WorldWideScience

Sample records for chiral phase transition

  1. Chiral Magnetic Effect and Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    FU Wei-Jie; LIU Yu-Xin; WU Yue-Liang

    2011-01-01

    We study the influence of the chiral phase transition on the chiral magnetic effect.The azimuthal chargeparticle correlations as functions of the temperature are calculated.It is found that there is a pronounced cusp in the correlations as the temperature reaches its critical value for the QCD phase transition.It is predicted that there will be a drastic suppression of the charge-particle correlations as the collision energy in RHIC decreases to below a critical value.We show then the azimuthal charge-particle correlations can be the signal to identify the occurrence of the QCD phase transitions in RHIC energy scan experiments.

  2. Neutrino Oscillation Induced by Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei

    2009-01-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  3. Interplay between chiral and deconfinement phase transitions

    Directory of Open Access Journals (Sweden)

    Mukherjee T.K.

    2011-04-01

    Full Text Available By using the dressed Polyakov loop or dual chiral condensate as an equivalent order parameter of the deconfinement phase transition, we investigate the relation between the chiral and deconfinement phase transitions at finite temperature and density in the framework of three-flavor Nambu-Jona-Lasinio (NJL model. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole (T,µ plane. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent. For each flavor, the transition temperature for chiral restoration $T^{mathcal{X}}_c$ is smaller than that of the dressed Polyakov loop $T^{mathcal{D}}_c$ in the low baryon density region where the transition is a crossover, and, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. Therefore, there are two critical end points, i.e, $T^{u,d}_{CEP}$ and $T^{s}_{CEP}$ at finite density. We also explain the feature of $T^{mathcal{X}}_c$ = $T^{mathcal{D}}_c$ in the case of 1st and 2nd order phase transitions, and $T^{mathcal{X}}_c$ < $T^{mathcal{D}}_c$ in the case of crossover, and expect this feature is general and can be extended to full QCD theory.

  4. Interplay between chiral and deconfinement phase transitions

    CERN Document Server

    Xu, Fukun; Chen, Huan; Huang, Mei

    2011-01-01

    By using the dressed Polyakov loop or dual chiral condensate as an equivalent order parameter of the deconfinement phase transition, we investigate the relation between the chiral and deconfinement phase transitions at finite temperature and density in the framework of three-flavor Nambu--Jona-Lasinio (NJL) model. It is found that in the chiral limit, the critical temperature for chiral phase transition coincides with that of the dressed Polyakov loop in the whole $(T,\\mu)$ plane. In the case of explicit chiral symmetry breaking, it is found that the phase transitions are flavor dependent. For each flavor, the transition temperature for chiral restoration $T_c^{\\chi}$ is smaller than that of the dressed Polyakov loop $T_c^{{\\cal D}}$ in the low baryon density region where the transition is a crossover, and, the two critical temperatures coincide in the high baryon density region where the phase transition is of first order. Therefore, there are two critical end points, i.e, $T_{CEP}^{u,d}$ and $T_{CEP}^{s}$ a...

  5. Search for phase transitions changing molecular chirality

    International Nuclear Information System (INIS)

    Since Pasteur discovered in 1848 that biological molecules possess a rotatory power, the origin of the chiral purity in living organisms has been a constant preoccupation in biology, but the problem is not solved yet. In particular, the appeal to weak interactions, a fundamental physical process which is known to violate parity, has not permitted so far to establish any firm relation between parity nonconservation and the complete dissymmetry between mirror image biological molecules. The main difficulty resides in the weakness of the physical forces, and can be overcome only when some amplification process can be proved to be at work. Recently such a mechanism was proposed, which does not seem to ask for any ad hoc new concept: due to the attractive character of the parity violating force in electro-weak interactions, a phase transition leading eventually to enantiometric purity is predicted. Phase transitions at low temperature have already been detected in biological materials, but no signature concerning the parity aspect was obtained. We undertook this year in Lyon a series of experiments to measure the rotatory power of solutions containing organic dissymmetric molecules, in order to observe if it varies with temperature. Our first measures involved cystine, which possesses a high rotatory power. No variation of this quantity was observed down to .6K. Lower temperatures will be attained in a next step. (author). 4 refs

  6. How tetraquarks can generate a second chiral phase transition

    CERN Document Server

    Pisarski, Robert D

    2016-01-01

    We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of temperature and quark chemical potential, though, a crossover line for the tetraquark condensate is naturally related to the transition line for color superconductivity. For four flavors we suggest that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.

  7. Chiral and Deconfining Phase Transitions from Holographic QCD Study

    CERN Document Server

    Fang, Zhen; Li, Danning

    2015-01-01

    A first attempt to accommodate the chiral and deconfining phase transitions of QCD in the bottom-up holographic framework is given. We constrain the relation between dilaton field $\\phi$ and metric warp factor $A_e$ and get several reasonable models in the Einstein-Dilaton system. Using the potential reconstruction approach, we solve the corresponding gravity background. Then we fit the background-related parameters by comparing the equation of state with the two-flavor lattice QCD results. After that we study the temperature dependent behavior of Polyakov loop and chiral condensate under those background solutions. We find that the results are in good agreement with the two-flavor lattice results. All the studies about the equation of state, the Polyakov loop and the chiral condensate signal crossover behavior of the phase transitions, which is consistent with the current understanding on the QCD phase transitions with physical quark mass. Furthermore, the extracted transition temperatures are comparable wit...

  8. Chirality Quantum Phase Transition in Noncommutative Dirac Oscillator

    International Nuclear Information System (INIS)

    The charged Dirac oscillator on a noncommutative plane coupling to a uniform perpendicular magnetic held is studied in this paper. We map the noncommutative plane to a commutative one by means of Bopp shift and study this problem on the commutative plane. We find that this model can be mapped onto a quantum optics model which contains Anti—Jaynes—Cummings (AJC) or Jaynes—Cummings (JC) interactions when a dimensionless parameter ζ (which is the function of the intensity of the magnetic held) takes values in different regimes. Furthermore, this model behaves as experiencing a chirality quantum phase transition when the dimensionless parameter ζ approaches the critical point. Several evidences of the chirality quantum phase transition are presented. We also study the non-relativistic limit of this model and find that a similar chirality quantum phase transition takes place in its non-relativistic limit. (physics of elementary particles and fields)

  9. On SU(3) effective models and chiral phase-transition

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...

  10. On the chiral phase transition in the linear sigma model

    International Nuclear Information System (INIS)

    The Cornwall- Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged. (author)

  11. Chiral Phase Transition at Finite Isospin Density in Linear Sigma Model

    Institute of Scientific and Technical Information of China (English)

    SHU Song; LI Jia-Rong

    2005-01-01

    Using the linear sigma model, we have introduced the pion isospin chemical potential. The chiral phase transition is studied at finite temperatures and finite isospin densities. We have studied the μ - T phase diagram for the chiral phase transition and found the transition cannot happen below a certain low temperature because of the BoseEinstein condensation in this system. Above that temperature, the chiral phase transition is studied by the isotherms of pressure versus density. We indicate that the transition, in the chiral limit, is a first-order transition from a low-density phase to a high-density phase like a gas-liquid phase transition.

  12. Chiral and deconfining phase transitions from holographic QCD study

    Science.gov (United States)

    Fang, Zhen; He, Song; Li, Danning

    2016-06-01

    A preliminary quantitative study to match the lattice QCD simulation on the chiral and deconfining phase transitions of QCD in the bottom-up holographic framework is given. We constrain the relation between dilaton field ϕ and metric warp factor Ae and get several reasonable models in the Einstein-Dilaton system. Using the potential reconstruction approach, we solve the corresponding gravity background. Then we fit the background-related parameters by comparing the equation of state with the two-flavor lattice QCD results. After that we study the temperature dependent behavior of Polyakov loop and chiral condensate under those background solutions. We find that the results are in good agreement with the two-flavor lattice results. All the studies about the equation of state, the Polyakov loop and the chiral condensate signal crossover behavior of the phase transitions, which are consistent with the current understanding on the QCD phase transitions with physical quark mass. Furthermore, the extracted transition temperatures are comparable with the two-flavor lattice QCD results.

  13. Net baryon number probability distribution near the chiral phase transition

    OpenAIRE

    Morita, Kenji; Skokov, Vladimir; Friman, Bengt; Redlich, Krzysztof

    2014-01-01

    We discuss the properties of the net baryon number probability distribution near the chiral phase transition to explore the effect of critical fluctuations. Our studies are performed within Landau theory, where the coefficients of the polynomial potential are parametrized, so as to reproduce the mean-field (MF), the Z(2) , and the O(4) scaling behaviors of the cumulants of the net baryon number. We show that in the critical region the structure of the probability distribution changes, dependi...

  14. Non-equilibrium physics at a holographic chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Evans, Nick; Kim, Keun-young [Southampton Univ. (United Kingdom). School of Physics and Astronomy; Kavli Institute for Theoretical Physics China, Beijing (China); Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2010-11-15

    The D3/D7 system holographically describes an N=2 gauge theory which spontaneously breaks a chiral symmetry by the formation of a quark condensate in the presence of a magnetic field. At finite temperature it displays a first order phase transition. We study out of equilibrium dynamics associated with this transition by placing probe D7 branes in a geometry describing a boost-invariant expanding or contracting plasma. We use an adiabatic approximation to track the evolution of the quark condensate in a heated system and reproduce the phase structure expected from equilibrium dynamics. We then study solutions of the full partial differential equation that describes the evolution of out of equilibrium configurations to provide a complete description of the phase transition including describing aspects of bubble formation. (orig.)

  15. Non-equilibrium physics at a holographic chiral phase transition

    International Nuclear Information System (INIS)

    The D3/D7 system holographically describes an N=2 gauge theory which spontaneously breaks a chiral symmetry by the formation of a quark condensate in the presence of a magnetic field. At finite temperature it displays a first order phase transition. We study out of equilibrium dynamics associated with this transition by placing probe D7 branes in a geometry describing a boost-invariant expanding or contracting plasma. We use an adiabatic approximation to track the evolution of the quark condensate in a heated system and reproduce the phase structure expected from equilibrium dynamics. We then study solutions of the full partial differential equation that describes the evolution of out of equilibrium configurations to provide a complete description of the phase transition including describing aspects of bubble formation. (orig.)

  16. QCD phase transition with chiral quarks and physical quark masses.

    Science.gov (United States)

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV. PMID:25192088

  17. The QCD phase transition with physical-mass, chiral quarks

    CERN Document Server

    Bhattacharya, Tanmoy; Christ, Norman H; Ding, H -T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-01-01

    We report on the first lattice calculation of the QCD phase transition using chiral fermions at physical values of the quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm$)^3$ and (11 fm$)^3$ and temperatures between 139 and 196 MeV . Each temperature was calculated using a single lattice spacing corresponding to a temporal Euclidean extent of $N_t=8$. The disconnected chiral susceptibility, $\\chi_{\\rm disc}$ shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability in the region of the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD ``phase transition'' is not first order but a continuous cross-over for $m_\\pi=135$ MeV. The peak location determines a pseudo-critical temperature $T_c = 155(1)(8)$ MeV. Chiral $SU(2)_L\\times SU(2)_R$ symmetry is fully restored above 164 MeV, but anomalous $U(1)_A$ symmetry breaking is non-zero above $T...

  18. Enhanced global symmetries and the chiral phase transition

    International Nuclear Information System (INIS)

    We examine the possibility that the physical spectrum of a vectorlike gauge field theory exhibits an enhanced global symmetry near a chiral phase transition. A transition from the Goldstone phase to the symmetric phase is expected as the number of fermions Nf is increased to some critical value. Various investigations have suggested that a parity-doubled spectrum develops as the critical value is approached. Using an effective Lagrangian as a guide, we note that parity doubling is associated with the appearance of an enhanced global symmetry in the spectrum of the theory. The enhanced symmetry would develop as the spectrum splits into two sectors, with the first exhibiting the usual pattern of a spontaneously broken chiral symmetry, and the second exhibiting an additional, unbroken symmetry and parity doubling. The first sector includes the Goldstone bosons and other states such as massive scalar partners. The second includes a parity-degenerate vector and axial vector along with other possible parity partners. We note that if such a near-critical theory describes symmetry breaking in the electroweak theory, the additional symmetry suppresses the contribution of the parity-doubled sector to the S parameter. (c) 1999 The American Physical Society

  19. Meson phenomenology and phase transitions in nonlocal chiral quark models

    Science.gov (United States)

    Carlomagno, J. P.; Gomez Dumm, D.; Pagura, V.; Scoccola, N. N.

    2015-07-01

    We study the features of nonlocal chiral quark models that include wave function renormalization. Model parameters are determined from meson phenomenology, considering different nonlocal form factor shapes. In this context we analyze the characteristics of the deconfinement and chiral restoration transitions at finite temperature and chemical potential, introducing the couplings of fermions to the Polyakov loop for different Polyakov potentials. The results for various thermodynamical quantities are compared with data obtained from lattice QCD calculations.

  20. The effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes

    CERN Document Server

    Yu, Lang; Huang, Mei

    2015-01-01

    We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.

  1. The chiral phase transition for QCD with sextet quarks

    CERN Document Server

    Sinclair, D K

    2011-01-01

    QCD with 2 massless colour-sextet quarks is studied as a model of Walking Technicolor. We simulate lattice QCD with 2 light color-sextet staggered quarks at finite temperature, and use the dependence of the coupling at the chiral transition on the temporal extent, $N_t$, of the lattice in lattice units to study the running of the bare lattice coupling with lattice spacing. Our goal is to determine whether this theory is QCD-like and `walks', or if it is conformal. If it is QCD-like, the coupling at the chiral transition should tend to zero as $N_t \\rightarrow \\infty$ in a manner controlled by asymptotic freedom, i.e. by the perturbative $\\beta$-function. On the other hand, if this theory is conformal, this coupling will approach a non-zero limit in the $N_t \\rightarrow \\infty$ limit. We are extending our simulations on an $N_t=8$ lattice to determine the position of the chiral transition with greater accuracy, and are performing simulations on an $N_t=12$ lattice.

  2. Probing the chiral phase transition of Nf=2 clover fermions with valence overlap fermions

    International Nuclear Information System (INIS)

    Overlap fermions are a powerful tool for investigating the chiral and topological structure of the vacuum and the thermal states of QCD. We study various chiral and topological aspects of the finite temperature phase transition of Nf=2 flavours of O(a) improved Wilson fermions, using valence overlap fermions as a probe. Particular emphasis is placed upon the analysis of the spectral density and the localisation properties of the eigenmodes as well as on the local structure of topological charge fluctuations in the vicinity of the chiral phase transition. The calculations are done on 163 x 8 lattices generated by the DIK collaboration. (orig.)

  3. Chiral phase transition in the soft-wall model of AdS/QCD

    Science.gov (United States)

    Chelabi, Kaddour; Fang, Zhen; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2016-04-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t'Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realized perfectly. In the two-flavor case, it gives a second order chiral phase transition in the chiral limit, while the transition turns to be a crossover for any finite quark mass. In the case of three-flavor, the phase transition becomes a first order one in the chiral limit, while above sufficient large quark mass it turns to be a crossover again. This scenario agrees exactly with the current understanding on chiral phase transition from lattice QCD and other effective model studies.

  4. Chiral and deconfinement phase transition in the Hamiltonian approach to QCD in Coulomb gauge

    CERN Document Server

    Reinhardt, H

    2016-01-01

    The chiral and deconfinement phase transitions are investigated within the variational Hamiltonian approach to QCD in Coulomb gauge. The temperature $\\beta^{-1}$ is introduced by compactifying a spatial dimension. Thereby the whole temperature dependence is encoded in the vacuum state on the spatial manifold $\\mathbb{R}^2 \\times S^1(\\beta)$. The chiral quark condensate and the dual quark condensate (dressed Polyakov loop) are calculated as function of the temperature. From their inflection points the pseudo-critical temperatures for the chiral and deconfinement crossover transitions are determined. Using the zero-temperature quark and gluon propagators obtained within the variational approach as input, we find 226 MeV and 262 MeV, respectively, for the chiral and deconfinement transition.

  5. UA(1) breaking and phase transition in chiral random matrix model

    CERN Document Server

    Sano, T; Ohtani, M

    2009-01-01

    We propose a chiral random matrix model which properly incorporates the flavor-number dependence of the phase transition owing to the \\UA(1) anomaly term. At finite temperature, the model shows the second-order phase transition with mean-field critical exponents for two massless flavors, while in the case of three massless flavors the transition turns out to be of the first order. The topological susceptibility satisfies the anomalous \\UA(1) Ward identity and decreases gradually with the temperature increased.

  6. Effects of gauge boson mass on chiral and deconfinement phase transitions in QED$_{3}$

    CERN Document Server

    Yin, Pei-Lin; Feng, Hong-Tao; Zong, Hong-Shi

    2016-01-01

    Based on the experimental observation that there is a coexisting region between the antiferromagnetic (AF) and $\\textit{d}$-wave superconducting ($\\textit{d}$SC) phases, the influences of gauge boson mass $m_{a}$ on chiral symmetry restoration and deconfinement phase transitions in QED$_{3}$ are investigated simultaneously within a unified framework, i.e., Dyson-Schwinger equations. The results show that the chiral symmetry restoration phase transition in the presence of the gauge boson mass $m_{a}$ is a typical second-order phase transition; the chiral symmetry restoration and deconfinement phase transitions are coincident; the critical number of fermion flavors $N^{c}_{f}$ decreases as the gauge boson mass $m_{a}$ increases and there exists a boundary that separates the $N^{c}_{f}$-$m_{a}$ plane into chiral symmetry breaking/confinement region for ($N_{f}^{c}$, $m_{a}$) below the boundary and chiral symmetry restoration/deconfinement region for ($N_{f}^{c}$, $m_{a}$) above it.

  7. Amplification of Quantum Meson Modes in the Late Time of the Chiral Phase Transition

    CERN Document Server

    Watanabe, K

    2007-01-01

    We investigate the time evolution of the quantum meson modes in the late time of chiral phase transition. In particular, it is shown that there exists a possible solution to the equation of motion for the quantum meson modes, which reveals a parametric resonance and/or resonance through forced oscillation induced by the small oscillation of the chiral condensate. After that, we demonstrate the unstable regions for the quantum meson modes in both the cases of a uniform and spatially expanding system.

  8. The chicken or the egg; or Who ordered the chiral phase transition?

    CERN Document Server

    Kogan, I I; Tekin, B; Kogan, Ian I.; Kovner, Alex; Tekin, Bayram

    2001-01-01

    We draw an analogy between the deconfining transition in the 2+1 dimensional Georgi-Glashow model and the chiral phase transition in 3+1 dimensional QCD. Based on the detailed analysis of the former (hep-th/0010201) we suggest that the chiral symmetry restoration in QCD at high temperature is driven by the thermal ensemble of baryons and antibaryons. The chiral symmetry is restored when roughly half of the volume is occupied by the baryons. Surprisingly enough, even though baryons are rather heavy, a crude estimate for the critical temperature gives $T_c=180$ Mev. In this scenario the binding of the instantons is not the cause but rather a consequence of the chiral symmetry restoration.

  9. Chiral Phase Transition and Meson Melting from AdS/QCD

    CERN Document Server

    Bartz, Sean P

    2016-01-01

    We investigate the in-medium behavior of mesons at finite temperature and baryon chemical potential within a soft-wall model of AdS/QCD. We use a quartic scalar potential to obtain the correct form of chiral symmetry breaking. At zero quark mass the chiral phase transition is second-order, becoming a crossover at physical quark mass. At zero baryon chemical potential, we find a chiral transition temperature of 155 MeV in the chiral limit and a pseudo-transition temperature of 151 MeV at physical quark mass, consistent with lattice results. In the low-temperature limit, the second-order transition occurs at a baryon chemical potential of 566 MeV while the rapid crossover occurs at 559 MeV. A new parameterization of the dilaton profile results in improved meson spectra. Meson melting occurs at a lower temperature and chemical potential than the chiral phase transition, so the vector-axial vector mass splitting remains constant until the bound states melt.

  10. Multi critical point structure for chiral phase transition induce by charge neutrality and vector interaction

    CERN Document Server

    Zhang, Zhao

    2010-01-01

    The combined effect of the repulsive vector interaction and the positive electric chemical potential on the chiral phase transition is investigated by considering neutral color superconductivity. Under the charge-neutrality constraint, the chiral condensate, diquark condensate and quark number densities are obtained in two-plus-one-flavor Nambu-Jona-Lasinio model with the so called Kobayashi-Maskawa-'t Hooft term. We demonstrate that multiple chiral critical-point structures always exist in the Nambu-Jona-Lasinio model within the self-consistent mean-field approximation, and that the number of chiral critical points can vary from zero to four, which is dependent on the magnitudes of vector interaction and the diquark coupling.

  11. The $N_f= 2$ chiral phase transition from imaginary chemical potential with Wilson Fermions

    CERN Document Server

    Philipsen, Owe

    2015-01-01

    The order of the thermal transition in the chiral limit of QCD with two dynamical flavours of quarks is a long-standing issue. Still, it is not definitely known whether the transition is of first or second order in the continuum limit. Which of the two scenarios is realized has important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. Settling this issue by simulating at successively decreased pion mass was not conclusive yet. Recently, an alternative approach was proposed, extrapolating the first order phase transition found at imaginary chemical potential to zero chemical potential with known exponents, which are induced by the Roberge-Weiss symmetry. For staggered fermions on $N_t=4$ lattices, this results in a first order transition in the chiral limit. Here we report of $N_t=4$ simulations with Wilson fermions, where the first order region is found to be large.

  12. The Chirality Of Life: From Phase Transitions To Astrobiology

    CERN Document Server

    Gleiser, Marcelo

    2008-01-01

    The search for life elsewhere in the universe is a pivotal question in modern science. However, to address whether life is common in the universe we must first understand the likelihood of abiogenesis by studying the origin of life on Earth. A key missing piece is the origin of biomolecular homochirality: permeating almost every life-form on Earth is the presence of exclusively levorotary amino acids and dextrorotary sugars. In this work we discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events in a mechanism referred to as punctuated chirality. Applying these arguments to other potentially life-bearing platforms has significant implications for the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic on average.

  13. Chiral phase transition and Schwinger mechanism in a pure electric field

    CERN Document Server

    Cao, Gaoqing

    2016-01-01

    We systematically study the chiral symmetry breaking and restoration in the presence of a pure electric field in the Nambu--Jona-Lasinio (NJL) model at finite temperature and baryon chemical potential. In addition, we also study the effect of the chiral phase transition on the charged pair production due to the Schwinger mechanism. For these purposes, a general formalism for parallel electric and magnetic fields is developed at finite temperature and chemical potential for the first time. In the pure electric field limit $B\\rightarrow0$, we compute the order parameter, the transverse-to-longitudinal ratio of the Goldstone mode velocities, and the Schwinger pair production rate as functions of the electric field. The inverse catalysis effect of the electric field to chiral symmetry breaking is recovered. And the Goldstone mode is find to disperse anisotropically such that the transverse velocity is always smaller than the longitudinal one, especially at nonzero temperature and baryon chemical potential. As exp...

  14. Chiral phase transition in a lattice fermion-gauge-scalar model with U(1) gauge symmetry

    International Nuclear Information System (INIS)

    The chiral phase transition induced by a charged scalar field is investigated numerically in a lattice fermion-gauge-scalar model with U(1) gauge symmetry, proposed recently as a model for dynamical fermion mass generation. For very strong gauge coupling the transition is of second order and its scaling properties are very similar to those of the Nambu-Jona-Lasinio model. However, in the vicinity of the tricritical point at somewhat weaker coupling, where the transition changes the order, the scaling behavior is different. Therefore it is worthwhile to investigate the continuum limit of the model at this point. (orig.)

  15. The chiral phase transition in two-flavor QCD from imaginary chemical potential

    CERN Document Server

    Bonati, Claudio; D'Elia, Massimo; Philipsen, Owe; Sanfilippo, Francesco

    2014-01-01

    We investigate the order of the finite temperature chiral symmetry restoration transition for QCD with two massless fermions, by using a novel method, based on simulating imaginary values of the quark chemical potential $\\mu=i\\mu_i,\\mu_i\\in\\mathbb{R}$. Our method exploits the fact that, for low enough quark mass $m$ and large enough chemical potential $\\mu_i$, the chiral transition is decidedly first order, then turning into crossover at a critical mass $m_c(\\mu)$. It is thus possible to determine the critical line in the $m - \\mu^2$ plane, which can be safely extrapolated to the chiral limit by taking advantage of the known tricritical indices governing its shape. We test this method with standard staggered fermions and the result of our simulations is that $m_c(\\mu=0)$ is positive, so that the phase transition at zero density is definitely first order in the chiral limit, on our coarse $N_t=4$ lattices with $a\\simeq 0.3\\,\\mathrm{fm}$.

  16. Nf=2 QCD chiral phase transition with Wilson fermions at zero and imaginary chemical potential

    Science.gov (United States)

    Philipsen, Owe; Pinke, Christopher

    2016-06-01

    The order of the thermal phase transition in the chiral limit of quantum chromodynamics (QCD) with two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit. Whether the transition is first or second order has important implications for the QCD phase diagram and the existence of a critical end point at finite densities. We follow a recently proposed approach to explicitly determine the region of first order chiral transitions at imaginary chemical potential, where it is large enough to be simulated, and extrapolate it to zero chemical potential with known critical exponents. Using unimproved Wilson fermions on coarse Nt=4 lattices, the first order region turns out to be so large that no extrapolation is necessary. The critical pion mass mπc≈560 MeV is by nearly a factor 10 larger than the corresponding one using staggered fermions. Our results are in line with investigations of three-flavor QCD using improved Wilson fermions and indicate that the systematic error on the two-flavor chiral transition is still of order 100%.

  17. Chiral Phase Transition in the Soft-Wall Model of AdS/QCD

    CERN Document Server

    Chelabi, Kaddour; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2015-01-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t'Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realize...

  18. A large N phase transition in the continuum two dimensional SU(N) X SU(N) principal chiral model

    OpenAIRE

    R. Narayanan; Neuberger, H.; Vicari, E.

    2008-01-01

    It is established by numerical means that the continuum large N principal chiral model in two dimensions has a phase transition in a smoothed two point function at a critical distance of the order of the correlation length.

  19. Chiral phase transition scenarios from the vector meson extended Polyakov quark meson model

    CERN Document Server

    Kovács, Péter

    2015-01-01

    Chiral phase transition is investigated in an $SU(3)_L \\times SU(3)_R$ symmetric vector meson extended linear sigma model with additional constituent quarks and Polyakov loops (extended Polyakov quark meson model). The parameterization of the Lagrangian is done at zero temperature in a hybrid approach, where the mesons are treated at tree-level, while the constituent quarks at 1-loop level. The temperature and baryochemical potential dependence of the two assumed scalar condensates are calculated from the hybrid 1-loop level equations of states. The order of the phase transition along the $T=0$ and $\\mu_B=0$ axes are determined for various parameterization scenarios. We find that in order to have a first order phase transition at $T=0$ as a function of $\\mu_B$ a light isoscalar particle is needed.

  20. Fractal butterflies of chiral fermions in bilayer graphene: Phase transitions and emergent properties

    Science.gov (United States)

    Ghazaryan, Areg; Chakraborty, Tapash

    2015-12-01

    We have studied the influence of electron-electron interaction on the fractal butterfly spectrum of Dirac fermions in biased bilayer graphene in the fractional quantum Hall effect (FQHE) regime. We demonstrate that the butterfly spectrum exhibits remarkable phase transitions between the FQHE gap and the butterfly gap for chiral electrons in bilayer graphene, when the periodic potential strength or the bias voltage is varied. We also find that, in addition to those phase transitions, by varying the bias voltage one can effectively control the periodic potential strength experienced by the electrons. The electron-electron interaction causes the butterfly spectrum to exhibit new gaps inside the Bloch sub-bands not found in the single-particle case. We expect that both the observed phase transition and other new features in the butterfly spectrum of interacting Dirac fermions will be of great interest to researchers from diverse fields.

  1. Influence of the Polyakov loop on the chiral phase transition in the two flavor chiral quark model

    Science.gov (United States)

    Markó, G.; Szép, Zs.

    2010-09-01

    The SU(2)L×SU(2)R chiral quark model consisting of the (σ,π→) meson multiplet and the constituent quarks propagating on the homogeneous background of a temporal gauge field is solved at finite temperature and quark baryon chemical potential μq using an expansion in the number of flavors Nf, both in the chiral limit and for the physical value of the pion mass. Keeping the fermion propagator at its tree level, several approximations to the pion propagator are investigated. These approximations correspond to different partial resummations of the perturbative series. Comparing their solution with a diagrammatically formulated resummation relying on a strict large-Nf expansion of the perturbative series, one concludes that only when the local part of the approximated pion propagator resums infinitely many orders in 1/Nf of fermionic contributions a sufficiently rapid crossover transition at μq=0 is achieved allowing for the existence of a tricritical point or a critical end point in the μq-T phase diagram. The renormalization and the possibility of determining the counterterms in the resummation provided by a strict large-Nf expansion are investigated.

  2. Functional Renormalization Group Study of the Chiral Phase Transition Including Vector and Axial-vector Mesons

    CERN Document Server

    Eser, Jürgen; Rischke, Dirk H

    2015-01-01

    The transition in quantum chromodynamics (QCD) from hadronic matter to the quark-gluon plasma (QGP) at high temperatures and/or net-baryon densities is associated with the restoration of chiral symmetry and can be investigated in the laboratory via heavy-ion collisions. We study this chiral transition within the functional renormalization group (FRG) approach applied to the two-flavor version of the extended Linear Sigma Model (eLSM). The eLSM is an effective model for the strong interaction and features besides scalar and pseudoscalar degrees of freedom also vector and axial- vector mesons. We discuss the impact of the quark masses and the axial anomaly on the order of the chiral transition. We also confirm the degeneracy of the masses of chiral partners above the transition temperature. We find that the mass of the $a_1$ meson ($\\rho$ meson) decreases (increases) towards the chiral transition.

  3. Functional renormalization group study of the chiral phase transition including vector and axial-vector mesons

    Science.gov (United States)

    Eser, Jürgen; Grahl, Mara; Rischke, Dirk H.

    2015-11-01

    The transition in quantum chromodynamics from hadronic matter to the quark-gluon plasma at high temperatures and/or net-baryon densities is associated with the restoration of chiral symmetry and can be investigated in the laboratory via heavy-ion collisions. We study this chiral transition within the functional renormalization group approach applied to the two-flavor version of the extended linear sigma model (eLSM). The eLSM is an effective model for the strong interaction and features besides scalar and pseudoscalar degrees of freedom also vector and axial-vector mesons. We discuss the impact of the quark masses and the axial anomaly on the order of the chiral transition. We also confirm the degeneracy of the masses of chiral partners above the transition temperature. We find that the mass of the a1 meson (ρ meson) decreases (increases) towards the chiral transition.

  4. Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD

    International Nuclear Information System (INIS)

    The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial–vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson–Schwinger equations

  5. Effects of (axialvector mesons on the chiral phase transition: initial results

    Directory of Open Access Journals (Sweden)

    Kovács P.

    2014-01-01

    Full Text Available We investigate the effects of (axialvector mesons on the chiral phase transition in the framework of an SU(3, (axialvector meson extended linear sigma model with additional constituent quarks and Polyakov loops. We determine the parameters of the Lagrangian at zero temperature in a hybrid approach, where we treat the mesons at tree-level, while the constituent quarks at 1-loop level. We assume two nonzero scalar condensates and together with the Polyakov-loop variables we determine their temperature dependence according to the 1-loop level field equations.

  6. Chiral phase transition at finite temperature and conformal dynamics in large Nf QCD

    CERN Document Server

    Miura, Kohtaroh

    2011-01-01

    We investigate the chiral phase transition at finite temperature (T) in colour SU(Nc=3) Quantum Chromodynamics (QCD) with six species of fermions (Nf=6) in the fundamental representation by using lattice QCD with improved staggered fermions. By considering lattices with several temporal extensions Nt, we observe asymptotic scaling for Nt > 4. We then extract the dimensionless ratio Tc/Lambda_L (Lambda_L = Lattice Lambda-parameter) for Nf = 6 and Nf = 8, the latter relying on our earlier results. Further, we collect the critical couplings beta^c for the chiral phase transition at Nf = 0 (quenched), and Nf = 4 at a fixed Nt = 6. The results are consistent with enhanced fermionic screening at larger Nf. The Tc/Lambda_L depends very mildly on Nf in the Nf = 0 - 4 region, starts increasing at Nf = 6, and becomes significantly larger at Nf = 8, close to the edge of the conformal window. We discuss interpretations of these results as well as their possible interrelation with preconformal dynamics in the light of a f...

  7. Dynamics of the chiral transition

    International Nuclear Information System (INIS)

    Measurements of disoriented chiral condensates (DCC) in heavy ion collisions at RHIC can yield fundamental information on the nature of the QCD phase transition. I review theoretical efforts to understand DCC formation and present work in progress on possible experimental ramifications

  8. Fluctuations and the Phase Transition in a Chiral Model with Polyakov Loops

    OpenAIRE

    Sasaki, C.; Friman, B.; Redlich, K.

    2007-01-01

    We explore the NJL model with Polyakov loops for a system of three colors and two flavors within the mean-field approximation, where both chiral symmetry and confinement are taken into account. We focus on the phase structure of the model and study the chiral and Polyakov loop susceptibilities.

  9. Chiral phase transition and meson spectrum in improved soft-wall AdS/QCD

    CERN Document Server

    Fang, Zhen; Zhang, Lin

    2016-01-01

    We investigate in detail the chiral thermal transition of QCD in an improved soft-wall AdS/QCD model with a simply modified 5D conformal mass of the bulk scalar field. We also present a calculation in this model for the light meson spectra and other low-energy characteristic quantities including the pion form factor, the pi-rho coupling constant and the decay constants of pi, rho, a_1, which are shown to result in a good agreement with experimental data except for the pion decay constant. The thermal behavior of chiral condensate is studied. It is found that such a simply improved soft-wall model incorporates the crossover behavior of chiral thermal transition indicated by lattice simulations. The expected chiral transition temperature can be obtained.

  10. Chiral phase transition in the vector meson extended linear sigma model

    CERN Document Server

    Kovács, Péter; Wolf, György

    2015-01-01

    In the framework of an SU(3) (axial)vector meson extended linear sigma model with additional constituent quarks and Polyakov loops, we investigate the effects of (axial)vector mesons on the chiral phase transition. The parameters of the Lagrangian are set at zero temperature and we use a hybrid approach where in the effective potential the constituent quarks are treated at one-loop level and all the mesons at tree-level. We have four order parameters, two scalar condensates and two Polyakov loop variables and their temperature and baryochemical potential dependence are determined from the corresponding field equations. We also investigate the changes of the tree-level scalar meson masses in the hot and dense medium.

  11. Net baryon number fluctuations across the chiral phase transition at finite density in the strong coupling lattice QCD

    CERN Document Server

    Ichihara, Terukazu; Ohnishi, Akira

    2015-01-01

    We investigate the net-baryon number fluctuations across the chiral phase transition at finite density in the strong coupling and chiral limit. Mesonic field fluctuations are taken into account by using the auxiliary field Monte-Carlo method. We find that the higher-order cumulant ratios, $S\\sigma$ and $\\kappa\\sigma^2$, show oscillatory behavior around the phase boundary at $\\mu/T\\gtrsim 0.2$, and there exists the region where the higher-order cumulant ratios are negative. The negative region of $\\kappa\\sigma^2$ is found to shrink with increasing lattice size. This behavior agrees with the expectations from the scaling analysis.

  12. Global Currents, Phase Transitions, and Chiral Symmetry Breaking in Large N_c Gauge Theory

    CERN Document Server

    Albash, T; Johnson, C V; Kundu, A; Albash, Tameem; Filev, Veselin; Johnson, Clifford V.; Kundu, Arnab

    2006-01-01

    We study the finite temperature dynamics of SU(N_c) gauge theory for large N_c, with fundamental quark flavours in a quenched approximation, in the presence of a fixed charge under a global current. We observe several notable phenomena. There is a first order phase transition where the quark condensate jumps discontinuously at finite quark mass, generalizing similar transitions seen at zero charge. We find a non-zero condensate at zero quark mass above a critical value of the charge, corresponding to an analogue of spontaneous chiral symmetry breaking at finite number density. We find that the spectrum of mesons contains the expected associated Goldstone (``pion'') degrees of freedom with a mass dependence on the quark mass that is consistent with the Gell-Mann-Oakes-Renner relation. Our tool in these studies is holography, the string dual of the gauge theory being the geometry of $N_c$ spinning D3-branes at finite temperature, probed by a D7-brane.

  13. Chiral phase transitions in the linear sigma model in the Tsallis nonextensive statistics

    CERN Document Server

    Ishihara, Masamichi

    2016-01-01

    We studied chiral phase transitions in the Tsallis nonextensive statistics which has two parameters, the temperature $T$ and entropic parameter $q$. The linear sigma model was used in this study. The critical temperature, condensate, masses, and energy density were calculated under the massless free particle approximation. The critical temperature decreases as $q$ increases. The condensate at $q>1$ is smaller than that at $q=1$. The sigma mass at $q>1$ is heavier than the mass at $q=1$ at high temperature, while the sigma mass at $q>1$ is lighter than the mass at $q=1$ at low temperature. The pion mass at $q>1$ is heavier than the mass at $q=1$. The energy density increases remarkably as $q$ increases. The $q$ dependence in the case of the $q$-expectation value is weaker than that in the case of the conventional expectation value with a Tsallis distribution. The parameter $q$ should be smaller than $4/3$ from energetic point of view. The validity of the Tsallis statistics can be determined by the difference i...

  14. Scaling properties of the chiral phase transition in the low density region of two-flavor QCD with improved Wilson fermions

    CERN Document Server

    Umeda, T; Kanaya, K; Maezawa, Y; Nakagawa, Y; Ohno, H; Saito, H; Yoshida, S

    2013-01-01

    We study scaling behavior of a chiral order parameter in the low density region, performing a simulation of two-flavor QCD with improved Wilson quarks. The scaling behavior of the chiral order parameter defined by a Ward-Takahashi identity agrees with the scaling function of the three-dimensional O(4) spin model at zero chemical potential. We extend the scaling study to finite density QCD. Applying the reweighting method and calculating derivatives of the chiral order parameter with respect to the chemical potential, the scaling properties of the chiral phase transition are discussed in the low density region. We moreover calculate the curvature of the phase boundary of the chiral phase transition in the temperature and chemical potential plane assuming the O(4) scaling relation.

  15. The effect of the Polyakov loop on the chiral phase transition

    Directory of Open Access Journals (Sweden)

    Szép Zs.

    2011-04-01

    Full Text Available The Polyakov loop is included in the S U(2L × S U(2R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq – T phase diagram is studied for various forms of the Polyakov loop potential.

  16. The effect of the Polyakov loop on the chiral phase transition

    Science.gov (United States)

    Markó, G.; Szép, Zs.

    2011-04-01

    The Polyakov loop is included in the S U(2)L × S U(2)R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π) meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf) represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq - T phase diagram is studied for various forms of the Polyakov loop potential.

  17. Quark Matter in a Parallel Electric and Magnetic Field Background: Equilibrated Chiral Density Effect on Chiral Phase Transition

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...

  18. The chiral phase transition for lattice QCD with 2 colour-sextet quarks

    CERN Document Server

    Kogut, J B

    2015-01-01

    QCD with 2 flavours of massless colour-sextet quarks is studied as a possible walking-Technicolor candidate. We simulate the lattice version of this model at finite temperatures near to the chiral-symmetry restoration transition, to determine whether it is indeed a walking theory (QCD-like with a running coupling which evolves slowly over an appreciable range of length scales) or if it has an infrared fixed point, making it a conformal field theory. The lattice spacing at this transition is decreased towards zero by increasing the number $N_t$ of lattice sites in the temporal direction. Our simulations are performed at $N_t=4,6,8,12$, on lattices with spatial extent much larger than the temporal extent. A range of small fermion masses is chosen to make predictions for the chiral (zero mass) limit. We find that the bare lattice coupling does decrease as the lattice spacing is decreased. However, it decreases more slowly than would be predicted by asymptotic freedom. We discuss whether this means that the coupl...

