the resonances. The helicity amplitudes and the electroproduction amplitudes exhibit consistent behavior in all channels but tend to be too weak compared to the experiment. We discuss possible origins of this discrepancy which arises also in the constituent quark model calculations.
Observing Disoriented Chiral Condensates
Bjorken, James D; Taylor, C C
1993-01-01
We speculate that, in very high energy hadronic collisions, large fireballs may be produced with interiors which have anomalous chiral order parameters. Such a process would result in radiation of pions with distinctive momentum and isospin distributions, and may provide an explanation of Centauro and related phenomena in cosmic-ray events. The phenomenology of such events is reviewed, with emphasis on the possibility of observing such phenomena at Fermilab experiment T-864 (MiniMax), or at a Full Acceptance Detector (FAD) at the SSC.
Rho, Mannque
2008-01-01
This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and
Spontaneous Chiral Symmetry Breaking as Condensation of Dynamical Chirality
Alexandru, Andrei
2012-01-01
The occurrence of spontaneous chiral symmetry breaking (SChSB) is equivalent to sufficient abundance of Dirac near-zeromodes. However, dynamical mechanism leading to breakdown of chiral symmetry should be naturally reflected in chiral properties of the modes. Here we offer such connection, presenting evidence that SChSB in QCD proceeds via the appearance of modes exhibiting dynamical tendency for local chiral polarization. These modes form a band of finite width Lambda_ch (chiral polarization scale) around the surface of otherwise anti--polarized Dirac sea, and condense. Lambda_ch characterizes the dynamics of the breaking phenomenon and can be converted to a quark mass scale, thus offering conceptual means to determine which quarks of nature are governed by broken chiral dynamics. It is proposed that, within the context of SU(3) gauge theories with fundamental Dirac quarks, mode condensation is equivalent to chiral polarization, making Lambda_ch an "order parameter" of SChSB. Several uses of these features, ...
Repulsive Casimir Force in Chiral Metamaterials
Energy Technology Data Exchange (ETDEWEB)
Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E.N.; Soukoulis, C.M.
2009-09-04
We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.
Repulsive Casimir Force in Chiral Metamaterials
Zhao, R.; J. Zhou; Koschny, Th.; Economou, E. N.; C M Soukoulis
2009-01-01
We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.
Repulsive Casimir Force in Chiral Metamaterials
Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.
2009-09-01
We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.
Evnin, O E
1997-01-01
Inner and empirically consistent model of elementary particles, including two matter structural levels beyond the quark one is built. Excitements spectra, masses and interactions are analysed using the phenomenological notion of non-pertubative vacuum condensate. Essential low-energy predictions of developed concepts are classified. Effective gauge U(1)xU(1)xSU(2)-theory of quark-lepton excitements behavior based on the performed analysis of preon-subpreon phenomenology is consistently built. The ability of its expansion with fermions and scalar leptoquark coupling is also considered. Shown that the coupling constants family hierarchy is the same as family hierarchy of quark masses. Using the built theory cross-sections of d-quark-positron scattering processes with both charged and neutral currents are calculated. The obtained resonance peak is proposed to be a possible explanation of deviating from Standard Model predictions discovered in DESY in the beginning of 1997 year.
Franklin, Jerrold
2011-01-01
In a recent letter, several electromagnetic mass difference formulae for baryons were presented. However, because the derivation did not include important colormagnetic terms, the mass relations do not correctly give isospin mass splittings for the baryons. Correct mass formulae were published some time ago in a model independent approach that was more general and correct than the approach in this letter. In this Comment, the errors in the letter are pointed out and some correct formulae presented.
Nanoscale chirality in metal and semiconductor nanoparticles.
Kumar, Jatish; Thomas, K George; Liz-Marzán, Luis M
2016-10-18
The field of chirality has recently seen a rejuvenation due to the observation of chirality in inorganic nanomaterials. The advancements in understanding the origin of nanoscale chirality and the potential applications of chiroptical nanomaterials in the areas of optics, catalysis and biosensing, among others, have opened up new avenues toward new concepts and design of novel materials. In this article, we review the concept of nanoscale chirality in metal nanoclusters and semiconductor quantum dots, then focus on recent experimental and theoretical advances in chiral metal nanoparticles and plasmonic chirality. Selected examples of potential applications and an outlook on the research on chiral nanomaterials are additionally provided.
