WorldWideScience

Sample records for chiral pion-nucleon dynamics

  1. Nuclear energy density functional from chiral pion-nucleon dynamics

    OpenAIRE

    Kaiser, N.; Fritsch, S.; Weise, W.

    2002-01-01

    We calculate the nuclear energy density functional relevant for N=Z even-even nuclei in the systematic framework of chiral perturbation theory. The calculation includes the one-pion exchange Fock diagram and the iterated one-pion exchange Hartree and Fock diagrams. From these few leading order contributions in the small momentum expansion one obtains already a very good equation of state of isospin symmetric nuclear matter. We find that in the region below nuclear matter saturation density th...

  2. Nuclear energy density functional from chiral pion-nucleon dynamics revisited

    OpenAIRE

    Kaiser, N.; Weise, W.

    2009-01-01

    We use a recently improved density-matrix expansion to calculate the nuclear energy density functional in the framework of in-medium chiral perturbation theory. Our calculation treats systematically the effects from $1\\pi$-exchange, iterated $1\\pi$-exchange, and irreducible $2\\pi$-exchange with intermediate $\\Delta$-isobar excitations, including Pauli-blocking corrections up to three-loop order. We find that the effective nucleon mass $M^*(\\rho)$ entering the energy density functional is iden...

  3. Quartic isospin asymmetry energy of nuclear matter from chiral pion-nucleon dynamics

    CERN Document Server

    Kaiser, N

    2015-01-01

    Based on a chiral approach to nuclear matter, we calculate the quartic term in the expansion of the equation of state of isospin-asymmetric nuclear matter. The contributions to the quartic isospin asymmetry energy $A_4(k_f)$ arising from $1\\pi$-exchange and chiral $2\\pi$-exchange in nuclear matter are calculated analytically together with three-body terms involving virtual $\\Delta(1232)$-isobars. From these interaction terms one obtains at saturation density $\\rho_0 = 0.16\\,$fm$^{-3}$ the value $A_4(k_{f0})= 1.5\\,$MeV, more than three times as large as the kinetic energy part. Moreover, iterated $1\\pi$-exchange exhibits components for which the fourth derivative with the respect to the isospin asymmetry parameter $\\delta$ becomes singular at $\\delta =0$. The genuine presence of a non-analytical term $\\delta^4 \\ln|\\delta|$ in the expansion of the energy per particle of isospin-asymmetric nuclear matter is demonstrated by evaluating a s-wave contact interaction at second order.

  4. Chiral symmetry effect on the pion-nucleon coupling constant

    International Nuclear Information System (INIS)

    In this work we study the effects of chiral symmetry in the pion-nucleon coupling constant in the context of the linear σ- model. First, we introduce the linear σ-model and we discuss the phenomenological hypothesis of CVC and PCAC. Next, we calculate the coupling constant g+πNN(q2) and the nucleon pionic mean square radius considering the contribution of all the diagrams up to one-loop in the framework of the linear σ-model for different values of the mass of the sigma meson and we compare them with the phenomenological form factors. Finally we make an extension of the linear σ-model that consists of taking into account the mass differences of ions and nucleons into the Lagrangian of the model, to study the change dependence of gπnn (q2) and of the mean square radius. (author)

  5. Dynamical model for Pion-Nucleon Bremsstrahlung

    CERN Document Server

    Mariano, A V

    2000-01-01

    A dynamical model based on effective Lagrangians is proposed to describe the bremsstrahlung reaction $ \\pi N \\to \\pi N \\gamma$ at low energies. The $\\Delta(1232)$ degrees of freedom are incorporated in a way consistent with both, electromagnetic gauge invariance and invariance under contact transformations. The model also includes the initial and final state rescattering of hadrons via a T-matrix with off-shell effects. The $\\pi N \\gamma$ differential cross sections are calculated using three different T-matrix models and the results are compared with the soft photon approximation, and with experimental data. The aim of this analysis is to test the off-shell behavior of the different T-matrices under consideration.

  6. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    Science.gov (United States)

    Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.

    2016-05-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  7. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    CERN Document Server

    Yao, De-Liang; Bernard, V; Epelbaum, E; Gasparyan, A M; Gegelia, J; Krebs, H; Meißner, Ulf-G

    2016-01-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the $S$- and $P$-partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the $D$ and $F$ waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in ...

  8. Chiral representation of the πN scattering amplitude and the pion-nucleon sigma term

    Science.gov (United States)

    Alarcón, J. M.; Camalich, J. Martin; Oller, J. A.

    2012-03-01

    We present a novel analysis of the πN scattering amplitude in Lorentz covariant baryon chiral perturbation theory renormalized in the extended-on-mass-shell scheme. This amplitude, valid up to O(p3) in the chiral expansion, systematically includes the effects of the Δ(1232) in the δ-counting, has the right analytic properties, and is renormalization-scale independent. This approach overcomes the limitations that previous chiral analyses of the πN scattering amplitude had, providing an accurate description of the partial wave phase shifts of the Karlsruhe-Helsinki and George-Washington groups up to energies just below the resonance region. We also study the solution of the Matsinos group which focuses on the parameterization of the data at low energies. Once the values of the low-energy constants are determined by adjusting the center-of-mass energy dependence of the amplitude to the scattering data, we obtain predictions on different observables. In particular, we extract an accurate value for the pion-nucleon sigma term, σπN. This allows us to avoid the usual method of extrapolation to the unphysical region of the amplitude. Our study indicates that the inclusion of modern meson-factory and pionic-atom data favors relatively large values of the sigma term. We report the value σπN=59(7)MeV and comment on implications that this result may have.

  9. Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    CERN Document Server

    Siemens, D; Epelbaum, E; Gasparyan, A; Krebs, H; Meißner, Ulf-G

    2016-01-01

    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant $\\beta$-functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide a clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the $\\Delta$-resonance. The explicit inclusion of the leading contributions of the $\\Delta$-isobar is demonstrat...

  10. Relativistic chiral representation of the $\\pi N$ scattering amplitude II: The pion-nucleon sigma term

    CERN Document Server

    Camalich, J Martin; Oller, J A

    2011-01-01

    We present a determination of the pion-nucleon sigma-term based on a novel analysis of the $\\pi N$ scattering amplitude in Lorentz covariant baryon chiral perturbation theory renormalized in the extended-on-mass-shell scheme. This amplitude, valid up-to next-to-next-leading order in the chiral expansion, systematically includes the effects of the $\\Delta(1232)$, giving a reliable description of the phase shifts of different partial wave analyses up to energies just below the resonance region. We obtain predictions on some observables that are within experimental bounds and phenomenological expectations. In particular, we use the center-of-mass energy dependence of the amplitude adjusted with the data above threshold to extract accurately the value of $\\sigma_{\\pi N}$. Our study indicates that the inclusion of modern meson-factory and pionic-atom data favors relatively large values of the sigma term. We report the value $\\sigma_{\\pi N}=59(7)$ MeV.

  11. Low energy analysis of $\\pi N$ scattering and the pion-nucleon sigma term with covariant baryon chiral perturbation theory

    CERN Document Server

    Alarcón, J M; Oller, J A

    2013-01-01

    The pion-nucleon sigma term ($\\sigma_{\\pi N}$) is an observable of fundamental importance because embodies information about the internal scalar structure of the nucleon. Nowadays this quantity has triggered renewed interest because it is a key input for a reliable estimation of the dark matter-nucleon spin independent elastic scattering cross section. In this proceeding we present how this quantity can be reliably extracted by employing only experimental information with the use covariant baryon chiral perturbation theory. We also contrast our extraction with updated phenomenology related to $\\sigma_{\\pi N}$ and show how this phenomenology favours a relatively large value of $\\sigma_{\\pi N}$. Finally, we extract a value of $\\sigma_{\\pi N}=59(7)$ MeV from modern partial wave analyses data.

  12. The pion-nucleon Σ-term in a chiral quark model

    International Nuclear Information System (INIS)

    The pion/nucleon Σ-term is calculated in a linear σ-model based on the U(3) x U(3) quark effective Lagrangian. The importance of the pole diagram with the scalar meson f0(400 - 1200) is demonstrated. For the mass of this meson the value 400 MeV was chosen, which corresponds to the theoretical predictions taking into account singlet-octet mixing of scalar isoscalar mesons and glueball on the one hand and to recent experimental data on the other. The resulting value σ = 75 MeV is in agreement with the latest analysis of experimental data on the π-N scattering. It is shown that the hypothesis of the content of strange quarks in the valence structure of a nucleon is not necessary to reach agreement with experimental data. (Authors)

  13. Pion-nucleon scattering around the delta resonance

    OpenAIRE

    Long, Bingwei

    2009-01-01

    We develop a generalized version of heavy-baryon chiral perturbation theory to describe pion-nucleon scattering in a kinematic domain that extends continuously from threshold to the delta-isobar peak. The $P$-wave phase shifts are used to illustrate this framework.

  14. Three pion nucleon coupling constants

    CERN Document Server

    Arriola, E Ruiz; Perez, R Navarro

    2016-01-01

    There exist four pion nucleon coupling constants, $f_{\\pi^0, pp}$, $-f_{\\pi^0, nn}$, $f_{\\pi^+, pn} /\\sqrt{2}$ and $ f_{\\pi^-, np} /\\sqrt{2}$ which coincide when up and down quark masses are identical and the electron charge is zero. While there is no reason why the pion-nucleon-nucleon coupling constants should be identical in the real world, one expects that the small differences might be pinned down from a sufficiently large number of independent and mutually consistent data. Our discussion provides a rationale for our recent determination $$f_p^2 = 0.0759(4) \\, , \\quad f_{0}^2 = 0.079(1) \\,, \\quad f_{c}^2 = 0.0763(6) \\, , $$ based on a partial wave analysis of the $3\\sigma$ self-consistent nucleon-nucleon Granada-2013 database comprising 6713 published data in the period 1950-2013.

  15. Roy-Steiner-equation analysis of pion-nucleon scattering

    Science.gov (United States)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G.

    2016-04-01

    We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process ππ → N ¯ N, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process πN → πN and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon σ-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity, crossing symmetry, and pionic-atom data. We perform the matching to chiral perturbation theory in the subthreshold region and detail the consequences for the chiral convergence of the threshold parameters and the nucleon mass.

  16. Quantum-mechanical picture of peripheral chiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos [Uppsala Univ., Uppsala (Sweden); Weiss, Christian [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2015-08-28

    The nucleon's peripheral transverse charge and magnetization densities are computed in chiral effective field theory. The densities are represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft pion-nucleon intermediate states. The orbital motion of the pion causes a large left-right asymmetry in a transversely polarized nucleon. As a result, the effect attests to the relativistic nature of chiral dynamics [pion momenta k = O(Mπ)] and could be observed in form factor measurements at low momentum transfer.

  17. The nucleon mass and pion-nucleon sigma term from a chiral analysis of Nf = 2 + 1 lattice QCD world data

    International Nuclear Information System (INIS)

    Fits of the p4 covariant SU(2) baryon chiral perturbation theory to lattice QCD nucleon mass data from several collaborations for 2 and 2+1 flavors are presented. We consider contributions from explicit Δ(1232) degrees of freedom, finite volume and finite spacing corrections. We emphasize here on our Nf = 2 + 1 study. We obtain low-energy constants of natural size that are compatible with the rather linear pion-mass dependence of the nucleon mass observed in lattice QCD. We report a value of σπN = 41(5)(4) MeV in the 2 flavor case and σπN = 52(3)(8) MeV for 2+1 flavors. (author)

  18. Low-energy pion-nucleon scattering

    International Nuclear Information System (INIS)

    An analysis of low-energy charged pion-nucleon data from recent π±p experiments is presented. From the scattering lengths and the Goldberger-Miyazawa-Oehme (GMO) sum rule we find a value of the pion-nucleon coupling constant of f2=0.0756±0.0007. We also find, contrary to most previous analyses, that the scattering volumes for the P31 and P13 partial waves are equal, within errors, corresponding to a symmetry found in the Hamiltonian of many theories. For the potential models used, the amplitudes are extrapolated into the subthreshold region to estimate the value of the Σ term. Off-shell amplitudes are also provided. copyright 1998 The American Physical Society

  19. [Measurements of observables of pion-nucleon reactions]. Progress report

    International Nuclear Information System (INIS)

    This document reports the progress of the research of pion reactions. These include (1) a study to measure observables in the pion-nucleon system in the momentum interval 400 to 700 MeV/c, (2) differential cross section measurements at low energy for pion-nucleon charge exchange, and (3) elastic and inelastic scattering of π+- on 3H and 3He. Individual experiments will be indexed separately

  20. Isospin breaking in pion-nucleon scattering at threshold by radiative processes

    CERN Document Server

    Ericson, Torleif Eric Oskar

    2006-01-01

    We investigate the dispersive contribution by radiative processes such as (pi- proton to neutron gamma) and (pi- proton to Delta gamma) to the pion-nucleon scattering lengths of charged pions in the heavy baryon limit. They give a large isospin violating contribution in the corresponding isoscalar scattering length, but only a small violation in the isovector one. These terms contribute 6.3(3)% to the 1s level shift of pionic hydrogen and give a chiral constant F_pi^2f_1=-25.8(8) MeV.

  1. Pion-nucleon scattering in the Skyrme model and the P-wave Born amplitudes

    International Nuclear Information System (INIS)

    We treat fluctuating pion fields around a rotating Skyrmion by means of Dirac's quantization method. The rotational collective motion of the Skyrmion is described by collective coordinates, and conventional gauge-fixing conditions are imposed. Taking into account all the relevant terms at the tree level appearing in the Hamiltonian, we show that pion-nucleon scattering amplitudes exhibit the P-wave Born amplitudes attributed to the Yukawa coupling of order √Nc , which is consistent with the prediction of chiral symmetry such as the Adler-Weisberger relation. This resolves the difficulty that the Skyrme model predicts a wrong Nc dependence for the coupling of order Nc-3/2

  2. Light-front representation of chiral dynamics in peripheral transverse densities

    CERN Document Server

    Granados, C

    2015-01-01

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances $b = O(M_\\pi^{-1})$ the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantiz...

  3. Pion-nucleon partial wave analysis and study of baryon structure. Progress report, June 1, 1979-May 31, 1981

    International Nuclear Information System (INIS)

    This report details progress toward completion of a long-term pion-nucleon partial wave analysis, summarizing results and conclusions to date. The report also discussed progress in using partial wave and resonance parameter results to test dynamical models of the baryon and in better understanding interquark forces within baryons

  4. Light-front representation of chiral dynamics with Delta isobar and large-N_c relations

    CERN Document Server

    Granados, C

    2016-01-01

    Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O(M_pi^{-1}) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Delta isobars and implement relations based on the large-N_c limit of QCD. We derive the wave function overlap formulas for the Delta contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguit...

  5. Roy-Steiner-equation analysis of pion-nucleon scattering

    CERN Document Server

    Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G

    2015-01-01

    We review the structure of Roy-Steiner equations for pion-nucleon scattering, the solution for the partial waves of the t-channel process $\\pi\\pi\\to \\bar N N$, as well as the high-accuracy extraction of the pion-nucleon S-wave scattering lengths from data on pionic hydrogen and deuterium. We then proceed to construct solutions for the lowest partial waves of the s-channel process $\\pi N\\to \\pi N$ and demonstrate that accurate solutions can be found if the scattering lengths are imposed as constraints. Detailed error estimates of all input quantities in the solution procedure are performed and explicit parameterizations for the resulting low-energy phase shifts as well as results for subthreshold parameters and higher threshold parameters are presented. Furthermore, we discuss the extraction of the pion-nucleon $\\sigma$-term via the Cheng-Dashen low-energy theorem, including the role of isospin-breaking corrections, to obtain a precision determination consistent with all constraints from analyticity, unitarity...

  6. Light-front representation of chiral dynamics in peripheral transverse densities

    International Nuclear Information System (INIS)

    The nucleon's electromagnetic form factors are expressed in terms of the transverse densities of charge and magnetization at fixed light-front time. At peripheral transverse distances b = O(Mπ–1 the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). We represent the leading-order chiral EFT results for the peripheral transverse densities as overlap integrals of chiral light-front wave functions, describing the transition of the initial nucleon to soft pion-nucleon intermediate states and back. The new representation (a) explains the parametric order of the peripheral transverse densities; (b) establishes an inequality between the spin-independent and -dependent densities; (c) exposes the role of pion orbital angular momentum in chiral dynamics; (d) reveals a large left-right asymmetry of the current in a transversely polarized nucleon and suggests a simple interpretation. The light-front representation enables a first-quantized, quantum-mechanical view of chiral dynamics that is fully relativistic and exactly equivalent to the second-quantized, field-theoretical formulation. It relates the charge and magnetization densities measured in low-energy elastic scattering to the generalized parton distributions probed in peripheral high-energy scattering processes. The method can be applied to nucleon form factors of other operators, e.g. the energy-momentum tensor

  7. Self consistent and covariant propagation of pions, nucleon and isobar resonances in cold nuclear matter

    OpenAIRE

    Korpa, C. L.; Lutz, M. F. M.

    2003-01-01

    We evaluate the in-medium spectral functions for pions, nucleon and isobar resonances in a self consistent and covariant manner. The calculations are based on a recently developed formulation which leads to predictions in terms of the pion-nucleon scattering phase shifts and a set of Migdal parameters describing important short range correlation effects. We do not observe significant softening of pion modes if we insist on reasonable isobar resonance properties but predict a considerable broa...

  8. Theory of the low-energy pion--nucleon interaction

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.K.; Cammarata, J.B.

    1977-08-01

    A once-subtracted form of the Low equation for the pion-nucleon scattering amplitude is derived, with PCAC used to define the amplitude when one pion is off the mass shell. The static approximation is not made and both the seagull terms and the antinucleon contribution (z-graphs) are retained. The theory is applied to calculate the S-wave amplitudes in the elastic scattering region. Good agreement is found with the phase shift fits to the data when we use mod(g/sub ..pi../(4M/sup 2/)) = 11.69 and 25.5 MeV for the ..pi..N sigma-commutator. The implications of this work for the analysis of low-energy elastic scattering of pions from nuclei are discussed. In particular, it is pointed out how this work establishes the presence of a Laplacian term in the pion-nucleus optical potential with a magnitude that is fixed from the value of the sigma-commutator.

  9. A new evaluation of the parity violating pion-nucleon coupling

    International Nuclear Information System (INIS)

    The authors evaluate the parity violating pion-nucleon coupling, Asub(π), in the framework of the standard model of weak and electromagnetic interactions, including QCD corrections. It is pointed out that important contributions to Asub(π) have been overlooked previously. Taking into account the uncertainties in the determination of the coefficients of the effective Hamiltonian, Asub(π)=(16-29)(Asub(π))sub(C), where (Asub(π))sub(C) is the prediction of the Cabibbo theory, related to hyperon decay S-wave amplitudes. The sign of Asub(π) with respect to the strong pion-nucleon coupling is also determined. (Auth.)

  10. Self consistent and covariant propagation of pions, nucleon and isobar resonances in cold nuclear matter

    International Nuclear Information System (INIS)

    We evaluate the in-medium spectral functions for pions, nucleon and isobar resonances in a self consistent and covariant manner. The calculations are based on a recently developed formulation which leads to predictions in terms of the pion-nucleon scattering phase shifts and a set of Migdal parameters describing important short range correlation effects. We do not observe any significant softening of pion modes if we insist on reasonable isobar resonance properties but predict a considerable broadening of the N(1440) and N(1520) resonances in nuclear matter. (orig.)

  11. Precise Determination of Charge Dependent Pion-Nucleon-Nucleon Coupling Constants

    CERN Document Server

    Perez, R Navarro; Arriola, E Ruiz

    2016-01-01

    We undertake a covariance error analysis of the pion-nucleon-nucleon coupling constants from the Granada-2013 np and pp database comprising a total of 6713 scattering data. Assuming a unique pion-nucleon coupling constant we obtain $f^2=0.0761(3)$. The effects of charge symmetry breaking on the $^3P_0$, $^3P_1$ and $^3P_2$ partial waves are analyzed and we find $f_{p}^2 = 0.0759(4)$, $f_{0}^2 = 0.079(1)$ and $f_{c}^2 = 0.0763(6)$ with minor correlations among the coupling constants. We successfully test normality for the residuals of the fit.

  12. Dynamic Chirality in Nuclei

    International Nuclear Information System (INIS)

    Doppler-shift attenuation methods. The experiment was performed at LNL, using the GASP spectrometer and Cologne plunger. The reaction 24Mg + 116Sn at 130 MeV beam energy has been used to populate states of 136Pm at moderate excitation energy and angular momentum. For the first time new results for the branching ratios and lifetime values in the chiral candidate bands of 136Pm will be reported at the conference. Based on these results conclusion about the chiral character of the bands in 136Pm will be performed. The chiral interpretation of twin bands in odd-odd nuclei based on the interacting boson fermion-fermion model will be discussed. The analysis of the wave functions has shown that the possibility for angular momenta of the valence proton, neutron and core to find themselves in the favorable, almost orthogonal geometry is present, but not dominant [5]. Such behavior is found to be similar in nuclei where both the level energies and the electromagnetic decay properties display the chiral pattern, as well as in those where only the level energies of the corresponding levels in the twin bands are close together. The difference in the structure of the two types of chiral candidates nuclei can be attributed to different β and γ fluctuations, induced by the exchange boson-fermion interaction of the interacting boson fermion-fermion model. In both cases the chirality is weak and dynamic. The present contribution will try to answer the question, how experimental results deduced for chiral candidates nuclei, 134Pr and 136Pm fits the picture of dynamic chirality?(author)

  13. The width of the $\\Delta$-resonance at two loop order in baryon chiral perturbation theory

    CERN Document Server

    Gegelia, Jambul; Siemens, Dmitrij; Yao, De-Liang

    2016-01-01

    We calculate the width of the delta resonance at leading two-loop order in baryon chiral perturbation theory. This gives a correlation between the leading pion-nucleon-delta and pion-delta couplings, which is relevant for the analysis of pion-nucleon scattering and other processes.

  14. On lattice gauge theories and on backward pion-nucleon scattering

    International Nuclear Information System (INIS)

    The thesis is in two parts. In the first part the author studies weak coupling perturbation theory of lattice gauge theories. In the second part the author studies the backward pion-nucleon scattering in the freamework of an effective action approach. (Auth.)

  15. Energy-dependent phase shift analysis of pion-nucleon scattering below 400 MeV

    International Nuclear Information System (INIS)

    An analytic function of energy is fit to the available S, P, and D wave πN phase shifts of various goups below 400 MeV. This global average, which reproduces well most of the experiment cross sections, is anticipated to be useful in pion-nucleus and pion-nucleon interaction calculations

  16. Chiral perturbation theory

    International Nuclear Information System (INIS)

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  17. Chiral dynamics and baryon resonances

    OpenAIRE

    Hyodo, Tetsuo

    2010-01-01

    The structure of baryon resonance in coupled-channel meson-baryon scattering is studied from the viewpoint of chiral dynamics. The meson-baryon scattering amplitude can be successfully described together with the properties of the resonance in the scattering, by implementing the unitarity condition for the amplitude whose low energy structure is constrained by chiral theorem. Recently, there have been a major progress in the study of the structure of the resonance in chiral dynamics. We revie...

  18. Chiral Nuclear Dynamics II

    CERN Document Server

    Rho, Mannque

    2008-01-01

    This is the sequel to the first volume to treat in one effective field theory framework the physics of strongly interacting matter under extreme conditions. This is vital for understanding the high temperature phenomena taking place in relativistic heavy ion collisions and in the early Universe, as well as the high-density matter predicted to be present in compact stars. The underlying thesis is that what governs hadronic properties in a heat bath and/or a dense medium is hidden local symmetry which emerges from chiral dynamics of light quark systems and from the duality between QCD in 4D and

  19. Light-front representation of chiral dynamics with Δ isobar and large- N c relations

    Science.gov (United States)

    Granados, C.; Weiss, C.

    2016-06-01

    Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O( M π - 1 ) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Δ isobars and implement relations based on the large- N c limit of QCD. We derive the wave function overlap formulas for the Δ contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguities with higher-spin particles in the light-front time-ordered approach. We study the interplay of π N and πΔ intermediate states in the quantum-mechanical picture of the densities in a transversely polarized nucleon. We show that the correct N c -scaling of the charge and magnetization densities emerges as the result of the particular combination of currents generated by intermediate states with degenerate N and Δ. The off-shell behavior of the chiral EFT is summarized in contact terms and can be studied easily. The methods developed here can be applied to other peripheral densities and to moments of the nucleon's generalized parton distributions.

  20. Measurement of observables in the pion-nucleon system and investigation of charge symmetry in 3H and 3He

    International Nuclear Information System (INIS)

    The LAMPF experiments have been performed in collaboration with UCLA, George Washington University, various groups at Los Alamos, and Catholic University. This paper discusses: a complete set of observables in the pion-nucleon system in the momentum interval 400-700 MeV/c; differential cross sections at low energy for pion-nucleon charge exchange; and elastic and inelastic scattering of π± on 3H and 3He

  1. Need for the intensity-dependent pion-nucleon coupling in multipion production processes

    CERN Document Server

    Martinis, M

    1995-01-01

    We give reasons in support of the use of an effective intensity-dependent pion-nucleon coupling Hamiltonian for describing the properties of the pion multiplicity distribution and the corresponding factorial moments within the thermal-density matrix approach.We explain the appearance of the negative-binomial (NB) distribution for pions and the well-known empi- rical relation of Wroblewski.Our model Hamiltonian is written as a linear combination of the generators of the SU(1,1) group.We find the generating function for the pion multiplicity distribution at finite temperature T and discuss the properties of the second-order factorial moment.Also, we show that an intensity-dependent pion-nucleon coupling generates the squeezed states of the pion field.At T=0, these squeezed states become an inherent property of the NB distribution.

  2. Polarization analysis of vector-meson production in pion-nucleon interactions

    Science.gov (United States)

    Arash, Firooz; Habibi, Mohammad F.

    1993-07-01

    In view of the growing (though still incomplete) set of data on vector-meson production in pion-nucleon interactions, the polarization structure of this reaction is presented, together with polarization tests of one-particle-exchange processes in the s and t channels, as well as polarization tests for the Skyrmion model. The amplitude-observable relations are exhibited in the helicity, transversity, and planar-transverse frames. The desirable direction of future experimental programs is also outlined.

  3. Polarization analysis of vector-meson production in pion-nucleon interactions

    International Nuclear Information System (INIS)

    In view of the growing (though still incomplete) set of data on vector-meson production in pion-nucleon interactions, the polarization structure of this reaction is presented, together with polarization tests of one-particle-exchange processes in the s and t channels, as well as polarization tests for the Skyrmion model. The amplitude-observable relations are exhibited in the helicity, transversity, and planar-transverse frames. The desirable direction of future experimental programs is also outlined

  4. Intensity-dependent pion-nucleon coupling and the Wroblewski relation

    CERN Document Server

    Martinis, M

    1995-01-01

    We propose an intensity-dependent pion-nucleon coupling Hamiltonian within a unitary multiparticle-production model of the AABS type in which the pion field is represented by the thermal-density matrix. Using this Hamiltonian, we explain the appearance of the negative- binomial (NB) distribution for pions and the well-known empirical relation, the so-called Wroblewski relation. The Hamiltonian of our model is expressed linearly in terms of the generators of the SU(1,1) group.

  5. Intensity-dependent pion-nucleon coupling in multipion production processes

    OpenAIRE

    Martinis, M.; Mikuta-Martinis, V.

    1999-01-01

    We propose an intensity-dependent pion-nucleon coupling Hamiltonian within a unitary multiparticle-production model of the Auerbach- Avin-Blankenbecler-Sugar (AABS) type in which the pion field is represented by the thermal-density matrix.Using this Hamiltonian, we explain the appearance of the negative-binomial (NB) distribution for pions and the well-known empirical relation, the so-called Wr\\' oblewski relation, in which the dispersion $D$ of the pion- multiplicity distribution is linearly...

  6. Catalysis of Dynamical Chiral Symmetry Breaking by Chiral Chemical Potential

    CERN Document Server

    Braguta, V V

    2016-01-01

    In this paper we study the properties of media with chiral imbalance parameterized by chiral chemical potential. It is shown that depending on the strength of interaction between constituents in the media the chiral chemical potential either creates or enhances dynamical chiral symmetry breaking. Thus the chiral chemical potential plays a role of the catalyst of dynamical chiral symmetry breaking. Physically this effect results from the appearance of the Fermi surface and additional fermion states on this surface which take part in dynamical chiral symmetry breaking. An interesting conclusion which can be drawn is that at sufficiently small temperature chiral plasma is unstable with respect to condensation of Cooper pairs and dynamical chiral symmetry breaking even for vanishingly small interactions between constituents.

  7. A phenomenological determination of the pion-nucleon scattering lengths from pionic hydrogen

    CERN Document Server

    Ericson, Torleif Eric Oskar; Wycech, S

    2005-01-01

    A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon scattering length, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order (alpha)**2 log(alpha) in the limit of a short-range hadronic interaction. We infer a charged pion-proton scattering length of 0.0870(5) in units of inverse pion mass, which gives for the charged pion-proton-neutron coupling, through the GMO relation, a value of 14.04(17).

  8. a Phenomenological Determination of the Pion-Nucleon Scattering Lengths from Pionic Hydrogen

    Science.gov (United States)

    Ericson, T. E. O.; Loiseau, B.; Wycech, S.

    A model independent expression for the electromagnetic corrections to a phenomenological hadronic pion-nucleon (πN) scattering length ah, extracted from pionic hydrogen, is obtained. In a non-relativistic approach and using an extended charge distribution, these corrections are derived up to terms of order α2 log α in the limit of a short-range hadronic interaction. We infer ahπ ^-p=0.0870(5)m-1π which gives for the πNN coupling through the GMO relation g2π ^± pn/(4π )=14.04(17).

  9. Need for the intensity-dependent pion-nucleon coupling in multipion production processes

    OpenAIRE

    Martinis, M.; Mikuta-Martinis, V.

    1995-01-01

    We give reasons in support of the use of an effective intensity-dependent pion-nucleon coupling Hamiltonian for describing the properties of the pion multiplicity distribution and the corresponding factorial moments within the thermal-density matrix approach.We explain the appearance of the negative-binomial (NB) distribution for pions and the well-known empi- rical relation of Wroblewski.Our model Hamiltonian is written as a linear combination of the generators of the SU(1,1) group.We find t...

  10. Measurement of observables in the pion-nucleon system and investigation of charge symmetry in 3H and 3He

    International Nuclear Information System (INIS)

    This report discusses the following: pion-nucleon program; a search for neutral pions from the spontaneous fission of 252Cf; elastic and inelastic pion scattering on 3H and 3He; nuclear dependence of charm and beauty quark production and a study of two-prong decays of neutral B mesons; measurement of π-p → π0n in the cusp region at the Leningrad Nuclear Physics Institute (LNPI); a test of consistency of low-energy pion-nucleon differential cross sections with total cross sections; and design of a high energy photon calorimeter for the neutral meson spectrometer

  11. Determination of the pion-nucleon coupling constant and scattering lengths

    CERN Document Server

    Ericson, Torleif Eric Oskar; Thomas, A W

    2002-01-01

    We critically evaluate the isovector GMO sum rule for forward pion-nucleon scattering using the recent precision measurements of negatively charged pion-proton and pion-deuteron scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data a pseudoscalar coupling constant of 14.17+-0.05(statistical)+-0.19(systematic) or a pseudovector one of 0.0786(11). This value is intermediate between that of indirect methods and the direct determination from backward neutron-proton differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the negatively charged pion-proton and pion-neutron scattering lengths with high precision. The symmetric sum gives 0.0017+-0.0002(statistical)+-0.0008 (systematic) and the antisymmetric one 0.0900+-0.0003(statistical)+-0.0013(systematic), both in units of inverse charged pi...

  12. The width of the Roper resonance in baryon chiral perturbation theory

    CERN Document Server

    Gegelia, Jambul; Yao, De-Liang

    2016-01-01

    We calculate the width of the Roper resonance at next-to-leading order in a systematic expansion of baryon chiral perturbation theory with pions, nucleons, and the delta and Roper resonances as dynamical degrees of freedom. Three unknown low-energy constants contribute up to the given order. One of them can be fixed by reproducing the empirical value for the width of the Roper decay into a pion and a nucleon. Assuming that the remaining two couplings of the Roper interaction take values equal to those of the nucleon, the result for the width of the Roper decaying into a nucleon and two pions is consistent with the experimental value.

  13. Pion-nucleon partial-wave analysis and study of baryon structure. Final report, June 1, 1981-August 31, 1982

    International Nuclear Information System (INIS)

    This report outlines the progress made in the past 15 months toward completion of a long-term pion-nucleon partial wave analysis in collaboration with R.E. Cuthosky at Carnegie-Mellon University. The report details other theoretical work done during this time period, including work on the Table of Particle Properties, 1982

  14. Forward production of high mass muon pairs in pion-nucleon interactions

    International Nuclear Information System (INIS)

    The production of muon pairs in negative pion nucleon interactions has been studied at a center-of-mass energy of 12.2 GeV. About 4000 events have been collected over a broad range of longitudinal momentum and invariant mass. A comparison with the Drell-Yan Model has been made, confirming the factorization hypothesis. The results favor a non-vanishing value of the pion structure function at the kinematic limit of large longitudinal momentum. Other departures from the standard parton-QCD model are found in this region. The angular distribution of the muon pair becomes characteristic of longitudinal virtual photon polarization, and the transverse momentum of the pair is found to decrease. 39 refs., 70 figs., 21 tabs

  15. Intensity-dependent pion-nucleon coupling in multipion production processes

    CERN Document Server

    Martinis, M

    1996-01-01

    We propose an intensity-dependent pion-nucleon coupling Hamiltonian within a unitary multiparticle-production model of the Auerbach- Avin-Blankenbecler-Sugar (AABS) type in which the pion field is represented by the thermal-density matrix.Using this Hamiltonian, we explain the appearance of the negative-binomial (NB) distribution for pions and the well-known empirical relation, the so-called Wr\\' oblewski relation, in which the dispersion $D$ of the pion- multiplicity distribution is linearly related to the average multiplicity $$ : $D = A + B$, with the coefficient $A < 1$. The Hamiltonian of our model is expressed linearly in terms of the generators of the $SU(1,1)$ group.We also find the generating function for the pion field, which reduces to the generating function of the NB distribution limit $T \\to 0$.

  16. Precision determination of the pion-nucleon $\\sigma$-term from Roy-Steiner equations

    CERN Document Server

    Hoferichter, Martin; Kubis, Bastian; Meißner, Ulf-G

    2015-01-01

    We present a determination of the pion-nucleon ($\\pi N$) $\\sigma$-term $\\sigma_{\\pi N}$ based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent precision data from pionic atoms to pin down the threshold $\\pi N$ amplitude as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain $\\sigma_{\\pi N}=(59.1\\pm 1.9\\pm 3.0)$ MeV $=(59.1\\pm 3.5)$ MeV, where the first error refers to uncertainties in the $\\pi N$ amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed.

  17. Analytic approach to the relativistic problem of constructing effective nucleon-nucleon and pion-nucleon interaction operators at low and intermediate energies

    International Nuclear Information System (INIS)

    formation of a short-range repulsive core. In the given work this approach is generalized for constructing effective hadron-hadron interaction operators in framework multichannel formalism in arbitrary angular momentum states taking into account effects of inelasticity. The methods of taking into account mechanisms of formation a quark-gluon compound states in hadron-hadron interactions are elaborated also. The developed methods are applied to constructing nucleon-nucleon interaction operators in different partial-wave states. The boson-exchange model was used to calculate the discontinuities of the partial-wave scattering amplitudes taking into account π, σ, ρ, ω, η, a0 -meson contributions. The effective nucleon-nucleon potentials in our approach (as against the one-boson-exchange model in usual sense) contain nonlinear contributions on dynamic discontinuities of partial-wave scattering amplitudes, which play essential role at small distances. Note that in realistic Bonn potential model [5] the short-range repulsion is due to ω-meson exchange contribution. It is required in this theory non-realistically large value (≅20 ) of the coupling constant gωNN2/4π. The value of this coupling constant in our approach is consistent with available experimental data [6] and also with theoretical quark-model calculations. The theoretical predictions of the proposed approach are in fairly good agreement with partial-wave-analysis data for laboratory kinetic energies of incident nucleon up to T=1.5-2.0 GeV. The developed approach is applied also to pion-nucleon scattering at kinetic energies of incident pion up to T=2.0 GeV. This work was supported by the Russian Foundation for Basic Research under the project No 04-02-16967. (author)

  18. Lattice QCD with dynamical chirally improved quarks

    International Nuclear Information System (INIS)

    Full text: We simulate lattice QCD with two flavors of chirally improved dynamical (sea) quarks. The chirally improved lattice action allows to address some of the questions concerning chiral symmetry in lattice QCD.We discuss the status and prospects of our simulations as well as recent results. (author)

  19. Measurement of observables in the pion-nucleon system and investigation of charge symmetry in 3He and 3H. Progress report, March 1, 1985-February 28, 1986

    International Nuclear Information System (INIS)

    Progress is reported for the past year in pion scattering programs. The measurements include: (1) a complete set of observables in the pion-nucleon system in the momentum interval 400 to 700 MeV/c, (2) differential cross sections at low energy for pion-nucleon charge exchange, and (3) elastic and inelastic scattering of π+- on 3H and 3He. The experiments are conducted at the Clinton P. Anderson Meson Physics Facility at Los Alamos (LAMPF)

  20. Precision measurements of pion-nucleon interactions in the P3 energy region at LAMPF. Progress report

    International Nuclear Information System (INIS)

    A summary is presented of the progress and of the planned activities for investigations of pion-nucleon scattering and other investigations which yield information on charge symmetry and isospin invariance. This research program is conducted by Abilene Christian University at the Clinton P. Anderson Meson Physics Facility (LAMPF) in close collaboration with the UCLA Particle Physics Group. The overall objectives, progress and planned activities of the research programs are described and the contributions made by ACU faculty and student are delineated

  1. The importance of inelastic channels in eliminating continuum ambiguities in pion-nucleon partial wave analyses

    CERN Document Server

    Svarc, A; Zauner, B

    2006-01-01

    Single channel, single energy partial wave analyses (SE_PWA) are from the first principles non-unique in the inelastic region if only data from elastic channels are used, so we in details discuss mechanisms how the problem is eliminated in pion-nucleon scattering. The "continuum ambiguities" puzzle has been extensively discussed since early 1970es, and two major mechanisms for solving the problem have been suggested: either to ensure the continuity of Argand diagrams by imposing the T-matrix t-channel analyticity (Karlsruhe-Helsinki, VPI/GWU) or to restore the unitarity loss in the kinematical regime where the inelastic channels are successively opened by replacing the standard single channel PWA by the coupled channel formalism (CMB, Zagreb, Kent, Pittsburgh/ANL, Giessen). In both approaches the insufficiency of the single channel data is eliminated by introducing additional constraints using the data from other channels. The importance and physical meaning of the second approach is presented in details, and...

  2. High-Precision Determination of the Pion-Nucleon σ Term from Roy-Steiner Equations.

    Science.gov (United States)

    Hoferichter, Martin; Ruiz de Elvira, Jacobo; Kubis, Bastian; Meißner, Ulf-G

    2015-08-28

    We present a determination of the pion-nucleon (πN) σ term σ_{πN} based on the Cheng-Dashen low-energy theorem (LET), taking advantage of the recent high-precision data from pionic atoms to pin down the πN scattering lengths as well as of constraints from analyticity, unitarity, and crossing symmetry in the form of Roy-Steiner equations to perform the extrapolation to the Cheng-Dashen point in a reliable manner. With isospin-violating corrections included both in the scattering lengths and the LET, we obtain σ_{πN}=(59.1±1.9±3.0)  MeV=(59.1±3.5)  MeV, where the first error refers to uncertainties in the πN amplitude and the second to the LET. Consequences for the scalar nucleon couplings relevant for the direct detection of dark matter are discussed. PMID:26371645

  3. Determination of the pion-nucleon coupling constant and scattering lengths

    International Nuclear Information System (INIS)

    We critically evaluate the isovector Goldberger-Miyazawa-Oehme (GMO) sum rule for forward πN scattering using the recent precision measurements of π-p and π-d scattering lengths from pionic atoms. We deduce the charged-pion-nucleon coupling constant, with careful attention to systematic and statistical uncertainties. This determination gives, directly from data, gc2(GMO)/4π=14.11±0.05(statistical)±0.19(systematic) or fc2/4π=0.0783(11). This value is intermediate between that of indirect methods and the direct determination from backward np differential scattering cross sections. We also use the pionic atom data to deduce the coherent symmetric and antisymmetric sums of the pion-proton and pion-neutron scattering lengths with high precision, namely, (aπ-p+aπ-n)/2=[-12±2(statistical)±8(systematic)]x10-4 mπ-1 and (aπ-p-aπ-n)/2=[895±3(statistical)±13 (systematic)]x10-4 mπ-1. For the need of the present analysis, we improve the theoretical description of the pion-deuteron scattering length

  4. Study of the Pion-Nucleon Coupling Constant Charge Dependence on the Basis of the Low-Energy Data on Nucleon-Nucleon Interaction

    CERN Document Server

    Babenko, V A

    2016-01-01

    We study relationship between the physical quantities that characterize pion-nucleon and nucleon-nucleon interaction on the basis of the fact that nuclear forces in the nucleon-nucleon system at low energies are mainly determined by the one-pion exchange mechanism. By making use of the recommended proton-proton low-energy scattering parameters, we obtain the following value for the charged pion-nucleon coupling constant g$_{\\pi ^{\\pm }}^{2}/4\\pi =14.55(13)$. Calculated value of this quantity is in excellent agreement with the experimental result g$_{\\pi ^{\\pm }}^{2}/4\\pi =14.52(26)$ of the Uppsala Neutron Research Group. At the same time, the obtained value of the charged pion-nucleon coupling constant differs markedly from the value of the neutral pion-nucleon coupling constant g$_{\\pi ^{0}}^{2}/4\\pi =13.55(13)$. Thus, our results show considerable charge splitting of the pion-nucleon coupling constant.

  5. The effective chiral Lagrangian from the theta term

    International Nuclear Information System (INIS)

    We construct the effective chiral Lagrangian involving hadronic and electromagnetic interactions originating from the QCD θ-bar term. We impose vacuum alignment at both quark and hadronic levels, including field redefinitions to eliminate pion tadpoles. We show that leading time-reversal-violating (TV) hadronic interactions are related to isospin-violating interactions that can in principle be determined from charge-symmetry-breaking experiments. We discuss the complications that arise from TV electromagnetic interactions. Some implications of the expected sizes of various pion-nucleon TV interactions are presented, and the pion-nucleon form factor is used as an example.

  6. Dynamics and Stability of Chiral Fluid

    OpenAIRE

    Mishustin, Igor N.; Koide, Tomoi; Denicol, Gabriel S.; Torrieri, Giorgio

    2014-01-01

    Starting from the linear sigma model with constituent quarks we derive the chiral fluid dynamics where hydrodynamic equations for the quark fluid are coupled to the equation of motion for the order-parameter field. In a static system at thermal equilibrium this model leads to a chiral phase transition which, depending on the choice of the quark-meson coupling constant, could be a crossover or a first order one. We investigate the stability of the chiral fluid in the static and expanding backg...

  7. Measurements of observables in the pion-nucleon system, nuclear a- dependence of heavy quark production and rare decays of D and B mesons

    International Nuclear Information System (INIS)

    This report discusses research on the following topics: pion-nucleon interactions; detector tomography facility; nuclear dependence of charm and beauty quark production and a study of two-prong decays of neutral D and B mesons; N* collaboration at CEBAF; and pilac experiments

  8. Dynamics of the chiral transition

    International Nuclear Information System (INIS)

    Measurements of disoriented chiral condensates (DCC) in heavy ion collisions at RHIC can yield fundamental information on the nature of the QCD phase transition. I review theoretical efforts to understand DCC formation and present work in progress on possible experimental ramifications

  9. Nuclear chiral dynamics and thermodynamics

    OpenAIRE

    Holt, J. W.; Kaiser, N.; Weise, W.

    2013-01-01

    This presentation reviews an approach to nuclear many-body systems based on the spontaneously broken chiral symmetry of low-energy QCD. In the low-energy limit, for energies and momenta small compared to a characteristic symmetry breaking scale of order 1 GeV, QCD is realized as an effective field theory of Goldstone bosons (pions) coupled to heavy fermionic sources (nucleons). Nuclear forces at long and intermediate distance scales result from a systematic hierarchy of one- and two-pion exch...

  10. The reaction $\\pi N \\to \\pi \\pi N$ above threshold in chiral perturbation theory

    CERN Document Server

    Bernard, V; Meißner, Ulf G

    1997-01-01

    Single pion production off nucleons is studied in the framework of relativistic baryon chiral perturbation theory at tree level with the inclusion of the terms from the dimension two effective pion-nucleon Lagrangian. The five appearing low-energy constants are fixed from pion-nucleon scattering data. Despite the simplicity of the approach, most of the existing data for total and differential cross sections as well as for the angular correlation functions for incoming pion kinetic energies up to 400 MeV can be satisfactorily described.