  19. Anomalous dimension, chiral phase transition and inverse magnetic catalysis in soft-wall AdS/QCD

    Science.gov (United States)

    Fang, Zhen

    2016-07-01

    A modified soft-wall AdS/QCD model with a z-dependent bulk scalar mass is proposed. We argue for the necessity of a modified bulk scalar mass from the quark mass anomalous dimension and carefully constrain the form of bulk mass by the corresponding UV and IR asymptotics. After fixing the form of bulk scalar mass, we calculate the mass spectra of (axial-)vector and pseudoscalar mesons, which have a good agreement with the experimental data. The behavior of chiral phase transition is also investigated, and the results are consistent with the standard scenario and lattice simulations. Finally, the issue of chiral magnetic effects is addressed. We find that the inverse magnetic catalysis emerges naturally from the modified soft-wall model, which is consistent with the recent lattice simulations.

  20. The chiral phase transition for lattice QCD with 2 color-sextet quarks

    Science.gov (United States)

    Kogut, J. B.; Sinclair, D. K.

    2015-09-01

    QCD with 2 flavors of massless color-sextet quarks is studied as a possible walking-Technicolor candidate. We simulate the lattice version of this model at finite temperatures near to the chiral-symmetry restoration transition, to determine whether it is indeed a walking theory (QCD-like with a running coupling which evolves slowly over an appreciable range of length scales) or if it has an infrared fixed point, making it a conformal field theory. The lattice spacing at this transition is decreased towards zero by increasing the number Nt of lattice sites in the temporal direction. Our simulations are performed at Nt=4 ,6 ,8 ,12 , on lattices with spatial extent much larger than the temporal extent. A range of small fermion masses is chosen to make predictions for the chiral (zero mass) limit. We find that the bare lattice coupling does decrease as the lattice spacing is decreased. However, it decreases more slowly than would be predicted by asymptotic freedom. We discuss whether this means that the coupling is approaching a finite value as lattice Nt is increased—the conformal option, or if the apparent disagreement with the scaling predicted by asymptotic freedom is because the lattice coupling is a poor expansion parameter, and the theory walks. Currently, evidence favors QCD with 2 color-sextet quarks being a conformal field theory. Other potential sources of disagreement with the walking hypothesis are also discussed. We also report an estimate of the position of the deconfinement transition for Nt=12 , needed for choosing parameters for zero-temperature simulations.

  1. Novel Lifshitz point for chiral transition in the magnetic field

    Directory of Open Access Journals (Sweden)

    Toshitaka Tatsumi

    2015-04-01

    Full Text Available Based on the generalized Ginzburg–Landau theory, chiral phase transition is discussed in the presence of magnetic field. Considering the chiral density wave we show that chiral anomaly gives rise to an inhomogeneous chiral phase for nonzero quark-number chemical potential. Novel Lifshitz point appears on the vanishing chemical potential line, which may be directly explored by the lattice QCD simulation.

  2. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, F. [Los Alamos National Labs., NM (United States)

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  3. The effect of the Polyakov loop on the chiral phase transition

    OpenAIRE

    Szép Zs.; Markó G.

    2010-01-01

    The Polyakov loop is included in the SU(2)_L x SU(2)_R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (sigma,pi) meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors N_f. Keeping the fermion propagator at i...

  4. Chiral and deconfinement phase transitions in N{sub f}=2 and N{sub f}=2+1 quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Luecker, Jan

    2013-07-15

    In this thesis, we investigate the phase structure of quantum chromodynamics (QCD) in the framework of Dyson-Schwinger equations (DSEs). The aim is to study the chiral and deconfinement phase transitions at finite chemical potential. To this end, we employ and test a novel truncation scheme for the quark and gluon Dyson-Schwinger equations. We develop our truncation in three steps. To begin with, we use a quenched gluon propagator from lattice Yang-Mills theory. To account for unquenching, we then add the quark loop in the gluon DSE, firstly with bare quarks and in the final version of our truncation with fully dressed quarks. In the last step it is also possible to take into account the coupling of light and strange quarks. In effective models, fermionic fluctuations have been shown to move the critical end-point to large densities. We confirm this finding within our truncation for the unquenched gluon. However, this effect is suppressed once the full non-perturbative quark in the quark loop is taken into account. For the confinement/deconfinement transition we investigate three order parameters that are accessible from the quark and gluon propagators. These are the dressed Polyakov loop, the Polyakov-loop potential and positivity violations in the quark propagator. From both Polyakov-loop related order parameters, we find that the deconfinement transition can always be found in vicinity of the chiral transition. Especially at the critical end-point the phase transitions coincide. We also find that signals of positivity violations in the quark propagator vanish at the chiral transition for the two-flavour case. However, with 2+1 flavours, we find a region at large density where chiral symmetry is restored but positivity is violated. This requires further investigations. Finally, we improve our truncation by considering the back-reaction of pions in a model that has been developed in previous work. Within this model we find only a small impact on the phase

  5. On the strength of the $U_A(1)$ anomaly at the chiral phase transition in $N_f=2$ QCD

    CERN Document Server

    Brandt, Bastian B; Meyer, Harvey B; Philipsen, Owe; Robaina, Daniel; Wittig, Hartmut

    2016-01-01

    We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the splitting between isovector scalar and pseudoscalar screening masses around the chiral phase transition by at least a factor of three compared to its value at zero temperature. In fact, the splitting is consistent with zero within our uncertainties. This disfavours a chiral phase transition in the $O(4)$ universality class.

  6. Chiral phase transitions in quantum chromodynamics at finite temperature: Hard-thermal-loop resummed Dyson–Schwinger equation in the real time formalism

    Indian Academy of Sciences (India)

    Hisao Nakkagawa; Hiroshi Yokota; Koji Yoshida; Yuko Fueki

    2003-05-01

    Chiral phase transition in thermal QCD is studied by using the Dyson–Schwinger (DS) equation in the real time hard thermal loop approximation. Our results on the critical temperature and the critical coupling are significantly different from those in the preceding analyses in the ladder DS equation, showing the importance of properly taking into account the essential thermal effects, namely the Landau damping and the unstable nature of thermal quasiparticles.

  7. Chiral transition with magnetic fields

    CERN Document Server

    Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian

    2014-01-01

    We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...

  8. Chiral Transition Within Effective Quark Models under Strong Magnetic Fields

    CERN Document Server

    Garcia, Andre Felipe

    2013-01-01

    In the recently years it has been argued that spectators in heavy ion collisions are responsible for creating a strong magnetic field that could play an important role in the QCD phase transition. In this work we use the SU(2) Nambu--Jona-Lasinio (NJL) model in order to study the chiral transition in quark matter subject to a strong magnetic field. We show some results involving the breaking of chiral symmetry and its restoration at finite temperature and density.

  9. Phase transition from focal conic to cubic smectic blue phase in partially fluorinated cyano-phenyl alkyl benzoate ester doped with ultrahigh twisting power chiral dopant

    CERN Document Server

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    Blue phase liquid crystal (BPLC) has important applications in adaptive lenses and phase modulators due to its polarization-independent property. During our efforts for development of the new materials, we found a novel phenomenology of phase transition, from focal conic smectic to smectic blue phase in a partially fluorinated cyanophenyl alkyl benzoate ester based nematic liquid crystal (LCM-5773) doped by ultra-high twisting power [H.T.P~160 um^-1] chiral dopant (R5011/3 wt%). Polarized optical microscopy (POM) investigations revealed focal conic and fan-shaped textures typical for columnar mesophases. These focal conic domains (FCDs) are squeezed under electric field and finally at a critical electric field they undergo a dark state. When the electric field is withdrawn, the FCDs are regrown in a one dimensional array with smaller domain size. Interestingly, we have observed the domain size of the FCDs can grow several times by decreasing the cooling rate (0.02 degrees(C)/min.) ten times without any change...

  10. Preparation and thermo-optical characteristics of a smart polymer-stabilized liquid crystal thin film based on smectic A–chiral nematic phase transition

    International Nuclear Information System (INIS)

    A smart polymer stabilized liquid crystal (PSLC) thin film with temperature-controllable light transmittance was prepared based on a smectic-A (SmA)–chiral nematic (N*) phase transition, and then the effect of the composition and the preparation condition of the PSLC film on its thermo-optical (T-O) characteristics has been investigated in detail. Within the temperature range of the SmA phase, the PSLC shows a strong opaque state due to the focal conic alignment of liquid crystal (LC) molecules, while the film exhibits a transparent state result from the parallel alignment of N* phase LC molecules at a higher temperature. Importantly, the PSLC films with different temperature of phase transition and contrast ratio can be prepared by changing the composition of photo-polymerizable monomer/LC/chiral dopant. According to the competition between the polymerization of the curable monomers and the diffusion of LC molecules, the ultraviolet (UV) curing surrounding temperature and the intensity of UV irradiation play a critical role in tuning the size of the polymer network meshes, which in turn influence the contrast ratio and the switching speed of the film. Our observations are expected to pave the way for preparing smart PSLC thin films for applications in areas of smart windows, thermo-detectors and other information recording devices. (paper)

  11. Phases of chiral gauge theories

    International Nuclear Information System (INIS)

    We discuss the behavior of two non-supersymmetric chiral SU(N) gauge theories, involving fermions in the symmetric and antisymmetric two-index tensor representations respectively. In addition to global anomaly matching, we employ a recently proposed inequality constraint on the number of effective low energy (massless) degrees of freedom of a theory, based on the thermodynamic free energy. Several possible zero temperature phases are consistent with the constraints. A simple picture for the phase structure emerges if these theories choose the phase, consistent with global anomaly matching, that minimizes the massless degree of freedom count defined through the free energy. This idea suggests that confinement with the preservation of the global symmetries through the formation of massless composite fermions is in general not preferred. While our discussion is restricted mainly to bilinear condensate formation, higher dimensional condensates are considered for one case. We conclude by commenting briefly on two related supersymmetric chiral theories. (c) 2000 The American Physical Society

  12. Chiral transition of fundamental and adjoint quarks

    Energy Technology Data Exchange (ETDEWEB)

    Capdevilla, R.M. [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Doff, A., E-mail: agomes@utfpr.edu.br [Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR (Brazil); Natale, A.A., E-mail: natale@ift.unesp.br [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil)

    2014-01-20

    The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one.

  13. Chiral transition of fundamental and adjoint quarks

    International Nuclear Information System (INIS)

    The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one

  14. Phase transitions

    CERN Document Server

    Solé, Ricard V

    2011-01-01

    Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation o

  15. Chiral transition of fundamental and adjoint quarks

    OpenAIRE

    Capdevilla, R. M.; Doff, A.(Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR, Brazil); Natale, A. A.

    2014-01-01

    The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagat...

  16. Finite-Temperature Phase Structure in the Chiral σ-ω Model with Dilatons

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Bing ZHANG Xiao-Bing; LI Xue-Qian; NING Ping-Zhi

    2000-01-01

    We investigate the finite-temperature phase structure in a scaled chiral model which includes the dilaton (glueball) field. It is shown that hot nuclear matter undergoes a discontinuous transition in the mean field of scalar mesons as well as the Lee-Wick abnormal transition. The corresponding behavior of the gluon condensate during the chiral phase transition is also studied.

  17. Chiral liquid crystals: the vestigial chiral phases of T, O, I matter

    Science.gov (United States)

    Nissinen, Jaakko; Liu, Ke; Slager, Robert-Jan; Wu, Kai; Zaanen, Jan

    We show how chiral order develops in vestigial isotropic phases of T , O and I liquid crystalline systems in three dimensions. The liquid crystal phases are realized in a lattice model of orientational degrees of freedom with point group symmetries G ⊂ O (3) , represented as O (3) -rotors coupled to G gauge fields. The model incorporates also disclinations via the gauge fields, features an ordered nematic phase with unbroken G rotations at low temperatures and a high temperature isotropic liquid phase. We observe an intermediate phase with spontaneous chirality but isotropic SO (3) symmetry (a liquid) for the gauge groups T, O, and I, the proper symmetry groups of the tetrahedron, cube and icosahedron, respectively. For the other subgroups of SO (3) , Cn <= ∞ and Dn <= ∞, there is generically only a single phase transition from the nematic phase to the isotropic liquid. We discuss the nature of the phase transitions and conditions under which the chiral phase is stabilized by the nematic order parameter fluctuations. The nature of the vestigial chiral phase is reminiscent of the so-called Ising nematic phase in iron based superconductors. Research supported by the Netherlands foundation for Fundamental Research of Matter (FOM).

  18. Insights on some chiral smectic phases

    Indian Academy of Sciences (India)

    B Pansu

    2003-08-01

    Combining layered positional order as smectic order and chirality can generate complex architectures since twist parallel to the layers is not allowed. This paper will review some new experimental results on different phases resulting from the competition between smectic positional order and twist orientational order. It concerns the TGBA and the NL*, that is the liquid line phase as well as the SmQ phase. Chiral effects in the isotropic phase will also be discussed.

  19. Unphysical phases in staggered chiral perturbation theory

    Science.gov (United States)

    Aubin, Christopher; Colletti, Katrina; Davila, George

    2016-04-01

    We study the phase diagram for staggered quarks using chiral perturbation theory. In beyond-the-standard-model simulations using a large number (>8 ) of staggered fermions, unphysical phases appear for coarse enough lattice spacing. We argue that chiral perturbation theory can be used to interpret one of these phases. In addition, we show that only three broken phases for staggered quarks exist, at least for lattice spacings in the regime a2≪ΛQCD2 .

  20. Finite-temperature chiral transition in real-world QCD?

    International Nuclear Information System (INIS)

    I present and discuss the first physics results of a Langevin simulation of finite-temperature QCD with a realistic current quark spectrum. Up to several caveats which will need to be addressed by future studies, our present results suggest that there is a first-order chiral restoration phase transition in real-world QCD, that it is driven by the light condensate and that it should be accompanied by a partial restoration of U(1)A symmetry. (orig.)

  1. Symmetry structure and phase transitions

    Indian Academy of Sciences (India)

    Ashok Goyal; Meenu Dahiya; Deepak Chandra

    2003-05-01

    We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.

  2. Electromagnetic chirality-induced negative refraction with the same amplitude and anti-phase of the two chirality coefficients

    Institute of Scientific and Technical Information of China (English)

    Zhao Shun-Cai; Liu Zheng-Dong; Zheng Jun; Li Gen

    2011-01-01

    This paper suggests a scheme of electromagnetic chirality-induced negative refraction utilizing magneto-electric cross coupling in a four-level atomic system. The negative refraction can be achieved with the two chirality coefficients having the same amplitude but the opposite phase, without requiring the simultaneous presence of an electric-dipole and a magnetic-dipole transition near the same transition frequency.

  3. An Anderson-like model of the QCD chiral transition

    Science.gov (United States)

    Giordano, Matteo; Kovács, Tamás G.; Pittler, Ferenc

    2016-06-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the QCD spectrum and of the Dirac eigenmodes concerning chiral symmetry breaking and localisation, both in the ordered (deconfined) and disordered (confined) phases. Moreover, it allows us to study separately the roles played in the two phenomena by the diagonal and the off-diagonal terms of the Dirac-Anderson Hamiltonian. Our results support our expectation that chiral symmetry restoration and localisation of the low modes are closely related, and that both are triggered by the deconfinement transition.

  4. Magnetic properties in the inhomogeneous chiral phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Toshitaka

    2016-01-01

    We investigate the magnetic properties of quark matter in the inhomogeneous chiral phase, where both scalar and pseudoscalar condensates spatially modulate. The energy spectrum of the lowest Landau level becomes asymmetric about zero in the external magnetic field, and gives rise to the remarkably magnetic properties: quark matter has a spontaneous magnetization, while the magnetic susceptibility does not diverge on the critical point.

  5. Phase Transitions in QCD

    OpenAIRE

    H. Satz(University of Bielefeld)

    2000-01-01

    At high temperatures or densities, hadronic matter shows different forms of critical behaviour: colour deconfinement, chiral symmetry restoration, and diquark condensation. I first discuss the conceptual basis of these phenomena and then consider the description of colour deconfinement in terms of symmetry breaking, through colour screening and as percolation transition.

  6. Chiral and deconfinement transitions in a magnetic background using the functional renormalization group with the Polyakov loop

    OpenAIRE

    Jens O. Andersen; William R. Naylor(Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim, Norway); Anders Tranberg(Faculty of Science and Technology, University of Stavanger, 4036 Stavanger, Norway)

    2014-01-01

    We use the Polyakov loop coupled quark-meson model to approximate low energy QCD and present results for the chiral and deconfinement transitions in the presence of a constant magnetic background $B$ at finite temperature $T$ and baryon chemical potential $\\mu_B$. We investigate effects of various gluoni potentials on the deconfinement transition with and without a fermionic backreaction at finite $B$. Additionally we investigate the effect of the Polyakov loop on the chiral phase transition,...

  7. Fluctuations and the Phase Transition in a Chiral Model with Polyakov Loops%引入Polyakov环路的手征模型中的涨落与相变

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We explore the NJL model with Polyakov loops for a system of three colors and two flavors within the mean-field approximation, where both chiral symmetry and confinement are taken into account. We focus on the phase structure of the model and study the chiral and Polyakov loop susceptibilities.

  8. Cosmological phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Kolb, E.W. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Chicago Univ., IL (United States)

    1993-10-01

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions.

  9. Cosmological phase transitions

    International Nuclear Information System (INIS)

    If modern ideas about the role of spontaneous symmetry breaking in fundamental physics are correct, then the Universe should have undergone a series of phase transitions early in its history. The study of cosmological phase transitions has become an important aspect of early-Universe cosmology. In this lecture I review some very recent work on three aspects of phase transitions: the electroweak transition, texture, and axions

  10. The effect of confinement on the stability of field induced states and on supercooling in antiferro-ferroelectric phase transitions in chiral smectic liquid crystals

    OpenAIRE

    VIJ, JAGDISH

    2009-01-01

    PUBLISHED We investigate both the supercooling and the hysteresis phenomena of the phase transitions between the smectic C* and the smectic C *Aphases driven by temperature and electric field, respectively. These two phenomena show similar characteristics for the dependence of transmittance on both the cell thickness and the applied field. The mechanisms for large supercooling and large hysteresis in thin cells are shown to correspond to the suppression of the propagation of solitary wave ...

  11. HPLC SEPARATION OF CHIRAL ORGANOPHOSPHORUS PESTICIDES ON POLYSACCHARIDE CHIRAL STATIONARY PHASES

    Science.gov (United States)

    High-performance liquid chromatographic separation of the individual enantiomers of 12 organophosphorus pesticides (OPs) were obtained on polysaccharide chiral HPLC columns using an alkane-alcohol mobile phase. The OP pesticides were crotoxyphos, dialifor, dyfonate, fenamiphos, ...

  12. Quantum phase transitions

    International Nuclear Information System (INIS)

    In recent years, quantum phase transitions have attracted the interest of both theorists and experimentalists in condensed matter physics. These transitions, which are accessed at zero temperature by variation of a non-thermal control parameter, can influence the behaviour of electronic systems over a wide range of the phase diagram. Quantum phase transitions occur as a result of competing ground state phases. The cuprate superconductors which can be tuned from a Mott insulating to a d-wave superconducting phase by carrier doping are a paradigmatic example. This review introduces important concepts of phase transitions and discusses the interplay of quantum and classical fluctuations near criticality. The main part of the article is devoted to bulk quantum phase transitions in condensed matter systems. Several classes of transitions will be briefly reviewed, pointing out, e.g., conceptual differences between ordering transitions in metallic and insulating systems. An interesting separate class of transitions is boundary phase transitions where only degrees of freedom of a subsystem become critical; this will be illustrated in a few examples. The article is aimed at bridging the gap between high-level theoretical presentations and research papers specialized in certain classes of materials. It will give an overview on a variety of different quantum transitions, critically discuss open theoretical questions, and frequently make contact with recent experiments in condensed matter physics

  13. Chiral Stationary Phases Based on Silica Modified by Helicenes

    Czech Academy of Sciences Publication Activity Database

    Bernard, Martin; Církva, Vladimír; Sýkora, Jan; Storch, Jan

    - : -, 2014, s. 74. ISBN N. [Belgian Organic Synthesis Symposium (BOSS XIV) /14./. Louvain-la-Neuve (BE), 13.07.2014-18.07.2014] R&D Projects: GA TA ČR TA01010646 Institutional support: RVO:67985858 Keywords : chiral stationary phase * helicene * chiral resolution Subject RIV: CC - Organic Chemistry

  14. A new generation of chiral phase-transfer catalysts.

    Science.gov (United States)

    Kaneko, Shiho; Kumatabara, Yusuke; Shirakawa, Seiji

    2016-06-28

    Phase-transfer catalysis has long been recognized as a versatile method for organic synthesis. In particular, over more than the past three decades, asymmetric phase-transfer catalysis based on the use of structurally well-defined chiral catalysts has become a topic of great scientific interest. Although various effective chiral catalysts have already been reported and these catalysts were utilized for practical asymmetric transformations, further design and development of new chiral phase-transfer catalysts are still attractive research subjects in organic chemistry due to the high utility and practicability of phase-transfer-catalyzed reactions. This review focuses on the recent examples of newly designed effective chiral phase-transfer catalysts. PMID:26754659

  15. Computing quantum phase transitions

    OpenAIRE

    Vojta, Thomas

    2007-01-01

    This article first gives a concise introduction to quantum phase transitions, emphasizing similarities with and differences to classical thermal transitions. After pointing out the computational challenges posed by quantum phase transitions, a number of successful computational approaches is discussed. The focus is on classical and quantum Monte Carlo methods, with the former being based on the quantum-to classical mapping while the latter directly attack the quantum problem. These methods ar...

  16. Martensitic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Petry, W.; Neuhaus, J. [Techn. Universitaet Muenchen, Physik Department E13, Munich (Germany)

    1996-11-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs.

  17. Cosmological phase transitions

    International Nuclear Information System (INIS)

    If the universe stated from conditions of high temperature and density, there should have been a series of phase transitions associated with spontaneous symmetry breaking. The cosmological phase transitions could have observable consequences in the present Universe. Some of the consequences including the formation of topological defects and cosmological inflation are reviewed here. One of the most important tools in building particle physics models is the use of spontaneous symmetry breaking (SSB). The proposal that there are underlying symmetries of nature that are not manifest in the vacuum is a crucial link in the unification of forces. Of particular interest for cosmology is the expectation that are the high temperatures of the big bang symmetries broken today will be restored, and that there are phase transitions to the broken state. The possibility that topological defects will be produced in the transition is the subject of this section. The possibility that the Universe will undergo inflation in a phase transition will be the subject of the next section. Before discussing the creation of topological defects in the phase transition, some general aspects of high-temperature restoration of symmetry and the development of the phase transition will be reviewed. 29 references, 1 figure, 1 table

  18. Phases of N=1 Supersymmetric Chiral Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Nathaniel; /Princeton, Inst. Advanced Study /Rutgers U., Piscataway; Essig, Rouven; /Princeton, Inst. Advanced Study /YITP, Stony Brook /SLAC /Stanford U., Phys. Dept.; Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2012-02-17

    We analyze the phases of supersymmetric chiral gauge theories with an antisymmetric tensor and (anti)fundamental flavors, in the presence of a classically marginal superpotential deformation. Varying the number of flavors that appear in the superpotential reveals rich infrared chiral dynamics and novel dualities. The dualities are characterized by an infinite family of magnetic duals with arbitrarily large gauge groups describing the same fixed point, correlated with arbitrarily large classical global symmetries that are truncated nonperturbatively. At the origin of moduli space, these theories exhibit a phase with confinement and chiral symmetry breaking, an interacting nonabelian Coulomb phase, and phases where an interacting sector coexists with a sector that either s-confines or is in a free magnetic phase. Properties of these intriguing 'mixed phases' are studied in detail using duality and a-maximization, and the presence of superpotential interactions provides further insights into their formation.

  19. Phase transitions modern applications

    CERN Document Server

    Gitterman, Moshe

    2014-01-01

    This book provides a comprehensive review of the theory of phase transitions and its modern applications, based on the five pillars of the modern theory of phase transitions i.e. the Ising model, mean field, scaling, renormalization group and universality. This expanded second edition includes, along with a description of vortices and high temperature superconductivity, a discussion of phase transitions in chemical reaction and moving systems. The book covers a close connection between phase transitions and small world phenomena as well as scale-free systems such as the stock market and the Internet. Readership: Scientists working in different fields of physics, chemistry, biology and economics as well as teaching material for undergraduate and graduate courses.

  20. The SAT phase transition

    Institute of Scientific and Technical Information of China (English)

    许可; 李未

    1999-01-01

    Phase transition is an important feature of SAT problem. For random k-SAT model, it is proved that as r(ratio of clauses to variables) increases, the structure of solutions will undergo a sudden change like satisfiability phase transition when r reaches a threshold point (r=rcr). This phenomenon shows that the satisfying truth assignments suddenly shift from being relatively different from each other to being very similar to each other.##属性不符

  1. Susceptibilities and the Phase Structure of a Chiral Model with Polyakov Loops

    OpenAIRE

    Sasaki, C.; Friman, B.; Redlich, K.

    2006-01-01

    In an extension of the Nambu-Jona-Lasinio model where the quarks interact with the temporal gluon field, represented by the Polyakov loop, we explore the relation between the deconfinement and chiral phase transitions. The effect of Polyakov loop dynamics on thermodynamic quantities, on the phase structure at finite temperature and baryon density and on various susceptibilities is presented. Particular emphasis is put on the behavior and properties of the fluctuations of the (approximate) ord...

  2. An Anderson-like model of the QCD chiral transition

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...

  3. Transitions of Smectic A to Tilted Phases in Thin Free Standing Films of Liquid Crystal

    International Nuclear Information System (INIS)

    The transition of orthogonal smectic A (SmA) phase to the tilted phases, upon lowering the temperature, is explored with a discrete phenomenological model and the phase diagrams are presented. The results show that the transition of SmA to uniplanar structures can be affected by the effect of chirality. The areas showing the uniplanar phase in the phase diagrams diminish with the increase in effect of chirality. (author)

  4. Inhomogeneous chiral phases in two-flavor quark matter

    CERN Document Server

    Abuki, Hiroaki

    2015-01-01

    We present a systematic study of the phase structure of QCD in a generalized Ginzburg-Landau framework. We find, going up in density, a strongly interacting matter might go through the "pion crystal", an exotic inhomogeneous chiral phase before reaching the full restoration of symmetry.

  5. Electroweak phase transitions

    International Nuclear Information System (INIS)

    An analytic treatment of the one Higgs doublet, electroweak phase transition is given. The phase transition is first order, occurs by the nucleation of thin walled bubbles and completes at a temperature where the order parameter, left-angle φ right-angle T is significantly smaller than it is when the origin becomes absolutely unstable. The rate of anomalous baryon number violation is an exponentially function of left-angle φ right-angle T. In very minimal extensions of the standard model it is quite easy to increase left-angle φ right-angle T so that anomalous baryon number violation is suppressed after completion of the phase transition. Hence baryogenesis at the electroweak phase transition is tenable in minimal of the standard model. In some cases additional phase transitions are possible. For a light Higgs boson, when the top quark mass is sufficiently large, the state where the Higgs field has a vacuum expectation value left-angle φ right-angle = 246 GeV is not the true minimum of the Higgs potential. When this is the case, and when the top quark mass exceeds some critical value, thermal fluctuations in the early universe would have rendered the state left-angle φ right-angle = 246 GeV unstable. The requirement that the state left-angle φ right-angle = 246 GeV is sufficiently long lived constrains the masses of the Higgs boson and the top quark. Finally, we consider whether local phase transitions can be induced by heavy particles which act as seeds for deformations in the scalar field

  6. Noise and Phase Transitions

    Science.gov (United States)

    Chen, Zhi; Yu, Clare C.

    2006-03-01

    Noise is present in many physical systems and is often viewed as a nuisance. Yet it can also be a probe of microscopic fluctuations. There have been indications recently that the noise in the resistivity increases in the vicinity of the metal-insulator transition. But what are the characteristics of the noise associated with well-understood first and second order phase transitions? It is well known that critical fluctuations are associated with second order phase transitions, but do these fluctuations lead to enhanced noise? We have addressed these questions using Monte Carlo simulations to study the noise in the 2D Ising model which undergoes a second order phase transition, and in the 5-state Potts model which undergoes a first order phase transition. We monitor these systems as the temperature drops below the critical temperature. At each temperature, after equilibration is established, we obtain the time series of quantities characterizing the properties of the system, i.e., the energy and magnetization per site. We apply different methods, such as the noise power spectrum, the Detrended Fluctuation Analysis (DFA) and the second spectrum of the noise, to analyze the fluctuations in these quantities.

  7. Electronic phase transitions

    CERN Document Server

    Kopaev, YuV

    1992-01-01

    Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle ele

  8. Three-phase model of a chiral quark bag

    International Nuclear Information System (INIS)

    Three-phase modification of the model of hybrid chiral quark bag is suggested. Along with the phase of asymptotically free current quarks and completely achromatic meson phase the model contains an intermediate phase including massive quark components. Self-consistent solution of model equations with account of contribution from the Dirac sea is found for (1+1)-dimensional case. The dependence of bag characteristics on theory parameters is investigated in analytical and numerical forms

  9. Phase Transitions in Neutron Stars

    OpenAIRE

    Heiselberg, Henning; Hnorth-Jensen, Morten

    1998-01-01

    Phase transitions in neutron stars due to formation of quark matter, kaon condensates, etc. are discussed with particular attention to the order of these transitions. Observational consequences of phase transitions in pulsar angular velocities are examined.

  10. Brazovskii-Dyugaev effect on the inhomogeneous chiral transition in quark matter

    Science.gov (United States)

    Karasawa, Shintaro; Lee, Tong-Gyu; Tatsumi, Toshitaka

    2016-04-01

    We investigate the effects of quantum and thermal fluctuations on the phase boundary between the inhomogeneous chiral phase and the chiral-restored phase in the phase diagram in the plane of temperature and chemical potential. Introducing the composite fields made of quark bilinear fields, we construct an effective action for them in quark matter by way of the correlation function method. Utilizing this effective action, we discuss the effects of the quark-antiquark and particle-hole pair fluctuations to find possible modifications of the vertex functions of the order parameter included in the thermodynamic potential. We find that the most important effect of the pair fluctuations is to change the sign of the fourth-order vertex function to make the phase transition always the first, rather than the second, order (we call it the Brazovskii-Dyugaev effect). Another important effect manifests in the second-order vertex function: it exhibits a singular behavior near the critical point, which prohibits the second-order phase transition. It, together with the fourth-order vertex function, alters the location of the phase boundary.

  11. Photoinduced phase transitions

    CERN Document Server

    Nasu, K

    2004-01-01

    A new class of insulating solids was recently discovered. Whenirradiated by a few visible photons, these solids give rise to amacroscopic excited domain that has new structural and electronicorders quite different from the starting ground state. This occurrenceis called "photoinduced phase transition", and this multi-authoredbook reviews recent theoretical and experimental studies of this newphenomenon.

  12. Deconfinement phase transition in neutron star matter

    Institute of Scientific and Technical Information of China (English)

    LI Ang; PENG Guang-Xiong; Lombardo U

    2009-01-01

    The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot,we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density,and transit to pure quark matter at 4-5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.

  13. Peripheral Nucleon-Nucleon Phase Shifts and Chiral Symmetry

    CERN Document Server

    Kaiser, N; Weise, W

    1997-01-01

    Within the one-loop approximation of baryon chiral perturbation theory we calculate all one-pion and two-pion exchange contributions to the nucleon-nucleon interaction. In fact we construct the elastic NN-scattering amplitude up to and including third order in small momenta. The phase shifts with orbital angular momentum $L\\geq2 $ and the mixing angles with $J\\geq2$ are given parameterfree and thus allow for a detailed test of chiral symmetry in the two-nucleon system. We find that for the D-waves the $2\\pi$-exchange corrections are too large as compared with empirical phase shifts, signaling the increasing importance of shorter range effects in lower partial waves. For higher partial waves, especially for G-waves, the model independent $2\\pi$-exchange corrections bring the chiral prediction close to empirical NN phase shifts. We propose to use the chiral NN phase shifts with $L\\geq 3$ as input in a future phase shift analysis. Furthermore, we compute the irreducible two-pion exchange NN-potentials in coordin...

  14. Geometric Phase and Chiral Anomaly in Path Integral Formulation

    OpenAIRE

    Fujikawa, Kazuo

    2007-01-01

    All the geometric phases, adiabatic and non-adiabatic, are formulated in a unified manner in the second quantized path integral formulation. The exact hidden local symmetry inherent in the Schr\\"{o}dinger equation defines the holonomy. All the geometric phases are shown to be topologically trivial. The geometric phases are briefly compared to the chiral anomaly which is naturally formulated in the path integral.

  15. A novel chiral phase of achiral hard triangles and an entropy-driven demixing of enantiomers.

    Science.gov (United States)

    Gantapara, Anjan P; Qi, Weikai; Dijkstra, Marjolein

    2015-11-28

    We investigate the phase behavior of a system of hard equilateral and right-angled triangles in two dimensions using Monte Carlo simulations. Hard equilateral triangles undergo a continuous isotropic-triatic liquid crystal phase transition at packing fraction ϕ = 0.7. Similarly, hard right-angled isosceles triangles exhibit a first-order phase transition from an isotropic fluid phase to a rhombic liquid crystal phase with a coexistence region ϕ ∈ [0.733, 0.782]. Both these liquid crystals undergo a continuous phase transition to their respective close-packed crystal structures at high pressures. Although the particles and their close-packed crystals are both achiral, the solid phases of equilateral and right-angled triangles exhibit spontaneous chiral symmetry breaking at sufficiently high packing fractions. The colloidal triangles rotate either in the clockwise or anti-clockwise direction with respect to one of the lattice vectors for packing fractions higher than ϕχ. As a consequence, these triangles spontaneously form a regular lattice of left- or right-handed chiral holes which are surrounded by six triangles in the case of equilateral triangles and four or eight triangles for right-angled triangles. Moreover, our simulations show a spontaneous entropy-driven demixing transition of the right- and left-handed "enantiomers". PMID:26376756

  16. Simultaneous chiral symmetry restoration and deconfinement - Consequences for the QCD phase diagram

    CERN Document Server

    Klahn, Thomas; Hempel, Matthias

    2016-01-01

    For studies of quark matter in astrophysical scenarios the thermodynamic bag model (tdBag) is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Kl\\"ahn & Fischer (2015) we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant $B_{\\rm dc}$ from a given hadronic equation of state (EoS) in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction and the phase diagram.

  17. Generalized Ginzburg–Landau approach to inhomogeneous phases in nonlocal chiral quark models

    International Nuclear Information System (INIS)

    We analyze the presence of inhomogeneous phases in the QCD phase diagram within the framework of nonlocal chiral quark models. We concentrate in particular in the positions of the tricritical (TCP) and Lifshitz (LP) points, which are studied in a general context using a generalized Ginzburg–Landau approach. We find that for all the phenomenologically acceptable model parametrizations considered the TCP is located at a higher temperature and a lower chemical potential in comparison with the LP. Consequently, these models seem to favor a scenario in which the onset of the first order transition between homogeneous phases is not covered by an inhomogeneous, energetically favored phase

  18. Enantioseparation of Racemic Naproxen Esters on Cellulose Tris (4-methylbenzoate) Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several kinds of racemic naproxen ester were successfully separated on CTMB chiral stationary phase with hexane-ethanol (98:2, vol./vol.) as the mobile phase. The influence of mobile phase composition and structure of racemic naproxen ester on chiral separation was studied and the chiral recognition mechanism of CTMB was discussed.

  19. Enantioseparation of Racemic Naproxen Esters on Cellulose Tris(4—methylbenzoate) Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    BaoHaiSHAO; XiuZhuXU; 等

    2002-01-01

    Several kinds of racemic naproxen ester were successfully separated on CTMB chiral stationary phase with hexane-ethanol(98:2,vol./vol.) as the mobile phase. The influence of mobile phase composition and structure of racemic naproxen ester on chiral separation was studied and the chiral recognition mechanism of CTMB was discussed.

  20. Emergence and Phase Transitions

    Science.gov (United States)

    Sikkema, Arnold

    2006-05-01

    Phase transitions are well defined in physics through concepts such as spontaneous symmetry breaking, order parameter, entropy, and critical exponents. But emergence --- also exhibiting whole-part relations (such as top-down influence), unpredictability, and insensitivity to microscopic detail --- is a loosely-defined concept being used in many disciplines, particularly in psychology, biology, philosophy, as well as in physics[1,2]. I will review the concepts of emergence as used in the various fields and consider the extent to which the methods of phase transitions can clarify the usefulness of the concept of emergence both within the discipline of physics and beyond.1. Robert B. Laughlin, A Different Universe: Reinventing Physics from the Bottom Down (New York: Basic Books, 2005). 2. George F.R. Ellis, ``Physics and the Real World'', Physics Today, vol. 58, no. 7 (July 2005) pp. 49-54.

  1. Understanding quantum phase transitions

    CERN Document Server

    Carr, Lincoln

    2010-01-01

    Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivity and display fundamental aspects of quantum theory, such as strong correlations and entanglement. Over the last two decades, our understanding of QPTs has increased tremendously due to a plethora of experimental examples, powerful new numerical meth

  2. Anomalous phase sequence in new chiral liquid crystalline materials

    Czech Academy of Sciences Publication Activity Database

    Podoliak, Natalia; Novotná, Vladimíra; Kašpar, Miroslav; Hamplová, Věra; Glogarová, Milada; Pociecha, D.

    2014-01-01

    Roč. 41, č. 2 (2014), s. 176-183. ISSN 0267-8292 R&D Projects: GA ČR GA13-14133S; GA ČR(CZ) GAP204/11/0723 Grant ostatní: AVČR(CZ) M100101211 Institutional support: RVO:68378271 Keywords : chiral chain * lactate unit * TGBA phase * re-entrancy * TGBC phase Subject RIV: JJ - Other Materials Impact factor: 2.486, year: 2014

  3. Phase diagram of 4D field theories with chiral anomaly from holography

    Science.gov (United States)

    Ammon, Martin; Leiber, Julian; Macedo, Rodrigo P.

    2016-03-01

    Within gauge/gravity duality, we study the class of four dimensional CFTs with chiral anomaly described by Einstein-Maxwell-Chern-Simons theory in five dimensions. In particular we determine the phase diagram at finite temperature, chemical potential and magnetic field. At high temperatures the solution is given by an electrically and magnetically charged AdS Reissner-Nordstroem black brane. For sufficiently large Chern-Simons coupling and at sufficiently low temperatures and small magnetic fields, we find a new phase with helical order, breaking translational invariance spontaneously. For the Chern-Simons couplings studied, the phase transition is second order with mean field exponents. Since the entropy density vanishes in the limit of zero temperature we are confident that this is the true ground state which is the holographic version of a chiral magnetic spiral.

  4. Phase diagram of 4D field theories with chiral anomaly from holography

    CERN Document Server

    Ammon, Martin; Macedo, Rodrigo P

    2016-01-01

    Within gauge/gravity duality, we study the class of four dimensional CFTs with chiral anomaly described by Einstein-Maxwell-Chern-Simons theory in five dimensions. In particular we determine the phase diagram at finite temperature, chemical potential and magnetic field. At high temperatures the solution is given by an electrically and magnetically charged AdS Reissner-Nordstroem black brane. For sufficiently large Chern-Simons coupling and at sufficiently low temperatures and small magnetic fields, we find a new phase with helical order, breaking translational invariance spontaneously. For the Chern-Simons couplings studied, the phase transition is second order with mean field exponents. Since the entropy density vanishes in the limit of zero temperature we are confident that this is the true ground state which is the holographic version of a chiral magnetic spiral.

  5. Entanglement and quantum phase transitions

    OpenAIRE

    Gu, Shi-Jian; Tian, Guang-Shan; Lin, Hai-Qing

    2005-01-01

    We examine several well known quantum spin models and categorize behavior of pairwise entanglement at quantum phase transitions. A unified picture on the connection between the entanglement and quantum phase transition is given.

  6. Chirality effects on 2D phase transitions

    DEFF Research Database (Denmark)

    Scalas, E.; Brezesinski, G.; Möhwald, H.; Kaganer, V.M.; Bouwman, W.G.; Kjær, K.