Lodahl, Peter; Mahmoodian, Sahand; Stobbe, Søren; Rauschenbeutel, Arno; Schneeweiss, Philipp; Volz, Jürgen; Pichler, Hannes; Zoller, Peter
2017-01-25
Advanced photonic nanostructures are currently revolutionizing the optics and photonics that underpin applications ranging from light technology to quantum-information processing. The strong light confinement in these structures can lock the local polarization of the light to its propagation direction, leading to propagation-direction-dependent emission, scattering and absorption of photons by quantum emitters. The possibility of such a propagation-direction-dependent, or chiral, light-matter interaction is not accounted for in standard quantum optics and its recent discovery brought about the research field of chiral quantum optics. The latter offers fundamentally new functionalities and applications: it enables the assembly of non-reciprocal single-photon devices that can be operated in a quantum superposition of two or more of their operational states and the realization of deterministic spin-photon interfaces. Moreover, engineered directional photonic reservoirs could lead to the development of complex quantum networks that, for example, could simulate novel classes of quantum many-body systems.
Nanoconfinement-induced structures in chiral liquid crystals.
Melle, Michael; Theile, Madlona; Hall, Carol K; Schoen, Martin
2013-08-28
We employ Monte Carlo simulations in a specialized isothermal-isobaric and in the grand canonical ensemble to study structure formation in chiral liquid crystals as a function of molecular chirality. Our model potential consists of a simple Lennard-Jones potential, where the attractive contribution has been modified to represent the orientation dependence of the interaction between a pair of chiral liquid-crystal molecules. The liquid crystal is confined between a pair of planar and atomically smooth substrates onto which molecules are anchored in a hybrid fashion. Hybrid anchoring allows for the formation of helical structures in the direction perpendicular to the substrate plane without exposing the helix to spurious strains. At low chirality, we observe a cholesteric phase, which is transformed into a blue phase at higher chirality. More specifically, by studying the unit cell and the spatial arrangement of disclination lines, this blue phase can be established as blue phase II. If the distance between the confining substrates and molecular chirality are chosen properly, we see a third structure, which may be thought of as a hybrid, exhibiting mixed features of a cholesteric and a blue phase.
Nanoconfinement-Induced Structures in Chiral Liquid Crystals
Directory of Open Access Journals (Sweden)
Carol K. Hall
2013-08-01
Full Text Available We employ Monte Carlo simulations in a specialized isothermal-isobaric and in the grand canonical ensemble to study structure formation in chiral liquid crystals as a function of molecular chirality. Our model potential consists of a simple Lennard-Jones potential, where the attractive contribution has been modified to represent the orientation dependence of the interaction between a pair of chiral liquid-crystal molecules. The liquid crystal is confined between a pair of planar and atomically smooth substrates onto which molecules are anchored in a hybrid fashion. Hybrid anchoring allows for the formation of helical structures in the direction perpendicular to the substrate plane without exposing the helix to spurious strains. At low chirality, we observe a cholesteric phase, which is transformed into a blue phase at higher chirality. More specifically, by studying the unit cell and the spatial arrangement of disclination lines, this blue phase can be established as blue phase II. If the distance between the confining substrates and molecular chirality are chosen properly, we see a third structure, which may be thought of as a hybrid, exhibiting mixed features of a cholesteric and a blue phase.
Indian Academy of Sciences (India)
Susanto Chakraborty; Pranab Krishna Chandra
2007-04-01
Painlevé test for integrability for the combined equations generated from Yang's self-dual equations for (2) gauge fields and Charap's equations for chiral invariant model of pion dynamics faces some peculiar situations that allow none of the stages (leading order analysis, resonance calculation and checking of the existence of the requisite number of arbitrary functions) to be conclusive. It is also revealed from a comparative study with the previous results that the existence of abnormal behaviour at any of the stated stages may have a correlation with the existence of chaotic property or some other properties that do not correspond to solitonic behaviour.
A Nonperturbative Regulator for Chiral Gauge Theories
Grabowska, Dorota M
2015-01-01
We propose a nonperturbative gauge invariant regulator for $d$-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in $d+1$ dimensions with quantum gauge fields that reside on one $d$-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local $d$-dimensional interpretation if and only if the chiral fermion representation is anomaly free. A physical realization of this construction leads to mirror fermions in the Standard Model with soft form factors for gauge fields and gravity. These mirror particles could evade detection except by sensitive probes at extremely low energy, and yet still affect vacuum topology, and could gravitate differently than conventional matter.