  11. Chiral dynamics of heavy-light mesons

    International Nuclear Information System (INIS)

    This thesis focuses on the physics of heavy-light mesons, i.e. quark-antiquark systems composed of a heavy (c or b) and a light (u, d or s) quark. The light-quark sector is treated within the framework of chiral effective field theory. Recent lattice QCD computations have progressed in determining the decay constants of charmed mesons and the scattering lengths of Nambu-Goldstone bosons (pions, kaons) off D mesons. These computations are performed for light quark masses larger than the physical ones. A chiral extrapolation down to physical masses is necessary. It is commonly performed using chiral perturbation theory. The related systematical uncertainties have to be examined carefully. In this thesis it is shown how these uncertainties can be reduced significantly by taking into account relativistic effects in the chiral extrapolations. As a byproduct, estimates are presented for several physical quantities that are related by heavy-quark spin and flavor symmetry. Furthermore, the investigation of the light-quark mass dependence of the scattering lengths of Nambu-Goldstone bosons off D mesons provides important information on the nature of one of the intriguing newly discovered resonances, the D*s0(2317). It is shown that this resonance can be dynamically generated from the coupled-channels DK interaction without a priori assumption of its existence. Finally we demonstrate how the underlying framework, unitarized chiral perturbation theory, can be improved by the inclusion of intermediate states with off-the-mass-shell kinematics.

  12. Chiral Lagrangians and quark condensate in nuclei

    International Nuclear Information System (INIS)

    The evolution of density of quark condensate in nuclear medium with interacting nucleons, including the short range correlations is examined. Two chiral models are used, the linear sigma model and the non-linear one. It is shown that the quark condensate, as other observables, is independent on the variant selected. The application to physical pions excludes the linear sigma model as a credible one. The non-linear models restricted to pure s-wave pion-nucleon scattering are examined. (author)

  13. Chiral dynamics in U(3) unitary chiral perturbation theory

    International Nuclear Information System (INIS)

    We perform a complete one-loop calculation of meson-meson scattering, and of the scalar and pseudoscalar form factors in U(3) chiral perturbation theory with the inclusion of explicit resonance fields. This effective field theory takes into account the low-energy effects of the QCD UA(1) anomaly explicitly in the dynamics. The calculations are supplied by non-perturbative unitarization techniques that provide the final results for the meson-meson scattering partial waves and the scalar form factors considered. We present thorough analyses on the scattering data, resonance spectroscopy, spectral functions, Weinberg-like sum rules and semi-local duality. The last two requirements establish relations between the scalar spectrum with the pseudoscalar and vector ones, respectively. The NC extrapolation of the various quantities is studied as well. The fulfillment of all these non-trivial aspects of the QCD dynamics by our results gives a strong support to the emerging picture for the scalar dynamics and its related spectrum.

  14. Applications of in-medium chiral dynamics

    International Nuclear Information System (INIS)

    A relativistic nuclear energy density functional is developed, guided by two important features that establish connections with chiral dynamics and the symmetry breaking pattern of low-energy QCD: a) strong scalar and vector fields related to in-medium changes of QCD vacuum condensates; b) long- and intermediate-range interactions generated by one-and two-pion exchange, derived from in-medium chiral perturbation theory, with explicit inclusion of Δ(1232) excitations. Applications are presented for the the description of ground-state properties and collective excitations of medium and heavy nuclei. The extension to hypernuclei are also presented, showing a new interpretation of the Λ-nucleus spin-orbit potential.

  15. Threshold pion production in proton-proton collisions at NNLO in chiral EFT

    Science.gov (United States)

    Baru, V.; Epelbaum, E.; Filin, A. A.; Hanhart, C.; Krebs, H.; Myhrer, F.

    2016-05-01

    The reaction NN → NN π offers a good testing ground for chiral effective field theory at intermediate energies. It challenges our understanding of the first inelastic channel in nucleon-nucleon scattering and of the charge symmetry breaking pattern in hadronic reactions. In our previous studies, we presented a complete calculation of the pion production operator for s -wave pions up-to-and-including next-to-next-to-leading order (NNLO) in the formulation of chiral effective field theory, which includes pions, nucleons and Δ(1232) degrees of freedom. In this paper we calculate the near-threshold cross section for the pp → d π+ reaction by performing the convolution of the obtained operators with nuclear wave functions based on modern phenomenological and chiral potentials. The available chiral NN wave functions are constructed with a cutoff comparable with the momentum transfer scale inherent in pion production reactions. Hence, a significant portion of the dynamical intermediate-range physics is thereby cut off by them. On the other hand, the NNLO amplitudes evaluated with phenomenological wave functions appear to be largely independent of the NN model used and give corrections to the dominant leading-order contributions as expected from dimensional analysis. The result gives support to the counting scheme used to classify the pion production operators, which is a precondition for a reliable investigation of the chirally suppressed neutral pion production. The explicit inclusion of the Δ(1232) is found to be important but smaller than expected due to cancellations.

  16. Dynamics and Stability of Chiral Fluid

    CERN Document Server

    Mishustin, Igor N; Denicol, Gabriel S; Torrieri, Giorgio

    2014-01-01

    Starting from the linear sigma model with constituent quarks we derive the chiral fluid dynamics where hydrodynamic equations for the quark fluid are coupled to the equation of motion for the order-parameter field. In a static system at thermal equilibrium this model leads to a chiral phase transition which, depending on the choice of the quark-meson coupling constant, could be a crossover or a first order one. We investigate the stability of the chiral fluid in the static and expanding backgrounds by considering the evolution of perturbations with respect to the mean-field solution. In the static background the spectrum of plane-wave perturbations consists of two branches, one corresponding to the sound waves and another to the sigma-meson excitations. For large couplings these two branches "cross" and the excitation spectrum acquires exponentially growing modes. The stability analysis is also done for the Bjorken-like background solution by explicitly solving the time-dependent differential equation for per...

  17. Precision measurements of pion nucleon elastic scattering in the P3 energy region at LAMPF. 1984 progress report

    International Nuclear Information System (INIS)

    This study is a continuation of the pion-nucleon program at the Los Alamos Meson Physics Facility. Previous measurements, in chronological order, have included differential cross sections for π/sup +-/p elastic scattering at P/sub π/ = 378 - 687 MeV/c (LAMPF experiment 363), π-p charge exchange for P/sub π/ = 247 - 687 MeV/c (LAMPF experiment 120), and measurements of the polarization asymmetry for π/sup +-/p -> π/sup +-/p and π-p -> π0n for P/sub π/ = 471 - 687 MeV/c (LAMPF experiments 120* and 120**, respectively). Two experiments were initiated in the past year, forward-angle differential cross sections for π-p -> π0n at P/sub π/ = 96 - 150 MeV/c (LAMPF experiment 809) and polarization asymmetry for π-p - > γn (LAMPF experiment 804). Approved experiments which will be scheduled in the future are spin rotation measurements for π/sup +-/p -> π/sup +-/p (LAMPF experiments 806 and 807) and differential cross sections for π-p -> π0n near 00 and 1800 at P/sub π/ = 471-687 MeV/c (LAMPF experiment 849). Another experiment, differential cross section measurements for π/sup +-/ elastic scattering on 3He and 3H (LAMPF experiment 546), has also been completed. The 3He and 3H targets form an isospin doublet analogous to the proton and neutron. The I3 = -1/2 member (3H) of the multiplet can be utilized as a target in this case, allowing a direct test of charge symmetry not achievable in the πN system due to the impossibility of a pure neutron target

  18. Origin of resonances in chiral dynamics

    CERN Document Server

    Hyodo, Tetsuo; Hosaka, Atsushi

    2009-01-01

    The nature of baryon resonances is studied in the dynamical chiral coupled-channel approach for meson-baryon scattering. In general, origin of resonances in two-body scattering can be classified into two categories: dynamically generated states and genuine elementary particles. We demonstrate that the genuine contribution in the loop function can be excluded by adopting a natural renormalization scheme. The origin of resonances can be studied by looking at the effective interaction in the natural renormalization scheme, which is deduced from the phenomenological amplitude fitted to experimental data. Applying this method to the baryon resonances, we find that the dominant component for the Lambda(1405) resonance is dynamical, while a genuine contribution plays a substantial role for the structure of the N(1535).

  19. Pion momentum distributions in the nucleon in chiral effective theory

    CERN Document Server

    Burkardt, M; Ji, Chueng-Ryong; Melnitchouk, W; Thomas, A W

    2012-01-01

    We compute the light-cone momentum distributions of pions in the nucleon in chiral effective theory using both pseudovector and pseudoscalar pion-nucleon couplings. For the pseudovector coupling we identify \\delta-function contributions associated with end-point singularities arising from the pion-nucleon rainbow diagrams, as well as from pion tadpole diagrams which are not present in the pseudoscalar model. Gauge invariance is demonstrated, to all orders in the pion mass, with the inclusion of Weinberg-Tomozawa couplings involving operator insertions at the \\pi NN vertex. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  20. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  1. Chiral properties of dynamical Wilson fermions

    International Nuclear Information System (INIS)

    Quantum Chromodynamics with two light quark flavors is considered in the lattice regularization with improved Wilson fermions. In this formulation chiral symmetry is explicitly broken by cutoff effects linear in the lattice spacing a. As a consequence the isovector axial currents require improvement (in the Symanzik sense) as well as a finite renormalization if they are to satisfy the continuum Ward-Takahashi identities associated with the isovector chiral symmetries up to small lattice corrections of O(a2). In exploratory numerical simulations of the lattice theory algorithmic difficulties were encountered at coarse lattice spacings. There the hybrid Monte Carlo algorithm used suffers from a distorted Dirac spectrum in the form of unphysically small eigenvalues. This is shown to be a cutoff effect, which disappears rapidly as the lattice spacing is decreased. An alternative algorithm, the polynomial hybrid Monte Carlo algorithm, is found to perform significantly better in the presence of exceptionally small eigenvalues. Extending previously used methods both the improvement and the renormalization of the axial current are implemented non-perturbatively in terms of correlation functions formulated in the framework of the Schroedinger functional. In both cases this is achieved by enforcing continuum Ward identities at finite lattice spacing. Together, this restores the isovector chiral symmetry to quadratic order in the lattice spacing. With little additional effort the normalization factor of the local vector current is also obtained. The methods developed and implemented here can easily be applied to other actions formulated in the Schroedinger functional framework. This includes improved gauge actions as well as theories with more than two dynamical quark flavors. (orig.)

  2. Threshold pion production in proton-proton collisions at NNLO in chiral EFT

    CERN Document Server

    Baru, V; Filin, A A; Hanhart, C; Krebs, H; Myhrer, F

    2016-01-01

    The reaction $NN \\to NN \\pi$ offers a good testing ground for chiral effective field theory at intermediate energies. It challenges our understanding of the first inelastic channel in nucleon-nucleon scattering and of the charge-symmetry breaking pattern in hadronic reactions. In our previous studies, we presented a complete calculation of the pion-production operator for s-wave pions up-to-and-including next-to-next-to-leading order (NNLO) in the formulation of chiral effective field theory, which includes pions, nucleons and $\\Delta(1232)$ degrees of freedom. In this paper we calculate the near threshold cross section for the $pp \\to d \\pi^{+}$ reaction by performing the convolution of the obtained operators with nuclear wave functions based on modern phenomenological and chiral potentials. The available chiral $NN$ wave functions are constructed with a cutoff comparable with the momentum transfer scale inherent in pion production reactions. Hence, a significant portion of the dynamical intermediate-range p...

  3. Nonequilibrium Chiral Dynamics and Effective Lagrangians

    CERN Document Server

    Nicola, A G

    2001-01-01

    We review our recent work on Chiral Lagrangians out of thermal equilibrium, which are introduced to analyse the pion gas formed after a Relativistic Heavy Ion Collision. Chiral Perturbation Theory is extended by letting $\\fpi$ be time dependent and allows to describe explosive production of pions in parametric resonance. This mechanism could be relevant if hadronization occurs at the chiral phase transition.

  4. Pion-nucleon correlations in finite nuclei in a relativistic framework: Effects on the shell structure

    Science.gov (United States)

    Litvinova, Elena

    2016-04-01

    The relativistic particle-vibration coupling (RPVC) model is extended by the inclusion of isospin-flip excitation modes into the phonon space, introducing a new mechanism of dynamical interaction between nucleons with different isospin in the nuclear medium. Protons and neutrons exchange by collective modes which are formed by isovector π and ρ-mesons, in turn, softened considerably because of coupling to nucleons of the medium. These modes are investigated within the proton-neutron relativistic random phase approximation (pn-RRPA) and relativistic proton-neutron time blocking approximation (pn-RTBA). The appearance of isospin-flip states with sizable transition probabilities at low energies points out that they are likely to couple to the single-particle degrees of freedom and, in addition to isoscalar low-lying phonons, to modify their spectroscopic characteristics. Such a coupling is quantified for the shell structure of 100,132Sn and found significant for the location of the dominant single-particle states.

  5. Proton Spin Based On Chiral Dynamics

    OpenAIRE

    Weber, H. J.

    1999-01-01

    Chiral spin fraction models agree with the proton spin data only when the chiral quark-Goldstone boson couplings are pure spinflip. For axial-vector coupling from soft-pion physics this is true for massless quarks but not for constituent quarks. Axial-vector quark-Goldstone boson couplings with {\\bf constituent} quarks are found to be inconsistent with the proton spin data.

  6. Measurement of observables in the pion-nucleon system and investigation of charge symmetry in 3H and 3He: Progress report, March 1, 1986-February 28, 1987

    International Nuclear Information System (INIS)

    This report describes the progress made in the past year in the pion scattering programs in which Abilene Christian University is collaborating. The measurements include (1) a complete set of observables in the pion-nucleon system in the momentum interval 400 to 700 MeV/e, (2) differential cross sections at low energy for pion-nucleon charge exchange, and (3) elastic and inelastic scattering of π+- on 3H and 3He. Highlights of the progress in 1986 to 87 include (1) first measurement of the spin rotation parameters A and R for π+-p → π+-p scattering at 427 to 657 MeV/e, for which the principal investigator received support from Associated Western Universities (AWU) and ACU for sabbatical leave in Los Alamos, (2) final publication of the data for the differential cross sections and analyzing powers for π+-p elastic scattering at 378 to 687 MeV/c, (3) final publication of forward-angle differential cross sections for π-p → π0n at 101 to 147 MeV/c, and (4) continued development of analysis capabilities on the ACU VAX-11/785, including full implementation of the LAMPF Q system MAPPER and DISSPLA graphics software. TEDI and TEX word processing and the associated hardware to utilize the software. The experiments are conducted at the Clinton P. Anderson Meson Physics Facility at Los Alamos (LAMPF). The experiments are performed in collaboration with UCLA, George Washington University, LAMPF Groups MP-4, MP-10 and MP-13, and Catholic University. 37 refs., 13 figs., 1 tab

  7. Chiral dynamics and peripheral transverse densities

    Energy Technology Data Exchange (ETDEWEB)

    Granados, Carlos G. [Uppsala University (Sweden); Weiss, Christian [JLAB, Newport News, VA (United States)

    2014-01-01

    In the partonic (or light-front) description of relativistic systems the electromagnetic form factors are expressed in terms of frame-independent charge and magnetization densities in transverse space. This formulation allows one to identify the chiral components of nucleon structure as the peripheral densities at transverse distances b = O(M{sub {pi}}{sup -1}) and compute them in a parametrically controlled manner. A dispersion relation connects the large-distance behavior of the transverse charge and magnetization densities to the spectral functions of the Dirac and Pauli form factors near the two--pion threshold at timelike t = 4 M{ sub {pi}}{sup 2}, which can be computed in relativistic chiral effective field theory. Using the leading-order approximation we (a) derive the asymptotic behavior (Yukawa tail) of the isovector transverse densities in the "chiral" region b = O(M{sub {pi}}{sup -1}) and the "molecular" region b = O(M{sub N}{sup 2}/M{sub {pi}}{sup 3}); (b) perform the heavy-baryon expansion of the transverse densities; (c) explain the relative magnitude of the peripheral charge and magnetization densities in a simple mechanical picture; (d) include Delta isobar intermediate states and study the peripheral transverse densities in the large-N{ sub c} limit of QCD; (e) quantify the region of transverse distances where the chiral components of the densities are numerically dominant; (f) calculate the chiral divergences of the b{sup 2}-weighted moments of the isovector transverse densities (charge and anomalous magnetic radii) in the limit M{sub {pi}} -> 0 and determine their spatial support. Our approach provides a concise formulation of the spatial structure of the nucleon's chiral component and offers new insights into basic properties of the chiral expansion. It relates the information extracted from low-t elastic form factors to the generalized parton distributions probed in peripheral high-energy scattering processes.

  8. Magnetic test of chiral dynamics in QCD

    International Nuclear Information System (INIS)

    Strong magnetic fields in the range eB≫mπ2 effectively probe internal quark structure of chiral mesons and test basic parameters of the chiral theory, such as 〈q-barq〉,fπ. We argue on general grounds that 〈q-barq〉 should grow linearly with eB when charged quark degrees of freedom come into play. To make explicit estimates we extend the previously formulated chiral theory, including quark degrees of freedom, to the case of strong magnetic fields and show that the quark condensate |〈q-barq〉|u,d grows quadratically with eB for eB<0.2 GeV2 and linearly for higher field values. These results agree quantitatively with recent lattice data and differ from χPT predictions

  9. Chiral Dynamics and Dubna-Mainz-Taipei Dynamical Model for Pion-Photoproduction Reaction

    CERN Document Server

    Yang, Shin Nan

    2010-01-01

    We demonstrate that the Dubna-Mainz-Taipei (DMT) meson-exchange dynamical model, which starts from an effective chiral Lagrangian, for pion photoproduction provides an excellent and economic framework to describe both the pi^0 threshold production and the Delta deformation, two features dictated by chiral dynamics.

  10. Covariant meson-baryon scattering with chiral and large Nc constraints

    International Nuclear Information System (INIS)

    We give a review of recent progress on the application of the relativistic chiral SU(3) Lagrangian to meson-baryon scattering. It is shown that a combined chiral and 1/Nc expansion of the Bethe-Salpeter interaction kernel leads to a good description of the kaon-nucleon, antikaon-nucleon and pion-nucleon scattering data typically up to laboratory momenta of plab ≅ 500 MeV. We solve the covariant coupled channel Bethe-Salpeter equation with the interaction kernel truncated to chiral order Q3 where we include only those terms which are leading in the large Nc limit of QCD. (orig.)

  11. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    CERN Document Server

    Cassing, W; Moreau, P; Bratkovskaya, E L

    2015-01-01

    We study the production of strange hadrons in nucleus-nucleus collisions from 4 to 160 A GeV within the Parton-Hadron-String Dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. Especially the $K^+/\\pi^+$ and the $(\\Lambda+\\Sigma^0)/\\pi^-$ ratios in central Au+Au collisions are found to provide information on the relative importance of both transitions. The modelling of chiral symmetry restoration is driven by the pion-nucleon $\\Sigma$-term in the computation of the quark scalar condensate $$ that serves as an order parameter for CSR and also scales approximately with the effective quark masses $m_s$ and $m_q$. Furthermore, the nucleon scalar density $\\rho_s$, which also enters the computation of $$, is evaluated within the nonlinear $\\sigma-\\omega$ model which is constraint by Dirac-Brueckner calculations and low energy...

  12. Chiral Prediction for the $\\pi N$ Scattering Length $a^-$ to Order ${\\cal O}(M_\\pi^4)$

    OpenAIRE

    Bernard, V.; Kaiser, N.(Physik Department T39, Technische Universität München, Garching, D-85747, Germany); Meißner, Ulf-G.

    1995-01-01

    We evaluate the S-wave pion--nucleon scattering length $a^-$ in the framework of heavy baryon chiral perturbation theory up--to--and--including terms of order $M_\\pi^4$. We show that the order $M_\\pi^4$ piece of the isovector amplitude at threshold, $T^-_{\\rm thr}$, vanishes exactly. We predict for the isovector scattering length, $0.088 \\, M_{\\pi^+}^{-1} \\le a^- \\le 0.096 \\, M_{\\pi^+}^{-1}$.

  13. Measurement of observables in the pion-nucleon system and investigation of charge symmetry in 3H and 3He: Progress report, 1 March 1987-1 December 1987

    International Nuclear Information System (INIS)

    This report describes the progress made in the past year and future plans for the pion scattering programs in which Abilene Christian University is collaborating. The experiments are conducted at the Clinton P. Anderson Meson Physics Facility at Los Alamos (LAMPF). The experiments are performed in collaboration with UCLA, George Washington University, LAMPF Groups MP-4, MP-10 and MP-13, and Catholic University. The measurements include: (1) a complete set of observables in the pion-nucleon system in the momentum interval 400 to 700 MeV/c, (2) differential cross sections at low energy for pion-nucleon charge exchange, and (3) elastic and inelastic scattering of π/sup +-/ on 3H and 3He

  14. New method for dynamical fermions and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    The reasons for the feasibility of the Microcanonical Fermionic Average (M F A) approach to lattice gauge theory with dynamical fermions are discussed. We then present a new exact algorithm, which is free from systematic errors and convergent even in the chiral limit. (orig.)

  15. Nonlinear Boundary Dynamics and Chiral Symmetry in Holographic QCD

    CERN Document Server

    Albrecht, Dylan; Wilcox, Ronald J

    2011-01-01

    In the hard-wall model of holographic QCD we find that nonlinear boundary dynamics are required in order to maintain the correct pattern of explicit and spontaneous chiral symmetry breaking beyond leading order in the pion fields. With the help of a field redefinition, we demonstrate that the requisite nonlinear boundary conditions are consistent with the Sturm-Liouville structure required for the Kaluza-Klein decomposition of bulk fields. Observables insensitive to the chiral limit receive only small corrections in the improved description, and classical calculations in the hard-wall model remain surprisingly accurate.

  16. Three-nucleon reactions with chiral dynamics*

    Directory of Open Access Journals (Sweden)

    Witała H.

    2014-03-01

    Full Text Available Faddeev calculations using the chiral three-nucleon force at next-to-next-to-next-to-leading-order show that this force is not able to provide an explanation for the low-energy Ay puzzle. Also the large discrepancies between data and theory for the symmetric-space-star and for the neutron-neutron quasi-free-scattering cross sections in low energy neutron-deuteron breakup cannot be explained by that three-nucleon force. The discrepancy for the neutron-neutron quasi-free-scattering cross section seems to require a modification of the 1S0 neutron-neutron force.

  17. Three-nucleon reactions with chiral dynamics*

    OpenAIRE

    Witała H.; Golak J.; Skibiński R.; Topolnicki K.

    2014-01-01

    Faddeev calculations using the chiral three-nucleon force at next-to-next-to-next-to-leading-order show that this force is not able to provide an explanation for the low-energy Ay puzzle. Also the large discrepancies between data and theory for the symmetric-space-star and for the neutron-neutron quasi-free-scattering cross sections in low energy neutron-deuteron breakup cannot be explained by that three-nucleon force. The discrepancy for the neutron-neutron quasi-free-scattering cross sectio...

  18. Chiral Dynamics of Baryons from String Theory

    CERN Document Server

    Hong, D K; Yee, H U; Yi, P; Hong, Deog Ki; Rho, Mannque; Yee, Ho-Ung; Yi, Piljin

    2007-01-01

    We study baryons in an AdS/CFT model of QCD by Sakai and Sugimoto, realized as small instantons with fundamental string hairs. We introduce an effective field theory of the baryons in the five-dimensional setting, and show that the instanton interpretation implies a particular magnetic coupling. Dimensional reduction to four dimensions reproduces the usual chiral effective action, and in particular we estimate the axial coupling $g_A$ between baryons and pions and the magnetic dipole moments, both of which are proportional to $N_c$. We extrapolate to finite $N_c$ and discuss subleading corrections.

  19. Fluctuations and correlations in Polyakov loop extended chiral fluid dynamics

    OpenAIRE

    Herold, Christoph; Bleicher, Marcus; Nahrgang, Marlene

    2013-01-01

    We study nonequilibrium effects at the QCD phase transition within the framework of Polyakov loop extended chiral fluid dynamics. The quark degrees of freedom act as a locally equilibrated heat bath for the sigma field and a dynamical Polyakov loop. Their evolution is described by a Langevin equation with dissipation and noise. At a critical point we observe the formation of long-range correlations after equilibration. During a hydrodynamical expansion nonequilibrium fluctuations are enhanced...

  20. Topics in three flavor chiral dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Nissler, Robin

    2007-07-01

    In this work, we investigate several processes in low-energy hadron physics by combining chiral perturbation theory (ChPT), the effective field theory of quantum chromodynamics (QCD) at low energies, with a unitarization method based on the Bethe-Salpeter equation. Such so-called chiral unitary approaches are capable of describing processes in the three flavor sector of the strong interaction which involve substantial effects from final-state interactions and the excitation of (subthreshold) resonances, a domain where the perturbative framework of ChPT is not applicable. In part I of this work we study {eta} and {eta}' decays which constitute a perfect tool to examine symmetries and symmetry breaking patterns of QCD being incorporated in a model-independent fashion in ChPT. In particular, these decays allow to investigate the breaking of isospin symmetry due to the light quark mass difference m{sub d}-m{sub u} as well as effects of anomalies stemming from the quantum nature of QCD. For these reasons the decays of {eta} and {eta}' have also attracted considerable experimental interest. They are currently under investigation at several facilities including KLOE rate at DA{phi}NE, Crystal Ball at MAMI, WASA-at-COSY, VES at IHEP, and CLEO at CESR. In part II we investigate low-energy meson-baryon scattering in the strangeness S=-1 sector which is dominated by the {lambda}(1405) resonance immediately below the anti KN threshold. The anti KN interaction below threshold is of relevance for the quest of possible deeply bound anti K-nuclear clusters and has recently received an additional tight constraint: the K{sup -}p scattering length as determined from kaonic hydrogen by the KEK and the DEAR collaborations. Apart from successfully describing a large amount of experimental data and furnishing predictions for yet unmeasured quantities, our calculations allow to interrelate different experimental observables providing important consistency tests of experiments. E

  1. Chiral perturbation theory with nucleons

    International Nuclear Information System (INIS)

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon

  2. Intrinsic transverse momentum and dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Christian Weiss, Peter Schweitzer, Mark Strikman

    2013-01-01

    We study the effect of QCD vacuum structure on the intrinsic transverse momentum distribution of partons in the nucleon at a low scale. The dynamical breaking of chiral symmetry is caused by non-perturbative interactions at distances of the order rho ~ 0.2 - 0.3 fm, much smaller than the typical nucleon size R ~ 1 fm, resulting in a two-scale picture of nucleon structure. Using an effective dynamical model based on chiral constituent quark degrees of freedom and the 1/N_c expansion (chiral quark-soliton model), we calculate the transverse momentum distribution of quarks and antiquarks at a low scale. The distribution of valence quarks is localized at p_T ~ 1/R. The distribution of flavor-singlet unpolarized sea quarks exhibits a power-like tail extending up to the chiral-symmetry-breaking scale 1/{rho}. A similar tail is present in the flavor-nonsinglet polarized sea. These features are model-independent and represent the imprint of the QCD vacuum on the nucleon's partonic structure. At the level of the nucleon's light-cone wave function, we show that sea quarks partly exist in correlated pairs of transverse size {rho} << R, analogous to short-range NN correlations in nuclei. We discuss the implications of our findings for the transverse momentum distributions in hard scattering processes (semi-inclusive DIS, Drell-Yan pair production) and possible experimental tests of the non-perturbative parton correlations induced by QCD vacuum structure.

  3. Phenomenological dynamics: From Navier–Stokes to chiral granular gases

    Indian Academy of Sciences (India)

    T C Lubensky

    2005-05-01

    This paper reviews the derivation of equations for slow dynamical processes in a variety of systems, including rotating rigid rotors, crystalline solids, isotropic and nematic elastomers, gels in an isotropic fluid background, and nematic liquid crystals. It presents a recent derivation of the Leslie–Ericksen equations for the dynamics of nematic liquid crystals that clarifies the nature of the nonhydrodynamic modes in these equations. As a final example of the phenomenological approach to slow dynamical processes, it discusses the dynamics of a driven nonequilibrium system: a two-dimensional gas of chiral `rattlebacks' on a vibrating substrate.

  4. Single-particle potential in a chiral approach to nuclear matter including short-range NN-terms

    International Nuclear Information System (INIS)

    We extend a recent chiral approach to nuclear matter of Lutz et al. (Phys. Lett. B 474,7(2000)) by calculating the underlying (complex-valued) single-particle potential U(p,kf)+iW(p,kf). The potential for a nucleon at the bottom of the Fermi sea, U(0,kf0)=- 20.0 MeV, comes out as much too weakly attractive in this approach. Even more seriously, the total single-particle energy does not rise monotonically with the nucleon momentum p, implying a negative effective nucleon mass at the Fermi surface. Also, the imaginary single-particle potential, W(0,kf0)=51.1 MeV, is too large. More realistic single-particle properties together with a good nuclear-matter equation of state can be obtained if the short-range contributions of non-pionic origin are treated in mean-field approximation (i.e. if they are not further iterated with 1π-exchange). We also consider the equation of state of pure neutron matter anti En(kn) and the asymmetry energy A(kf) in that approach. The downward bending of these quantities above nuclear-matter saturation density seems to be a generic feature of perturbative chiral pion-nucleon dynamics. (orig.)

  5. Continuum strong QCD: Confinement and dynamical chiral symmetry breaking

    International Nuclear Information System (INIS)

    Continuum strong QCD is the application of models and continuum quantum field theory to the study of phenomena in hadronic physics, which includes; e.g., the spectrum of QCD bound states and their interactions. Herein the author provides a Dyson-Schwinger equation perspective, focusing on qualitative aspects of confinement and dynamical chiral symmetry breaking in cold, sparse QCD, and also elucidating consequences of the axial-vector Ward-Takahashi identity and features of the heavy-quark limit

  6. Pion Effect of Nuclear Matter in a Chiral Sigma Model

    Institute of Scientific and Technical Information of China (English)

    HU Jin-niu; Y.Ogawa; H.Toki; A.Hosaka; SHEN Hong

    2009-01-01

    We develop a new framework for the study of the nuclear matter based on the linear sigma model.We introduce a completely new viewpoint on the treatment of the nuclear matter with the inclusion of the pion.We extend the relativistic chiral mean field model by using the similar method in the tensor optimized shell model.We also regulate the pion-nucleon interaction by considering the form-factor and short range repulsion effects.We obtain the equation of state of nuclear matter and study the importance of the pion effect.

  7. Chiral symmetry restoration versus deconfinement in heavy-ion collisions at high baryon density

    Science.gov (United States)

    Cassing, W.; Palmese, A.; Moreau, P.; Bratkovskaya, E. L.

    2016-01-01

    We study the production of strange hadrons in nucleus-nucleus collisions from 4 to 160 A GeV within the parton-hadron-string dynamics (PHSD) transport approach that is extended to incorporate essentials aspects of chiral symmetry restoration (CSR) in the hadronic sector (via the Schwinger mechanism) on top of the deconfinement phase transition as implemented in PHSD. Especially the K+/π+ and the (Λ +Σ0) /π- ratios in central Au+Au collisions are found to provide information on the relative importance of both transitions. The modeling of chiral symmetry restoration is driven by the pion-nucleon Σ term in the computation of the quark scalar condensate that serves as an order parameter for CSR and also scales approximately with the effective quark masses ms and mq. Furthermore, the nucleon scalar density ρs, which also enters the computation of , is evaluated within the nonlinear σ -ω model which is constrained by Dirac-Brueckner calculations and low-energy heavy-ion reactions. The Schwinger mechanism (for string decay) fixes the ratio of strange to light quark production in the hadronic medium. We find that above ˜80 A GeV the reaction dynamics of heavy nuclei is dominantly driven by partonic degrees of freedom such that traces of the chiral symmetry restoration are hard to identify. Our studies support the conjecture of "quarkyonic matter" in heavy-ion collisions from about 5 to 40 A GeV and provide a microscopic explanation for the maximum in the K+/π+ ratio at about 30 A GeV, which only shows up if a transition to partonic degrees of freedom is incorporated in the reaction dynamics and is discarded in the traditional hadron-string models.

  8. Dynamical chiral symmetry breaking in unquenched QED3

    International Nuclear Information System (INIS)

    We investigate dynamical chiral symmetry breaking in unquenched QED3 using the coupled set of Dyson-Schwinger equations for the fermion and photon propagators. For the fermion-photon interaction we employ an ansatz which satisfies its Ward-Green-Takahashi identity. We present self-consistent analytical solutions in the infrared as well as numerical results for all momenta. In Landau gauge, we find a phase transition at a critical number of flavors of Nfcrit≅4. In the chirally symmetric phase the infrared behavior of the propagators is described by power laws with interrelated exponents. For Nf=1 and Nf=2 we find small values for the chiral condensate in accordance with bounds from recent lattice calculations. We investigate the Dyson-Schwinger equations in other linear covariant gauges as well. A comparison of their solutions to the accordingly transformed Landau gauge solutions shows that the quenched solutions are approximately gauge covariant, but reveals a significant amount of violation of gauge covariance for the unquenched solutions

  9. Deracemization of Axially Chiral Nicotinamides by Dynamic Salt Formation with Enantiopure Dibenzoyltartaric Acid (DBTA

    Directory of Open Access Journals (Sweden)

    Fumitoshi Yagishita

    2013-11-01

    Full Text Available Dynamic atroposelective resolution of chiral salts derived from oily racemic nicotinamides and enantiopure dibenzoyltartaric acid (DBTA was achieved by crystallization. The absolute structures of the axial chiral nicotinamides were determined by X-ray structural analysis. The chirality could be controlled by the selection of enantiopure DBTA as a chiral auxiliary. The axial chirality generated by dynamic salt formation was retained for a long period after dissolving the chiral salt in solution even after removal of the chiral acid. The rate of racemization of nicotinamides could be controlled based on the temperature and solvent properties, and that of the salts was prolonged compared to free nicotinamides, as the molecular structure of the pyridinium ion in the salts was different from that of acid-free nicotinamides.

  10. Improved constraints on chiral SU(3) dynamics from kaonic hydrogen

    CERN Document Server

    Ikeda, Yoichi; Weise, Wolfram

    2011-01-01

    A new improved study of K^- - proton interactions near threshold is performed using coupled-channels dynamics based on the next-to-leading order chiral SU(3) meson-baryon effective Lagrangian. Accurate constraints are now provided by new high-precision kaonic hydrogen measurements. Together with threshold branching ratios and scattering data, these constraints permit an updated analysis of the complex barK N and pi Sigma coupled-channels amplitudes and an improved determination of the K^- p scattering length, including uncertainty estimates.

  11. Schwinger-Dyson equations: Dynamical Chiral Symmetry Breaking and Confinement

    OpenAIRE

    Roberts, Craig D.(Physics Division, Argonne National Laboratory, Argonne, IL, 60439, USA)

    1993-01-01

    A representative but not exhaustive review of the Schwinger-Dyson equation (SDE) approach to the nonperturbative study of QCD is presented. The main focus is the SDE for the quark self energy but studies of the gluon propagator and quark-gluon vertex are also discussed insofar as they are important to the quark SDE. The scope of this article is the application of these equations to the study of dynamical chiral symmetry breaking, quark confinement and the phenomenology of the spectrum and dyn...

  12. Narrow coherent effects in πNN-dynamics

    International Nuclear Information System (INIS)

    Coherent effect production is considered in πNN-dynamics with resonant pion-nucleon interaction via Brueckner theory and Faddev equations. It is shown that the narrow energy and final momentum dependence can arise in the inelastic S-wave πd-scattering. The energy dependence peculiarities can have a width an order magnitude less than πN-resonance one

  13. Chiral dynamics and operator relations at non-zero chemical potential

    International Nuclear Information System (INIS)

    We discuss Taylor expansions of operator expectation values in QCD with respect to chemical potentials of quarks. Maxwell's relations between coefficients and Ward identities between series are used to relate the operators which give the Taylor coefficients of the series for the chiral condensate, the pseudoscalar susceptibility and the mass dependence of quark number susceptibilities. Through such relations the physics of chiral dynamics are explored. The renormalized expectation values of the chiral condensate and its Taylor coefficients are extracted from simulation

  14. Dynamical simulation of disoriented chiral condensate formation in Bjorken rods

    International Nuclear Information System (INIS)

    Using a semiclassical treatment of the linear σ model, we simulate the dynamical evolution of an initially hot cylindrical rod endowed with a longitudinal Bjorken scaling expansion (a ''Bjorken rod''). The field equation is propagated until full decoupling has occurred and the asymptotic many-body state of free pions is then obtained by a suitable Fourier decomposition of the field and a subsequent stochastic determination of the number of quanta in each elementary mode. The resulting transverse pion spectrum exhibits visible enhancements below 200 MeV due to the parametric amplification caused by the oscillatory relaxation of the chiral order parameter. Ensembles of such final states are subjected to various event-by-event analyses. The factorial moments of the multiplicity distribution suggest that the soft pions are nonstatistical. Furthermore, their emission patterns exhibit azimuthal correlations that have a bearing on the domain size in the source. Finally, the distribution of the neutral pion fraction shows a significant broadening for the soft pions which grows steadily as the number of azimuthal segments is increased. All of these features are indicative of disoriented chiral condensates and it may be interesting to apply similar analyses to actual data from high-energy nuclear collision experiments. (c) 2000 The American Physical Society

  15. Systematic 1/M expansion for spin 3/2 particles in baryon chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Hemmert, T.R.; Holstein, B.R. [Massachusetts Univ., Amherst, MA (United States). Dept. of Physics and Astronomy; Kambor, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1995-12-31

    Starting from a relativistic formulation of the pion-nucleon-delta system, the most general structure of 1/M corrections for a heavy baryon chiral Lagrangian including spin 3/2 resonances is given. The heavy components of relativistic nucleon and delta fields are integrated out and their contributions to the next-to-leading order Lagrangians are constructed explicitly. The effective theory obtained admits a systematic expansion in terms of soft momenta, the pion mass m{sub {pi}} and the delta-nucleon mass difference {Delta}. As an application, neutral pion photoproduction at threshold to third order in this small scale expansion is discussed. (author). 14 refs.

  16. Chiral dynamics and partonic structure at large transverse distances

    Energy Technology Data Exchange (ETDEWEB)

    Strikman, M. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Physics; Weiss, C. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States). Theory Center

    2009-12-30

    In this paper, we study large-distance contributions to the nucleon’s parton densities in the transverse coordinate (impact parameter) representation based on generalized parton distributions (GPDs). Chiral dynamics generates a distinct component of the partonic structure, located at momentum fractions x≲Mπ/MN and transverse distances b~1/Mπ. We calculate this component using phenomenological pion exchange with a physical lower limit in b (the transverse “core” radius estimated from the nucleon’s axial form factor, Rcore=0.55 fm) and demonstrate its universal character. This formulation preserves the basic picture of the “pion cloud” model of the nucleon’s sea quark distributions, while restricting its application to the region actually governed by chiral dynamics. It is found that (a) the large-distance component accounts for only ~1/3 of the measured antiquark flavor asymmetry d¯-u¯ at x~0.1; (b) the strange sea quarks s and s¯ are significantly more localized than the light antiquark sea; (c) the nucleon’s singlet quark size for x<0.1 is larger than its gluonic size, (b2)q+q¯>(b2)g, as suggested by the t-slopes of deeply-virtual Compton scattering and exclusive J/ψ production measured at HERA and FNAL. We show that our approach reproduces the general Nc-scaling of parton densities in QCD, thanks to the degeneracy of N and Δ intermediate states in the large-Nc limit. Finally, we also comment on the role of pionic configurations at large longitudinal distances and the limits of their applicability at small x.

  17. Exact solutions of the field equations for Charap's chiral invariant model of the pion dynamics

    International Nuclear Information System (INIS)

    The field equations for the chiral invariant model of pion dynamics developed by Charap have been revisited. Two new types of solutions of these equations have been obtained. Each type allows infinite number of solutions. It has also been shown that the chiral invariant field equations admit invariance for a transformation of the dependent variables. (author)

  18. Flexible chiral metamaterials with dynamically optical activity and high negative refractive index

    Science.gov (United States)

    Dincer, Furkan; Karaaslan, Muharrem; Unal, Emin; Akgol, Oguzhan; Sabah, Cumali

    2015-06-01

    We demonstrate numerically and experimentally chiral metamaterials (MTMs) based on gammadion-bilayer cross-wires that uniaxially create giant optical activity and tunable circular dichroism as a result of the dynamic design. In addition, the suggested structure gives high negative refractive index due to the large chirality in order to obtain an efficient polarization converter. We also present a numerical analysis in order to show the additional features of the proposed chiral MTM in detail. Therefore, a MTM sensor application of the proposed chiral MTM is introduced and discussed. The presented chiral designs offer a much simpler geometry and more efficient outlines. The experimental results are in a good agreement with the numerical simulation. It can be seen from the results that, the suggested chiral MTM can be used as a polarization converter, sensor, etc. for several frequency regimes.

  19. Time-resolving Attosecond Chiral Dynamics in Molecules with High Harmonic Spectroscopy

    Science.gov (United States)

    Smirnova, O.; Cireasa, R.; Boguslavskiy, A.; Pons, B.; Wong, M. C. H.; Descamps, D.; Petit, S.; Ruf, H.; Thire, N.; Ferre, A.; Suarez, J.; Schmidt, B. E.; Higuet, J.; Alharbi, A. F.; Legare, F.; Blanchet, V.; Fabre, B.; Patchkovskii, S.; Mairesse, Y.; Bhardwaj, R.

    2015-05-01

    We demonstrate extreme chiral sensitivity of high harmonic generation from randomly oriented ensemble of chiral molecules in elliptical mid-infrared fields, and explain the physical mechanism underlying this very strong chiro-optical response. We also use the high harmonic spectra to follow the electronic chiral response with 0.1 femtosecond resolution. We studied two chiral molecules, epoxypropane and fenchone in 1.8 μm, 50 fs, mid-1013 W/cm2 pulses. Very small ellipticity of the incident light, about 1% in the field, is sufficient to induce several percent difference between the high harmonic response of left and right enantiomers. The origin of this effect lies in chiral-sensitive dynamics of the hole created by strong field ionization. Small differences in this dynamics between ionization and recombination are recorded and amplified by several orders of magnitude in high harmonic spectra. Using time-energy mapping we reconstruct sub-femtosecond chiral dynamics and show that the standard measure of the chiral signal is directly proportional to the recombination amplitude to the chiral-sensitive component of the hole wave-packet.

  20. Parity-violating $\\pi NN$ coupling constant from the flavor-conserving effective weak chiral Lagrangian

    CERN Document Server

    Hyun, Chang Ho; Lee, Hee-Jung

    2016-01-01

    We investigate the parity-violating pion-nucleon-nucleon coupling constant $h^1_{\\pi NN}$, based on the chiral quark-soliton model. We employ an effective weak Hamiltonian that takes into account the next-to-leading order corrections from QCD to the weak interactions at the quark level. Using the gradient expansion, we derive the leading-order effective weak chiral Lagrangian with the low-energy constants determined. The effective weak chiral Lagrangian is incorporated in the chiral quark-soliton model to calculate the parity-violating $\\pi NN$ constant $h^1_{\\pi NN}$. We obtain a value of about $10^{-7}$ at the leading order. The corrections from the next-to-leading order reduce the leading order result by about 20~\\%.

  1. Chiral dynamics, structure of Λ(1405), and K¯N phenomenology

    International Nuclear Information System (INIS)

    We investigate the structure of the Λ(1405) resonance and K¯N phenomenology in the perspective of chiral SU(3) dynamics. Utilizing the chiral coupled-channel approach which well describes the K¯N scattering observable, we perform three different analyses to clarify the structure of the Λ(1405) resonance. The results consistently indicate the meson-baryon molecule picture of the Λ(1405). We argue the consequence of the chiral dynamics in K¯N phenomenology and the antikaon bound state in nucleus, emphasizing the important role of the strong πΣ interaction. (author)

  2. Precision spectroscopy of exotic atoms as a tool to test chiral dynamics in nuclei

    International Nuclear Information System (INIS)

    Exotic atoms, or meson-nucleus bound states in more general, are excellent tools for studying chiral dynamics in nuclei, since both the nuclear density and the meson wavefunction are precisely known in these systems. We here discuss pionic hydrogen, deeply-bound pionic atoms, kaonic hydrogen and kaonic helium atoms, with emphasis on experimental details which affect the accuracy of quantitative determination of chiral dynamics in nuclei. (author)

  3. Spontaneous chiral-symmetry breaking of lattice QCD with massless dynamical quarks

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    One of the most challenging issues in QCD is the investigation of spontaneous chiral-symmetry breaking, which is characterized by the non-vanishing chiral condensate when the bare fermion mass is zero. In standard methods of the lattice gauge theory, one has to perform expensive simulations at multiple bare quark masses, and employ some modeled functions to extrapolate the data to the chiral limit. This paper applies the probability distribution function method to computing the chiral condensate in lattice QCD with massless dynamical quarks, without any ambiguous mass extrapolation. The results for staggered quarks indicate that this might be a promising and efficient method for investigating the spontaneous chiral-symmetry breaking in lattice QCD, which deserves further investigation.