    1996-01-01

    Monolayers of the racemate and pure enantiomers of 1-hexadecyl-glycerol were investigated by grazing incidence X-ray diffraction (GID) at 5 and 20 degrees C on compression from 0 mN m(-1) to pressures greater than 30 mN m(-1). The racemate Lattice is centred-rectangular for both temperatures at a...

  7. The Standard Model from New Phase transition on the Lattice

    International Nuclear Information System (INIS)

    A lattice gauge theory with a higher derivative Higgs action is considered. We predict the existence of a normal Higgs phase and a new, exotic Higgs phase, characterized by the condensation of a gauge invariant vector field that breaks the lattice cubic symmetries spontaneously. The continuum limit is defined by approaching the new phase transition from the normal Higgs phase. In this limit the gauge bosons become massless, but the Higgs VEV stays finite in lattice units. This allows us to introduce fermions chirally coupled to the gauge field. The continuum Lagrangian that governs the new critical point describes a chiral gauge theory quantized in a renormalizable gauge. Thus, the model can be regarded as a non-perturbative realization of the Roma approach, which invokes gauge fixing as an essential ingredient. in the formulation of lattice chiral gauge theories. (author)

  8. Chiral rings and phases of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    We solve for the expectation values of chiral operators in supersymmetric U(N) gauge theories with matter in the adjoint, fundamental and anti-fundamental representations. A simple geometric picture emerges involving a description by a meromorphic one-form on a Riemann surface. The equations of motion are equivalent to a condition on the integrality of periods of this form. The solution indicates that all semiclassical phases with the same number of U(1) factors are continuously connected. (author)

  9. Vacuum Polarization and Dynamical Chiral Symmetry Breaking: Phase Diagram of QED with Four-Fermion Contact Interaction

    CERN Document Server

    Akram, F; Gutierrez-Guerrero, L X; Masud, B; Rodriguez-Quintero, J; Calcaneo-Roldan, C; Tejeda-Yeomans, M E

    2012-01-01

    We study chiral symmetry breaking for fundamental charged fermions coupled electromagnetically to photons with the inclusion of four-fermion contact self-interaction term. We employ multiplicatively renormalizable models for the photon dressing function and the electron-photon vertex which minimally ensures mass anomalous dimension = 1. Vacuum polarization screens the interaction strength. Consequently, the pattern of dynamical mass generation for fermions is characterized by a critical number of massless fermion flavors above which chiral symmetry is restored. This effect is in diametrical opposition to the existence of criticality for the minimum interaction strength necessary to break chiral symmetry dynamically. The presence of virtual fermions dictates the nature of phase transition. Miransky scaling laws for the electromagnetic interaction strength and the four-fermion coupling, observed for quenched QED, are replaced by a mean-field power law behavior corresponding to a second order phase transition. T...

  10. [Enantioseparation behavior of chiral stationary phases AD, AS and OD].

    Science.gov (United States)

    Li, Liqun; Fan, Jun; Zhang, Jing; Chen, Xiaodong; Wang, Tai; He, Jianfeng; Zhang, Weiguang

    2016-01-01

    Over the past decades, HPLC enantioseparation with chiral stationary phases (CSPs) has been widely applied in chiral analysis and preparation of new pharmaceuticals, pesticides, food, etc. Herein, enantioseparation of 20 chiral compounds have been carried out on three polysaccharide-based CSPs (EnantioPak AD, AS and OD) with normal phases by HPLC, separately. The influences of skeletal structure and the kinds of derivative groups on separation behaviors of these CSPs have been studied in detail. As results indicated, except for compound 13, the other compounds were baseline separated on EnantioPak AD, with most of resolution over 2. 0; in addition, better separation for acidic or basic compounds was achieved through adding acidic/basic additives into the mobile phase of hexane-alcohol. For four aromatic alcohols (compounds 13-16), their retention in the EnantioPak AD column showed a weakening tendency with increase of carbon number in side chain group, and the reverse trend of their resolution was observed. Furthermore, EnantioPak AD showed much better separation performance for eight compounds (13-20) than the others. In short, these results have provided some references for further investigation of separation behavior and applications of polysaccharide-based CSPs. PMID:27319174

  11. Synthesis and applications of novel, highly efficient HPLC chiral stationary phases: a chiral dimension in drug research analysis.

    Science.gov (United States)

    Cancelliere; D'Acquarica; Gasparrini; Misiti; Villani

    1999-12-01

    This review provides an overview of the synthesis and application of stable and versatile HPLC chiral stationary phases (CSPs), with emphasis placed on the binding strategies developed to anchor several structurally different chiral selectors to silica-gel microparticles. In addition, selected applications relating to the use of these CSPs for the direct resolution of racemates of biological and pharmaceutical relevance will be described. This review discusses enantioselective molecular recognition and dynamic stereochemistry of stereolabile compounds with reference to receptor-based chiral stationary phases (CSPs) and dynamic HPLC on CSPs, respectively. PMID:10603466

  12. Enantiomeric Separation of 1-(Benzofuran-2-yl)alkylamines on Chiral Stationary Phases Based on Chiral Crown Ethers

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soohyun; Kim, Sang Jun; Hyun, Myung Ho [Pusan National Univ., Busan (Korea, Republic of)

    2012-10-15

    Optically active chiral amines are important as building blocks for pharmaceuticals and as scaffolds for chiral ligands and, consequently, many efforts have been devoted to the development of efficient methods for their preparation. For example, reduction of amine precursors with chiral catalysts, enzymatic kinetic resolution or dynamic kinetic resolution of racemic amines and the direct amination of ketones with transaminases have been developed as the efficient methods for the preparation of optically active chiral amines. During the process of developing or utilizing optically active chiral amines, the methods for the determination of their enantiomeric composition are essential. Among various methods, liquid chromatographic resolution of enantiomers on chiral stationary phases (CSPs) have been known to be one of the most accurate and economic means for the determination of the enantiomeric composition of optically active chiral compounds. Especially, CSPs based on chiral crown ethers have been successfully used for the resolution of racemic primary amines. For example, CSPs based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid (CSP 1, Figure 1) or (3,3'-diphenyl-1,1'-binaphthyl)-20-crown-6 (CSP 2 and CSP 3, Figure 1) have been known to be quite effective for the resolution of cyclic and non-cyclic amines, various fluoroquinolone antibacterials containing a primary amino group, tocainide (antiarrhythmic agent) and its analogues, aryl-a-amino ketones and 3-amino-1,4-benzodiazepin-2-ones.

  13. Dynamic Phase Transitions in Superconductivity

    OpenAIRE

    Ma, Tian; Wang, Shouhong

    2007-01-01

    In this Letter, the dynamic phase transitions of the time-dependent Ginzburg-Landau equations are analyzed using a newly developed dynamic transition theory and a new classification scheme of dynamics phase transitions. First, we demonstrate that there are two type of dynamic transitions, jump and continuous, dictated by the sign of a nondimensional parameter R. This parameter is computable, and depends on the material property, the applied field, and the geometry of domain that the sample oc...

  14. Surface tension in the cold and dense chiral transition and astrophysical applications

    CERN Document Server

    Palhares, L F

    2011-01-01

    The surface tension of cold and dense QCD phase transitions has appeared recently as a key ingredient in different astrophysical scenarios, ranging from core-colapse supernovae explosions to compact star structure. If the surface tension is low enough, observable consequences are possible. Its value is however not known from first-principle methods in QCD, calling for effective approaches. Working within the framework of homogeneous nucleation by Langer, we discuss the steps that are needed to obtain the nucleation parameters from a given effective potential. As a model for deriving the effective potential for the chiral transition, we adopt the linear sigma model with constituent quarks at very low temperatures, which provides an effective description for the thermodynamics of the strong interaction in cold and dense matter, and predict a surface tension of Sigma ~ 5--15 MeV/fm^2, well below previous estimates. Including temperature effects and vacuum logarithmic corrections, we find a clear competition betw...

  15. OZI violating eight-quark interactions as a thermometer for chiral transitions

    CERN Document Server

    Osipov, A A; Moreira, J; Blin, A H

    2008-01-01

    This work is a follow-up of our recent observation that in the SU(3) flavor limit with vanishing current quark masses the temperature for the chiral transition is substantially reduced by adding eight-quark interactions to the Nambu - Jona-Lasinio Lagrangian with U_A(1) breaking. Here we generalize the case to realistic light and strange quark masses and confirm our prior result. Additionally, we demonstrate that depending on the strength of OZI violating eight-quark interactions, the system undergoes either a rapid crossover or a first order phase transition. The meson mass spectra of the low lying pseudoscalars and scalars at T=0 are not sensitive to the difference in the parameter settings that correspond to these two alternatives, except for the singlet-octet mixing scalar channels, mainly the sigma meson.

  16. Quantum phase transitions of topological insulators without gap closing.

    Science.gov (United States)

    Rachel, Stephan

    2016-10-12

    We consider two-dimensional Chern insulators and time-reversal invariant topological insulators and discuss the effect of perturbations breaking either particle-number conservation or time-reversal symmetry. The appearance of trivial mass terms is expected to cause quantum phase transitions into trivial phases when such a perturbation overweighs the topological term. These phase transitions are usually associated with a bulk-gap closing. In contrast, the chiral Chern insulator is unaffected by particle-number breaking perturbations. Moreover, the [Formula: see text] topological insulator undergoes phase transitions into topologically trivial phases without bulk-gap closing in the presence of any of such perturbations. In certain cases, these phase transitions can be circumvented and the protection restored by another U(1) symmetry, e.g. due to spin conservation. These findings are discussed in the context of interacting topological insulators. PMID:27530509

  17. NN Scattering Phase Shifts in a Chiral Constituent Quark Model

    OpenAIRE

    Bartz, D.; Stancu, Fl

    2000-01-01

    We study the nucleon-nucleon interaction within a chiral constituent quark model which reproduces succesfully the baryon spectra. We calculate the 3S1 and 1S0 phase shifts by using the resonating group method. They clearly indicate the presence of a strong repulsive interaction at short distance, due to the spin-flavor symmetry of the quark-quark interaction and of the quark interchange between the two interacting nucleons. A sigma-exchange quark-quark interaction, providing a medium-range at...

  18. Entropy-driven formation of chiral nematic phases by computer simulations

    Science.gov (United States)

    Dussi, Simone; Dijkstra, Marjolein

    2016-04-01

    Predicting the macroscopic chiral behaviour of liquid crystals from the microscopic chirality of the particles is highly non-trivial, even when the chiral interactions are purely entropic in nature. Here we introduce a novel chiral hard-particle model, namely particles with a twisted polyhedral shape and obtain a stable fully entropy-driven cholesteric phase by computer simulations. By slightly modifying the triangular base of the particle, we are able to switch from a left-handed prolate (calamitic) to a right-handed oblate (discotic) cholesteric phase using the same right-handed twisted particle model. Furthermore, we show that not only prolate and oblate chiral nematic phases, but also other novel entropy-driven phases, namely chiral blue phases, chiral nematic phases featuring both twist and splay deformations, chiral biaxial nematic phases with one of the axes twisted, can be obtained by varying particle biaxiality and chirality. Our results allow to identify general guidelines for the stabilization of these phases.

  19. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  20. Predictability of enantiomeric chromatographic behavior on various chiral stationary phases using typical reversed phase modeling software.

    Science.gov (United States)

    Wagdy, Hebatallah A; Hanafi, Rasha S; El-Nashar, Rasha M; Aboul-Enein, Hassan Y

    2013-09-01

    Pharmaceutical companies worldwide tend to apply chiral chromatographic separation techniques in their mass production strategy rather than asymmetric synthesis. The present work aims to investigate the predictability of chromatographic behavior of enantiomers using DryLab HPLC method development software, which is typically used to predict the effect of changing various chromatographic parameters on resolution in the reversed phase mode. Three different types of chiral stationary phases were tested for predictability: macrocyclic antibiotics-based columns (Chirobiotic V and T), polysaccharide-based chiral column (Chiralpak AD-RH), and protein-based chiral column (Ultron ES-OVM). Preliminary basic runs were implemented, then exported to DryLab after peak tracking was accomplished. Prediction of the effect of % organic mobile phase on separation was possible for separations on Chirobiotic V for several probes: racemic propranolol with 97.80% accuracy; mixture of racemates of propranolol and terbutaline sulphate, as well as, racemates of propranolol and salbutamol sulphate with average 90.46% accuracy for the effect of percent organic mobile phase and average 98.39% for the effect of pH; and racemic warfarin with 93.45% accuracy for the effect of percent organic mobile phase and average 99.64% for the effect of pH. It can be concluded that Chirobiotic V reversed phase retention mechanism follows the solvophobic theory. PMID:23775938

  1. QCD phase transitions via a refined truncation of Dyson-Schwinger equations

    CERN Document Server

    Gao, Fei

    2016-01-01

    We investigate both the chiral and deconfinement phase transitions of QCD matter in a refined scheme of Dyson-Schwinger equations, which have been shown to be successful in giving the meson mass spectrum and matching the interaction with the results from ab initio computation. We verify the equivalence of the chiral susceptibility criterion with different definitions for the susceptibility and confirm that the chiral susceptibility criterion is efficient to fix not only the chiral phase boundary but also the critical end point (CEP), especially when one could not have the effective thermodynamical potential. We propose a generalized Schwinger function criterion for the confinement. We give the phase diagram of both phase transitions and show that in the refined scheme the position of the CEP shifts to lower chemical potential and higher temperature. Based on our calculation and previous results of the chemical freeze out conditions, we propose that the CEP locates in the states of the matter generated by the ...

  2. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  3. Multiobjective Optimization and Phase Transitions

    CERN Document Server

    Seoane, Luís F

    2015-01-01

    Many complex systems obey to optimality conditions that are usually not simple. Conflicting traits often interact making a Multi Objective Optimization (MOO) approach necessary. Recent MOO research on complex systems report about the Pareto front (optimal designs implementing the best trade-off) in a qualitative manner. Meanwhile, research on traditional Simple Objective Optimization (SOO) often finds phase transitions and critical points. We summarize a robust framework that accounts for phase transitions located through SOO techniques and indicates what MOO features resolutely lead to phase transitions. These appear determined by the shape of the Pareto front, which at the same time is deeply related to the thermodynamic Gibbs surface. Indeed, thermodynamics can be written as an MOO from where its phase transitions can be parsimoniously derived; suggesting that the similarities between transitions in MOO-SOO and Statistical Mechanics go beyond mere coincidence.

  4. Vortex driven phase transition in Topologically Massive QED

    CERN Document Server

    Hoshino, Yuichi

    2016-01-01

    There is chiral like symmetry for 4-component massless fermion in (2+1)-dimensional gauge theory.Since QED$_{3}$ with Chern-Simons term contains vortex solution for vector potential,one may expect vortex driven phase transition as Kosterlitz-Thouless type where chiral condensate is washed away at zero temperature.To study this possibility,we evaluate the fermion propagator by Dyson-Schwinger equation numerically and spectral function analytically in the Landau gauge.For quenched case we adopt Ball-Chiu vertex to keep gauge invariance of the results.The critical value of topological mass,above which chiral condensate washed away, turned out to be $O(10^{-2})e^{2}$ at least for weak coupling in both cases.

  5. Chiral two-body currents in nuclei: Gamow-Teller transitions and neutrinoless double-beta decay

    OpenAIRE

    Menéndez, J.; Gazit, D.; Schwenk, A.

    2011-01-01

    We show that chiral effective field theory (EFT) two-body currents provide important contributions to the quenching of low-momentum-transfer Gamow-Teller transitions, and use chiral EFT to predict the momentum-transfer dependence that is probed in neutrinoless double-beta decay. We then calculate for the first time the neutrinoless double-beta decay operator based on chiral EFT currents and study the nuclear matrix elements at successive orders. The contributions from chiral two-body currents...

  6. Phase transitions and dark matter problems

    International Nuclear Information System (INIS)

    The possible relationships between phase transitions in the early universe and dark matter problems are discussed. It is shown that there are at least 3 distinct cosmological dark matter problems 1) halos; 2) galaxy formation and clustering; and 3) Ω = 1, each emphasizing different attributes for the dark matter. At least some of the dark matter must by baryonic but if problems 2 and 3 are real they seem to also require non-baryonic material. However, if seeds are generated at the quark-hadron-chiral symmetry transition then alternatives to the standard scenarios may occur. At present no simple simultaneous solution (neither ''hot'', ''warm'', nor ''cold'') exists for all 3 problems, but non-standard solutions with strings, decaying particles or light not tracing to mass may work. An alternative interpretation of the relationship of the cluster-cluster and galaxy-galaxy correlation functions using renormalized scaling is mentioned. In this interpretation galaxies are more strongly correlated and the cluster-cluster function is not expected to go negative until > or approx. 200 Mpc. Possible phase transition origins for the cluster-cluster renormalized scale are presented as ways to obtain a dimension 1.2 fractal. (orig.)

  7. Phase diagram and the pseudogap state in a linear chiral homopolymer model

    Science.gov (United States)

    Sinelnikova, A.; Niemi, A. J.; Ulybyshev, M.

    2015-09-01

    The phase structure of a single self-interacting homopolymer chain is investigated in terms of a universal theoretical model, designed to describe the chain in the infrared limit of slow spatial variations. The effects of chirality are studied and compared with the influence of a short-range attractive interaction between monomers, at various ambient temperature values. In the high-temperature limit the homopolymer chain is in the self-avoiding random walk phase. At very low temperatures two different phases are possible: When short-range attractive interactions dominate over chirality, the chain collapses into a space-filling conformation. But when the attractive interactions weaken, there is a low-temperature unfolding transition and the chain becomes like a straight rod. Between the high- and low-temperature limits, several intermediate states are observed, including the θ regime and pseudogap state, which is a novel form of phase state in the context of polymer chains. Applications to polymers and proteins, in particular collagen, are suggested.

  8. Phase transition in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph.; Duflot, V. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France); Duflot, V.; Gulminelli, F. [Laboratoire de Physique Corpusculaire, LPC-ISMRa, CNRS-IN2P3, 14 - Caen (France)

    2000-07-01

    The general problem of the definition of a phase transition without employing the thermodynamical limit is addressed. Different necessary conditions are considered and illustrated with examples from different nuclear and general physics phenomenologies. (authors)

  9. Phase transition in finite systems

    International Nuclear Information System (INIS)

    The general problem of the definition of a phase transition without employing the thermodynamical limit is addressed. Different necessary conditions are considered and illustrated with examples from different nuclear and general physics phenomenologies. (authors)

  10. Phenomenology of cosmic phase transitions

    International Nuclear Information System (INIS)

    The evolution of the cosmic matter from Planck temperature to the atomic combination temperature is considered from a phenomenological point of view. Particular emphasis is devoted to the sequence of cosmic phase transitions. The inflationary era at the temperature of the order of the grand unification energy scale and the quantum chromodynamic confinement transition are dealt with in detail. (author) 131 refs.; 26 figs

  11. Application of Δ- and Λ-Isomerism of Octahedral Metal Complexes for Inducing Chiral Nematic Phases

    Directory of Open Access Journals (Sweden)

    Hisako Sato

    2009-10-01

    Full Text Available The Δ- and Λ-isomerism of octahedral metal complexes is employed as a source of chirality for inducing chiral nematic phases. By applying a wide range of chiral metal complexes as a dopant, it has been found that tris(β-diketonatometal(III complexes exhibit an extremely high value of helical twisting power. The mechanism of induction of the chiral nematic phase is postulated on the basis of a surface chirality model. The strategy for designing an efficient dopant is described, together with the results using a number of examples of Co(III, Cr(III and Ru(III complexes with C2 symmetry. The development of photo-responsive dopants to achieve the photo-induced structural change of liquid crystal by use of photo-isomerization of chiral metal complexes is also described.

  12. Nonequilibrium Chiral Dynamics and Effective Lagrangians

    CERN Document Server

    Nicola, A G

    2001-01-01

    We review our recent work on Chiral Lagrangians out of thermal equilibrium, which are introduced to analyse the pion gas formed after a Relativistic Heavy Ion Collision. Chiral Perturbation Theory is extended by letting $\\fpi$ be time dependent and allows to describe explosive production of pions in parametric resonance. This mechanism could be relevant if hadronization occurs at the chiral phase transition.

  13. Quantum Phase Transition, Dissipation, and Measurement

    OpenAIRE

    Chakravarty, Sudip

    2009-01-01

    A selected set of topics in quantum phase transition is discussed. It includes dissipative quantum phase transitions, the role of disorder, and the relevance of quantum phase transition to measurement theory in quantum mechanics.

  14. Phase transition in Liouville theory

    International Nuclear Information System (INIS)

    We suggest that the vortices arising in a Kosterlitz-Thouless phase transition in Liouville theory correspond to transitions between different genera, producing the ''plumber's nightmare'' and other phases that have been predicted in fluid membrane theory from energetic considerations. This transition has previously been invoked by Cates to explain the degeneration of numerical simulations of Gaussian random surfaces into branched polymers. The difficulty in quantizing Liouville theory for d>1 is conjectured to be due to our insistence on working at a fixed genus

  15. Berry Phases and Quantum Phase Transitions

    CERN Document Server

    Hamma, A

    2006-01-01

    We study the connection between Berry phases and quantum phase transitions of generic quantum many-body systems. Consider sequences of Berry phases associated to sequences of loops in the parameter space whose limit is a point. If the sequence of Berry phases does not converge to zero, then the limit point is a quantum critical point. Quantum critical points are associated to failures of adiabaticity. We discuss the remarkable example of the anisotropic XY spin chain in a transverse magnetic field and detect the XX region of criticality.

  16. Phase transitions in field theory

    International Nuclear Information System (INIS)

    By means of an example for which the effective potential is explicitly calculable (up to the one loop approximation), it is discussed how a phase transition takes place as the temperature is increased and pass from spontaneously broken symmetry to a phase in which the symmetry is restored. (Author)

  17. Chern-Simons diffusion rate across different phase transitions

    Science.gov (United States)

    Rougemont, Romulo; Finazzo, Stefano Ivo

    2016-05-01

    We investigate how the dimensionless ratio given by the Chern-Simons diffusion rate ΓCS divided by the product of the entropy density s and temperature T behaves across different kinds of phase transitions in the class of bottom-up nonconformal Einstein-dilaton holographic models originally proposed by Gubser and Nellore. By tuning the dilaton potential, one is able to holographically mimic a first order, a second order, or a crossover transition. In a first order phase transition, ΓCS/s T jumps at the critical temperature (as previously found in the holographic literature), while in a second order phase transition it develops an infinite slope. On the other hand, in a crossover, ΓCS/s T behaves smoothly, although displaying a fast variation around the pseudo-critical temperature. In all the cases, ΓCS/s T increases with decreasing T . The behavior of the Chern-Simons diffusion rate across different phase transitions is expected to play a relevant role for the chiral magnetic effect around the QCD critical end point, which is a second order phase transition point connecting a crossover band to a line of first order phase transition. Our findings in the present work add to the literature the first predictions for the Chern-Simons diffusion rate across second order and crossover transitions in strongly coupled nonconformal, non-Abelian gauge theories.

  18. Incommensurate phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Currat, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-11-01

    We review the characteristic aspects of modulated crystals from the point of view of inelastic neutron scattering. We discuss the phenomenological Landau theory of the normal-to-incommensurate displacive instability and its predictions concerning the fluctuation spectrum of the modulated phase. General results on the form of the normal-mode eigenvectors and on the inelastic scattering channels through which they couple to the probe are established using the superspace approach. We illustrate these results on a simple discrete model symmetry and we review available inelastic neutron scattering data on several displacively modulated compounds. (author) 21 figs., 73 refs.

  19. Phase transition in black holes

    CERN Document Server

    Roychowdhury, Dibakar

    2014-01-01

    The present thesis is devoted towards the study of various aspects of the phase transition phenomena occurring in black holes defined in an Anti-de-Sitter (AdS) space. Based on the fundamental principles of thermodynamics and considering a grand canonical framework we examine various aspects of the phase transition phenomena occurring in AdS black holes. We analytically check that this phase transition between the smaller and larger mass black holes obey Ehrenfest relations defined at the critical point and hence confirm a second order phase transition. This include both the rotating and charged black holes in Einstein gravity. Apart from studying these issues, based on a canonical framework, we also investigate the critical behavior in charged AdS black holes. The scaling laws for these black holes are found to be compatible with the static scaling hypothesis. Finally, based on the usual framework of AdS/CFT duality, we investigate the phase transition phenomena occurring in charged hairy black holes defined...

  20. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    CERN Document Server

    Fischer, Tobias; Hempel, Matthias

    2016-01-01

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Kl\\"ahn and Fischer (2015) (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D$\\chi$SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.

  1. Non-uniform chiral phase studied within the Polyakov NJL model

    OpenAIRE

    Partyka, Tomasz L.

    2010-01-01

    We consider how does the introduction of a Polyakov loop affects the spatially inhomogeneous quark condensate. The primary result of our work is that the existence of the spatially non-uniform chiral phase is confirmed within the Polyakov NJL model in a chiral limit. These findings are obtained both in a 3d-cutoff and in a Schwinger (proper time) regularization schemes.

  2. The QCD phase transition. From the microscopic mechanism to signals

    International Nuclear Information System (INIS)

    This talk consists of two very different parts: the first one deals with non-perturbative QCD and physics of the chiral restoration, the second with rather low-key (and still unfinished) work aiming at obtaining EOS and other properties of hot/dense hadronic matter from data on heavy ion collisions. The microscopic mechanism for chiral restoration phase transition is a transition from randomly placed tunneling events (instantons) at low T to a set of strongly correlated tunneling-anti-tunneling events (known as instanton-anti-instanton molecules) at high T. Many features of the transition can be explained in this simple picture, especially the critical line and its dependence on quark masses. This scenario predicts qualitative change of the basic quark-quark interactions around the phase transition line, with some states (such as pion-sigma ones) probably surviving event at T > Tc. In the second half of the talk experimental data on collective flow in heavy ion collision are discussed its hydro-based description and relation to equation of state (EOS). A distinct feature of the QCD phase transition region is high degree of 'softness', (small ratio pressure/energy density). (author)

  3. Phase transition in evolutionary games

    CERN Document Server

    Cao, Z J; Cao, Zhen; Hwa, Rudolph C

    1995-01-01

    The evolution of cooperative behaviour is studied in the deterministic version of the Prisoners' Dilemma on a two-dimensional lattice. The payoff parameter is set at the critical region 1.8 < b < 2.0 , where clusters of cooperators are formed in all spatial sizes. Using the factorial moments developed in particle and nuclear physics for the study of phase transition, the distribution of cooperators is studied as a function of the bin size covering varying numbers of lattice cells. From the scaling behaviour of the moments a scaling exponent is determined and is found to lie in the range where phase transitions are known to take place in physical systems. It is therefore inferred that when the payoff parameter is increased through the critical region the biological system of cooperators undergoes a phase transition to defectors. The universality of the critical behaviour is thus extended to include also this particular model of evolution dynamics.

  4. Development of simultaneous measurement system of birefringence, optical rotational power, and transmission spectra for chiral liquid crystal phases

    Science.gov (United States)

    Feng, Zhengyu; Ishikawa, Ken

    2016-05-01

    A novel experimental setup used to measure the important optical properties of liquid crystal materials is proposed. The setup allows us to measure electric-field-induced birefringence, optical rotational power, and transmission spectra consecutively. This system can be widely applied to characterize liquid crystal materials including blue phases, ferroelectric liquid crystals, and other chiral phases. We adopted this system to study the phase transition behavior of a V-shape switching ferroelectric liquid crystal mixture and made an important correction of experimental results previously reported by Sandhya et al. [ Europhys. Lett. 90, 56005 (2010)]. This finding proves the advantage of this system compared with the measurement method using individual systems.

  5. The helical phase of chiral nematic liquid crystals as the Bianchi VII(0) group manifold

    CERN Document Server

    Gibbons, G W

    2011-01-01

    We show that the optical structure of the helical phase of a chiral nematic is naturally associated with the Bianchi VII(0) group manifold. The Joets-Ribotta metric governing propagation of the extraordinary rays is invariant under the simply transitive action of the universal cover of the three dimensional Euclidean group of two dimensions. Thus extraordinary light rays are geodesics of a left-invariant metric on this Bianchi type VII(0) group. We are able to solve by separation of variables both the wave equation and the Hamilton-Jacobi equation for this metric. The former reduces to Mathieu's equation and the later to the quadrantal pendulum equation. We further discuss Maxwell's equations for uniaxial optical materials where the configuration is invariant under a group action. The material is not assumed to be impedance matched, thus going beyond the usual scope of transformation optics. We show that for a chiral nematic in its helical phase Maxwell's equations reduce to a generalised Mathieu equation. Ou...

  6. Phase transitions precipitated by solitosynthesis

    CERN Document Server

    Kusenko, A

    1997-01-01

    Solitosynthesis of Q-balls in the false vacuum can result in a phase transition of a new kind. Formation and subsequent growth of Q-balls via the charge accretion proceeds until the solitons reach a critical charge, at which point it becomes energetically favorable for the Q-ball interior to expand filling space with the true vacuum phase. Solitosynthesis can destabilize a false vacuum even when the tunneling rate is negligible. In models with low-energy supersymmetry, where the Q-balls associated with baryon and lepton number conservation are generically present, solitosynthesis can precipitate transitions between the vacua with different VEV's of squarks and sleptons.

  7. Superunification, phase transitions and cosmology

    International Nuclear Information System (INIS)

    We survey the main features behind the idea of grand unification, both without and with (local) supersymmetry. We then study the high-temperature phase transitions in the theories so realized, and their relevance to the cosmology of the early universe. In particular, we review the basic ingredients of (super) grand unified models and we give the basic tools needed for the study of their phase transitions. After a short introduction to cosmology, we focus on the interplay between unified particle physics models and cosmology, with particular emphasis on the inflationary universe scenario. In the same perspective, new research directions, in the context of higher-dimensional theories, are also discussed. (author)

  8. Chiral gap effect in curved space

    CERN Document Server

    Flachi, Antonino

    2014-01-01

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  9. Artificiality of multifractal phase transitions

    OpenAIRE

    Wolf, Martin; Schmiegel, Jürgen; Greiner, Martin

    1999-01-01

    A multifractal phase transition is associated to a nonanalyticity in the generalised dimensions. We show that its occurrence is an artifact of the asymptotic scaling behaviour of integral moments and that it is not observed in an analysis based on differential n-point correlation densities.

  10. Phase transitions in finite systems

    International Nuclear Information System (INIS)

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  11. Phase transitions in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    2002-07-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  12. Phase transitions in quantum chromodynamics

    CERN Document Server

    Meyer-Ortmanns, H

    1996-01-01

    The current understanding of finite temperature phase transitions in QCD is reviewed. A critical discussion of refined phase transition criteria in numerical lattice simulations and of analytical tools going beyond the mean-field level in effective continuum models for QCD is presented. Theoretical predictions about the order of the transitions are compared with possible experimental manifestations in heavy-ion collisions. Various places in phenomenological descriptions are pointed out, where more reliable data for QCD's equation of state would help in selecting the most realistic scenario among those proposed. Unanswered questions are raised about the relevance of calculations which assume thermodynamic equilibrium. Promising new approaches to implement nonequilibrium aspects in the thermodynamics of heavy-ion collisions are described.

  13. Pairing Phase Transitions of Matter under Rotation

    CERN Document Server

    Jiang, Yin

    2016-01-01

    The phases and properties of matter under global rotation have attracted much interest recently. In this paper we investigate the pairing phenomena in a system of fermions under the presence of rotation. We find that there is a generic suppression effect on pairing states with zero angular momentum. We demonstrate this effect with the chiral condensation and the color superconductivity in hot dense QCD matter as explicit examples. In the case of chiral condensation, a new phase diagram in the temperature-rotation parameter space is found, with a nontrivial critical point.

  14. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.

    Science.gov (United States)

    Sunoj, Raghavan B

    2016-05-17

    In asymmetric catalysis, a chiral catalyst bearing chiral center(s) is employed to impart chirality to developing stereogenic center(s). A rich and diverse set of chiral catalysts is now available in the repertoire of synthetic organic chemistry. The most recent trends point to the emergence of axially chiral catalysts based on binaphthyl motifs, in particular, BINOL-derived phosphoric acids and phosphoramidites. More fascinating ideas took shape in the form of cooperative multicatalysis wherein organo- and transition-metal catalysts are made to work in concert. At the heart of all such manifestations of asymmetric catalysis, classical or contemporary, is the stereodetermining transition state, which holds a perennial control over the stereochemical outcome of the catalytic process. Delving one step deeper, one would find that the origin of the stereoselectivity is delicately dependent on the relative stabilization of one transition state, responsible for the formation of the predominant stereoisomer, over the other transition state for the minor stereoisomer. The most frequently used working hypothesis to rationalize the experimentally observed stereoselectivity places an undue emphasis on steric factors and tends to regard the same as the origin of facial discrimination between the prochiral faces of the reacting partners. In light of the increasing number of asymmetric catalysts that rely on hydrogen bonding as well as other weak non-covalent interactions, it is important to take cognizance of the involvement of such interactions in the sterocontrolling transition states. Modern density functional theories offer a pragmatic and effective way to capture non-covalent interactions in transition states. Aided by the availability of such improved computational tools, it is quite timely that the molecular origin of stereoselectivity is subjected to more intelligible analysis. In this Account, we describe interesting molecular insights into the stereocontrolling

  15. Quantum and stringy corrections to the equation of state of holographic QCD matter and the nature of the chiral transition

    CERN Document Server

    Alho, T; Kajantie, K; Kiritsis, E; Tuominen, K

    2015-01-01

    We consider the finite temperature phase diagram of holographic QCD in the Veneziano limit (Nc large, Nf large with xf=Nf/Nc fixed) and calculate one string-loop corrections to the free energy in certain approximations. Such corrections, especially due to the pion modes are unsuppressed in the Veneziano limit. We find that under some extra assumptions the first order transition following from classical gravity solutions can become second order. If stringy asymptotics are of a special form and there are residual interactions it may even become of third order. Operationally these computations imply modelling the low temperature chiral symmetry breaking phase with a hadron gas containing Nf^2 massless Goldstone bosons and an exponential spectrum of massive hadrons. A third order transition is possible only if repulsive hadron interactions via the excluded volume effect are included.

  16. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  17. Phase Transitions in the Universe

    CERN Document Server

    Gleiser, Marcello

    1998-01-01

    During the past two decades, cosmologists turned to particle physics in order to explore the physics of the very early Universe. The main link between the physics of the smallest and largest structures in the Universe is the idea of spontaneous symmetry breaking, familiar from condensed matter physics. Implementing this mechanism into cosmology leads to the interesting possibility that phase transitions related to the breaking of symmetries in high energy particle physics took place during the early history of the Universe. These cosmological phase transitions may help us understand many of the challenges faced by the standard hot Big Bang model of cosmology, while offering a unique window into the very early Universe and the physics of high energy particle interactions.

  18. 'Magnetic' phase transition in silver

    International Nuclear Information System (INIS)

    Experimental and theoretical investigations of the magnetic susceptibility near the phase transition into the Condon domain state in silver are presented. We report about the precursor of the Condon instability of an electron gas by using data of the measurement of the magnetic field-dependence of the susceptibility. Experimental results are explained theoretically within the framework of the Lifshitz-Kosevich-Shoenberg theory. A good agreement between the theory and the experiment is obtained when de Haas-van Alphen oscillations are only originated from 'belly' oscillations, and as a result of this, the spherical modelling of the Fermi surface in silver is justified. It is shown that the phase transition into the Condon domain state is the critical point of the liquid-gas type at which the isothermal susceptibility does not diverge but possesses a finite value due to the nonzero demagnetization factor

  19. Electroweak phase transition recent results

    CERN Document Server

    Csikor, Ferenc

    2000-01-01

    Recent results of four-dimensional (4d) lattice simulations on the finite temperature electroweak phase transition (EWPT) are discussed. The phase transition is of first order in the SU(2)-Higgs model below the end point Higgs mass 66.5$\\pm$1.4 GeV. For larger masses a rapid cross-over appears. This result completely agrees with the results of the dimensional reduction approach. Including the full Standard Model (SM) perturbatively the end point is at 72.1$\\pm$1.4 GeV. Combined with recent LEP Higgs mass lower bounds, this excludes any EWPT in the SM. A one-loop calculation of the static potential makes possible a precise comparison of the lattice and perturbative results. Recent 4d lattice studies of the Minimal Supersymmetric SM (MSSM) are also mentioned.

  20. Mechanical stresses upon phase transitions

    OpenAIRE

    Pedersen, Tom Peder Leervad

    2003-01-01

    Mechanical stress studies were carried out on three different groups of functional coatings using a purpose-built system. Functional coatings have become increasingly important in recent years due to their interesting technological applications. In this work three different groups of coatings were studied. Transition metal oxides are used as optical coatings, hard coatings, etc., phase change films find application in optical data storage technology, while optically switchable coatings have b...

  1. First-order chiral to non-chiral transition in the angular dependence of the upper critical induction of the Scharnberg–Klemm p-wave pair state

    International Nuclear Information System (INIS)

    We calculate the temperature T and angular (θ, ϕ) dependencies of the upper critical induction Bc2(θ, ϕ, T) for parallel-spin superconductors with an axially symmetric p-wave pairing interaction pinned to the lattice and a dominant ellipsoidal Fermi surface (FS). For all FS anisotropies, the chiral Scharnberg–Klemm (SK) state Bc2(θ, ϕ, T) exceeds that of the chiral Anderson–Brinkman–Morel (ABM) state and exhibits a kink at θ = θ*(T, ϕ), indicative of a first-order transition from its chiral, nodal-direction behavior to its non-chiral, antinodal-direction behavior. Applicabilities to Sr2RuO4, UCoGe and the candidate topological superconductor CuxBi2Se3 are discussed. (fast track communication)

  2. Pharmaceutical-enantiomers resolution using immobilized polysaccharide-based chiral stationary phases in supercritical fluid chromatography.

    Science.gov (United States)

    De Klerck, Katrijn; Vander Heyden, Yvan; Mangelings, Debby

    2014-02-01

    Since their introduction on the market the applicability of immobilized polysaccharide-based chiral stationary phases in high-performance liquid chromatography has been thoroughly investigated. These immobilized phases have the benefit to be applicable with a wide range of modifiers, potentially extending the application range of the polysaccharide-based stationary phases. Because an increasing number of stationary phases are being introduced in the field of chiral chromatography it is important to evaluate their enantioselectivity in different techniques in order to get an idea about their applicability. In this study, three immobilized chiral polysaccharide-based stationary phases (Chiralpak IA, IB, and IC) are evaluated in supercritical fluid chromatography (SFC) with a test set of pharmaceutical racemates. This is done in a three-fold manner: their performance is evaluated (1) using traditional modifiers, (2) using mixtures of atypical modifiers, and (3) the results were compared to those on coated stationary phases with an equivalent chiral selector. To get a visual overview of the enantioselective patterns of the different chromatographic systems (mobile and stationary phase combinations), a Principal Component Analysis is performed, which allows determining the (dis)similarity between individual systems. To assess the complementarity cumulative success rates are determined. The immobilized chiral stationary phases prove to yield high cumulative success rates. PMID:24438871

  3. Nanocellulose 3, 5-Dimethylphenylcarbamate Derivative Coated Chiral Stationary Phase: Preparation and Enantioseparation Performance.