Random Matrices and Chiral Symmetry in QCD
Janik, R A; Papp, G; Zahed, I; Janik, Romuald A.; Nowak, Maciej A.; Papp, Gabor; Zahed, Ismail
1998-01-01
In this talk we review some recent results from random matrix models as applied to some non-perturbative issues in QCD. All of the issues we will discuss touched upon the important phenomenon related to the spontaneous breaking of chiral symmetry. The afore mentioned insights are: 1. Spontaneous breakdown of chiral symmetry and disorder. 2. Universal microscopic properties of the eigenvalues of the Dirac operator in the vacuum. 3. Universal microscopic properties of the eigenvalues of the Dirac operator in matter. 4. Structural changes of the Dirac spectrum - finite temperature. 5. Structural changes of the Dirac spectrum - finite baryonic density - ``phony vacua'' 6. Structural changes of the Dirac spectrum - finite baryonic density - ``true vacua'' . 7. Phase diagram. 8. Critical parameters. 9. Critical exponents. 10. $U(1)_A$ problem. 11. Screening of the pseudoscalar susceptibility. 12. Strong CP violation (finite $\\theta$).
Chiral patterning in Paenibacillus colonies under stress
Levine, Herbert
2012-02-01
One of the most striking examples of bacterial colony patterning occurs in the C-morphotype of Paenibacillus strains. Here, macroscopic chirality results from the interaction of local liquid-crystal ordering of the long bacterial cells with the self-propelled motility driven by the non-reflection-symmetric flagella. This talk will review some of the original experimental data from the Ben-Jacob lab as well as recent insight obtained via genomics. I will then discuss attempts to model and simulate the chiral patterns via solving reaction-diffusion equations on random lattices. At the end, I will introduce the challenges still to be faced in understanding transitions between these patterns and more common branching structures
Chiral quantum dot based materials
Govan, Joseph; Loudon, Alexander; Baranov, Alexander V.; Fedorov, Anatoly V.; Gun'ko, Yurii
2014-05-01
Recently, the use of stereospecific chiral stabilising molecules has also opened another avenue of interest in the area of quantum dot (QD) research. The main goal of our research is to develop new types of technologically important quantum dot materials containing chiral defects, study their properties and explore their applications. The utilisation of chiral penicillamine stabilisers allowed the preparation of new water soluble white emitting CdS quantum nanostructures which demonstrated circular dichroism in the band-edge region of the spectrum. It was also demonstrated that all three types of QDs (D-, L-, and Rac penicillamine stabilised) show very broad emission bands between 400 and 700 nm due to defects or trap states on the surfaces of the nanocrystals. In this work the chiral CdS based quantum nanostructures have also been doped by copper metal ions and new chiral penicilamine stabilized CuS nanoparticles have been prepared and investigated. It was found that copper doping had a strong effect at low levels in the synthesis of chiral CdS nanostructures. We expect that this research will open new horizons in the chemistry of chiral nanomaterials and their application in biotechnology, sensing and asymmetric synthesis.
Energy Technology Data Exchange (ETDEWEB)
Barik, N.; Dash, B.K.
1986-10-01
Nucleon charge and magnetic form factors G/sub E//sub ,//sub M//sup p//sup ,//sup n/(q/sup 2/) have been presented in a quark model with an equally mixed scalar and vector potential in harmonic form taking the pionic contributions into account. The static properties such as the magnetic moment, charge radius, and axial-vector coupling constant in the neutron-..beta..-decay process are shown to be in excellent agreement with the corresponding experimental values. The role of the finite extension of the quark-pion vertex in determining the charge radius and magnetic moment due to the pion cloud surrounding the nucleons has been studied.
Ruggieri, M
2016-01-01
In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...
Coupling chiral bosons to gravity
Braga, N R F; Braga, N R F; Wotzasek, C
1995-01-01
chiral boson actions of Floreanini and Jackiw (FJ), and of McClain,Wu and Yu (MWY) have been recently shown to be different representations of the same chiral boson theory. MWY displays manifest covariance and also a (gauge) symmetry that is hidden in the FJ side, which, on the other hand, displays the physical spectrum in a simple manner. We make use of the covariance of the MWY representation for the chiral boson to couple it to background gravity showing explicitly the equivalence with the previous results for the FJ representation
Chiral gravity in higher dimensions
Ootsuka, T; Ura, K; Ootsuka, Takayoshi; Tanaka, Erico; Ura, Kousuke
2003-01-01
We construct a chiral theory of gravity in 7 and 8 dimensions, which are equivalent to Einstein-Cartan theory using less variables. In these dimensions, we can construct such higher dimensional chiral gravity because of the existence of gravitational instanton. The octonionic-valued variables in the theory represent the deviation from the gravitational instanton, and from their non-associativity, prevents the theory to be SO(n) gauge invariant. Still the chiral gravity holds G_2 (7-D), and Spin(7) (8-D) gauge symmetry.