  4. Dynamic localization of electronic excitation in photosynthetic complexes revealed with chiral two-dimensional spectroscopy

    Science.gov (United States)

    Fidler, Andrew F.; Singh, Ved P.; Long, Phillip D.; Dahlberg, Peter D.; Engel, Gregory S.

    2014-02-01

    Time-resolved ultrafast optical probes of chiral dynamics provide a new window allowing us to explore how interactions with such structured environments drive electronic dynamics. Incorporating optical activity into time-resolved spectroscopies has proven challenging because of the small signal and large achiral background. Here we demonstrate that two-dimensional electronic spectroscopy can be adapted to detect chiral signals and that these signals reveal how excitations delocalize and contract following excitation. We dynamically probe the evolution of chiral electronic structure in the light-harvesting complex 2 of purple bacteria following photoexcitation by creating a chiral two-dimensional mapping. The dynamics of the chiral two-dimensional signal directly reports on changes in the degree of delocalization of the excitonic states following photoexcitation. The mechanism of energy transfer in this system may enhance transfer probability because of the coherent coupling among chromophores while suppressing fluorescence that arises from populating delocalized states. This generally applicable spectroscopy will provide an incisive tool to probe ultrafast transient molecular fluctuations that are obscured in non-chiral experiments.

  5. Instanton-dyon Ensemble with two Dynamical Quarks: the Chiral Symmetry Breaking

    CERN Document Server

    Larsen, Rasmus

    2015-01-01

    This is the second paper of the series aimed at understanding of the ensemble of the instanton-dyons, now with two flavors of light dynamical quarks. The partition function is appended by the fermionic factor, $(det T)^{N_f}$ and Dirac eigenvalue spectra at small values are derived from the numerical simulation of 64 dyons. Those spectra show clear chiral symmetry breaking pattern at high dyon density. Within current accuracy, the confinement and chiral transitions occur at very similar densities.

  6. Dynamical evolution of the chiral magnetic effect: applications to the quark-gluon plasma

    CERN Document Server

    Manuel, Cristina

    2015-01-01

    We study the dynamical evolution of the so-called chiral magnetic effect in an electromagnetic conductor. To this end, we consider the coupled set of corresponding Maxwell and chiral anomaly equations, and we prove that these can be derived from chiral kinetic theory. After integrating the chiral anomaly equation over space in a closed volume, it leads to a quantum conservation law of the total helicity of the system. A change in the magnetic helicity density comes together with a modification of the chiral fermion density. We study in Fourier space the coupled set of anomalous equations and we obtain the dynamical evolution of the magnetic fields, magnetic helicity density, and chiral fermion imbalance. Depending on the initial conditions we observe how the helicity might be transferred from the fermions to the magnetic fields, or vice versa, and find that the rate of this transfer also depends on the scale of wavelengths of the gauge fields in consideration. We then focus our attention on the quark-gluon pl...

  7. Centre vortices underpin dynamical chiral symmetry breaking in $\\mathrm{SU}(3)$ gauge theory

    CERN Document Server

    Trewartha, Daniel; Leinweber, Derek

    2015-01-01

    The link between dynamical chiral symmetry breaking and centre vortices in the gauge fields of pure $\\mathrm{SU}(3)$ gauge theory is studied using the overlap-fermion quark propagator in Lattice QCD. Overlap fermions provide a lattice realisation of chiral symmetry and consequently offer a unique opportunity to explore the interplay of centre vortices, instantons and dynamical mass generation. Simulations are performed on gauge fields featuring the removal of centre vortices, identified through gauge transformations maximising the center of the gauge group. In contrast to previous results using the staggered-fermion action, the overlap-fermion results illustrate a loss of dynamical chiral symmetry breaking coincident with vortex removal. This result is linked to the overlap-fermion's sensitivity to the subtle manner in which instanton degrees of freedom are compromised through the process of centre vortex removal. Backgrounds consisting solely of the identified centre vortices are also investigated. After smo...

  8. Instantons: Dynamical mass generation, chiral ward identities and the topological charge correlation function

    International Nuclear Information System (INIS)

    When dynamical mass generation resulting from the breakdown of chiral symmetry is taken into account, instanton dynamics treated within the dilute gas approximation may satisfy the constraints on the quark condensates and the topological charge correlation function derived by Crewther from an analysis of the chiral Ward identities assuming the absence of a physical axial U(1) Goldstone boson. From a consideration of the contribution of the eta' to the topological charge correlation function, a relationship is derived in which msub(eta')2fsub(eta')2 is proportional to the vacuum energy density. (orig.)

  9. Symmetry-adapted non-equilibrium molecular dynamics of chiral carbon nanotubes under tensile loading

    Science.gov (United States)

    Aghaei, Amin; Dayal, Kaushik

    2011-06-01

    We report on non-equilibrium molecular dynamics calculations of chiral single-wall carbon nanotubes using the framework of Objective Structures. This enables us to adapt molecular dynamics to the symmetry of chiral nanotubes and efficiently simulate these systems with small unit cells. We outline the method and the adaptation of a conventional thermostat and barostat to this setting. We then apply the method in order to examine the behavior of nanotubes with various chiralities subject to a constant extensional strain rate. We examine the effects of temperature, strain rate, and pre-compression/pre-tension. We find a range of failure mechanisms, including the formation of Stone-Wales defects, the opening of voids, and the motion of atoms out of the cross-section.

  10. Chiral Dynamics in Pion-Photon Reactions Habilitation

    CERN Document Server

    Friedrich, Jan Michael

    As the lightest particle of the strong force, the pion plays a central role in the field of strong interactions, and understanding its properties is of prime relevance for understanding the strong interaction in general. The low-energy behaviour of pions is of particular interest. Although the quark-gluon substructure and their quantum chromodynamics is not apparent then, this specific inner structure causes the presence of approximate symmetries in pion-pion interactions and in pion decays, which gives rise to the systematic description of processes involving pions in terms of few low-energy constants. Specifically, the chiral symmetry and its spontaneous and explicit breaking, treated in chiral perturbation theory (ChPT), leads to firm predictions for low-energy properties of the pion. To those belong the electromagnetic polarisabilities of the pion, describing the leading-order structure effect in pion Compton scattering. The research presented in this work is concerned with the interaction of pions and ph...

  11. The origin of chiral discrimination: supersonic molecular beam experiments and molecular dynamics simulations of collisional mechanisms

    International Nuclear Information System (INIS)

    The target of the present paper is the study of chirality effects in molecular dynamics from both a theoretical and an experimental point of view under the hypothesis of a molecular dynamics mechanism as the origin of chiral discrimination. This is a fundamental problem per se, and of possible relevance for the problem of the intriguing homochirality in Nature, so far lacking satisfactory explanations. We outline the steps that have been taken so far toward this direction, motivated by various experimental studies of supersonic molecular beams carried out in this laboratory, such as the detection of aligned oxygen in gaseous streams and further evidence on nitrogen, benzene and various hydrocarbons, showing the insurgence of molecular orientation in the dynamics of molecules in flows and in molecular collisions. Chiral effects are theoretically demonstrated to show up in the differential scattering of oriented molecules, also when impinging on surfaces. Focus on possible mechanisms for chiral bio-stereochemistry of oriented reactants may be of pre-biotical interest, for example when flowing in atmospheres of rotating bodies, specifically the planet Earth, as well as in vortex motions of celestial objects. Molecular dynamics simulations and experimental verifications of the hypothesis are reviewed and objectives of future research activity proposed.

  12. The origin of chiral discrimination: supersonic molecular beam experiments and molecular dynamics simulations of collisional mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aquilanti, Vincenzo; Grossi, Gaia; Lombardi, Andrea; Maciel, Glauciete S; Palazzetti, Federico [Dipartimento di Chimica, Universita di Perugia, Via Elce di Sotto 8, 06123 Perugia (Italy)], E-mail: abulafia@dyn.unipg.it

    2008-10-15

    The target of the present paper is the study of chirality effects in molecular dynamics from both a theoretical and an experimental point of view under the hypothesis of a molecular dynamics mechanism as the origin of chiral discrimination. This is a fundamental problem per se, and of possible relevance for the problem of the intriguing homochirality in Nature, so far lacking satisfactory explanations. We outline the steps that have been taken so far toward this direction, motivated by various experimental studies of supersonic molecular beams carried out in this laboratory, such as the detection of aligned oxygen in gaseous streams and further evidence on nitrogen, benzene and various hydrocarbons, showing the insurgence of molecular orientation in the dynamics of molecules in flows and in molecular collisions. Chiral effects are theoretically demonstrated to show up in the differential scattering of oriented molecules, also when impinging on surfaces. Focus on possible mechanisms for chiral bio-stereochemistry of oriented reactants may be of pre-biotical interest, for example when flowing in atmospheres of rotating bodies, specifically the planet Earth, as well as in vortex motions of celestial objects. Molecular dynamics simulations and experimental verifications of the hypothesis are reviewed and objectives of future research activity proposed.

  13. Molecular Dynamic Study for Chiral Discrimination of a -Phenylethylamine by Modified Cyclodextrin in Gas Chromatography

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A molecular dynamic method in conjunction with a statistic test has been utilized to model chiral recognition of a -phenylethylamine on heptakis (2,6-di-O-butyl-3-O-butyryl)-b -cyclodextrin in gas chromatography. The modelling data correlated with the chromatographic elution order, and indicated that the preferred site of a -phenylethylamine is the interior of cavity.

  14. Explicit and Dynamical Chiral Symmetry Bresking in an Effective Quark-Quark Interaction Model

    Institute of Scientific and Technical Information of China (English)

    宗红石; 吴小华; 侯丰尧; 赵恩广

    2004-01-01

    A method for obtaining the small current quark mass effect on the dressed quark propagator from an effective quark-quark interaction model is developed. Within this approach both the explicit and dynamical chiral symmetry breakings are analysed. A comparison with the previous results is given.

  15. Dynamical quarks effects on the gluon propagation and chiral symmetry restoration

    CERN Document Server

    Bashir, A; Rodríguez-Quintero, J

    2014-01-01

    We exploit the recent lattice results for the infrared gluon propagator with light dynamical quarks and solve the gap equation for the quark propagator. Chiral symmetry breaking and confinement (intimately tied with the analytic properties of QCD Schwinger functions) order parameters are then studied.

  16. Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups

    CERN Document Server

    Shi, Yan-Liang

    2016-01-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  17. Dynamical chiral symmetry breaking and weak nonperturbative renormalization group equation in gauge theory

    CERN Document Server

    Aoki, Ken-Ichi; Sato, Daisuke

    2016-01-01

    We analyze the dynamical chiral symmetry breaking in gauge theory with the nonperturbative renormalization group equation (NPRGE), which is a first order nonlinear partial differential equation (PDE). In case that the spontaneous chiral symmetry breaking occurs, the NPRGE encounters some non-analytic singularities at the finite critical scale even though the initial function is continuous and smooth. Therefore there is no usual solution of the PDE beyond the critical scale. In this paper, we newly introduce the notion of a weak solution which is the global solution of the weak NPRGE. We show how to evaluate the physical quantities with the weak solution.

  18. Pion-photon reactions and chiral dynamics in Primakoff processes at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Friedrich, Jan Michael [Physik-Department, Technische Universität München (Germany)

    2016-01-22

    With the COMPASS experiment at CERN, pion-photon reactions are investigated via the Primakoff effect, implying that high-energetic pions react with the quasi-real photon field surrounding the target nuclei. The production of a single hard photon in such a pion scattering at lowest momentum transfer to the nucleus is related to pion Compton scattering. From the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from chiral perturbation theory. In the same data taking, reactions with neutral and charged pions in the final state are measured and analyzed. At low energy in the pion-photon centre-of-momentum system, these reactions are governed by chiral dynamics and contain information relevant for chiral perturbation theory. At higher energies, resonances are produced and their radiative coupling is investigated.

  19. Pion-photon reactions and chiral dynamics in Primakoff processes at COMPASS

    International Nuclear Information System (INIS)

    With the COMPASS experiment at CERN, pion-photon reactions are investigated via the Primakoff effect, implying that high-energetic pions react with the quasi-real photon field surrounding the target nuclei. The production of a single hard photon in such a pion scattering at lowest momentum transfer to the nucleus is related to pion Compton scattering. From the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from chiral perturbation theory. In the same data taking, reactions with neutral and charged pions in the final state are measured and analyzed. At low energy in the pion-photon centre-of-momentum system, these reactions are governed by chiral dynamics and contain information relevant for chiral perturbation theory. At higher energies, resonances are produced and their radiative coupling is investigated

  20. Chiral symmetry breaking with a confining propagator and dynamically massive gluons

    OpenAIRE

    Natale, A. A.; Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil); Machado, F. A.

    2011-01-01

    Chiral symmetry breaking in QCD is studied introducing a confining effective propagator, as proposed recently by Cornwall, and considering the effect of dynamically massive gluons. The effective confining propagator has the form $1/(k^2+m^2)^2$ and we study the bifurcation equation finding limits on the parameter $m$ below which a satisfactory fermion mass solution is generated. Since the coupling constant and gluon propagator are damped in the infrared, due to the presence of a dynamical glu...

  1. Dynamical chiral symmetry breaking and confinement : its interrelation and effects on the hadron mass spectrum

    International Nuclear Information System (INIS)

    Within the framework of this thesis, the interrelation between the two characteristic phenomena of quantum chromodynamics (QCD), i.e., dynamical chiral symmetry breaking and confinement, is investigated. To this end, we apply lattice gauge field theory techniques and adopt a method to artificially restore the dynamically broken chiral symmetry. The low-mode part of the Dirac eigenspectrum is tied to the dynamical breaking of the chiral symmetry according to the Banks--Casher relation. Utilizing two-flavor dynamical lattice gauge field configurations, we construct valence quark propagators that exclude a variable sized part of the low-mode Dirac spectrum, with the aim of using these as an input for meson and baryon interpolating fields. Subsequently, we explore the behavior of ground and excited states of the low-mode truncated hadrons using the variational analysis method. We look for the existence of confined hadron states and extract effective masses where applicable. Moreover, we explore the evolution of the quark wavefunction renormalization function and the renormalization point invariant mass function of the quark propagator under Dirac low-mode truncation in a gauge fixed setting. Motivated by the necessity of fixing the gauge in the aforementioned study of the quark propagator, we also developed a flexible high performance code for lattice gauge fixing, accelerated by graphic processing units (GPUs) using NVIDIA CUDA (Compute Unified Device Architecture). Lastly, more related but unpublished work on the topic is presented. This includes a study of the locality violation of low-mode truncated Dirac operators, a discussion of the possible extension of the low-mode truncation method to the sea quark sector based on a reweighting scheme, as well as the presentation of an alternative way to restore the dynamically broken chiral symmetry. (author)

  2. Evidence that centre vortices underpin dynamical chiral symmetry breaking in SU (3) gauge theory

    Science.gov (United States)

    Trewartha, Daniel; Kamleh, Waseem; Leinweber, Derek

    2015-07-01

    The link between dynamical chiral symmetry breaking and centre vortices in the gauge fields of pure SU (3) gauge theory is studied using the overlap-fermion quark propagator in Lattice QCD. Overlap fermions provide a lattice realisation of chiral symmetry and consequently offer a unique opportunity to explore the interplay of centre vortices, instantons and dynamical mass generation. Simulations are performed on gauge fields featuring the removal of centre vortices, identified through gauge transformations maximising the center of the gauge group. In contrast to previous results using the staggered-fermion action, the overlap-fermion results illustrate a loss of dynamical chiral symmetry breaking coincident with vortex removal. This result is linked to the overlap-fermion's sensitivity to the subtle manner in which instanton degrees of freedom are compromised through the process of centre vortex removal. Backgrounds consisting solely of the identified centre vortices are also investigated. After smoothing the vortex-only gauge fields, we observe dynamical mass generation on the vortex-only backgrounds consistent within errors with the original gauge-field ensemble following the same smoothing. Through visualizations of the instanton-like degrees of freedom in the various gauge-field ensembles, we find evidence of a link between the centre vortex and instanton structure of the vacuum. While vortex removal destabilizes instanton-like objects under O (a4)-improved cooling, vortex-only backgrounds provide gauge-field degrees of freedom sufficient to create instantons upon cooling.

  3. Sea quark transverse momentum distributions and dynamical chiral symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Schweitzer, Peter [Univ. of Connecticut, Storrs, CT (United States); Strikman, Mark [Penn State Univ., State College, PA (United States); Weiss, Christian [JLAB Newport News, VA (United States)

    2014-01-01

    Recent theoretical studies have provided new insight into the intrinsic transverse momentum distributions of valence and sea quarks in the nucleon at a low scale. The valence quark transverse momentum distributions (q - qbar) are governed by the nucleon's inverse hadronic size R{sup -1} ~ 0.2 GeV and drop steeply at large p{sub T}. The sea quark distributions (qbar) are in large part generated by non-perturbative chiral-symmetry breaking interactions and extend up to the scale rho{sup -1} ~ 0.6 GeV. These findings have many implications for modeling the initial conditions of perturbative QCD evolution of TMD distributions (starting scale, shape of p{sub T}. distributions, coordinate-space correlation functions). The qualitative difference between valence and sea quark intrinsic p{sub T}. distributions could be observed experimentally, by comparing the transverse momentum distributions of selected hadrons in semi-inclusive deep-inelastic scattering, or those of dileptons produced in pp and pbar-p scattering.

  4. Effects of carrier gas dynamics on single wall carbon nanotube chiral distributions during laser vaporization synthesis.

    Science.gov (United States)

    Landi, Brian J; Raffaelle, Ryne P

    2007-03-01

    We report on the utility of modifying the carrier gas dynamics during laser vaporization synthesis to alter the single wall carbon nanotube (SWNT) chiral distribution. SWNTs produced from an Alexandrite laser using conventional Ni/Co catalysts demonstrate marked differences in chiral distributions due to effects of helium gas and reactor chamber pressure, in comparison to conventional subambient pressures and argon gas. Optical absorption and Raman spectroscopies confirm that the SWNT diameter distribution decreases under higher pressure and with helium gas as opposed to argon. Fluorescence mapping of the raw soots in sodium dodecylbenzene sulfonate (SDBS)-D2O was used to estimate the relative (n, m)-SWNT content of the semiconducting types. A predominance of type II structures for each synthesis condition was observed. The distribution of SWNT chiral angles was observed to shift away from near-armchair configurations under higher pressure and with helium gas. These results illustrate the importance of gas type and pressure on the condensation/cooling rate, which allows for synthesis of specific SWNT chiral distributions. PMID:17450850

  5. Towards Molecular Dynamics Simulations of Chiral Room-Temperature Ionic Liquids

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Chval, Z.; Storch, Jan; Izák, Pavel

    2014-01-01

    Roč. 189, SI (2014), s. 85-94. ISSN 0167-7322 R&D Projects: GA ČR(CZ) GAP106/12/0569; GA MŠk LH12020 Institutional support: RVO:67985858 Keywords : chiral room-temperature ionic liquid * molecular dynamics simulation * non-polarizable fully flexible all- atom force field Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.515, year: 2014

  6. Chiral symmetry breaking with a confining propagator and dynamically massive gluons

    CERN Document Server

    Natale, A A; Machado, F A

    2011-01-01

    Chiral symmetry breaking in QCD is studied introducing a confining effective propagator, as proposed recently by Cornwall, and considering the effect of dynamically massive gluons. The effective confining propagator has the form $1/(k^2+m^2)^2$ and we study the bifurcation equation finding limits on the parameter $m$ below which a satisfactory fermion mass solution is generated. Since the coupling constant and gluon propagator are damped in the infrared, due to the presence of a dynamical gluon mass, the major part of the chiral breaking is only due to the confining propagator and related to the low momentum region of the gap equation. We study the asymptotic behavior of the gap equation containing this confinement effect and massive gluon exchange, and find that the symmetry breaking can be approximated by an effective four-fermion interaction generated by the confining propagator. We compute some QCD chiral parameters as a function of $m$, finding values compatible with the experimental data. We find a simp...

  7. First Measurement of Chiral Dynamics in $\\pi^-\\gamma \\to \\pi^-\\pi^-\\pi^+$

    CERN Document Server

    Adolph, C; Alexakhin, V Yu; Alexandrov, Yu; Alexeev, G D; Amoroso, A; Antonov, A A; Austregesilo, A; Badelek, B; Balestra, F; Barth, J; Baum, G; Bedfer, Y; Bernhard, J; Bertini, R; Bettinelli, M; Bicker, K A; Birsa, R; Bisplinghoff, J; Bordalo, P; Bradamante, F; Braun, C; Bravar, A; Bressan, A; Burtin, E; Chaberny, D; Chiosso, M; Chung, S U; Cicuttin, A; Crespo, M L; Dalla Torre, S; Das, S; Dasgupta, S S; Denisov, O Yu; Dhara, L; Donskov, S V; Doshita, N; Duic, V; Dunnweber, W; Dziewiecki, M; Efremov, A; Elia, C; Eversheim, P D; Eyrich, W; Faessler, M; Ferrero, A; Filin, A; Finger, M; Finger, M; Fischer, H; Franco, C; du Fresne von Hohenesche, N; Friedrich, J M; Garfagnini, R; Gautheron, F; Gavrichtchouk, O P; Gazda, R; Gerassimov, S; Geyer, R; Giorgi, M; Gnesi, I; Gobbo, B; Goertz, S; Grabmuller, S; Grasso, A; Grube, B; Gushterski, R; Guskov, A; Haas, F; von Harrach, D; Hasegawa, T; Heinsius, F H; Herrmann, F; Hess, C; Hinterberger, F; Horikawa, N; Hoppner, Ch; d'Hose, N; Huber, S; Ishimoto, S; Ivanov, O; Ivanshin, Yu; Iwata, T; Jahn, R; Jasinski, P; Jegou, G; Joosten, R; Kabuss, E; Kang, D; Ketzer, B; Khaustov, G V; Khokhlov, Yu A; Kisselev, Yu; Klein, F; Klimaszewski, K; Koblitz, S; Koivuniemi, J H; Kolosov, V N; Kondo, K; Konigsmann, K; Konorov, I; Konstantinov, V F; Korzenev, A; Kotzinian, A M; Kouznetsov, O; Kramer, M; Kroumchtein, Z V; Kunne, F; Kurek, K; Lauser, L; Lednev, A A; Lehmann, A; Levorato, S; Lichtenstadt, J; Maggiora, A; Magnon, A; Makke, N; Mallot, G K; Mann, A; Marchand, C; Martin, A; Marzec, J; Massmann, F; Matsuda, T; Meyer, W; Michigami, T; Mikhailov, Yu V; Moinester, M A; Morreale, A; Mutter, A; Nagaytsev, A; Nagel, T; Nerling, F; Neubert, S; Neyret, D; Nikolaenko, V I; Nowak, W D; Nunes, A S; Olshevsky, A G; Ostrick, M; Padee, A; Panknin, R; Panzieri, D; Parsamyan, B; Paul, S; Perevalova, E; Pesaro, G; Peshekhonov, D V; Piragino, G; Platchkov, S; Pochodzalla, J; Polak, J; Polyakov, V A; Pontecorvo, G; Pretz, J; Quintans, C; Rajotte, J F; Ramos, S; Rapatsky, V; Reicherz, G; Richter, A; Rocco, E; Rondio, E; Rossiyskaya, N S; Ryabchikov, D I; Samoylenko, V D; Sandacz, A; Sapozhnikov, M G; Sarkar, S; Savin, I A; Sbrizzai, G; Schiavon, P; Schill, C; Schluter, T; Schmitt, L; Schonning, K; Schopferer, S; Schroder, W; Shevchenko, O Yu; Siebert, H W; Silva, L; Sinha, L; Sissakian, A N; Slunecka, M; Smirnov, G I; Sosio, S; Sozzi, F; Srnka, A; Stolarski, M; Sulc, M; Sulej, R; Sznajder, P; Takekawa, S; Ter Wolbeek, J; Tessaro, S; Tessarotto, F; Teufel, A; Tkatchev, L G; Uhl, S; Uman, I; Vandenbroucke, M; Virius, M; Vlassov, N V; Windmolders, R; Wislicki, W; Wollny, H; Zaremba, K; Zavertyaev, M; Zemlyanichkina, E; Ziembicki, M; Zhuravlev, N; Zvyagin, A

    2012-01-01

    The COMPASS collaboration at CERN has investigated the $\\pi^-\\gamma \\to \\pi^-\\pi^-\\pi^+$ reaction at center-of-momentum energy below five pion masses, $\\sqrt{s} \\lt 5m_\\pi$ , embedded in the Primakoff reaction of 190 GeV pions impinging on a lead target. Exchange of quasi-real photons is selected by isolating the sharp Coulomb peak observed at smallest momentum transfers, $t' \\lt 0.001 GeV^2/c^2$. Using partial-wave analysis techniques, the scattering intensity of Coulomb production described in terms of chiral dynamics and its dependence on the 3pi-invariant mass $m_{3\\pi} = \\sqrt{s}$ were extracted. The absolute cross section was determined in seven bins of $\\sqrt{s}$ with an overall precision of 20%. At leading order, the result is found to be in good agreement with the prediction of chiral perturbation theory over the whole energy range investigated.

  8. Chiral dynamics of baryon resonances and hadrons in a nuclear medium

    Indian Academy of Sciences (India)

    E Oset; D Cabrera; V K Magas; L Roca; S Sarkar; M J Vicente Vacas; A Ramos

    2006-04-01

    In these lectures I make an introduction to chiral unitary theory applied to the meson-baryon interaction and show how several well-known resonances are dynamically generated, and others are predicted. Two very recent experiments are analyzed, one of them showing the existence of two (1405) states and the other one providing support for the (1520) resonance as a quasi-bound state of $\\sum (1385) $. The use of chiral Lagrangians to account for the hadronic interaction at the elementary level introduces a new approach to deal with the modification of meson and baryon properties in a nuclear medium. Examples of it for $\\bar{K}$, and modification in the nuclear medium are presented.

  9. Molecular Dynamics Simulations Study on Chiral Room -Temperature Ionic Liquids

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Chvál, Z.; Storch, Jan; Izák, Pavel; Aim, Karel

    Frankfurt : DECHEMA, 2012, P2-35. ISBN N. [European Symposium on Applied Thermodynamics - ESAT 2012 /26./. Potsdam (DE), 07.10.2012-10.10.2012] Institutional support: RVO:67985858 Keywords : ionic liquids * molecular dynamics simulations * thermodynamics properties Subject RIV: CF - Physical ; Theoretical Chemistry http://events.dechema.de/events/en/esat2012.html

  10. Consistency between SU(3) and SU(2) chiral perturbation theory for the nucleon mass

    CERN Document Server

    Ren, Xiu-Lei; Geng, Li-Sheng; Ledwig, T; Meng, Jie; Vacas, M J Vicente

    2016-01-01

    Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~\\cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants in the SU(2) sector~\\cite{Alvarez-Ruso:2013fza}. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.~\\cite{Alvarez-Ruso:2013fza}.

  11. Pion nucleon interaction at low energy

    International Nuclear Information System (INIS)

    A theory of the πN interaction at low energy is described. An analogy is made with an unusual approach to potential scattering theory. Phase shifts, cross sections, and scattering amplitudes and lengths are calculated. 28 references

  12. Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures.

    Science.gov (United States)

    Cheng, Ko-Ting; Lee, Po-Yi; Qasim, Malik M; Liu, Cheng-Kai; Cheng, Wen-Fa; Wilkinson, Timothy D

    2016-04-27

    Negative dielectric nematic liquid crystals (LCs) doped with two azobenzene materials provide electrically switchable and permanently stable scattering mode light modulators based on dynamic fingerprint chiral textures (DFCT) with inhomogeneously helical axes. These light modulators can be switched between transparent (stable large domains of DFCT) states and scattering (stable small domains of DFCT) states by applying electric fields with different frequencies. The generation of DFCT results from the long flexible side chains of the doped chiral dopant. That is, if the DFCT can be obtained, then the large domains of DFCT reflect an intrinsically stable state. Moreover, the stabilization of the small domains of DFCT are caused by the terminal rigid restricted side chains of the other doped chiral dopant. Experimentally, the required amplitude to switch the light modulator from a scattering (transparent) state to a transparent (scattering) state decreases as the frequency of the applied electric field increases (decreases) within the set limits. This study is the first report on the advantages of the light scattering mode of DFCT, including low operating voltage, permanently stable transmission, wide viewing angle, high contrast, and polarization-independent scattering and transparency. PMID:27035635

  13. Dynamics of Dirac strings and monopolelike excitations in chiral magnets under a current drive

    Science.gov (United States)

    Lin, Shi-Zeng; Saxena, Avadh

    2016-02-01

    Skyrmion lines in metallic chiral magnets carry an emergent magnetic field experienced by the conduction electrons. The inflow and outflow of this field across a closed surface is not necessarily equal, thus it allows for the existence of emergent monopoles. One example is a segment of skyrmion line inside a crystal, where a monopole and antimonopole pair is connected by the emergent magnetic flux line. This is a realization of Dirac stringlike excitations. Here we study the dynamics of monopoles in chiral magnets under an electric current. We show that in the process of creation of skyrmion lines, skyrmion line segments are first created via the proliferation of monopoles and antimonopoles. Then these line segments join and span the whole system through the annihilation of monopoles. The skyrmion lines are destroyed via the proliferation of monopoles and antimonopoles at high currents, resulting in a chiral liquid phase. We also propose to create the monopoles in a controlled way by applying an inhomogeneous current to a crystal. Remarkably, an electric field component in the magnetic field direction proportional to the current squared in the low current region is induced by the motion of distorted skyrmion lines, in addition to the Hall and longitudinal voltage. The existence of monopoles can be inferred from transport or imaging measurements.

  14. Imaging dynamical chiral symmetry breaking: pion wave function on the light front

    CERN Document Server

    Chang, Lei; Cobos-Martinez, J J; Roberts, C D; Schmidt, S M; Tandy, P C

    2013-01-01

    We project onto the light-front the pion's Poincare'-covariant Bethe-Salpeter wave-function, obtained using two different approximations to the kernels of QCD's Dyson-Schwinger equations. At an hadronic scale both computed results are concave and significantly broader than the asymptotic distribution amplitude, \\phi_\\pi^{asy}(x)=6 x(1-x); e.g., the integral of \\phi_\\pi(x)/\\phi_\\pi^{asy}(x) is 1.8 using the simplest kernel and 1.5 with the more sophisticated kernel. Independent of the kernels, the emergent phenomenon of dynamical chiral symmetry breaking is responsible for hardening the amplitude.

  15. Effective meson lagrangian with chiral and heavy quark symmetries from quark flavor dynamics

    International Nuclear Information System (INIS)

    By bosonization of an extended NJL model we derive an effective meson theory which describes the interplay between chiral symmetry and heavy quark dynamics. This effective theory is worked out in the low-energy regime using the gradient expansion. The resulting effective lagrangian describes strong and weak interactions of heavy B and D mesons with pseudoscalar Goldstone bosons and light vector and axial-vector mesons. Heavy meson weak decay constants, coupling constants and the Isgur-Wise function are predicted in terms of the model parameters partially fixed from the light quark sector. Explicit SU(3)F symmetry breaking effects are estimated and, if possible, confronted with experiment. ((orig.))

  16. Excitation migration along oligophenylenevinylene-based chiral stacks: delocalization effects on transport dynamics.

    Science.gov (United States)

    Beljonne, D; Hennebicq, E; Daniel, C; Herz, L M; Silva, C; Scholes, G D; Hoeben, F J M; Jonkheijm, P; Schenning, A P H J; Meskers, S C J; Phillips, R T; Friend, R H; Meijer, E W

    2005-06-01

    Atomistic models based on quantum-chemical calculations are combined with time-resolved spectroscopic investigations to explore the migration of electronic excitations along oligophenylenevinylene-based chiral stacks. It is found that the usual Pauli master equation (PME) approach relying on uncoherent transport between individual chromophores underestimates the excitation diffusion dynamics, monitored here by the time decay of the transient polarization anisotropy. A better agreement to experiment is achieved when accounting for excitation delocalization among acceptor molecules, as implemented in a modified version of the PME model. The same models are applied to study light harvesting and trapping in guest-host systems built from oligomers of different lengths. PMID:16852286

  17. Relativistic chiral SU(3) symmetry, large Nc sum rules and meson-baryon scattering

    International Nuclear Information System (INIS)

    The relativistic chiral SU(3) Lagrangian is used to describe kaon-nucleon scattering imposing constraints from the pion-nucleon sector and the axial-vector coupling constants of the baryon octet states. We solve the covariant coupled-channel Bethe-Salpeter equation with the interaction kernel truncated at chiral order Q3 where we include only those terms which are leading in the large Nc limit of QCD. The baryon decuplet states are an important explicit ingredient in our scheme, because together with the baryon octet states they form the large Nc baryon ground states of QCD. Part of our technical developments is a minimal chiral subtraction scheme within dimensional regularization, which leads to a manifest realization of the covariant chiral counting rules. All SU(3) symmetry-breaking effects are well controlled by the combined chiral and large Nc expansion, but still found to play a crucial role in understanding the empirical data. We achieve an excellent description of the data set typically up to laboratory momenta of plab ≅ 500 MeV. (orig.)

  18. Chiral symmetry and chiral-symmetry breaking

    International Nuclear Information System (INIS)

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed

  19. Vacuum Polarization and Dynamical Chiral Symmetry Breaking: Phase Diagram of QED with Four-Fermion Contact Interaction

    CERN Document Server

    Akram, F; Gutierrez-Guerrero, L X; Masud, B; Rodriguez-Quintero, J; Calcaneo-Roldan, C; Tejeda-Yeomans, M E

    2012-01-01

    We study chiral symmetry breaking for fundamental charged fermions coupled electromagnetically to photons with the inclusion of four-fermion contact self-interaction term. We employ multiplicatively renormalizable models for the photon dressing function and the electron-photon vertex which minimally ensures mass anomalous dimension = 1. Vacuum polarization screens the interaction strength. Consequently, the pattern of dynamical mass generation for fermions is characterized by a critical number of massless fermion flavors above which chiral symmetry is restored. This effect is in diametrical opposition to the existence of criticality for the minimum interaction strength necessary to break chiral symmetry dynamically. The presence of virtual fermions dictates the nature of phase transition. Miransky scaling laws for the electromagnetic interaction strength and the four-fermion coupling, observed for quenched QED, are replaced by a mean-field power law behavior corresponding to a second order phase transition. T...

  20. The Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading Order

    CERN Document Server

    Mereghetti, E; Hockings, W H; Maekawa, C M; van Kolck, U

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD theta term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the theta term, the expected lower bound on the deuteron electric dipole moment is |d_d| > 1.4 10^(-4) \\theta e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation ---appearing, in particular, in the radius of the form factor--- is the pion mass.

  1. The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order

    International Nuclear Information System (INIS)

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD θ-bar term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the θ-bar term, the expected lower bound on the deuteron electric dipole moment is |dd|≥1.4.10-4θ-bar e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation-appearing, in particular, in the radius of the form factor-is the pion mass.

  2. Chiral symmetry

    International Nuclear Information System (INIS)

    We present many varied chiral symmetry models at the quark level which consistently describe strong interaction hadron dynamics. The pattern that emerges is a nonstrange current quark mass scale mcur ≅ (34-69) MeV and a current quark mass ratio (ms/m)cur ≅ 5-6 along with no strange quark content in nucleons. (orig./WL)

  3. Chiral phase transition at finite temperature and conformal dynamics in large Nf QCD

    CERN Document Server

    Miura, Kohtaroh

    2011-01-01

    We investigate the chiral phase transition at finite temperature (T) in colour SU(Nc=3) Quantum Chromodynamics (QCD) with six species of fermions (Nf=6) in the fundamental representation by using lattice QCD with improved staggered fermions. By considering lattices with several temporal extensions Nt, we observe asymptotic scaling for Nt > 4. We then extract the dimensionless ratio Tc/Lambda_L (Lambda_L = Lattice Lambda-parameter) for Nf = 6 and Nf = 8, the latter relying on our earlier results. Further, we collect the critical couplings beta^c for the chiral phase transition at Nf = 0 (quenched), and Nf = 4 at a fixed Nt = 6. The results are consistent with enhanced fermionic screening at larger Nf. The Tc/Lambda_L depends very mildly on Nf in the Nf = 0 - 4 region, starts increasing at Nf = 6, and becomes significantly larger at Nf = 8, close to the edge of the conformal window. We discuss interpretations of these results as well as their possible interrelation with preconformal dynamics in the light of a f...

  4. Chiral morphing

    CERN Document Server

    Chang, N P

    1994-01-01

    Chiral symmetry undergoes a metamorphosis at T.sub(c). For T < T.sub(c), the usual Noether charge, \\Qa, is dynamically broken by the vacuum. Above T.sub(c), chiral symmetry undergoes a subtle change, and the Noether charge \\underline{{\\em morphs}} into \\Qbeta, with the thermal vacuum now becoming invariant under \\Qbeta. This vacuum is however not invariant under the old \\Qa transformations. As a result, the pion remains strictly massless at high T. The pion propagates in the early universe with a halo. New order parameters are proposed to probe the structure of the new thermal vacuum.

  5. Baryons and Chiral Symmetry

    CERN Document Server

    Liu, Keh-Fei

    2016-01-01

    The relevance of chiral symmetry in baryons is highlighted in three examples in the nucleon spectroscopy and structure. The first one is the importance of chiral dynamics in understanding the Roper resonance. The second one is the role of chiral symmetry in the lattice calculation of $\\pi N \\sigma$ term and strangeness. The third one is the role of chiral $U(1)$ anomaly in the anomalous Ward identity in evaluating the quark spin and the quark orbital angular momentum. Finally, the chiral effective theory for baryons is discussed.

  6. A dynamical study of the chirally rotated Schroedinger functional in QCD

    Energy Technology Data Exchange (ETDEWEB)

    Dalla Brida, Mattia; Sint, Stefan [Trinity College, Dublin (Ireland). School of Mathematics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2014-12-15

    The chirally rotated Schroedinger functional for Wilson-fermions allows for finite-volume, mass-independent renormalization schemes compatible with automatic O(a) improvement. So far, in QCD, the set-up has only been studied in the quenched approximation. Here we present first results for N{sub f}=2 dynamical quark-flavours for several renormalization factors of quark-bilinears. We discuss how these renormalization factors can be easily obtained from simple ratios of two-point functions, and show how automatic O(a) improvement is at work. As a by-product of this investigation the renormalization of the non-singlet axial current, Z{sub A}, is determined very precisely.

  7. The effective chiral Lagrangian for a light dynamical “Higgs particle”

    International Nuclear Information System (INIS)

    We generalize the basis of CP-even chiral effective operators describing a dynamical Higgs sector, to the case in which the Higgs-like particle is light. Gauge and gauge-Higgs operators are considered up to mass dimension five. This analysis completes the tool needed to explore at leading order the connection between linear realizations of the electroweak symmetry breaking mechanism — whose extreme case is the Standard Model — and non-linear realizations with a light Higgs-like particle present. It may also provide a model-independent guideline to explore which exotic gauge-Higgs couplings may be expected, and their relative strength to Higgsless observable amplitudes. With respect to fermions, the analysis is reduced by nature to the consideration of those flavor-conserving operators that can be written in terms of pure-gauge or gauge-Higgs ones via the equations of motion, but for the standard Yukawa-type couplings

  8. Toroidal Interaction and Propeller Chirality of Hexaarylbenzenes. Dynamic Domino Inversion Revealed by Combined Experimental and Theoretical Circular Dichroism Studies.

    Science.gov (United States)

    Kosaka, Tomoyo; Inoue, Yoshihisa; Mori, Tadashi

    2016-03-01

    Hexaarylbenzenes (HABs) have greatly attracted much attention due to their unique propeller-shaped structure and potential application in materials science, such as liquid crystals, molecular capsules/rotors, redox materials, nonlinear optical materials, as well as molecular wires. Less attention has however been paid to their propeller chirality. By introducing small point-chiral group(s) at the periphery of HABs, propeller chirality was effectively induced, provoking strong Cotton effects in the circular dichroism (CD) spectrum. Temperature and solvent polarity manipulate the dynamics of propeller inversion in solution. As such, whizzing toroids become more substantial in polar solvents and at an elevated temperature, where radial aromatic rings (propeller blades) prefer orthogonal alignment against the central benzene ring (C6 core), maximizing toroidal interactions. PMID:26882341

  9. Non-Markovian Dynamics in Chiral Quantum Networks with Spins and Photons

    CERN Document Server

    Ramos, Tomás; Hauke, Philipp; Pichler, Hannes; Zoller, Peter

    2016-01-01

    We study the dynamics of chiral quantum networks consisting of nodes coupled by unidirectional or asymmetric bidirectional quantum channels. In contrast to the familiar photonic networks consisting of driven two-level atoms exchanging photons via 1D photonic nanostructures, we propose and study a setup where interactions between the atoms are mediated by spin excitations (magnons) in 1D XX-spin chains representing a spin waveguide. While Markovian quantum network theory eliminates quantum channels as structureless reservoirs in a Born-Markov approximation to obtain a master equation for the nodes, we are interested in non-Markovian dynamics. This arises from the nonlinear character of the dispersion with band-edge effects, and from finite spin propagation velocities leading to time delays in interactions. To account for the non-Markovian dynamics we treat the quantum degrees of freedom of the nodes and connecting channel as a composite spin system with the surrounding of the quantum network as a Markovian bat...

  10. Color confinement, quark pair creation and dynamical chiral-symmetry breaking in the dual Ginzburg-Landau theory

    International Nuclear Information System (INIS)

    We study the color confinement, the qq pair creation and the dynamical chiral-symmetry breaking of nonperturbative QCD by using the dual Ginzburg-Landau theory, where the dual Higgs mechanism plays an essential role in the nonperturbative dynamics in the infrared region. As a result of the dual Meissner effect, the linear static quark potential, which characterizes the quark confinement, is obtained in the long distance within the quenched approximation. We obtain a simple expression for the string tension similar to the energy per unit length of a vortex in the superconductivity physics. The dynamical effect of light quarks on the quark confining potential is investigated in terms of the infrared screening effect due to the qq pair creation or the cut of the hadronic string. The screening length of the potential is estimated by using the Schwinger formula for the qq pair creation. We introduce the corresponding infrared cutoff to the strong long-range correlation factor in the gluon propagator as a dynamical effect of light quarks, and obtain a compact formula for the quark potential including the screening effect in the infrared region. We investigate the dynamical chiral-symmetry breaking by using the Schwinger-Dyson equation in the dual Ginzburg-Landau theory, where the gluon propagator includes the nonperturbative effect related to the color confinement. We find a large enhancement of the chiral-symmetry breaking by the dual Higgs mechanism, which supports the close relation between the color confinement and the chiral-symmetry breaking. The dynamical quark mass, the pion decay constant and the quark condensate are well reproduced by using the consistent values of the gauge coupling constant and the QCD scale parameter with the perturbative QCD and the quark confining potential. The light-quark confinement is also roughly examined in terms of the disappearance of physical poles in the light-quark propagator by using the smooth extrapolation of the quark mass

  11. Chiral dynamics in QED and QCD in a magnetic background and nonlocal noncommutative field theories

    International Nuclear Information System (INIS)

    We study the connection of the chiral dynamics in QED and QCD in a strong magnetic field with noncommutative field theories (NCFT). It is shown that these dynamics determine complicated nonlocal NCFT. In particular, although the interaction vertices for electrically neutral composites in these gauge models can be represented in the space with noncommutative spatial coordinates, there is no field transformation that could put the vertices in the conventional form considered in the literature. It is unlike the Nambu-Jona-Lasinio (NJL) model in a magnetic field where such a field transformation can be found, with a cost of introducing an exponentially damping form factor in field propagators. The crucial distinction between these two types of models is in the characters of their interactions, being short-range in the NJL-like models and long-range in gauge theories. The relevance of the NCFT connected with the gauge models for the description of the quantum Hall effect in condensed matter systems with long-range interactions is briefly discussed

  12. Chiral symmetry breaking in QCD-like gauge theories with a confining propagator and dynamical gauge boson mass generation

    OpenAIRE

    Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil); Machado, F. A.; Natale, A. A.

    2011-01-01

    We study chiral symmetry breaking in QCD-like gauge theories introducing a confining effective propagator, as proposed recently by Cornwall, and considering the effect of dynamical gauge boson mass generation. The effective confining propagator has the form $1/(k^2+m^2)^2$ and we study the bifurcation equation finding limits on $m$ below which a satisfactory fermion mass solution is generated. Since the coupling constant and gauge boson propagator are damped in the infrared, due to the presen...