    Science.gov (United States)

    Zhang, Xiaoli; Wang, Litao; Dong, Shuqing; Zhang, Xia; Wu, Qi; Zhao, Liang; Shi, Yanping

    2016-05-01

    Nanocrystalline cellulose (NCC) with high surface area and high ordered crystalline structure was prepared from microcrystalline cellulose (MCC) under the hydrolysis of sodium hypochlorite. NCC was further reacted with 3,5-dimethylphenyl isocyanate to obtain the nanocellulose derivative, and then coated successfully on the surface of silica gel to a prepared NCC-coated chiral stationary phase (CSP) as a new kind of chiral separation material. Similarly, MCC derivative-coated CSP was also prepared as contrast. The chiral separation performance of NCC-based CSP was evaluated and compared with MCC-based CSP by high-performance liquid chromatography. Moreover, the effects of the alcohol modifiers, mobile phase additives, and flow rates on chiral separations were investigated in detail. The results showed that 10 chiral compounds were separated on NCC-based CSP with better peak shape and higher column efficiency than MCC-based CSP, which confirmed that NCC-based CSP was a promising packing material for the resolution of chiral compounds.Chirality 28:376-381, 2016. © 2016 Wiley Periodicals, Inc. PMID:26949227

  4. A Review of Salam Phase Transition in Protein Amino Acids: Implication for Biomolecular Homochirality

    OpenAIRE

    Bai, Fan; Wang, Wenqing

    2002-01-01

    The origin of chirality, closely related to the evolution of life on the earth, has long been debated. In 1991, Abdus Salam suggested a novel approach to achieve biomolecular homochirality by a phase transition. In his subsequent publication, he predicted that this phase transition could eventually change D-amino acids to L-amino acids as C -H bond would break and H atom became a superconductive atom. Since many experiments denied the configuration change in amino acids, Salam hypothesis arou...

  5. Two-color QCD with chiral chemical potential

    Science.gov (United States)

    Braguta, V. V.; Goy, V. A.; Ilgenfritz, E.-M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.; Schreiber, A.

    2016-01-01

    The phase diagram of two-color QCD with a chiral chemical potential is studied on the lattice. The focus is on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulations are carried out with dynamical staggered fermions without rooting. The dependence of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented.

  6. Nanocellulose Derivative/Silica Hybrid Core-Shell Chiral Stationary Phase: Preparation and Enantioseparation Performance

    OpenAIRE

    Xiaoli Zhang; Litao Wang; Shuqing Dong; Xia Zhang; Qi Wu; Liang Zhao; Yanping Shi

    2016-01-01

    Core-shell silica microspheres with a nanocellulose derivative in the hybrid shell were successfully prepared as a chiral stationary phase by a layer-by-layer self-assembly method. The hybrid shell assembled on the silica core was formed using a surfactant as template by the copolymerization reaction of tetraethyl orthosilicate and the nanocellulose derivative bearing triethoxysilyl and 3,5-dimethylphenyl groups. The resulting nanocellulose hybrid core-shell chiral packing materials (CPMs) we...

  7. Phase diagram of the chiral magnet Cr1 /3NbS2 in a magnetic field

    Science.gov (United States)

    Tsuruta, K.; Mito, M.; Deguchi, H.; Kishine, J.; Kousaka, Y.; Akimitsu, J.; Inoue, K.

    2016-03-01

    We construct the phase diagram of the chiral magnet Cr1 /3NbS2 in a dc magnetic field (Hdc) using ac magnetic susceptibility measurements. At Hdc=0 , the ac response at the transition from the helical magnetic (HM) state to the paramagnetic (PM) state consists of a giant third-order harmonic component (M3 ω) and a first-order harmonic component (M1 ω). By applying Hdc perpendicular to the c axis, the HM state is transformed to the chiral soliton lattice (CSL) state, which is a superlattice tuned by Hdc. The above giant M3 ω is markedly suppressed at small Hdc. The CSL state is found to consist of CSL-1, with dominant helical texture and a poor ferromagnetic array, and CSL-2, with a large ferromagnetic array. The transition between CSL-1 and the PM state causes a linear magnetic response, the dominant component of which is the in-phase M1 ω. With increasing temperature, CSL-2 is transformed into the forced ferromagnetic (FFM) state, and ultimately the PM state is reached. The transition between CSL-2 and the FFM state consists of a large M3 ω and large out-of-phase M1 ω as well as in-phase M1 ω. The transition between the FMM and PM states also yields a linear magnetic response, like the CSL-1-PM-state transition. Five typical magnetic dynamics in the transitions among the HM state, CSL-1, CSL-2, FFM state, and PM state were identified according to the equivalent dynamical motion equation of a nonlinear spring model.

  8. The Wigner solution and QCD phase transitions in a modified PNJL model

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhu-fang [Nanjing University, Department of Physics, Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing (China); Shi, Chao [Nanjing University, Department of Physics, Nanjing (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing (China); Sun, Wei-min; Zong, Hong-shi [Nanjing University, Department of Physics, Nanjing (China); Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing (China); Wang, Yong-long [Nanjing University, Department of Physics, Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Nanjing (China); Linyi University, Department of Physics, School of Science, Linyi (China); Massachusetts Institute of Technology, Center for Theoretical Physics, Cambridge, MA (United States)

    2014-02-15

    By employing some modification to the widely used two-flavor Polyakov-loop extended Nambu-Jona-Lasinio (PNJL) model, we discuss the Wigner solution of the quark gap equation at finite temperature and zero quark chemical potential beyond the chiral limit, and then we try to explore its influence on the chiral and deconfinement phase transitions of QCD at finite temperature and zero chemical potential. The discovery of the coexistence of the Nambu and the Wigner solutions of the quark gap equation with nonzero current quark mass at zero temperature and zero chemical potential, as well as their evolutions with temperature, is very interesting for the studies of the phase transitions of QCD. According to our results, the chiral phase transition might be of first order (while the deconfinement phase transition is still a crossover, as in the normal PNJL model), and the corresponding phase transition temperature is lower than that of the deconfinement phase transition, instead of coinciding with each other, which are not the same as the conclusions obtained from the normal PNJL model. In addition, we also discuss the sensibility of our final results on the choice of model parameters. (orig.)

  9. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  10. Light scattering near phase transitions

    CERN Document Server

    Cummins, HZ

    1983-01-01

    Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.

  11. Fate of separate chiral transitions at finite $\\mu_I$ under the influence of mismatched vector interactions

    CERN Document Server

    Zhang, Zhao

    2014-01-01

    The flavor-mixing induced by the mismatched vector-isoscalar and vector-isovector interactions at finite baryon chemical potential $\\mu$ and isospin chemical potential $\\mu_I$ is demonstrated in the Nambu-Jona-Lasinio (NJL) type model of QCD. The influence of this non-anomaly flavor-mixing on the possible separate chiral transitions at nonzero $\\mu_I$ is studied under the assumption of the effective restoration of the $U(1)_A$ symmetry. We find that for the weak isospin asymmetry, the two separate phase boundaries found previously can be converted into one only if the vector-isovector coupling $g_v^v$ is significantly stronger than the vector-isoscalar one $g_v^s$ without the axial anomaly. When the weak Kabayashi-Maskawa-'t Hooft (KMT) interaction is included, we find that the separation of the chiral transition with two critical endpoints for the relatively strong isospin asymmetry can still be removed owning to the vector interactions. In this case, it is not the vector coupling difference but the strength...

  12. Landau-Peierls instability in a Fulde-Ferrell type inhomogeneous chiral condensed phase

    CERN Document Server

    Lee, Tong-Gyu; Tsue, Yasuhiko; Tatsumi, Toshitaka; Friman, Bengt

    2015-01-01

    We investigate the stability of an inhomogeneous chiral condensed phase against low energy fluctuations about a spatially modulated order parameter. This phase corresponds to the so-called dual chiral density wave in the context of quark matter, where the chiral condensate is spatially modulated with a finite wavevector in a single direction. From the symmetry viewpoint, the phase realizes a locking of flavor and translational symmetries. Starting with a Landau-Ginzburg-Wilson effective Lagrangian, we find that the associated Nambu-Goldstone modes, whose dispersion relations are spatially anisotropic and soft in the direction normal to the wavevector of the modulation, wash out the long-range order at finite temperatures, but support algebraically decaying long-range correlations. This implies that the phase can exhibit a quasi-one-dimensional order as in liquid crystals.

  13. Volume phase transitions of cholesteric liquid crystalline gels

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Akihiko, E-mail: matuyama@bio.kyutech.ac.jp [Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502 (Japan)

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  14. Light sterile neutrinos from a late phase transition

    CERN Document Server

    Vecchi, Luca

    2016-01-01

    Light sterile neutrinos represent a well-motivated extension of the 3-neutrino paradigm. However, the impressive agreement between standard cosmology and data casts doubts on their existence. Here we present a class of scenarios that robustly avoids this tension. In these models the sterile neutrinos are light, chiral states of a new sector interacting with the Standard Model via the right-handed neutrino portal and, crucially, active-sterile neutrino oscillations require a phase transition in the hidden sector. We explore the hidden-couplings/critical-temperature plane and identify regions where several sterile neutrinos can be accommodated. A late phase transition is usually preferred and may also ward off a potential threat posed by the formation of topologically stable defects.

  15. Dynamical constraints on phase transitions

    International Nuclear Information System (INIS)

    The numerical solutions of nonlocal and local Boltzmann kinetic equations for the simulation of central heavy ion reactions are parameterized in terms of time dependent thermodynamical variables in the Fermi liquid sense. This allows to discuss dynamical trajectories in phase space. The nonequilibrium state is characterized by non-isobaric, non-isochoric etc conditions, called iso-nothing conditions. Therefore a combination of thermodynamical observables is constructed which allows to locate instabilities and points of possible phase transition in a dynamical sense. We find two different mechanisms of instability, a short time surface - dominated instability and later a spinodal - dominated volume instability. The latter one occurs only if the incident energies are not exceeding much the Fermi energy and might be attributed to spinodal decomposition. Oppositely the fast surface explosion occurs far outside the spinodal and pertains also in the cases where the system develops too fast for suffering the spinodal decomposition and where the system approaches equilibrium outside the spinodal. (author)

  16. Chiral magnetic effect in the PNJL model

    CERN Document Server

    Fukushima, Kenji; Gatto, Raoul

    2010-01-01

    We study the two-flavor Nambu--Jona-Lasinio model with the Polyakov loop (PNJL model) in the presence of a strong magnetic field and a chiral chemical potential $\\mu_5$ which mimics the effect of imbalanced chirality due to QCD instanton and/or sphaleron transitions. Firstly we focus on the properties of chiral symmetry breaking and deconfinement crossover under the strong magnetic field. Then we discuss the role of $\\mu_5$ on the phase structure. Finally the chirality charge, electric current, and their susceptibility, which are relevant to the Chiral Magnetic Effect, are computed in the model.

  17. Dynamic Phase Transitions in PVT Systems

    CERN Document Server

    Ma, Tian

    2007-01-01

    The main objective of this article are two-fold. First, we introduce some general principles on phase transition dynamics, including a new dynamic transition classification scheme, and a Ginzburg-Landau theory for modeling equilibrium phase transitions. Second, apply the general principles and the recently developed dynamic transition theory to study dynamic phase transitions of PVT systems. In particular, we establish a new time-dependent Ginzburg-Landau model, whose dynamic transition analysis is carried out. It is worth pointing out that the new dynamic transition theory, along with the dynamic classification scheme and new time-dependent Ginzburg Landau models for equilibrium phase transitions can be used in other phase transition problems, including e.g. the ferromagnetism and superfluidity, which will be reported elsewhere. In addition, the analysis for the PVT system in this article leads to a few physical predications, which are otherwise unclear from the physical point of view.

  18. Symmetry and Phase Transitions in Nuclei

    International Nuclear Information System (INIS)

    Phase transitions in nuclei have received considerable attention in recent years, especially after the discovery that, contrary to expectations, systems at the critical point of a phase transition display a simple structure. In this talk, quantum phase transitions (QPT), i.e. phase transitions that occur as a function of a coupling constant that appears in the quantum Hamiltonian, H, describing the system, will be reviewed and experimental evidence for their occurrence in nuclei will be presented. The phase transitions discussed in the talk will be shape phase transitions. Different shapes have different symmetries, classified by the dynamic symmetries of the Interacting Boson Model, U(5), SU(3) and SO(6). Very recently, the concept of Quantum Phase Transitions has been extended to Excited State Quantum Phase Transitions (ESQPT). This extension will be discussed and some evidence for incipient ESQPT in nuclei will be presented. Systems at the critical point of a phase transition are called 'critical systems'. Approximate analytic formulas for energy spectra and other properties of 'critical nuclei', in particular for nuclei at the critical point of the second order U(5)-SO(6) transition, called E(5), and along the line of first order U(5)-SU(3) transitions, called X(5), will be presented. Experimental evidence for 'critical nuclei' will be also shown. Finally, the microscopic derivation of shape phase transitions in nuclei within the framework of density functional methods will be briefly discussed.(author)

  19. Enantiomeric Separation of Chiral Pesticides by Permethylated β-Cyclodextrin Stationary Phase in Reversed Phase Liquid Chromatography.

    Science.gov (United States)

    Yan, Jin; Zhang, Renke; Wang, Xinru; Wang, Yao; Wang, Dezhen; Zhou, Zhiqiang; Zhu, Wentao

    2016-05-01

    Enantiomeric separation of six chiral pesticides by high-performance liquid chromatography with permethylated β-cyclodextrin (β-PM) chiral stationary phase were tested under reversed phase conditions. The influences of water composition from 10% to 45% in the mobile phase and column temperatures from 0°C to 40°C on the separation were investigated. Baseline separation was obtained for diclofop-methyl, fenoxaprop-ethyl, tebuconazole and triticonazole, and Rs of these pesticides were greater than 1.5. However, etoxazole and lactofen were partially separated in all experiments. PMID:26992448

  20. Quark Deconfinement Phase Transition in Neutron Stars

    CERN Document Server

    Alaverdyan, G B

    2009-01-01

    The hadron-quark phase transition in the interior of compact stars is investigated, when the transition proceeds through a mixed phase. The hadronic phase is described in the framework of relativistic mean-field theory, when also the scalar-isovector delta-meson mean-field is taken into account. The changes of the parameters of phase transition caused by the presence of delta-meson field are explored. The results of calculation of structure of the mixed phase (Glendenning construction) are compared with the results of usual first-order phase transition (Maxwell construction).

  1. The phi-meson and Chiral-mass-meson production in heavy-ion collisions as potential probes of quark-gluon-plasma and Chiral symmetry transitions

    Science.gov (United States)

    Takahashi, Y.; Eby, P. B.

    1985-01-01

    Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.

  2. Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Tositaka

    2015-01-01

    Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly, and gives rise to the spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in pulsars and/or magnetars.

  3. QCD Phase Transitions, Volume 15

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  4. Phase Transition Induced Fission in Lipid Vesicles

    OpenAIRE

    Leirer, C.; Wunderlich, B.; Myles, V.M.; Schneider, M F

    2009-01-01

    Abstract In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (T

  5. Berry phase of light Bragg-reflected by chiral liquid crystal media

    CERN Document Server

    Barboza, Raouf; Residori, Stefania; Clerc, Marcel G

    2016-01-01

    Berry phase is revealed for circularly polarized light when it is Bragg-reflected by a chiral liquid crystal medium of the same handedness. By using a chiral nematic layer we demonstrate that if the input plane of the layer is rotated with respect to a fixed reference frame, then, a geometric phase effect occurs for the circularly polarized light reflected by the periodic helical structure of the medium. Theory and numerical simulations are supported by an experimental observation, disclosing novel applications in the field of optical manipulation and fundamental optical phenomena.

  6. Nanocellulose Derivative/Silica Hybrid Core-Shell Chiral Stationary Phase: Preparation and Enantioseparation Performance

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    2016-05-01

    Full Text Available Core-shell silica microspheres with a nanocellulose derivative in the hybrid shell were successfully prepared as a chiral stationary phase by a layer-by-layer self-assembly method. The hybrid shell assembled on the silica core was formed using a surfactant as template by the copolymerization reaction of tetraethyl orthosilicate and the nanocellulose derivative bearing triethoxysilyl and 3,5-dimethylphenyl groups. The resulting nanocellulose hybrid core-shell chiral packing materials (CPMs were characterized and packed into columns, and their enantioseparation performance was evaluated by high performance liquid chromatography. The results showed that CPMs exhibited uniform surface morphology and core-shell structures. Various types of chiral compounds were efficiently separated under normal and reversed phase mode. Moreover, chloroform and tetrahydrofuran as mobile phase additives could obviously improve the resolution during the chiral separation processes. CPMs still have good chiral separation property when eluted with solvent systems with a high content of tetrahydrofuran and chloroform, which proved the high solvent resistance of this new material.

  7. Nanocellulose Derivative/Silica Hybrid Core-Shell Chiral Stationary Phase: Preparation and Enantioseparation Performance.

    Science.gov (United States)

    Zhang, Xiaoli; Wang, Litao; Dong, Shuqing; Zhang, Xia; Wu, Qi; Zhao, Liang; Shi, Yanping

    2016-01-01

    Core-shell silica microspheres with a nanocellulose derivative in the hybrid shell were successfully prepared as a chiral stationary phase by a layer-by-layer self-assembly method. The hybrid shell assembled on the silica core was formed using a surfactant as template by the copolymerization reaction of tetraethyl orthosilicate and the nanocellulose derivative bearing triethoxysilyl and 3,5-dimethylphenyl groups. The resulting nanocellulose hybrid core-shell chiral packing materials (CPMs) were characterized and packed into columns, and their enantioseparation performance was evaluated by high performance liquid chromatography. The results showed that CPMs exhibited uniform surface morphology and core-shell structures. Various types of chiral compounds were efficiently separated under normal and reversed phase mode. Moreover, chloroform and tetrahydrofuran as mobile phase additives could obviously improve the resolution during the chiral separation processes. CPMs still have good chiral separation property when eluted with solvent systems with a high content of tetrahydrofuran and chloroform, which proved the high solvent resistance of this new material. PMID:27153055

  8. Cloud regimes as phase transitions

    Science.gov (United States)

    Stechmann, Samuel N.; Hottovy, Scott

    2016-06-01

    Clouds are repeatedly identified as a leading source of uncertainty in future climate predictions. Of particular importance are stratocumulus clouds, which can appear as either (i) closed cells that reflect solar radiation back to space or (ii) open cells that allow solar radiation to reach the Earth's surface. Here we show that these clouds regimes -- open versus closed cells -- fit the paradigm of a phase transition. In addition, this paradigm characterizes pockets of open cells as the interface between the open- and closed-cell regimes, and it identifies shallow cumulus clouds as a regime of higher variability. This behavior can be understood using an idealized model for the dynamics of atmospheric water as a stochastic diffusion process. With this new conceptual viewpoint, ideas from statistical mechanics could potentially be used for understanding uncertainties related to clouds in the climate system and climate predictions.

  9. Phases and phase transitions in disordered quantum systems

    OpenAIRE

    Vojta, Thomas

    2013-01-01

    These lecture notes give a pedagogical introduction to phase transitions in disordered quantum systems and to the exotic Griffiths phases induced in their vicinity. We first review some fundamental concepts in the physics of phase transitions. We then derive criteria governing under what conditions spatial disorder or randomness can change the properties of a phase transition. After introducing the strong-disorder renormalization group method, we discuss in detail some of the exotic phenomena...

  10. The chiral transition on a 243 x 10 lattice with Nf = 2 clover sea quarks studied by overlap valence quarks

    International Nuclear Information System (INIS)

    Overlap fermions are particularly well suited to study the finite temperature dynamics of the chiral symmetry restoration transition of QCD, which might be just an analytic crossover. Using gauge field configurations on a 243 x 10 lattice with Nf=2 flavours of dynamical Wilson-clover quarks generated by the DIK collaboration, we compute the lowest 50 eigenmodes of the overlap Dirac operator and try to locate the transition by fermionic means. We analyse the spectral density, local chirality and localisation properties of the low-lying modes and illustrate the changing topological and (anti-) selfdual structure of the underlying gauge fields across the transition. (orig.)

  11. Spontaneous Magnetization of Quark Matter in Inhomogeneous Chiral Phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Toshitaka

    2015-01-01

    Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly. This spectral asymmetry gives rise to spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in magnetars. Furthermore, using the generalized Ginzburg-Landau(gGL) expansion, we show that magnetic susceptibility exhibits a peculiar feature

  12. SU(3) Polyakov Linear $\\sigma$-Model in Magnetic Field: Thermodynamics, Higher-Order Moments, Chiral Phase Structure and Meson Masses

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    Effects of external magnetic field on various properties of the quantum chromodynamics under extreme conditions of temperature and density have been analysed. To this end, we use SU(3) Polyakov linear sigma-model and assume that the external magnetic field eB adds some restrictions to the quarks energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization. This requires an additional temperature to drive the system through the chiral phase-transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase-transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of magnetic field on chiral phase-transition. We found that both critical temperature T_c and critical chemical potential increase with increasing the magnetic f...

  13. Magnetic Phase Transition in FeRh

    OpenAIRE

    Gu, R. Y.; Antropov, V.P.

    2005-01-01

    Density functional calculations are performed to investigate the phase transition in FeRh alloy. The effective exchange coupling, the critical temperature of magnetic phase transition and the adiabatic spin wave spectrum have been obtained. Different contributions to the free energy of different phases are estimated. It has been found that the antiferro-ferromagnetic transition in FeRh occurs mostly due to the spin wave excitations.

  14. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G.

    2016-06-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.

  15. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    CERN Document Server

    Zhang, Bin

    2015-01-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pair-wise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain (TAD) formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking which is limited by the TAD interaction strength.

  16. Helical Nano-crystallite (HNC) Phases: Chirality Synchronization of Achiral Bent-Core Mesogens in a New Type of Dark Conglomerates.

    Science.gov (United States)

    Alaasar, Mohamed; Prehm, Marko; Tschierske, Carsten

    2016-05-01

    Spontaneous generation of macroscopic homochirality in soft matter systems by self-assembly of exclusively achiral molecules under achiral conditions is a challenging task with relevance for fundamental scientific research and technological applications. Dark conglomerate phases (DC phases), being optically isotropic mesophases composed of conglomerates of macroscopic chiral domains and formed by some non-chiral bent-core mesogens, represent such a case. Here we report two new series of non-symmetric bent-core molecules capable of forming a new type of mirror symmetry broken DC phases. In the synthesized molecules, a bent 4-bromoresorcinol core is connected to a phenyl benzoate wing and an azobenzene wing with or without additional peripheral fluorine substitution. The self-assembly was investigated by DSC, polarizing microscopy, electro-optical studies and XRD. Chiral and apparently achiral DC phases were observed besides distinct types of lamellar liquid crystalline phases with different degree of polar order, allowing the investigation of the transition from smectic to DC phases. This indicates a process in which increased packing density at first gives rise to restricted rotation and thus to growing polar order, which then leads to chirality synchronization, layer frustration and nano-scale crystallization. Topological constraints arising from the twisted packing of helical conformers in lamellar crystals is proposed to lead to amorphous solids composed of helical nano-crystallites with short coherence length (HNC phases). This is considered as a third major type of DC phases, distinct from the previously known liquid crystalline sponge phases and the helical nano-filament phases (HNF phases). Guidelines for the molecular design of new materials capable of self-assembly into these three types of DC phases are proposed. PMID:27006203

  17. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  18. Phase transitions in semidefinite relaxations.

    Science.gov (United States)

    Javanmard, Adel; Montanari, Andrea; Ricci-Tersenghi, Federico

    2016-04-19

    Statistical inference problems arising within signal processing, data mining, and machine learning naturally give rise to hard combinatorial optimization problems. These problems become intractable when the dimensionality of the data is large, as is often the case for modern datasets. A popular idea is to construct convex relaxations of these combinatorial problems, which can be solved efficiently for large-scale datasets. Semidefinite programming (SDP) relaxations are among the most powerful methods in this family and are surprisingly well suited for a broad range of problems where data take the form of matrices or graphs. It has been observed several times that when the statistical noise is small enough, SDP relaxations correctly detect the underlying combinatorial structures. In this paper we develop asymptotic predictions for several detection thresholds, as well as for the estimation error above these thresholds. We study some classical SDP relaxations for statistical problems motivated by graph synchronization and community detection in networks. We map these optimization problems to statistical mechanics models with vector spins and use nonrigorous techniques from statistical mechanics to characterize the corresponding phase transitions. Our results clarify the effectiveness of SDP relaxations in solving high-dimensional statistical problems. PMID:27001856

  19. Synthetic-gauge-field stabilization of the chiral-spin-liquid phase

    Science.gov (United States)

    Chen, Gang; Hazzard, Kaden R. A.; Rey, Ana Maria; Hermele, Michael

    2016-06-01

    We explore the phase diagram of the SU (N ) Hubbard models describing fermionic alkaline-earth-metal atoms in a square optical lattice with, on average, one atom per site, using a slave rotor mean-field approach. We find that the chiral spin liquid (CSL) predicted for N ≥5 and large interactions passes through a fractionalized state with a spinon Fermi surface as interactions are decreased before transitioning to a weakly interacting metal. We show that by adding a uniform artificial gauge field with 2 π /N flux per plaquette, the CSL becomes the ground state for all N ≥3 at intermediate interactions, persists to weaker interactions, and exhibits a larger spin gap. For N ≥5 we find the CSL is the ground state everywhere the system is a Mott insulator. The gauge field stabilization of the CSL at lower interactions, and thus at weaker lattice depths, together with the increased spin gap, can relax the temperature constraints required for its experimental realization in ultracold atom systems.

  20. Silica-based polypeptide-monolithic stationary phase for hydrophilic chromatography and chiral separation.

    Science.gov (United States)

    Zhao, Licong; Yang, Limin; Wang, Qiuquan

    2016-05-13

    Glutathione (GSH)-, somatostatin acetate (ST)- and ovomucoid (OV)-functionalized silica-monolithic stationary phases were designed and synthesized for HILIC and chiral separation using capillary electrochromatography (CEC). GSH, ST and OV were covalently incorporated into the silica skeleton via the epoxy ring-opening reaction between their amino groups and the glycidyl moiety in γ-glycidoxypropyltrimethoxysilane (GPTMS) together with polycondensation and copolymerization of tetramethyloxysilane and GPTMS. Not only could the direction and electroosmotic flow magnitude on the prepared GSH-, ST- and OV-silica hybrid monolithic stationary phases be controlled by the pH of the mobile phase, but also a typical HILIC behavior was observed so that the nucleotides and HPLC peptide standard mixture could be baseline separated using an aqueous mobile phase without any acetonitrile during CEC. Moreover, the prepared monolithic columns had a chiral separation ability to separate dl-amino acids. The OV-silica hybrid monolithic column was most effective in chiral separation and could separate dl-glutamic acid (Glu) (the resolution R=1.07), dl-tyrosine (Tyr) (1.57) and dl-histidine (His) (1.06). Importantly, the chiral separation ability of the GSH-silica hybrid monolithic column could be remarkably enhanced when using gold nanoparticles (AuNPs) to fabricate an AuNP-mediated GSH-AuNP-GSH-silica hybrid monolithic column. The R of dl-Glu, dl-Tyr and dl-His reached 1.19, 1.60 and 2.03. This monolithic column was thus applied to separate drug enantiomers, and quantitative separation of all four R/S drug enantiomers were achieved with R ranging from 4.36 to 5.64. These peptide- and protein-silica monolithic stationary phases with typical HILIC separation behavior and chiral separation ability implied their promise for the analysis of not only the future metabolic studies, but also drug enantiomers recognition. PMID:27083263

  1. The Optical Resolution of Chiral Tetrahedrone-type Clusters Contai- ning SCoFeM (M=Mo or W) Using High Performance Liquid Chromatography Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Amylose tris (phenylcarbamate) chiral stationary phase (ATPC-CSP) was prepared and used for optical resolution of clusters 1 and 2. n-Hexane/2-propanol ( 99/1; v/v) were found to be the most suitable mobile phase on ATPC-CSP.

  2. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model

    International Nuclear Information System (INIS)

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized σ-ω model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the resulting freeze

  3. Pion-to-photon transition distribution amplitudes in the non-local chiral quark model

    CERN Document Server

    Kotko, Piotr

    2008-01-01

    We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDA's. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.

  4. Pion-to-Photon Transition Distribution Amplitudes in the Non-Local Chiral Quark Model

    Science.gov (United States)

    Kotko, P.; Praszałowicz, M.

    2009-01-01

    We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross-section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDAs. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.

  5. Switchable thermal antenna by phase transition

    CERN Document Server

    Ben-Abdallah, Philippe; Besbes, Mondher

    2013-01-01

    We introduce a thermal antenna which can be actively switched by phase transition. The source makes use of periodically patterned vanadium dioxide, a metal-insulator phase transition material which supports a surface phonon-polariton (SPP) in the infrared range in its crystalline phase. Using electrodes properly registred with respect to the pattern, the phase transition of VO2 can be localy triggered within few microseconds and the SPP can be diffracted making the thermal emission highly directionnal. This switchable antenna could find broad applications in the domain of active thermal coatings or in those of infrared spectroscopy and sensing.

  6. Phase-transitions and nuclear clusterization

    International Nuclear Information System (INIS)

    After reviewing some basic features of the temperature-governed phase-transitions in macroscopic systems and in atomic nuclei we consider non-thermal phase-transitions of nuclear structure in the example of cluster states. Phenomenological and semimicroscopical algebraic cluster models with identical interactions are applied to binary cluster systems of closed and non-closed shell clusters. Phase-transitions are observed in each case between the rotational (rigid molecule-like) and vibrational (shell-like) cluster states. The phase of this finite quantum system shows a quasi-dynamical symmetry. (author)

  7. Inhomogeneous nucleation in quark hadron phase transition

    CERN Document Server

    Shukla, P K; Sen-Gupta, S K; Gleiser, Marcello; Gleiser, Marcelo

    2000-01-01

    The effect of subcritical hadron bubbles on a first-order quark-hadron phase transition is studied. These subcritical hadron bubbles created due to thermal fluctuations introduce a finite amount of phase mixing (quark phase mixed with hadron phase) even at and above the critical temperature. For sufficiently strong transitions, as is expected to be the case for the quark-hadron transition, we show that the amount of phase mixing at the critical temperature remains much below the percolation threshold. Thus, as the system cools below the critical temperature, the transition proceeds through the nucleation of critical-size hadron bubbles from a metastable quark-gluon phase (QGP) within an inhomogeneous background populated by an equilibrium distribution of subcritical hadron bubbles. The inhomogenity of the medium is incorporated consistently by modelling the subcritical bubbles as Gaussian fluctuations, resulting in a large reduction of the nucleation barrier for the critical bubbles. Using the corrected nucle...

  8. Intersubband-transition-induced phase matching

    OpenAIRE

    Almogy, Gilad; Segev, Mordechai; Yariv, Amnon

    1994-01-01

    We suggest the use of the refractive-index changes associated with the intersubband transitions in quantum wells for phase matching in nonlinear materials. An improvement in the conversion efficiency of mid-IR second-harmonic generation by almost 2 orders of magnitude over non-phase-matched bulk GaAs is predicted. We also show that the linear phase contributions of intersubband transitions used for resonant enhancement of second-harmonic generation must be considered, as they could limit the ...

  9. The Cosmological QCD Phase Transition Revisited

    OpenAIRE

    Schettler, Simon; Boeckel, Tillmann; Schaffner-Bielich, Jurgen

    2010-01-01

    The QCD phase diagram might exhibit a first order phase transition for large baryochemical potentials. We explore the cosmological implications of such a QCD phase transition in the early universe. We propose that the large baryon-asymmetry is diluted by a little inflation where the universe is trapped in a false vacuum state of QCD. The little inflation is stopped by bubble nucleation which leads to primordial production of the seeds of extragalactic magnetic fields, primordial black holes a...

  10. Chiral Symmetry Restoration from a Boundary

    CERN Document Server

    Tiburzi, B C

    2013-01-01

    The boundary of a manifold can alter the phase of a theory in the bulk. We explore the possibility of a boundary-induced phase transition for the chiral symmetry of QCD. In particular, we investigate the consequences of imposing homogeneous Dirichlet boundary conditions on the quark fields. Such boundary conditions are employed on occasion in lattice gauge theory computations, for example, when including external electromagnetic fields, or when computing quark propagators with a reduced temporal extent. Homogeneous Dirichlet boundary conditions force the chiral condensate to vanish at the boundary, and thereby obstruct the spontaneous breaking of chiral symmetry in the bulk. As the restoration of chiral symmetry due to a boundary is a non-perturbative phenomenon, we utilize the sigma model to exemplify the issues. Using this model, we find that chiral symmetry is completely restored if the length of the compact direction is less than 2.0 fm. For lengths greater than about 4 fm, an approximately uniform chiral...

  11. SYNTHESIS AND CHARACTERIZATION OF NOVEL CHIRAL SMECTIC C(Sc*) PHASE SHISH-KEBAB TYPE LIQUID CRYSTALLINE BLOCK COPOLYMERS

    Institute of Scientific and Technical Information of China (English)

    Shi-jun Zheng; Zi-fa Li; Shu-yuan Zhang; Shao-kui Cao; Ming-sheng Tang; Qiu-jun Fen; Qi-feng Zhou

    1999-01-01

    A new series of chiral shish-kebab type liquid crystal block copolymers that form the smectic C(Sc*) phase was synthesized by solution polycondensation. The copolymers were characterized by GPC,DSC, TG, POM, X-ray diffraction and polarimeter. The copolymers 7 entered into liquid crystal phase when they were heated to their melting temperatures (Tm) and the copolymers 8 were in liquid crystal phase at room temperature with low viscosities. The smectic sanded texture or focal-conic texture were observed on POM.All the chiral block copolymers showed high optical activity. No racemization has happened. Temperaturevariable X-ray diffraction study together with POM and polarimetric analysis realized that they are chiral smectic C(Sc*) phase. Thus we offer in this report the first example of shish-kebab type liquid crystal block copolymers that form a chiral smectic C(Sc*) phase. The variation of melting and isotropization temperatures with molecular structure was also discussed.

  12. Phase transitions in QCD and string theory

    International Nuclear Information System (INIS)

    We develop a unified effective field theory approach to the high-temperature phase transitions in QCD and string theory, incorporating winding modes (time-like Polyakov loops, vortices) as well as low-mass states (pseudoscalar mesons and glueballs, matter and dilaton supermultiplets). Anomalous scale invariance and the Z3 structure of the centre of SU(3) decree a first-order phase transition with simultaneous deconfinement and Polyakov loop condensation in QCD, whereas string vortex condensation is a second-order phase transition breaking a Z2 symmetry. We argue that vortex condensation is accompanied by a dilaton phase transition to a strong coupling regime, and comment on the possible role of soliton degrees of freedom in the high-temperature string phase. (orig.)

  13. Two-Color QCD with Non-zero Chiral Chemical Potential

    CERN Document Server

    Braguta, V V; Ilgenfritz, E -M; Kotov, A Yu; Molochkov, A V; Muller-Preussker, M; Petersson, B

    2015-01-01

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  14. Two-color QCD with non-zero chiral chemical potential

    Science.gov (United States)

    Braguta, V. V.; Goy, V. A.; Ilgenfritz, E. M.; Kotov, A. Yu.; Molochkov, A. V.; Müller-Preussker, M.; Petersson, B.

    2015-06-01

    The phase diagram of two-color QCD with non-zero chiral chemical potential is studied by means of lattice simulation. We focus on the influence of a chiral chemical potential on the confinement/deconfinement phase transition and the breaking/restoration of chiral symmetry. The simulation is carried out with dynamical staggered fermions without rooting. The dependences of the Polyakov loop, the chiral condensate and the corresponding susceptibilities on the chiral chemical potential and the temperature are presented. The critical temperature is observed to increase with increasing chiral chemical potential.

  15. Dynamics of weak first order phase transitions

    CERN Document Server

    Gleiser, Marcello

    1994-01-01

    The dynamics of weak vs. strong first order phase transitions is investigated numerically for 2+1 dimensional scalar field models. It is argued that the change from a weak to a strong transition is itself a (second order) phase transition, with the order parameter being the equilibrium fractional population difference between the two phases at the critical temperature, and the control parameter being the coefficient of the cubic coupling in the free-energy density. The critical point is identified, and a power law controlling the relaxation dynamics at this point is obtained. Possible applications are briefly discussed.

  16. Phase transitions in copper(II) orthovanadate

    International Nuclear Information System (INIS)

    Data on the polymorphs of copper(II) orthovanadate are reported. The Cu3V2O8 phase synthesized in this laboratory exhibits phase transitions between 460deg and 560degC. These phase transitions are identified through detailed DTA and high temperature XRD techniques; it is observed that these structural transitions are rapid and reversible. The crystal structure of Cu3V2O8 is similar to that of Mg3V2O8, Zn3V2O8, Co3V2O8 and Ni3V2O8. (author). 12 refs., 3 figs., 1 tab

  17. Finite-temperature phase transition of $N_{f}=3$ QCD with exact center symmetry

    CERN Document Server

    Misumi, Tatsuhiro; Itou, Etsuko

    2015-01-01

    For the $Z_{3}$-symmetric lattice QCD-like theory ($Z_3$-QCD), in which $SU(3)$ gauge theory is coupled with three fundamental Wilson quarks with flavor-dependent twisted boundary conditions, we calculate the expectation values of Polyakov loop and chiral condensate as functions of temperature on $16^3 \\times4$ and $20^3 \\times 4$ lattices with $m_{PS}/m_{V}=0.70$ fixed. We find the first-order phase transition with respect to the $Z_{3}$ center symmetry, where the Polyakov loop exhibits a hysteresis depending on the initial condition of thermalization process. We also show that the crossover behavior of chiral condensate around the critical temperature of the center transition and the manifestation of flavor symmetry breaking in the high-temperature phase.

  18. Phase transitions in dissipative Josephson chains

    International Nuclear Information System (INIS)

    The authors of this paper study the zero temperature phase transitions of a chain of Josephson junctions, taking into account the quantum fluctuations due to the charging energy and the effects of an Ohmic dissipation. The authors map the problem onto a generalized coulomb gas model, which then is transformed into a sine-Gordon field theory. Apart from the expected dipole unbinding transition, which describes a transition between globally superconducting and resistive behavior, the authors find a quadrupole unbinding transition at a critical strength of the dissipation. This transition separates two superconducting states characterized by different local properties

  19. The QCD chiral transition, $\\ua$ symmetry and the Dirac spectrum using domain wall fermions

    CERN Document Server

    Buchoff, Michael I; Christ, Norman H; Ding, H -T; Jung, Chulwoo; Karsch, F; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Vranas, P M; Yin, Hantao; Lin, Zhongjie

    2013-01-01

    We report on a study of the finite-temperature QCD transition region for temperatures between 139 and 196 MeV, with a pion mass of 200 MeV and two space-time volumes: $24^3\\times8$ and $32^3\\times8$, where the larger volume varies in linear size between 5.6 fm (at T=139 MeV) and 4.0 fm (at T=195 MeV). These results are compared with the results of an earlier calculation using the same action and quark masses but a smaller, $16^3\\times8$ volume. The chiral domain wall fermion formulation with a combined Iwasaki and dislocation suppressing determinant ratio gauge action are used. This lattice action accurately reproduces the $\\sua$ and $\\ua$ symmetries of the continuum. Results are reported for the chiral condensates, connected and disconnected susceptibilities and the Dirac eigenvalue spectrum. We find a pseudo-critical temperature, $T_c$, of approximately 165 MeV consistent with previous results and strong finite volume dependence below $T_c$. Clear evidence is seen for $\\ua$ symmetry breaking above $T_c$ whi...

  20. A Review of Salam Phase Transition in Protein Amino Acids Implication for Biomolecular Homochirality

    CERN Document Server

    Bai, F; Bai, Fan; Wang, Wenqing

    2002-01-01

    The origin of chirality, closely related to the evolution of life on the earth, has long been debated. In 1991, Abdus Salam suggested a novel approach to achieve biomolecular homochirality by a phase transition. In his subsequent publication, he predicted that this phase transition could eventually change D-amino acids to L-amino acids as C -H bond would break and H atom became a superconductive atom. Since many experiments denied the configuration change in amino acids, Salam hypothesis aroused suspicion. This paper is aimed to provide direct experimental evidence of a phase transition in alanine, valine single crystals but deny the configuration change of D- to L- enantiomers. New views on Salam phase transition are presented to revalidate its great importance in the origin of homochirality.

  1. Comparative Optical Separation of Racemic Ibuprofen by Using Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    Dalkeun; PARK; Joong; Kee; LEE; 等

    2002-01-01

    Ibprofen is widely used as a non-steroidal anti-inflammatory drug and poduced as racemic mixture.Its pharmacological activity resides only is S-(+)-enantiomer,and R-(-)-enantiomer is not only inactive but also has many side effects.Thus it is necessary to separate Renantiomer from racemic ibuprofen.We studied optical separation of racemic Ibuprofen with chiral high performance liquid chromatography(HPLC).,Out of three different chiral stationary phases,which were selected on the basis of structure and availability,two were found to be effective.There was optimum eluent composition for each stationary phase for good resolution in optical separation.Resolution decreased with increase of eluent flow rate,but effect of injection volume on resolution was insignificant at high eluent flow rate.