Chiral Fermions on the Lattice
Bietenholz, Wolfgang
2010-01-01
In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.
Consistent chiral kinetic theory in Weyl materials: chiral magnetic plasmons
Gorbar, E V; Shovkovy, I A; Sukhachov, P O
2016-01-01
We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern--Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. T...
Shahabadi, Nahid; Hadidi, Saba
2014-03-01
This study was designed to examine the interaction of racemic antidepressant drug "S,R-venlafaxine hydrochloride (VEN)" with bovine serum albumin (BSA) under physiological conditions. The mechanism of interaction was studied by spectroscopic techniques combination with molecular modeling. Stern-Volmer analysis of fluorescence quenching data shows the presence of the static quenching mechanism. The thermodynamic parameters indicated that the hydrogen bonding and weak van der Waals interactions are the predominant intermolecular forces stabilizing the complex. The number of binding sites (n) was calculated. Through the site marker competitive experiment, VEN was confirmed to be located in subdomain IIIA of BSA. The binding distance (r = 4.93 nm) between the donor BSA and acceptor VEN was obtained according to Förster's non-radiative energy transfer theory. According to UV-vis spectra and CD data binding of VEN leaded to conformational changes of BSA. Molecular docking simulations of S and R-VEN revealed that both isomers have similar interaction and the same binding sites, from this point of view S and R isomers are equal.
Solnyshkov, Dmitry; Malpuech, Guillaume
2016-10-01
The optical modes of photonic structures are the so-called TE and TM modes that bring intrinsic spin-orbit coupling and chirality to these systems. This, combined with the unique flexibility of design of the photonic potential, and the possibility to mix photon states with excitonic resonances, sensitive to magnetic field and interactions, allows us to achieve many phenomena, often analogous to other solid-state systems. In this contribution, we review in a qualitative and comprehensive way several of these realizations, namely the optical spin Hall effect, the creation of spin currents protected by a non-trivial geometry, the Berry curvature for photons, and the photonic/polaritonic topological insulator.
Cook, Jamie E.
2012-01-01
Amino acids are among the most heavily studied organic compound class in carbonaceous chondrites. The abundance, distributions, enantiomeric compositions, and stable isotopic ratios of amino acids have been determined in carbonaceous chondrites fi'om a range of classes and petrographic types, with interesting correlations observed between these properties and the class and typc of the chondritcs. In particular, isomeric distributions appear to correlate with parent bodies (chondrite class). In addition, certain chiral amino acids are found in enantiomeric excess in some chondrites. The delivery of these enantiomeric excesses to the early Earth may have contributed to the origin of the homochirality that is central to life on Earth today. This talk will explore the amino acids in carbonaceous chondritcs and their relevance to the origin of life.
Chiral analysis of baryon form factors
Energy Technology Data Exchange (ETDEWEB)
Gail, T.A.
2007-11-08
This work presents an extensive theoretical investigation of the structure of the nucleon within the standard model of elementary particle physics. In particular, the long range contributions to a number of various form factors parametrizing the interactions of the nucleon with an electromagnetic probe are calculated. The theoretical framework for those calculations is chiral perturbation theory, the exact low energy limit of Quantum Chromo Dynamics, which describes such long range contributions in terms of a pion-cloud. In this theory, a nonrelativistic leading one loop order calculation of the form factors parametrizing the vector transition of a nucleon to its lowest lying resonance, the {delta}, a covariant calculation of the isovector and isoscalar vector form factors of the nucleon at next to leading one loop order and a covariant calculation of the isoscalar and isovector generalized vector form factors of the nucleon at leading one loop order are performed. In order to perform consistent loop calculations in the covariant formulation of chiral perturbation theory an appropriate renormalization scheme is defined in this work. All theoretical predictions are compared to phenomenology and results from lattice QCD simulations. These comparisons allow for a determination of the low energy constants of the theory. Furthermore, the possibility of chiral extrapolation, i.e. the extrapolation of lattice data from simulations at large pion masses down to the small physical pion mass is studied in detail. Statistical as well as systematic uncertainties are estimated for all results throughout this work. (orig.)
Domains of Disoriented Chiral Condensate
Amado, R D; Lu, Yang
1996-01-01
The probability distribution of neutral pion fraction from independent domains of disoriented chiral condensate is characterized. The signal for the condensate is clear for a small number of domains but is greatly reduced for more than three.