  13. Mechanochemical Encapsulation of Fullerenes in Peptidic Containers Prepared by Dynamic Chiral Self-Sorting and Self-Assembly.

    Science.gov (United States)

    Szymański, Marek; Wierzbicki, Michał; Gilski, Mirosław; Jędrzejewska, Hanna; Sztylko, Marcin; Cmoch, Piotr; Shkurenko, Aleksander; Jaskólski, Mariusz; Szumna, Agnieszka

    2016-02-24

    Molecular capsules composed of amino acid or peptide derivatives connected to resorcin[4]arene scaffolds through acylhydrazone linkers have been synthesized using dynamic covalent chemistry (DCC) and hydrogen-bond-based self-assembly. The dynamic character of the linkers and the preference of the peptides towards self-assembly into β-barrel-type motifs lead to the spontaneous amplification of formation of homochiral capsules from mixtures of different substrates. The capsules have cavities of around 800 Å(3) and exhibit good kinetic stability. Although they retain their dynamic character, which allows processes such as chiral self-sorting and chiral self-assembly to operate with high fidelity, guest complexation is hindered in solution. However, the quantitative complexation of even very large guests, such as fullerene C60 or C70 , is possible through the utilization of reversible covalent bonds or the application of mechanochemical methods. The NMR spectra show the influence of the chiral environment on the symmetry of the fullerene molecules, which results in the differentiation of diastereotopic carbon atoms for C70 , and the X-ray structures provide unique information on the modes of peptide-fullerene interactions. PMID:26808958

  14. Weak solution of the non-perturbative renormalization group equation to describe dynamical chiral symmetry breaking

    International Nuclear Information System (INIS)

    We analyze dynamical chiral symmetry breaking (DχSB) in the Nambu–Jona-Lasinio model by using the non-perturbative renormalization group equation. The equation takes the form of a two-dimensional partial differential equation for the multi-fermion effective interactions V(x,t) where x is the ψ-barψ operator and t is the logarithm of the renormalization scale. The DχSB occurs due to the quantum corrections, which means it emerges at some finite tc while integrating the equation with respect to t. At tc some singularities suddenly appear in V which is compulsory in the spontaneous symmetry breakdown. Therefore there is no solution of the equation beyond tc. We newly introduce the notion of a weak solution to get the global solution including the infrared limit t→∞ and investigate its properties. The obtained weak solution is global and unique, and it perfectly describes the physically correct vacuum even in the case of the first order phase transition appearing in a finite-density medium. The key logic of deduction is that the weak solution we defined automatically convexifies the effective potential when treating the singularities

  15. Chiral Superfluidity for QCD

    CERN Document Server

    Kalaydzhyan, Tigran

    2014-01-01

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The "normal" component of the fluid is the thermalized matter in common sense, while the "superfluid" part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields or rotation the motion of the "superfluid" component gives rise to the chiral magnetic, chiral vortical, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  16. Chiral Electroweak Currents in Nuclei

    CERN Document Server

    Riska, D O

    2016-01-01

    The development of the chiral dynamics based description of nuclear electroweak currents is reviewed. Gerald E. (Gerry) Brown's role in basing theoretical nuclear physics on chiral Lagrangians is emphasized. Illustrative examples of the successful description of electroweak observables of light nuclei obtained from chiral effective field theory are presented.

  17. Stereolability of chiral ruthenium catalysts with frozen NHC ligand conformations investigated by dynamic-HPLC.

    Science.gov (United States)

    Menta, Sergio; Pierini, Marco; Cirilli, Roberto; Grisi, Fabia; Perfetto, Alessandra; Ciogli, Alessia

    2015-10-01

    The stereolability of chiral Hoveyda-Grubbs II type ruthenium complexes bearing N-heterocyclic carbene (NHC) ligands with Syn-phenyl groups on the backbone and Syn- or Anti-oriented o-tolyl N-substituents was studied by resorting to dynamic high-performance liquid chromatography (D-HPLC). A complete chromatographic picture of the involved stereoisomers (four for Anti- and two for Syn-complexes) was achieved at very low temperatures (-53°C and -40°C respectively), at which the NHC-Ru bond rotations were frozen out. Inspection of the chromatographic profiles recorded at higher temperatures revealed the presence of plateau zones between the couples of either Syn or Anti stereoisomers, attesting to the active interconversion between the eluted species. Such dynamic chromatograms were successfully simulated through procedures based on both theoretical plate and classical stochastic models. The good superimposition achieved between experimental and simulated chromatographic profiles allowed determination of the related isomerization energy barriers (ΔGisom (#) ), all derived by rotation around the NHC-Ru bond. The obtained diastereomerization barriers between the Anti isomers were found in very good agreement with those previously measured by experimental nuclear magnetic resonance (NMR) and assessed through Density Functional Theory (DFT) calculations. With the same approach, for the first time we also determined the enantiomerization barrier of the Syn isomer. Focused changes to the structure of complex Syn, studied by a molecular modeling approach, were found suitable to strongly reduce the stereolability arising from rotation around the NHC-Ru bond. PMID:26250890

  18. Chiral streamers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Dandan; Cao, Xin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, Xinpei, E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Comonwealth Scientific and Industrial Research Organization, P.O. Box 218, Sydney, New South Wales 2070 (Australia)

    2015-10-15

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  19. Chiral streamers

    Science.gov (United States)

    Zou, Dandan; Cao, Xin; Lu, Xinpei; Ostrikov, Kostya Ken

    2015-10-01

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  20. Calculation of Doublet Capture Rate for Muon Capture in Deuterium within Chiral Effective Field Theory

    CERN Document Server

    Adam, J; Tater, M; Truhlik, E; Epelbaum, E; Machleidt, R; Ricci, P

    2011-01-01

    The doublet capture rate of the negative muon capture in deuterium is calculated employing the nuclear wave functions generated from accurate nucleon-nucleon potentials constructed at next-to-next-to-next-to-leading order of heavy-baryon chiral perturbation theory and the weak meson exchange current operator derived within the same formalism. All but one of the low-energy constants that enter the calculation were fixed from pion-nucleon and nucleon-nucleon scattering data. The low-energy constant d^R (c_D), which cannot be determined from the purely two-nucleon data, was extracted recently from the triton beta-decay and the binding energies of the three-nucleon systems. The calculated values of the doublet capture rates show a rather large spread for the used values of the d^R. Precise measurement of the doublet capture rate in the future will not only help to constrain the value of d^R, but also provide a highly nontrivial test of the nuclear chiral EFT framework. Besides, the precise knowledge of the consta...

  1. Pion properties at finite nuclear density based on in-medium chiral perturbation theory

    CERN Document Server

    Goda, Soichiro

    2013-01-01

    The in-medium pion properties, {\\it i.e.} the temporal pion decay constant $f_t$, the pion mass $m_\\pi^*$ and the wave function renormalization, in symmetric nuclear matter are calculated in an in-medium chiral perturbation theory up to the next-to-leading order of the density expansion $O(k_F^4)$. The chiral Lagrangian for the pion-nucleon interaction is determined in vacuum, and the low energy constants are fixed by the experimental observables. We carefully define the in-medium state of the pion and find that the pion wave function plays an essential role for the in-medium pion properties. We show that the linear density correction is dominated and the next-leading corrections is not so large at the saturation density, while their contributions can be significant in higher densities. The main contribution of the next-leading order comes from the double scattering term. We also discuss whether the low energy theorems, the Gell-Mann--Oakes--Renner relation and the Glashow--Weinberg relation, are satisfied in...

  2. Form factors, medium effects and vector mesons in the projected chiral soliton model

    International Nuclear Information System (INIS)

    The main goal of the present work has been the evaluation of baryonic form factors by means of the projected chiralquark-meson soliton model and various generalizations of it. In first place we have studied the Nambu-Jona-Lasinio model in the Hartree approximation for classical non-strange scalar and pseudoscalar couplings in the vacuum sector. In doing so, we have first bosonized the Lagrangian and applied three regularization schemes in order to render the theory finite. We have found that at least two physical quantities as the quark mass and the quark condensate are very sensitive to the actual scheme used. The procedures which allow to reproduce best the experimental values are both sharp cut-off methods. We have also shown that the chiral soliton model with explicit valence quarks can be considered as an approximation to the Hartree solution of the Nambu-Jona-lasinio model for quarks. In the framework of the linear chiral sigma model with quarks, sigma-, and pi-mesons we have discussed several nucleon form factors such as electromagnetic, axial and that for the pion-nucleon interaction. (orig./HSI)

  3. On finite volume effects in the chiral extrapolation of baryon masses

    CERN Document Server

    Lutz, M F M; Kobdaj, C; Schwarz, K

    2014-01-01

    We perform an analysis of the QCD lattice data on the baryon octet and decuplet masses based on the relativistic chiral Lagrangian. The baryon self energies are computed in a finite volume at next-to-next-to-next-to leading order (N^3LO), where the dependence on the physical meson and baryon masses is kept. The number of free parameters is reduced significantly down to 12 by relying on large-N_c sum rules. Altogether we describe accurately more than 220 data points from six different lattice groups, BMW, PACS-CS, HSC, LHPC, QCDSF-UKQCD and NPLQCD. Precise values for all counter terms relevant at N^3LO are predicted. In particular we extract a pion-nucleon sigma term of (39 +- 1) MeV and a strangeness sigma term of the nucleon of sigma_{sN} simeq (4 +- 1) MeV. The flavour SU(3) chiral limit of the baryon octet and decuplet masses is determined with ( 802 +- 4 ) MeV and (1103 +- 6) MeV. Detailed predictions for the baryon masses as currently evaluated by the ETM lattice QCD group are made.

  4. Chiral dynamics and heavy-fermion formalism in nuclei; 1, exchange axial currents

    CERN Document Server

    Park, T S; Rho, M; Park, Tae-Sun; Min, Dong-Pil; Rho, Mannque

    1993-01-01

    Chiral perturbation theory in heavy-fermion formalism is developed for meson-exchange currents in nuclei and applied to nuclear axial- charge transitions. Calculation is performed to the next-to-leading order in chiral expansion which involves graphs up to one loop. The result turns out to be very simple. The previously conjectured notion of "chiral filter mechanism" in the time component of the nuclear axial current and the space component of the nuclear electromagnetic current is verified to that order. As a consequence, the phenomenologically observed soft-pion dominance in the nuclear process is given a simple interpretation in terms of chiral symmetry in nuclei. In this paper, we focus on the axial current, relegating the EM current which can be treated in a similar way to a separate paper. We discuss the implication of our result on the enhanced axial-charge transitions observed in heavy nuclei and clarify the relationship between the phenomenological meson-exchange description and the chiral Lagrangian...

  5. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  6. Confinement and dynamical chiral symmetry breaking in a non-perturbative renormalizable quark model

    Science.gov (United States)

    Dudal, D.; Guimaraes, M. S.; Palhares, L. F.; Sorella, S. P.

    2016-02-01

    Inspired by the construction of the Gribov-Zwanziger action in the Landau gauge, we introduce a quark model exhibiting both confinement and chiral symmetry aspects. An important feature is the incorporation of spontaneous chiral symmetry breaking in a renormalizable fashion. The quark propagator in the condensed vacuum turns out to be of a confining type. Besides a real pole, it exhibits complex conjugate poles. The resulting spectral form is explicitly shown to violate positivity, indicative of its unphysical character. Moreover, the ensuing quark mass function fits well to existing lattice data. To further validate the physical nature of the model, we identify a massless pseudoscalar (i.e. a pion) in the chiral limit and present estimates for the ρ meson mass and decay constant.

  7. Enabling Light Work in Helical Self-Assembly for Dynamic Amplification of Chirality with Photoreversibility.

    Science.gov (United States)

    Cai, Yunsong; Guo, Zhiqian; Chen, Jianmei; Li, Wenlong; Zhong, Liubiao; Gao, Ya; Jiang, Lin; Chi, Lifeng; Tian, He; Zhu, Wei-Hong

    2016-02-24

    Light-driven transcription and replication are always subordinate to a delicate chirality transfer. Enabling light work in construction of the helical self-assembly with reversible chiral transformation becomes attractive. Herein we demonstrate that a helical hydrogen-bonded self-assembly is reversibly photoswitched between photochromic open and closed forms upon irradiation with alternative UV and visible light, in which molecular chirality is amplified with the formation of helixes at supramolecular level. The characteristics in these superhelixes such as left-handed or right-handed twist and helical length, height, and pitch are revealed by SEM and AFM. The helical photoswitchable nanostructure provides an easily accessible route to an unprecedented photoreversible modulation in morphology, fluorescence, and helicity, with precise assembly/disassembly architectures similar to biological systems such as protein and DNA. PMID:26709946

  8. Computation of the chiral condensate using N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors of twisted mass fermions

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, E. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Shindler, A. [Forschungszentrum Juelich (Germany). IAS; Forschungszentrum Juelich (Germany). IKP; Forschungszentrum Juelich (Germany). JCHP; Collaboration: European Twisted Mass Collaboration

    2013-12-15

    We apply the spectral projector method, recently introduced by Giusti and Luescher, to compute the chiral condensate using N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors of maximally twisted mass fermions. We present our results for several quark masses at three different lattice spacings which allows us to perform the chiral and continuum extrapolations. In addition we report our analysis on the O(a) improvement of the chiral condensate for twisted mass fermions. We also study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavors.

  9. From Chiral quark dynamics with Polyakov loop to the hadron resonance gas model

    OpenAIRE

    Arriola, E. Ruiz; Megias, E.; Salcedo, L. L.

    2012-01-01

    Chiral quark models with Polyakov loop at finite temperature have been often used to describe the phase transition. We show how the transition to a hadron resonance gas is realized based on the quantum and local nature of the Polyakov loop.

  10. Chiral dynamics with vector fields: an application to $\\pi\\pi$ and $\\pi K$ scattering

    OpenAIRE

    Danilkin, I.V.; Lutz, M. F. M.

    2012-01-01

    A theoretical study of Goldstone boson scattering based on the chiral Lagrangian with vector meson fields is presented. In application of a recently developed novel approach we extrapolate subthreshold partial-wave amplitudes into the physical region. The constraints set by micro-causality and coupled-channel unitarity are kept rigourously. It is shown that already the leading order subthreshold amplitudes lead to s- and p-wave $\\pi\\pi$ and $\\pi K$ phase shifts are in agreement with the exper...

  11. P11 Resonances with Dubna-Mainz-Taipei Dynamical Model for pi-N Scattering and Pion Electromagnetic Production

    CERN Document Server

    Yang, Shin Nan; Tiator, L

    2011-01-01

    We present the results on P11 resonances obtained with Dubna-Mainz-Taipei (DMT) dynamical model for pion-nucleon scattering and pion electromagnetic production. The extracted values agree well, in general, with PDG values. One pole is found corresponding to the Roper resonance and two more resonances are definitely needed in DMT model. We further find indication for a narrow P11 resonance at around 1700 MeV with a width of around 50 MeV in both pi-N and gamma-pi reactions.

  12. The liquid surface of chiral ionic liquids as seen from molecular dynamics simulations combined with intrinsic analysis

    International Nuclear Information System (INIS)

    We present molecular-level insight into the liquid/gas interface of two chiral room-temperature ionic liquids (RTILs) derived from 1-n-butyl-3-methylimidazolium bromide ([bmim][Br]); namely, (R)-1-butyl-3-(3-hydroxy-2-methylpropyl)imidazolium bromide (hydroxypropyl) and 1-butyl-3-[(1R)-nopyl]imidazolium bromide (nopyl). We use our currently developed force field which was validated against the experimental bulk density, heat of vaporization, and surface tension of [bmim][Br]. The force field for the RTILs adopts the Chemistry at Harvard Molecular Mechanics (CHARMM) parameters for the intramolecular and repulsion-dispersion interactions along with the reduced partial atomic charges based on ab initio calculations. The net charges of the ions are around ±0.8e, which mimic the anion to cation charge transfer and many-body effects. Molecular dynamics simulations in the slab geometry combined with the intrinsic interface analysis are employed to provide a detailed description of the RTIL/gas interface in terms of the structural and dynamic properties of the interfacial, sub-interfacial, and central layers at a temperature of 300 K. The focus is on the comparison of the liquid/gas interface for the chiral RTILs with the interface for parent [bmim][Br]. The structure of the interface is elucidated by evaluating the surface roughness, intrinsic atomic density profiles, and orientation ordering of the cations. The dynamics of the ions at the interfacial region is characterized by computing the survival probability, and normal and lateral self-diffusion coefficients in the layers

  13. QCD chiral symmetry restoration with a large number of quarks in a model with a confining propagator and dynamically massive gluons

    OpenAIRE

    Capdevilla, R. M.; Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil); Natale, A. A.

    2015-01-01

    Considering a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass, we verify that the chiral symmetry is restored for a large number of quarks $n_{f}\\approx 7-13$. We discuss the uncertainty in the results, that is related to the determination of the string tension ($K_{F}$), appearing in the confining propagator, and the effective gluon mass ($m_{g}$) at large $n_{f}$.

  14. Parity violation in proton-proton scattering from chiral effective field theory

    International Nuclear Information System (INIS)

    We present a calculation of the parity-violating longitudinal asymmetry in proton-proton scattering. The calculation is performed in the framework of chiral effective field theory which is applied systematically to both the parity-conserving and parity-violating interactions. The asymmetry is calculated up to next-to-leading order in the parity-odd nucleon-nucleon potential. At this order the asymmetry depends on two parity-violating low-energy constants: the weak pion-nucleon coupling constant hπ and one four-nucleon contact coupling. By comparison with the existing data, we obtain a rather large range for hπ=(1.1±2).10-6. This range is consistent with theoretical estimations and experimental limits, but more data are needed to pin down a better constrained value. We conclude that an additional measurement of the asymmetry around 125MeV lab energy would be beneficial to achieve this goal. (orig.)

  15. Uncertainty analysis and order-by-order optimization of chiral nuclear interactions

    CERN Document Server

    Carlsson, B D; Forssén, C; Strömberg, D Fahlin; Lilja, O; Lindby, M; Mattsson, B A; Wendt, K A

    2015-01-01

    Chiral effective field theory ($\\chi$EFT) provides a systematic approach to describe low-energy nuclear forces. Moreover, $\\chi$EFT is able to provide well-founded estimates of statistical and systematic uncertainties although this unique advantage has not yet been fully exploited. We fill this gap by performing an optimization and statistical analysis of all the low-energy constants (LECs) up to next-to-next-to-leading order. We simultaneously fit to scattering and bound-state observables in the pion-nucleon, nucleon-nucleon, and few-nucleon sectors in order to utilize the full model capabilities of $\\chi$EFT. Finally, we demonstrate methods to propagate uncertainties to other observables, such that they can easily be adopted by future works. We employ mathematical optimization and implement automatic differentiation to attain efficient and machine-precise first- and second-order derivatives of the objective function with respect to the LECs. This is also vital for the regression analysis. We use power-count...

  16. Dynamical quark loop light-by-light contribution to muon g-2 within the nonlocal chiral quark model

    International Nuclear Information System (INIS)

    The hadronic corrections to the muon anomalous magnetic moment aμ, due to the gauge-invariant set of diagrams with dynamical quark loop light-by-light scattering insertions, are calculated in the framework of the nonlocal chiral quark model. These results complete calculations of all hadronic light-by-light scattering contributions to aμ in the leading order in the 1/Nc expansion. The result for the quark loop contribution is aμHLbL,Loop = (11.0 ± 0.9) @ x 10-10, and the total result is aμHLbL,NχQM = (16.8 ± 1.2) @ x 10-10. (orig.)

  17. Molecular dynamics simulation of the effect of carbon nanotube chirality on nano-joining with gold particle

    International Nuclear Information System (INIS)

    The behavior of gold atoms depending on the CNT chirality in a nanojoining process is studied by molecular dynamics simulation. The deformation regularity and the diffusing characteristic of the gold particle during the joining process, as well as the C-Au bonds distribution in the final joint are studied. Our results show that when joining with higher spirality CNT, gold particle tends to deform more. With the CNT more similar to armchair type, the gold particle as a whole displaces more. In the final joint, the total bonds number decreases from typical armchair CNT to typical zig-zag CNT. However, the bonds distribution in detail is irregular from joint to joint, which is the consequence of lattice structure of both materials. (author)

  18. Uncertainty Analysis and Order-by-Order Optimization of Chiral Nuclear Interactions

    Science.gov (United States)

    Carlsson, B. D.; Ekström, A.; Forssén, C.; Strömberg, D. Fahlin; Jansen, G. R.; Lilja, O.; Lindby, M.; Mattsson, B. A.; Wendt, K. A.

    2016-01-01

    Chiral effective field theory (χ EFT ) provides a systematic approach to describe low-energy nuclear forces. Moreover, χ EFT is able to provide well-founded estimates of statistical and systematic uncertainties—although this unique advantage has not yet been fully exploited. We fill this gap by performing an optimization and statistical analysis of all the low-energy constants (LECs) up to next-to-next-to-leading order. Our optimization protocol corresponds to a simultaneous fit to scattering and bound-state observables in the pion-nucleon, nucleon-nucleon, and few-nucleon sectors, thereby utilizing the full model capabilities of χ EFT . Finally, we study the effect on other observables by demonstrating forward-error-propagation methods that can easily be adopted by future works. We employ mathematical optimization and implement automatic differentiation to attain efficient and machine-precise first- and second-order derivatives of the objective function with respect to the LECs. This is also vital for the regression analysis. We use power-counting arguments to estimate the systematic uncertainty that is inherent to χ EFT , and we construct chiral interactions at different orders with quantified uncertainties. Statistical error propagation is compared with Monte Carlo sampling, showing that statistical errors are, in general, small compared to systematic ones. In conclusion, we find that a simultaneous fit to different sets of data is critical to (i) identify the optimal set of LECs, (ii) capture all relevant correlations, (iii) reduce the statistical uncertainty, and (iv) attain order-by-order convergence in χ EFT . Furthermore, certain systematic uncertainties in the few-nucleon sector are shown to get substantially magnified in the many-body sector, in particular when varying the cutoff in the chiral potentials. The methodology and results presented in this paper open a new frontier for uncertainty quantification in ab initio nuclear theory.

  19. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  20. Chiral Electronics

    OpenAIRE

    Kharzeev, Dmitri E.; Yee, Ho-Ung

    2012-01-01

    We consider the properties of electric circuits involving Weyl semimetals. The existence of the anomaly-induced chiral magnetic current in a Weyl semimetal subjected to magnetic field causes an interesting and unusual behavior of such circuits. We consider two explicit examples: i) a circuit involving the "chiral battery" and ii) a circuit that can be used as a "quantum amplifier" of magnetic field. The unique properties of these circuits stem from the chiral anomaly and may be utilized for c...

  1. Disoriented chiral condensate dynamics with the SU(3) linear sigma model

    International Nuclear Information System (INIS)

    The SU(3) extension of the linear sigma model is employed to elucidate the effect of including strangeness on the formation of disoriented chiral condensates. By means of a Hartree factorization, approximate dispersion relations for the 18 scalar and pseudoscalar meson species are derived and their self-consistent solution makes it possible to trace out the thermal path of the two order parameters as well as delineate the region of instability within which spontaneous pair creation becomes possible. The results depend significantly on the employed sigma mass, with the highest values yielding the largest regions of instability. An approximate solution of the equations of motion for the order parameter in scenarios emulating uniform scaling expansions show that even with a rapid quench only the pionic modes grow unstable. Nevertheless, the rapid and oscillatory relaxation of the order parameters leads to enhanced production of both pions and (to a lesser degree) kaons. copyright 1999 The American Physical Society

  2. Neutrino Oscillation Induced by Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei

    2009-01-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  3. Chiral superconductors

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  4. Delta: the First Pion Nucleon Resonance - Its Discovery and Applications

    Science.gov (United States)

    Nagle, D. E.

    1984-07-01

    It is attempted to recapture some of the fun and excitement of the pion-scattering work that led to the discovery of what is now called the delta particle. How significant this discovery was became apparent only gradually. That the delta is alive today and thriving at Los Alamos (as well as other places) is described.

  5. Early work on pion-nucleon scattering at Rochester

    CERN Document Server

    Giacomelli, G

    2012-01-01

    In 1956 when I was a graduate student at the University of Rochester, the post doc Herman Winick arrived there, joined the group and we worked together with colleagues from different countries on low energy pion-proton elastic scattering at the cyclotron. The small experiment was highly successful and was the beginning of a long research life and of friendship.

  6. Polarization and dilepton anisotropy in pion-nucleon collisions

    CERN Document Server

    Speranza, Enrico; Friman, Bengt

    2016-01-01

    Hadronic polarization and the related anisotropy of the dilepton angular distribution are studied for the reaction $\\pi N \\rightarrow Ne^+ e^-$. We employ consistent effective interactions for baryon resonances up to spin-5/2, where non-physical degrees of freedom are eliminated, to compute the anisotropy coefficients for isolated intermediate baryon resonances. It is shown that the spin and parity of the intermediate baryon resonance is reflected in the angular dependence of the anisotropy coefficient. We then compute the anisotropy coefficient including the $N(1520)$ and $N(1440)$ resonances, which are essential at the collision energy of the recent data obtained by the HADES collaboration on this reaction. We conclude that the anisotropy coefficient provides useful constraints for unravelling the resonance contributions to this process.

  7. Precision Measurements of Neutral Pion Electroproduction Near Threshold: A Test of Chiral QCD Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Richard A. [University of Virginia; Chirapatpimol, Khem [University of Virginia; Smith, Lee Cole [University of Virginia

    2013-08-01

    Preliminary results are presented from an experiment to measure {pi}{sup 0} electroproduction at and above threshold using the p(e;e' p){pi}{sup 0} reaction. The data were taken at a beam energy of 1192 MeV using a two-spectrometer setup in Hall A at Jefferson Lab. For the first time in {pi}{sup 0} threshold electroproduction, complete coverage of the {phi}{sub {pi}}* and {theta}{sub {pi}}* angles in the center-of-mass (C.M.) was obtained for the invariant mass region up to {Delta}W=18 MeV above the {pi}{sup 0} threshold. At the same time our invariant momentum transfer squared covers the range Q{sup 2} = 0.05-0.15 (GeV/c){sup 2} with twelve bins in Q{sup 2}. The improved kinematic coverage in C.M., W and Q{sup 2} will better constrain theoretical interpretations of the data using phenomenological models and QCD-inspired models such as Heavy Baryon Chiral Perturbation Theory.

  8. From Quarks and Gluons to Hadrons: Chiral Symmetry Breaking in Dynamical QCD

    OpenAIRE

    Braun, Jens; Fister, Leonard; Pawlowski, Jan M; Rennecke, Fabian

    2016-01-01

    We present an analysis of the dynamics of two-flavour QCD in the vacuum. Special attention is payed to the transition from the high energy quark-gluon regime to the low energy regime governed by hadron dynamics. This is done within a functional renormalisation group approach to QCD amended by dynamical hadronisation techniques. The latter allow us to describe conveniently the transition from the perturbative high-energy regime to the nonperturbative low-energy limit without suffering from a f...

  9. Painlevé test for integrability and exact solutions for the field equations for Charap's chiral invariant model of the pion dynamics

    Indian Academy of Sciences (India)

    Susanto Chakraborty; Pranab Krishna Chanda

    2006-06-01

    It has been shown that the field equations for Charap's chiral invariant model of the pion dynamics pass the Painlevé test for complete integrability in the sense of Weiss et al. The truncation procedure of the same analysis leads to auto-Backlund transformation between two pairs of solutions. With the help of this transformation non-trivial exact solutions have been rediscovered.

  10. Delta-nucleus dynamics: proceedings of symposium

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P. (eds.)

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta ..delta..(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe ..delta..-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented. (WHK)

  11. Delta-nucleus dynamics: proceedings of symposium

    International Nuclear Information System (INIS)

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta Δ(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe Δ-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented

  12. From Quarks and Gluons to Hadrons: Chiral Symmetry Breaking in Dynamical QCD

    CERN Document Server

    Braun, Jens; Pawlowski, Jan M; Rennecke, Fabian

    2014-01-01

    We present an analysis of the dynamics of two-flavour QCD in the vacuum. Special attention is payed to the transition from the high energy quark-gluon regime to the low energy regime governed by hadron dynamics. This is done within a functional renormalisation group approach to QCD amended by dynamical hadronisation techniques. The latter allow us to describe conveniently the transition from the perturbative high-energy regime to the nonperturbative low-energy limit without suffering from a fine-tuning of model parameters. In the present work, we apply these techniques to two-flavour QCD with physical quark masses and show how the dynamics of the dominant low-energy degrees of freedom emerge from the underlying quark-gluon dynamics.

  13. From quarks and gluons to hadrons: Chiral symmetry breaking in dynamical QCD

    Science.gov (United States)

    Braun, Jens; Fister, Leonard; Pawlowski, Jan M.; Rennecke, Fabian

    2016-08-01

    We present an analysis of the dynamics of two-flavor QCD in the vacuum. Special attention is paid to the transition from the high-energy quark-gluon regime to the low-energy regime governed by hadron dynamics. This is done within a functional renormalization group approach to QCD amended by dynamical hadronization techniques. These techniques allow us to describe conveniently the transition from the perturbative high-energy regime to the nonperturbative low-energy limit without suffering from a fine-tuning of model parameters. In the present work, we apply these techniques to two-flavor QCD with physical quark masses and show how the dynamics of the dominant low-energy degrees of freedom emerge from the underlying quark-gluon dynamics.

  14. Chiral quark model

    Indian Academy of Sciences (India)

    H Weigel

    2003-11-01

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully regularizes the effective action but also leads the scaling laws for structure functions. For the nucleon structure functions the present approach serves to determine the regularization prescription for structure functions whose leading moments are not given by matrix elements of local operators. Some numerical results are presented for the spin structure functions.

  15. The pp->p Lambda K+ and pp->p Sigma0 K+ reactions with chiral dynamics

    CERN Document Server

    Xie, Ju-Jun; Oset, E

    2011-01-01

    We report on a theoretical study of the pp->p Lambda K+ and pp->p Sigma0 K+ reactions near threshold using a chiral dynamical approach. The production process is described by single-pion and single-kaon exchange. The final state interactions of nucleon-hyperon, K-hyperon and K-nucleon systems are also taken into account. We show that our model leads to a fair description of the experimental data on the total cross section of the pp->p Lambda K+ and pp->p Sigma0 K+ reactions. We find that the experimental observed strong suppression of Sigma0 production compared to Lambda production at the same excess energy can be explained. However, ignorance of phases between some amplitudes does not allow to properly account for the nucleon-hyperon final state interaction for the pp->p Sigma0 K+ reaction. We also demonstrate that the invariant mass distribution and the Dalitz plot provide direct information about the Lambda and Sigma0 production mechanism, and can be tested by experiments at COSY or HIRFL-CSR.

  16. Renormalization of the low-energy constants of chiral perturbation theory from loops with dynamical vector mesons

    Science.gov (United States)

    Terschlüsen, Carla; Leupold, Stefan

    2016-07-01

    Starting from a relativistic Lagrangian for pseudoscalar Goldstone bosons and vector mesons in the antisymmetric tensor representation, a one-loop calculation is performed to pin down the divergent structures that appear for the effective low-energy action at chiral orders Q2 and Q4 . The corresponding renormalization-scale dependencies of all low-energy constants up to chiral order Q4 are determined. Calculations are carried out for both the pseudoscalar octet and the pseudoscalar nonet, the latter in the framework of chiral perturbation theory in the limit of a large number of colors.

  17. Isotopic chirality

    Energy Technology Data Exchange (ETDEWEB)

    Floss, H.G. [Univ. of Washington, Seattle, WA (United States)

    1994-12-01

    This paper deals with compounds that are chiral-at least in part, due to isotope substitution-and their use in tracing the steric course of enzyme reaction in vitro and in vivo. There are other applications of isotopically chiral compounds (for example, in analyzing the steric course of nonenzymatic reactions and in probing the conformation of biomolecules) that are important but they will not be discussed in this context.

  18. A new perspective on the Faddeev equations and the $\\bar{K}NN$ system from chiral dynamics and unitarity in coupled channels

    CERN Document Server

    Oset, E; Sekihara, T; Torres, A Martinez; Khemchandani, K P; Bayar, M; Yamagata-Sekihara, J

    2012-01-01

    We review recent work concerning the $\\bar{K}N$ interaction and Faddeev equations with chiral dynamics which allow us to look at the $\\bar{K}NN$ from a different perspective and pay attention to problems that have been posed in previous studies on the subject. We show results which provide extra experimental evidence on the existence of two $\\Lambda(1405)$ states. We then show the findings of a recent approach to Faddeev equations using chiral unitary dynamics, where an explicit cancellation of the two body off shell amplitude with three body forces stemming from the same chiral Lagrangians takes place. This removal of the unphysical off shell part of the amplitudes is most welcome and renders the approach unambiguous, showing that only on shell two body amplitudes need to be used. With this information in mind we use an approximation to the Faddeev equations within the fixed center approximation to study the $\\bar{K}NN$ system, providing answers within this approximation to questions that have been brought b...

  19. Enantioselective Formation of a Dynamic Hydrogen-Bonded Assembly Based on the Chiral Memory Concept

    NARCIS (Netherlands)

    Ishi-i, Tsutomu; Crego Calama, Mercedes; Timmerman, Peter; Reinhoudt, David N.; Shinkai, Seiji

    2002-01-01

    In this paper, we report the enantioselective formation of a dynamic noncovalent double rosette assembly 1a3·(CYA)6 composed of three 2-pyridylcalix[4]arene dimelamines (1a) and six butylcyanuric acid molecules (BuCYA). The six 2-pyridyl functionalities of the assembly interact stereoselectively wit

  20. Chiral Room-Temperature Ionic Liquids: Insight from Molecular Dynamics Simulations

    Czech Academy of Sciences Publication Activity Database

    Lísal, Martin; Chval, Z.; Storch, Jan; Izák, Pavel; Aim, Karel

    - : -, 2013. s. 1. ISBN N. [International Conference on Properties and Phase Equilibria for Products and Process Design /13./. 26.05.2013-30.05.2013, Iguazu Falls] Institutional support: RVO:67985858 Keywords : RTIL * molecular dynamics * simulation Subject RIV: CF - Physical ; Theoretical Chemistry http://www.ppeppd2013.plapiqui.edu.ar/openconf.php

  1. QCD with dynamical Wilson fermions. II

    International Nuclear Information System (INIS)

    We present results for the QCD spectrum and the matrix elements of scalar and axial-vector densities at β=6/g2=5.4,5.5,5.6. The lattice update was done using the hybrid Monte Carlo algorithm to include two flavors of dynamical Wilson fermions. We have explored quark masses in the range ms≤mq≤3ms. The results for the spectrum are similar to quenched simulations and mass ratios are consistent with phenomenological heavy-quark models. The results for matrix elements of the scalar density show that the contribution of sea quarks is comparable to that of the valence quarks. This has important implications for the pion-nucleon σ term

  2. Spectral study of a chiral limit without chiral condensate

    OpenAIRE

    Bietenholz, Wolfgang; Hip, Ivan

    2009-01-01

    Random Matrix Theory (RMT) has elaborated successful predictions for Dirac spectra in field theoretical models. However, a generic assumption by RMT has been a non-vanishing chiral condensate $\\Sigma$ in the chiral limit. Here we consider the 2-flavour Schwinger model, where this assumption does not hold. We simulated this model with dynamical overlap hypercube fermions, and entered terra incognita by analysing this Dirac spectrum. The usual RMT prediction for the unfolded level spacing distr...

  3. Dynamical generation of extended objects in a (1+1)-dimensional chiral field theory: Nonperturbative Dirac operator resolvent analysis

    International Nuclear Information System (INIS)

    We analyze the (1+1)-dimensional Nambu - Jona-Lasinio (NJL) model nonperturbatively. In addition to its simple ground-state saddle points, the effective action of this model has a rich collection of nontrivial saddle points in which the composite fields σ(x)=left-angle bar ψψ right-angle and π(x)=left-angle bar ψiγ5ψ right-angle form static space-dependent configurations because of nontrivial dynamics. These configurations may be viewed as one-dimensional chiral open-quotes bags.close quotes We start our analysis of such configurations by asking what kind of initially static {σ(x),π(x)} background configurations will remain so under fermionic back reaction. By simply looking at the asymptotic spatial behavior of the expectation value of the fermion number current we show, independently of the large-N limit, that a necessary condition for this situation to occur is that {σ(x),π(x)} give rise to a reflectionless Dirac operator. We provide an explicit formula for the diagonal resolvent of the Dirac operator in a reflectionless {σ(x),π(x)} background which produces a prescribed number of bound states. We analyze in detail the cases of a single as well as two bound states. We explicitly check that these reflectionless backgrounds may be tuned such that the large- N saddle-point condition is satisfied. Thus, in the case of the NJL model, reflectionlessness is also sufficient to assure the time independence of the background. In our view, these facts make our work conceptually simpler than the previous work of Shei and of Dashen, Hasslacher, and Neveu which were based on the inverse scattering formalism. Our method of finding such nontrivial static configurations may be applied to other (1+1)-dimensional field theories. copyright 1997 The American Physical Society

  4. Punctuated Chirality

    Science.gov (United States)

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-12-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively L-amino acids, while only D-sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life’s homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  5. Punctuated Chirality

    CERN Document Server

    Gleiser, Marcelo; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high intensity and long duration events may drive achiral initial conditions towards chirality. We argue that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events, thus extending the theory of punctuated equilibrium to the prebiotic realm. Applying our arguments to other potentially life-bearing planetary platforms, we predict that a statistically representative sampling will be racemic on average.

  6. Chiral transparency

    International Nuclear Information System (INIS)

    Color transparency is the vanishing of initial and final state interactions, predicted by QCD to occur in high momentum transfer quasielastic nuclear reactions. For specific reactions involving nucleons, the initial and final state interactions are expected to be dominated by exchanges of pions. We argue that these interactions are also suppressed in high momentum transfer nuclear quasielastic reactions; this is open-quotes chiral transparency.close quotes We show that studies of the e3He→e'Δ++nn reaction could reveal the influence of chiral transparency. copyright 1997 The American Physical Society

  7. Chiral Nanoscience and Nanotechnology

    OpenAIRE

    Dibyendu S. Bag; T.C. Shami; K.U. Bhasker Rao

    2008-01-01

    The paper reviews nanoscale science and technology of chiral molecules/macromolecules-under twosubtopics-chiral nanotechnology and nano-chiral technology. Chiral nanotechnology discusses thenanotechnology, where molecular chirality plays a role in the properties of materials, including molecularswitches, molecular motors, and other molecular devices; chiral supramolecules and self-assembled nanotubesand their functions are also highlighted. Nano-chiral technology  describes the nanoscale appr...

  8. Chiral magnetic effect by synthetic gauge fields

    CERN Document Server

    Hayata, Tomoya

    2016-01-01

    We study the dynamical generation of the chiral chemical potential in a Weyl metal constructed from a three-dimensional optical lattice and subject to synthetic gauge fields. By numerically solving the Boltzmann equation with the Berry curvature in the presence of parallel synthetic electric and magnetic fields, we find that the spectral flow and the ensuing chiral magnetic current emerge. We show that the spectral flow and the chiral chemical potential can be probed by time-of-flight imaging.

  9. Instantons and chiral symmetry breaking

    International Nuclear Information System (INIS)

    A detailed investigation of chiral symmetry breaking due to instanton dynamics is carried out, within the framework of the dilute gas approximation, for quarks in both the fundamental and adjoint representations of SU(2). The momentum dependence of the dynamical mass is found to be very similar in each representation. (orig.)

  10. Punctuated Chirality

    OpenAIRE

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high int...

  11. Two-color QCD with chiral chemical potential

    Science.gov (United States)

    Braguta, V. V.; Goy, V. A.; Ilgenfritz, E.-M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.; Schreiber, A.

    2016-01-01

    The phase diagram of two-color QCD with a chiral chemical potential is studied on the lattice. The focus is on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulations are carried out with dynamical staggered fermions without rooting. The dependence of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented.

  12. Chiral polarization scale of QCD vacuum and spontaneous chiral symmetry breaking

    International Nuclear Information System (INIS)

    It has recently been found that dynamics of pure glue QCD supports the low energy band of Dirac modes with local chiral properties qualitatively different from that of a bulk: while bulk modes suppress chirality relative to statistical independence between left and right, the band modes enhance it. The width of such chirally polarized zone – chiral polarization scale bigwedgech – has been shown to be finite in the continuum limit at fixed physical volume. Here we present evidence that bigwedgech remains non-zero also in the infinite volume, and is therefore a dynamical scale in the theory. Our experiments in Nf = 2+1 QCD support the proposition that the same holds in the massless limit, connecting bigwedgech to spontaneous chiral symmetry breaking. In addition, our results suggest that thermal agitation in quenched QCD destroys both chiral polarization and condensation of Dirac modes at the same temperature Tch > Tc.

  13. Chiral geometry in multiple chiral doublet bands

    CERN Document Server

    Zhang, Hao

    2015-01-01

    The chiral geometry of the multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters $\\gamma$ in the particle rotor model with $\\pi h_{11/2}\\otimes \

  14. Isospin dynamics on the production of pions and preequilibrium particles in heavy-ion collisions

    CERN Document Server

    Feng, Zhao-Qing

    2016-01-01

    Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, pion dynamics in heavy-ion collisions near threshold energies and the emission of preequilibrium particles (nucleons and light clusters) have been investigated. A density, momentum and isospin dependent pion-nucleon potential based on the $\\Delta$-hole model is implemented in the transport approach, which slightly increases the $\\pi^{-}/\\pi^{+}$ ratio, but reduces the total pion yields. A bump structure of the $\\pi^{-}/\\pi^{+}$ ratio in the kinetic energy spectra appears at the pion energy close to the $\\Delta$(1232) resonance region. The yield ratios of neutrons to protons from the squeeze-out particles perpendicular to the reaction plane are sensitive to the stiffness of nuclear symmetry energy, in particular at the high-momentum (kinetic energy) tails.

  15. Chiral nuclear thermodynamics

    CERN Document Server

    Fiorilla, Salvatore; Weise, Wolfram

    2011-01-01

    We calculate the equation of state of nuclear matter for arbitrary isospin-asymmetry up to three loop order in the free energy density in the framework of in-medium chiral perturbation theory. In our approach 1\\pi- and 2\\pi-exchange dynamics with the inclusion of the \\Delta-isobar excitation as an explicit degree of freedom, corresponding to the long- and intermediate-range correlations, are treated explicitly. Few contact terms fixed to reproduce selected known properties of nuclear matter encode the short-distance physics. Two-body as well as three-body forces are systematically included. We find a critical temperature of about 15 MeV for symmetric nuclear matter. We investigate the dependence of the liquid-gas first-order phase transition on isospin-asymmetry. In the same chiral framework we calculate the chiral condensate of isospin-symmetric nuclear matter at finite temperatures. The contribution of the \\Delta-isobar excitation is essential for stabilizing the condensate. As a result, we find no indicati...

  16. Chiral Schwinger model at finite temperature

    International Nuclear Information System (INIS)

    We discuss the chiral Schwinger model at finite temperature using Fujikawa's method. We solve this model exactly and show that the axial anomaly and the dynamically generated mass for the gauge field are temperature independent. (author). 20 refs

  17. Vector meson spectral function and dilepton rate in the presence of strong entanglement effect between the chiral and the Polyakov loop dynamics

    Science.gov (United States)

    Islam, Chowdhury Aminul; Majumder, Sarbani; Mustafa, Munshi G.

    2015-11-01

    In this work we have reexplored our earlier study on the vector meson spectral function and its spectral property in the form of dilepton rate in a two-flavor Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model in the presence of a strong entanglement between the chiral and Polyakov loop dynamics. The entanglement considered here is generated through the four-quark scalar-type interaction in which the coupling strength depends on the Polyakov loop and runs with temperature and chemical potential. The entanglement effect is also considered for the four-quark vector-type interaction in the same manner. We observe that the entanglement effect relatively enhances the color degrees of freedom due to the running of both the scalar and vector couplings. This modifies the vector meson spectral function and, thus, the spectral property such as the dilepton production rate in the low invariant mass also gets modified.

  18. Vector meson spectral function and dilepton rate in presence of strong entanglement effect between the chiral and the Polyakov loop dynamics

    CERN Document Server

    Islam, Chowdhury Aminul; Mustafa, Munshi G

    2015-01-01

    In this work we have re-explored our earlier study on the vector meson spectral function and its spectral property in the form of dilepton rate in a two-flavour Polyakov loop extended Nambu-Jona-Lasinio (PNJL) model in presence of a strong entanglement between the chiral and Polyakov loop dynamics. The entanglement considered here is generated through the four-quark scalar type interaction in which the coupling strength depends on the Polyakov loop and runs with temperature and chemical potential. The entanglement effect is also considered for the four-quark vector type interaction in the same manner. We observe that the entanglement effect relatively enhances the color degrees of freedom due to the running of the both scalar and vector couplings. This modifies the vector meson spectral function and thus the spectral property such as the dilepton production rate in low invariant mass also gets modified.