  2. Influence of an inhomogeneous and expanding medium on signals of the QCD phase transition

    International Nuclear Information System (INIS)

    According to a fluid dynamic expansion of the fireball we investigate how the inhomogeneity of the system influences the chiral phase transition of QCD. We compare the averaged values of the order parameter in equilibrium with that of a homogeneous system. If the temperature is averaged over a certain region of the fireball the corresponding correlation length does not diverge in an expansion with a critical point

  3. Classifying the Phases of Gauge Theories by Spectral Density of Probing Chiral Quarks

    CERN Document Server

    Alexandru, Andrei

    2015-01-01

    We describe our recent proposal that distinct phases of gauge theories with fundamental quarks translate into specific types of low-energy behavior in Dirac spectral density. The resulting scenario is built around new evidence substantiating the existence of a phase characterized by bimodal (anomalous) density, and corresponding to deconfined dynamics with broken valence chiral symmetry. We argue that such anomalous phase occurs quite generically in these theories, including in "real world" QCD above the crossover temperature, and in zero-temperature systems with many light flavors.

  4. Optical phase conjugation in azo-dye doped chiral liquid crystal

    International Nuclear Information System (INIS)

    We report on optical phase conjugation phenomenon observed in chiral nematic liquid crystal showing band gap type Bragg reflection. The phase conjugate to the signal beam is observable only in the small temperature interval when the Bragg condition is fulfilled and only for circularly polarized light. The optical phase conjugation signals were observed at low cw laser light intensities (2, λ = 532 nm). Estimated value of third order optical susceptibility χ(3) = 2.8 × 10-17 m2/V2 is attributed to enhancement due to photoisomerisation of azo-dye (disperse red 1) inducing molecular reorientation process of liquid crystal molecules.

  5. Copolymerization preparation of cationic cyclodextrin chiral stationary phases for drug enantioseparation in chromatography

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Ren-Qi Wang, Teng-Teng Ong, Ke Huang, Weihua Tang & Siu-Choon Ng ### Abstract We described a facile and effective protocol wherein radical copolymerization is employed to covalently bond cationic β-cyclodextrin (β-CD) onto silica particles with extended linkage, resulting in a chiral stationary phase (IMPCSP) that can be used for the enantioseparation of racemic drugs in both high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). Start...

  6. Superstructural chirality of a periodic system of domains of opposite chirality and π-walls in B.sub.2./sub. phase composed of bent-shaped molecules

    Czech Academy of Sciences Publication Activity Database

    Lejček, Lubor

    2010-01-01

    Roč. 83, 10-11 (2010), s. 1001-1013. ISSN 0141-1594 R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047; GA MŠk(CZ) OC10006 Institutional research plan: CEZ:AV0Z10100520 Keywords : B 2 phase * bent-shaped molecules * domains of opposite chirality * π-walls * superstructural chirality Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.006, year: 2010

  7. Determination Enantiomer Excess (e.e. %) of Chiral Sharpless Epoxides with β-Cyclodextrin Derivatives as Chiral Stationary Phases of Capillary Gas Chromatography

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Using four β-cyclodextrin derivatives, 2,6-di-O-benzyl-3-O-heptanonyl-β-CD, 2,6-di-O-benzyl-3-O-octanonyl-β-CD, 2,3-di-O-benzyl-6-O-heptanonyl-β-CD, and 2,3-di-O-benzy1-6-O-octanonyl-β-CD, as chiral stationary phases of capillary gas chromatography (CGC), the enantiomers of Sharpless epoxides were well separated. The enantiomer excess values (e.e.%) of some chiral Sharpless epoxides were also determined successfully using these CDs.

  8. Phase transition phenomenon: A compound measure analysis

    Science.gov (United States)

    Kang, Bo Soo; Park, Chanhi; Ryu, Doojin; Song, Wonho

    2015-06-01

    This study investigates the well-documented phenomenon of phase transition in financial markets using combined information from both return and volume changes within short time intervals. We suggest a new measure for the phase transition behaviour of markets, calculated as a return distribution conditional on local variance in volume imbalance, and show that this measure successfully captures phase transition behaviour under various conditions. We analyse the intraday trade and quote dataset from the KOSPI 200 index futures, which includes detailed information on the original order size and the type of each initiating investor. We find that among these two competing factors, the submitted order size yields more explanatory power on the phenomenon of market phase transition than the investor type.

  9. Quantum Phase Transitions in Quantum Dots

    OpenAIRE

    Rau, I. G.; Amasha, S.; Oreg, Y.; Goldhaber-Gordon, D.

    2013-01-01

    This review article describes theoretical and experimental advances in using quantum dots as a system for studying impurity quantum phase transitions and the non-Fermi liquid behavior at the quantum critical point.

  10. The Structural Phase Transition in Octaflournaphtalene

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.

    1977-01-01

    The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support this...... evidence and indicate that the mechanism of the phase transition may well be the instability of a zone boundary acoustic mode of librational character. The structure of the low-temperature phase has been refined and the Raman spectra of the upper and lower phases are reported....

  11. B→A transitions in the light-cone QCD sum rules with the chiral current

    Institute of Scientific and Technical Information of China (English)

    SUN Yan-Jun; WANG Zhi-Gang; HUANG Tao

    2012-01-01

    In this article,we calculate the form-factors of the transitions B → a1(1260),b1(1235) in the leading-order approximation using the light-cone QCD sum rules.In calculations,we choose the chiral current to interpolate the B-meson,which has the outstanding advantage that the twist-3 light-cone distribution amplitudes of the axial-vector mesons make no contributions,and the resulting sum rules for the form-factors suffer from far fewer uncertainties.Then we study the semi-leptonic decays B → a1(1260)l(v1),b1(1235)l(v1) (l =e,μ,Τ),and make predictions for the differential decay widths and decay widths,which can be compared with the experimental data in the coming future.

  12. Phase Transitions, Diffraction Studies and Marginal Dimensionality

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage

    1985-01-01

    Continuous phase transitions and the associated critical phenomena have been one of the most active areas of research in condensed matter physics for several decades. This short review is only one cut through this huge subject and the author has chosen to emphasize diffraction studies as a basic...... experimental method and illustrate how diffraction experiments have revealed the role of dimensionality in the general classification of phase transitions...

  13. Modelling of phase transitions: do it yourself

    International Nuclear Information System (INIS)

    We present the basics of a powerful contemporary statistical mechanical technique that can be used by students to explore first-order phase transitions by themselves and for models of their own construction. The technique is a generalization of the well-known Peierls argument and is applicable to various models on a lattice. We illustrate the technique with the help of two simple models that were recently used to simulate phase transitions on surfaces. (paper)

  14. Modelling of phase transitions: do it yourself

    Science.gov (United States)

    Medved', I.; Huckaby, D. A.; Trník, A.; Valovičová, L'

    2013-01-01

    We present the basics of a powerful contemporary statistical mechanical technique that can be used by students to explore first-order phase transitions by themselves and for models of their own construction. The technique is a generalization of the well-known Peierls argument and is applicable to various models on a lattice. We illustrate the technique with the help of two simple models that were recently used to simulate phase transitions on surfaces.

  15. Thin film dynamics with surfactant phase transition

    OpenAIRE

    Köpf, M. H.; Gurevich, S. V.; Friedrich, R.

    2009-01-01

    A thin liquid film covered with an insoluble surfactant in the vicinity of a first-order phase transition is discussed. Within the lubrication approximation we derive two coupled equations to describe the height profile of the film and the surfactant density. Thermodynamics of the surfactant is incorporated via a Cahn-Hilliard type free-energy functional which can be chosen to describe a transition between two stable phases of different surfactant density. Within this model, a linear stabilit...

  16. Geometric phase and o-mode blue shift in a chiral anisotropic medium inside a Fabry-P\\'erot cavity

    CERN Document Server

    Timofeev, I V; Sutormin, V S; Myslivets, S A; Arkhipkin, V G; Vetrov, S Ya; Lee, W; Zyryanov, V Ya

    2015-01-01

    Anomalous spectral shift of transmission peaks is observed in a Fabry--P\\'erot cavity filled with a chiral anisotropic medium. The effective refractive index value resides out of the interval between the ordinary and the extraordinary refractive indices. The spectral shift is explained by contribution of a geometric phase. The problem is solved analytically using the approximate Jones matrix method, numerically using the accurate Berreman method and geometrically using the generalized Mauguin--Poincar\\'e rolling cone method. The $o$-mode blue shift is measured for a 4-methoxybenzylidene-4'-$n$-butylaniline twisted--nematic layer inside the Fabry--P\\'erot cavity. The twist is electrically induced due to the homeoplanar--twisted configuration transition in an ionic-surfactant-doped liquid crystal layer. Experimental evidence confirms the validity of the theoretical model.

  17. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang

    2014-06-17

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Phase transitions in two dimensions

    International Nuclear Information System (INIS)

    Although a two-dimensional solid with long-range translational order cannot existin the thermodynamic limit (N → ∞, V →∞, N/V finite) macroscopic samples of two-dimensional solids can exist. In this work, stability of the phase was determined by the usuar method of equating the pressure and chemical potential of the phases. (A.C.A.S.)

  19. Molecular markers of phase transition in locusts

    Institute of Scientific and Technical Information of China (English)

    ARNOLD DE LOOF; ILSE CLAEYS; GERT SIMONET; PETER VERLEYEN; TIM VANDERSMISSEN; FILIP SAS; JURGEN HUYBRECHTS

    2006-01-01

    The changes accompanying the transition from the gregarious to the solitary phase state in locusts are so drastic that for a long time these phases were considered as distinct species. It was Boris Uvarov who introduced the concept of polyphenism. Decades of research revealed that phase transition implies changes in morphometry, the color of the cuticle, behavior and several aspects of physiology. In particular, in the recent decade, quite a number of molecular studies have been undertaken to uncover phase-related differences.They resulted in novel insights into the role of corazonin, neuroparsins, some protease inhibitors, phenylacetonitrile and so on. The advent of EST-databases of locusts (e.g. Kang et al., 2004) is a most encouraging novel development in physiological and behavioral locust research. Yet, the answer to the most intriguing question, namely whether or not there is a primordial molecular inducer of phase transition, is probably not within reach in the very near future.

  20. Thermal phase mixing during first order phase transitions

    CERN Document Server

    Borrill, J; Borrill, Julian; Gleiser, Marcelo

    1995-01-01

    The dynamics of first order phase transitions are studied in the context of (3+1)-dimensional scalar field theories. Particular attention is paid to the question of quantifying the strength of the transition, and how `weak' and `strong' transitions have different dynamics. We propose a model with two available low temperature phases separated by an energy barrier so that one of them becomes metastable below the critical temperature T_c. The system is initially prepared in this phase and is coupled to a thermal bath. Investigating the system at its critical temperature, we find that `strong' transitions are characterized by the system remaining localized within its initial phase, while `weak' transitions are characterized by considerable phase mixing. Always at T_c, we argue that the two regimes are themselves separated by a (second order) phase transition, with an order parameter given by the fractional population difference between the two phases and a control parameter given by the strength of the scalar fi...

  1. The deconfinement phase transition in asymmetric matter

    International Nuclear Information System (INIS)

    We study the phase transition of asymmetric hadronic matter to a quark-gluon plasma within the framework of a simple two-phase model. The analysis is performed in a system with two conserved charges (baryon number and isospin) using the stability conditions on the free energy, the conservation laws and Gibbs' criteria for phase equilibrium. The EOS is obtained in a separate description for the hadronic phase and for the quark-gluon plasma. For the hadrons, a relativistic mean-field model calibrated to the properties of nuclear matter is used, and a bag-model type EOS is used for the quarks and gluons. The model is applied to the deconfinement phase transition that may occur in matter created in ultra-relativistic collisions of heavy ions. Based on the two-dimensional coexistence surface (binodal), various phase separation scenarios and the Maxwell construction through the mixed phase are discussed. In the framework of the two-phase model the phase transition in asymmetric matter is continuous (second-order by Ehrenfest's definition) in contrast to the discontinuous (first-order) transition of symmetric systems. (orig.)

  2. Contemporary Research of Dynamically Induced Phase Transitions

    Science.gov (United States)

    Hull, Lawrence

    2015-06-01

    Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions. Supported by the DoD/DOE Joint Munitions Technology Development Program.

  3. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  4. Molecular orientation behavior of chiral nematic liquid crystals based on the presence of blue phases using polarized microscopic FT-IR spectroscopy

    Science.gov (United States)

    Matsumura, Masanori; Katayama, Norihisa

    2016-07-01

    Study on molecular orientation behavior of highly twisted chiral nematic liquid crystals (N∗LCs) expressing blue phases (BPs) is important for developing new devices. This study examines the change of molecular orientation of N∗LCs due to the presence of BPs. Polarized microscopic FT-IR spectroscopy was used to study the in- and out-of-plane molecular orientations of N∗LCs that undergo a phase transition involving BPs. The band intensity ratio of CN to CH2 stretching modes (CN/CH2) in the IR spectra was used to determine the orientation of N∗LC molecules. The measured spectra indicated that the helical axis of N∗LC molecules was perpendicular to the substrate before heating and inclined on the substrate after cooling the sample which has phase transition from BP I to chiral nematic (N∗). The N∗LC molecule in the cell of rubbed orientation film exhibited the in-plane anisotropy after a heating-cooling ramp only in samples that passed through BP I. These results indicate that the changes of molecular orientation of N∗LC by phase transition are affected by BP I.

  5. Variational analysis of the deconfinement phase transition

    International Nuclear Information System (INIS)

    We study the deconfining phase transition in 3+1 dimensional pure SU(N) Yang-Mills theory using a gauge invariant variational calculation. We generalize the variational ansatz to mixed states (density matrices) and minimize the free energy. For N ≥ 3 we find a first order phase transition with the transition temperature of Tc ≅450 MeV. Below Tc the Polyakov loop has vanishing expectation value, while above Tc , its average value is nonzero. According to the standard lore this corresponds to the deconfining transition. Within the accuracy of our approximation the entropy of the system in the low temperature phase vanishes. The latent heat is not small but, rather, is of the order of the nonperturbative vacuum energy. (author)

  6. Topological and non-topological solutions in the 3-phase model of hybrid chiral bag

    CERN Document Server

    Sveshnikov, K; Khalili, M; Fedorov, S M; Malakhov, Il.

    2002-01-01

    The 3-phase version of the hybrid chiral bag model, containing the phase of asymptotic freedom, the hadronization phase as well as the intermediate phase of constituent quarks, is proposed. For this model the self-consistent solutions, which take into account the fermion vacuum polarization effects, are found in 1+1 D. The renormalized total energy of the bag is studied as a function of its geometry and topological (baryon) number. It is shown that in the case of non-zero topological charge there exists a set of configurations being the local minima of the total energy of the bag and containing all the three phases, while in the non-topological case the minimum of the total energy of the bag corresponds to vanishing size of the phase of asymptotic freedom.

  7. The phase structure of a chirally invariant lattice Higgs-Yukawa model. Numerical simulations

    International Nuclear Information System (INIS)

    The phase diagram of a chirally invariant lattice Higgs-Yukawa model is explored by means of numerical simulations. The results revealing a rich phase structure are compared to analytical large Nf calculations which we performed earlier. The analytical and numerical results are in excellent agreement at large values of Nf. In the opposite case the large Nf computation still gives a good qualitative description of the phase diagram. In particular we find numerical evidence for the predicted ferrimagnetic phase at intermediate values of the Yukawa coupling constant and for the symmetric phase at strong Yukawa couplings. Emphasis is put on the finite size effects which can hide the existence of the latter symmetric phase. (orig.)

  8. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1975-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...

  9. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1975-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energie...

  10. Concentration-dependent structure and structural transition from chirality to nonchirality at the liquid-solid interface by coassembly

    Science.gov (United States)

    Xu, Li; Miao, Xinrui; Cui, Lihua; Liu, Pei; Chen, Xiaofeng; Deng, Wenli

    2015-07-01

    Understanding the formation and structural transition of the two-dimensional chirality of self-assembly is a subject which still gains significant interest in surface or interface chirality studies. Here, we present the solvent-induced chiral structural transition of a 2-hydroxy-7-pentadecyloxy-9-fluorenone (HPF) molecules' self-assembled adlayer through coassembly with achiral aliphatic solvents under different concentrations. Polymorphic chiral patterns are obtained at low concentrations of aliphatic solvents with different chain lengths. The HPF molecules form coassembled structures with these solvents through van der Waals interactions. At the same time, at high concentrations, HPF molecules uniformly form a nonchiral multimer structure without coadsorbed aliphatic solvent molecules. What is interesting is that these structures under different concentrations will finally change into a zigzag structure, which is the thermodynamically most stable configuration. Especially when using n-hexadecane as the solvent, the adlayer shows perfect steric matching due to the close chain length of HPF and n-hexadecane, which can maximize the molecule-solvent interactions. Thus, HPF molecules in n-hexadecane exhibit the most diversiform configuration. The distinct concentration-dependence has proven that the solvent molecules can act as a coadsorbed component through van der Waals interactions rather than simply a dispersant and further result in the probability and stability of chiral self-assembled monolayers by subtle tuning of the solvent-molecule and solvent-substrate interactions. This result provides a simple and alternative strategy to construct the 2D chiral assembled monolayer.Understanding the formation and structural transition of the two-dimensional chirality of self-assembly is a subject which still gains significant interest in surface or interface chirality studies. Here, we present the solvent-induced chiral structural transition of a 2-hydroxy-7-pentadecyloxy

  11. Engineering Cyclodextrin Clicked Chiral Stationary Phase for High-Efficiency Enantiomer Separation

    Science.gov (United States)

    Tang, Jian; Zhang, Shapopeng; Lin, Yuzhou; Zhou, Jie; Pang, Limin; Nie, Xuemei; Zhou, Baojing; Tang, Weihua

    2015-08-01

    The separation of racemic molecules is of crucial significance not only for fundamental research but also for technical application. Enantiomers remain challenging to be separated owing to their identical physical and chemical properties in achiral environments. Chromatographic techniques employing chiral stationary phases (CSPs) have been developed as powerful tools for the chiral analysis and preparation of pure enantiomers, most of which are of biological and pharmaceutical interests. Here we report our efforts in developing high-performance phenylcarbamated cyclodextrin (CD) clicked CSPs. Insights on the impact of CD functionalities in structure design are provided. High-efficiency enantioseparation of a range of aryl alcohols and flavanoids with resolution values (Rs) over 10 were demonstrated by per(3-chloro-4-methyl)phenylcarbamated CD clicked CSP. Comparison study and molecular simulations suggest the improved enantioselectivity was attributed to higher interactions energy difference between the complexes of enantiomers and CSPs with phenylcarbamated CD bearing 3-chloro and 4-methyl functionalities.

  12. End point of the electroweak phase transition

    CERN Document Server

    Csikor, Ferenc; Heitger, J; Aoki, Y; Ukawa, A

    1999-01-01

    We study the hot electroweak phase transition (EWPT) by 4-dimensional lattice simulations on lattices with symmetric and asymmetric lattice spacings and give the phase diagram. A continuum extrapolation is done. We find first order phase transition for Higgs-boson masses $m_H<66.5 \\pm 1.4$ GeV. Above this end point a rapid cross-over occurs. Our result agrees with that of the dimensional reduction approach. It also indicates that the fermionic sector of the Standard Model (SM) may be included perturbatively. We get for the SM end point $72.4 the SM.

  13. Thermochromic phase transitions in two aromatic tetrachlorocuprates

    Science.gov (United States)

    Mostafa, M. Fareed; Abdel-Kader, M. M.; Arafat, S. S.; Kandeel, E. M.

    1991-06-01

    Bis(para-toluidinium)2 tetrachlorocuprate and bis(para-chloroanilinium)2 tetrachlorocuprate crystallize in a perovskite-related layer structure. The former crystallizes in an orthorhombic unit cell with a = 6.911 Å, b = 7.052 Å and c = 33.182 Å. It undergoes a thermochromic first order phase transition from a yellow low temperature phase to a dark orange high temperature phase at T = 300 ± 3K with a 10° thermal hysteresis. The latter compound undergoes two thermochromic transitions expressed by the relation. Orange Phase (I) rightleftarrows294 K Yellow Phase (II) rightleftarrows214K Green Phase (III). Both compounds are ferromagnetic at low temperture with exchange interactions J/k = 17.5° and 20° for the two compounds respectively.

  14. Phase transitions in warm, asymmetric nuclear matter

    CERN Document Server

    Müller, H; Mueller, Horst; Serot, Brian D

    1995-01-01

    A relativistic mean-field model of nuclear matter with arbitrary proton fraction is studied at finite temperature. An analysis is performed of the liquid-gas phase transition in a system with two conserved charges (baryon number and isospin) using the stability conditions on the free energy, the conservation laws, and Gibbs' criteria for phase equilibrium. For a binary system with two phases, the coexistence surface (binodal) is two-dimensional. The Maxwell construction through the phase-separation region is discussed, and it is shown that the stable configuration can be determined uniquely at every density. Moreover, because of the greater dimensionality of the binodal surface, the liquid-gas phase transition is continuous (second order by Ehrenfest's definition), rather than discontinuous (first order), as in familiar one-component systems. Using a mean-field equation of state calibrated to the properties of nuclear matter and finite nuclei, various phase-separation scenarios are considered. The model is th...

  15. Synthesis of chiral polyaniline films via chemical vapor phase polymerization

    DEFF Research Database (Denmark)

    Chen, J.; Winther-Jensen, B.; Pornputtkul, Y.; West, K.; Kane-Maquire, L.; Wallace, G.G.

    2006-01-01

    Electrically and optically active polyaniline films doped with (1)-(-)-10- camphorsulfonic acid were successfully deposited on nonconductive substrates via chemical vapor phase polymerization. The above polyaniline/ R- camphorsulfonate films were characterized by electrochemical and physical...... methods, such as cyclic voltammetry (CV), UV- vis spectroscopy, four- point probe conductivity measurement, Raman spectroscopy, circular dichroism spectroscopy, and scanning electron microscopy. The polyaniline films grown by this method not only showed high electrochemical activity, supported by CV and...... Raman spectrum, but also exhibited optical activity corresponding to the polymer chains as observed by circular dichroism spectra. (c) 2005 The Electrochemical Society....

  16. Phase transitions and entropies for synchronizing oscillators.

    Science.gov (United States)

    Bier, Martin; Lisowski, Bartosz; Gudowska-Nowak, Ewa

    2016-01-01

    We study a generic model of coupled oscillators. In the model there is competition between phase synchronization and diffusive effects. For a model with a finite number of states we derive how a phase transition occurs when the coupling parameter is varied. The phase transition is characterized by a symmetry breaking and a discontinuity in the first derivative of the order parameter. We quantitatively account for how the synchronized pulse is a low-entropy structure that facilitates the production of more entropy by the system as a whole. For a model with many states we apply a continuum approximation and derive a potential Burgers' equation for a propagating pulse. No phase transition occurs in that case. However, positive entropy production by diffusive effects still exceeds negative entropy production by the shock formation. PMID:26871059

  17. Phase Transition Induced Fission in Lipid Vesicles

    CERN Document Server

    Leirer, C; Myles, V M; Schneider, M F

    2010-01-01

    In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (T

  18. Random fields at a nonequilibrium phase transition.

    Science.gov (United States)

    Barghathi, Hatem; Vojta, Thomas

    2012-10-26

    We study nonequilibrium phase transitions in the presence of disorder that locally breaks the symmetry between two equivalent macroscopic states. In low-dimensional equilibrium systems, such random-field disorder is known to have dramatic effects: it prevents spontaneous symmetry breaking and completely destroys the phase transition. In contrast, we show that the phase transition of the one-dimensional generalized contact process persists in the presence of random-field disorder. The ultraslow dynamics in the symmetry-broken phase is described by a Sinai walk of the domain walls between two different absorbing states. We discuss the generality and limitations of our theory, and we illustrate our results by large-scale Monte Carlo simulations. PMID:23215170

  19. Large N phase transitions in supersymmetric Chern-Simons theory with massive matter

    International Nuclear Information System (INIS)

    We study three-dimensional N=2U(N) Chern-Simons theory on S3 coupled to 2Nf chiral multiplets deformed by mass terms. The partition function localizes to a matrix integral, which can be exactly computed in the large N limit. In a specific decompactification limit, the theory exhibits quantum (third-order) phase transitions at finite critical values of the coupling. The theory presents three phases when 0phases when Nf≥N. The vacuum expectation value of the supersymmetric circular Wilson loop has a discontinuity in the first derivative

  20. Phase Transitions in Operational Risk

    OpenAIRE

    Kartik Anand; Reimer K\\"uhn

    2006-01-01

    In this paper we explore the functional correlation approach to operational risk. We consider networks with heterogeneous a-priori conditional and unconditional failure probability. In the limit of sparse connectivity, self-consistent expressions for the dynamical evolution of order parameters are obtained. Under equilibrium conditions, expressions for the stationary states are also obtained. The consequences of the analytical theory developed are analyzed using phase diagrams. We find co-exi...

  1. A review of recent advances in mass spectrometric methods for gas-phase chiral analysis of pharmaceutical and biological compounds.

    Science.gov (United States)

    Wu, Lianming; Vogt, Frederick G

    2012-10-01

    Chirality has been of great interest in pharmaceutical and biological sciences. The capabilities of mass spectrometry (MS) for rapid analysis of complex mixtures have encouraged its exploration for gas-phase chiral differentiation. Although particular instances of successful discrimination between enantiomers have been reported over the past three decades, a general method of quantitative chiral analysis by MS has only been demonstrated recently. This review describes the current state of the chiral MS methods without chiral chromatographic separation, which fall into five main categories: (1) the kinetic method, (2) host-guest (H-G) diastereomeric adduct formation, (3) ion/molecule (equilibrium) reactions, (4) collision-induced dissociation (CID) of diastereomeric adducts, and (5) the emerging technique for gas-phase separation using ion mobility spectrometry (IMS). It emphasizes tandem mass spectrometry (MS/MS), which provides several unique analytical advantages for quantitative chiral analysis. These include intrinsically high sensitivity, molecular specificity, and tolerance to impurities as well as the simplicity and speed of the mass spectrometric measurements. Practical prospects and current challenges in quantitative chiral MS techniques for QbD (quality-by-design)-based pharmaceutical applications are also discussed. PMID:22579598

  2. QCD Phase-transition and chemical freezeout in nonzero magnetic field at NICA

    CERN Document Server

    Tawfik, Abdel Nasser

    2016-01-01

    Because of relativistic off-center motion of the charged spectators and the local momentum-imbalance experienced by the participants, a huge magnetic field is likely generated in high-energy collisions. The influence of such short-lived magnetic field on the QCD phase-transition(s) shall be analysed. From Polyakov linear-sigma model, we study the chiral phase-transition and the magnetic response and susceptibility in dependence on temperature, density and magnetic field strength. The systematic measurements of the phase-transition characterizing signals, such as the fluctuations, the dynamical correlations and the in-medium modifications of rho-meson, for instance, in different interacting systems and collision centralities are conjectured to reveal an almost complete description for the QCD phase-structure and the chemical freezeout. We limit the discussion to NICA energies.

  3. Formation of droplets with high baryon density at the QCD phase transition in expanding matter

    Energy Technology Data Exchange (ETDEWEB)

    Herold, Christoph [School of Physics, Suranaree University of Technology, 111 University Avenue, Nakhon Ratchasima 30000 (Thailand); Institut für Theoretische Physik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Nahrgang, Marlene [Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Department of Physics, Duke University, Durham, NC 27708 (United States); Mishustin, Igor [Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Kurchatov Institute, National Research Center, 123182 Moscow (Russian Federation); Bleicher, Marcus [Institut für Theoretische Physik, Goethe-Universität, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Frankfurt Institute for Advanced Studies (FIAS), Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany)

    2014-05-15

    We consider the (3+1)-dimensional expansion and cooling of the chirally-restored and deconfined matter at finite net-baryon densities as expected in heavy-ion collisions at moderate energies. In our approach, we consider chiral fields and the Polyakov loop as dynamical variables coupled to a medium represented by a quark–antiquark fluid. The interaction between the fields and the fluid leads to dissipation and noise, which in turn affect the field fluctuations. We demonstrate how inhomogeneities in the net-baryon density may form during an evolution through the spinodal region of the first-order phase transition. For comparison, the dynamics of transition through the crossover and critical end point is also considered.

  4. Phase transitions in warm, asymmetric nuclear matter

    International Nuclear Information System (INIS)

    A relativistic mean-field model of nuclear matter with arbitrary proton fraction is studied at finite temperature. An analysis is performed of the liquid-gas phase transition in a system with two conserved charges (baryon number and isospin) using the stability conditions on the free energy, the conservation laws, and Gibbs' criteria for phase equilibrium. For a binary system with two phases, the coexistence surface (binodal) is two dimensional. The Maxwell construction through the phase-separation region is discussed, and it is shown that the stable configuration can be determined uniquely at every density. Moreover, because of the greater dimensionality of the binodal surface, the liquid-gas phase transition is continuous (second order by Ehrenfest's definition), rather than discontinuous (first order), as in familiar one-component systems. Using a mean-field equation of state calibrated to the properties of nuclear matter and finite nuclei, various phase-separation scenarios are considered. The model is then applied to the liquid-gas phase transition that may occur in the warm, dilute matter produced in energetic heavy-ion collisions. In asymmetric matter, instabilities that produce a liquid-gas phase separation arise from fluctuations in the proton concentration (chemical instability), rather than from fluctuations in the baryon density (mechanical instability)

  5. Critical behavior in the electroweak phase transition

    CERN Document Server

    Gleiser, Marcello

    1993-01-01

    We examine the behavior of the standard-model electroweak phase transition in the early Universe. We argue that close to the critical temperature it is possible to estimate the {\\it effective} infrared corrections to the 1-loop potential using well known $\\varepsilon$-expansion results from the theory of critical phenomena in 3 spatial dimensions. The theory with the $\\varepsilon$-corrected potential exhibits much larger fluctuations in the spatial correlations of the order parameter, considerably weakening the strength of the transition.

  6. Quantum phase transitions with dynamical flavors

    CERN Document Server

    Bea, Yago; Ramallo, Alfonso V

    2016-01-01

    We study the properties of a D6-brane probe in the ABJM background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and non-vanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at non-zero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number $N_f$ of unquenched quarks of the background.

  7. The diamagnetic phase transition in Magnetars

    CERN Document Server

    Wang, Zhaojun; Zhu, Chunhua; Wu, Baoshan

    2016-01-01

    Neutron stars are ideal astrophysical laboratories for testing theories of the de Haas-van Alphen (dHvA) effect and diamagnetic phase transition which is associated with magnetic domain formation. The "magnetic interaction" between delocalized magnetic moments of electrons (the Shoenberg effect), can result in an effect of the diamagnetic phase transition into domains of alternating magnetization (Condon's domains). Associated with the domain formation are prominent magnetic field oscillation and anisotropic magnetic stress which may be large enough to fracture the crust of magnetar with a super-strong field. Even if the fracture is impossible as in "low-field" magnetar, the depinning phase transition of domain wall motion driven by low field rate (mainly due to the Hall effect) in the randomly perturbed crust can result in a catastrophically variation of magnetic field. This intermittent motion, similar to the avalanche process, makes the Hall effect be dissipative. These qualitative consequences about magne...

  8. Non-equilibrium dynamics and phase transitions

    CERN Document Server

    Janik, Romuald A; Soltanpanahi, Hesam

    2015-01-01

    We study the poles of the retarded Green's functions of strongly coupled field theories exhibiting a variety of phase structures from a crossover up to a first order phase transition. These theories are modeled by a dual gravitational description. The poles of the holographic Green's functions appear at the frequencies of the quasinormal modes of the dual black hole background. We establish that near the transition, in all cases considered, the applicability of a hydrodynamic description breaks down already at lower momenta than in the conformal case. We establish the appearance of the spinodal region in the case of the first order phase transition at temperatures for which the speed of sound squared is negative. An estimate of the preferential scale attained by the unstable modes is also given. We additionally observe a novel diffusive regime for sound modes for a range of wavelengths.

  9. Late-time cosmological phase transitions

    International Nuclear Information System (INIS)

    It is shown that the potential galaxy formation and large-scale structure problems of objects existing at high redshifts (Z approx-gt 5), structures existing on scales of 100M pc as well as velocity flows on such scales, and minimal microwave anisotropies (ΔT/T) approx-lt 10-5 can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random gaussian fluctuations and/or topological defects can form. Scale lengths of ∼100M pc for large-scale structure as well as ∼1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition. 47 refs., 2 figs

  10. Radiation-induced phase transition of paraffins

    International Nuclear Information System (INIS)

    When irradiated by the 500 kV electron at a dose of about 1.5 x 10-3 C/cm2, normal paraffins exhibit a solid-solid phase transition; a transition from a triclinic form to an orthorhombic one in n-C22H46 and n-C24H50 and from a monoclinic form to an orthorhombic one in n-C28H58, n-C36H74 and n-C44H90. The transition to a phase with high energy (orthorhombic phase) accommodates the radiation-induced stresses. The excess strain energy produced by cross-links in crystals is assumed to be equal to the enthalpy change of the phase transition, and the number of cross-links required to induce the phase transition is estimated at one per volume of about ten molecular chains. To compare with irradiated crystals, mixed crystals are prepared from solutions of binary mixtures of n-C23H48 and n-C24H50 and of n-C24H50 and n-C25H52. When the content of impurities (n-C23H48 or n-C25H52) reaches 10% in molar fraction, the crystal form of mixed crystals changes from the stable triclinic one to the unstable orthorhombic one. Thus, the number of lattice imperfections of mixed lattice is also estimated at one per volume of ten molecules. It is concluded from the above two estimations that the phase transition occurs when the content of lattice imperfections reaches the value of one per ten molecular chains and the value does not depend on the type of imperfections in these paraffins. (author)

  11. Some phase transition studies under shock waves

    International Nuclear Information System (INIS)

    Experimental studies on pressure-induced phase transitions are generally conducted using both static- and shock-loading techniques. Comparison of these results is interesting as the presence of shear and high strain rate under shock compression may alter the mechanism of a transition and also its onset pressure. Recently we have carried out an gas-gun experiments to study phase transitions in GeO2, Ti and Zr. In Ti and Zr, our objective has been to understand the causes of the reported scatter in the pressure of shock induced α -> ω transition (6.0 - 11.9 GPa). Our experiments on Zr show that the initial oxygen content of the sample has a large influence on the transition pressure. For example no α to ω transition is seen up to 11 GPa in Zr samples containing oxygen concentration above 1600 ppm. Unlike that in static experiments, the effect of shear is found to be small up to 9 GPa in inclined impact experiments in Ti. The microscopic nature of the α -> ω transition in Zr has also been examined using selected area electron diffraction measurements

  12. Queueing phase transition: theory of translation

    OpenAIRE

    Romano, M. Carmen; Thiel, Marco; Stansfield, Ian; Grebogi, Celso

    2009-01-01

    We study the current of particles on a lattice, where to each site a different hopping probability has been associated and the particles can move only in one direction. We show that the queueing of the particles behind a slow site can lead to a first-order phase transition, and derive analytical expressions for the configuration of slow sites for this to happen. We apply this stochastic model to describe the translation of mRNAs. We show that the first-order phase transition, uncovered in thi...

  13. Phase Transition in Loop Quantum Gravity

    OpenAIRE

    Mäkelä, Jarmo

    2016-01-01

    We point out that with a specific counting of states loop quantum gravity implies that black holes perform a phase transition at a certain characteristic temperature $T_C$. In this phase transition the punctures of the spin network on the stretched horizon of the black hole jump, in effect, from the vacuum to the excited states. The characteristic temperature $T_C$ may be regarded as the lowest possible temperature of the hole. From the point of view of a distant observer at rest with respect...

  14. Phase transition in loop quantum gravity

    Science.gov (United States)

    Mäkelä, Jarmo

    2016-04-01

    We point out that with a specific counting of states loop quantum gravity implies that black holes perform a phase transition at a certain characteristic temperature TC . In this phase transition the punctures of the spin network on the stretched horizon of the black hole jump, in effect, from the vacuum to the excited states. The characteristic temperature TC may be regarded as the lowest possible temperature of the hole. From the point of view of a distant observer at rest with respect to the hole, the characteristic temperature TC corresponds to the Hawking temperature of the hole.

  15. Phase Transition in Loop Quantum Gravity

    CERN Document Server

    Mäkelä, Jarmo

    2016-01-01

    We point out that with a specific counting of states loop quantum gravity implies that black holes perform a phase transition at a certain characteristic temperature $T_C$. In this phase transition the punctures of the spin network on the stretched horizon of the black hole jump, in effect, from the vacuum to the excited states. The characteristic temperature $T_C$ may be regarded as the lowest possible temperature of the hole. From the point of view of a distant observer at rest with respect to the hole the characteristic temperature $T_C$ corresponds to the Hawking temperature of the hole.

  16. Network traffic behaviour near phase transition point

    Science.gov (United States)

    Lawniczak, A. T.; Tang, X.

    2006-03-01

    We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnect) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dynamics near the phase transition point for various network connection topologies, and static and adaptive routing algorithms. We present selected simulation results and analyze them.

  17. Dimension changing phase transitions in instanton crystals

    International Nuclear Information System (INIS)

    We investigate lattices of instantons and the dimension-changing transitions between them. Our ultimate goal is the 3D→4D transition, which is holographically dual to the phase transition between the baryonic and the quarkyonic phases of cold nuclear matter. However, in this paper (just as in http://dx.doi.org/10.1007/JHEP11(2012)047) we focus on lower dimensions — the 1D lattice of instantons in a harmonic potential V∝M22x22+M32x22+M42x42, and the zigzag-shaped lattice as a first stage of the 1D→2D transition. We prove that in the low- and moderate-density regimes, interactions between the instantons are dominated by two-body forces. This drastically simplifies finding the ground state of the instantons’ orientations, so we made a numeric scan of the whole orientation space instead of assuming any particular ansatz. We find that depending on the M2/M3/M4 ratios, the ground state of instanton orientations can follow a wide variety of patterns. For the straight 1D lattices, we found orientations periodically running over elements of a ℤ2, Klein, prismatic, or dihedral subgroup of the SU(2)/ℤ2, as well as irrational but link-periodic patterns. For the zigzag-shaped lattices, we detected 4 distinct orientation phases — the anti-ferromagnet, another abelian phase, and two non-abelian phases. Allowing the zigzag amplitude to vary as a function of increasing compression force, we obtained the phase diagrams for the straight and zigzag-shaped lattices in the (force,M3/M4), (chemical potential,M3/M4), and (density,M3/M4) planes. Some of the transitions between these phases are second-order while others are first-order. Our techniques can be applied to other types of non-abelian crystals

  18. Liquid chromatography with mass spectrometry enantioseparation of pomalidomide on cyclodextrin-bonded chiral stationary phases and the elucidation of the chiral recognition mechanisms by NMR spectroscopy and molecular modeling.