Review of chiral perturbation theory
Indian Academy of Sciences (India)
B Ananthanarayan
2003-11-01
A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.
Chiral Dynamics With Wilson Fermions
Splittorff, K
2012-01-01
Close to the continuum the lattice spacing affects the smallest eigenvalues of the Wilson Dirac operator in a very specific manner determined by the way in which the discretization breaks chiral symmetry. These effects can be computed analytically by means of Wilson chiral perturbation theory and Wilson random matrix theory. A number of insights on chiral Dynamics with Wilson fermions can be obtained from the computation of the microscopic spectrum of the Wilson Dirac operator. For example, the unusual volume scaling of the smallest eigenvalues observed in lattice simulations has a natural explanation. The dynamics of the eigenvalues of the Wilson Dirac operator also allow us to determine the additional low energy constants of Wilson chiral perturbation theory and to understand why the Sharpe-Singleton scenario is only realized in unquenched simulations.
Homogenization of resonant chiral metamaterials
DEFF Research Database (Denmark)
Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten
2010-01-01
Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size...... an analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....
Chiral thermodynamics of nuclear matter
Energy Technology Data Exchange (ETDEWEB)
Fiorilla, Salvatore
2012-10-23
The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.
Baryon spectrum and chiral dynamics
Glozman, L Ya
1995-01-01
New results on baryon structure and spectrum developed in collaboration with Dan Riska [1-4] are reported. The main idea is that beyond the chiral symmetry spontaneous breaking scale light and strange baryons should be considered as systems of three constituent quarks with an effective confining interaction and a chiral interaction that is mediated by the octet of Goldstone bosons (pseudoscalar mesons) between the constituent quarks.
Spontaneous chiral resolution in two-dimensional systems of patchy particles
Energy Technology Data Exchange (ETDEWEB)
Martínez-González, J. A.; Chapela, G. A. [Departamento de Física, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 México D.F. (Mexico); Quintana-H, J., E-mail: jaq@unam.mx [Instituto de Química, Universidad Nacional Autónoma de México - Apdo. Postal 70213, 04510 Coyoacán, México D.F. (Mexico)
2014-05-21
Short ranged potentials and their anisotropy produce spontaneous chiral resolution in a two dimensional model of patchy particles introduced in this paper. This model could represent an equimolar binary mixture (racemic mixture) of two kinds of chiral molecules (enantiomers) adsorbed to a bi-dimensional domain where only lateral short ranged interactions are present. Most racemic mixtures undergo chiral resolution due to their spatial anisotropy, the combined effect of long range forces and the thermodynamic conditions. The patchy particles are modeled as a hard disk and four different bonding sites located to produce chirality. Phase behavior and structural properties are analysed using Discontinuous Molecular Dynamics in the canonical ensemble. When the four patchy particles are separated by the angles (60°, 120°, 60°, 120°), spontaneous chiral resolution is produced, given by the formation of homochiral clusters, if started from the corresponding racemic mixture. Gel behavior is also obtained in all the systems for low temperatures and low densities.
Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping
2016-07-12
Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.
Qian, Hai-Long; Yang, Cheng-Xiong; Yan, Xiu-Ping
2016-07-01
Covalent organic frameworks (COFs) are a novel class of porous materials, and offer great potential for various applications. However, the applications of COFs in chiral separation and chiral catalysis are largely underexplored due to the very limited chiral COFs available and their challenging synthesis. Here we show a bottom-up strategy to construct chiral COFs and an in situ growth approach to fabricate chiral COF-bound capillary columns for chiral gas chromatography. We incorporate the chiral centres into one of the organic ligands for the synthesis of the chiral COFs. We subsequently in situ prepare the COF-bound capillary columns. The prepared chiral COFs and their bound capillary columns give high resolution for the separation of enantiomers with excellent repeatability and reproducibility. The proposed strategy provides a promising platform for the synthesis of chiral COFs and their chiral separation application.
Chirality in Bare and Passivated Gold Nanoclusters
Garzon, I L; Rodrigues-Hernandez, J I; Sigal, I; Beltran, M R; Michaelian, K
2002-01-01
Chiral structures have been found as the lowest-energy isomers of bare (Au$_{28}$ and Au$_{55}) and thiol-passivated (Au$_{28}(SCH$_{3})$_{16}$ and Au$_{38}$(SCH$_{3}$)$_{24}) gold nanoclusters. The degree of chirality existing in the chiral clusters was calculated using the Hausdorff chirality measure. We found that the index of chirality is higher in the passivated clusters and decreases with the cluster size. These results are consistent with the observed chiroptical activity recently reported for glutahione-passivated gold nanoclusters, and provide theoretical support for the existence of chirality in these novel compounds.