  19. Chiral transition of fundamental and adjoint quarks

    OpenAIRE

    Capdevilla, R. M.; Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil); Natale, A. A.

    2014-01-01

    The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagat...

  20. Chiral symmetry in rotating systems

    Science.gov (United States)

    Malik, Sham S.

    2015-08-01

    The triaxial rotating system at critical angular momentum I ≥Iband exhibits two enatiomeric (the left- and right-handed) forms. These enatiomers are related to each other through dynamical chiral symmetry. The chiral symmetry in rotating system is defined by an operator χ ˆ =Rˆy (π) T ˆ, which involves the product of two distinct symmetries, namely, continuous and discrete. Therefore, new guidelines are required for testing its commutation with the system Hamiltonian. One of the primary objectives of this study is to lay down these guidelines. Further, the possible impact of chiral symmetry on the geometrical arrangement of angular momentum vectors and investigation of observables unique to nuclear chiral-twins is carried out. In our model, the angular momentum components (J1, J2, J3) occupy three mutually perpendicular axes of triaxial shape and represent a non-planar configuration. At certain threshold energy, the equation of motion in angular momentum develops a second order phase transition and as a result two distinct frames (i.e., the left- and right-handed) are formed. These left- and right-handed states correspond to a double well system and are related to each other through chiral operator. At this critical angular momentum, the centrifugal and Coriolis interactions lower the barrier in the double well system. The tunneling through the double well starts, which subsequently lifts the degeneracy among the rotational states. A detailed analysis of the behavior of rotational energies, spin-staggering, and the electromagnetic transition probabilities of the resulting twin-rotational bands is presented. The ensuing model results exhibit similarities with many observed features of the chiral-twins. An advantage of our formalism is that it is quite simple and it allows us to pinpoint the understanding of physical phenomenon which lead to chiral-twins in rotating systems.

  1. Chiral mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Plum, Eric, E-mail: erp@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); Zheludev, Nikolay I., E-mail: niz@orc.soton.ac.uk [Optoelectronics Research Centre and Centre for Photonic Metamaterials, University of Southampton, Highfield, Southampton SO17 1BJ (United Kingdom); The Photonics Institute and Centre for Disruptive Photonic Technologies, Nanyang Technological University, Singapore 637378 (Singapore)

    2015-06-01

    Mirrors are used in telescopes, microscopes, photo cameras, lasers, satellite dishes, and everywhere else, where redirection of electromagnetic radiation is required making them arguably the most important optical component. While conventional isotropic mirrors will reflect linear polarizations without change, the handedness of circularly polarized waves is reversed upon reflection. Here, we demonstrate a type of mirror reflecting one circular polarization without changing its handedness, while absorbing the other. The polarization-preserving mirror consists of a planar metasurface with a subwavelength pattern that cannot be superimposed with its mirror image without being lifted out of its plane, and a conventional mirror spaced by a fraction of the wavelength from the metasurface. Such mirrors enable circularly polarized lasers and Fabry-Pérot cavities with enhanced tunability, gyroscopic applications, polarization-sensitive detectors of electromagnetic waves, and can be used to enhance spectroscopies of chiral media.

  2. Chiral interaction and biomolecular evolution

    International Nuclear Information System (INIS)

    Recent developments in the concept of chiral interaction open now new options and dynamical possibilities for biomolecules which have so far been overlooked. A few of these possibilities are mentioned, such as the control mechanism of enzymatic activity and the role played by non-ergodicity in evolutionary processes. It is shown that chiral interaction, being a surface phenomenon, does not obey Barron's symmetry constraints, which are suitable for force fields present in bulk interactions. In particular, the situation at the ocean-air surface in the prebiotic era is described, as well as the possible role played by chiral interaction in conjunction with the terrestrial magnetic field normal to the ocean surface, which could have lead to a process of deracernization at the ocean-air interface. (author)

  3. Influence of Chirality of Crizotinib on Its MTH1 Protein Inhibitory Activity: Insight from Molecular Dynamics Simulations and Binding Free Energy Calculations.

    Directory of Open Access Journals (Sweden)

    Yuzhen Niu

    Full Text Available As a promising target for the treatment of lung cancer, the MutT Homolog 1 (MTH1 protein can be inhibited by crizotinib. A recent work shows that the inhibitory potency of (S-crizotinib against MTH1 is about 20 times over that of (R-crizotinib. But the detailed molecular mechanism remains unclear. In this study, molecular dynamics (MD simulations and free energy calculations were used to elucidate the mechanism about the effect of chirality of crizotinib on the inhibitory activity against MTH1. The binding free energy of (S-crizotinib predicted by the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA and Adaptive biasing force (ABF methodologies is much lower than that of (R-crizotinib, which is consistent with the experimental data. The analysis of the individual energy terms suggests that the van der Waals interactions are important for distinguishing the binding of (S-crizotinib and (R-crizotinib. The binding free energy decomposition analysis illustrated that residues Tyr7, Phe27, Phe72 and Trp117 were important for the selective binding of (S-crizotinib to MTH1. The adaptive biasing force (ABF method was further employed to elucidate the unbinding process of (S-crizotinib and (R-crizotinib from the binding pocket of MTH1. ABF simulation results suggest that the reaction coordinates of the (S-crizotinib from the binding pocket is different from (R-crizotinib. The results from our study can reveal the details about the effect of chirality on the inhibition activity of crizotinib to MTH1 and provide valuable information for the design of more potent inhibitors.

  4. Chiral effective field theory analysis of hadronic parity violation in few-nucleon systems

    Energy Technology Data Exchange (ETDEWEB)

    Viviani, Michele [INFN; Baroni, Alessandro [ODU; Girlanda, Luca [Lecce U.; Kievsky, Alejandro [Pisa U,; Marcucci, Laura E. [Pisa U,; Schiavilla, Rocco [ODU, JLAB

    2014-06-01

    Background: Weak interactions between quarks induce a parity-violating (PV) component in the nucleonnucleon potential, whose effects are currently being studied in a number of experiments involving few-nucleon systems. In the present work, we reconsider the derivation of this PV component within a chiral effective field theory (chiEFT) framework. Purpose: The objectives of the present work are twofold. The first is to perform a detailed analysis of the PV nucleon-nucleon potential up to next-to-next-to-leading (N2LO) order in the chiral expansion, in particular, by determining the number of independent low-energy constants (LECs) at N2LO. The second objective is to investigate PV effects in a number of few-nucleon observables, including the p-p longitudinal asymmetry, the neutron spin rotation in n-p and n-d scattering, and the longitudinal asymmetry in the {sup 3}He( {vector n},p){sup 3}H chargeexchange reaction. Methods: The chiEFT PV potential includes one-pion-exchange, two-pion-exchange, and contact terms as well as 1/M (M being the nucleon mass) nonstatic corrections. Dimensional regularization is used to renormalize pion loops. The wave functions for the A = 2–-4 nuclei are obtained by using strong two- and three-body potentials also derived, for consistency, from chiEFT. In the case of the A = 3–-4 systems, the wave functions are computed by expanding on a hyperspherical harmonics functions basis. Results: We find that the PV potential at N2LO depends on six LECs: the pion-nucleon PV coupling constant h^1_pi and five parameters multiplying contact interactions. An estimate for the range of values of the various LECs is provided by using available experimental data, and these values are used to obtain predictions for the other PV observables. Conclusions: The chiEFT approach provides a very satisfactory framework to analyze PV effects in few-nucleon systems.

  5. Chiral Gravitational Waves from Chiral Fermions

    CERN Document Server

    Anber, Mohamed M

    2016-01-01

    We report on a new mechanism that leads to the generation of primordial chiral gravitational waves, and hence, the violation of the parity symmetry in the Universe. We show that nonperturbative production of fermions with a definite helicity is accompanied by the generation of chiral gravitational waves. This is a generic and model-independent phenomenon that can occur during inflation, reheating and radiation eras, and can leave imprints in the cosmic microwave background polarization and may be observed in future ground- and space-based interferometers. We also discuss a specific model where chiral gravitational waves are generated via the production of light chiral fermions during pseudoscalar inflation.

  6. Chiral transition of fundamental and adjoint quarks

    Energy Technology Data Exchange (ETDEWEB)

    Capdevilla, R.M. [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Doff, A., E-mail: agomes@utfpr.edu.br [Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR (Brazil); Natale, A.A., E-mail: natale@ift.unesp.br [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil)

    2014-01-20

    The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one.

  7. Chiral transition of fundamental and adjoint quarks

    International Nuclear Information System (INIS)

    The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one

  8. Staggered Heavy Baryon Chiral Perturbation Theory

    CERN Document Server

    Bailey, Jon A

    2007-01-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms the order of the cubed pion mass, which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms the order of the squared lattice spacing. The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in d...

  9. Unified description of ^{6}Li structure and deuterium-^{4}He dynamics with chiral two- and three-nucleon forces.

    Science.gov (United States)

    Hupin, Guillaume; Quaglioni, Sofia; Navrátil, Petr

    2015-05-29

    We provide a unified ab initio description of the ^{6}Li ground state and elastic scattering of deuterium (d) on ^{4}He (α) using two- and three-nucleon forces from chiral effective field theory. We analyze the influence of the three-nucleon force and reveal the role of continuum degrees of freedom in shaping the low-lying spectrum of ^{6}Li. The calculation reproduces the empirical binding energy of ^{6}Li, yielding an asymptotic D- to S-state ratio of the ^{6}Li wave function in the d+α configuration of -0.027, in agreement with a determination from ^{6}Li-^{4}He elastic scattering, but overestimates the excitation energy of the 3^{+} state by 350 keV. The bulk of the computed differential cross section is in good agreement with data. These results endorse the application of the present approach to the evaluation of the ^{2}H(α,γ)^{6}Li radiative capture, responsible for the big-bang nucleosynthesis of ^{6}Li. PMID:26066431

  10. Anomalous Chiral Superfluidity

    OpenAIRE

    Lublinsky, Michael(Physics Department, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel); Zahed, Ismail

    2009-01-01

    We discuss both the anomalous Cartan currents and the energy-momentum tensor in a left chiral theory with flavour anomalies as an effective theory for flavored chiral phonons in a chiral superfluid with the gauged Wess-Zumino-Witten term. In the mean-field (leading tadpole) approximation the anomalous Cartan currents and the energy momentum tensor take the form of constitutive currents in the chiral superfluid state. The pertinence of higher order corrections and the Adler-Bardeen theorem is ...

  11. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  12. Chiral effective model with the Polyakov loop

    OpenAIRE

    Fukushima, Kenji

    2003-01-01

    We discuss how the simultaneous crossovers of deconfinement and chiral restoration can be realized. We propose a dynamical mechanism assuming that the effective potential gives a finite value of the chiral condensate if the Polyakov loop vanishes. Using a simple model, we demonstrate that our idea works well for small quark mass, though there should be further constraints to reach the perfect locking of two phenomena.

  13. Lattice quantum chromodynamics with approximately chiral fermions

    Energy Technology Data Exchange (ETDEWEB)

    Hierl, Dieter

    2008-05-15

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  14. Lattice quantum chromodynamics with approximately chiral fermions

    International Nuclear Information System (INIS)

    In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the Θ+ pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)

  15. Intelligent Chiral Sensing Based on Supramolecular and Interfacial Concepts

    Directory of Open Access Journals (Sweden)

    Hironori Izawa

    2010-07-01

    Full Text Available Of the known intelligently-operating systems, the majority can undoubtedly be classed as being of biological origin. One of the notable differences between biological and artificial systems is the important fact that biological materials consist mostly of chiral molecules. While most biochemical processes routinely discriminate chiral molecules, differentiation between chiral molecules in artificial systems is currently one of the challenging subjects in the field of molecular recognition. Therefore, one of the important challenges for intelligent man-made sensors is to prepare a sensing system that can discriminate chiral molecules. Because intermolecular interactions and detection at surfaces are respectively parts of supramolecular chemistry and interfacial science, chiral sensing based on supramolecular and interfacial concepts is a significant topic. In this review, we briefly summarize recent advances in these fields, including supramolecular hosts for color detection on chiral sensing, indicator-displacement assays, kinetic resolution in supramolecular reactions with analyses by mass spectrometry, use of chiral shape-defined polymers, such as dynamic helical polymers, molecular imprinting, thin films on surfaces of devices such as QCM, functional electrodes, FET, and SPR, the combined technique of magnetic resonance imaging and immunoassay, and chiral detection using scanning tunneling microscopy and cantilever technology. In addition, we will discuss novel concepts in recent research including the use of achiral reagents for chiral sensing with NMR, and mechanical control of chiral sensing. The importance of integration of chiral sensing systems with rapidly developing nanotechnology and nanomaterials is also emphasized.

  16. Generation of chiral spin state by quantum simulation

    Science.gov (United States)

    Tanamoto, Tetsufumi

    2016-06-01

    Chirality of materials in nature appears when there are asymmetries in their lattice structures or interactions in a certain environment. Recent development of quantum simulation technology has enabled the manipulation of qubits. Accordingly, chirality can be realized intentionally rather than passively observed. Here we theoretically provide simple methods to create a chiral spin state in a spin-1/2 qubit system on a square lattice. First, we show that switching on and off the Heisenberg and X Y interactions produces the chiral interaction directly in the effective Hamiltonian without controlling local fields. Moreover, when initial states of spin qubits are appropriately prepared, we prove that the chirality with desirable phase is dynamically obtained. Finally, even for the case where switching on and off the interactions is infeasible and the interactions are always on, we show that, by preparing an asymmetric initial qubit state, the chirality whose phase is π /2 is dynamically generated.

  17. Chirality in Nonlinear Optics

    Science.gov (United States)

    Haupert, Levi M.; Simpson, Garth J.

    2009-05-01

    The past decade has witnessed the emergence of new measurement approaches and applications for chiral thin films and materials enabled by the observations of the high sensitivity of second-order nonlinear optical measurements to chirality. In thin films, the chiral response to second harmonic generation and sum frequency generation (SFG) from a single molecular monolayer is often comparable with the achiral response. The chiral specificity also allows for symmetry-allowed SFG in isotropic chiral media, confirming predictions made ˜50 years ago. With these experimental demonstrations in hand, an important challenge is the construction of intuitive predictive models that allow the measured chiral response to be meaningfully related back to molecular and macromolecular structure. This review defines and considers three distinct mechanisms for chiral effects in uniaxially oriented assemblies: orientational chirality, intrinsic chirality, and isotropic chirality. The role of each is discussed in experimental and computational studies of bacteriorhodopsin films, binaphthol, and collagen. Collectively, these three model systems support a remarkably simple framework for quantitatively recovering the measured chiral-specific activity.

  18. Chiral Rotational Spectroscopy

    CERN Document Server

    Cameron, Robert P; Barnett, Stephen M

    2015-01-01

    We introduce chiral rotational spectroscopy: a new technique that enables the determination of the individual optical activity polarisability components $G_{XX}'$, $G_{YY}'$, $G_{ZZ}'$, $A_{X,YZ}$, $A_{Y,ZX}$ and $A_{Z,XY}$ of chiral molecules, in a manner that reveals the enantiomeric constitution of a sample whilst yielding an incisive signal even for a racemate. Chiral rotational spectroscopy could find particular use in the analysis of molecules that are chiral by virtue of their isotopic constitution and molecules with multiple chiral centres. The principles that underpin chiral rotational spectroscopy can also be exploited in the search for molecular chirality in space, which, if found, may add weight to hypotheses that biological homochirality and indeed life itself are of cosmic origin.

  19. Fermion self-energy in magnetized chirally asymmetric QED matter

    CERN Document Server

    Rybalka, D O

    2016-01-01

    The fermion self-energy is calculated for a cold QED plasma with chiral chemical potential in a magnetic field. It is found that a momentum shift parameter dynamically generated in such a plasma leads to a modification of the chiral magnetic effect current. It is argued that the momentum shift parameter can be relevant for the evolution of magnetic field in the chirally asymmetric primordial plasma in the early Universe.

  20. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  1. Staggered heavy baryon chiral perturbation theory

    Science.gov (United States)

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  2. Nuclear Chiral EFT in the Precision Era

    CERN Document Server

    Epelbaum, Evgeny

    2015-01-01

    Chiral effective field theory has established itself as the method of choice to study nuclear forces and low-energy nuclear dynamics. I review the status and prospects of this approach and discuss ongoing efforts to advance the precision frontier for ab initio description of few-nucleon systems. Special emphasis is put on the precise determination of the two-nucleon force at fifth order in the chiral expansion, role of the chiral symmetry, the convergence pattern of the chiral expansion and the quantification of the theoretical uncertainties. The discussed topics are essential for ongoing studies towards elucidating the structure of the three-nucleon force which will be briefly addressed as well.

  3. Chirally motivated K{sup -} nuclear potentials

    Energy Technology Data Exchange (ETDEWEB)

    Cieply, A. [Nuclear Physics Institute, 25068 Rez (Czech Republic); Friedman, E. [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); Gal, A., E-mail: avragal@vms.huji.ac.il [Racah Institute of Physics, Hebrew University, 91904 Jerusalem (Israel); Gazda, D.; Mares, J. [Nuclear Physics Institute, 25068 Rez (Czech Republic)

    2011-08-26

    In-medium subthreshold K-bar N scattering amplitudes calculated within a chirally motivated meson-baryon coupled-channel model are used self consistently to confront K{sup -} atom data across the periodic table. Substantially deeper K{sup -} nuclear potentials are obtained compared to the shallow potentials derived in some approaches from threshold K-bar N amplitudes, with ReV{sub K}{sup chiral}=-(85{+-}5) MeV at nuclear matter density. When K-bar NN contributions are incorporated phenomenologically, a very deep K{sup -} nuclear potential results, ReV{sub K}{sup chiral+phen.}=-(180{+-}5) MeV, in agreement with density dependent potentials obtained in purely phenomenological fits to the data. Self consistent dynamical calculations of K{sup -}-nuclear quasibound states generated by V{sub K}{sup chiral} are reported and discussed.

  4. Understanding complex chiral plasmonics

    Science.gov (United States)

    Duan, Xiaoyang; Yue, Song; Liu, Na

    2015-10-01

    Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant and simple analytical model, which can describe, predict, and comprehend the chiroptical spectra in detail. Our study will shed light on designing well-controlled chiral-achiral coupling platforms for reliable chiral sensing.Chiral nanoplasmonics exhibits great potential for novel nanooptical devices due to the generation of a strong chiroptical response within nanoscale metallic structures. Recently, a number of different approaches have been utilized to create chiral nanoplasmonic structures. However, particularly for tailoring nanooptical chiral sensing devices, the understanding of the resulting chiroptical response when coupling chiral and achiral structures together is crucial and has not been completely understood to date. Here, we present a thorough and step-by-step experimental study to understand the intriguing chiral-achiral coupling scheme. We set up a hybrid plasmonic system, which bears resemblance to the `host-guest' system in supramolecular chemistry to analyze and explain the complex chiral response both at the chiral and achiral plasmonic resonances. We also provide an elegant

  5. Two-Color QCD with Non-zero Chiral Chemical Potential

    CERN Document Server

    Braguta, V V; Ilgenfritz, E -M; Kotov, A Yu; Molochkov, A V; Muller-Preussker, M; Petersson, B

    2015-01-01

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  6. Two-color QCD with non-zero chiral chemical potential

    Science.gov (United States)

    Braguta, V. V.; Goy, V. A.; Ilgenfritz, E. M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.

    2015-06-01

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  7. Spectral study of a chiral limit without chiral condensate

    CERN Document Server

    Bietenholz, Wolfgang

    2009-01-01

    Random Matrix Theory (RMT) has elaborated successful predictions for Dirac spectra in field theoretical models. However, a generic assumption by RMT has been a non-vanishing chiral condensate $\\Sigma$ in the chiral limit. Here we consider the 2-flavour Schwinger model, where this assumption does not hold. We simulated this model with dynamical overlap hypercube fermions, and entered terra incognita by analysing this Dirac spectrum. The usual RMT prediction for the unfolded level spacing distribution in a unitary ensemble is precisely confirmed. The microscopic spectrum does not perform a Banks-Casher plateau. Instead the obvious expectation is a density of the lowest eigenvalue $\\lambda_{1}$ which increases $\\propto \\lambda_{1}^{1/3}$. That would correspond to a scale-invariant parameter $\\propto \\lambda V^{3/4}$, which is, however, incompatible with our data. Instead we observe to high precision a scale-invariant parameter $z \\propto \\lambda V^{5/8}$. This surprising result implies a microscopic spectral den...

  8. Pion scattering and nuclear dynamics

    International Nuclear Information System (INIS)

    A phenomenological optical-model analysis of pion elastic scattering and single- and double-charge-exchange scattering to isobaric-analog states is reviewed. Interpretation of the optical-model parameters is briefly discussed, and several applications and extensions are considered. The applications include the study of various nuclear properties, including neutron deformation and surface-fluctuation contributions to the density. One promising extension for the near future would be to develop a microscopic approach based on powerful momentum-space methods brought to existence over the last decade. In this, the lowest-order optical potential as well as specific higher-order pieces would be worked out in terms of microscopic pion-nucleon and delta-nucleon interactions that can be determined within modern meson-theoretical frameworks. A second extension, of a more phenomenological nature, would use coupled-channel methods and shell-model wave functions to study dynamical nuclear correlations in pion double charge exchange. 35 refs., 11 figs., 1 tab

  9. Chiral recognition of Propranolol enantiomers by β-Cyclodextrin: Quantum chemical calculation and molecular dynamics simulation studies

    Energy Technology Data Exchange (ETDEWEB)

    Ghatee, Mohammad Hadi, E-mail: ghatee@susc.ac.ir; Sedghamiz, Tahereh

    2014-12-05

    Highlights: • Enantiomeric recognition of Propranolol studied by β-Cyclodextrin complexations. • Complexes characterized by PM3 and molecular dynamics (MD) simulation methods. • Results support more stability of R-enantiomer complex in gas and in aqueous solution phases. • Gas phase complexes are unlikely free-energy-wise, though solution phase’s are more likely. • Higher molecular diffusion in aqueous solution phase is inherent to S-enantiomer. - Abstract: Enantiomeric recognition of Propranolol by complexation with β-Cyclodextrin was studied by PM3 method and molecular dynamics (MD) simulation. Gas phase results show that the R-enantiomer complex is more stable than the S-enantiomer complex by 8.54 kJ/mol (Hartree–Fock energy). Using polarized continuum model, solution phase of R-enantiomer complex was found to be more stable than S-enantiomer complex by 25.95 kJ/mol. Both complexes hardly occur at room temperature free-energy-wise, though, complexation with R-enantiomer is more favorable than with S-enantiomer enthalpy-wise. Also, complexes were studied by molecular dynamics simulation in gas and solution phases. More stability of R-enantiomer complex in gas phase is confirmed by MD van der Waals energy (5.04 kJ/mol) and closely by the counterpart PM3 binding energy (8.54 kJ/mol). Simulation in solution phase indicates more stability of R-enantiomer complex. Finally, simulated transport property provides insight into the high anisotropic atoms motion according to which S-Propranolol found possessing significantly higher dynamics.

  10. Chiral recognition of Propranolol enantiomers by β-Cyclodextrin: Quantum chemical calculation and molecular dynamics simulation studies

    International Nuclear Information System (INIS)

    Highlights: • Enantiomeric recognition of Propranolol studied by β-Cyclodextrin complexations. • Complexes characterized by PM3 and molecular dynamics (MD) simulation methods. • Results support more stability of R-enantiomer complex in gas and in aqueous solution phases. • Gas phase complexes are unlikely free-energy-wise, though solution phase’s are more likely. • Higher molecular diffusion in aqueous solution phase is inherent to S-enantiomer. - Abstract: Enantiomeric recognition of Propranolol by complexation with β-Cyclodextrin was studied by PM3 method and molecular dynamics (MD) simulation. Gas phase results show that the R-enantiomer complex is more stable than the S-enantiomer complex by 8.54 kJ/mol (Hartree–Fock energy). Using polarized continuum model, solution phase of R-enantiomer complex was found to be more stable than S-enantiomer complex by 25.95 kJ/mol. Both complexes hardly occur at room temperature free-energy-wise, though, complexation with R-enantiomer is more favorable than with S-enantiomer enthalpy-wise. Also, complexes were studied by molecular dynamics simulation in gas and solution phases. More stability of R-enantiomer complex in gas phase is confirmed by MD van der Waals energy (5.04 kJ/mol) and closely by the counterpart PM3 binding energy (8.54 kJ/mol). Simulation in solution phase indicates more stability of R-enantiomer complex. Finally, simulated transport property provides insight into the high anisotropic atoms motion according to which S-Propranolol found possessing significantly higher dynamics

  11. Mechanical separation of chiral dipoles by chiral light

    CERN Document Server

    Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.

  12. Hidden symmetry of the two-dimensional chiral fields

    International Nuclear Information System (INIS)

    The non-Abelian Goldstone boson (chiral field) interaction in two dimensions is examined. As was shown earlier, this theory strongly resembles the Yang-Mills theory in four dimensions. It is shown that dynamics of chiral fields is governed by the infinite number of the non-trivial conservation laws, which impose strong limitations on the S matrix. (Auth.)

  13. Chiral solitons in a coupled double Peierls chain.

    Science.gov (United States)

    Cheon, Sangmo; Kim, Tae-Hwan; Lee, Sung-Hoon; Yeom, Han Woong

    2015-10-01

    Chiral edge states are the hallmark of two- and three-dimensional topological materials, but their one-dimensional (1D) analog has not yet been found. We report that the 1D topological edge states, solitons, of the charge density wave system of indium atomic wires self-assembled on a silicon surface have chirality. The system is described by a coupled double Peierls-dimerized atomic chain, where the interchain coupling induces dynamical sublattice symmetry breaking. This changes its topological symmetry from Z₂× Z₂to Z₄ and endows solitons with a chiral degree of freedom. Chiral solitons can produce quantized charge transport across the chain that is topologically protected and controllable by the soliton's chirality. Individual right- and left-chiral solitons in indium wires are directly identified by scanning tunneling microscopy. PMID:26450206

  14. Detecting chirality in molecules by linearly polarized laser fields

    CERN Document Server

    Yachmenev, Andrey

    2016-01-01

    A new scheme for enantiomer differentiation of chiral molecules using a pair of linearly polarized intense ultrashort laser pulses with skewed mutual polarization is presented. The technique relies on the fact that the off-diagonal anisotropic contributions to the electric polarizability tensor for two enantiomers have different signs. Exploiting this property, we are able to excite a coherent unidirectional rotation of two enantiomers with a {\\pi} phase difference in the molecular electric dipole moment. The approach is robust and suitable for relatively high temperatures of molecular samples, making it applicable for selective chiral analysis of mixtures, and to chiral molecules with low barriers between enantiomers. As an illustration, we present nanosecond laser-driven dynamics of a tetratomic non-rigid chiral molecule with short-lived chirality. The ultrafast time scale of the proposed technique is well suited to study parity violation in molecular systems in short-lived chiral states.

  15. Detecting Chirality in Molecules by Linearly Polarized Laser Fields

    Science.gov (United States)

    Yachmenev, Andrey; Yurchenko, Sergei N.

    2016-07-01

    A new scheme for enantiomer differentiation of chiral molecules using a pair of linearly polarized intense ultrashort laser pulses with skewed mutual polarization is presented. The technique relies on the fact that the off-diagonal anisotropic contributions to the electric polarizability tensor for two enantiomers have different signs. Exploiting this property, we are able to excite a coherent unidirectional rotation of two enantiomers with a π phase difference in the molecular electric dipole moment. The approach is robust and suitable for relatively high temperatures of molecular samples, making it applicable for selective chiral analysis of mixtures, and to chiral molecules with low barriers between enantiomers. As an illustration, we present nanosecond laser-driven dynamics of a tetratomic nonrigid chiral molecule with short-lived chirality. The ultrafast time scale of the proposed technique is well suited to study parity violation in molecular systems in short-lived chiral states.

  16. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  17. Chiral geometry in multiple chiral doublet bands

    Science.gov (United States)

    Zhang, Hao; Chen, Qibo

    2016-02-01

    The chiral geometry of multiple chiral doublet bands with identical configuration is discussed for different triaxial deformation parameters γ in the particle rotor model with . The energy spectra, electromagnetic transition probabilities B(M1) and B(E2), angular momenta, and K-distributions are studied. It is demonstrated that the chirality still remains not only in the yrast and yrare bands, but also in the two higher excited bands when γ deviates from 30°. The chiral geometry relies significantly on γ, and the chiral geometry of the two higher excited partner bands is not as good as that of the yrast and yrare doublet bands. Supported by Plan Project of Beijing College Students’ Scientific Research and Entrepreneurial Action, Major State 973 Program of China (2013CB834400), National Natural Science Foundation of China (11175002, 11335002, 11375015, 11461141002), National Fund for Fostering Talents of Basic Science (NFFTBS) (J1103206), Research Fund for Doctoral Program of Higher Education (20110001110087) and China Postdoctoral Science Foundation (2015M580007)

  18. Baryon resonances without quarks: A chiral soliton perspective

    Energy Technology Data Exchange (ETDEWEB)

    Karliner, M.

    1987-03-01

    In many processes involving low momentum transfer it is fruitful to regard the nucleon as a soliton or ''monopole-like'' configuration of the pion field. In particular, within this framework it is possible to obtain detailed predictions for pion-nucleon scattering amplitudes and for properties of baryon resonances. One can also derive model-independent linear relations between scattering amplitudes, such as ..pi..N and anti KN. A short survey of some recent results is given, including comparison with experimental data.

  19. Wormholes from Chiral Fields

    International Nuclear Information System (INIS)

    In this paper, Lorentzian wormholes with a phantom field and chiral matter fields have been obtained. In addition, it is shown that for different values of the gravitational coupling of the chiral fields, the wormhole geometry changes. Finally, the stability of the corresponding wormholes is studied and it is shown that are unstable (eg. Ellis's wormhole instability)

  20. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast to the...

  1. Chiral Magnetic "Superfluidity"

    CERN Document Server

    Sadofyev, Andrey V

    2015-01-01

    We study a heavy impurity moving longitudinal with the direction of an external magnetic field in an anomalous chiral medium. Such system would carry a non-dissipative current of chiral magnetic effect associated with the anomaly. We show, by generalizing Landau's criterion for superfluidity, that the "anomalous component" which gives rise to the anomalous transport will {\\it not} contribute to the drag experienced by an impurity. We argue on very general basis that those systems with a strong magnetic field would exhibit the behavior of 'superfluidity" -- the motion of the heavy impurity is frictionless, in analog to the case of a superfluid. However, this "superfluidity" exists even for chiral media at finite temperature and only in the directional longitudinal with the magnetic field, in contrast to the ordinary superfluid. We will call this novel phenomenon as the Chiral Magnetic "Superfluidity". We demonstrate and confirm our general results with two complementary examples: weakly coupled chiral fermion ...

  2. Painlevé test for integrability for a combination of Yang’s self-dual equations for (2) gauge fields and Charap's equations for chiral invariant model of pion dynamics and a comparative discussion among the three

    Indian Academy of Sciences (India)

    Susanto Chakraborty; Pranab Krishna Chandra

    2007-04-01

    Painlevé test for integrability for the combined equations generated from Yang's self-dual equations for (2) gauge fields and Charap's equations for chiral invariant model of pion dynamics faces some peculiar situations that allow none of the stages (leading order analysis, resonance calculation and checking of the existence of the requisite number of arbitrary functions) to be conclusive. It is also revealed from a comparative study with the previous results that the existence of abnormal behaviour at any of the stated stages may have a correlation with the existence of chaotic property or some other properties that do not correspond to solitonic behaviour.

  3. Chiral symmetry in hadron physics methods and ideas of chiral symmetry

    International Nuclear Information System (INIS)

    Methods and ideas of chiral symmetry is presented based on a lecture note to help the future researches in hadron dynamics along with the chiral symmetry. The chiral symmetry was originally developed as the symmetry between currents before the discovery of QCD. It has come to be understood in principle by now that the symmetry is spontaneously broken and only the part of flavor symmetry remains explicitly. In QCD, however, the chiral symmetry has come to be regarded as the base of the symmetry of the global flavor space of quarks. One of the recent topics of the lattice gauge theory is how the hadron properties will change when the broken symmetry is going to be restored. Since the chiral symmetry is global, it is different from gauge symmetry which is local. It explains the degeneracy of hadron masses and relations between the elements of S-matrix in which same number of particles are included. In practice, however, the symmetry of the axial part is spontaneously broken and pions which behave like gauge particles come to play. Chiral symmetry is defined as the (internal) flavor symmetry for the two independent chirality states of quarks. It discriminates two different fundamental quarks defined for the Lorentz groups O(4) - SL(2, C). The symmetry transformation itself is, however, different from the chirality. They should not be confused. In this lecture note, fundamental properties of pions are described on the basis of the interaction with nucleons at first. General properties of the chiral symmetry and some of the low energy theorems on current algebra are introduced. Then, linear sigma model and nonlinear sigma model are introduced. Then the Skyrme-model, which provides an idea as important as quarks, is explained. One of the interesting topics at present is to restore the broken axial symmetry experimentally to investigate the mechanism of symmetry breaking. (S. Funahashi)

  4. Chiral Magnetic Effect and Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    FU Wei-Jie; LIU Yu-Xin; WU Yue-Liang

    2011-01-01

    We study the influence of the chiral phase transition on the chiral magnetic effect.The azimuthal chargeparticle correlations as functions of the temperature are calculated.It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition.It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value.We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.

  5. Chiral String-Soliton Model for the light chiral baryons

    CERN Document Server

    Pavlovsky, Oleg

    2010-01-01

    The Chiral String-Soliton Model is a joining of the two notions about the light chiral baryons: the chiral soliton models (like the Skyrme model) and the Quark-Gluon String models. The ChSS model is based on the Effective Chiral Lagrangian which was proposed in [arXiv:hep-ph/0306216]. We have studied the physical properties of the light chiral baryon within the framework of this ChSS model.

  6. The Dynamical Structure of the Delta-Resonance and its Effect on Two- and Three-Nucleon Systems

    OpenAIRE

    Kortemeyer, G.; Pena, M. T.; Sauer, P. U.; Stadler, A.

    1996-01-01

    The pion-nucleon interaction in the P33 partial wave is assumed to proceed simultaneously through the excitation of the Delta-isobar and through a phenomenologically introduced non-resonant background potential. The introduction of the background potential allows a more realistic parameterization of the pion-nucleon-Delta vertex compared with the previously used one without background. It also modifies the propagation of the Delta-isobar in the nuclear medium and gives rise to novel effective...

  7. Applications of chiral symmetry

    International Nuclear Information System (INIS)

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature Tχ implies that the ρ and a1 vector mesons are degenerate in mass. In a gauged linear sigma model the ρ mass increases with temperature, mρ(Tχ) > mρ(0). The author conjectures that at Tχ the thermal ρ - a1, peak is relatively high, at about ∼1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The ω meson also increases in mass, nearly degenerate with the ρ, but its width grows dramatically with temperature, increasing to at least ∼100 MeV by Tχ. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from open-quotes quenchedclose quotes heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates

  8. Chiral supergravity and anomalies

    CERN Document Server

    Mielke, E W; Macias, Alfredo; Mielke, Eckehard W.

    1999-01-01

    Similarily as in the Ashtekar approach, the translational Chern-Simons term is, as a generating function, instrumental for a chiral reformulation of simple (N=1) supergravity. After applying the algebraic Cartan relation between spin and torsion, the resulting canonical transformation induces not only decomposition of the gravitational fields into selfdual and antiselfdual modes, but also a splitting of the Rarita-Schwinger fields into their chiral parts in a natural way. In some detail, we also analyze the consequences for axial and chiral anomalies.

  9. Synthesis of Chiral Cyclopentenones.

    Science.gov (United States)

    Simeonov, Svilen P; Nunes, João P M; Guerra, Krassimira; Kurteva, Vanya B; Afonso, Carlos A M

    2016-05-25

    The cyclopentenone unit is a very powerful synthon for the synthesis of a variety of bioactive target molecules. This is due to the broad diversity of chemical modifications available for the enone structural motif. In particular, chiral cyclopentenones are important precursors in the asymmetric synthesis of target chiral molecules. This Review provides an overview of reported methods for enantioselective and asymmetric syntheses of cyclopentenones, including chemical and enzymatic resolution, asymmetric synthesis via Pauson-Khand reaction, Nazarov cyclization and organocatalyzed reactions, asymmetric functionalization of the existing cyclopentenone unit, and functionalization of chiral building blocks. PMID:27101336

  10. Synthesis and applications of novel, highly efficient HPLC chiral stationary phases: a chiral dimension in drug research analysis.

    Science.gov (United States)

    Cancelliere; D'Acquarica; Gasparrini; Misiti; Villani

    1999-12-01

    This review provides an overview of the synthesis and application of stable and versatile HPLC chiral stationary phases (CSPs), with emphasis placed on the binding strategies developed to anchor several structurally different chiral selectors to silica-gel microparticles. In addition, selected applications relating to the use of these CSPs for the direct resolution of racemates of biological and pharmaceutical relevance will be described. This review discusses enantioselective molecular recognition and dynamic stereochemistry of stereolabile compounds with reference to receptor-based chiral stationary phases (CSPs) and dynamic HPLC on CSPs, respectively. PMID:10603466

  11. New generation chiral metamaterials with small and flat chirality over a certain frequency band based on circular split ring resonators for microwave filter applications

    Science.gov (United States)

    Dincer, Furkan; Akgol, Oguzhan; Karaaslan, Muharrem; Unal, Emin; Demirel, Ekrem; Sabah, Cumali

    2016-02-01

    There are many studies in literature on chiral metamaterials (MTMs) to obtain large chiralities with dynamic optical activities. With this regard, this new generation planar chiral MTM study focuses on a small, non-dispersive (constant/flat) chirality admittance over an indicated frequency band which has not been investigated so far in literature. This new generation planar chiral MTM provides a small and a constant/fixed chirality which is mostly ignored by the scientists. This study numerically and experimentally investigates and examines these new generation MTMs based on circular split ring resonators (SRRs) with an increased capacitance in details. Obtained results show that the suggested structure can provide a small and constant/flat chirality admittance over a certain frequency band and hence it can be used to design myriad novel electromagnetic (EM) devices such as transmission and antireflection filters, polarization rotators for any desired frequency regions.

  12. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    K A Suresh

    2003-08-01

    Viscoelastic properties of liquid crystals are very important for applications like display technology. However, there are not many direct techniques to study them. In this review, we describe our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic modes corresponding to the C director fluctuations in the chiral smectic C phase and the behaviour of the Goldstone-mode near the chiral smectic C–smectic A phase transition. In cholesteric liquid crystals, we consider the director fluctuations in a wavevector range comparable to the inverse pitch of the cholesteric. Here, the study of the scattered light in the vicinity of the Bragg reflection using a novel geometry will be presented.

  13. Chiral symmetry breaking in brane models

    International Nuclear Information System (INIS)

    We discuss the chiral symmetry breaking in general intersecting Dq/Dp brane models consisting of Nc Dq-branes and a single Dp-brane with an s-dimensional intersection. There exists a QCD-like theory localized at the intersection and the Dq/Dp model gives a holographic description of it. The rotational symmetry of directions transverse to both of the Dq and Dp-branes can be identified with a chiral symmetry, which is non-Abelian for certain cases. The asymptotic distance between the Dq-branes and the Dp-brane corresponds to a quark mass. By studying the probe Dp-brane dynamics in a Dq-brane background in the near horizon and large Nc limit we find that the chiral symmetry is spontaneously broken and there appear (pseudo-)Nambu-Goldstone bosons. We also discuss the models at finite temperature

  14. Chiral symmetry and strangeness at SIS energies

    International Nuclear Information System (INIS)

    In this talk we review the consequences of the chiral SU(3) symmetry for strangeness propagation in nuclear matter. Objects of crucial importance are the meson-baryon scattering amplitudes obtained within the chiral coupled-channel effective field theory. Results for antikaon and hyperon-resonance spectral functions in cold nuclear matter are presented and discussed. The importance of the Σ(1385) resonance for the subthreshold antikaon production in heavy-ion reaction at SIS is pointed out. The in-medium properties of the latter together with an antikaon spectral function based on chiral SU(3) dynamics suggest a significant enhancement of the π Λ → anti Κ N reaction in nuclear matter. (orig.)

  15. Analysis of chiral symmetry breaking mechanism

    International Nuclear Information System (INIS)

    The renormalization group invariant quark condensate μ is determinate both from the consistent equation for quark condensate in the chiral limit and from the Schwinger-Dyson (SD) equation improved by the intermediate range QCD force singular like δ (q) which is associated with the gluon condensate. The solutions of μ in these two equations are consistent. We also obtain the critical strong coupling constant αc above which chiral symmetry breaks in two approaches. The nonperturbative kernel of the SD equation makes αc smaller and μ bigger. An intuitive picture of the condensation above αc is discussed. In addition, with the help of the Slavnov-Taylor-Ward (STW) identity we derive the equations for the nonperturbative quark propagator from SD equation in the presence of the intermediate-range force is also responsible for dynamical chiral symmetry breaking. (author)

  16. Chiral superfluidity for the heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, T. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute of Theoretical and Experimental Physics, Moscow (Russian Federation)

    2013-02-15

    We argue that the strongly coupled quark-gluon plasma formed at LHC and RHIC can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use the bosonization procedure with a finite cut-off and obtain a dynamical axion-like field out of the chiral fermionic modes. Then we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model. By considering probe quarks one can show that the fermionic spectrum at the intermediate temperatures (T{sub c}

  17. Theoretical aspects of Chiral Dynamics

    CERN Document Server

    Leutwyler, H

    2015-01-01

    Many of the quantities of interest at the precision frontier in particle physics require a good understanding of the strong interaction at low energies. The present talk reviews the theoretical framework used in this context. In particular, I draw attention to the fact that applications of effective field theory methods in the low energy domain involve two different aspects: dependence of the quantities of interest on the quark masses and dependence on the momenta. While the lattice approach gives an excellent handle on the low energy constants that govern the quark mass dependence, the most efficient tool to pin down the momentum dependence is dispersion theory. At the same time, the dispersive analysis enlarges the energy range where the effective theory applies. In the meson sector, the interplay of the various sources of information has led to a coherent framework that describes the low energy structure at remarkably high resolution. The understanding of the low energy properties in the baryon sector is l...

  18. Spontaneous chiral symmetry breaking in collective active motion

    Science.gov (United States)

    Breier, Rebekka E.; Selinger, Robin L. B.; Ciccotti, Giovanni; Herminghaus, Stephan; Mazza, Marco G.

    2016-02-01

    Chiral symmetry breaking is ubiquitous in biological systems, from DNA to bacterial suspensions. A key unresolved problem is how chiral structures may spontaneously emerge from achiral interactions. We study a simple model of active swimmers in three dimensions that effectively incorporates hydrodynamic interactions. We perform large-scale molecular dynamics simulations (up to 106 particles) and find long-lived metastable collective states that exhibit chiral organization although the interactions are achiral. We elucidate under which conditions these chiral states will emerge and grow to large scales. To explore the complex phase space available to the system, we perform nonequilibrium quenches on a one-dimensional Lebwohl-Lasher model with periodic boundary conditions to study the likelihood of formation of chiral structures.

  19. VCD Studies on Chiral Characters of Metal Complex Oligomers

    Directory of Open Access Journals (Sweden)

    Hisako Sato

    2013-01-01

    Full Text Available The present article reviews the results on the application of vibrational circular dichroism (VCD spectroscopy to the study of stereochemical properties of chiral metal complexes in solution. The chiral characters reflecting on the vibrational properties of metal complexes are revealed by measurements of a series of β-diketonato complexes with the help of theoretical calculation. Attention is paid to the effects of electronic properties of a central metal ion on vibrational energy levels or low-lying electronic states. The investigation is further extended to the oligomers of β-diketonato complex units. The induction of chiral structures is confirmed by the VCD spectra when chiral inert moieties are connected with labile metal ions. These results have demonstrated how VCD spectroscopy is efficient in revealing the static and dynamic properties of mononuclear and multinuclear chiral metal complexes, which are difficult to clarify by means of other spectroscopes.

  20. Chiral symmetry breaking and chiral polarization: Tests for finite temperature and many flavors

    Directory of Open Access Journals (Sweden)

    Andrei Alexandru

    2015-02-01

    Full Text Available It was recently conjectured that, in SU(3 gauge theories with fundamental quarks, valence spontaneous chiral symmetry breaking is equivalent to condensation of local dynamical chirality and appearance of chiral polarization scale Λch. Here we consider more general association involving the low-energy layer of chirally polarized modes which, in addition to its width (Λch, is also characterized by volume density of participating modes (Ω and the volume density of total chirality (Ωch. Few possible forms of the correspondence are discussed, paying particular attention to singular cases where Ω emerges as the most versatile characteristic. The notion of finite-volume “order parameter”, capturing the nature of these connections, is proposed. We study the effects of temperature (in Nf=0 QCD and light quarks (in Nf=12, both in the regime of possible symmetry restoration, and find agreement with these ideas. In Nf=0 QCD, results from several volumes indicate that, at the lattice cutoff studied, the deconfinement temperature Tc is strictly smaller than the overlap–valence chiral transition temperature Tch in real Polyakov line vacuum. Somewhat similar intermediate phase (in quark mass is also seen in Nf=12. It is suggested that deconfinement in Nf=0 is related to indefinite convexity of absolute X-distributions.