    Science.gov (United States)

    Szabó, Zoltán-István; Szőcs, Levente; Horváth, Péter; Komjáti, Balázs; Nagy, József; Jánoska, Ádám; Muntean, Daniela-Lucia; Noszál, Béla; Tóth, Gergő

    2016-08-01

    A sensitive and validated liquid chromatography with mass spectrometry method was developed for the enantioseparation of the racemic mixture of pomalidomide, a novel, second-generation immunomodulatory drug, using β-cyclodextrin-bonded stationary phases. Four cyclodextrin columns (β-, hydroxypropyl-β-, carboxymethyl-β-, and sulfobutyl-β-cyclodextrin) were screened and the effects of eluent composition, flow rate, temperature, and organic modifier on enantioseparation were studied. Optimized parameters, offering baseline separation (resolution = 2.70 ± 0.02) were the following: β-cyclodextrin stationary phase, thermostatted at 15°C, and mobile phase consisting of methanol/0.1% acetic acid 10:90 v/v, delivered with 0.8 mL/min flow rate. For the optimized parameter at multiple reaction monitoring mode 274.1-201.0 transition with 20 eV collision energy and 100 V fragmentor voltage the limit of detection and limit of quantitation were 0.75 and 2.00 ng/mL, respectively. Since enantiopure standards were not available, elution order was determined upon comparison of the circular dichroism signals of the separated pomalidomide enantiomers with that of enantiopure thalidomide. The mechanisms underlying the chiral discrimination between the enantiomers were also investigated. Pomalidomide-β-cyclodextrin inclusion complex was characterized using nuclear magnetic resonance spectroscopy and molecular modeling. The thermodynamic aspects of chiral separation were also studied. PMID:27279456

  19. PHASE TRANSITION IN SEQUENCE UNIQUE RECONSTRUCTION

    Institute of Scientific and Technical Information of China (English)

    Li XIA; Chan ZHOU

    2007-01-01

    In this paper,sequence unique reconstruction refers to the property that a sequence is uniquely reconstructable from all its K-tuples.We propose and study the phase transition behavior of the probability P(K)of unique reconstruction with regard to tuple size K in random sequences (iid model).Based on Monte Carlo experiments,artificial proteins generated from iid model exhibit a phase transition when P(K)abruptly jumps from a low value phase(e.g.<0.1)to a high value phase (e.g.>0.9).With a generalization to any alphabet,we prove that for a random sequence of length L,as L is large enough,P(K)undergoes a sharp phase transition when P≤0.1015 where p=P(two random letters match).Besides,formulas are derived to estimate the transition points,which may be of practical use in sequencing DNA by hybridization.Concluded from our study,most proteins do not deviate greatly from random sequences in the sense of sequence unique reconstruction,while there are some "stubborn" proteins which only become uniquely reconstructable at a very large K and probably have biological implications.

  20. Endpoint of the hot electroweak phase transition

    CERN Document Server

    Csikor, Ferenc; Heitger, J

    1999-01-01

    We give the nonperturbative phase diagram of the four-dimensional hot electroweak phase transition. The Monte-Carlo analysis is done on lattices with different lattice spacings ($a$). A systematic extrapolation $a \\to 0$ is done. Our results show that the finite temperature SU(2)-Higgs phase transition is of first order for Higgs-boson masses $m_H<66.5 \\pm 1.4$ GeV. At this endpoint the phase transition is of second order, whereas above it only a rapid cross-over can be seen. The full four-dimensional result agrees completely with that of the dimensional reduction approximation. This fact is of particular importance, because it indicates that the fermionic sector of the Standard Model can be included perturbatively. We obtain that the Higgs-boson endpoint mass in the Standard Model is $72.4 \\pm 1.7$ GeV. Taking into account the LEP Higgs-boson mass lower bound excludes any electroweak phase transition in the Standard Model.

  1. Transition to turbulence in pipe flow as a phase transition

    Science.gov (United States)

    Vasudevan, Mukund; Hof, Björn

    2015-11-01

    In pipe flow, turbulence first arises in the form of localized turbulent patches called puffs. The flow undergoes a transition to sustained turbulence via spatio-temporal intermittency, with puffs splitting, decaying and merging in the background laminar flow. However, the due to mean advection of the puffs and the long timescales involved (~107 advective time units), it is not possible to study the transition in typical laboratory set-ups. So far, it has only been possible to indirectly estimate the critical point for the transition. Here, we exploit the stochastic memoryless nature of the puff decay and splitting processes to construct a pipe flow set-up, that is periodic in a statistical sense. It then becomes possible to study the flow for sufficiently long times and characterize the transition in detail. We present measurements of the turbulent fraction as a function of Reynolds number which in turn allows a direct estimate of the critical point. We present evidence that the transition has features of a phase transition of second order.

  2. Chiral anomaly and the BaBar and Belle measurements of the γγ*-->π0 transition form factor

    Science.gov (United States)

    Pham, T. N.

    2012-10-01

    The recent BaBar measurements of the γγ*→π0 transition form factor show spectacular deviation from perturbative QCD prediction for large space-like Q2 up to 34GeV2. In this talk, I would like to discuss a recent work on the chiral anomaly effects in the γγ*→π0 transition form factor F(Q2) at large momentum squared Q2. Using PCAC and the Adler-Bell-Jackiw chiral anomaly triangle graph, we find that, F(Q2) at large Q2 behaves as (m2/Q2)×(ln(Q2/m2))2 and is in striking agreement with the BaBar data with m = 135MeV which also reproduces very well the CLEO data at lower Q2. The new Belle measurements could also be fitted with m = 120MeV.

  3. Explore QCD phase transition with thermal photons

    International Nuclear Information System (INIS)

    This pilot study was to assess the high temperature and zero baryon density region of quantum chromodynamics (QCD) phase diagram with thermal photon emission, where the nature of QCD phase transition is ambiguous. Based on a (3+1)-D ideal hydrodynamical model to describe macroscopically the collision system, thermal photons emitted from Pb+Pb collisions at 2.76 TeV are investigated. The result reveals that photons from heavy ion collisions at high energy and centrality are possible to distinguish the structure of the hot dense matter, in QGP phase or hadronic phase, thus may provide an approach to explore the nature of this finite-temperature QCD transition (that is, first-order, second-order or analytic crossover). (authors)

  4. Chiral superconductors

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  5. Hysteresis in the phase transition of chocolate

    Science.gov (United States)

    Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua

    2016-01-01

    We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.

  6. QCD phase transition and primordial density perturbations

    CERN Document Server

    Ignatius, J; Schwarz, Dominik J.

    2000-01-01

    We analyze the effect of primordial density perturbations on the cosmic QCD phase transition. According to our results hadron bubbles nucleate at the cold perturbations. We call this mechanism inhomogeneous nucleation. We find the typical distance between bubble centers to be a few meters. This exceeds the estimates from homogeneous nucleation by two orders of magnitude. The resulting baryon inhomogeneities may affect primordial nucleosynthesis.

  7. Passive Supporters of Terrorism and Phase Transitions

    CERN Document Server

    August, Friedrich; Delitzscher, Sascha; Hiller, Gerald; Krueger, Tyll

    2010-01-01

    We discuss some social contagion processes to describe the formation and spread of radical opinions. The dynamics of opinion spread involves local threshold processes as well as mean field effects. We calculate and observe phase transitions in the dynamical variables resulting in a rapidly increasing number of passive supporters. This strongly indicates that military solutions are inappropriate.

  8. Phase Transition Critical Flavor Number of QCD

    OpenAIRE

    Ndili, F. N.

    2005-01-01

    We present an entirely perturbative QCD determination of the critical phase transition flavor number $N^{cr}_{f}$ of QCD. The results obtained are compared with various determinations of $N^{cr}_{f}$ by non-pertrubative methods, including lattice QCD. The wider physics implication of the existence of the Banks-Zaks regime of QCD with only weakly interacting quarks, is discussed briefly.

  9. The nature of explosive percolation phase transition

    International Nuclear Information System (INIS)

    In this Letter, we show that the explosive percolation is a novel continuous phase transition. The order-parameter-distribution histogram at the percolation threshold is studied in Erdős–Rényi networks, scale-free networks, and square lattice. In finite system, two well-defined Gaussian-like peaks coexist, and the valley between the two peaks is suppressed with the system size increasing. This finite-size effect always appears in typical first-order phase transition. However, both of the two peaks shift to zero point in a power law manner, which indicates the explosive percolation is continuous in the thermodynamic limit. The nature of explosive percolation in all the three structures belongs to this novel continuous phase transition. Various scaling exponents concerning the order-parameter-distribution are obtained. -- Highlights: ► The explosive percolation is a novel continuous phase transition. ► The order-parameter-distribution histogram at the percolation threshold is studied. ► Two well-defined peaks coexist, and the valley in between is suppressed. ► However, both of the two peaks shift to zero point in a power law manner. ► Various scaling exponents concerning the order-parameter-distribution are obtained.

  10. Phenomenological models of cosmic phase transitions. 2

    International Nuclear Information System (INIS)

    Classical nucleation theory is applied to follow the thermal history of a homogeneous and isotropic universe during a first-order phase transition. The dependence of possible supercooling and reheating scenarios on the surface tension and growth velocity of bubbles is discussed. (author)

  11. Vol. 3: Statistical Physics and Phase Transitions

    International Nuclear Information System (INIS)

    Problems of modern physics and the situation with physical research in Ukraine are considered. Programme of the conference includes scientific and general problems. Its proceedings are published in 6 volumes. The papers presented in this volume refer to statistical physics and phase transition theory

  12. Black Hole Phase Transition in Massive Gravity

    Science.gov (United States)

    Ning, Shou-Li; Liu, Wen-Biao

    2016-07-01

    In massive gravity, some new phenomena of black hole phase transition are found. There are more than one critical points under appropriate parameter values and the Gibbs free energy near critical points also has some new properties. Moreover, the Maxwell equal area rule is also investigated and the coexistence curve of the black hole is given.

  13. On Julia sets concerning phase transitions

    Institute of Scientific and Technical Information of China (English)

    QIAO; Jianyong(乔建永)

    2003-01-01

    The sets of the points corresponding to the phase transitions of the Potts model on the diamondhierarchical lattice for antiferromagnetic coupling are studied. These sets are the Julia sets of a family ofrational mappings. It is shown that they may be disconnected sets. Furthermore, the topological structures ofthese sets are described completely.

  14. Supersymmetric Kosterlitz-Thouless phase transition

    International Nuclear Information System (INIS)

    Supersymmetry is introduced in the Coulomb gas, namely the statistical theory for a set of interacting vortices and antivortices. The equivalence of this theory to the supersymmetric Sine-Gordon model is established. Mean-field considerations applied to this supersymmetric Coulomb gas lead to a phase transition of the kind described by Kosterlitz and Thouless. 12 references

  15. Chaos: Butterflies also Generate Phase Transitions

    Science.gov (United States)

    Leplaideur, Renaud

    2015-10-01

    We exhibit examples of mixing subshifts of finite type and of continuous potentials such that there are phase transitions but the pressure is always strictly convex. More surprisingly, we show that the pressure can be analytic on some interval although there exist several equilibrium states.

  16. Quantum Phase Transitions in Antiferromagnets and Superfluids

    Science.gov (United States)

    Sachdev, Subir

    2000-03-01

    A general introduction to the non-zero temperature dynamic and transport properties of low-dimensional systems near a quantum phase transition shall be presented. Basic results will be reviewed in the context of experiments on the spin-ladder compounds. Recent large N computations (M. Vojta and S. Sachdev, Phys. Rev. Lett. 83), 3916 (1999) on an extended t-J model motivate a global scenario of the quantum phases and transitions in the high temperature superconductors, and connections will be made to numerous experiments. A universal theory (S. Sachdev, C. Buragohain, and M. Vojta, Science, in press M. Vojta, C. Buragohain, and S. Sachdev, cond- mat/9912020) of quantum impurities in spin-gap antiferromagnets near a magnetic ordering transition will be compared quantitatively to experiments on Zn doped Y Ba2 Cu3 O7 (Fong et al.), Phys. Rev. Lett. 82, 1939 (1999)

  17. Finite temperature field theory and phase transitions

    International Nuclear Information System (INIS)

    These lectures review phases and phase transitions of the Standard Model, with emphasis on those aspects which are amenable to a first principle study. Model calculations and theoretical idea of practical applicability are discussed as well. Contents: 1. Overview; 2. Field Theory at Finite Temperature and Density; 3. Critical Phenomena; 4. Electroweak Interactions at Finite Temperature; 5. Thermodynamics of Four Fermions models; 6. The Phases of QCD; 7. QCD at Finite Temperature, μB = 0; 8. QCD at Finite Temperature, μB ≠ 0. (author)

  18. [Preparation of 1 µm non-porous C18 silica gel stationary phase for chiral-pressurized capillary electrochromatography].

    Science.gov (United States)

    Lu, Yangfang; Wang, Hui; Wang, Guiming; Wang, Yan; Gu, Xue; Yan, Chao

    2015-03-01

    Non-porous C18 silica gel stationary phase (1 µm) was prepared and applied to chiral separation in pressurized capillary electrochromatography (pCEC) for the enantioseparation of various basic compounds. The non-porous silica particles (1 µm) were synthesized using modified St6ber method. C18 stationary phase (1 µm) was prepared by immobilization of chloro-dimethyl-octadecylsilane. Using carboxymethyl-β-cyclodextrin (CM-β-CD) as the chiral additive, the pCEC conditions including the content of acetonitrile (ACN), concentration of buffer, pH, the concentration of chiral additive and flow rate as well as applied voltage were investigated to obtain the optimal pCEC conditions for the separation of four basic chiral compounds. The column provided an efficiency of up to 190,000 plates/m. Bupropion hydrochloride, clenbuterol hydrochloride, metoprolol tartrate, and esmolol hydrochloride were baseline separated under the conditions of 5 mmol/L ammonium acetate buffer at pH 4. 0 with 20% (v/ v) acetonitrile, and 15 mmol/L CM-β-CD as the chiral additive. The applied voltage was 2 kV and flow rate was 0.03 mL/min with splitting ratio of 300:1. The resolution were 1.55, 2.82, 1. 69, 1. 70 for bupropion hydrochloride, clenbuterol hydrochloride, metoprolol tartrate, esmolol hydrochloride, respectively. The C18 coverage was improved by repeating silylation method. The synthesized 1 µm C18 packings have better mechanical strength and longer service life because of the special, non-porous structure. The column used in pCEC mode showed better separation of the racemates and a higher rate compared with those used in the capillary liquid chromatography (cLC) mode. This study provided an alternative way for the method of pCEC enantioseparation with chiral additives in the mobile phase and demonstrated the feasibility of micron particle stationary phase in chiral separation. PMID:26182460

  19. Phase transitions in algebraic cluster models

    International Nuclear Information System (INIS)

    Complete text of publication follows. There has been much interest recently in phase transitions in various nuclear systems. The phases are defined as (local) minima of the potential energy surface (PES) defined in terms of parameters characterizing the nuclear system. Phase transitions occur when some relevant parameter is changed gradually and the system moves from one phase to another one. In the analysis of such systems the key questions are the number of phases and the order of phase transition between them. Algebraic nuclear structure models are especially interesting from the phase transition point of view, because the different phases may be characterized by different symmetries of the system. Much work has been done recently on models based on the interacting boson approximation (IBA). In these studies the potential energy surface is constructed from the algebraic Hamiltonian by its geometric mapping using the coherent state formalism. Inspired by these studies we performed a similar analysis of a family of algebraic cluster models based on the semimicroscopic algebraic cluster model (SACM). This model has two dynamical symmetries: the SU(3) and SO(4) limits are believed to correspond to vibration around a spherical equilibrium shape and static dipole deformation, respectively. The semimicroscopic nature of this model is reflected by the fact that a fully antisymmetrized microscopic model space is combined with a phenomenologic Hamiltonian that describes excitations of the (typically) two-cluster system. The microscopic model space is necessary to take into account the Pauli exclusion principle acting between the nucleons of the closely interacting clusters. In practice this means that the number of excitation quanta in the relative motion of the clusters has to exceed a certain number n0 characterizing the system. This is clearly a novelty with respect to other algebraic models, and it complicates the formalism considerably. We thus introduced as a

  20. Phase transition to QGP matter : confined vs deconfined matter

    CERN Multimedia

    Maire, Antonin

    2015-01-01

    Simplified phase diagram of the nuclear phase transition, from the regular hadronic matter to the QGP phase. The sketch is meant to describe the transition foreseen along the temperature axis, at low baryochemical potential, µB.

  1. Chiral symmetry restoration in effective Lagrangian models

    International Nuclear Information System (INIS)

    The restoration is studied of chiral symmetry in dense baryon matter using effective lagrangian models of QCD, in which baryons are described as topological solitons. Starting from the breaking of scale invariance and chiral symmetry in the QCD vacuum, the foundations are discussed of effective lagrangians and their relevance for applications to dense matter. Soliton models, such a the Skyrme model, show a phase transition at high densities, whose order parameter is the average scalar field. The properties are investigated of the two phases of the effective theory and show that the phase transition corresponds to the restoration of the chiral symmetry of QCD. It is argued that it should not be understood as deconfinement. The author then considers this phase transition in the context of the Cheshire Cat principle, which provides the link to the underlying quarks of QCD. An analogue of the Cheshire Cat property of this chiral bag model for baryons is found in solitons of effective lagrangians with a scalar glueball field. The Cheshire Cat interpretation of the results of effective lagrangians provides a consistent picture of chiral symmetry restoration at high densities. To verify this interpretation explicitly, the author finally generalizes the effective lagrangian approach to dense matter to a chiral bag model description with quark degrees of freedom

  2. Phase transitions and large amplitude oscillations

    International Nuclear Information System (INIS)

    We studied the way how do large amplitude oscillations propagate in a one-dimensional viscous compressible flow governed by the Navier-Stokes equations. The model used a barotropic state law. This allows phase transitions, like in Van der Waals fluid. The oscillations obey to an integro-differential Cauchy problem of a new type. Due to the translational invariance, one consider here the solutions which do not depend on the (slow) space variable. They actually depend on a fast variable, and obey to a differential equation dw/dt = -grad I(W) on an infinite-dimensional manifold, where I denotes the internal energy per unit mass. Stable steady states correspond to local minima of I. It follows that states belonging to the spinodal phase are unstable with respect to large amplitude oscillations. It also gives an evidence for instability of stationary phase transitions when the pressures, although taking equal values in both phases, differ from the Maxwell value. This result was well known in a different context, when the capillarity is taken in account in the model but cannot be obtained in our case by using only a straightforward linearization technique for the Navier-Stokes equations, because of the strongly nonlinear nature of a phase transition. (author). 5 refs, 2 figs

  3. Phase transitions in a lattice population model

    International Nuclear Information System (INIS)

    We introduce a model for a population on a lattice with diffusion and birth/death according to 2A→3A and A→Φ for a particle A. We find that the model displays a phase transition from an active to an absorbing state which is continuous in 1 + 1 dimensions and of first-order in higher dimensions in agreement with the mean field equation. For the (1 + 1)-dimensional case, we examine the critical exponents and a scaling function for the survival probability and show that it belongs to the universality class of directed percolation. In higher dimensions, we look at the first-order phase transition by plotting a histogram of the population density and use the presence of phase coexistence to find an accurate value for the critical point in 2 + 1 dimensions

  4. Influence of Mobile Phase Composition on the Enantioseparation of Methoxyl Flavanones with Self-prepared CDMPC Column and Chiral Recognition Mechanism

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The influence of different alcohol modifiers in mobile phase on the chiral separation of 4`-methoxyl flavanone, 5-methoxyl flavanone and 6-methoxyl flavanone on cellulose tris (3, 5-dimethylphenylcarbamate) (CDMPC) column was studied and the chiral recognition mechanism was discussed. Using hexane-tert-butanol (1.31 mol L-1) as the mobile phase, those three methoxyl flavanones were excellently separated on CDMPC chiral column.

  5. The comfortable driving model revisited: traffic phases and phase transitions

    International Nuclear Information System (INIS)

    We study the spatiotemporal patterns resulting from different boundary conditions for a microscopic traffic model and contrast them with empirical results. By evaluating the time series of local measurements, the local traffic states are assigned to the different traffic phases of Kerner’s three-phase traffic theory. For this classification we use the rule-based FOTO-method, which provides ‘hard’ rules for this assignment. Using this approach, our analysis shows that the model is indeed able to reproduce three qualitatively different traffic phases: free flow (F), synchronized traffic (S), and wide moving jams (J). In addition, we investigate the likelihood of transitions between the three traffic phases. We show that a transition from free flow to a wide moving jam often involves an intermediate transition: first from free flow to synchronized flow and then from synchronized flow to a wide moving jam. This is supported by the fact that the so-called F → S transition (from free flow to synchronized traffic) is much more likely than a direct F → J transition. The model under consideration has a functional relationship between traffic flow and traffic density. The fundamental hypothesis of the three-phase traffic theory, however, postulates that the steady states of synchronized flow occupy a two-dimensional region in the flow–density plane. Due to the obvious discrepancy between the model investigated here and the postulate of the three-phase traffic theory, the good agreement that we found could not be expected. For a more detailed analysis, we also studied vehicle dynamics at a microscopic level and provide a comparison of real detector data with simulated data of the identical highway segment. (paper)

  6. The Phase Transition to Eternal Inflation

    OpenAIRE

    Creminelli, Paolo; Dubovsky, Sergei; Nicolis, Alberto; Senatore, Leonardo; Zaldarriaga, Matias

    2008-01-01

    For slow-roll inflation we study the phase transition to the eternal regime. Starting from a finite inflationary volume, we consider the volume of the universe at reheating as order parameter. We show that there exists a critical value for the classical inflaton speed, \\dot\\phi^2/H^4 = 3/(2 \\pi^2), where the probability distribution for the reheating volume undergoes a sharp transition. In particular, for sub-critical inflaton speeds all distribution moments become infinite. We show that at t...

  7. Dynamical phase transitions in quantum mechanics

    International Nuclear Information System (INIS)

    1936 Niels Bohr: In the atom and in the nucleus we have indeed to do with two extreme cases of mechanical many-body problems for which a procedure of approximation resting on a combination of one-body problems, so effective in the former case, loses any validity in the latter where we, from the very beginning, have to do with essential collective aspects of the interplay between the constituent particles. 1963: Maria Goeppert-Mayer and J. Hans D. Jensen received the Nobel Prize in Physics for their discoveries concerning nuclear shell structure. State of the art 2011: - The nucleus is an open quantum system described by a non-Hermitian Hamilton operator with complex eigenvalues. The eigenvalues may cross in the complex plane ('exceptional points'), the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By this, a dynamical phase transition occurs in the many-level system. The dynamical phase transition starts at a critical value of the level density. Hence the properties of he low-lying nuclear states (described well by the shell model) and those of highly excited nuclear states (described by random ensembles) differ fundamentally from one another. The statement of Niels Bohr for compound nucleus states at high level density is not in contradiction to the shell-model description of nuclear (and atomic) states at low level density. Dynamical phase transitions are observed experimentally in different systems, including PT-symmetric ones, by varying one or more parameters

  8. Preparation and Evaluation of a Novel Cellulose Tris(N-3,5-dimethylphenylcarbamate) Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    GE,Jin; ZHAO,Liang; SHI,Yan-Ping

    2008-01-01

    A novel cellulose tris(N-3,5-dimethylphenylcarbamate) (CDMPC) chiral stationary phase (CSP) was prepared by coating CDMPC on TiO2/SiO2, which was prepared by coating titania nanoparticles on silica through a self-assemble technique. At first, 2-hydroxyl-phenyl acetonitrile and α-phenylethanol were separated on this new CSP to evaluate the chiral separation ability. Then, two pesticides, matalaxyl and diclofop-methyl were separated.The influence of the mobile phase composition on the enantioselectivity was discussed, and the repeatability and stability of the CSP were studied too.

  9. Effect of vacuum polarization in system of two three-phase chiral bags

    CERN Document Server

    Malakhov, I Y

    2002-01-01

    The self-consistent solutions describing the system of two interacting bags are obtained for the model of the three-phase chiral quark bags in the (1 + 1)-dimensional case. Special attention thereby is paid to studying the role of the fermions vacuum polarization inside the bags in the system dynamics and the boson field connecting (interpolating) the bags is accounted for only at the single-boson exchange level. The renormalized complete energy of the system is studied as the function of the parameters characterizing the geometry of the problem and the bags additional characteristics originating in the (1 + 1)-dimensional case. It is shown that the vacuum polarization in the system of two three-phase bags leads to origination of strong nonlinear interaction at small distances whereby in dependence on the bags characteristics this may be both repulsion and attraction

  10. Effect of vacuum polarization in system of two three-phase chiral bags

    International Nuclear Information System (INIS)

    The self-consistent solutions describing the system of two interacting bags are obtained for the model of the three-phase chiral quark bags in the (1 + 1)-dimensional case. Special attention thereby is paid to studying the role of the fermions vacuum polarization inside the bags in the system dynamics and the boson field connecting (interpolating) the bags is accounted for only at the single-boson exchange level. The renormalized complete energy of the system is studied as the function of the parameters characterizing the geometry of the problem and the bags additional characteristics originating in the (1 + 1)-dimensional case. It is shown that the vacuum polarization in the system of two three-phase bags leads to origination of strong nonlinear interaction at small distances whereby in dependence on the bags characteristics this may be both repulsion and attraction

  11. Thermalon mediated phase transitions in Gauss-Bonnet gravity

    CERN Document Server

    Hennigar, Robie A; Mbarek, Saoussen

    2015-01-01

    Thermalons can mediate phase transitions between different vacua in higher curvature gravity, potentially changing the asymptotic structure of the spacetime. Treating the cosmological constant as a dynamical parameter, we study these phase transitions in the context of extended thermodynamic phase space. We find that in addition to the AdS to dS phase transitions previously studied, thermal AdS space can undergo a phase transition to an asymptotically flat black hole geometry. In the context of AdS to AdS transitions, we comment on the similarities and differences between thermalon transitions and the Hawking-Page transition.

  12. Phase transition to turbulence in a pipe

    Science.gov (United States)

    Goldenfeld, Nigel

    Leo Kadanoff taught us much about phase transitions, turbulence and collective behavior. Here I explore the transition to turbulence in a pipe, showing how a collective mode determines the universality class. Near the transition, turbulent puffs decay either directly or through splitting, with characteristic time-scales that exhibit a super-exponential dependence on Reynolds number. Direct numerical simulations reveal that a collective mode, a so-called zonal flow emerges at large scales, activated by anisotropic turbulent fluctuations, as represented by Reynolds stress. This zonal flow imposes a shear on the turbulent fluctuations that tends to suppress their anisotropy, leading to a Landau theory of predator-prey type, in the directed percolation universality class. Stochastic simulations of this model reproduce the functional form and phenomenology of pipe flow experiments. Talk based on work performed with Hong-Yan Shih and Tsung-Lin Hsieh. This work was partially supported by the National Science Foundation through Grant NSF-DMR-1044901.

  13. Phase Transitions in Models of Bird Flocking

    CERN Document Server

    Christodoulidi, H; Bountis, T

    2013-01-01

    The aim of the present paper is to elucidate the transition from collective to random behavior exhibited by various mathematical models of bird flocking. In particular, we compare Vicsek's model [Viscek et al., Phys. Rev. Lett. 75, 1226 -- 1229 (1995)] with one based on topological considerations. The latter model is found to exhibit a first order phase transition from flocking to decoherence, as the 'noise parameter' of the problem is increased, whereas Viscek's model gives a second order transition. Refining the topological model in such a way that birds are influenced mostly by the birds in front of them, less by the ones at their sides and not at all by those behind them (because they do not see them), we find a behavior that lies in between the two models. Finally, we propose a novel mechanism for preserving the flock's cohesion, without imposing artificial boundary conditions or attracting forces.

  14. Gravitational Waves from a Dark Phase Transition.

    Science.gov (United States)

    Schwaller, Pedro

    2015-10-30

    In this work, we show that a large class of models with a composite dark sector undergo a strong first order phase transition in the early Universe, which could lead to a detectable gravitational wave signal. We summarize the basic conditions for a strong first order phase transition for SU(N) dark sectors with n_{f} flavors, calculate the gravitational wave spectrum and show that, depending on the dark confinement scale, it can be detected at eLISA or in pulsar timing array experiments. The gravitational wave signal provides a unique test of the gravitational interactions of a dark sector, and we discuss the complementarity with conventional searches for new dark sectors. The discussion includes the twin Higgs and strongly interacting massive particle models as well as symmetric and asymmetric composite dark matter scenarios. PMID:26565451

  15. Phase transitions: An overview with a view

    Energy Technology Data Exchange (ETDEWEB)

    Gleiser, M. [Dartmouth Coll., Hanover, NH (United States)

    1997-10-01

    The dynamics of phase transitions plays a crucial role in the so- called interface between high energy particle physics and cosmology. Many of the interesting results generated during the last fifteen years or so rely on simplified assumptions concerning the complex mechanisms typical of nonequilibrium field theories. After reviewing well-known results concerning the dynamics of first and second order phase transitions, I argue that much is yet to be understood, in particular in situations where homogeneous nucleation theory does not apply. I present a method to deal with departures from homogeneous nucleation, and compare its efficacy with numerical simulations. Finally, I discuss the interesting problem of matching numerical simulations of stochastic field theories with continuum models.

  16. Dynamics at a smeared phase transition

    International Nuclear Information System (INIS)

    We investigate the effects of rare regions on the dynamics of Ising magnets with planar defects, i.e., disorder perfectly correlated in two dimensions. In these systems, the magnetic phase transition is smeared because static long-range order can develop on isolated rare regions. We first study an infinite-range model by numerically solving local dynamic mean-field equations. Then we use extremal statistics and scaling arguments to discuss the dynamics beyond mean-field theory. In the tail region of the smeared transition the dynamics is even slower than in a conventional Griffiths phase: the spin autocorrelation function decays like a stretched exponential at intermediate times before approaching the exponentially small equilibrium value following a power law at late times

  17. Dynamics at a smeared phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Fendler, Bernard [Department of Physics, University of Missouri-Rolla, Rolla, MO 65409 (United States); Sknepnek, Rastko [Department of Physics, University of Missouri-Rolla, Rolla, MO 65409 (United States); Vojta, Thomas [Department of Physics, University of Missouri-Rolla, Rolla, MO 65409 (United States)

    2005-03-18

    We investigate the effects of rare regions on the dynamics of Ising magnets with planar defects, i.e., disorder perfectly correlated in two dimensions. In these systems, the magnetic phase transition is smeared because static long-range order can develop on isolated rare regions. We first study an infinite-range model by numerically solving local dynamic mean-field equations. Then we use extremal statistics and scaling arguments to discuss the dynamics beyond mean-field theory. In the tail region of the smeared transition the dynamics is even slower than in a conventional Griffiths phase: the spin autocorrelation function decays like a stretched exponential at intermediate times before approaching the exponentially small equilibrium value following a power law at late times.

  18. Holographic phase transition in a non-critical holographic model

    OpenAIRE

    Cui, Sheng-liang; Gao, Yi-hong; Xu, Wei-shui

    2010-01-01

    We consider a holographic model constructed from the intersecting brane configuration D4-$\\bar{\\rm{D4}}$/D4 in noncritical string theory. We study the chiral phase diagram of this holographic QCD-like model with a finite baryon chemical potential through the supergravity dual approximation.

  19. Examining a possible cascade effect in chiral symmetry breaking

    CERN Document Server

    Fariborz, Amir H

    2016-01-01

    We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.

  20. Structural phase transitions in monolayer molybdenum dichalcogenides

    Science.gov (United States)

    Choe, Duk-Hyun; Sung, Ha June; Chang, Kee Joo

    2015-03-01

    The recent discovery of two-dimensional materials such as graphene and transition metal dichalcogenides (TMDs) has provided opportunities to develop ultimate thin channel devices. In contrast to graphene, the existence of moderate band gap and strong spin-orbit coupling gives rise to exotic electronic properties which vary with layer thickness, lattice structure, and symmetry. TMDs commonly appear in two structures with distinct symmetries, trigonal prismatic 2H and octahedral 1T phases which are semiconducting and metallic, respectively. In this work, we investigate the structural and electronic properties of monolayer molybdenum dichalcogenides (MoX2, where X = S, Se, Te) through first-principles density functional calculations. We find a tendency that the semiconducting 2H phase is more stable than the metallic 1T phase. We show that a spontaneous symmetry breaking of 1T phase leads to various distorted octahedral (1T') phases, thus inducing a metal-to-semiconductor transition. We discuss the effects of carrier doping on the structural stability and the modification of the electronic structure. This work was supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.

  1. From the double-stranded helix to the chiral nematic phase of B-DNA: a molecular model

    CERN Document Server

    Tombolato, F

    2004-01-01

    B-DNA solutions of suitable concentration form left-handed chiral nematic phases (cholesterics). Such phases have also been observed in solutions of other stiff or semiflexible chiral polymers; magnitude and handedness of the cholesteric pitch are uniquely related to the molecular features. In this work we present a theoretical method and a numerical procedure which, starting from the structure of polyelectrolytes, lead to the prediction of the cholesteric pitch. Molecular expressions for the free energy of the system are obtained on the basis of steric and electrostatic interactions between polymers; the former are described in terms of excluded volume, while a mean field approximation is used for the latter. Calculations have been performed for 130 bp fragments of B-DNA. The theoretical predictions provide an explanation for the experimental behavior, by showing the counteracting role played by shape and charge chirality of the molecule.

  2. Network traffic behaviour near phase transition point

    OpenAIRE

    Anna T. Lawniczak; Tang, Xiongwen

    2005-01-01

    We explore packet traffic dynamics in a data network model near phase transition point from free flow to congestion. The model of data network is an abstraction of the Network Layer of the OSI (Open Systems Interconnection) Reference Model of packet switching networks. The Network Layer is responsible for routing packets across the network from their sources to their destinations and for control of congestion in data networks. Using the model we investigate spatio-temporal packets traffic dyn...

  3. Quantum Phase Transitions in the BKL Universe

    CERN Document Server

    D'Odorico, Giulio

    2015-01-01

    We study quantum corrections to the classical Bianchi I and Bianchi IX universes. The modified dynamics is well-motivated from the asymptotic safety program where the short-distance behavior of gravity is governed by a non-trivial renormalization group fixed point. The correction terms induce a phase transition in the dynamics of the model, changing the classical, chaotic Kasner oscillations into a uniform approach to a point singularity. The resulting implications for the microscopic structure of spacetime are discussed.

  4. Gravitation, phase transitions, and the big bang

    International Nuclear Information System (INIS)

    Introduced here is a model of the early universe based on the possibility of a first-order phase transition involving gravity, and arrived at by a consideration of instabilities in the semiclassical theory. The evolution of the system is very different from the standard Friedmann-Robertson-Walker big-bang scenario, indicating the potential importance of semiclassical finite-temperature gravitational effects. Baryosynthesis and monopole production in this scenario are also outlined

  5. Phase transitions in algebraic cluster models

    International Nuclear Information System (INIS)

    We study the phase transitions of two algebraic cluster models, which have similar interactions, but differ from each other in their model spaces. The semimicroscopical model incorporates the Pauli exclusion principle, while the phenomenological one does not. The appearance of the quasidynamical SU(3) symmetry is also investigated in the presence of an explicitly symmetry-breaking interaction. Examples of binary cluster configurations with two, one, or zero closed-shell clusters are studied

  6. Unprovability and phase transitions in Ramsey theory

    OpenAIRE

    De Smet, Michiel

    2011-01-01

    The first mathematically interesting, first-order arithmetical example of incompleteness was given in the late seventies and is know as the Paris-Harrington principle. It is a strengthened form of the finite Ramsey theorem which can not be proved, nor refuted in Peano Arithmetic. In this dissertation we investigate several other unprovable statements of Ramseyan nature and determine the threshold functions for the related phase transitions. Chapter 1 sketches out the historical development...

  7. Thermalon mediated phase transitions in Gauss-Bonnet gravity

    OpenAIRE

    Hennigar, Robie; Mann, Robert; Mbarek, Saoussen

    2015-01-01

    Thermalons can mediate phase transitions between different vacua in higher curvature gravity, potentially changing the asymptotic structure of the spacetime. Treating the cosmological constant as a dynamical parameter, we study these phase transitions in the context of extended thermodynamic phase space. We find that in addition to the AdS to dS phase transitions previously studied, thermal AdS space can undergo a phase transition to an asymptotically flat black hole geometry. In the context ...

  8. Dynamics and Stability of Chiral Fluid

    OpenAIRE

    Mishustin, Igor N.; Koide, Tomoi; Denicol, Gabriel S.; Torrieri, Giorgio

    2014-01-01

    Starting from the linear sigma model with constituent quarks we derive the chiral fluid dynamics where hydrodynamic equations for the quark fluid are coupled to the equation of motion for the order-parameter field. In a static system at thermal equilibrium this model leads to a chiral phase transition which, depending on the choice of the quark-meson coupling constant, could be a crossover or a first order one. We investigate the stability of the chiral fluid in the static and expanding backg...

  9. Phase transitions for SU(N) gauge theories with arbitrary number of flavors

    CERN Document Server

    Jora, Renata

    2015-01-01

    We study the phase diagram of an $SU(N)$ gauge theory in terms of the number of colors $N$ and flavors $N_f$ with emphasis on the confinement and chiral symmetry breaking phases. We argue that as opposed to SUSY QCD there is a small region in the $(N,N_f)$ plane where the theory has the chiral symmetry broken but it is unconfined. The possibility of a new phase with strong confinement and chiral symmetry breaking is suggested.

  10. Phase Transitions in Delaunay Potts Models

    Science.gov (United States)

    Adams, Stefan; Eyers, Michael

    2016-01-01

    We establish phase transitions for certain classes of continuum Delaunay multi-type particle systems (continuum Potts models) with infinite range repulsive interaction between particles of different type. In one class of the Delaunay Potts models studied the repulsive interaction is a triangle (multi-body) interaction whereas in the second class the interaction is between pairs (edges) of the Delaunay graph. The result for the edge model is an extension of finite range results in Bertin et al. (J Stat Phys 114(1-2):79-100, 2004) for the Delaunay graph and in Georgii and Häggström (Commun Math Phys 181:507-528, 1996) for continuum Potts models to an infinite range repulsion decaying with the edge length. This is a proof of an old conjecture of Lebowitz and Lieb. The repulsive triangle interactions have infinite range as well and depend on the underlying geometry and thus are a first step towards studying phase transitions for geometry-dependent multi-body systems. Our approach involves a Delaunay random-cluster representation analogous to the Fortuin-Kasteleyn representation of the Potts model. The phase transitions manifest themselves in the percolation of the corresponding random-cluster model. Our proofs rely on recent studies (Dereudre et al. in Probab Theory Relat Fields 153:643-670, 2012) of Gibbs measures for geometry-dependent interactions.

  11. Topology and phase transitions I. Preliminary results

    International Nuclear Information System (INIS)

    In this first paper, we demonstrate a theorem that establishes a first step toward proving a necessary topological condition for the occurrence of first- or second-order phase transitions: we prove that the topology of certain submanifolds of configuration space must necessarily change at the phase transition point. The theorem applies to smooth, finite-range and confining potentials V bounded below, describing systems confined in finite regions of space with continuously varying coordinates. The relevant configuration space submanifolds are both the level sets {Σv:=VN-1(v)}velementofR of the potential function VN and the configuration space submanifolds enclosed by the Σv defined by {Mv:=VN-1((-∞,v])}velementofR, which are labeled by the potential energy value v, and where N is the number of degrees of freedom. The proof of the theorem proceeds by showing that, under the assumption of diffeomorphicity of the equipotential hypersurfaces {Σv}velementofR, as well as of the {Mv}velementofR, in an arbitrary interval of values for v-bar =v/N, the Helmholtz free energy is uniformly convergent in N to its thermodynamic limit, at least within the class of twice differentiable functions, in the corresponding interval of temperature. This preliminary theorem is essential to prove another theorem-in (paper II)-which makes a stronger statement about the relevance of topology for phase transitions

  12. Topology in the SU(Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology

    CERN Document Server

    Azcoiti, Vicente

    2016-01-01

    We investigate the topological properties of unquenched QCD on the basis of numerical results of simulations at fixed topological charge, recently reported by Borsanyi et al., and analytical predictions of the dilute instanton gas approximation. We demonstrate that the mean value of the chiral condensate at fixed topological charge is, in both cases, inconsistent with the analytical prediction of the large volume expansion around the saddle point, and argue that the most plausible explanation for the failure of the saddle point expansion is a vacuum energy density theta-independent at high temperatures, but surprisingly not too high (T\\sim 2T_c), a result which would imply a vanishing topological susceptibility, and the absence of all physical effects of the U(1) axial anomaly at these temperatures. We also show that under a general assumption concerning the high temperature phase of QCD, where the SU(Nf)_A symmetry is restored, the analytical prediction for the chiral condensate at fixed topological charge i...

  13. Mechanical analog for a quantum-chromodynamic phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Salomone, A.; Schechter, J.