Institute of Scientific and Technical Information of China (English)
Chao CHE; Zhong Ning ZHANG; Gui Lan HUANG; Xin Xing WANG; Zhao Hai QIN
2004-01-01
The use of chiral organophosphorus derivatizing agents prepared in situ from chiral tartrate or chiral diamine for the 31PNMR determination of the enantiomeric composition of chiral carboxylic acids is described. The method is accurate, reliable and convenient.
Chiral perturbation theory approach to hadronic weak amplitudes
Energy Technology Data Exchange (ETDEWEB)
Rafael, E. de (Centre National de la Recherche Scientifique, 13 - Marseille (France). Centre de Physique Theorique 2)
1989-07-01
We are concerned with applications to the non-leptonic weak interactions in the sector of light quark flavors: u, d and s. Both strangeness changing {Delta}S=1 and {Delta}S=2 non-leptonic transitions can be described as weak perturbations to the strong effective chiral Lagrangian; the chiral structure of the weak effective Lagrangian being dictated by the transformation properties of the weak non-leptonic Hamiltonian of the Standard Model under global SU(3){sub Left}xSU(3){sub Right} rotations of the quark-fields. These lectures are organized as follows. Section 2 gives a review of the basic properties of chiral symmetry. Section 3 explains the effective chiral realization of the non-leptonic weak Hamiltonian of the Standard Model to lowest order in derivatives and masses. Section 4 deals with non-leptonic weak transitions in the presence of electromagnetism. Some recent applications to radiative kaon decays are reviewed and the effect of the so called electromagnetic penguin like diagrams is also discussed. Section 5 explains the basic ideas of the QCD-hadronic duality approach to the evaluation of coupling constants of the non-leptonic chiral weak Lagrangian. (orig./HSI).
Nonlinear Boundary Dynamics and Chiral Symmetry in Holographic QCD
Albrecht, Dylan; Wilcox, Ronald J
2011-01-01
In the hard-wall model of holographic QCD we find that nonlinear boundary dynamics are required in order to maintain the correct pattern of explicit and spontaneous chiral symmetry breaking beyond leading order in the pion fields. With the help of a field redefinition, we demonstrate that the requisite nonlinear boundary conditions are consistent with the Sturm-Liouville structure required for the Kaluza-Klein decomposition of bulk fields. Observables insensitive to the chiral limit receive only small corrections in the improved description, and classical calculations in the hard-wall model remain surprisingly accurate.
Projective symmetry group classification of chiral spin liquids
Bieri, Samuel; Lhuillier, Claire; Messio, Laura
2016-03-01
We present a general review of the projective symmetry group classification of fermionic quantum spin liquids for lattice models of spin S =1 /2 . We then introduce a systematic generalization of the approach for symmetric Z2 quantum spin liquids to the one of chiral phases (i.e., singlet states that break time reversal and lattice reflection, but conserve their product). We apply this framework to classify and discuss possible chiral spin liquids on triangular and kagome lattices. We give a detailed prescription on how to construct quadratic spinon Hamiltonians and microscopic wave functions for each representation class on these lattices. Among the chiral Z2 states, we study the subset of U(1) phases variationally in the antiferromagnetic J1-J2-Jd Heisenberg model on the kagome lattice. We discuss static spin structure factors and symmetry constraints on the bulk spectra of these phases.
Thermodynamics of quark matter with a chiral imbalance
Farias, Ricardo L. S.; Duarte, Dyana C.; Krein, Gastão; Ramos, Rudnei O.
2016-10-01
We show how a scheme of rewriting a divergent momentum integral can conciliate results obtained with the Nambu-Jona-Lasinio model and recent lattice results for the chiral transition in the presence of a chiral imbalance in quark matter. Purely vacuum contributions are separated from medium-dependent regularized momentum integrals in such a way that one is left with ultraviolet divergent momentum integrals that depend on vacuum quantities only. The scheme is applicable to other commonly used effective models to study quark matter with a chiral imbalance, it allows us to identify the source of their difficulties in reproducing the qualitative features of lattice results, and enhances their predictability and uses in other applications.
Consistent Chiral Kinetic Theory in Weyl Materials: Chiral Magnetic Plasmons
Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.; Sukhachov, P. O.