  1. The quest for chirality

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, W.A. [Department of Chemistry Stanford University, Stanford, California 94305 (United States)

    1996-07-01

    The indispensable role played by homochirality and chiral homogeneity in the self-replication of crucial biomolecules is stressed, with the conclusion that life could neither exist nor originate without these chiral molecular attributes. Hypotheses historically proposed for the origin of chiral molecules on Earth are reviewed, including biogenic theories as well as abiotic theories embracing both indeterminate and determinate mechanisms. Indeterminate mechanisms, including autocatalytic symmetry breaking, asymmetric adsorption on quartz and clay minerals, and asymmetric syntheses in chiral crystals, are discussed and evaluated in the context of the prebiotic environment. Abiotic determinate mechanisms based on electric, magnetic and gravitational fields, on circularly polarized light (CPL), and on parity violation effects are summarized, with the emphasis that only CPL has proved practicable experimentally, but that it would be implausible on the primitive Earth. Mechanisms for the amplification of small, indigenous enantiomeric excesses are discussed, with one involving the partial polymerization of amino acids and the partial hydrolysis of polypeptides suggested as potentially viable prebiotically. Aspects of the turbulent, chirality-destructive primeval environment are described, with the conclusion that all of the above mechanisms for the {ital terrestrial} prebiotic origin of chirality would be non-viable, and that an alternative extraterrestrial source for the accumulation of chiral molecules on primitive Earth must have been operative. A scenario for this is outlined, in which we postulate that asymmetric photolysis of the organic mantles on interstellar grains in molecular clouds by circularly polarized ultraviolet synchrotron radiation from the neutron star remnants of supernovae produces chiral molecules in the grain mantles. (Abstract Truncated)

  2. Chiral separation in microflows

    OpenAIRE

    Kostur, Marcin; Schindler, Michael; Talkner, Peter; Hänggi, Peter

    2005-01-01

    Molecules that only differ by their chirality, so called enantiomers, often possess different properties with respect to their biological function. Therefore, the separation of enantiomers presents a prominent challenge in molecular biology and belongs to the ``Holy Grail'' of organic chemistry. We suggest a new separation technique for chiral molecules that is based on the transport properties in a microfluidic flow with spatially variable vorticity. Because of their size the thermal fluctua...

  3. Chiral Odd GPDs

    Directory of Open Access Journals (Sweden)

    Goldstein Gary R.

    2015-01-01

    Full Text Available Nucleon spin structure, transversity and the tensor charge are of central importance to understanding the role of QCD in hadronic physics. A new approach to measuring orbital angular momenta of quarks in the proton via twist 3 GPDs is shown. The “flexible parametrization” of chiral even GPDs is reviewed and its transformation into the chiral odd sector is discussed. The resulting parametrization is applied to recent data on π0 and η electroproduction.

  4. Enantiomeric Separation of 1-(Benzofuran-2-yl)alkylamines on Chiral Stationary Phases Based on Chiral Crown Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soohyun; Kim, Sang Jun; Hyun, Myung Ho [Pusan National Univ., Busan (Korea, Republic of)

    2012-10-15

    Optically active chiral amines are important as building blocks for pharmaceuticals and as scaffolds for chiral ligands and, consequently, many efforts have been devoted to the development of efficient methods for their preparation. For example, reduction of amine precursors with chiral catalysts, enzymatic kinetic resolution or dynamic kinetic resolution of racemic amines and the direct amination of ketones with transaminases have been developed as the efficient methods for the preparation of optically active chiral amines. During the process of developing or utilizing optically active chiral amines, the methods for the determination of their enantiomeric composition are essential. Among various methods, liquid chromatographic resolution of enantiomers on chiral stationary phases (CSPs) have been known to be one of the most accurate and economic means for the determination of the enantiomeric composition of optically active chiral compounds. Especially, CSPs based on chiral crown ethers have been successfully used for the resolution of racemic primary amines. For example, CSPs based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (CSP 1, Figure 1) or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 (CSP 2 and CSP 3, Figure 1) have been known to be quite effective for the resolution of cyclic and non-cyclic amines, various fluoroquinolone antibacterials containing a primary amino group, tocainide (antiarrhythmic agent) and its analogues, aryl-a-amino ketones and 3-amino-1,4-benzodiazepin-2-ones.

  5. Dirac brackets for the chiral Schwinger model with chiral constraint

    International Nuclear Information System (INIS)

    Dirac brackets for the chiral Schwinger model with chiral constraint are derived perturbatively from the correlation function by the BJL limit method. The results show that the Poissons brackets are not consistent in this theory. (author)

  6. Chiral anomalies and differential geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  7. Chiral symmetry and scalar meson in hadron and nuclear physics

    CERN Document Server

    Kunihiro, T

    1995-01-01

    After giving a short introduction to the Nambu-Jona-Lasinio model with an anomaly term, we show the importance of the scalar-scalar correlation in the low-energy hadron dynamics, which correlation may be summarized by a scalar-isoscalar meson, the sigma meson. The discussion is based on the chiral quark model with the sigma-meson degrees of freedom. Possible experiments are proposed to produce the elusive meson in a nucleus and detect it. In relation to a precursory soft mode for the chiral transition, the reason is clarified why the dynamic properties of the superconductor may be described by the diffusive time-dependent Ginzburg-Landau (TDGL) equation. We indicate the chiral symmetry plays a significant role also in nuclei; one may say that the stability of nuclei is due to the chiral symmetry of QCD.

  8. Quarkyonic Chiral Spirals

    CERN Document Server

    Kojo, Toru; McLerran, Larry; Pisarski, Robert D

    2009-01-01

    We consider the formation of chiral density waves in Quarkyonic matter, which is a phase where cold, dense quarks experience confining forces. We model confinement following Gribov and Zwanziger, taking the gluon propagator, in Coulomb gauge and momentum space, as 1/(p^2)^2. We assume that the number of colors, N, is large, and that the quark chemical potential, mu, is much larger than renormalization mass scale, Lambda_QCD. To leading order in 1/N and Lambda_QCD, a gauge theory with Nf flavors of massless quarks in 3+1 dimensions naturally reduces to a gauge theory in 1+1 dimensions, with an enlarged flavor symmetry of SU(2Nf). Through an anomalous chiral rotation, in two dimensions a Fermi sea of massless quarks maps directly onto the corresponding theory in vacuum. A chiral condensate forms locally, and varies with the spatial position, z, as . Following Schon and Thies, we term this two dimensional pion condensate a (Quarkyonic) chiral spiral. Massive quarks also exhibit chiral spirals, with the magnitude...

  9. Chiral Quirkonium Decays

    CERN Document Server

    Fok, R

    2011-01-01

    We calculate the two-body decay rates of "quirkonium" states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)_ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the Standard Model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vector-like representation. The differences in the dominant decay channels between "chiral quirkonia" versus "vector-like quirkonia" are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, t\\bar{t}, t\\bar{b} / b\\bar{t}, and gamma+H, which never dominate for vector-like quirkonia. Additionally, the channels WW, WZ, ZZ, and W+gamma, are shared among both chiral and vector-like quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vector-like quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the ...

  10. Chiral quirkonium decays

    International Nuclear Information System (INIS)

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between 'chiral quirkonia' versus 'vectorlike quirkonia' are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, tt, tb/bt, and γH, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and Wγ, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  11. Resonance signals in pion-nucleon scattering from speed plots and time delay

    CERN Document Server

    Workman, R L

    2008-01-01

    We compare a number of methods used to locate resonances. These include the speed plot, the time-delay method of Eisenbud and Wigner, the time-delay matrix of Smith, and a modification by Ohmura. Numerical results show a consistency not previously reported.

  12. Unified effective Lagrangian for the strong and electroweak interactions of pions, nucleons and leptons

    International Nuclear Information System (INIS)

    Past attempts in effective Lagrangians and field algebra models are reviewed, and an effective low-energy renormalizable gauge model is presented for mesons and nucleons where the strong and electroweak interactions are unified. The input parameters of the model are the ρ mass and width, the nucleon mass, the π-N coupling constant and the pion scattering lengths. The model predicts the A1 mass, GA/GV, the pion decay constant fπ, the π0 life-time and gives a finite estimate for pure electromagnetic contribution to the proton-neutron mass difference. This approach can be compared with models of the Skyrme type. It is shown that it faces similar difficulties as far as the accuracy of numerical predictions is concerned. (author) 63 refs.; 1 fig.; 3 tabs

  13. Pion-nucleon interactions in the P3 energy region. 1983 progress report

    International Nuclear Information System (INIS)

    Experimental programs are briefly described including: measurement of the polarization asymmetry for π-p → π0n and π+-p → π+-p, neutron counter calibration using tagged neutrons from the reaction π-d → nn, investigation of the spin form factor of tritium and helium-3, measurement of the differential cross sections for π-p → π0n, and measurement of π+-p → π+-p elastic scattering

  14. Use of dispersion methods for the analysis of pion-nucleon scattering

    International Nuclear Information System (INIS)

    The author performs a low-energy phase analysis of the πN scattering using electromagnetic corrections which are derived using dispersion theoretic models and contain kinematic mass corrections of the outer particles. He obtains a value for the πNN coupling constant, the scattering lengths for the 1=2 and 1=3 partial waves, the sigma terms, and the singularity structure of the dispersion relation. (HSI) 891 HSI/HSI 892 GR

  15. Study of chiral dynamics in π{sup -}π{sup 0}π{sup 0} production in Primakoff reactions at COMPASS

    Energy Technology Data Exchange (ETDEWEB)

    Kraemer, Markus [TU-Muenchen Phisikdepartment E18, James-Franck-Str. 1, Garching (Germany)

    2014-07-01

    COMPASS is a fixed-target experiment at CERN, which uses muon and hadron beams produced at the SPS to address a wide variety of physics topics. In 2009 during a two-week long period data were recorded in order to study the Primakoff reaction by colliding a 190 GeV/c pion beam on a nickel target. A partial-wave analysis of this data allows to measure the absolute cross section of the reaction π{sup -}γ → π{sup -}π{sup 0}π{sup 0}, which is predicted by chiral perturbation theory. The analysis of this reaction is presented.

  16. Chiral Invariance of Massive Fermions

    OpenAIRE

    Das, A.(University of Arizona, Tucson, AZ, 85721, USA); Hott, M

    1994-01-01

    We show that a massive fermion theory, while not invariant under the conventional chiral transformation, is invariant under a $m$-deformed chiral transformation. These transformations and the associated conserved charges are nonlocal but reduce to the usual transformations and charges when $m=0$. The $m$-deformed charges commute with helicity and satisfy the conventional chiral algebra.

  17. Chiral Synthons in Pesticide Syntheses

    NARCIS (Netherlands)

    Feringa, Bernard

    1988-01-01

    The use of chiral synthons in the preparation of enantiomerically pure pesticides is described in this chapter. Several routes to chiral synthons based on asymmetric synthesis or on natural products are illustrated. Important sources of chiral building blocks are reviewed. Furthermore the implicatio

  18. Fermion-boson metamorphosis in a chiral invariant theory

    International Nuclear Information System (INIS)

    A chiral invariant theory in two dimensions with massless fermions is examined in its Bose form. Dynamical generation of mass occurs via boson transmutation, which preserves the chiral symmetry of the massless theory and is independent of the number of fermions. Several new features of the fermion theory, such as hidden symmetry, duality and triality symmetries are discovered. Some interesting connections with other two-dimensional models are also presented. (orig.)

  19. Static aeroelastic response of chiral-core airfoils

    OpenAIRE

    Spadoni, Alessandro; Ruzzene, Massimo

    2007-01-01

    Extensive research is being devoted to the analysis and application of cellular solids for the design of innovative structural components. The chiral geometry in particular features a unique mechanical behavior which is here exploited for the design of 2D airfoils with morphing capabilities. A coupled-physics model, comprising computational fluid dynamics and structural analyses, investigates the influence of the chiral core on the aerodynamic behavior of the airfoil. Specifically, the model ...

  20. Holographic Chiral Magnetic Spiral

    International Nuclear Information System (INIS)

    We study the ground state of baryonic/axial matter at zero temperature chiral-symmetry broken phase under a large magnetic field, in the framework of holographic QCD by Sakai-Sugimoto. Our study is motivated by a recent proposal of chiral magnetic spiral phase that has been argued to be favored against previously studied phase of homogeneous distribution of axial/baryonic currents in terms of meson super-currents dictated by triangle anomalies in QCD. Our results provide an existence proof of chiral magnetic spiral in strong coupling regime via holography, at least for large axial chemical potentials, whereas we don't find the phenomenon in the case of purely baryonic chemical potential. (author)

  1. Chiral Quantum Optics

    CERN Document Server

    Lodahl, Peter; Stobbe, Søren; Schneeweiss, Philipp; Volz, Jürgen; Rauschenbeutel, Arno; Pichler, Hannes; Zoller, Peter

    2016-01-01

    At the most fundamental level, the interaction between light and matter is manifested by the emission and absorption of single photons by single quantum emitters. Controlling light--matter interaction is the basis for diverse applications ranging from light technology to quantum--information processing. Many of these applications are nowadays based on photonic nanostructures strongly benefitting from their scalability and integrability. The confinement of light in such nanostructures imposes an inherent link between the local polarization and propagation direction of light. This leads to {\\em chiral light--matter interaction}, i.e., the emission and absorption of photons depend on the propagation direction and local polarization of light as well as the polarization of the emitter transition. The burgeoning research field of {\\em chiral quantum optics} offers fundamentally new functionalities and applications both for single emitters and ensembles thereof. For instance, a chiral light--matter interface enables...

  2. Examination of the Potential for Adaptive Chirality of the Nitrogen Chiral Center in Aza-Aspartame

    OpenAIRE

    Samir H. Bouayad-Gervais; William D. Lubell

    2013-01-01

    The potential for dynamic chirality of an azapeptide nitrogen was examined by substitution of nitrogen for the α-carbon of the aspartate residue in the sweetener S,S-aspartame. Considering that S,S- and R,S-aspartame possess sweet and bitter tastes, respectively, a bitter-sweet taste of aza-aspartame 9 could be indicative of a low isomerization barrier for nitrogen chirality inter-conversion. Aza-aspartame 9 was synthesized by a combination of hydrazine and peptide chemistry. Crystallizatio...

  3. Baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  4. Baryon chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2011-01-01

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order ${\\cal O}(q^6)$ and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  5. Baryon chiral perturbation theory

    Science.gov (United States)

    Scherer, S.

    2012-03-01

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order Script O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  6. Chiral Heat Wave and wave mixing in chiral media

    CERN Document Server

    Chernodub, M N

    2016-01-01

    We show that a hot rotating fluid of relativistic chiral fermions possesses a new gapless collective excitation associated with coherent propagation of energy density and chiral density waves along the axis of rotation. This excitation, which we call the Chiral Heat Wave, emerges due to a mixed gauge-gravitational anomaly. At finite density the Chiral Heat Wave couples to the Chiral Vortical Wave while in the presence of an external magnetic field it mixes with the Chiral Magnetic Wave. We find that the coupled waves - which are coherent fluctuations of the vector, axial and energy currents - have generally different velocities compared to the velocities of the individual waves. We also demonstrate that rotating chiral systems subjected to external magnetic field possess non-propagating metastable thermal excitations, the Dense Hot Spots.

  7. Chiral Sensitivity in the Dissociative Electron Attachment of Halocamphor Molecules

    Science.gov (United States)

    Dreiling, Joan

    2016-05-01

    We have demonstrated chirally-dependent molecular destruction when incident longitudinally-spin-polarized (chiral) electrons break bonds in chiral molecules. This chiral sensitivity was observed through an asymmetry in the dissociative electron attachment (DEA) reaction rate with chiral 3-bromocamphor (C10 H15 BrO). Such an observation provides an unambiguous demonstration of the idea underlying the Vester-Ulbricht hypothesis, which attempts to explain the origins of the homochirality that is observed in many biological systems. While the lack of inversion symmetry in these reactions allows the effects we observe to occur, their dynamic causes are poorly understood. We have further studied the asymmetries in the DEA rates for two additional halocamphor molecules, 3-iodocamphor (C10 H15 IO) and 10-iodocamphor, in a systematic effort to illuminate the mechanisms responsible for the chiral sensitivity. The DEA signal depends on the sign of the incident electron helicity for a given target handedness in all molecules, and it varies with both the atomic number and the location of the heaviest atom in the molecule. Surprisingly, the DEA asymmetries for 10-iodocamphor, in which the heaviest atom is farther from a chiral center than for the other molecules, produced the largest asymmetries. This work was performed at the University of Nebraska-Lincoln. This project was funded by NSF Grant PHY-1206067.

  8. Chiral damping of magnetic domain walls

    KAUST Repository

    Jué, Emilie

    2015-12-21

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).

  9. Chiral damping of magnetic domain walls.

    Science.gov (United States)

    Jué, Emilie; Safeer, C K; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles

    2016-03-01

    Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ). PMID:26689141

  10. Chiral forces and molecular dissymmetry

    International Nuclear Information System (INIS)

    Chiral molecules leading to helical macromolecules seem to preserve information and extend it better. In the biological world RNA is the very paradigm for self-replication, elongation and autocatalytic editing. The nucleic acid itself is not chiral. It acquires its chirality by association with D-sugars. Although the chiral information or selectivity put in by the unit monomer is no longer of much interest to the biologists - they tend to leave it to the Darwinian selection principle to take care of it as illustrated by Frank's model - it is vital to understand the origin of chirality. There are three different approaches for the chiral origin of life: (1) Phenomenological, (2) Electromagnetic molecular and Coriolis forces and (3) Atomic or nuclear force, the neutral weak current. The phenomenological approach involves spontaneous symmetry breaking fluctuations in far for equilibrium systems or nucleation and crystallization. Chance plays a major role in the chiral molecule selected

  11. Chiral fermions in asymptotically safe quantum gravity

    OpenAIRE

    Meibohm, Jan; Pawlowski, Jan M.

    2016-01-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck-scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works \\cite{Christia...

  12. Features of a 2d Gauge Theory with Vanishing Chiral Condensate

    OpenAIRE

    Landa-Marbán, David; Bietenholz, Wolfgang; Hip, Ivan

    2013-01-01

    The Schwinger model with $N_f \\geq 2$ flavors is a simple example for a fermionic model with zero chiral condensate Sigma (in the chiral limit). We consider numerical data for two light flavors, based on simulations with dynamical chiral lattice fermions. We test properties and predictions that were put forward in the recent literature for models with Sigma = 0, which include IR conformal theories. In particular we probe the decorrelation of low lying Dirac eigenvalues, and we discuss the mas...

  13. Interweaving Chiral Spirals

    CERN Document Server

    Kojo, Toru; Fukushima, Kenji; McLerran, Larry; Pisarski, Robert D

    2011-01-01

    We elaborate how to construct the interweaving chiral spirals in (2+1) dimensions, that is defined as a superposition of differently oriented chiral spirals. We divide the two-dimensional Fermi sea into distinct wedges characterized by the opening angle 2 Theta and the depth Q \\simeq pF, where pF is the Fermi momentum. Each wedge earns an energy gain by forming a single chiral spiral. The optimal values for Theta and Q are chosen by the balance between this energy gain and the energy costs from the deformed Fermi surface (dominant at large Theta) and patch-patch interactions (dominant at small Theta). We estimate these energy gains and costs by means of the expansions in terms of 1/Nc, Lambda_QCD/Q, and Theta using a non-local four-Fermi interaction model: At small 1/Nc the mass gap (chiral condensate) is large enough and the interaction among quarks and the condensate is local in momentum space thanks to the form factor in our non-local model. The fact that patch-patch interactions lie only near the patch bo...

  14. Langevin evolution of disoriented chiral condensate

    International Nuclear Information System (INIS)

    As the matter produced in a relativistic heavy ion collision cools through the QCD phase transition, the dynamical evolution of the chiral condensate will be driven out of thermal equilibrium. As a prelude to analyzing this evolution, and in particular as a prelude to learning how rapid the cooling must be in order for significant deviations from equilibrium to develop, we present a detailed analysis of the time-evolution of an idealized region of disoriented chiral condensate. We set up a Langevin field equation which can describe the evolution of these (or more realistic) linear sigma model configurations in contact with a heat bath representing the presence of other shorter wavelength degrees of freedom. We first analyze the model in equilibrium, paying particular attention to subtracting ultraviolet divergent classical terms and replacing them by their finite quantum counterparts. We use known results from lattice gauge theory and chiral perturbation theory to fix nonuniversal constants. The result is a theory which is ultraviolet cutoff independent and that reproduces quantitatively the expected equilibrium behavior of the quantum field theory of pions and σ fields over a wide range of temperatures. Finally, we estimate the viscosity η(T), which controls the dynamical timescale in the Langevin equation, by requiring that the timescale for DCC decay agrees with previous calculations. The resulting η(T) is larger than that found perturbatively. We also determine the temperature below which the classical field Langevin equation ceases to be a good model for the quantum field dynamics

  15. Multi-Q hexagonal spin density waves and dynamically generated spin-orbit coupling: Time-reversal invariant analog of the chiral spin density wave

    Science.gov (United States)

    Venderbos, J. W. F.

    2016-03-01

    We study hexagonal spin-channel ("triplet") density waves with commensurate M -point propagation vectors. We first show that the three Q =M components of the singlet charge density and charge-current density waves can be mapped to multicomponent Q =0 nonzero angular momentum order in three dimensions (3D) with cubic crystal symmetry. This one-to-one correspondence is exploited to define a symmetry classification for triplet M -point density waves using the standard classification of spin-orbit coupled electronic liquid crystal phases of a cubic crystal. Through this classification we naturally identify a set of noncoplanar spin density and spin-current density waves: the chiral spin density wave and its time-reversal invariant analog. These can be thought of as 3 DL =2 and 4 spin-orbit coupled isotropic β -phase orders. In contrast, uniaxial spin density waves are shown to correspond to α phases. The noncoplanar triple-M spin-current density wave realizes a novel 2 D semimetal state with three flavors of four-component spin-momentum locked Dirac cones, protected by a crystal symmetry akin to nonsymmorphic symmetry, and sits at the boundary between a trivial and topological insulator. In addition, we point out that a special class of classical spin states, defined as classical spin states respecting all lattice symmetries up to global spin rotation, are naturally obtained from the symmetry classification of electronic triplet density waves. These symmetric classical spin states are the classical long-range ordered limits of chiral spin liquids.

  16. Eliminating the chiral anomaly via symplectic embedding approach

    CERN Document Server

    Mendes, A C R; Oliveira, W

    2009-01-01

    The quantization of the chiral Schwinger model $(\\chi QED_{2})$ with one-parameter class Faddeevian regularization is hampered by the chiral anomaly, i.e., the Gauss law commutator exhibits Faddeev's anomaly. To overcome this kind of problem, we propose to eliminate this anomaly by embedding the theory through a new gauge-invariant formalism based on the enlargement of the phase space with the introduction of Wess-Zumino(WZ) fields and the symplectic approach. This process opens up a possibility to formulate different, but dynamically equivalent, gauge invariant versions for the model and also gives a geometrical interpretation to the arbitrariness presents on the BFFT and iterative conversion methods. Further, we observe that the elimination of the chiral anomaly imposes a condition on the chiral parameters present on the original model and on the WZ sector.

  17. Cavity-induced chiral states of fermionic quantum gases

    Science.gov (United States)

    Sheikhan, Ameneh; Brennecke, Ferdinand; Kollath, Corinna

    2016-04-01

    We investigate ultracold fermions placed into an optical cavity and subjected to optical lattices which confine the atoms to ladder structures. A transverse running-wave laser beam induces together with the dynamical cavity field a two-photon Raman-assisted tunneling process with spatially dependent phase imprint along the rungs of the ladders. We identify the steady states which can occur by the feedback mechanism between the cavity field and the atoms. We find the spontaneous emergence of a finite cavity field amplitude which leads to an artificial magnetic field felt by the fermionic atoms. These form a chiral insulating or chiral liquid state carrying a chiral current. We explore the rich state diagram as a function of the power of the transverse laser beam, the atomic filling, and the phase imprint during the cavity-induced tunneling. Both a sudden onset or a slow exponential activation with the transverse laser power of the self-organized chiral states can occur.

  18. Magnetohydrodynamics of Chiral Relativistic Fluids

    CERN Document Server

    Boyarsky, Alexey; Ruchayskiy, Oleg

    2015-01-01

    We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.

  19. Chiral symmetry breakdown and the spectrum of pseudoscalar mesons in quantum chromodynamics

    International Nuclear Information System (INIS)

    The recently suggested mechanism of the dynamical chiral symmetry breakdown in quantum chromodynamics is extended to the realistic situation when both spontaneous and explicit chiral symmetry breaking take place (current masses of the light quarks are different from zero). The mass relations for pseudoscalar nonet are obtained

  20. Charge pumping due to triplet vector chirality in ferromagnet/triplet superconductor junctions

    OpenAIRE

    Yokoyama, Takehito

    2011-01-01

    We investigate charge pumping in ferromagnet/triplet superconductor junctions where the magnetization of the ferromagnet is inhomogeneous and dynamical. It is shown that charge current is pumped due to the coupling of the localized spin with triplet vector spin chirality, vector spin chirality formed by the triplet vector of Cooper pairing. Physical mechanism of the charge pumping is also discussed.

  1. Chiral Biomarkers in Meteorites

    Science.gov (United States)

    Hoover, Richard B.

    2010-01-01

    The chirality of organic molecules with the asymmetric location of group radicals was discovered in 1848 by Louis Pasteur during his investigations of the rotation of the plane of polarization of light by crystals of sodium ammonium paratartrate. It is well established that the amino acids in proteins are exclusively Levorotary (L-aminos) and the sugars in DNA and RNA are Dextrorotary (D-sugars). This phenomenon of homochirality of biological polymers is a fundamental property of all life known on Earth. Furthermore, abiotic production mechanisms typically yield recemic mixtures (i.e. equal amounts of the two enantiomers). When amino acids were first detected in carbonaceous meteorites, it was concluded that they were racemates. This conclusion was taken as evidence that they were extraterrestrial and produced by abiologically. Subsequent studies by numerous researchers have revealed that many of the amino acids in carbonaceous meteorites exhibit a significant L-excess. The observed chirality is much greater than that produced by any currently known abiotic processes (e.g. Linearly polarized light from neutron stars; Circularly polarized ultraviolet light from faint stars; optically active quartz powders; inclusion polymerization in clay minerals; Vester-Ulbricht hypothesis of parity violations, etc.). This paper compares the measured chirality detected in the amino acids of carbonaceous meteorites with the effect of these diverse abiotic processes. IT is concluded that the levels observed are inconsistent with post-arrival biological contamination or with any of the currently known abiotic production mechanisms. However, they are consistent with ancient biological processes on the meteorite parent body. This paper will consider these chiral biomarkers in view of the detection of possible microfossils found in the Orgueil and Murchison carbonaceous meteorites. Energy dispersive x-ray spectroscopy (EDS) data obtained on these morphological biomarkers will be

  2. A Chiral Granular Gas

    Science.gov (United States)

    Tsai, J.-C.; Ye, Fangfu; Rodriguez, Juan; Gollub, J. P.; Lubensky, T. C.

    2005-05-01

    Inspired by rattleback toys, we created small chiral wires that rotate in a preferred direction on a vertically oscillating platform and quantified their motion with experiment and simulation. We demonstrate experimentally that angular momentum of rotation about particle centers of mass is converted to collective angular momentum of center-of-mass motion in a granular gas of these wires, and we introduce a continuum model that explains our observations.

  3. Dynamical chiral symmetry breaking in QED3%三维 QED中的动力学手征对称破缺

    Institute of Scientific and Technical Information of China (English)

    周雨青

    2014-01-01

    In order to examine how a propagator behaves in non-perturbative theories and how its behavior is influenced by the choice of a covariant gauge a truncated Dyson-Schwinger equation is used to numerically investigate the properties of fermions and bosons in 3D quantum electrodynamics QED and a series of self-consistent solutions for the fermion propagator in the Nambu and Wigner phases are obtained. These numerical solutions show that the propagator behaves very differently in the Landau gauge domain and in the infrared energy region outside it.By using the propagators in the Nambu and Wigner phases under various gauges it is further investigated how the fermion equivalent pressure difference and fermion condensation change with the gauge parameters.These results indicate that the phase transition described by the CJT equivalent potential and the chiral phase transition described by the chiral condensation are not completely identical.%为了研究非微扰理论中的传播子行为,以及协变规范对其行为的影响,以常用的截断方案下的Dyson-Schwinger方程为基础,采用数值联立求解的方法研究了三维量子电动力学( QED)中的费米子和玻色子的行为,并获得了一系列不同规范下费米传播子在Nambu和Wigner相中的自洽解。对这些数值解的分析表明,远离Landau规范的红外区处,传播子行为明显不同于Landau规范中的行为。基于Nambu和Wigner相中的不同规范下的传播子,进一步对等效压力差和费米凝聚随规范参数的变化做了比较,结果表明,采用CJT等效势描述的相变与手征凝聚描述的手征相变两者之间不完全自洽。

  4. Chiral Crystal Growth under Grinding

    OpenAIRE

    Saito, Yukio; Hyuga, Hiroyuki

    2008-01-01

    To study the establishment of homochirality observed in the crystal growth experiment of chiral molecules from a solution under grinding, we extend the lattice gas model of crystal growth as follows. A lattice site can be occupied by a chiral molecule in R or S form, or can be empty. Molecules form homoclusters by nearest neighbor bonds. They change their chirality if they are isolated monomers in the solution. Grinding is incorporated by cutting and shafling the system randomly. It is shown ...

  5. Chiral squaring and KLT relations

    OpenAIRE

    Schreiber, Anders

    2016-01-01

    We demonstrate that amplitudes based on matter supermultiplets can be combined to provide amplitudes of vector supermultiplets by means of KLT relations. In practice we do this by developing a procedure for removing supersymmetry supercharges from super Yang-Mills theory and supergravity supermultiplets, reducing them to vector and chiral supermultiplets respectively. This way, we reduce the super KLT relations to chiral KLT relations making chiral squaring of amplitudes manifest. We study th...

  6. Chiral fermions in asymptotically safe quantum gravity

    Science.gov (United States)

    Meibohm, J.; Pawlowski, J. M.

    2016-05-01

    We study the consistency of dynamical fermionic matter with the asymptotic safety scenario of quantum gravity using the functional renormalisation group. Since this scenario suggests strongly coupled quantum gravity in the UV, one expects gravity-induced fermion self-interactions at energies of the Planck scale. These could lead to chiral symmetry breaking at very high energies and thus to large fermion masses in the IR. The present analysis which is based on the previous works (Christiansen et al., Phys Rev D 92:121501, 2015; Meibohm et al., Phys Rev D 93:084035, 2016), concludes that gravity-induced chiral symmetry breaking at the Planck scale is avoided for a general class of NJL-type models. We find strong evidence that this feature is independent of the number of fermion fields. This finding suggests that the phase diagram for these models is topologically stable under the influence of gravitational interactions.

  7. Magnetic rotation and chiral symmetry breaking

    Indian Academy of Sciences (India)

    Ashok Kumar Jain; Amita

    2001-08-01

    The deformed mean field of nuclei exhibits various geometrical and dynamical symmetries which manifest themselves as various types of rotational and decay patterns. Most of the symmetry operations considered so far have been defined for a situation wherein the angular momentum coincides with one of the principal axes and the principal axis cranking may be invoked. New possibilities arise with the observation of rotational features in weakly deformed nuclei and now interpreted as magnetic rotational bands. More than 120 MR bands have now been identified by filtering the existing data. We present a brief overview of these bands. The total angular momentum vector in such bands is tilted away from the principal axes. Such a situation gives rise to several new possibilities including breaking of chiral symmetry as discussed recently by Frauendorf. We present the outcome of such symmetries and their possible experimental verification. Some possible examples of chiral bands are presented.

  8. Generalized simplicial chiral models

    CERN Document Server

    Alimohammadi, M

    2000-01-01

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, we generalize the simplicial chiral models by replacing the term Tr$(AA^{\\d})$ in the Lagrangian of these models, by an arbitrary class function of $AA^{\\d}; V(AA^{\\d})$. This is the same method that has been used in defining the generalized two-dimensional Yang-Mills theories (gYM_2) from ordinary YM_2. We call these models, the " generalized simplicial chiral models ". With the help of the results of one-link integral over a U(N) matrix, we compute the large-N saddle-point equations for eigenvalue density function $\\ro (z)$ in the weak ($\\b >\\b_c$) and strong ($\\b <\\b_c$) regions. In d=2, where the model somehow relates to gYM_2 theory, we solve the saddle-point equations and find $\\ro (z)$ in two region, and calculate the explicit value of critical point $\\b_c$ for $V(B)=TrB^n (B=AA^{\\d})$. For $V(B)=Tr B^2,Tr B^3$ and Tr$B^4$, we study the critical behaviour of the model at d=2, and by calculating t...

  9. Generalized simplicial chiral models

    International Nuclear Information System (INIS)

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, the simplicial chiral models are generalized through replacing the term Tr(AA†) in the Lagrangian of these models by an arbitrary class function of AA†; V(AA†). This is the same method used in defining the generalized two-dimensional Yang-Mills theories (gYM2) from ordinary YM2. We call these models the 'generalized simplicial chiral models'. Using the results of the one-link integral over a U(N) matrix, the large-N saddle-point equations for eigenvalue density function ρ(z) in the weak (β>βc) and strong (βc) regions are computed. In d=2, where the model is in some sense related to the gYM2 theory, the saddle-point equations are solved for ρ(z) in the two regions, and the explicit value of critical point βc is calculated for V(B)=Tr Bn (B=AA†). For V(B)=Tr B2,Tr B3, and TrB4, the critical behaviour of the model at d=2 is studied, and by calculating the internal energy, it is shown that these models have a third order phase transition

  10. Chirality and protein folding

    Energy Technology Data Exchange (ETDEWEB)

    Kwiecinska, Joanna I; Cieplak, Marek [Institute of Physics, Polish Academy of Sciences, Aleja Lotnikow 32/46, 02-668 Warsaw (Poland)

    2005-05-11

    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.

  11. Chirality and protein folding

    Science.gov (United States)

    Kwiecinska, Joanna I.; Cieplak, Marek

    2005-05-01

    There are several simple criteria of folding to a native state in model proteins. One of them involves crossing of a threshold value of the root mean square deviation distance away from the native state. Another checks whether all native contacts are established, i.e. whether the interacting amino acids come closer than some characteristic distance. We use Go-like models of proteins and show that such simple criteria may prompt one to declare folding even though fragments of the resulting conformations have a wrong sense of chirality. We propose that a better condition of folding should augment the simple criteria with the requirement that most of the local values of the chirality should be nearly native. The kinetic discrepancy between the simple and compound criteria can be substantially reduced in the Go-like models by providing the Hamiltonian with a term which favours native values of the local chirality. We study the effects of this term as a function of its amplitude and compare it to other models such as ones with side groups and ones with angle-dependent potentials.

  12. Chiral squaring and KLT relations

    CERN Document Server

    Schreiber, Anders

    2016-01-01

    We demonstrate that amplitudes based on matter supermultiplets can be combined to provide amplitudes of vector supermultiplets by means of KLT relations. In practice we do this by developing a procedure for removing supersymmetry supercharges from super Yang-Mills theory and supergravity supermultiplets, reducing them to vector and chiral supermultiplets respectively. This way, we reduce the super KLT relations to chiral KLT relations making chiral squaring of amplitudes manifest. We study these chiral KLT relations, discussing permutation symmetry and vanishing relations. Finally some explicit calculations are done to show how the relations work in detail.

  13. The chiral magnetic effect in hydrodynamical approach

    OpenAIRE

    Sadofyev, A. V.; Isachenkov, M. V.

    2010-01-01

    In quark-gluon plasma nonzero chirality can be induced by the chiral anomaly. When a magnetic field is applied to a system with nonzero chirality an electromagnetic current is induced along the magnetic field. This phenomenon is called the chiral magnetic effect. In this paper appearance of the chiral magnetic effect in hydrodynamical approximation is shown. We consider a hydrodynamical model for chiral liquid with two independent currents of left and right handed particles in the presence of...

  14. Chiral condensate from the twisted mass Dirac operator spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration

    2013-03-15

    We present the results of our computation of the chiral condensate with N{sub f}=2 and N{sub f}=2+1+1 flavours of maximally twisted mass fermions. The condensate is determined from the Dirac operator spectrum, applying the spectral projector method proposed by Giusti and Luescher. We use 3 lattice spacings and several quark masses at each lattice spacing to reliably perform the chiral and continuum extrapolations. We study the effect of the dynamical strange and charm quarks by comparing our results for N{sub f}=2 and N{sub f}=2+1+1 dynamical flavours.

  15. Effective chiral restoration in the hadronic spectrum and QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Thomas D. [Department of Physics, University of Maryland, College Park, MD 20742-4111 (United States)]. E-mail: cohen@physics.umd.edu

    2006-08-21

    Effective chiral restoration in the hadronic spectrum has been conjectured as an explanation of nearly degenerate multiplets seen in highly excited hadrons. The conjecture depends on the states being insensitive to the dynamics of spontaneous chiral symmetry breaking. A key question is whether this concept is well defined in QCD. This paper shows that it is by means of an explicit formal construction. This construction allows one to characterize this sensitivity for any observable calculable in QCD in Euclidean space via a functional integral. The construction depends on a generalization of the Banks-Casher theorem. It exploits the fact that all dynamics sensitive to spontaneous chiral symmetry breaking observables in correlation functions arise from fermion modes of zero virtuality (in the infinite volume limit), while such modes make no contribution to any of the dynamics which preserves chiral symmetry. In principle this construction can be implemented in lattice QCD. The prospect of a practical lattice implementation yielding a direct numerical test of the concept of effective chiral restoration is discussed.

  16. On SU(3) effective models and chiral phase-transition

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...

  17. Supramolecular Chirality: Solvent Chirality Transfer in Molecular Chemistry and Polymer Chemistry

    Directory of Open Access Journals (Sweden)

    Michiya Fujiki

    2014-08-01

    Full Text Available Controlled mirror symmetry breaking arising from chemical and physical origin is currently one of the hottest issues in the field of supramolecular chirality. The dynamic twisting abilities of solvent molecules are often ignored and unknown, although the targeted molecules and polymers in a fluid solution are surrounded by solvent molecules. We should pay more attention to the facts that mostly all of the chemical and physical properties of these molecules and polymers in the ground and photoexcited states are significantly influenced by the surrounding solvent molecules with much conformational freedom through non-covalent supramolecular interactions between these substances and solvent molecules. This review highlights a series of studies that include: (i historical background, covering chiral NaClO3 crystallization in the presence of d-sugars in the late 19th century; (ii early solvent chirality effects for optically inactive chromophores/fluorophores in the 1960s–1980s; and (iii the recent development of mirror symmetry breaking from the corresponding achiral or optically inactive molecules and polymers with the help of molecular chirality as the solvent use quantity.

  18. Quark Matter in a Parallel Electric and Magnetic Field Background: Equilibrated Chiral Density Effect on Chiral Phase Transition

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...

  19. CHIRAL SYMMETRIES IN NUCLEAR PHYSICS

    International Nuclear Information System (INIS)

    The theoretical concepts of a chirally symmetric meson field theory are reviewed and an overview of the most relevant applications in nuclear physics is given. This includes a unified description of the vacuum properties of hadrons, finite nuclei and hot, dense and strange nuclear matter in an extended chiral SU(3)L/SU(3)R σ-ω model

  20. Two-chiral component microemulsion EKC - chiral surfactant and chiral oil. Part 2: diethyl tartrate.

    Science.gov (United States)

    Kahle, Kimberly A; Foley, Joe P

    2007-08-01

    In this second study on dual-chirality microemulsions containing a chiral surfactant and a chiral oil, a less hydrophobic and lower interfacial tension chiral oil, diethyl tartrate, is employed (Part 1, Foley, J. P. et al.., Electrophoresis, DOI: 10.1002/elps.200600551). Six stereochemical combinations of dodecoxycarbonylvaline (DDCV: R, S, or racemic, 2.00% w/v), racemic 2-hexanol (1.65% v/v), and diethyl tartrate (D, L, or racemic, 0.88% v/v) were examined as pseudostationary phases (PSPs) for the enantioseparation of six chiral pharmaceutical compounds: pseudoephedrine, ephedrine, N-methyl ephedrine, metoprolol, synephrine, and atenolol. Average efficiencies increased with the addition of a chiral oil to R-DDCV PSP formulations. Modest improvements in resolution and enantioselectivity (alpha(enant)) were achieved with two-chiral-component systems over the one-chiral-component microemulsion. Slight enantioselective synergies were confirmed using a thermodynamic model. Results obtained in this study are compared to those obtained in Part 1 as well as those obtained with chiral MEEKC using an achiral, low-interfacial-tension oil (ethyl acetate). Dual-chirality microemulsions with the more hydrophobic oil dibutyl tartrate yielded, relative to diethyl tartrate, higher efficiencies (100,000-134,000 vs. 80,800-94,300), but lower resolution (1.64-1.91 vs. 2.08-2.21) due to lower enantioselectivities (1.060-1.067 vs. 1.078-1.081). Atenolol enantiomers could not be separated with the dibutyl tartrate-based microemulsions but were partially resolved using diethyl tartrate microemulsions. A comparable single-chirality microemulsion based on the achiral oil ethyl acetate yielded, relative to diethyl tartrate, lower efficiency (78 300 vs. 91 600), higher resolution (1.99 vs. 1.83), and similar enantioselectivities. PMID:17597467

  1. Chiral analysis of baryon form factors

    International Nuclear Information System (INIS)

    This work presents an extensive theoretical investigation of the structure of the nucleon within the standard model of elementary particle physics. In particular, the long range contributions to a number of various form factors parametrizing the interactions of the nucleon with an electromagnetic probe are calculated. The theoretical framework for those calculations is chiral perturbation theory, the exact low energy limit of Quantum Chromo Dynamics, which describes such long range contributions in terms of a pion-cloud. In this theory, a nonrelativistic leading one loop order calculation of the form factors parametrizing the vector transition of a nucleon to its lowest lying resonance, the Δ, a covariant calculation of the isovector and isoscalar vector form factors of the nucleon at next to leading one loop order and a covariant calculation of the isoscalar and isovector generalized vector form factors of the nucleon at leading one loop order are performed. In order to perform consistent loop calculations in the covariant formulation of chiral perturbation theory an appropriate renormalization scheme is defined in this work. All theoretical predictions are compared to phenomenology and results from lattice QCD simulations. These comparisons allow for a determination of the low energy constants of the theory. Furthermore, the possibility of chiral extrapolation, i.e. the extrapolation of lattice data from simulations at large pion masses down to the small physical pion mass is studied in detail. Statistical as well as systematic uncertainties are estimated for all results throughout this work. (orig.)

  2. N phi state in chiral quark model

    CERN Document Server

    Huang, F; Zhang, Z Y

    2006-01-01

    The structures of N phi states with spin-parity J^{p}=3/2^- and J^p=1/2^- are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon (NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The channel coupling of N phi and Lambda K* is considered, and the effect of the tensor force which results in the mixing of S and D waves is also investigated. The results show that the N phi state has an attractive interaction, and in the extended chiral SU(3) quark model such an attraction plus the channel coupling effect can consequently make for an N phi quasi-bound state with several MeV binding energy.

  3. Mass-Selective Chiral Analysis.

    Science.gov (United States)

    Boesl, Ulrich; Kartouzian, Aras

    2016-06-12

    Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here. PMID:27070181

  4. Mass-Selective Chiral Analysis

    Science.gov (United States)

    Boesl, Ulrich; Kartouzian, Aras

    2016-06-01

    Three ways of realizing mass-selective chiral analysis are reviewed. The first is based on the formation of diastereomers that are of homo- and hetero- type with respect to the enantiomers of involved chiral molecules. This way is quite well-established with numerous applications. The other two ways are more recent developments, both based on circular dichroism (CD). In one, conventional or nonlinear electronic CD is linked to mass spectrometry (MS) by resonance-enhanced multiphoton ionization. The other is based on CD in the angular distribution of photoelectrons, which is measured in combination with MS via photoion photoelectron coincidence. Among the many important applications of mass-selective chiral analysis, this review focuses on its use as an analytical tool for the development of heterogeneous enantioselective chemical catalysis. There exist other approaches to combine chiral analysis and mass-selective detection, such as chiral chromatography MS, which are not discussed here.