    1982-07-15

    A simple mechanical model involving a pendulum and a spring is shown to give the same phase-transition behavior as that of either the effective chiral Lagrangian for one-flavor QCD or the massive Schwinger model. This model, which also has been studied in catastrophe theory, permits us to get a nice understanding of what at first appears to be a complicated system. We also construct and analyze a mechanical analog model for the two-flavor case. The latter has a similar behavior, in general, but does present some interesting new features. With this experience under our belts we are able to straightforwardly analyze the situation with an arbitrary number of flavors. We also discuss what the zero-flavor (i.e., pure QCD) limit of the effective Lagrangian should look like and give a formula for the ground-state energy as a function of the instanton angle theta. A number of other questions related to the QCD effective Lagrangian are investigated.

  14. Phase Transitions in Model Active Systems

    Science.gov (United States)

    Redner, Gabriel S.

    The amazing collective behaviors of active systems such as bird flocks, schools of fish, and colonies of microorganisms have long amazed scientists and laypeople alike. Understanding the physics of such systems is challenging due to their far-from-equilibrium dynamics, as well as the extreme diversity in their ingredients, relevant time- and length-scales, and emergent phenomenology. To make progress, one can categorize active systems by the symmetries of their constituent particles, as well as how activity is expressed. In this work, we examine two categories of active systems, and explore their phase behavior in detail. First, we study systems of self-propelled spherical particles moving in two dimensions. Despite the absence of an aligning interaction, this system displays complex emergent dynamics, including phase separation into a dense active solid and dilute gas. Using simulations and analytic modeling, we quantify the phase diagram and separation kinetics. We show that this nonequilibrium phase transition is analogous to an equilibrium vapor-liquid system, with binodal and spinodal curves and a critical point. We also characterize the dense active solid phase, a unique material which exhibits the structural signatures of a crystalline solid near the crystal-hexatic transition point, as well as anomalous dynamics including superdiffusive motion on intermediate timescales. We also explore the role of interparticle attraction in this system. We demonstrate that attraction drastically changes the phase diagram, which contains two distinct phase-separated regions and is reentrant as a function of propulsion speed. We interpret this complex situation with a simple kinetic model, which builds from the observed microdynamics of individual particles to a full description of the macroscopic phase behavior. We also study active nematics, liquid crystals driven out of equilibrium by energy-dissipating active stresses. The equilibrium nematic state is unstable in these

  15. Enantiomer-Specific State Transfer of Chiral Molecules

    CERN Document Server

    Eibenberger, Sandra; Patterson, David

    2016-01-01

    State-selective enantiomeric excess is realized using microwave-driven coherent population transfer. The method selectively promotes either R- or S- molecules to a higher rotational state by phase-controlled microwave pulses that drive electric-dipole allowed rotational transitions. We demonstrate the method using a racemic mixture of 1,2-propanediol. This method of chiral enrichment can be applied to nearly any chiral molecule that can be vaporized and cooled to the point where rotationally resolved spectroscopy is possible, including molecules that rapidly racemize. The rapid chiral switching demonstrated here allows for new applications in high-precision spectroscopic searches for parity violation in chiral molecules.

  16. Berry Phases, Quantum Phase Transitions and Chern Numbers

    OpenAIRE

    Contreras, H. A.; Reyes-Lega, A. F.

    2007-01-01

    We study the relation between Chern numbers and Quantum Phase Transitions (QPT) in the XY spin-chain model. By coupling the spin chain to a single spin, it is possible to study topological invariants associated to the coupling Hamiltonian. These invariants contain global information, in addition to the usual one (obtained by integrating the Berry connection around a closed loop). We compute these invariants (Chern numbers) and discuss their relation to QPT. In particular we show that Chern nu...

  17. Preparation and characterization of mesoporous silicas modified with chiral selectors as stationary phase for high-performance liquid chromatography.

    Science.gov (United States)

    Pérez-Quintanilla, Damián; Morante-Zarcero, Sonia; Sierra, Isabel

    2014-01-15

    New hybrid materials were prepared as novel chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC). Pure mesoporous silica (SM) and ethylene-bridged periodic mesostructured organosilica (PMO) were functionalized, by a post-synthesis method, with derivates of erythromycin and vancomycin. N2 adsorption-desorption measurements, XRD, FT-IR, MAS NMR, SEM, TEM and elemental analysis were used to characterize the physico-chemical properties of these mesostructured materials, before and after the modification process. The synthesized particles had non-symmetrical 3-D wormhole-like mesostructure, spherical morphology, and a mean pore diameter between 53 and 59 Å. CSPs prepared were tested for the separation of four chiral β-blockers (atenolol, metoprolol, pindolol and propranolol) in normal phase (NP) and polar organic phase (PO) elution modes. Much stronger chiral interaction was observed in vancomycin-modified silicas. Results obtained in these preliminary studies will permit in future works to improve the synthesis route in order to design mesoporous materials with better performance as a chiral stationary phase for HPLC. PMID:24231079

  18. Identification of regioisomers and enantiomers of triacylglycerols in different yeasts using reversed- and chiral-phase LC–MS

    Czech Academy of Sciences Publication Activity Database

    Řezanka, Tomáš; Kolouchová, I.; Čejková, A.; Cajthaml, Tomáš; Sigler, Karel

    2013-01-01

    Roč. 36, č. 20 (2013), s. 3310-3320. ISSN 1615-9306 R&D Projects: GA ČR(CZ) GAP503/11/0215 Institutional support: RVO:61388971 Keywords : Atmospheric pressure chemical ionization mass spectrometry * Chiral LC * Reversed phase LC Subject RIV: EE - Microbiology, Virology Impact factor: 2.594, year: 2013

  19. Improved Procedure for Preparation of Covalently Bonded Cellulose Tris-phenylcarbamate Chiral Stationary Phases

    Institute of Scientific and Technical Information of China (English)

    秦峰; 陈小明; 刘月启; 邹汉法; 王俊德

    2005-01-01

    The classical method for preparation of covalently boned cellulose derivative chiral stationary phases (CSP) with diisocyanate as spacer was improved. Diisocyanate was firstly allowed to react with 3-aminopropyltriethoxysilane, and the resulting product was then applied as the spacer reagent to immobilize cellulose derivatives onto silica gel. Influences of the amount and the length of the spacer on the optical resolution ability of the CSP were investigated. Comparing improved procedure to classical diisocyanate method, the cross-linking between the glucose units of the cellulose derivatives was avoided to the most extent. With the improved procedure, regio-nonselective ways could be adooted to prepare covalently bonded CSP, which showed an advantage for the rapid preparation.

  20. Transitional Bubble in Periodic Flow Phase Shift

    Science.gov (United States)

    Talan, M.; Hourmouziadis, Jean

    2004-01-01

    One particular characteristic observed in unsteady shear layers is the phase shift relative to the main flow. In attached boundary layers this will have an effect both on the instantaneous skin friction and heat transfer. In separation bubbles the contribution to the drag is dominated by the pressure distribution. However, the most significant effect appears to be the phase shift on the transition process. Unsteady transition behaviour may determine the bursting of the bubble resulting in an un-recoverable full separation. An early analysis of the phase shift was performed by Stokes for the incompressible boundary layer of an oscillating wall and an oscillating main flow. An amplitude overshoot within the shear layer as well as a phase shift were observed that can be attributed to the relatively slow diffusion of viscous stresses compared to the fast change of pressure. Experiments in a low speed facility with the boundary layer of a flat plate were evaluated in respect to phase shift. A pressure distribution similar to that on the suction surface of a turbomachinery aerofoil was superimposed generating a typical transitional separation bubble. A periodically unsteady main flow in the suction type wind tunnel was introduced via a rotating flap downstream of the test section. The experiments covered a range of the three similarity parameters of momentum-loss-thickness Reynolds-number of 92 to 226 and Strouhal-number (reduced frequency) of 0.0001 to 0.0004 at the separation point, and an amplitude range up to 19 %. The free stream turbulence level was less than 1% .Upstream of the separation point the phase shift in the laminar boundary layer does not appear to be affected significantly bay either of the three parameters. The trend perpendicular to the wall is similar to the Stokes analysis. The problem scales well with the wave velocity introduced by Stokes, however, the lag of the main flow near the wall is less than indicated analytically. The separation point

  1. High pressure phase transitions in Europous oxide

    International Nuclear Information System (INIS)

    The pressure-volume relationship for EuO was investigated to 630 kilobars at room temperature with a diamond-anvil, high-pressure cell. Volumes were determined by x-ray diffraction; pressures were determined by the ruby R1 fluorescence method. The preferred interpretation involves normal compression behavior for EuO, initially in the B1 (NaCl-type) structure, to about 280 kilobars. Between approx. =280 and approx. =350 kilobars a region of anomalous compressibility in which the volume drops continuously by approximately 2% is observed. A second-order electronic transition is proposed with the 6s band overlapping with the 4f levels, thereby reducing the volume of EuO without changing the structure. This is not a semiconductor-to-metal transition. In reflected light, this transition is correlated with a subtle and continuous change in color from brown-black to a light brown. The collapsed B1 phase (postelectronic transition) is stable between approx. =350 and approx. =400 kilobars. At about 400 kilobars the collapsed B1 structure transforms to the B2 (CsCl-type) structure, with a zero pressure-volume change of approximately 12 +/- 1.5%

  2. Phase transitions in least-effort communications

    International Nuclear Information System (INIS)

    We critically examine a model that attempts to explain the emergence of power laws (e.g., Zipf's law) in human language. The model is based on the principle of least effort in communications—specifically, the overall effort is balanced between the speaker effort and listener effort, with some trade-off. It has been shown that an information-theoretic interpretation of this principle is sufficiently rich to explain the emergence of Zipf's law in the vicinity of the transition between referentially useless systems (one signal for all referable objects) and indexical reference systems (one signal per object). The phase transition is defined in the space of communication accuracy (information content) expressed in terms of the trade-off parameter. Our study explicitly solves the continuous optimization problem, subsuming a recent, more specific result obtained within a discrete space. The obtained results contrast Zipf's law found by heuristic search (that attained only local minima) in the vicinity of the transition between referentially useless systems and indexical reference systems, with an inverse-factorial (sub-logarithmic) law found at the transition that corresponds to global minima. The inverse-factorial law is observed to be the most representative frequency distribution among optimal solutions

  3. Imprints of cosmic phase transition in inflationary gravitational waves

    International Nuclear Information System (INIS)

    We discuss the effects of cosmic phase transition on the spectrum of primordial gravitational waves generated during inflation. The energy density of the scalar condensation responsible for the phase transition may become sizable at the epoch of phase transition, which significantly affects the evolution of the universe. As a result, the amplitudes of the gravitational waves at high frequency modes are suppressed. Thus the gravitational wave spectrum can be a probe of phase transition in the early universe.

  4. Supersymmetry breaking as a quantum phase transition

    International Nuclear Information System (INIS)

    We explore supersymmetry breaking in the light of a rich fixed-point structure of two-dimensional supersymmetric Wess-Zumino models with one supercharge using the functional renormalization group. We relate the dynamical breaking of supersymmetry to a renormalization group relevant control parameter of the superpotential which is a common relevant direction of all fixed points of the system. Supersymmetry breaking can thus be understood as a quantum phase transition analogous to similar transitions in correlated fermion systems. Supersymmetry gives rise to a new superscaling relation between the critical exponent associated with the control parameter and the anomalous dimension of the field - a scaling relation which is not known in standard spin systems.

  5. Supersymmetry breaking as a quantum phase transition

    CERN Document Server

    Gies, Holger; Wipf, Andreas

    2009-01-01

    We explore supersymmetry breaking in the light of a rich fixed-point structure of two-dimensional supersymmetric Wess-Zumino models with one supercharge using the functional renormalization group (RG). We relate the dynamical breaking of supersymmetry to an RG relevant control parameter of the superpotential which is a common relevant direction of all fixed points of the system. Supersymmetry breaking can thus be understood as a quantum phase transition analogously to similar transitions in correlated fermion systems. Supersymmetry gives rise to a new superscaling relation between the critical exponent associated with the control parameter and the anomalous dimension of the field -- a scaling relation which is not known in standard spin systems.

  6. Locating phase transitions in computationally hard problems

    Indian Academy of Sciences (India)

    B Ashok; T K Patra

    2010-09-01

    We discuss how phase-transitions may be detected in computationally hard problems in the context of anytime algorithms. Treating the computational time, value and utility functions involved in the search results in analogy with quantities in statistical physics, we indicate how the onset of a computationally hard regime can be detected and the transit to higher quality solutions be quantified by an appropriate response function. The existence of a dynamical critical exponent is shown, enabling one to predict the onset of critical slowing down, rather than finding it after the event, in the specific case of a travelling salesman problem (TSP). This can be used as a means of improving efficiency and speed in searches, and avoiding needless computations.

  7. Phase transitions in paradigm shift models.

    Directory of Open Access Journals (Sweden)

    Huiseung Chae

    Full Text Available Two general models for paradigm shifts, deterministic propagation model (DM and stochastic propagation model (SM, are proposed to describe paradigm shifts and the adoption of new technological levels. By defining the order parameter m based on the diversity of ideas, Δ, it is studied when and how the phase transition or the disappearance of a dominant paradigm occurs as a cost C in DM or an innovation probability α in SM increases. In addition, we also investigate how the propagation processes affect the transition nature. From analytical calculations and numerical simulations m is shown to satisfy the scaling relation m=1-f(C/N for DM with the number of agents N. In contrast, m in SM scales as m=1-f(α(aN.

  8. Quantum Phase Transitions in Matrix Product States

    International Nuclear Information System (INIS)

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous

  9. Quantum phase transitions in matrix product states

    International Nuclear Information System (INIS)

    We present a new general and much simpler scheme to construct various quantum phase transitions (QPTs) in spin chain systems with matrix product ground states. By use of the scheme we take into account one kind of matrix product state (MPS) QPT and provide a concrete model. We also study the properties of the concrete example and show that a kind of QPT appears, accompanied by the appearance of the discontinuity of the parity absent block physical observable, diverging correlation length only for the parity absent block operator, and other properties which are that the fixed point of the transition point is an isolated intermediate-coupling fixed point of renormalization flow and the entanglement entropy of a half-infinite chain is discontinuous. (authors)

  10. Collective flow and QCD phase transition

    CERN Document Server

    Sorge, H

    1999-01-01

    In the first part I discuss the sensitivity of collective matter expansion in ultrarelativistic heavy-ion collisions to the transition between quark and hadronic matter (physics of the softest point of the Equation of State). A kink in the centrality dependence of elliptic flow has been suggested as a signature for the phase transition in hot QCD matter. Indeed, preliminary data of NA49 presented at this conference show first indications for the predicted kink. In the second part I have a look at the present theories of heavy-ion reactions. These remarks may also be seen as a critical comment to B. Mueller's summary talk (nucl-th/9906029) presented at this conference.

  11. Kuramoto-type phase transition with metronomes

    International Nuclear Information System (INIS)

    Metronomes placed on the perimeter of a disc-shaped platform, which can freely rotate in a horizontal plane, are used for a simple classroom illustration of the Kuramoto-type phase transition. The rotating platform induces a global coupling between the metronomes, and the strength of this coupling can be varied by tilting the metronomes’ swinging plane relative to the radial direction on the disc. As a function of the tilting angle, a transition from spontaneously synchronized to unsynchronized states is observable. By varying the number of metronomes on the disc, finite-size effects are also exemplified. A realistic theoretical model is introduced and used to reproduce the observed results. Computer simulations of this model allow a detailed investigation of the emerging collective behaviour in this system. (paper)

  12. Diffraction studies of ordered phases and phase transitions

    International Nuclear Information System (INIS)

    Two investigations are reported here. First, monolayers of CF4 physisorbed on the (001) face of graphite have been studied by means of X-ray diffraction experiments carried out at the electron storage ring DORIS in Hamburg. The exfoliated graphite substrate UCAR-ZYX was used in order to obtain a large area for adsorption and hence a large sample. Four two-dimensional solid phases of the CF4 films were seen, including a structure which is 2x2 commensurate relative to the substrate. On compression (by variation of coverage or temperature), this phase transforms to a uniaxially compressed structure ('stripe' phase). Further, at higher coverages a hexagonal structure was seen, incommensurate relative to the substrate, and at low temperatures and coverages, a complicated structure emerged, giving three close diffraction peaks in the powder pattern. Data are presented characterizing the meltings and commensurate to incommensurate transitions. Complementary to the synchrotron X-ray data, a presentation of the theory of synchrotron radiation is given. The second investigation was of the ferromagnetic phase transitions in the randomly diluted, dipolar coupled uniaxial ferromagnets LiTbsub(.3)Ysub(.7)F4 and LiHosub(.3)Ysub(.7)F4 by neutron diffraction at the RIS0 DR 3 reactor. (orig.)

  13. Dynamical phase transitions in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Rotter Ingrid

    2012-02-01

    Full Text Available The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points, the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model and those of highly excited nuclear states (described by random ensembles differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.

  14. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model; Einfluss schwerer hadronischer Zustaende auf das QCD-Phasendiagramm und die Ausfrierbedingungen in einem hadronischen chiralen Modell

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, G.

    2006-07-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized {sigma}-{omega} model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the

  15. Phases and phase transitions in the algebraic microscopic shell model

    Directory of Open Access Journals (Sweden)

    Georgieva A. I.

    2016-01-01

    Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  16. Is ''metamictization'' of zircon a phase transition?

    International Nuclear Information System (INIS)

    Metamictization is the transition from the crystalline to an aperiodic or amorphous state due to alpha-decay event damage from constituent radionuclides (238U, 235U, and 232Th) and their daughters. However, this transformation in minerals is part of a larger class of radiation-induced transformations to the amorphous state that has received considerable recent attention as a result of ion- and electron-beam experiments on metals, intermetallics, simple oxides, and complex ceramics and minerals. Diffuse X-ray scattering from single crystals of metamict zircon reveals residual crystallinity even at high fluences (up to 7.2 x 1018 α-decay events/g). The experimental evidence does not suggest that radiation-induced amorphization is a phase transition. The observations are in good agreement with a nonconvergent, heterogeneous model of amorphization in which damage production is a random process of cascade formation and overlap at increasing fluence. Instead of an amorphization transition, the existence of a percolation transition is postulated. At the level of radiation damage near the percolation point, the heterogeneous strain broadening of X-ray diffraction profiles is reduced whereas the particle-size broadening increases. Simultaneously, the macroscopic swelling of the zircon becomes larger than the maximum expansion of the unit-cell parameters. A suitable empirical parameter that characterizes this transition is the flux, Ds, at which the macroscopic expansion is identical to the maximum expansion of the crystallographic unit cell. In zircon, Ds = 3.5·1018 α-decay events/g

  17. Lagrangian phase transitions in nonequilibrium thermodynamic systems

    International Nuclear Information System (INIS)

    In previous papers we have introduced a natural nonequilibrium free energy by considering the functional describing the large fluctuations of stationary nonequilibrium states. While in equilibrium this functional is always convex, in nonequilibrium this is not necessarily the case. We show that in nonequilibrium a new type of singularity can appear that is interpreted as a phase transition. In particular, this phenomenon occurs for the one-dimensional boundary driven weakly asymmetric exclusion process when the drift due to the external field is opposite to that due to the external reservoirs and is strong enough. (letter)

  18. Berry phase transition in twisted bilayer graphene

    Science.gov (United States)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  19. A Note on Holography and Phase Transitions

    Directory of Open Access Journals (Sweden)

    Marc Bellon

    2011-01-01

    Full Text Available Focusing on the connection between the Landau theory of second-order phase transitions and the holographic approach to critical phenomena, we study diverse field theories in an anti de Sitter black hole background. Through simple analytical approximations, solutions to the equations of motion can be obtained in closed form which give rather good approximations of the results obtained using more involved numerical methods. The agreement we find stems from rather elementary considerations on perturbation of Schrödinger equations.

  20. Deconfining phase transition in lattice QCD

    International Nuclear Information System (INIS)

    We present the first results obtained from the sixteen-processor version of the parallel supercomputer being built at Columbia. The color-deconfining phase transition has been studied fo pure SU(3) gauge theory on lattices with a spatial volume of 163 sites and temporal sizes of 10, 12, and 14 sites. The values found for the critical coupling are 6.07, 6.26, and 6.36, respectively. These results are in agreement with the perturbative predictions of the renormalization group, suggesting that lattice QCD calculations with the parameter β at least as large as 6.07 may approximate the continuum limit

  1. A model with simultaneous first and second order phase transitions

    OpenAIRE

    Messager, Alain; Nachtergaele, Bruno

    2005-01-01

    We introduce a two dimensional nonlinear XY model with a second order phase transition driven by spin waves, together with a first order phase transition in the bond variables between two bond ordered phases, one with local ferromagnetic order and another with local antiferromagnetic order. We also prove that at the transition temperature the bond-ordered phases coexist with a disordered phase as predicted by Domany, Schick and Swendsen. This last result generalizes the result of Shlosman and...

  2. Multiplicity fluctuations at the quark-hadron phase transition from a fluid dynamical model

    Science.gov (United States)

    Herold, Christoph; Nahrgang, Marlene; Yan, Yupeng; Kobdaj, Chinorat

    2015-04-01

    The region of large net-baryon densities in the QCD phase diagram is expected to exhibit a first-order phase transition. Experimentally, its study will be one of the primary objectives for the upcoming FAIR accelerator. We model the transition between quarks and hadrons in a heavy-ion collision using a fluid which is coupled to the explicit dynamics of the chiral order parameter and a dilaton field. This allows us to investigate signals stemming from the nonequilibrium evolution during the expansion of the hot plasma. Special emphasis is put on an event-by-event analysis of baryon number fluctuations which have long since been claimed to be sensitive to a critical point.

  3. Phase transitions and structures of methylammonium compounds

    International Nuclear Information System (INIS)

    The structures of CD3ND3Cl, CD3ND3I, CD3ND3BF4, (CD3ND3)2SnCl6, and CD3ND3SnBr3 crystals were studied with time-of-flight type high-resolution powder diffractometers using spallation pulsed neutron sources. The orientations of the CD3ND3 cations, including the positions of the D atoms, were determined at all the room temperature phases and at the low temperature phases of CD3ND3I and (CD3ND3)2SnCl6. The heat capacity experiments were also performed for both protonated and deuterated analogs of these compounds. From both structural and thermodynamic points of view, it was found that the transitions are mainly associated with the order-disorder change of the orientations of the CD3ND3 cations. (author)

  4. Topological phase transitions in superradiance lattices

    CERN Document Server

    Wang, Da-Wei; Yuan, Luqi; Liu, Ren-Bao; Zhu, Shi-Yao

    2015-01-01

    The discovery of the quantum Hall effect (QHE) reveals a new class of matter phases, topological insulators (TI's), which have been extensively studied in solid-state materials and recently in photonic structures, time-periodic systems and optical lattices of cold atoms. All these topological systems are lattices in real space. Our recent study shows that Scully's timed Dicke states (TDS) can form a superradiance lattice (SL) in momentum space. Here we report the discovery of topological phase transitions in a two-dimensional SL in electromagnetically induced transparency (EIT). By periodically modulating the three EIT coupling fields, we can create a Haldane model with in-situ tunable topological properties. The Chern numbers of the energy bands and hence the topological properties of the SL manifest themselves in the contrast between diffraction signals emitted by superradiant TDS. The topological superradiance lattices (TSL) provide a controllable platform for simulating exotic phenomena in condensed matte...

  5. Phase transitions in fluids and biological systems

    Science.gov (United States)

    Sipos, Maksim

    metric to 16S rRNA metagenomic studies of 6 vertebrate gastrointestinal microbiomes and find that they assembled through a highly non-neutral process. I then consider a phase transition that may occur in nutrient-poor environments such as ocean surface waters. In these systems, I find that the experimentally observed genome streamlining, specialization and opportunism may well be generic statistical phenomena.

  6. Chirality in block copolymer melts: mesoscopic helicity from intersegment twist.

    Science.gov (United States)

    Zhao, Wei; Russell, Thomas P; Grason, Gregory M

    2013-02-01

    We study the effects of chirality at the segment scale on the thermodynamics of block copolymer melts using self-consistent field theory. In linear diblock melts where segments of one block prefer a twisted, or cholesteric, texture, we show that melt assembly is critically sensitive to the ratio of random coil size to the preferred pitch of cholesteric twist. For weakly chiral melts (large pitch), mesophases remain achiral, while below a critical value of pitch, two mesoscopically chiral phases are stable: an undulated lamellar phase and a phase of hexagonally ordered helices. We show that the nonlinear sensitivity of mesoscale chiral order to preferred pitch derives specifically from the geometric and thermodynamic coupling of the helical mesodomain shape to the twisted packing of chiral segments within the core, giving rise to a second-order cylinder-to-helix transition. PMID:23414052

  7. Chiral symmetry in rotating systems

    Science.gov (United States)

    Malik, Sham S.

    2015-08-01

    The triaxial rotating system at critical angular momentum I ≥Iband exhibits two enatiomeric (the left- and right-handed) forms. These enatiomers are related to each other through dynamical chiral symmetry. The chiral symmetry in rotating system is defined by an operator χ ˆ =Rˆy (π) T ˆ, which involves the product of two distinct symmetries, namely, continuous and discrete. Therefore, new guidelines are required for testing its commutation with the system Hamiltonian. One of the primary objectives of this study is to lay down these guidelines. Further, the possible impact of chiral symmetry on the geometrical arrangement of angular momentum vectors and investigation of observables unique to nuclear chiral-twins is carried out. In our model, the angular momentum components (J1, J2, J3) occupy three mutually perpendicular axes of triaxial shape and represent a non-planar configuration. At certain threshold energy, the equation of motion in angular momentum develops a second order phase transition and as a result two distinct frames (i.e., the left- and right-handed) are formed. These left- and right-handed states correspond to a double well system and are related to each other through chiral operator. At this critical angular momentum, the centrifugal and Coriolis interactions lower the barrier in the double well system. The tunneling through the double well starts, which subsequently lifts the degeneracy among the rotational states. A detailed analysis of the behavior of rotational energies, spin-staggering, and the electromagnetic transition probabilities of the resulting twin-rotational bands is presented. The ensuing model results exhibit similarities with many observed features of the chiral-twins. An advantage of our formalism is that it is quite simple and it allows us to pinpoint the understanding of physical phenomenon which lead to chiral-twins in rotating systems.

  8. Electronic phase transitions in ultrathin magnetite films

    International Nuclear Information System (INIS)

    Magnetite (Fe3O4) shows singular electronic and magnetic properties, resulting from complex electron–electron and electron–phonon interactions that involve the interplay of charge, orbital and spin degrees of freedom. The Verwey transition is a manifestation of these interactions, with a puzzling connection between the low temperature charge ordered state and the dynamic charge fluctuations still present above the transition temperature. Here we explore how these rich physical phenomena are affected by thin film geometries, particularly focusing on the ultimate size limit defined by thicknesses below the minimum bulk unit cell. On one hand, we address the influence of extended defects, such as surfaces or antiphase domains, on the novel features exhibited by thin films. On the other, we try to isolate the effect of the reduced thickness on the electronic and magnetic properties. We will show that a distinct phase diagram and novel charge distributions emerge under reduced dimensions, while holding the local high magnetic moments. Altogether, thin film geometries offer unique possibilities to understand the complex interplay of short- and long-range orders in the Verwey transition. Furthermore, they arise as interesting candidates for the exploitation of the rich physics of magnetite in devices that demand nanoscale geometries, additionally offering novel functionalities based on their distinct properties with respect to the bulk form. (topical review)

  9. Does sex induce a phase transition?

    Science.gov (United States)

    de Oliveira, P. M. C.; Moss de Oliveira, S.; Stauffer, D.; Cebrat, S.; Pękalski, A.

    2008-05-01

    We discovered a dynamic phase transition induced by sexual reproduction. The dynamics is a pure Darwinian rule applied to diploid bit-strings with both fundamental ingredients to drive Darwin's evolution: (1) random mutations and crossings which act in the sense of increasing the entropy (or diversity); and (2) selection which acts in the opposite sense by limiting the entropy explosion. Selection wins this competition if mutations performed at birth are few enough, and thus the wild genotype dominates the steady-state population. By slowly increasing the average number m of mutations, however, the population suddenly undergoes a mutational degradation precisely at a transition point mc. Above this point, the “bad” alleles (represented by 1-bits) spread over the genetic pool of the population, overcoming the selection pressure. Individuals become selectively alike, and evolution stops. Only below this point, m chromosome” lengths L, through lengthy computer simulations. One important and surprising observation is the L-independence of the transition curves, for large L. They are also independent on the population size. Another is that mc is near unity, i.e. life cannot be stable with much more than one mutation per diploid genome, independent of the chromosome length, in agreement with reality. One possible consequence is that an eventual evolutionary jump towards larger L enabling the storage of more genetic information would demand an improved DNA copying machinery in order to keep the same total number of mutations per offspring.

  10. Nuclear binding near a quantum phase transition

    CERN Document Server

    Elhatisari, Serdar; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-nan; Meißner, Ulf-G; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Lee, Dean; Rupak, Gautam

    2016-01-01

    How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. The existence of the nearby first-order ...

  11. Green high-performance liquid chromatography enantioseparation of lansoprazole using a cellulose-based chiral stationary phase under ethanol/water mode.

    Science.gov (United States)

    Ferretti, Rosella; Zanitti, Leo; Casulli, Adriano; Cirilli, Roberto

    2016-04-01

    A simple and environmentally friendly reversed-phase high-performance liquid chromatography method for the separation of the enantiomers of lansoprazole has been developed. The chromatographic resolution was carried out on the cellulose-based Chiralpak IC-3 chiral stationary phase using a green and low-toxicity ethanol-aqueous mode. The effects of water content in the mobile phase and column temperature on the retention of the enantiomers of lansoprazole and its chiral and achiral related substances have been carefully investigated. A mixed-mode hydrophilic interaction liquid chromatography and reversed-phase retention mechanism operating on the IC-3 chiral stationary phase allowed us to achieve simultaneous enantioselective and chemoselective separations in water-rich conditions. The enantiomers of lansoprazole were baseline resolved with a mobile phase consisting of ethanol/water 50:50 without any interference coming from chiral and achiral impurities within 10 min. PMID:26910378

  12. Gravitational waves from the electroweak phase transition

    International Nuclear Information System (INIS)

    We study the generation of gravitational waves in the electroweak phase transition. We consider a few extensions of the Standard Model, namely, the addition of scalar singlets, the minimal supersymmetric extension, and the addition of TeV fermions. For each model we consider the complete dynamics of the phase transition. In particular, we estimate the friction force acting on bubble walls, and we take into account the fact that they can propagate either as detonations or as deflagrations preceded by shock fronts, or they can run away. We compute the peak frequency and peak intensity of the gravitational radiation generated by bubble collisions and turbulence. We discuss the detectability by proposed spaceborne detectors. For the models we considered, runaway walls require significant fine tuning of the parameters, and the gravitational wave signal from bubble collisions is generally much weaker than that from turbulence. Although the predicted signal is in most cases rather low for the sensitivity of LISA, models with strongly coupled extra scalars reach this sensitivity for frequencies f ∼ 10−4 Hz, and give intensities as high as h2ΩGW ∼ 10−8

  13. Aspects of the cosmological electroweak phase transition

    International Nuclear Information System (INIS)

    We study the decay of the metastable symmetric phase in the standard model at finite temperature. For the SU(2)-Higgs model the two wave function correction terms Zφ(φ2,T) and Zχ(φ2,T) of Higgs and Goldstone boson fields are calculated to one-loop order. We find that the derivative expansion of the effective action is reliable for Higgs masses smaller than the W-boson mass. We propose a new procedure to evaluate the decay rate by first integrating out the vector field and the components of the scalar fields with non-zero Matsubara frequencies. The static part of the scalar field is treated in the saddle point approximation. As a by-product we obtain a formula for the decay rate of a homogeneous unstable state. The course of the cosmological electroweak phase transition is evaluated numerically for different Higgs boson masses and non-vanishing magnetic mass of the gauge boson. For Higgs masses above ∼ 60 GeV the latent heat can reheat the system to the critical temperature, which qualitatively changes the nature of the transition. (orig.)

  14. The chiral transition and U(1)_A symmetry restoration from lattice QCD using Domain Wall Fermions

    CERN Document Server

    Bazavov, A; Buchoff, Michael I; Cheng, Michael; Christ, N H; Ding, H -T; Gupta, Rajan; Hegde, Prasad; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Soltz, R A; Vranas, P M; Yin, Hantao

    2012-01-01

    We present results on both the restoration of the spontaneously broken chiral symmetry and the effective restoration of the anomalously broken U(1)_A symmetry in finite temperature QCD at zero chemical potential using lattice QCD. We employ domain wall fermions on lattices with fixed temporal extent N_\\tau = 8 and spatial extent N_\\sigma = 16 in a temperature range of T = 139 - 195 MeV, corresponding to lattice spacings of a \\approx 0.12 - 0.18 fm. In these calculations, we include two degenerate light quarks and a strange quark at fixed pion mass m_\\pi = 200 MeV. The strange quark mass is set near its physical value. We also present results from a second set of finite temperature gauge configurations at the same volume and temporal extent with slightly heavier pion mass. To study chiral symmetry restoration, we calculate the chiral condensate, the disconnected chiral susceptibility, and susceptibilities in several meson channels of different quantum numbers. To study U(1)_A restoration, we calculate spatial ...

  15. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    CERN Document Server

    Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2016-01-01

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a system...

  16. Phase transitions in high excited nuclear matter

    International Nuclear Information System (INIS)

    This work is a study of the mechanism of thermal multifragmentation, which takes place in collisions of light relativistic projectiles with heavy targets. This is a new multibody decay process of very hot nuclei (target spectator) with emission of a number of intermediate mass fragments (IMF, 2 4He and 12C with Au. The main results are the following: - The mean IMF multiplicity () saturates at 2.2 ± 0.2.This fact cannot be rendered by the traditional approach with the intranuclear cascade (INC) followed by Statistical Multifragmentation Models (SMM). Considering the expansion phase between two parts of the calculations, the excitation energies and the residual masses are empirically modified to obtain agreement with the measured IMF- multiplicities. The mean excitation energy is found to be around 500 MeV for the beam energies above 5 GeV. This modified model is denoted as INC + α + SMM where α indicates the preequilibrium processes. - The expansion is driven by the thermal pressure. It is larger for 4He and 12C induced collisions because of higher initial temperature. The kinetic energy spectra of IMF become harder and the expansion flow is visible. The total flow energy of the system is estimated to be around 115 MeV both for the He and the carbon beams. - The analysis of the data reveals very interesting information on the fragment space distribution inside the break-up volume. Heavier IMF are formed predominately in the interior of the fragmenting nucleus possibly due to a density gradient. This conclusion is in contrast to the predictions of the Statistical Multifragmentation Model (SMM). - This study of the multifragmentation using a range of projectiles demonstrates a transition from pure '' thermal decay '' (for p + Au collisions) to disintegration '' completed by '' the onset of a collective flow for the heavier projectiles. Nevertheless, in case of reaction caused by fast protons the decay mechanism should be considered as a thermal multifragmentation

  17. High performance liquid chromatographic separation of eight drugs collected in Chinese Pharmacopoeia 2010 on amylose ramification chiral stationary phase

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-10-01

    Full Text Available The enantiomers separation of eight pharmaceutical racemates collected in Chinese Pharmacopoeia 2010 (Ch.P2010, including nitrendipine, felodipine, omeprazole, praziquantel, sulpiride, clenbuterol hydrochloride, verapamil hydrochloride and chlorphenamine maleate, was performed on chiral stationary phase of amylose ramification by high performance liquid chromatography (HPLC on Chiralpak AD-H column and Chiralpak AS-H column with the mobile phase consisted of isopropanol and n-hexane. The detection wavelength and the flow rate were set at 254 nm and 0.7 mL/min, respectively. The effects of proportion of organic additives, alcohol displacer and temperature on the separation were investigated. The results indicated that eight chiral drugs were separated on chiral stationary phase of amylase ramification in normal phase chromatographic system. The chromatographic retention and resolution of enantiomers were adjusted by factors, including the changes of the concentration of alcohol displacer in mobile phase, organic alkaline modifier and column temperature. It was shown that the resolution was improved with reducing concentration of alcohol displacer. When the concentration of organic alkaline modifier was 0.2%, the resolution and the peak shape were fairly good. Most racemates mentioned above had the best resolution at column temperature of 25 °C. The best temperature should be kept unchanged in the process of separation so as to obtain stable separation results.

  18. Phase transitions in high density matter

    International Nuclear Information System (INIS)

    When matter is compressed unlimitedly, different phase states such as superfluid, solid and so on appear phase after phase. We can bring forth the essential feature of the colorful phenomena observed in the high-density matter systems (neutron stars and nuclei e.g.) by studying those transition phenomena theoretically. Some recent topics are presented here to transmit the thrilling sense of the theoretical study activities. How to find equation of sate of asymmetric nuclear matter from radioisotope beam experiments? Do rod-like or plate-like nuclei (pasta nuclei) appear in neutron stars? How will it be if superfluid (color superconductor) exists in neutron stars? Those questions are picked up in the text starting with what the high-density matter is. Then the ambiguous property and attractiveness of the many-body problem are described. Finally it is mentioned that the high-density matter provides, in addition to the many-body problem itself, difficult issues of the finite size effect and nonequilibrium problems when the practical system is considered. (S. Funahashi)

  19. QCD PHASE TRANSITIONS-VOLUME 15.

    Energy Technology Data Exchange (ETDEWEB)

    SCHAFER,T.

    1998-11-04

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some. efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  20. Subtle Is The Manifestation Of Chiral Symmetry In Nuclei And Dense Nuclear Matter

    CERN Document Server

    Rho, Mannque

    2010-01-01

    The history of how chiral symmetry has entered in nuclear physics, in which Gerry Brown and I have participated from 1970 up to today, is described from my personal viewpoint. The route of development we have traversed together goes from meson exchange currents, to ``little chiral bag," to chiral effective field theory, to ``Brown-Rho scaling" and then to dense matter and chiral phase transition. It has been a great fun and exciting, some right and some wrong in what we have done together, but none that can be dismissed as ``not even wrong." We have found all along that whatever signal there may be for the manifestation of chiral symmetry in nuclear medium, be it at low density in meson exchange currents or at high density approaching the chiral phase transition, is very similar in its intricacy and subtlety.

  1. Scaling theory of topological phase transitions

    Science.gov (United States)

    Chen, Wei

    2016-02-01

    Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined.

  2. MAGNETIC FIELDS FROM QCD PHASE TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Tevzadze, Alexander G. [Faculty of Exact and Natural Sciences, Javakhishvili Tbilisi State University, 1 Chavchavadze Avenue, Tbilisi 0128 (Georgia); Kisslinger, Leonard; Kahniashvili, Tina [McWilliams Center for Cosmology and Department of Physics, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 (United States); Brandenburg, Axel, E-mail: aleko@tevza.org [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)

    2012-11-01

    We study the evolution of QCD phase transition-generated magnetic fields (MFs) in freely decaying MHD turbulence of the expanding universe. We consider an MF generation model that starts from basic non-perturbative QCD theory and predicts stochastic MFs with an amplitude of the order of 0.02 {mu}G and small magnetic helicity. We employ direct numerical simulations to model the MHD turbulence decay and identify two different regimes: a 'weakly helical' turbulence regime, when magnetic helicity increases during decay, and 'fully helical' turbulence, when maximal magnetic helicity is reached and an inverse cascade develops. The results of our analysis show that in the most optimistic scenario the magnetic correlation length in the comoving frame can reach 10 kpc with the amplitude of the effective MF being 0.007 nG. We demonstrate that the considered model of magnetogenesis can provide the seed MF for galaxies and clusters.

  3. Information Dynamics at a Phase Transition

    CERN Document Server

    Sowinski, Damian

    2016-01-01

    We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg-Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and processing of information is maximized at criticality.

  4. Subset sum phase transitions and data compression

    CERN Document Server

    Merhav, Neri

    2011-01-01

    We propose a rigorous analysis approach for the subset sum problem in the context of lossless data compression, where the phase transition of the subset sum problem is directly related to the passage between ambiguous and non-ambiguous decompression, for a compression scheme that is based on specifying the sequence composition. The proposed analysis lends itself to straightforward extensions in several directions of interest, including non-binary alphabets, incorporation of side information at the decoder (Slepian-Wolf coding), and coding schemes based on multiple subset sums. It is also demonstrated that the proposed technique can be used to analyze the critical behavior in a more involved situation where the sequence composition is not specified by the encoder.