2017-03-01
We argue that the correct definition of the electric current in the chiral kinetic theory for Weyl materials should include the Chern-Simons contribution that makes the theory consistent with the local conservation of the electric charge in electromagnetic and strain-induced pseudoelectromagnetic fields. By making use of such a kinetic theory, we study the plasma frequencies of collective modes in Weyl materials in constant magnetic and pseudomagnetic fields, taking into account the effects of dynamical electromagnetism. We show that the collective modes are chiral plasmons. While the plasma frequency of the longitudinal collective mode coincides with the Langmuir one, this mode is unusual because it is characterized not only by oscillations of the electric current density, but also by oscillations of the chiral current density. The latter are triggered by a dynamical version of the chiral electric separation effect. We also find that the plasma frequencies of the transverse modes split up in a magnetic field. This finding suggests an efficient means of extracting the chiral shift parameter from the measurement of the plasma frequencies in Weyl materials.
Can a Non-Chiral Object Be Made of Two Identical Chiral Moieties?
LeMarechal, Jean Francois
2008-01-01
Several pedagogical objects can be used to discuss chirality. Here, we use the cut of an apple to show that the association of identical chiral moieties can form a non-chiral object. Octahedral chirality is used to find situations equivalent to the cut of the apple. (Contains 5 figures.)
An Inherent Chiral Calix[4]arene Bearing Chiral Groups without Forming Sub-ring
Institute of Scientific and Technical Information of China (English)
Xian Xian LIU; Yan Song ZHENG; Wan Ling MO
2006-01-01
The NMR spectra revealed that the calixarene frame of 1, 3-disubstituted calix[4]arenes bearing optically active groups is asymmetric, even without the formation of a sub-ring. This inherent chirality arises from the interaction of the two chiral groups, which hinder the substituents' free rotation. Thus, these chiral calix[4]arenes display good chiral recognition ability.
Hashimoto, Koji; Yoshida, Kentaroh
2016-01-01
Assigning a chaos index for vacua of generic quantum field theories is a challenging problem. We find chaotic behavior of chiral condensates of a quantum gauge theory at strong coupling limit, by using the AdS/CFT correspondence. We evaluate the time evolution of homogeneous quark condensates and in an N=2 supersymmetric QCD with the SU(N_c) gauge group at large N_c and at large 't Hooft coupling lambda. At an equivalent classical gravity picture, a Lyapunov exponent is readily defined. We show that the condensates exhibit chaotic behavior for energy density E > (6x10^2) (N_c/lambda^2) (m_q)^4 where m_q is the quark mass. The energy region of the chaotic vacua of the N=2 supersymmetric QCD increases for smaller N_c or larger lambda. The Lyapunov exponent is calculated as a function of the theory (N_c,lambda,E), showing that the N=2 supersymmetric QCD is more chaotic for smaller N_c.
Inhomogeneous chiral symmetry breaking in dense neutron-star matter
Energy Technology Data Exchange (ETDEWEB)
Buballa, Michael; Carignano, Stefano [Technische Universitaet Darmstadt, Theoriezentrum, Institut fuer Kernphysik, Darmstadt (Germany)
2016-03-15
An increasing number of model results suggests that chiral symmetry is broken inhomogeneously in a certain window at intermediate densities in the QCD phase diagram. This could have significant effects on the properties of compact stars, possibly leading to new astrophysical signatures. In this contribution we discuss this idea by reviewing recent results on inhomogeneous chiral symmetry breaking under an astrophysics-oriented perspective. After introducing two commonly studied spatial modulations of the chiral condensate, the chiral density wave and the real kink crystal, we focus on their properties and their effect on the equation of state of quark matter. We also describe how these crystalline phases are affected by different elements which are required for a realistic description of a compact star, such as charge neutrality, the presence of magnetic fields, vector interactions and the interplay with color superconductivity. Finally, we discuss possible signatures of inhomogeneous chiral symmetry breaking in the core of compact stars, considering the cases of mass-radius relations and neutrino emissivity explicitly. (orig.)
Energy Technology Data Exchange (ETDEWEB)
McAllister, Liam; McGuirk, Paul; Stout, John [Department of Physics, Cornell University,Ithaca, NY 14853 (United States)
2014-02-05
We analyze the spectra of non-chiral and chiral bifundamental mesons arising on intersecting D7-branes in AdS{sub 5}×S{sup 5}. In the absence of magnetic flux on the curve of intersection, the spectrum is non-chiral, and the dual gauge theory is conformal in the quenched/probe approximation. For this case we calculate the dimensions of the bifundamental mesonic operators. We then consider magnetization of the D7-branes, which deforms the dual theory by an irrelevant operator and renders the mesons chiral. The magnetic flux spoils the conformality of the dual theory, and induces a D3-brane charge that becomes large in the ultraviolet, where the non-normalizable bifundamental modes are rapidly divergent. An ultraviolet completion is therefore necessary to calculate the correlation functions in the chiral case. On the other hand, the normalizable modes are very well localized in the infrared, leading to new possibilities for local model-building on intersecting D7-branes in warped geometries.