  5. Entwicklung neuer chiraler Metathesekatalysatoren

    OpenAIRE

    Schlesiger, David Alexander

    2012-01-01

    Diese Arbeit befasst sich im ersten Teil mit der Synthese chiraler Rutenium-Metathesekatalysatoren. Diese zeichnen sich durch eine Monosubstitution im Rückgrat des N-heterocyclischen Carben-Liganden (NHC-Liganden) aus. Der Katalysator wurde hierbei ausgehend von L-Valin hergestellt. Der Weg verlief über eine Sulfamidat-Zwischenstufe und war bezüglich Ausbeute und Flexibilität dem ursprünglichen Syntheseweg überlegen. Die hoch flexible Route über das Sulfamidat ermöglichte die Herstellung des ...

  6. A study of the dynamic response characteristics of hexagonal chiral honeycombs%六韧带手性蜂窝结构的动力学响应特性研究

    Institute of Scientific and Technical Information of China (English)

    张新春; 祝晓燕; 李娜

    2016-01-01

    The in-plane dynamic crushing behaviors of hexagonal chiral (hexachiral)honeycombs were numerically studied by explicit dynamic finite element (EDFE)simulations using ANSYS /LS-DYNA.Assuming that the circular radii are all the same,the FE models of hexachiral honeycombs were first established by the variation of ligament length and cell-wall thickness.The respective influences of the impact velocity and microcell structural parameters on the in-plane macro-/micro-deformation behaviors,densification strains,dynamic plateau stresses and specific energy absorption of chiral honeycombs were discussed.Numerical results show three different types of deformation modes for hexachiral honeycombs with increasing impact velocity:“> <”mode,“transition”mode,and “I”mode.Under low or moderate velocity crushing,hexachiral honeycombs display a particular lateral compression “shrinkage”phenomenon of auxetic materials,which mainly depends on the rotation deformation of the ligament on the central node.By introducing a non-dimensional “dynamic sensitivity index”,the in-plane dynamic enhancement effect of hexachiral honeycombs was also investigated.%利用显式动力有限元 ANSYS /LS-DYNA 数值研究了六韧带手性蜂窝结构的面内冲击动力学特性。在保证圆环节点半径不变的前提下,通过改变韧带长度和胞元厚度,首先建立了六韧带手性蜂窝的有限元模型,具体讨论了冲击速度和胞元微结构参数对手性蜂窝材料的面内宏/微观变形行为、密实应变、动态平台应力和比能量吸收能力的影响。研究结果表明,随着冲击速度的增加,六韧带手性蜂窝结构表现为3种宏观变形模态:“><”型模式、“过渡”模式和“I”型模式。在中、低速冲击载荷下,能够明显观察到拉胀材料在轴向压缩时独特的“颈缩”现象,其主要与韧带绕着圆环中心节点的旋转变形有关。通过引入无量纲“动态

  7. Chiral Lagrangian from Duality and Monopole Operators in Compactified QCD

    Science.gov (United States)

    Cherman, Aleksey; Schäfer, Thomas; Ünsal, Mithat

    2016-08-01

    We show that there exists a special compactification of QCD on R3×S1 in which the theory has a domain where continuous chiral symmetry breaking is analytically calculable. We give a microscopic derivation of the chiral Lagrangian, the chiral condensate, and the Gell-Mann-Oakes-Renner relation mπ2fπ2=-mq⟨q ¯ q ⟩ . Abelian duality, monopole operators, and flavor-twisted boundary conditions play the main roles. The flavor twisting leads to the new effect of fractional jumping of fermion zero modes among monopole instantons. Chiral symmetry breaking is induced by monopole-instanton operators, and the Nambu-Goldstone pions arise by color-flavor transmutation from gapless "dual photons." We also give a microscopic picture of the "constituent quark" masses. Our results are consistent with expectations from chiral perturbation theory at large S1, and yield strong support for adiabatic continuity between the small-S1 and large-S1 regimes. We also find concrete microscopic connections between N =1 and N =2 supersymmetric gauge theory dynamics and nonsupersymmetric QCD dynamics.

  8. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    CERN Document Server

    Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2016-01-01

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a system...

  9. On Chiral and Nonchiral 1D Supermultiplets

    CERN Document Server

    Toppan, Francesco

    2011-01-01

    In this talk I discuss and clarify some issues concerning chiral and nonchiral properties of the one-dimensional supermultiplets of the N-Extended Supersymmetry. Quaternionic chirality can be defined for N=4,5,6,7,8. Octonionic chirality for N=8 and beyond. Inequivalent chiralities only arise when considering several copies of N=4 or N=8 supermultiplets.

  10. Constructing Self-Dual Chiral Polytopes

    OpenAIRE

    Cunningham, Gabe

    2011-01-01

    An abstract polytope is chiral if its automorphism group has two orbits on the flags, such that adjacent flags belong to distinct orbits. There are still few examples of chiral polytopes, and few constructions that can create chiral polytopes with specified properties. In this paper, we show how to build self-dual chiral polytopes using the mixing construction for polytopes.

  11. Repulsive Casimir Force in Chiral Metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E.N.; Soukoulis, C.M.

    2009-09-04

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  12. Repulsive Casimir Force in Chiral Metamaterials

    OpenAIRE

    Zhao, R.; Zhou, J.; Koschny, Th.; Economou, E. N.; Soukoulis, C. M.

    2009-01-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients.

  13. Chiral limit of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, R.

    1994-12-31

    This talk contains an analysis of quenched chiral perturbation theory and its consequences. The chiral behavior of a number of quantities such as the pion mass m{sub pi}{sup 2}, the Bernard-Golterman ratios R and {sub X}, the masses of nucleons, and the kaon B-parameter are examined to see if the singular terms induced by the additional Goldstone boson, {eta}{prime}, are visible in present data. The overall conclusion (different from that presented at the lattice meeting) of this analysis is that even though there are some caveats attached to the indications of the extra terms induced by {eta}{prime} loops, the standard expressions break down when extrapolating the quenched data with m{sub q} < m{sub s}/2 to physical light quarks. I then show that due to the single and double poles in the quenched {eta}{prime}, the axial charge of the proton cannot be calculated using the Adler-Bell-Jackiw anomaly condition. I conclude with a review of the status of the calculation of light quark masses from lattice QCD.

  14. Chiral symmetry and scalars

    International Nuclear Information System (INIS)

    The suggestion by Jaffe that if σ is a light q2q-bar2 state 0++ then even the fundamental chiral transformation properties of the σ becomes unclear, has stimulated much interest. Adler pointed out that in fact the seminal work on chiral symmetry via PCAC consistency, is really quite consistent with the σ being predominantly q2q-bar2. This interpretation was actually backed by subsequent work on effective Lagrangian methods for linear and non linear realizations. More recent work of Achasov suggests that intermediate four-quark states determine amplitudes involving other scalars a0(980) and f0(980) below 1 GeV, and the report by Ning Wu that study on σ meson in J/ψ → ωπ+π- continue to support a non qq-bar σ with mass as low as 390 MeV. It is also noted that more recent re-analysis of πK scattering by S. Ishida et al. together with the work of the E791 Collaboration, support the existence of the scalar κ particle with comparatively light mass as well

  15. Chiral fiber optical isolator

    Science.gov (United States)

    Kopp, Victor I.; Zhang, Guoyin; Zhang, Sheng; Genack, Azriel Z.; Neugroschl, Dan

    2009-02-01

    We propose an in-fiber chiral optical isolator based on chiral fiber polarizer technology and calculate its performance by incorporating the magnetic field into the scattering matrix. The design will be implemented in a special preform, which is passed through a miniature heat zone as it is drawn and twisted. The birefringence of the fiber is controlled by adjusted the diameter of a dual-core optical fiber. By adjusting the twist, the fiber can convert linear to circular polarization and reject one component of circular polarization. In the novel central portion of the isolator, the fiber diameter is large. The effective birefringence of the circular central core with high Verdet constant embedded in an outer core of slightly smaller index of refraction is small. The central potion is a non-reciprocal polarization converter which passes forward traveling left circularly polarized (LCP) light as LCP, while converting backward propagating LCP to right circularly polarized (RCP) light. Both polarizations of light traveling backwards are scattered out of the isolator. Since it is an all-glass structure, we anticipate that the isolator will be able to handle several watts of power and will be environmentally robust.

  16. The axial charge of the nucleon: lattice results compared with chiral perturbation theory

    International Nuclear Information System (INIS)

    We present recent Monte Carlo data for the axial charge of the nucleon obtained by the QCDSF-UKQCD collaboration for Nf=2 dynamical quarks. A comparison with chiral perturbation theory in finite and infinite volume is attempted

  17. Switching of inherent chirality driven by self-assembly.

    Science.gov (United States)

    Jędrzejewska, Hanna; Kwit, Marcin; Szumna, Agnieszka

    2015-09-18

    Dynamic chirality of iminoresorcin[4]arenes that originates from regioselective and diastereoselective keto-enol tautomerisation was switched by non-covalent interactions with achiral molecules, as demonstrated by experimental electronic circular dichroism (ECD) spectra supported by TD DFT calculations. PMID:26235373

  18. Deconfinement and Chiral Restoration in Hot and Dense Matter

    International Nuclear Information System (INIS)

    We propose a picture that the chiral phase transition at zero quark mass and the deconfinement transition at infinite quark mass are continuously connected. This gives a simple interpretation on the coincidence of the pseudo-critical temperatures observed in lattice QCD. We discuss a possible dynamical mechanism behind the simultaneous crossovers and show the results in a model study

  19. Magnetic catalysis of chiral symmetry breaking and the Pauli problem

    OpenAIRE

    Ng, Y. Jack

    1998-01-01

    The non-perturbative Schwinger-Dyson equation is used to show that chiral symmetry is dynamically broken in QED at weak gauge couplings when an external uniform magnetic field is present. A complete analysis of this phenomenon may shed light on the Pauli problem, namely, why $\\alpha$ = 1/137.

  20. The Adler-Weisberger Discrepancy

    CERN Document Server

    Beane, Silas R

    2016-01-01

    The Adler-Weisberger sum rule for the nucleon axial-vector charge, $g_A$, offers a unique signature of chiral symmetry and its breaking in QCD. Its derivation relies on both algebraic aspects of chiral symmetry, which guarantee the convergence of the sum rule, and dynamical aspects of chiral symmetry breaking---as exploited using chiral perturbation theory---which allow the rigorous inclusion of explicit chiral symmetry breaking effects due to light-quark masses. The original derivations obtained the sum rule in the chiral limit and, without the benefit of chiral perturbation theory, made various attempts at extrapolating to non-vanishing pion masses. In this paper, the leading, universal, chiral corrections to the chiral-limit sum rule are obtained. Using PDG data, a recent parametrization of the pion-nucleon total cross-sections in the resonance region given by the SAID group, as well as recent Roy-Steiner equation determinations of subthreshold amplitudes, threshold parameters, and correlated low-energy co...

  1. Instant form dynamics of one particle exchange models

    International Nuclear Information System (INIS)

    A general procedure for constructing instant form, one particle exchange models for two particle systems is developed. The procedure entails the construction of a mass operator which when used in conjunction with a free spin operator and a free Newton-Wigner position operator leads to an exactly Poincare invariant model. The method is applied to a simple model for s-wave pion-nucleon scattering. This model is derived from a quantum field theory which describes the interaction between pions, nucleons, and sigma mesons through the virtual processes N right-reversible N+π, π right-reversible π+σ, and N right-reversible N+σ. The instant form version of this exchange model is compared with a front form version that was constructed previously. With the procedures used to ensure Poincare invariance, the instant form two-particle potentials are of the same form as the front form potentials; however, the pion-nucleon propagators that appear in the two-particle Lippmann-Schwinger equations are not the same. The instant form and front form models are fit to the same s-wave pion-nucleon phase shifts, and the resulting parameters are compared

  2. Chiral control of electron transmission through molecules.

    Science.gov (United States)

    Skourtis, Spiros S; Beratan, David N; Naaman, Ron; Nitzan, Abraham; Waldeck, David H

    2008-12-01

    Electron transmission through chiral molecules induced by circularly polarized light can be very different for mirror-image structures, a peculiar fact given that the electronic energy spectra of the systems are identical. We propose that this asymmetry--as large as 10% for resonant transport--arises from different dynamical responses of the mirrored structures to coherent excitation. This behavior is described in the context of a general novel phenomenon of current transfer (transfer of charge with its momentum information) and accounts for the observed asymmetry and its dependence on structure. PMID:19113598

  3. Chiral symmetry breaking in lattice electrodynamics

    International Nuclear Information System (INIS)

    Chiral symmetry breaking is studied in lattice quantum electrodynamics in the quenched approximation by computer-simulation methods. Simulations at zero temperature show that in non-zero for all couplings e2 greater than a critical value e2/sub c/. The sensitivity of to short-distance features of the lattice Action is studied by simulating variant gauge Actions. Simulations on asymmetric lattices do not reveal significant temperature dependence in the symmetry-breaking dynamics. Subtle effects and limitations of quenched calculations are discussed

  4. Quarks, baryons and chiral symmetry

    CERN Document Server

    Hosaka, Atsushi

    2001-01-01

    This book describes baryon models constructed from quarks, mesons and chiral symmetry. The role of chiral symmetry and of quark model structure with SU(6) spin-flavor symmetry are discussed in detail, starting from a pedagogic introduction. Emphasis is placed on symmetry aspects of the theories. As an application, the chiral bag model is studied for nucleon structure, where important methods of theoretical physics, mostly related to the semiclassical approach for a system of strong interactions, are demonstrated. The text is more practical than formal; tools and ideas are explained in detail w

  5. Front-Form Chiral Multiplets

    CERN Document Server

    Gómez-Rocha, María

    2012-01-01

    In this article we point out that the unitary transformation that relates the chiral basis $\\{R; I J^{PC}\\}$ and the $\\{I; ^{2S+1}L_J \\}$ basis, which was already derived for canonical spin in instant form, is also applicable in light-cone representations. From the most general expression for the Clebsch-Gordan coefficients of the Poincar\\'e group one can see that the chiral limit brings the angular momentum coupling into a simple form that permits a clear relation in terms of SU(2) Clebsch-Gordan coefficients. It provides a tool of measurement of chiral symmetry in relativistic composite systems.

  6. Chiral Fermions on the Lattice

    CERN Document Server

    Bietenholz, Wolfgang

    2010-01-01

    In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.

  7. Field induced spin chirality and chirality switching in magnetic multilayers

    International Nuclear Information System (INIS)

    The physical origin of the field-induced spin chirality experimentally observed in rare earth multilayers is determined. It is shown that the effect is possible due to the interplay between solid-state exchange interactions (the Ruderman–Kittel–Kasuya–Yosida and the Dsyaloshinsky–Moriya interactions), the external magnetic field and a special confinement of magnetic constituents. The presented model describes a certain temperature dependence of the chirality factor in agreement with experimental data and opens a new way to design nanostructured objects with predicted handedness. - Highlights: • Field-induced spin chirality in magnetic multilayers is explained. • The roles of the RKKY, the DM and the Zeeman interactions are clarified. • Theoretical analysis of the chirality factor is in agreement with experimental data

  8. Chiral Relaxation Time at the Chiral Crossover of Quantum Chromodynamics

    CERN Document Server

    Ruggieri, M; Chernodub, M

    2016-01-01

    We study microscopic processes responsible for chirality flips in the thermal bath of Quantum Chromodynamics at finite temperature and zero baryon chemical potential. We focus on the temperature range where the crossover from chirally broken phase to quark-gluon plasma takes place, namely $T \\simeq (150, 200)$ MeV. The processes we consider are quark-quark scatterings mediated by collective excitations with the quantum number of pions and $\\sigma$-meson, hence we refer to these processes simply as \\sugg{to} one-pion (one-$\\sigma$) exchange\\sugg{s}. We use a Nambu-Jona-Lasinio model to compute equilibrium properties of the thermal bath, as well as the relevant scattering kernel to be used in the collision integral to estimate the chiral relaxation time $\\tau$. We find $\\tau\\simeq 0.1 \\div 1$ fm/c around the chiral crossover.

  9. Chiral allyl silane additions to chiral α-substituted aldehydes

    International Nuclear Information System (INIS)

    Chiral allyl silane 3 reacted with chiral α-methyl-β-siloxy-aldehydes to afford the corresponding 1,4-syn-products with good diastereo-selectivities independent of the absolute stereochemistry of these aldehydes. The best selectivities are observed when the reactions are carried out by trans metallation of the allyl silane 3 using Tin (IV) Chloride in CH2 CL2 at -78 deg C, before addition of the aldehydes. (author)

  10. Chiral Induction with Chiral Conformational Switches in the Limit of Low "Sergeants to Soldiers" Ratio

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli; Bombis, Christian; Knudsen, Martin Markvard;

    2014-01-01

    " mechanism for an oligo(phenylene ethynylene) based chiral conformational switch by coadsorbing it with an intrinsically chiral seed on Au(111). Through statistical analysis of scanning tunneling microscopy (STM) data we demonstrate successful chiral induction with a very low concentration of seeding...... molecules down to 3%. The microscopic mechanism for the observed chiral induction is suggested to involve nucleation of the intrinsically chiral seeds, allowing for effective transfer and amplification of chirality to large numbers of soldier target molecules....

  11. Ω(ε)States in a Chiral Quark Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The structures of Ω(ε) states with spin-parity Jp = 5/2-, 3/2-, and 1/2- are dynamically studied in both the chiral SU(3) quark model and the extended chiral SU(3) quark model by solving a resonating group method (RGM) equation. The model parameters are taken from our previous work, which gave a satisfactory description of the energies of the baryon ground states, the binding energy of the deuteron, the nucleon-nucleon (NN) scattering phase shifts, and the hyperon-nucleon (YN) cross sections. The calculated results show that theΩ(ε) state has an attractive interaction, and in the extended chiral SU(3) quark model such attraction can make for aΩ(ε) quasi-bound state with spin-parity Jp = 3/2- or 5/2- and tie binding energy of about several MeV.

  12. Phases of N=1 Supersymmetric Chiral Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Nathaniel; /Princeton, Inst. Advanced Study /Rutgers U., Piscataway; Essig, Rouven; /Princeton, Inst. Advanced Study /YITP, Stony Brook /SLAC /Stanford U., Phys. Dept.; Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2012-02-17

    We analyze the phases of supersymmetric chiral gauge theories with an antisymmetric tensor and (anti)fundamental flavors, in the presence of a classically marginal superpotential deformation. Varying the number of flavors that appear in the superpotential reveals rich infrared chiral dynamics and novel dualities. The dualities are characterized by an infinite family of magnetic duals with arbitrarily large gauge groups describing the same fixed point, correlated with arbitrarily large classical global symmetries that are truncated nonperturbatively. At the origin of moduli space, these theories exhibit a phase with confinement and chiral symmetry breaking, an interacting nonabelian Coulomb phase, and phases where an interacting sector coexists with a sector that either s-confines or is in a free magnetic phase. Properties of these intriguing 'mixed phases' are studied in detail using duality and a-maximization, and the presence of superpotential interactions provides further insights into their formation.

  13. Chiral superfluidity of the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kalaydzhyan, Tigran [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Institute for Theoretical and Experimental Physics ITEP, Moscow (Russian Federation)

    2012-08-15

    In this paper we argue that the strongly coupled quark-gluon plasma can be considered as a chiral superfluid. The ''normal'' component of the fluid is the thermalized matter in common sense, while the ''superfluid'' part consists of long wavelength (chiral) fermionic states moving independently. We use several nonperturbative techniques to demonstrate that. First, we analyze the fermionic spectrum in the deconfinement phase (T{sub c}dynamical axion-like field out of the chiral fermionic modes. Third, we use relativistic hydrodynamics for macroscopic description of the effective theory obtained after the bosonization. Finally, solving the hydrodynamic equations in gradient expansion, we find that in the presence of external electromagnetic fields the motion of the ''superfluid'' component gives rise to the chiral magnetic, chiral electric and dipole wave effects. Latter two effects are specific for a two-component fluid, which provides us with crucial experimental tests of the model.

  14. Preferential rotation of chiral dipoles in isotropic turbulence

    CERN Document Server

    Kramel, Stefan; Toschi, Federico; Voth, Greg A

    2016-01-01

    Particles in the shape of chiral dipoles show a preferential rotation in three dimensional homogeneous isotropic turbulence. A chiral dipole consists of a rod with two helices of opposite handedness, one at each end. We can use 3d printing to fabricate these particles with length in the inertial range and track their rotations in a turbulent flow between oscillating grids. High aspect ratio chiral dipoles will align with the extensional eigenvectors of the strain rate tensor and the helical ends will respond to the strain field by spinning around its long axis. The mean of the measured spinning rate is non-zero and reflects the average stretching the particles experience. We use Stokesian dynamics simulations of chiral dipoles in pure strain flow to quantify the dependence of spinning on particle shape. Based on the known response to pure strain, we build a model that gives the spinning rate of small chiral dipoles using Lagrangian velocity gradients from high resolution direct numerical simulations. The stat...

  15. pi-pi and pi-K scatterings in three-flavour resummed chiral perturbation theory

    CERN Document Server

    Descotes-Genon, S

    2008-01-01

    The (light but not-so-light) strange quark may play a special role in the low-energy dynamics of QCD. The presence of strange quark pairs in the sea may have a significant impact of the pattern of chiral symmetry breaking : in particular large differences can occur between the chiral limits of two and three massless flavours (i.e., whether m_s is kept at its physical value or sent to zero). This may induce problems of convergence in three-flavour chiral expansions. To cope with such difficulties, we introduce a new framework, called Resummed Chiral Perturbation Theory. We exploit it to analyse pi-pi and pi-K scatterings and match them with dispersive results in a frequentist framework. Constraints on three-flavour chiral order parameters are derived.

  16. Life's chirality from prebiotic environments

    Science.gov (United States)

    Gleiser, Marcelo; Walker, Sara Imari

    2012-10-01

    A key open question in the study of life is the origin of biomolecular homochirality: almost every life-form on Earth has exclusively levorotary amino acids and dextrorotary sugars. Will the same handedness be preferred if life is found elsewhere? We review some of the pertinent literature and discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events. In one scenario, autocatalytic prebiotic reactions undergo stochastic fluctuations due to environmental disturbances, in a mechanism reminiscent of evolutionary punctuated equilibrium: short-lived destructive events may lead to long-term enantiomeric excess. In another, chiral-selective polymerization reaction rates influenced by environmental effects lead to substantial chiral excess even in the absence of autocatalysis. Applying these arguments to other potentially life-bearing platforms has implications to the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic (chirally neutral) on average.

  17. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    B Ananthanarayan

    2003-11-01

    A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  18. Chiral anomaly on a lattice

    CERN Document Server

    Mickelsson, J

    1996-01-01

    A calculation of the chiral anomaly on a finite lattice without fermion doubling is presented . The lattice gauge field is defined in the spirit of noncommutative geometry. Standard formulas for the continuum anomaly are obtained as a limit.

  19. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  20. Chiral thermodynamics of nuclear matter

    International Nuclear Information System (INIS)

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  1. Chiral symmetry and lattice fermions

    CERN Document Server

    Creutz, Michael

    2013-01-01

    Lattice gauge theory and chiral perturbation theory are among the primary tools for understanding non-perturbative aspects of QCD. I review several subtle and sometimes controversial issues that arise when combining these techniques. Among these are one failure of partially quenched chiral perturbation theory when the valence quarks become lighter than the average sea quark mass and a potential ambiguity in comparisons of perturbative and lattice properties of non-degenerate quarks.

  2. Revisiting Chiral Extrapolation by Studying a Lattice Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yan-Bin; SUN Wei-Min; L(U) Xiao-Fu; ZONG Hong-Shi

    2009-01-01

    The quark propagator in the Landau gauge is studied on the lattice,including the quenched and the unquenched results.No obvious unquenched effects are found by comparing the quenched quark propagator with the dynamical one.For the quenched and unquenched configurations,the results with different quark masses have been computed.For the quark mass function,a nonlinear chiral extrapolating behavior is found in the in/tared region for both the quenched and dynamical results.

  3. Restoration of Chiral Symmetry in Excited Hadrons

    International Nuclear Information System (INIS)

    Physics of the low-lying and high-lying hadrons in the light flavor sector is reviewed. While the low-lying hadrons are strongly affected by the spontaneous breaking of chiral symmetry, in the high-lying hadrons the chiral symmetry is restored. A manifestation of the chiral symmetry restoration in excited hadrons is a persistence of the chiral multiplet structure in both baryon and meson spectra. Meson and baryon chiral multiplets are classified. A relation between the chiral symmetry restoration and the string picture of excited hadrons is discussed. (author)

  4. Enzymatic kinetic resolution and chemoenzymatic dynamic kinetic resolution of delta-hydroxy esters. An efficient route to chiral delta-lactones.

    Science.gov (United States)

    Pàmies, Oscar; Bäckvall, Jan-E

    2002-02-22

    A successful kinetic resolution of a racemic mixture of delta-hydroxy esters 1 was obtained via lipase-catalyzed transesterification (E value up to 360). The combination of the enzymatic kinetic resolution with a ruthenium-catalyzed alcohol racemization led to an efficient dynamic kinetic resolution (ee up to 99% and conversion up to 92%). The synthetic utility of this procedure was illustrated by the practical syntheses of delta-lactones (R)-6-methyl- and (R)-6-ethyl-tetrahydropyran-2-one and (S)-5-(tert-butyldimethylsiloxy)heptanal. The former are important building blocks in the synthesis of natural products and biologically active compounds, and the latter is a key intermediate in the synthesis of widely used commercial insecticide Spinosyn A. PMID:11846671

  5. Using the Chiral Organophosphorus Derivatizing Agents for Determination of the Enantiomeric Composition of Chiral Carboxylic Acids by 31PNMR Spectroscopy

    Institute of Scientific and Technical Information of China (English)

    Chao CHE; Zhong Ning ZHANG; Gui Lan HUANG; Xin Xing WANG; Zhao Hai QIN

    2004-01-01

    The use of chiral organophosphorus derivatizing agents prepared in situ from chiral tartrate or chiral diamine for the 31PNMR determination of the enantiomeric composition of chiral carboxylic acids is described. The method is accurate, reliable and convenient.

  6. Examination of the Potential for Adaptive Chirality of the Nitrogen Chiral Center in Aza-Aspartame

    Directory of Open Access Journals (Sweden)

    Samir H. Bouayad-Gervais

    2013-11-01

    Full Text Available The potential for dynamic chirality of an azapeptide nitrogen was examined by substitution of nitrogen for the α-carbon of the aspartate residue in the sweetener S,S-aspartame. Considering that S,S- and R,S-aspartame possess sweet and bitter tastes, respectively, a bitter-sweet taste of aza-aspartame 9 could be indicative of a low isomerization barrier for nitrogen chirality inter-conversion. Aza-aspartame 9 was synthesized by a combination of hydrazine and peptide chemistry. Crystallization of 9 indicated a R,S-configuration in the solid state; however, the aza-residue chiral center was considerably flattened relative to its natural amino acid counterpart. On tasting, the authors considered aza-aspartame 9 to be slightly bitter or tasteless. The lack of bitter sweet taste of aza-aspartame 9 may be due to flattening from sp2 hybridization in the urea as well as a high barrier for sp3 nitrogen inter-conversion, both of which may interfere with recognition by taste receptors.

  7. An Anderson-like model of the QCD chiral transition

    Science.gov (United States)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  8. Chaos of chiral condensate

    CERN Document Server

    Hashimoto, Koji; Yoshida, Kentaroh

    2016-01-01

    Assigning a chaos index for vacua of generic quantum field theories is a challenging problem. We find chaotic behavior of chiral condensates of a quantum gauge theory at strong coupling limit, by using the AdS/CFT correspondence. We evaluate the time evolution of homogeneous quark condensates and in an N=2 supersymmetric QCD with the SU(N_c) gauge group at large N_c and at large 't Hooft coupling lambda. At an equivalent classical gravity picture, a Lyapunov exponent is readily defined. We show that the condensates exhibit chaotic behavior for energy density E > (6x10^2) (N_c/lambda^2) (m_q)^4 where m_q is the quark mass. The energy region of the chaotic vacua of the N=2 supersymmetric QCD increases for smaller N_c or larger lambda. The Lyapunov exponent is calculated as a function of the theory (N_c,lambda,E), showing that the N=2 supersymmetric QCD is more chaotic for smaller N_c.

  9. Chiral magnetic effect and anomalous transport from real-time lattice simulations

    CERN Document Server

    Mueller, Niklas; Sharma, Sayantan

    2016-01-01

    We present a first-principle study of anomaly induced transport phenomena by performing real-time lattice simulations with dynamical fermions coupled simultaneously to non-Abelian $SU(N_c)$ and Abelian $U(1)$ gauge fields. Investigating the behavior of vector and axial currents during a sphaleron transition in the presence of an external magnetic field, we demonstrate how the interplay of the Chiral magnetic (CME) and Chiral separation effect (CSE) lead to the formation of a propagating wave. We further analyze the dependence of the magnitude of the induced vector current and the propagation of the wave on the amount of explicit chiral symmetry breaking due to finite quark mass.

  10. Chiral Thirring-Wess Model

    CERN Document Server

    Rahaman, Anisur

    2015-01-01

    The vector type of interaction of the Thirring-Wess model was replaced by the chiral type and a new model was presented which was termed as chiral Thirring-Wess model in \\cite{THAR}. The model was studied there with a Faddeevian class of regularization that contained few ambiguity parameters with the apprehension that unitarity might be threatened like the chiral generation of the Schwinger model. In the present work it has been shown that no counter term containing the regularization ambiguity is needed for this model to be physically sensible. So the chiral Thirring-Wess model is studied here without the presence of any ambiguity parameter and it has been found that the model not only remain exactly solvable but also does not loose the unitarity like the chiral generation of the Schwinger model. The phase space structure and the theoretical spectrum of this new model has been determined in the present scenario through Dirac's method of quantization of constraint system. The theoretical spectrum is found to ...

  11. Water-soluble chiral metallopeptoids.

    Science.gov (United States)

    Baskin, Maria; Maayan, Galia

    2015-09-01

    Metal ions play a significant role in the activity of biological systems including catalysis, recognition and folding. Therefore, introducing metal ions into peptidomimetic oligomers is a potential way for creating biomimetic metal complexes toward applications in sensing, recognition, drug design and catalysis. Herein we report the design, synthesis and characterization of water-soluble chiral N-substituted glycine oligomers, "peptoids," with one and two distinct intramolecular binding sites for metal ions such as copper and cobalt. We demonstrate for the first time the incorporation of the chiral hydrophilic group (S)-(+)-1-methoxy-2-propylamine (Nsmp) within peptoid sequences, which provides both chirality and water solubility. Two peptoids, a heptamer, and a dodecamer bearing two and four 8-hydroxyquinoline (HQ) groups respectively as metal-binding ligands, were synthesized on solid support using the submonomer approach. Using UV-titrations and ESI-MS analysis we demonstrate the creation of a novel metallopeptoid bearing two metal ions in distinct binding sites via intramolecular chelation. Exciton couplet circular dichroism (ECCD) demonstrated chiral induction from the chiral non-helical peptoids to the metal centers. PMID:25969151

  12. Repulsive Casimir force in chiral metamaterials.

    Science.gov (United States)

    Zhao, R; Zhou, J; Koschny, Th; Economou, E N; Soukoulis, C M

    2009-09-01

    We demonstrate theoretically that one can obtain repulsive Casimir forces and stable nanolevitations by using chiral metamaterials. By extending the Lifshitz theory to treat chiral metamaterials, we find that a repulsive force and a minimum of the interaction energy possibly exist for strong chirality, under realistic frequency dependencies and correct limiting values (for zero and infinite frequencies) of the permittivity, permeability, and chiral coefficients. PMID:19792309

  13. Chiral gap effect in curved space

    CERN Document Server

    Flachi, Antonino

    2014-01-01

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  14. Chiral measurements with the Fixed-Point Dirac operator and construction of chiral currents

    International Nuclear Information System (INIS)

    In this preliminary study, we examine the chiral properties of the parametrized Fixed-Point Dirac operator DFP, see how to improve its chirality via the Overlap construction, measure the renormalized quark condensate Σ-circumflex and the topological susceptibility χt, and investigate local chirality of near zero modes of the Dirac operator. We also give a general construction of chiral currents and densities for chiral lattice actions

  15. Shear Viscosity of Turbulent Chiral Plasma

    CERN Document Server

    Kumar, Avdhesh; Das, Amita; Kaw, P K

    2016-01-01

    It is well known that the difference between the chemical potentials of left-handed and right-handed particles in a parity violating (chiral) plasma can lead to an instability. We show that the chiral instability may drive turbulent transport. Further we estimate the anomalous viscosity of chiral plasma arising from the enhanced collisionality due to turbulence.

  16. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    1998-01-01

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral powe

  17. Solutions of ward's modified chiral model

    International Nuclear Information System (INIS)

    We discuss the adaptation of Uhlenbeck's method of solving the chiral model in 2 Euclidean dimensions to Ward's modified chiral model in (2+1) dimensions. We show that the method reduces the problem of solving the second-order partial differential equations for the chiral field to solving a sequence of first-order partial differential equations for time dependent projector valued fields

  18. Manifestation of chiral symmetry and the effective potential in a strong color-electromagnetic field

    International Nuclear Information System (INIS)

    We study the manifestation of chiral symmetry and the effective potential in an external color-electromagnetic field, using the Nambu-Jona-Lasinio model. We derive the effective potential, the dynamical quark mass and the q-anti q pair creation rate for the covariantly-constant color-electromagnetic field. In the flux-tube picture, chiral symmetry restoration would occur inside mesons and at the early stage of ultra-relativistic heavy-ion collisions. (orig.)

  19. Chiral optical resonance of vortex core states in type-II superconductors

    International Nuclear Information System (INIS)

    The dynamic conductivity of vortex cores in type-II superconductors is calculated. We show that there is a chiral optical resonance well below the superconducting gap, corresponding to creating a pair of quasiparticles inside the vortex core. The chirality is the same as cyclotron resonance. The frequency and intensity of the resonance are estimated by numerically solving the Bogoliubov--de Gennes equations self-consistently

  20. New lessons from the nucleon mass, lattice QCD and heavy baryon chiral perturbation theory

    OpenAIRE

    Walker-Loud, Andre

    2008-01-01

    I will review heavy baryon chiral perturbation theory for the nucleon delta degrees of freedom and then examine the recent dynamical lattice calculations of the nucleon mass from the BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD and RBC/UKQCD Collaborations. Performing the chiral extrapolations of these results, one finds remarkable agreement with the physical nucleon mass, from each lattice data set. However, a careful examination of the lattice data and the resulting extrapolatio...

  1. Microscopic Dirac Spectrum in a 2d Gauge Theory with Zero Chiral Condensate

    OpenAIRE

    Bietenholz, Wolfgang; Hip, Ivan; Landa-Marbán, David

    2013-01-01

    Fermionic theories with a vanishing chiral condensate (in the chiral limit) have recently attracted considerable interest; in particular variants of multi-flavour QCD are candidates for this behaviour. Here we consider the 2-flavour Schwinger model as a simple theory with this property. Based on simulations with light dynamical overlap fermions, we test the hypothesis that in such models the low lying Dirac eigenvalues could be decorrelated. That has been observed in 4d Yang-Mills theories at...

  2. Chiral anomaly, Charge Density Waves, and Axion Strings from Weyl Semimetals

    OpenAIRE

    Wang, Zhong; Zhang, Shou-Cheng

    2012-01-01

    We study dynamical instability and chiral symmetry breaking in three dimensional Weyl semimetals, which turns Weyl semimetals into "axion insulators". Charge density waves (CDW) is found to be the natural consequence of the chiral symmetry breaking. The phase mode of this charge density wave state is identified as the axion, which couples to electromagnetic field in the topological $\\theta{\\bf E}\\cdot{\\bf B}$ term. One of our main results is that the "axion strings" can be realized as the (sc...

  3. Chiral methods at the electroweak scale

    CERN Document Server

    Cata, Oscar

    2015-01-01

    I review the main features of the effective field theory (EFT) behind scenarios of dynamical electroweak symmetry breaking, placing particular emphasis on the systematics and the parallels that can be drawn with Chiral Perturbation Theory. The notion of chiral dimensions will be introduced and shown to be the right tool to describe nonlinear expansions. I will also discuss why such an EFT is of interest in phenomenological studies at the LHC. The most important aspect is that the EFT is engineered to recover the Standard Model in a particular limit, and therefore provides a general framework to test the Higgs hypothesis. Additionally, I will argue that the $\\kappa$ formalism used currently by experimental collaborations to study Higgs couplings at the LHC can actually be embedded into this EFT. This not only gives the $\\kappa$ parametrization a solid QFT foundation but also shows the way to improve it systematically, and in particular how to upgrade analyses on Higgs processes from the level of rates to the l...

  4. Chiral symmetry on the lattice

    International Nuclear Information System (INIS)

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model

  5. Chiral Baryon with Quantized Pions

    CERN Document Server

    McNeil, J A

    1993-01-01

    We study a hybrid chiral model for the nucleon based on the linear sigma model with explicit quarks. We solve the model using a Fock-space configuration consisting of three quarks plus three quarks and a pion as the ground state ansatz in place of the ``hedgehog'' ansatz. We minimize the expectation value of the chiral hamiltonian in this ground state configuration and solve the resulting equations for nucleon quantum numbers. We calculate the canonical set of nucleon observables and compare with previous work.

  6. Collisions in Chiral Kinetic Theory.

    Science.gov (United States)

    Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A

    2015-07-10

    Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order O(ℏ), which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the H function obeying Boltzmann's H theorem. We demonstrate their use by finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing the chiral vortical effect. PMID:26207458

  7. Collisions in Chiral Kinetic Theory

    CERN Document Server

    Chen, Jing-Yuan; Stephanov, Mikhail A

    2015-01-01

    Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order $\\mathcal O(\\hbar)$ which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the $H$-function obeying Boltzmann's $H$-theorem. We demonstrate their use by finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing chiral vortical effect.

  8. Holographic Chiral Electric Separation Effect

    OpenAIRE

    Pu, Shi; Wu, Shang-Yu; Yang, Di-Lun

    2014-01-01

    We investigate the chiral electric separation effect, where an axial current is induced by an electric field in the presence of both vector and axial chemical potentials, in a strongly coupled plasma via the Sakai-Sugimoto model with an $U(1)_R\\times U(1)_L$ symmetry. By introducing different chemical potentials in $U(1)_R$ and $U(1)_L$ sectors, we compute the axial direct current (DC) conductivity stemming from the chiral current and the normal DC conductivity. We find that the axial conduct...

  9. Chiral symmetry on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Creutz, M.

    1994-11-01

    The author reviews some of the difficulties associated with chiral symmetry in the context of a lattice regulator. The author discusses the structure of Wilson Fermions when the hopping parameter is in the vicinity of its critical value. Here one flavor contrasts sharply with the case of more, where a residual chiral symmetry survives anomalies. The author briefly discusses the surface mode approach, the use of mirror Fermions to cancel anomalies, and finally speculates on the problems with lattice versions of the standard model.

  10. Mechanical chirality: A chiral catalyst with a ring to it

    Science.gov (United States)

    Goldup, Stephen M.

    2016-05-01

    A chiral [2]rotaxane in which the asymmetry is derived from the way in which the two components are mechanically interlocked -- rather than being encoded in the covalent connectivity of the components themselves -- has been shown to act as an enantioselective organocatalyst.

  11. Roper resonance in 2+1 flavor QCD

    International Nuclear Information System (INIS)

    The low-lying even-parity states of the nucleon are explored in lattice QCD using the PACS-CS collaboration 2+1-flavor dynamical-QCD gauge-field configurations made available through the International Lattice Datagrid (ILDG). The established correlation-matrix approach is used, in which various fermion source and sink smearings are utilized to provide an effective basis of interpolating fields to span the space of low-lying energy eigenstates. Of particular interest is the nature of the first excited state of the nucleon, the N1/2 + Roper resonance of P11 pion-nucleon scattering. The Roper state of the present analysis approaches the physical mass, displaying significant chiral curvature at the lightest quark mass. These full QCD results, providing the world's first insight into the nucleon mass spectrum in the light-quark regime, are significantly different from those of quenched QCD and provide interesting insights into the dynamics of QCD.

  12. Scaling laws in chiral hydrodynamic turbulence

    CERN Document Server

    Yamamoto, Naoki

    2016-01-01

    We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.

  13. Chiral magnetic effect in the PNJL model

    CERN Document Server

    Fukushima, Kenji; Gatto, Raoul

    2010-01-01

    We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential $\\mu_5$ which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of $\\mu_5$ on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.

  14. K stability and stability of chiral ring

    CERN Document Server

    Collins, Tristan C; Yau, Shing-Tung

    2016-01-01

    We define a notion of stability for chiral ring of four dimensional N=1 theory by introducing test chiral rings and generalized a maximization. We conjecture that a chiral ring is the chiral ring of a superconformal field theory if and only if it is stable. We then study N=1 field theory derived from D3 branes probing a three-fold singularity X, and show that the K stability which implies the existence of Ricci-flat conic metric on X is equivalent to the stability of chiral ring of the corresponding field theory.

  15. Scaling laws in chiral hydrodynamic turbulence

    Science.gov (United States)

    Yamamoto, Naoki

    2016-06-01

    We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry, only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.

  16. An Anderson-like model of the QCD chiral transition

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...

  17. Chiral selection of single helix formed by diblock copolymers confined in nanopores.

    Science.gov (United States)

    Deng, Hanlin; Qiang, Yicheng; Zhang, Tingting; Li, Weihua; Yang, Tao

    2016-09-21

    Chiral selection has attracted tremendous attention from the scientific communities, especially from biologists, due to the mysterious origin of homochirality in life. The self-assembly of achiral block copolymers confined in nanopores offers a simple but useful model of forming helical structures, where the helical structures possess random chirality selection, i.e. equal probability of left-handedness and right-handedness. Based on this model, we study the stimulus-response of chiral selection to external conditions by introducing a designed chiral pattern onto the inner surface of a nanopore, aiming to obtain a defect-free helix with controllable homochirality. A cell dynamics simulation based on the time-dependent Ginzburg-Landau theory is carried out to demonstrate the tuning effect of the patterned surface on the chiral selection. Our results illustrate that the chirality of the helix can be successfully controlled to be consistent with that of the tailored surface patterns. This work provides a successful example for the stimulus response of the chiral selection of self-assembled morphologies from achiral macromolecules to external conditions, and hence sheds light on the understanding of the mechanism of the stimulus response. PMID:27536966

  18. Thermal chiral vortical and magnetic waves: new excitation modes in chiral fluids

    CERN Document Server

    Kalaydzhyan, Tigran

    2016-01-01

    In certain circumstances, chiral (parity-violating) medium can be described hydrodynamically as a chiral fluid with microscopic quantum anomalies. Possible examples of such systems include strongly coupled quark-gluon plasma, liquid helium 3He-A, neutron stars and the Early Universe. We study first-order hydrodynamics of a chiral fluid on a vortex background and in a external magnetic field. We show that there are two previously undiscovered modes describing heat waves propagating along the vortex and magnetic field. We call them the Thermal Chiral Vortical Wave and Thermal Chiral Magnetic Wave. We also identify known gapless excitations of density, the chiral vortical and chiral magnetic waves. We demonstrate that the velocity of the chiral vortical wave is zero, when the full hydrodynamic framework is applied, and hence the excitation reduces to a charge diffusion mode or is completely absent. We also correct the dispersion relation for the chiral magnetic wave.

  19. Casimir-Polder Forces between Chiral Objects

    CERN Document Server

    Butcher, David T; Scheel, Stefan

    2012-01-01

    The chiral component of the Casimir-Polder potential is derived within the framework of macroscopic quantum electrodynamics. It is shown to exist only if the particle and the medium are both chiral. Furthermore, the chiral component of the Casimir-Polder potential can be attractive or repulsive, depending on the chirality of the molecule and the medium. The theory is applied to a cavity geometry in the non-retarded limit with the intention of enantiomer separation. For a ground state molecule the chiral component is dominated by the electric component and thus no explicit separation will happen. If the molecule is initially in an excited state the electric component of the Casimir-Polder force can be suppressed by an appropriate choice of material and the chiral component can select the molecule based on its chirality, allowing enantiomeric separation to occur.

  20. Casimir–Polder forces between chiral objects

    International Nuclear Information System (INIS)

    The chiral component of the Casimir–Polder potential is derived within the framework of macroscopic quantum electrodynamics. It is shown to exist only if the particle and the medium are both chiral. Furthermore, the chiral component of the Casimir–Polder potential can be attractive or repulsive, depending on the chirality of the molecule and the medium. The theory is applied to a cavity geometry in the non-retarded limit with the intention of enantiomer separation. For a ground state molecule the chiral component is dominated by the electric component and thus no explicit separation will happen. If the molecule is initially in an excited state the electric component of the Casimir–Polder force can be suppressed by an appropriate choice of material and the chiral component can select the molecule based on its chirality, allowing enantiomeric separation to occur. (paper)

  1. Chiral Cosmological Models: Dark Sector Fields Description

    CERN Document Server

    Chervon, S V

    2014-01-01

    The present review is devoted to a Chiral Cosmological Model as the self-gravitating nonlinear sigma model with the potential of (self)interactions employed in cosmology. The chiral cosmological model has successive applications in descriptions of the inflationary epoch of the Universe evolution; the present accelerated expansion of the Universe also can be described by the chiral fields multiplet as the dark energy in wide sense. To be more illustrative we are often addressed to the two-component chiral cosmological model. Namely, the two-component chiral cosmological model describing the phantom field with interaction to a canonical scalar field is analyzed in details. New generalized model of quintom character is proposed and exact solutions are founded out. In the review we represented the perturbation theory for chiral cosmological model with the aim to describe the structure formation using the progress achieved in the inflation theory. It was shown that cosmological perturbations from chiral fields can...

  2. Chirality effect in disordered graphene ribbon junctions

    International Nuclear Information System (INIS)

    We investigate the influence of edge chirality on the electronic transport in clean or disordered graphene ribbon junctions. By using the tight-binding model and the Landauer-Büttiker formalism, the junction conductance is obtained. In the clean sample, the zero-magnetic-field junction conductance is strongly chirality-dependent in both unipolar and bipolar ribbons, whereas the high-magnetic-field conductance is either chirality-independent in the unipolar or chirality-dependent in the bipolar ribbon. Furthermore, we study the disordered sample in the presence of magnetic field and find that the junction conductance is always chirality-insensitive for both unipolar and bipolar ribbons with adequate disorders. In addition, the disorder-induced conductance plateaus can exist in all chiral bipolar ribbons provided the disorder strength is moderate. These results suggest that we can neglect the effect of edge chirality in fabricating electronic devices based on the magnetotransport in a disordered graphene ribbon. (paper)

  3. The baryon number two system in the Chiral Soliton Model

    CERN Document Server

    Sarti, Valentina Mantovani; Vento, Vicente; Park, Byung-Yoon

    2012-01-01

    We study the interaction between two B = 1 states in a Chiral Soliton Model where baryons are described as non-topological solitons. By using the hedgehog solution for the B = 1 states we construct three possible B = 2 configurations to analyze the role of the relative orientation of the hedgehog quills in the dynamics. The strong dependence of the intersoliton interaction on these relative orientations reveals that studies of dense hadronic matter using this model should take into account their implications.

  4. Quantum Melting of Spin Ice: Emergent Cooperative Quadrupole and Chirality

    OpenAIRE

    Onoda, Shigeki; TANAKA, Yoichi

    2009-01-01

    A quantum melting of the spin ice is proposed for pyrochlore-lattice magnets Pr$_2TM_2$O$_7$ ($TM=$Ir, Zr, and Sn). The quantum superexchange Hamiltonian having a nontrivial magnetic anisotropy is derived in the basis of atomic non-Kramers magnetic doublets. The ground states exhibit a cooperative ferroquadrupole and pseudospin chirality, forming a magnetic analog of smectic liquid crystals. Our theory accounts for dynamic spin-ice behaviors experimentally observed in Pr$_2TM_2$O$_7$.

  5. The chiral symplectic universality class

    OpenAIRE

    Asada, Yoichi; Slevin, Keith; Ohtsuki, Tomi

    2003-01-01

    We report a numerical investigation of localization in the SU(2) model without diagonal disorder. At the band center, chiral symmetry plays an important role. Our results indicate that states at the band center are critical. States away from the band center but not too close to the edge of the spectrum are metallic as expected for Hamiltonians with symplectic symmetry.

  6. Chiral symmetry in perturbative QCD

    International Nuclear Information System (INIS)

    The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant

  7. Algebraic study of chiral anomalies

    Indian Academy of Sciences (India)

    Juan Mañes; Raymond Stora; Bruno Zumino

    2012-06-01

    The algebraic structure of chiral anomalies is made globally valid on non-trivial bundles by the introduction of a fixed background connection. Some of the techniques used in the study of the anomaly are improved or generalized, including a systematic way of generating towers of ‘descent equations’.

  8. Asymmetric Synthesis via Chiral Aziridines

    DEFF Research Database (Denmark)

    Tanner, David Ackland; Harden, Adrian; Wyatt, Paul; Andersson, Pher G.; Johansson, Fredrik

    1996-01-01

    A series of chiral bis(aziridines) has been synthesised and evaluated as chelating ligands for a variety of asymmetric transformations mediated by metals [Os (dihydroxylation), Pd (allylic alkylation) Cu (cyclopropanation and aziridination, Li (1,2-addition of organolithiums to imines)]. In the...

  9. Measurement of the differential cross-section of the pion-nucleon-charge-exchange reaction at Serpukhov energies

    International Nuclear Information System (INIS)

    We report about a high statistics measurement of the reaction PI-rho → PIon at 15, 25 and 40 GeV/c incident pion momenta. More than one million events of this type have been recorded. The γ's from the PIo-decay have been measured in a spectrometer, which consists of iron-plates and scintillation hodoscopes. The differential cross-sections are determined for momentum transfers up to -t=1.8 (GeV/c)2. The extrapolated cross-sections at t=0, together with the optical theorem, give the differences of the total PI+-rho-cross-sections. They are in good agreement with the measured values. (orig.)

  10. Determination of the s-wave pion-nucleon threshold scattering parameters from the results of experiments on pionic hydrogen

    CERN Document Server

    Oades, G C; Matsinos, E; Rasche, G; Woolcock, W S

    2007-01-01

    We give the conversion equations which lead from experimental values of the 3p -> 1s transition energy in pionic hydrogen and the total width of the 1s level to values of the s-wave threshold scattering parameters for the processes pi- p -> pi- p and pi- p -> pi0 n respectively. Using a three-channel potential model, we then calculate the electromagnetic corrections to these quantities, which remove the effects of the Coulomb interaction, the external mass differences and the presence of the gamma n channel. We give the s-wave scattering parameters obtained from the present experimental data and these electromagnetic corrections. Finally we discuss the implications for isospin invariance.

  11. Exact solution of a model for πd induced reactions and its application to pion-nucleon reactions

    International Nuclear Information System (INIS)

    Reduction techniques are applied to πd elastic scattering and π absorption in a theory without anti-nucleons. In the one-pion approximation we derive two sets of exact coupled-channel equations for respectively the amplitudes Tsub(πd,NN), Tsub(NΔ,NN) and Tsub(π,πdsup3) Tsub(πd,NΔ). Alternatively are expressed all amplitudes in terms of the absorption amplitude Tsub(πd,NΔ) and available solutions for a three-body problem restricted to the πd and NΔ channels. It is explicity demonstrated that the model (which comes close to the one of Thomas, Mutzutani and Koltun) strictly respects the Pauli principle and avoids double-counting. Using the same technique amplitudes for the (π,2N) reaction and for π(in) elastic scattering on general nuclei in terms of amplitudes amongst the NN, NNπ channels are determined. Both the elastic amplitude and the πA optical potential are shown to decompose into a multiple scattering part based on an input πN amplitude without the Psub(11) partial wave and calculable absorption corrections. (author)

  12. $\\pi N$ Scattering in the $\\Delta(1232)$ Region in an Effective Field Theory

    OpenAIRE

    Long, Bingwei; van Kolck, U.

    2009-01-01

    We develop a generalized version of heavy-baryon chiral perturbation theory to describe pion-nucleon scattering in a kinematic domain that extends continuously from threshold to the delta-isobar peak. The $P$-wave phase shifts are used to illustrate this framework. We also compare our approach with those in the literature that concern the delta resonance.

  13. Pion-Skyrmion scattering: collective coordinates at work

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1985-06-01

    It is argued that the Skryme model, and more generally, the picture of the nucleon as a chiral soliton, can give a qualitatively correct picture of pion-nucleon scattering, considering both group-theoretic and more scheme-dependent results. The properties of the nucleon and its excited states in large-N quantum chromodynamics are discussed qualitatively. Then the pion-nucleon S-matrix is reduced. It is found that the model succeeds at the first level of calculation in producing many of the features of pion-nucleon scattering which are revealed by experiment, but that many aspects of the description need to be better understood, including the treatment of nonleading corrections near threshold and the inclusion of inelastic channels. 22 refs., 8 figs. (LEW)

  14. On Yang--Mills Theories with Chiral Matter at Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Shifman, M.; /Minnesota U., Theor. Phys. Inst. /Saclay, SPhT; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.

    2008-08-20

    Strong coupling dynamics of Yang-Mills theories with chiral fermion content remained largely elusive despite much effort over the years. In this work, we propose a dynamical framework in which we can address non-perturbative properties of chiral, non-supersymmetric gauge theories, in particular, chiral quiver theories on S{sub 1} x R{sub 3}. Double-trace deformations are used to stabilize the center-symmetric vacuum. This allows one to smoothly connect smaller(S{sub 1}) to larger(S{sub 1}) physics (R{sub 4} is the limiting case) where the double-trace deformations are switched off. In particular, occurrence of the mass gap in the gauge sector and linear confinement due to bions are analytically demonstrated. We find the pattern of the chiral symmetry realization which depends on the structure of the ring operators, a novel class of topological excitations. The deformed chiral theory, unlike the undeformed one, satisfies volume independence down to arbitrarily small volumes (a working Eguchi-Kawai reduction) in the large N limit. This equivalence, may open new perspectives on strong coupling chiral gauge theories on R{sub 4}.

  15. $U(1)$ Chiral Symmetry in One-Dimensional Interacting Electron System with Spin

    CERN Document Server

    Lee, Taejin

    2015-01-01

    We study a spin dependent Tomonaga-Luttinger model in one dimension, which describes electron transport through a single barrier. Using the Fermi-Bose equivalence in one dimension, we map the model onto a massless Thirring model with a boundary interaction. A field theoretical perturbation theory for the model has been developed and the chiral symmetry is found to play an important role. The classical bulk action possesses a global $U_A(1)^4$ chiral symmetry, since the fermion fields are massless. This global chiral symmetry is broken by the boundary interaction and the bosonic degrees of freedom, corresponding to the chiral phase transformation, become dynamical. They acquire an additional kinetic action from the fermion path integral measure and govern the critical behaviors of physical operators. On the critical line where the boundary interaction becomes marginal, they decouple from the fermi fields. Consequently the action reduces to the free field action, which contains only a fermion bilinear boundary ...

  16. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    CERN Document Server

    Holt, Jeremy W; Weise, Wolfram

    2014-01-01

    Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  17. The U(1)A anomaly in high temperature QCD with chiral fermions on the lattice

    CERN Document Server

    Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2015-01-01

    The magnitude of the $U_A(1)$ symmetry breaking is expected to affect the nature of $N_f=2$ QCD chiral phase transition. The explicit breaking of chiral symmetry due to realistic light quark mass is small, so it is important to use chiral fermions on the lattice to understand the effect of $U_A(1)$ near the chiral crossover temperature, $T_c$. We report our latest results for the eigenvalue spectrum of 2+1 flavour QCD with dynamical Mobius domain wall fermions at finite temperature probed using the overlap operator on $32^3\\times 8$ lattice. We check how sensitive the low-lying eigenvalues are to the sea-light quark mass. We also present a comparison with the earlier independent results with domain wall fermions.

  18. Self-similar inverse cascade of magnetic helicity driven by the chiral anomaly

    CERN Document Server

    Hirono, Yuji; Yin, Yi

    2015-01-01

    For systems with charged chiral fermions, the imbalance of chirality in the presence of magnetic field generates an electric current - this is the Chiral Magnetic Effect (CME). We study the dynamical real-time evolution of electromagnetic fields coupled by the anomaly to the chiral charge density and the CME current by solving the Maxwell-Chern-Simons equations. We find that the CME induces the inverse cascade of magnetic helicity towards the large distances, and that at late times this cascade becomes self-similar, with universal exponents. We also find that in terms of gauge field topology the inverse cascade represents the transition from linked electric and magnetic fields (Hopfions) to the knotted configuration of magnetic field (Chandrasekhar-Kendall states). The magnetic reconnections are accompanied by the pulses of the CME current directed along the magnetic field lines. We devise an experimental signature of these phenomena in heavy ion collisions, and speculate about implications for condensed matt...

  19. Formulation of 2D Graphene Deformation Based on Chiral-Tube Base Vectors

    Directory of Open Access Journals (Sweden)

    Bohua Sun

    2010-01-01

    Full Text Available The intrinsic feature of graphene honeycomb lattice is defined by its chiral index (n,m, which can be taken into account when using molecular dynamics. However, how to introduce the index into the continuum model of graphene is still an open problem. The present manuscript adopts the continuum shell model with single director to describe the mechanical behaviors of graphene. In order to consider the intrinsic features of the graphene honeycomb lattice—chiral index (n,m, the chiral-tube vectors of graphene in real space have been used for construction of reference unit base vectors of the shell model; therefore, the formulations will contain the chiral index automatically, or in an explicit form in physical components. The results are quite useful for future studies of graphene mechanics.

  20. Chiral matrix model of the semi-QGP in QCD

    Science.gov (United States)

    Pisarski, Robert D.; Skokov, Vladimir V.

    2016-08-01

    Previously, a matrix model of the region near the transition temperature, in the "semi"quark gluon plasma, was developed for the theory of S U (3 ) gluons without quarks. In this paper we develop a chiral matrix model applicable to QCD by including dynamical quarks with 2 +1 flavors. This requires adding a nonet of scalar fields, with both parities, and coupling these to quarks through a Yukawa coupling, y . Treating the scalar fields in mean field approximation, the effective Lagrangian is computed by integrating out quarks to one loop order. As is standard, the potential for the scalar fields is chosen to be symmetric under the flavor symmetry of S U (3 )L×S U (3 )R×Z (3 )A, except for a term linear in the current quark mass, mqk. In addition, at a nonzero temperature T it is necessary to add a new term, ˜mqkT2. The parameters of the gluon part of the matrix model are identical to those for the pure glue theory without quarks. The parameters in the chiral matrix model are fixed by the values, at zero temperature, of the pion decay constant and the masses of the pions, kaons, η , and η'. The temperature for the chiral crossover at Tχ=155 MeV is determined by adjusting the Yukawa coupling y . We find reasonable agreement with the results of numerical simulations on the lattice for the pressure and related quantities. In the chiral limit, besides the divergence in the chiral susceptibility there is also a milder divergence in the susceptibility between the Polyakov loop and the chiral order parameter, with critical exponent β -1 . We compute derivatives with respect to a quark chemical potential to determine the susceptibilities for baryon number, the χ2 n. Especially sensitive tests are provided by χ4-χ2 and by χ6, which changes in sign about Tχ. The behavior of the susceptibilities in the chiral matrix model strongly suggests that as the temperature increases from Tχ, that the transition to deconfinement is significantly quicker than indicated by the

  1. Chiral Lagrangian and chiral quark model from confinement in QCD

    CERN Document Server

    Simonov, Yu A

    2015-01-01

    The effective chiral Lagrangian in both nonlocal form $L_{ECCL}$ and standard local form $L_{ECL}$ are derived in QCD using the confining kernel, obtained in the vacuum correlator formalism. As a result all coefficients of $L_{ECL}$ can be computed via $q\\bar q$ Green's functions. In the $p^2$ order of $L_{ECL}$ one obtains GOR relations and quark decay constants $f_a$ are calculated $a=1,...8$, while in the $p^4$ order the coefficients $L_1, L_2, L_3,L_4, L_5, L_6$ are obtained in good agreement with the values given by data. The chiral quark model is shown to be a simple consequence of $L_{ECCL}$ with defined coefficients. It is demonstrated that $L_{ECCL}$ gives an extension of the limiting low-energy Lagrangian $L_{ECL}$ to arbitrary momenta.

  2. Chiral logarithms in quenched QCD

    International Nuclear Information System (INIS)

    The quenched chiral logarithms are examined on a 163x28 lattice with Iwasaki gauge action and overlap fermions. The pion decay constant fpi is used to set the lattice spacing, a = 0.200(3) fm. With pion mass as low as ∼180 MeV, we see the quenched chiral logarithms clearly in mpi2/m and fP, the pseudoscalar decay constant. The authors analyze the data to determine how low the pion mass needs to be in order for the quenched one-loop chiral perturbation theory (chiPT) to apply. With the constrained curve-fitting method, they are able to extract the quenched chiral logarithmic parameter delta together with other low-energy parameters. Only for mpi<=300 MeV do we obtain a consistent and stable fit with a constant delta which they determine to be 0.24(3)(4) (at the chiral scale Lambdachi = 0.8 GeV). By comparing to the 123x28 lattice, they estimate the finite volume effect to be about 2.7% for the smallest pion mass. They also fitted the pion mass to the form for the re-summed cactus diagrams and found that its applicable region is extended farther than the range for the one-loop formula, perhaps up to mpi ∼500-600 MeV. The scale independent delta is determined to be 0.20(3) in this case. The authors study the quenched non-analytic terms in the nucleon mass and find that the coefficient C1/2 in the nucleon mass is consistent with the prediction of one-loop chiPT. They also obtain the low energy constant L5 from fpi. They conclude from this study that it is imperative to cover only the range of data with the pion mass less than ∼300 MeV in order to examine the chiral behavior of the hadron masses and decay constants in quenched QCD and match them with quenched one-loop chiPT

  3. Focusing, Power Tunneling and Rejection from Chiral and/or Chiral Nihility/Nihility Metamaterials Layers

    CERN Document Server

    Shah, Syed Touseef Hussain; Syed, Aqeel A; Naqvi, Qaisar Abbas

    2013-01-01

    Focusing of electromagnetic plane wave from a large size paraboloidal reflector, composed of layers of chiral and/or chiral nihility metamaterials, has been studied us- ing Maslov's method. First, the transmission and reflection of electromagnetic plane wave from two parallel layers of chiral and/or chiral nihility metamaterials are cal- culated using transfer matrix method. The effects of change of angle of incidence, chirality parameters and impedances of layers are noted and discussed. Special cases by taking very large and small values of permittivity of second layer, while assuming value of corresponding chirality equal to zero, are also treated. These special cases are equivalent to reflection from a perfect electric conductor backed chiral layer and nihility backed chiral layer, respectively. Results of reflection from parallel layers have been utilized to study focusing from a large size paraboloidal reflector. The present study, on focusing from a paraboloidal re{\\deg}ector, not only unifies several ...

  4. Chiral Negative-Index Metamaterials in Terahertz

    CERN Document Server

    Zhang, Shuang; Li, Jensen; Lu, Xinchao; Zhang, Weili; Zhang, Xiang

    2008-01-01

    Negative index metamaterials (NIMs) give rise to unusual and intriguing properties and phenomena, which may lead to important applications such as superlens, subwavelength cavity and slow light devices. However, the negative refractive index in metamaterials normally requires a stringent condition of simultaneously negative permittivity and negative permeability. A new class of negative index metamaterials - chiral NIMs, have been recently proposed. In contrast to the conventional NIMs, chiral NIMs do not require the above condition, thus presenting a very robust route toward negative refraction. Here we present the first experimental demonstration of a chiral metamaterial exhibiting negative refractive index down to n=-5 at terahertz frequencies, with only a single chiral resonance. The strong chirality present in the structure lifts the degeneracy for the two circularly polarized waves and relieves the double negativity requirement. Chiral NIM are predicted to possess intriguing electromagnetic properties t...

  5. Stable Pentaquarks from Strange Chiral Multiplets

    Energy Technology Data Exchange (ETDEWEB)

    Silas Beane

    2004-12-01

    The assumption of strong diquark correlations in the QCD spectrum suggests flavor multiplets of hadrons that are degenerate in the chiral limit. Generally it would be unnatural for there to be degeneracy in the hadron spectrum that is not protected by a QCD symmetry. Here we show--for pentaquarks constructed from diquarks--that these degeneracies can be naturally protected by the full chiral symmetry of QCD. The resulting chiral multiplet structure recovers the ideally-mixed pentaquark mass spectrum of the diquark model, and interestingly, requires that the axial couplings of the pentaquarks to states outside the degenerate multiplets vanish in the chiral limit. This result suggests that if these hadrons exist, they are stable in the chiral limit and therefore have widths that scale as the fourth power of the kaon mass over the chiral symmetry breaking scale. Natural-size widths are of order a few MeV.

  6. Anomalous Maxwell equations for inhomogeneous chiral plasma

    CERN Document Server

    Gorbar, E V; Vilchinskii, S; Rudenok, I; Boyarsky, A; Ruchayskiy, O

    2016-01-01

    Using the chiral kinetic theory we derive the electric and chiral current densities in inhomogeneous relativistic plasma. We also derive equations for the electric and chiral charge chemical potentials that close the Maxwell equations in such a plasma. The analysis is done in the regimes with and without a drift of the plasma as a whole. In addition to the currents present in the homogeneous plasma (Hall current, chiral magnetic, chiral separation, and chiral electric separation effects, as well as Ohm's current) we derive several new terms associated with inhomogeneities of the plasma. Apart from various diffusion-like terms, we find also new dissipation-less terms that are independent of relaxation time. Their origin can be traced to the Berry curvature modifications of the kinetic theory.

  7. Chiral Symmetry Restoration from a Boundary

    CERN Document Server

    Tiburzi, B C

    2013-01-01

    The boundary of a manifold can alter the phase of a theory in the bulk. We explore the possibility of a boundary-induced phase transition for the chiral symmetry of QCD. In particular, we investigate the consequences of imposing homogeneous Dirichlet boundary conditions on the quark fields. Such boundary conditions are employed on occasion in lattice gauge theory computations, for example, when including external electromagnetic fields, or when computing quark propagators with a reduced temporal extent. Homogeneous Dirichlet boundary conditions force the chiral condensate to vanish at the boundary, and thereby obstruct the spontaneous breaking of chiral symmetry in the bulk. As the restoration of chiral symmetry due to a boundary is a non-perturbative phenomenon, we utilize the sigma model to exemplify the issues. Using this model, we find that chiral symmetry is completely restored if the length of the compact direction is less than 2.0 fm. For lengths greater than about 4 fm, an approximately uniform chiral...

  8. Asymmetric synthesis using chiral-encoded metal.

    Science.gov (United States)

    Yutthalekha, Thittaya; Wattanakit, Chularat; Lapeyre, Veronique; Nokbin, Somkiat; Warakulwit, Chompunuch; Limtrakul, Jumras; Kuhn, Alexander

    2016-01-01

    The synthesis of chiral compounds is of crucial importance in many areas of society and science, including medicine, biology, chemistry, biotechnology and agriculture. Thus, there is a fundamental interest in developing new approaches for the selective production of enantiomers. Here we report the use of mesoporous metal structures with encoded geometric chiral information for inducing asymmetry in the electrochemical synthesis of mandelic acid as a model molecule. The chiral-encoded mesoporous metal, obtained by the electrochemical reduction of platinum salts in the presence of a liquid crystal phase and the chiral template molecule, perfectly retains the chiral information after removal of the template. Starting from a prochiral compound we demonstrate enantiomeric excess of the (R)-enantiomer when using (R)-imprinted electrodes and vice versa for the (S)-imprinted ones. Moreover, changing the amount of chiral cavities in the material allows tuning the enantioselectivity. PMID:27562028

  9. Chirality-dependent flutter of Typha blades in wind.

    Science.gov (United States)

    Zhao, Zi-Long; Liu, Zong-Yuan; Feng, Xi-Qiao

    2016-01-01

    Cattail or Typha, an emergent aquatic macrophyte widely distributed in lakes and other shallow water areas, has slender blades with a chiral morphology. The wind-resilient Typha blades can produce distinct hydraulic resistance for ecosystem functions. However, their stem may rupture and dislodge in excessive wind drag. In this paper, we combine fluid dynamics simulations and experimental measurements to investigate the aeroelastic behavior of Typha blades in wind. It is found that the chirality-dependent flutter, including wind-induced rotation and torsion, is a crucial strategy for Typha blades to accommodate wind forces. Flow visualization demonstrates that the twisting morphology of blades provides advantages over the flat one in the context of two integrated functions: improving wind resistance and mitigating vortex-induced vibration. The unusual dynamic responses and superior mechanical properties of Typha blades are closely related to their biological/ecosystem functions and macro/micro structures. This work decodes the physical mechanisms of chirality-dependent flutter in Typha blades and holds potential applications in vortex-induced vibration suppression and the design of, e.g., bioinspired flight vehicles. PMID:27432079

  10. Coherence specific signal detection via chiral pump-probe spectroscopy.

    Science.gov (United States)

    Holdaway, David I H; Collini, Elisabetta; Olaya-Castro, Alexandra

    2016-05-21

    We examine transient circular dichroism (TRCD) spectroscopy as a technique to investigate signatures of exciton coherence dynamics under the influence of structured vibrational environments. We consider a pump-probe configuration with a linearly polarized pump and a circularly polarized probe, with a variable angle θ between the two directions of propagation. In our theoretical formalism the signal is decomposed in chiral and achiral doorway and window functions. Using this formalism, we show that the chiral doorway component, which beats during the population time, can be isolated by comparing signals with different values of θ. As in the majority of time-resolved pump-probe spectroscopy, the overall TRCD response shows signatures of both excited and ground state dynamics. However, we demonstrate that the chiral doorway function has only a weak ground state contribution, which can generally be neglected if an impulsive pump pulse is used. These findings suggest that the pump-probe configuration of optical TRCD in the impulsive limit has the potential to unambiguously probe quantum coherence beating in the excited state. We present numerical results for theoretical signals in an example dimer system. PMID:27208941

  11. Phases of chiral gauge theories

    International Nuclear Information System (INIS)

    We discuss the behavior of two non-supersymmetric chiral SU(N) gauge theories, involving fermions in the symmetric and antisymmetric two-index tensor representations respectively. In addition to global anomaly matching, we employ a recently proposed inequality constraint on the number of effective low energy (massless) degrees of freedom of a theory, based on the thermodynamic free energy. Several possible zero temperature phases are consistent with the constraints. A simple picture for the phase structure emerges if these theories choose the phase, consistent with global anomaly matching, that minimizes the massless degree of freedom count defined through the free energy. This idea suggests that confinement with the preservation of the global symmetries through the formation of massless composite fermions is in general not preferred. While our discussion is restricted mainly to bilinear condensate formation, higher dimensional condensates are considered for one case. We conclude by commenting briefly on two related supersymmetric chiral theories. (c) 2000 The American Physical Society

  12. Bootstrapping N=2 chiral correlators

    Science.gov (United States)

    Lemos, Madalena; Liendo, Pedro

    2016-01-01

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  13. Bootstrapping N=2 chiral correlators

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Madalena [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Liendo, Pedro [Humboldt-Univ. Berlin (Germany). IMIP

    2015-12-15

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  14. Homogenization of resonant chiral metamaterials

    DEFF Research Database (Denmark)

    Andryieuski, Andrei; Menzel, C.; Rockstuhl, Carsten;

    2010-01-01

    Homogenization of metamaterials is a crucial issue as it allows to describe their optical response in terms of effective wave parameters as, e.g., propagation constants. In this paper we consider the possible homogenization of chiral metamaterials. We show that for meta-atoms of a certain size a...... critical density exists above which increasing coupling between neighboring meta-atoms prevails a reasonable homogenization. On the contrary, a dilution in excess will induce features reminiscent to photonic crystals likewise prevailing a homogenization. Based on Bloch mode dispersion we introduce an...... analytical criterion for performing the homogenization and a tool to predict the homogenization limit. We show that strong coupling between meta-atoms of chiral metamaterials may prevent their homogenization at all....

  15. Bootstrapping N=2 chiral correlators

    International Nuclear Information System (INIS)

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  16. On chirality of slime mould.

    Science.gov (United States)

    Dimonte, Alice; Adamatzky, Andrew; Erokhin, Victor; Levin, Michael

    2016-02-01

    Left-right patterning and lateralised behaviour is an ubiquitous aspect of plants and animals. The mechanisms linking cellular chirality to the large-scale asymmetry of multicellular structures are incompletely understood, and it has been suggested that the chirality of living cells is hardwired in their cytoskeleton. We examined the question of biased asymmetry in a unique organism: the slime mould Physarum polycephalum, which is unicellular yet possesses macroscopic, complex structure and behaviour. In laboratory experiment using a T-shape, we found that Physarum turns right in more than 74% of trials. The results are in agreement with previously published studies on asymmetric movement of muscle cells, neutrophils, liver cells and growing neural filaments, and for the first time reveal the presence of consistently-biased laterality in the fungi kingdom. Exact mechanisms of the slime mould's direction preference remain unknown. PMID:26747637

  17. An epistemological note on chirality

    International Nuclear Information System (INIS)

    The terms ''chiral'' and ''achiral'' are sharply defined when applied to geometric figures or models. The same terms are also commonly used to refer to the real systems to which these models have been adjoined. e.g., molecules, solvents, or reagents. Here, the terms are not sharply defined but depend upon conditions or measurement. The contrast between the geometric and operational usages is discussed in detail

  18. Chiral Primaries in Strange Metals

    OpenAIRE

    Isachenkov, Mikhail(DESY Hamburg, Theory Group, Notkestrasse 85, D-22607 Hamburg, Germany); Kirsch, Ingo; Schomerus, Volker

    2014-01-01

    It was suggested recently that the study of 1-dimensional QCD with fermions in the adjoint representation could lead to an interesting toy model for strange metals and their holographic formulation. In the high density regime, the infrared physics of this theory is described by a constrained free fermion theory with an emergent N=(2,2) superconformal symmetry. In order to narrow the choice of potential holographic duals, we initiate a systematic search for chiral primaries in this model. We a...

  19. Chiral Lagrangians and the SSC

    International Nuclear Information System (INIS)

    In the event that the SSC does not observe any resonances such as a Higgs boson or a techni-rho meson, we would like to know if the SSC can still discover something about the nature of the electroweak symmetry breaking. We will use chiral Lagrangian techniques to address this question and analyze their utility for studying events containing W and Z gauge bosons at the SSC. 20 refs., 4 figs

  20. Chiral symmetry and nucleon structure

    Energy Technology Data Exchange (ETDEWEB)

    Holstein, B.R. (Massachusetts Univ., Amherst, MA (United States). Dept. of Physics and Astromony Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory)

    1992-01-01

    Recently it has been realized that significant tests of the validity of QCD are available in low energy experiments (E < 500 MeV) by exploiting the property of (broken) chiral symmetry. This technique has been highly developed in The Goldstone boson sector by the work of Gasser and Leutwyler. Application to the nucleon system is much more difficult and is now being carefully developed.

  1. Chiral solitons a review volume

    CERN Document Server

    1987-01-01

    This review volume on topological and nontopological chiral solitons presents a global view on the current developments of this field in particle and nuclear physics. The book addresses problems in quantization, restoration of translational and rotational symmetry, and the field theoretical approach to solitons which are common problems in the field of solitons. Primarily aimed for graduate students and the novice in the field, the collected articless cover a broad spectrum of topics in formalism as well as phenomenology.

  2. Majorana Neutrino: Chirality and Helicity

    CERN Document Server

    Dvoeglazov, Valeriy V

    2012-01-01

    We introduce the Majorana spinors in the momentum representation. They obey the Dirac-like equation with eight components, which has been first introduced by Markov. Thus, the Fock space for corresponding quantum fields is doubled (as shown by Ziino). Particular attention has been paid to the questions of chirality and helicity (two concepts which frequently are confused in the literature) for Dirac and Majorana states.

  3. Staggered chiral random matrix theory

    International Nuclear Information System (INIS)

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  4. Chiral Particle Separation by a Nonchiral Microlattice

    Science.gov (United States)

    Bogunovic, Lukas; Fliedner, Marc; Eichhorn, Ralf; Wegener, Sonja; Regtmeier, Jan; Anselmetti, Dario; Reimann, Peter

    2012-09-01

    We conceived a model experiment for a continuous separation strategy of chiral molecules (enantiomers) without the need of any chiral selector structure or derivatization agents: Microparticles that only differ by their chirality are shown to migrate along different directions when driven by a steady fluid flow through a square lattice of cylindrical posts. In accordance with our numerical predictions, the transport directions of the enantiomers depend very sensitively on the orientation of the lattice relative to the fluid flow.

  5. Enantiomeric Separations using Chiral Counter-Ions

    OpenAIRE

    Haglöf, Jakob

    2010-01-01

    This thesis describes the use of chiral counter-ions for the enantiomeric separation of amines in non-aqueous capillary electrophoresis. The investigations have been concentrated on studies of the influence, of the chiral counter-ion, the solvent, the electrolyte and the analyte, on the enantioselective separation. Modified divalent dipeptides have been introduced in capillary electrophoresis for the separation of amino alcohols and chiral resolution of amines. Association constants for the i...

  6. Chiral Seismic Attenuation with Acoustic Metamaterials

    OpenAIRE

    Hector Torres-Silva; Diego Torres Cabezas

    2013-01-01

    We study the analogy between the linear elasticity theory equations and classical Maxwell equation with chiral effects and we propose a new method of an earthquake-resistant design to support conventional aseismic designs using acoustic metamaterials. We suggest a simple and practical method to reduce the amplitude of a seismic wave exponentially. Our device is like an attenuator of a chiral seismic wave. Constructing a cylindrical shell-type waveguide that creates a stop-band for the chiral...

  7. Random Matrix Theory and Chiral Logarithms

    OpenAIRE

    Berbenni-Bitsch, M. E.; Göckeler, M.; Hehl, H.; Meyer, S.; Rakow, P. E. L.; Schäfer, A.; Wettig, T.

    1999-01-01

    Abstract: Recently, the contributions of chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that a detailed comparison of random matrix theory and lattice calculations allows for a precise determination of such corrections. We estimate the relative size of the m log(m), m, and m^2 corrections to the chiral condensate for quenched SU(2).

  8. The chirality operators for Heisenberg spin systems

    International Nuclear Information System (INIS)

    The ground state of closed Heisenberg spin chains with an odd number of sites has a chiral degeneracy, in addition to a two-fold Kramers degeneracy. A non-zero chirality implies that the spins are not coplanar, and is a measure of handedness. The chirality operator, which can be treated as a spin-1/2 operator, is explicitly constructed in terms of the spin operators, and is given as commutator of permutation operators. (author). 3 refs

  9. Creation and manipulation of topological states in chiral nematic microspheres

    Science.gov (United States)

    Orlova, Tetiana; Aßhoff, Sarah Jane; Yamaguchi, Tadatsugu; Katsonis, Nathalie; Brasselet, Etienne

    2015-07-01

    Topology is a universal concept that is encountered in daily life and is known to determine many static and dynamical properties of matter. Taming and controlling the topology of materials therefore constitutes a contemporary interdisciplinary challenge. Building on the controllable spatial properties of soft matter appears as a relevant strategy to address the challenge, in particular, because it may lead to paradigmatic model systems that allow checking theories experimentally. Here we report experimentally on a wealth of complex free-standing metastable topological architectures at the micron scale, in frustrated chiral nematic droplets. These results support recent works predicting the formation of free-standing knotted and linked disclination structures in confined chiral nematic fluids. We also demonstrate that various kinds of external fields (thermal, electrical and optical) can be used to achieve topological remote control. All this may foster the development of new devices based on topologically structured soft media.

  10. Chiral symmetry breaking and monopoles

    CERN Document Server

    Di Giacomo, Adriano; Pucci, Fabrizio

    2015-01-01

    To understand the relation between the chiral symmetry breaking and monopoles, the chiral condensate which is the order parameter of the chiral symmetry breaking is calculated in the $\\overline{\\mbox{MS}}$ scheme at 2 [GeV]. First, we add one pair of monopoles, varying the monopole charges $m_{c}$ from zero to four, to SU(3) quenched configurations by a monopole creation operator. The low-lying eigenvalues of the Overlap Dirac operator are computed from the gauge links of the normal configurations and the configurations with additional monopoles. Next, we compare the distributions of the nearest-neighbor spacing of the low-lying eigenvalues with the prediction of the random matrix theory. The low-lying eigenvalues not depending on the scale parameter $\\Sigma$ are compared to the prediction of the random matrix theory. The results show the consistency with the random matrix theory. Thus, the additional monopoles do not affect the low-lying eigenvalues. Moreover, we discover that the additional monopoles increa...

  11. Chiral symmetry and functional integral

    Energy Technology Data Exchange (ETDEWEB)

    Gamboa Saravi, R.E.; Muschietti, M.A.; Schaposnik, F.A.; Solomin, J.E.

    1984-10-15

    The change in the fermionic functional integral measure under chiral rotations is analyzed. Using the zeta-function method, the evaluation of chiral Jacobians to theories including non-hermitian Dirac operators D, can be extended in a natural way. (This being of interest, for example, in connection with the Weinberg-Salam model or with the relativistic string theory). Results are compared with those obtained following other approaches, the possible discrepancies are analyzed and the equivalence of the different methods under certain conditions on D is proved. Also shown is how to compute the Jacobian for the case of a finite chiral transformation and this result is used to develop a sort of path-integral version of bosonization in d = 2 space-time dimensions. This result is used to solve in a very simple and economical way relevant d = 2 fermionic models. Furthermore, some interesting features in connection with the theta-vacuum in d = 2,4 gauge theories are discussed.

  12. Lateral chirality-sorting optical forces

    Science.gov (United States)

    Hayat, Amaury; Mueller, J. P. Balthasar; Capasso, Federico

    2015-01-01

    The transverse component of the spin angular momentum of evanescent waves gives rise to lateral optical forces on chiral particles, which have the unusual property of acting in a direction in which there is neither a field gradient nor wave propagation. Because their direction and strength depends on the chiral polarizability of the particle, they act as chirality-sorting and may offer a mechanism for passive chirality spectroscopy. The absolute strength of the forces also substantially exceeds that of other recently predicted sideways optical forces. PMID:26453555

  13. Implications of Local Chiral Symmetry Breaking

    CERN Document Server

    La, H S

    2003-01-01

    The spontaneous symmetry breaking of a local chiral symmetry to its diagonal vector symmetry naturally realizes a complete geometrical structure more general than that of Yang-Mills (YM) theory, rather similar to that of gravity. A good example is the Quantum Chromodynamics (QCD) with respect to the Chiral Color model. Also, a new anomaly-free particle content for a Chiral Color model is introduced: the Chiral Color can be realized without introducing whole new generations of quarks and leptons, but by simply enlarging each generation with new exotic fermions.

  14. Opportunities for chiral discrimination using high harmonic generation in tailored laser fields

    Science.gov (United States)

    Smirnova, Olga; Mairesse, Yann; Patchkovskii, Serguei

    2015-12-01

    Chiral discrimination with high harmonic generation (cHHG method) has been introduced in the recent work by R Cireasa et al (2015 Nat. Phys. 11 654-8). In its original implementation, the cHHG method works by detecting high harmonic emission from randomly oriented ensemble of chiral molecules driven by elliptically polarized field, as a function of ellipticity. Here we discuss future perspectives in the development of this novel method, the ways of increasing chiral dichroism using tailored laser pulses, new detection schemes involving high harmonic phase measurements, and concentration-independent approaches. Using the example of the epoxypropane molecule CH3CHCH2O (also known as 1,2-propylene oxide), we show theoretically that application of two-color counter-rotating elliptically polarized laser fields yields an order of magnitude enhancement of chiral dichroism compared to single color elliptical fields. We also describe how one can introduce a new functionality to cHHG: concentration-independent measurement of the enatiomeric excess in a mixture of randomly oriented left-handed and right-handed molecules. Finally, for arbitrary configurations of laser fields, we connect the observables of the cHHG method to the amplitude and phase of chiral response, providing a basis for reconstructing wide range of chiral dynamics from cHHG measurements, with femtosecond to sub-femtosecond temporal resolution.

  15. Baryons in the chiral regime

    Energy Technology Data Exchange (ETDEWEB)

    Knippschild, Bastian

    2012-03-05

    Quantum Chromodynamics (QCD) is the theory of strong interactions, one of the four fundamental forces in our Universe. It describes the interaction of gluons and quarks which build up hadrons like protons and neutrons. Most of the visible matter in our universe is made of protons and neutrons. Hence, we are interested in their fundamental properties like their masses, their distribution of charge and their shape. The only known theoretical, non-perturbative and ab initio method to investigate hadron properties at low energies is lattice Quantum Chromodynamics (lattice QCD). However, up-to-date simulations (especially for baryonic quantities) do not achieve the accuracy of experiments. In fact, current simulations do not even reproduce the experimental values for the form factors. The question arises wether these deviations can be explained by systematic effects in lattice QCD simulations. This thesis is about the computation of nucleon form factors and other hadronic quantities from lattice QCD. So called Wilson fermions are used and the u- and d-quarks are treated fully dynamically. The simulations were performed using gauge ensembles with a range of lattice spacings, volumes and pion masses. First of all, the lattice spacing was set to be able to make contact between the lattice results and their experimental complement and to be able to perform a continuum extrapolation. The light quark mass has been computed and found to be m{sub ud}{sup MS}(2 GeV)=3.03(17)(38) MeV. This value is in good agreement with values from experiments and other lattice determinations. Electro-magnetic and axial form factors of the nucleon have been calculated. From these form factors the nucleon radii and the coupling constants were computed. The different ensembles enabled us to investigate systematically the dependence of these quantities on the volume, the lattice spacing and the pion mass. Finally we perform a continuum extrapolation and chiral extrapolations to the physical point

  16. Competition and duality correspondence between chiral and superconducting channels in (2+1)-dimensional four-fermion models with fermion number and chiral chemical potentials

    CERN Document Server

    Ebert, D; Klimenko, K G; Zhukovsky, V C

    2016-01-01

    In this paper the duality correspondence between fermion-antifermion and difermion interaction channels is established in two (2+1)-dimensional Gross-Neveu type models with a fermion number chemical potential $\\mu$ and a chiral chemical potential $\\mu_5$. The role and influence of this property on the phase structure of the models are investigated. In particular, it is shown that the chemical potential $\\mu_5$ promotes the appearance of dynamical chiral symmetry breaking, whereas the chemical potential $\\mu$ contributes to the emergence of superconductivity.

  17. The Optical Chirality Flux as a Useful Far-Field Probe of Chiral Near Fields

    CERN Document Server

    Poulikakos, Lisa V; McPeak, Kevin M; Burger, Sven; Niegemann, Jens; Hafner, Christian; Norris, David J

    2016-01-01

    To optimize the interaction between chiral matter and highly twisted light, quantities that can help characterize chiral electromagnetic fields near nanostructures are needed. Here, by analogy with Poynting's theorem, we formulate the time-averaged conservation law of optical chirality in lossy dispersive media and identify the optical chirality flux as an ideal far-field observable for characterizing chiral optical near fields. Bounded by the conservation law, we show that it provides precise information, unavailable from circular dichroism spectroscopy, on the magnitude and handedness of highly twisted fields near nanostructures.

  18. Scaling behaviour of the effective chiral action and stability of the chiral soliton

    International Nuclear Information System (INIS)

    The effective chiral action is evaluated within a novel improved heat-kernel expansion, which includes gradients of the chiral field in a non-perturbative way. The exact scaling behaviour of the effective action of a localized chiral field with respect to changing its spatial size is found. From this it is proved that the radiatively induced derivative terms cannot absolutely stabilize the chiral soliton against collapsing. The collapsing of the soliton is, however, accompanied by a vanishing of the baryon charge. It is argued that the effective chiral action constrained to a fixed baryon number may still admit stable soliton configurations. (orig.)

  19. Synthesis and Chiral Recognition of a New Type of Chiral Calix[4]arene Derivatives

    Institute of Scientific and Technical Information of China (English)

    HE,Yong-Bing; LI,Jian-Feng; XIAO,Yuan-Jing; WEI,Lan-Hua; WU,Xiao-Jun; MENG,Ling-Zhi

    2003-01-01

    Two new chiral calix[4] arenes bearing chiral pendants, which were from by-product of the antibiotic industry, were synthesized and characterized by 1H NMR, MS-FAB and elemental analysis. Studies of 1H NMR of the two calix [4] arene derivatives indicate that they exist in cone conformation in solution. Results of chiral recognition of the two chiral ligands 2a and 2b towards the tartaric acid derivative 3 show that ligand 2a exhibited good chiral recognition abilities compared to ligand 2b.

  20. Light Chiral Dark Sector

    CERN Document Server

    Harigaya, Keisuke

    2016-01-01

    An interesting possibility for dark matter is a scalar particle of mass of order 10 MeV-1 GeV, interacting with a U(1) gauge boson (dark photon) which mixes with the photon. We present a simple and natural model realizing this possibility. The dark matter arises as a composite pseudo Nambu-Goldstone boson (dark pion) in a non-Abelian gauge sector, which also gives a mass to the dark photon. For a fixed non-Abelian gauge group, SU(N), and a U(1) charge of the constituent dark quarks, the model has only three free parameters: the dynamical scale of the non-Abelian gauge theory, the gauge coupling of the dark photon, and the mixing parameter between the dark and standard model photons. In particular, the gauge symmetry of the model does not allow any mass term for the dark quarks, and stability of the dark pion is understood as a result of an accidental global symmetry. The model has a significant parameter space in which thermal relic dark pions comprise all of the dark matter, consistently with all experimenta...