Preferential rotation of chiral dipoles in isotropic turbulence
Kramel, Stefan; Toschi, Federico; Voth, Greg A
2016-01-01
Particles in the shape of chiral dipoles show a preferential rotation in three dimensional homogeneous isotropic turbulence. A chiral dipole consists of a rod with two helices of opposite handedness, one at each end. We can use 3d printing to fabricate these particles with length in the inertial range and track their rotations in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles will align with the extensional eigenvectors of the strain rate tensor and the helical ends will respond to the strain field by spinning around its long axis. The mean of the measured spinning rate is non-zero and reflects the average stretching the particles experience. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using Lagrangian velocity gradients from high resolution direct numerical simulations. The stat...
Dong, S J; Horváth, I; Lee, F X; Liu, K F; Mathur, N; Zhang, J B
2003-01-01
The quenched chiral logs are examined on a $16^3 \\times 28$ lattice with Iwasaki gauge action and overlap fermions. The pion decay constant $f_{\\pi}$ is used to set the lattice spacing, $a = 0.200(3)$ fm. With pion mass as low as $\\sim 180 {\\rm MeV}$, we see the quenched chiral logs clearly in $m_{\\pi}^2/m$ and $f_P$, the pseudoscalar decay constant. We analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory ($\\chi$PT) to apply. With the constrained curve fitting, we are able to extract the quenched chiral log parameter $\\delta$ together with the chiral cutoff $\\Lambda_{\\chi}$ and other parameters. Only for $m_{\\pi} \\leq 300 {\\rm MeV}$ do we obtain a consistent and stable fit with a constant $\\delta$ which we determine to be 0.23(2). By comparing to the $12^3 \\times 28$ lattice, we estimate the finite volume effect to be about 1.8% for the smallest pion mass. We also study the quenched non-analytic terms in the nucleon and the $\\rho$ masses...
Orientation-dependent handedness and chiral design
Efrati, Efi; Irvine, William T. M.
2013-01-01
Chirality occupies a central role in fields ranging from biological self-assembly to the design of optical metamaterials. The definition of chirality, as given by Lord Kelvin, associates chirality with the lack of mirror symmetry: the inability to superpose an object on its mirror image. While this definition has guided the classification of chiral objects for over a century, the quantification of handed phenomena based on this definition has proven elusive, if not impossible, as manifest in ...
Chiral gap effect in curved space
Flachi, Antonino
2014-01-01
We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.
Chirality: a relational geometric-physical property.
Gerlach, Hans
2013-11-01
The definition of the term chirality by Lord Kelvin in 1893 and 1904 is analyzed by taking crystallography at that time into account. This shows clearly that chirality is a relational geometric-physical property, i.e., two relations between isometric objects are possible: homochiral or heterochiral. In scientific articles the relational term chirality is often mistaken for the two valued measure for the individual (absolute) sense of chirality, an arbitrary attributive term.
Bifurcated, modular syntheses of chiral annulet triazacyclononanes.
Argouarch, Gilles; Stones, Graham; Gibson, Colin L; Kennedy, Alan R; Sherrington, David C
2003-12-21
Three chiral 2,6-disubstituted tri-N-methyl azamacrocycles have been prepared by modular methods. These macrocycles were accessed from three chiral 1,4,7-triazaheptanes intermediates that were prepared by two independent routes. The first of these routes involved the benzylamine opening of chiral tosyl aziridines followed by debenzylation but was problematic on solubility grounds. A second, more effective, route was developed which avoided debenzylation by using ammonia in the nucleophilic opening of chiral tosyl aziridines.
On the Biological Advantage of Chirality
1999-01-01
The presence of chirality in the main molecules of life may well be not just a structural artifact, but of pure biological advantage. The possibility of the existence of a phenomenon of a special mode of interaction, labeled as "chiral interaction" (CI), for which structural chirality is a necessary condition, is the main reason for such an advantage. In order to demonstrate such a possibility, macroscopic chiral devices are introduced and presented as analogies for such an interaction. For t...