  5. Scaling theory of topological phase transitions.

    Science.gov (United States)

    Chen, Wei

    2016-02-10

    Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined. PMID:26790004

  6. Phase Transitions in Networks of Memristive Elements

    Science.gov (United States)

    Sheldon, Forrest; di Ventra, Massimiliano

    The memory features of memristive elements (resistors with memory), analogous to those found in biological synapses, have spurred the development of neuromorphic systems based on them (see, e.g.,). In turn, this requires a fundamental understanding of the collective dynamics of networks of memristive systems. Here, we study an experimentally-inspired model of disordered memristive networks in the limit of a slowly ramped voltage and show through simulations that these networks undergo a first-order phase transition in the conductivity for sufficiently high values of memory, as quantified by the memristive ON/OFF ratio. We provide also a mean-field theory that reproduces many features of the transition and particularly examine the role of boundary conditions and current- vs. voltage-controlled networks. The dynamics of the mean-field theory suggest a distribution of conductance jumps which may be accessible experimentally. We finally discuss the ability of these networks to support massively-parallel computation. Work supported in part by the Center for Memory and Recording Research at UCSD.

  7. The Deconfinement Phase Transition in the Interior of Neutron Stars

    CERN Document Server

    Zhou, Xia

    2010-01-01

    The decon?nement phase transition which happens in the interior of neutron stars are investigated. Coupled with the spin evolution of the stars, the effect of entropy production and deconfinement heat generation during the deconfinement phase transition in the mixed phase of the neutron stars are discussed. The entropy production of deconfinement phase transition can be act as a signature of phase transition, but less important and does not significantly change the thermal evolution of neutron stars. The deconfinement heat can change the thermal evolution of neutron star distinctly.

  8. Survey of CRISM Transition Phase Observations

    Science.gov (United States)

    Seelos, F. P.; Murchie, S. L.; Choo, T. H.; McGovern, J. A.

    2006-12-01

    The Mars Reconnaissance Orbiter (MRO) transition phase extends from the end of aerobraking (08/30/06) to the start of the Primary Science Phase (PSP) (11/08/2006). Within this timeframe, the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) will acquire Mars scene observations in association with the deployment of the telescope cover (09/27/06) and during the operational checkout of the full science payload (09/29/06 - 10/05/06). The CRISM cover opening sequence includes scene observations that will be used to verify deployment and to validate the on-orbit instrument wavelength calibration. The limited cover opening observation set consists of: 1. A hyperspectral nadir scan acquired as the cover is deployed (first light) 2. A single targeted (gimbaled) hyperspectral observation in the northern plains 3. A restricted duration nadir multispectral strip The high level objectives for the science payload checkout are to obtain observations in support of in-flight wavelength, radiometric, and geometric instrument calibration, to acquire data that will contribute to the development of a first-order hyperspectral atmospheric correction, and to exercise numerous spacecraft and instrument observing modes and strategies that will be employed during PSP. The science payload checkout also enables a unique collaboration between the Mars Express OMEGA and CRISM teams, with both spectrometers slated to observe common target locations with a minimal time offset for the purpose of instrument cross-calibration. The priority CRISM observations for the payload checkout include: 1. Multispectral nadir and hyperspectral off-nadir targeted observations in support of the cross-calibration experiment with OMEGA 2. Terminator-to-terminator multispectral data acquisition demonstrating the strategy that will be used to construct the global multispectral survey map 3. Terminator-to-terminator atmospheric emission phase function (EPF) data acquisition demonstrating the observation

  9. Towards the nuclear matter - quark matter phase transition

    International Nuclear Information System (INIS)

    The conjectured first order phase transition from cold nuclear to cold quark matter is considered. It is found that non-perturbative effects due to instantons may have a 'smoothing-out' effect on the transition. (author)

  10. Quantum phase transitions in Bose-Fermi systems

    International Nuclear Information System (INIS)

    Research highlights: → We study quantum phase transitions in a system of N bosons and a single-j fermion. → Classical order parameters and correlation diagrams of quantum levels are determined. → The odd fermion strongly influences the location and nature of the phase transition. → Experimental evidence for the U(5)-SU(3) transition in odd-even nuclei is presented. - Abstract: Quantum phase transitions in a system of N bosons with angular momentum L = 0, 2 (s, d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)-SU(3) (spherical to axially-deformed) transition in odd-even nuclei is presented.

  11. Robust Type-II Weyl Semimetal Phase in Transition Metal Diphosphides X P2 (X =Mo , W)

    Science.gov (United States)

    Autès, G.; Gresch, D.; Troyer, M.; Soluyanov, A. A.; Yazyev, O. V.

    2016-08-01

    The recently discovered type-II Weyl points appear at the boundary between electron and hole pockets. Type-II Weyl semimetals that host such points are predicted to exhibit a new type of chiral anomaly and possess thermodynamic properties very different from their type-I counterparts. In this Letter, we describe the prediction of a type-II Weyl semimetal phase in the transition metal diphosphides MoP2 and WP2 . These materials are characterized by relatively simple band structures with four pairs of type-II Weyl points. Neighboring Weyl points have the same chirality, which makes the predicted topological phase robust with respect to small perturbations of the crystalline lattice. In addition, this peculiar arrangement of the Weyl points results in long topological Fermi arcs, thus making them readily accessible in angle-resolved photoemission spectroscopy.

  12. Helicity-selective phase-matching and quasi-phase matching of circularly polarized high-order harmonics: towards chiral attosecond pulses

    Science.gov (United States)

    Kfir, Ofer; Grychtol, Patrik; Turgut, Emrah; Knut, Ronny; Zusin, Dmitriy; Fleischer, Avner; Bordo, Eliyahu; Fan, Tingting; Popmintchev, Dimitar; Popmintchev, Tenio; Kapteyn, Henry; Murnane, Margaret; Cohen, Oren

    2016-06-01

    Phase matching of circularly polarized high-order harmonics driven by counter-rotating bi-chromatic lasers was recently predicted theoretically and demonstrated experimentally. In that work, phase matching was analyzed by assuming that the total energy, spin angular momentum and linear momentum of the photons participating in the process are conserved. Here we propose a new perspective on phase matching of circularly polarized high harmonics. We derive an extended phase matching condition by requiring a new propagation matching condition between the classical vectorial bi-chromatic laser pump and harmonics fields. This allows us to include the influence of the laser pulse envelopes on phase matching. We find that the helicity dependent phase matching facilitates generation of high harmonics beams with a high degree of chirality. Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization. Moreover, while the degree of circularity of the most intense pulse approaches unity, all other pulses exhibit reduced circularity. This feature suggests the possibility of using a train of attosecond pulses as an isolated attosecond probe for chiral-sensitive experiments.

  13. High Enantioselective Novozym 435-Catalyzed Esterification of (R,S)-Flurbiprofen Monitored with a Chiral Stationary Phase

    OpenAIRE

    Siódmiak, Tomasz; Mangelings, Debby; Heyden, Yvan Vander; Ziegler-Borowska, Marta; Marszałł, Michał Piotr

    2015-01-01

    Lipases form Candida rugosa and Candida antarctica were tested for their application in the enzymatic kinetic resolution of (R,S)-flurbiprofen by enantioselective esterification. Successful chromatographic separation with well-resolved peaks of (R)- and (S)-flurbiprofen and their esters was achieved in one run on chiral stationary phases by high-performance liquid chromatography (HPLC). In this study screening of enzymes was performed, and Novozym 435 was selected as an optimal catalyst for o...

  14. Rare region effects at classical, quantum and nonequilibrium phase transitions

    International Nuclear Information System (INIS)

    Rare regions, i.e., rare large spatial disorder fluctuations, can dramatically change the properties of a phase transition in a quenched disordered system. In generic classical equilibrium systems, they lead to an essential singularity, the so-called Griffiths singularity, of the free energy in the vicinity of the phase transition. Stronger effects can be observed at zero-temperature quantum phase transitions, at nonequilibrium phase transitions and in systems with correlated disorder. In some cases, rare regions can actually completely destroy the sharp phase transition by smearing. This topical review presents a unifying framework for rare region effects at weakly disordered classical, quantum and nonequilibrium phase transitions based on the effective dimensionality of the rare regions. Explicit examples include disordered classical Ising and Heisenberg models, insulating and metallic random quantum magnets, and the disordered contact process. (topical review)

  15. Rare region effects at classical, quantum and nonequilibrium phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Vojta, Thomas [Department of Physics, University of Missouri-Rolla, Rolla, MO 65409 (United States)

    2006-06-02

    Rare regions, i.e., rare large spatial disorder fluctuations, can dramatically change the properties of a phase transition in a quenched disordered system. In generic classical equilibrium systems, they lead to an essential singularity, the so-called Griffiths singularity, of the free energy in the vicinity of the phase transition. Stronger effects can be observed at zero-temperature quantum phase transitions, at nonequilibrium phase transitions and in systems with correlated disorder. In some cases, rare regions can actually completely destroy the sharp phase transition by smearing. This topical review presents a unifying framework for rare region effects at weakly disordered classical, quantum and nonequilibrium phase transitions based on the effective dimensionality of the rare regions. Explicit examples include disordered classical Ising and Heisenberg models, insulating and metallic random quantum magnets, and the disordered contact process. (topical review)

  16. Phase transitions in a frustrated XY model with zig-zag couplings

    International Nuclear Information System (INIS)

    We study a new generalized version of the square-lattice frustrated XY model where unequal ferromagnetic and antiferromagnetic couplings are arranged in a zig-zag pattern. The ratio between the couplings ρ can be used to tune the system, continuously, from the isotropic square-lattice to the triangular-lattice frustrated XY model. The model can be physically realized as a Josephson-junction array with two different couplings, in a magnetic field corresponding to half-flux quanta per plaquette. Mean-field approximation, Ginzburg-Landau expansion and finite-size scaling of Monte Carlo simulations are used to study the phase diagram and critical behaviour. Depending on the value of ρ, two separate transitions or a transition line in the universality class of the XY-Ising model, with combined Z2 and U(1) symmetries, takes place. In particular, the phase transitions of the standard square-lattice and triangular-lattice frustrated XY models correspond to two different cuts through the same transition line. Estimates of the chiral (Z2) critical exponents on this transition line deviate significantly from the pure Ising values, consistent with that along the critical line of the XY-Ising model. This suggest that a frustrated XY model or Josephson-junction array with a zig-zag coupling modulation can provide a physical realization of the XY-Ising model critical line. (author). 32 refs, 9 figs

  17. Pontine respiratory activity involved in inspiratory/expiratory phase transition

    OpenAIRE

    Mörschel, Michael; Dutschmann, Mathias

    2009-01-01

    Control of the timing of the inspiratory/expiratory (IE) phase transition is a hallmark of respiratory pattern formation. In principle, sensory feedback from pulmonary stretch receptors (Breuer–Hering reflex, BHR) is seen as the major controller for the IE phase transition, while pontine-based control of IE phase transition by both the pontine Kölliker–Fuse nucleus (KF) and parabrachial complex is seen as a secondary or backup mechanism. However, previous studies have shown that the BHR can h...

  18. Gravitational waves from global second order phase transitions

    International Nuclear Information System (INIS)

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation

  19. Emergent Geometric Hamiltonian and Insulator-Superfluid Phase Transitions

    OpenAIRE

    Zhou, Fei

    2005-01-01

    I argue that certain bosonic insulator-superfluid phase transitions as an interaction constant varies are driven by emergent geometric properties of insulating states. The {\\em renormalized} chemical potential and distribution of disordered bosons define the geometric aspect of an effective low energy Hamiltonian which I employ to study various resonating states and quantum phase transitions. In a mean field approximation, I also demonstrate that the quantum phase transitions are in the unive...

  20. Quantum phase transition and entanglement in Li atom system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By use of the exact diagonalization method, the quantum phase transition and en- tanglement in a 6-Li atom system are studied. It is found that entanglement appears before the quantum phase transition and disappears after it in this exactly solvable quantum system. The present results show that the von Neumann entropy, as a measure of entanglement, may reveal the quantum phase transition in this model.

  1. Primordial Magnetic Fields from Cosmological First Order Phase Transitions

    OpenAIRE

    Sigl, Guenter; Olinto, Angela; Jedamzik, Karsten

    1996-01-01

    We give an improved estimate of primordial magnetic fields generated during cosmological first order phase transitions. We examine the charge distribution at the nucleated bubble wall and its dynamics. We consider instabilities on the bubble walls developing during the phase transition. It is found that damping of these instabilities due to viscosity and heat conductivity caused by particle diffusion can be important in the QCD phase transition, but is probably negligible in the electroweak t...

  2. Phase-separation transitions in asymmetric lipid bilayers

    OpenAIRE

    Shimobayashi, Shunsuke F.; Ichikawa, Masatoshi; Taniguchi, Takashi

    2015-01-01

    Morphological transitions of phase separation associated with the asymmetry of lipid composition were investigated using micrometer-sized vesicles of lipid bilayers made from a lipid mixture. The complete macro-phase-separated morphology undergoes a transition to a micro-phase-separation-like morphology via a lorate morphology as a metastable state. The transition leads to the emergence of monodisperse nanosized domains through repeated domain scission events. Moreover, we have numerically co...

  3. Re-entrant orthogonal smectic A phase below tilted smectic C phase in chiral compound

    Czech Academy of Sciences Publication Activity Database

    Novotná, Vladimíra; Glogarová, Milada; Kašpar, Miroslav; Hamplová, Věra; Gorecka, E.; Pociecha, D.; Cepic, M.

    2011-01-01

    Roč. 83, č. 2 (2011), "020701-1"-"020701-4". ISSN 1539-3755 R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047 Institutional research plan: CEZ:AV0Z10100520 Keywords : liquid crystals * reentrant SmA phase Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.255, year: 2011

  4. Quantum phase transitions[87.15.By Structure and bonding;

    Energy Technology Data Exchange (ETDEWEB)

    Vojta, Matthias [Institut fuer Theorie der Kondensierten Materie, Universitaet Karlsruhe, Postfach 6980, D-76128 Karlsruhe (Germany)

    2003-12-01

    In recent years, quantum phase transitions have attracted the interest of both theorists and experimentalists in condensed matter physics. These transitions, which are accessed at zero temperature by variation of a non-thermal control parameter, can influence the behaviour of electronic systems over a wide range of the phase diagram. Quantum phase transitions occur as a result of competing ground state phases. The cuprate superconductors which can be tuned from a Mott insulating to a d-wave superconducting phase by carrier doping are a paradigmatic example. This review introduces important concepts of phase transitions and discusses the interplay of quantum and classical fluctuations near criticality. The main part of the article is devoted to bulk quantum phase transitions in condensed matter systems. Several classes of transitions will be briefly reviewed, pointing out, e.g., conceptual differences between ordering transitions in metallic and insulating systems. An interesting separate class of transitions is boundary phase transitions where only degrees of freedom of a subsystem become critical; this will be illustrated in a few examples. The article is aimed at bridging the gap between high-level theoretical presentations and research papers specialized in certain classes of materials. It will give an overview on a variety of different quantum transitions, critically discuss open theoretical questions, and frequently make contact with recent experiments in condensed matter physics.

  5. Phase transition of holographic entanglement entropy in massive gravity

    Directory of Open Access Journals (Sweden)

    Xiao-Xiong Zeng

    2016-05-01

    Full Text Available The phase structure of holographic entanglement entropy is studied in massive gravity for the quantum systems with finite and infinite volumes, which in the bulk is dual to calculating the minimal surface area for a black hole and black brane respectively. In the entanglement entropy–temperature plane, we find for both the black hole and black brane there is a Van der Waals-like phase transition as the case in thermal entropy–temperature plane. That is, there is a first order phase transition for the small charge and a second order phase transition at the critical charge. For the first order phase transition, the equal area law is checked and for the second order phase transition, the critical exponent of the heat capacity is obtained. All the results show that the phase structure of holographic entanglement entropy is the same as that of thermal entropy regardless of the volume of the spacetime on the boundary.

  6. Phase transition of holographic entanglement entropy in massive gravity

    Science.gov (United States)

    Zeng, Xiao-Xiong; Zhang, Hongbao; Li, Li-Fang

    2016-05-01

    The phase structure of holographic entanglement entropy is studied in massive gravity for the quantum systems with finite and infinite volumes, which in the bulk is dual to calculating the minimal surface area for a black hole and black brane respectively. In the entanglement entropy-temperature plane, we find for both the black hole and black brane there is a Van der Waals-like phase transition as the case in thermal entropy-temperature plane. That is, there is a first order phase transition for the small charge and a second order phase transition at the critical charge. For the first order phase transition, the equal area law is checked and for the second order phase transition, the critical exponent of the heat capacity is obtained. All the results show that the phase structure of holographic entanglement entropy is the same as that of thermal entropy regardless of the volume of the spacetime on the boundary.

  7. Phase transition of holographic entanglement entropy in massive gravity

    CERN Document Server

    Zeng, Xiao-Xiong; Li, Li-Fang

    2015-01-01

    The phase structure of holographic entanglement entropy is studied in massive gravity for the quantum systems with finite and infinite volumes, which in the bulk is dual to calculate the minimal surface area for a black hole and black brane respectively. In the entanglement entropy$-$temperature plane, we find for both the black hole and black brane there is a Van der Waals-like phase transition as the case in thermal entropy$-$temperature plane. That is, there is a first order phase transition for the small charge and a second order phase transition at the critical charge. For the first order phase transition, the equal area law is checked and for the second order phase transition, the critical exponent of the heat capacity is obtained. All the results show that the phase structure of holographic entanglement entropy is the same as that of thermal entropy regardless of the volume of the spacetime on the boundary.

  8. Nonlinear piezoelectric coefficients of ferroelectrics in the phase transition region

    Energy Technology Data Exchange (ETDEWEB)

    Iushin, N.K.; Smirnov, S.I.; Turovets, A.G.; Linnik, V.G.; Agishev, B.A.

    1987-03-01

    Changes in the nonlinear piezoelectric coefficients in ferroelectrics in the phase transition region are investigated experimentally using triglycine sulfate, lead germanate, potassium-lithium tantalate, and cadmium pyroniobate crystals, characterized by phase transitions of the second kind, and also gadolinium and terbium molybdate crystals, characterized by a ferroelectric phase transition of the first kind. In the crystals studied, a significant increase in nonlinear piezoelectric coefficients is observed near the phase transition temperature, which makes these crystals attractive materials for use as the elements of nonlinear acoustoelectronic instruments. 9 references.

  9. Excited state quantum phase transitions in many-body systems

    International Nuclear Information System (INIS)

    Phenomena analogous to ground state quantum phase transitions have recently been noted to occur among states throughout the excitation spectra of certain many-body models. These excited state phase transitions are manifested as simultaneous singularities in the eigenvalue spectrum (including the gap or level density), order parameters, and wave function properties. In this article, the characteristics of excited state quantum phase transitions are investigated. The finite-size scaling behavior is determined at the mean-field level. It is found that excited state quantum phase transitions are universal to two-level bosonic and fermionic models with pairing interactions

  10. Raman study of thermochromic phase transition in tungsten trioxide nanowires

    Science.gov (United States)

    Lu, Dong Yu; Chen, Jian; Chen, Huan Jun; Gong, Li; Deng, Shao Zhi; Xu, Ning Sheng; Liu, Yu Long

    2007-01-01

    Tungsten trioxide (WO3) nanowires were synthesized by thermal evaporation of tungsten powder in two steps: tungsten suboxide (WO3-x) nanowires were synthesized, and then oxidized in O2 ambient and transformed into WO3 nanowires. Raman spectroscopy was applied to study the thermochromic phase transition of one-dimensional WO3 nanowires. From the temperature dependence of the characteristic mode at 33cm-1 in WO3, the phase transition temperature was determined. It was found that the phase transition of WO3 nanowires was reversible and the phase transition temperatures were even lower than that of WO3 nanopowder.

  11. Mesoscale modeling of phase transition dynamics of thermoresponsive polymers

    CERN Document Server

    Li, Zhen; Li, Xuejin; Karniadakis, George Em

    2015-01-01

    We present a non-isothermal mesoscopic model for investigation of the phase transition dynamics of thermoresponsive polymers. Since this model conserves energy in the simulations, it is able to correctly capture not only the transient behavior of polymer precipitation from solvent, but also the energy variation associated with the phase transition process. Simulations provide dynamic details of the thermally induced phase transition and confirm two different mechanisms dominating the phase transition dynamics. A shift of endothermic peak with concentration is observed and the underlying mechanism is explored.

  12. The influence of chiral chemical potential, parallel electric and magnetic fields on the critical temperature of QCD

    CERN Document Server

    Ruggieri, M; Peng, G X

    2016-01-01

    We study the influence of external electric, $E$, and magnetic, $B$, fields parallel to each other, and of a chiral chemical potential, $\\mu_5$, on the chiral phase transition of Quantum Chromodynamics. Our theoretical framework is a Nambu-Jona-Lasinio model with a contact interaction. Within this model we compute the critical temperature of chiral symmetry restoration, $T_c$, as a function of the chiral chemical potential and field strengths. We find that the fields inhibit and $\\mu_5$ enhances chiral symmetry breaking, in agreement with previous studies.

  13. Bond orientational order in the blue phases of chiral liquid crystals

    OpenAIRE

    Longa, Lech; Trebin, Hans-Rainer

    1993-01-01

    It is proposed to describe blue phases by two order parameters: the standard alignment tensor field Q αβ(r) and a bond orientational tensor order parameter of octahedral point group symmetry scrO(432). The yet mysterious blue fog then emerges as a liquid of purely cubic bond orientational order. In the transition from the cubic blue phases to the blue fog the cubic space group symmetry is being reduced to its octahedral factor group. Because of the new order parameter the scrO 5(scr...

  14. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  15. Deconfinement and Chiral Restoration in Hot and Dense Matter

    International Nuclear Information System (INIS)

    We propose a picture that the chiral phase transition at zero quark mass and the deconfinement transition at infinite quark mass are continuously connected. This gives a simple interpretation on the coincidence of the pseudo-critical temperatures observed in lattice QCD. We discuss a possible dynamical mechanism behind the simultaneous crossovers and show the results in a model study

  16. Phase transitions in a vortex gas

    CERN Document Server

    Shah, P A

    1994-01-01

    It has been shown recently that the motion of solitons at couplings around a critical coupling can be reduced to the dynamics of particles (the zeros of the Higgs field) on a curved manifold with potential. The curvature gives a velocity dependent force, and the magnitude of the potential is proportional to the distance from a critical coupling. In this paper we apply this approximation to determining the equation of state of a gas of vortices in the Abelian Higgs model. We derive a virial expansion using certain known integrals of the metric, and the second virial coefficient is calculated, determining the behaviour of the gas at low densities. A formula for determining higher order coefficients is given. At low densities and temperatures T \\gg \\l the equation of state is of the Van der Waals form (P+b\\frac{N^{2}}{A^{2}})(A-aN) = NT with a=4\\pi and b=-4.89\\pi\\l where \\l is a measure of the distance from critical coupling. It is found that there is no phase transition in a low density type-II gas, but there i...

  17. Swarms, Phase Transitions, and Collective Intelligence

    CERN Document Server

    Millonas, M M

    1993-01-01

    A spacially extended model of the collective behavior of a large number of locally acting organisms is proposed in which organisms move probabilistically between local cells in space, but with weights dependent on local morphogenetic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding flow of the organisms constitutes the collective behavior of the group. Such models have various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. It is hoped that the present model might serve as a paradigmatic example of a complex cooperative system in nature. In particular swarm models c...

  18. ATLAS Transition Region Upgrade at Phase-1

    CERN Document Server

    Song, H; The ATLAS collaboration

    2014-01-01

    This report presents the L1 Muon trigger transition region (1.0<|ƞ|<1.3) upgrade of ATLAS Detector at phase-1. The high fake trigger rate in the Endcap region 1.0<|ƞ|<2.4 would become a serious problem for the ATLAS L1 Muon trigger system at high luminosity. For the region 1.3<|ƞ|<2.4, covered by the Small Wheel, ATLAS is enhancing the present muon trigger by adding local fake rejection and track angle measurement capabilities. To reduce the rate in the remaining ƞ interval it has been proposed a similar enhancement by adding at the edge of the inner barrel a structure of 3-layers RPCs of a new generation. These RPCs will be based on a thinner gas gap and electrodes with respect to the ATLAS standards, a new high performance Front End, integrating fast TDC capabilities, and a new low profile and light mechanical structure allowing the installation in the tiny space available.This design effectively suppresses fake triggers by making the coincidence with both end-cap and interaction point...

  19. Phase transitions in models of human cooperation

    Science.gov (United States)

    Perc, Matjaž

    2016-08-01

    If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for the common good? Recent research indicates that a comprehensive answer to such questions requires that we look beyond the individual and focus on the collective behavior that emerges as a result of the interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. Here we briefly review research done in the realm of the public goods game, and we outline future research directions with an emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer better social systems and develop more efficient policies for a sustainable and better future.

  20. Hexatic and blue phases in a chiral liquid crystal: optical polarizing microscopy, synchrotron radiation and dielectric study

    International Nuclear Information System (INIS)

    Phase behavior, structure and molecular dynamics of a chiral liquid crystalline compound, which exhibits SmG*, SmJ*, SmF*, SmI*, SmC*, SmA*, N* and BP*, have been investigated. Observed optical textures, synchrotron radiation diffraction data and frequency dependent dielectric spectroscopic study clearly depict the temperature evolution of the different hexatic smectic phases along with cholesteric and blue phase in a single compound. In hexatic phases dielectric absorption spectra show one low frequency relaxation process, related to the phase fluctuation of the bond orientational order, and one high frequency process related to amplitude fluctuation of the bond orientational order coupled with the polarization and tilt of the molecules. Goldstone and soft mode relaxation processes are detected, respectively, in SmC* and SmA* phases. (paper)

  1. The Wilson Flow and the finite temperature phase transition

    OpenAIRE

    Wandelt, Michèle; Knechtli, Francesco; Günther, Michael

    2016-01-01

    We consider the determination of the finite temperature phase transition in the Yang--Mills SU(3) gauge theory. We compute the difference of the spatial and temporal energy density at a physical Wilson flow time. This difference is zero in the confined phase and becomes non zero in the deconfined phase. We locate the phase transition by using a new technique based on an exponential smoothing spline. This method is an alternative to the determination of the phase transition based on the Polyak...

  2. The Wilson Flow and the finite temperature phase transition

    CERN Document Server

    Wandelt, Michèle; Günther, Michael

    2016-01-01

    We consider the determination of the finite temperature phase transition in the Yang--Mills SU(3) gauge theory. We compute the difference of the spatial and temporal energy density at a physical Wilson flow time. This difference is zero in the confined phase and becomes non zero in the deconfined phase. We locate the phase transition by using a new technique based on an exponential smoothing spline. This method is an alternative to the determination of the phase transition based on the Polyakov loop susceptibility and can also be used with dynamical fermions.

  3. Highly birefringent crystal for Raman transitions with phase modulators

    Science.gov (United States)

    Arias, Nieves; Abediyeh, Vahide; Hamzeloui, Saeed; Jeronimo-Moreno, Yasser; Gomez, Eduardo

    2016-05-01

    We present a system to excite Raman transitions with minimum phase noise. The system uses a phase modulator to generate the phase locked beams required for the transition. We use a long calcite crystal to filter out one of the sidebands, avoiding the cancellation that appears at high detunings for phase modulation. The measured phase noise is limited by the quality of the microwave synthesizer. We use the calcite crystal a second time to produce a co-propagating Raman pair with perpendicular polarizations to drive velocity insensitive Raman transitions. Support from CONACYT and Fundacion Marcos Moshinsky.

  4. Van der Waals phase transition in the framework of holography

    CERN Document Server

    Zeng, Xiao-Xiong

    2015-01-01

    Phase structure of the quintessence Reissner-Nordstr\\"{o}m-AdS black hole is probed with the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the similar Van der Waals-like phase transition. To reinforce the conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  5. Analytical and semipreparative chiral separation of cis-itraconazole on cellulose stationary phases by high-performance liquid chromatography.

    Science.gov (United States)

    Kurka, Ondřej; Kučera, Lukáš; Bednář, Petr

    2016-07-01

    cis-Itraconazole is a chiral antifungal drug administered as a racemate. The knowledge of properties of individual cis-itraconazole stereoisomers is vital information for medicine and biosciences as different stereoisomers of cis-itraconazole may possess different affinity to certain biological pathways in the human body. For this purpose, either chiral synthesis of enantiomers or chiral separation of racemate can be used. This paper presents a two-step high-performance liquid chromatography approach for the semipreparative isolation of four stereoisomers (two enantiomeric pairs) of itraconazole using polysaccharide stationary phases and volatile organic mobile phases without additives in isocratic mode. The approach used involves the separation of the racemate into three fractions (i.e. two pure stereoisomers and one mixed fraction containing the remaining two stereoisomers) in the first run and consequent separation of the collected mixed fraction in the second one. For this purpose, combination of cellulose tris-(4-methylbenzoate) and cellulose tris-(3,5-dimehylphenylcarbamate) columns with complementary selectivity for cis-itraconazole provided full separation of all four stereoisomers (with purity of each isomer > 97%). The stereoisomers were collected, their optical rotation determined and their identity confirmed based on the results of a previously published study. Pure separated stereoisomers are subjected to further biological studies. PMID:27240968

  6. Single-Crystal-to-Single-Crystal Transition in an Enantiopure [7]Helquat Salt: The First Observation of a Reversible Phase Transition in a Helicene-Like Compound

    Czech Academy of Sciences Publication Activity Database

    Nath, N. K.; Severa, Lukáš; Kunetskiy, Roman Alexejevič; Císařová, I.; Fulem, M.; Růžička, K.; Koval, Dušan; Kašička, Václav; Teplý, Filip; Naumov, P.

    2015-01-01

    Roč. 21, č. 39 (2015), s. 13508-13512. ISSN 0947-6539 R&D Projects: GA ČR GA13-19213S; GA ČR GA13-32974S; GA ČR(CZ) GA13-17224S Grant ostatní: GA AV ČR(CZ) M200551208 Institutional support: RVO:61388963 Keywords : chirality * helicene * phase transitions * polymorphism * X-ray diffraction Subject RIV: CC - Organic Chemistry Impact factor: 5.731, year: 2014

  7. Chiral nuclear thermodynamics

    CERN Document Server

    Fiorilla, Salvatore; Weise, Wolfram

    2011-01-01

    We calculate the equation of state of nuclear matter for arbitrary isospin-asymmetry up to three loop order in the free energy density in the framework of in-medium chiral perturbation theory. In our approach 1\\pi- and 2\\pi-exchange dynamics with the inclusion of the \\Delta-isobar excitation as an explicit degree of freedom, corresponding to the long- and intermediate-range correlations, are treated explicitly. Few contact terms fixed to reproduce selected known properties of nuclear matter encode the short-distance physics. Two-body as well as three-body forces are systematically included. We find a critical temperature of about 15 MeV for symmetric nuclear matter. We investigate the dependence of the liquid-gas first-order phase transition on isospin-asymmetry. In the same chiral framework we calculate the chiral condensate of isospin-symmetric nuclear matter at finite temperatures. The contribution of the \\Delta-isobar excitation is essential for stabilizing the condensate. As a result, we find no indicati...

  8. Generalized simplicial chiral models

    International Nuclear Information System (INIS)

    Using the auxiliary field representation of the simplicial chiral models on a (d-1)-dimensional simplex, the simplicial chiral models are generalized through replacing the term Tr(AA†) in the Lagrangian of these models by an arbitrary class function of AA†; V(AA†). This is the same method used in defining the generalized two-dimensional Yang-Mills theories (gYM2) from ordinary YM2. We call these models the 'generalized simplicial chiral models'. Using the results of the one-link integral over a U(N) matrix, the large-N saddle-point equations for eigenvalue density function ρ(z) in the weak (β>βc) and strong (βc) regions are computed. In d=2, where the model is in some sense related to the gYM2 theory, the saddle-point equations are solved for ρ(z) in the two regions, and the explicit value of critical point βc is calculated for V(B)=Tr Bn (B=AA†). For V(B)=Tr B2,Tr B3, and TrB4, the critical behaviour of the model at d=2 is studied, and by calculating the internal energy, it is shown that these models have a third order phase transition

  9. Cosmological Consequences of QCD Phase Transition(s) in Early Universe

    CERN Document Server

    Tawfik, A

    2008-01-01

    We discuss the cosmological consequences of QCD phase transition(s) on the early universe. We argue that our recent knowledge about the transport properties of quark-gluon plasma (QGP) should throw additional lights on the actual time evolution of our universe. Understanding the nature of QCD phase transition(s), which can be studied in lattice gauge theory and verified in heavy ion experiments, provides an explanation for cosmological phenomenon stem from early universe.

  10. Chiral symmetry breaking, color superconductivity and quark matter phase diagram: a variational approach 12.38.Gc

    CERN Document Server

    Mishra, H

    2001-01-01

    We discuss in this note simultaneous existence of chiral symmetry breaking and color superconductivity at finite temperature and density in a Nambu-Jona-Lasinio type model. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. There exist nontrivial solutions to the gap equations at finite densities with both quark-antiquark as well as diquark condensates for the 'ground' state. However, such a phase is thermodynamically unstable with the pressure being negative in this region. We also compute the equation of state, and obtain the structure of the phase diagram in the model.

  11. Unconventional phase transitions in a constrained single polymer chain

    Energy Technology Data Exchange (ETDEWEB)

    Klushin, L I [Department of Physics, American University of Beirut, PO Box 11-0236, Beirut 1107 2020 (Lebanon); Skvortsov, A M, E-mail: leo@aub.edu.lb, E-mail: astarling@yandex.ru [Chemical-Pharmaceutical Academy, Prof. Popova 14, 197022 St Petersburg (Russian Federation)

    2011-11-25

    Phase transitions were recognized among the most fascinating phenomena in physics. Exactly solved models are especially important in the theory of phase transitions. A number of exactly solved models of phase transitions in a single polymer chain are discussed in this review. These are three models demonstrating the second order phase transitions with some unusual features: two-dimensional model of {beta}-structure formation, the model of coil-globule transition and adsorption of a polymer chain grafted on the solid surface. We also discuss models with first order phase transitions in a single macromolecule which admit not only exact analytical solutions for the partition function with explicit finite-size effects but also the non-equilibrium free energy as a function of the order parameter (Landau function) in closed analytical form. One of them is a model of mechanical desorption of a macromolecule, which demonstrates an unusual first order phase transition with phase coexistence within a single chain. Features of first and second order transitions become mixed here due to phase coexistence which is not accompanied by additional interfacial free energy. Apart from that, there exist several single-chain models belonging to the same class (adsorption of a polymer chain tethered near the solid surface or liquid-liquid interface, and escape transition upon compressing a polymer between small pistons) that represent examples of a highly unconventional first order phase transition with several inter-related unusual features: no simultaneous phase coexistence, and hence no phase boundary, non-concave thermodynamic potential and non-equivalence of conjugate ensembles. An analysis of complex zeros of partition functions upon approaching the thermodynamic limit is presented for models with and without phase coexistence. (topical review)

  12. The finite temperature QCD phase transition and the thermodynamic equation of state. An investigation employing lattice QCD with Nf=2 twisted mass quarks

    International Nuclear Information System (INIS)

    In this thesis we report about an investigation of the finite temperature crossover/phase transition of quantum chromodynamics and the evaluation of the thermodynamic equation of state. To this end the lattice method and the Wilson twisted mass discretisation of the quark action are used. This formulation is known to have an automatic improvement of lattice artifacts and thus an improved continuum limit behaviour. This work presents first robust results using this action for the non-vanishing temperature case. We investigate the chiral limit of the two flavour phase transition with several small values of the pion mass in order to address the open question of the order of the transition in the limit of vanishing quark mass. For the currently simulated pion masses in the range of 300 to 700 MeV we present evidence that the finite temperature transition is a crossover transition rather than a genuine phase transition. The chiral limit is investigated by comparing the scaling of the observed crossover temperature with the mass including several possible scenarios. Complementary to this approach the chiral condensate as the order parameter for the spontaneous breaking of chiral symmetry is analysed in comparison with the O(4) universal scaling function which characterises a second order transition. With respect to thermodynamics the equation of state is obtained from the trace anomaly employing the temperature integral method which provides the pressure and energy density in the crossover region. The continuum limit of the trace anomaly is studied by considering several values of Nτ and the tree-level correction technique.

  13. 77 FR 63410 - SBIR/STTR Phase I to Phase II Transition Benchmarks

    Science.gov (United States)

    2012-10-16

    ... ADMINISTRATION SBIR/STTR Phase I to Phase II Transition Benchmarks AGENCY: U.S. Small Business Administration... Phase I to Phase II Transition Benchmarks. SUMMARY: The Small Business Administration (SBA) is..., Office of Innovation, Small Business Administration, 409 Third Street SW., Washington, DC...

  14. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound.

    Science.gov (United States)

    Okamura, Y; Kagawa, F; Seki, S; Tokura, Y

    2016-01-01

    Dissipation-less electric control of magnetic state variable is an important target of contemporary spintronics. The non-volatile control of magnetic skyrmions, nanometre-sized spin-swirling objects, with electric fields may exemplify this goal. The skyrmion-hosting magnetoelectric chiral magnet Cu2OSeO3 provides a unique platform for the implementation of such control; however, the hysteresis that accompanies the first-order transition associated with the skyrmion phase is negligibly narrow in practice. Here we demonstrate another method that functions irrespective of the transition boundary. Combination of magnetic-susceptibility measurements and microwave spectroscopy reveals that although the metastable skyrmion lattice is normally hidden behind a more thermodynamically stable conical phase, it emerges under electric fields and persists down to the lowest temperature. Once created, this metastable skyrmion lattice remains without electric fields, establishing a bistability distinct from the transition hysteresis. This bistability thus enables non-volatile electric-field control of the skyrmion lattice even in temperature/magnetic-field regions far from the transition boundary. PMID:27580648

  15. On the theory of phase transitions in polypeptides

    DEFF Research Database (Denmark)

    Yakubovich, Alexander V.; Solov'yov, Ilia; Solov'yov, Andrey V.;

    2008-01-01

    We suggest a theoretical method based on the statistical mechanics for treating the alpha-helix <-> random coil transition in polypeptides. This process is considered as a first-order-like phase transition. The developed theory is free of model parameters and is based solely on fundamental physical...... principles. We apply the developed formalism for the description of thermodynamical properties of alanine polypeptides of different length. We analyze the essential thermodynamical properties of the system such as heat capacity, phase transition temperature and latent heat of the phase transition...

  16. Liquid-Gas Phase Transition in Nuclear Equation of State

    CERN Document Server

    Lee, S J

    1997-01-01

    A canonical ensemble model is used to describe a caloric curve of nuclear liquid-gas phase transition. Allowing a discontinuity in the freeze out density from one spinodal density to another for a given initial temperature, the nuclear liquid-gas phase transition can be described as first order. Averaging over various freeze out densities of all the possible initial temperatures for a given total reaction energy, the first order characteristics of liquid-gas phase transition is smeared out to a smooth transition. Two experiments, one at low beam energy and one at high beam energy show different caloric behaviors and are discussed.

  17. Multipartite entanglement characterization of a quantum phase transition

    OpenAIRE

    Costantini, G.; Facchi, P.; G. Florio; Pascazio, S.

    2006-01-01

    A probability density characterization of multipartite entanglement is tested on the one-dimensional quantum Ising model in a transverse field. The average and second moment of the probability distribution are numerically shown to be good indicators of the quantum phase transition. We comment on multipartite entanglement generation at a quantum phase transition.

  18. On the nature of phase transition in solid electrolytes

    International Nuclear Information System (INIS)

    An attempt is made to precisely measure the solid electrolyte RbAg4I5 conductivity in the vicinity of the phase transition at 208 deg K. Polycrystalline samples obtained by common technique have been used as well as single RbAg4I5 crystals grown from the acetone solution of AgI and RbI. The dependence of conductivity on inverse temperature is given for different samples. The phase transition of the single crystals is accompanied by a jump (approximately 12%) of conductivity. This transfer is reversible, since no hysteresis is found in the +-0.3 deg K vicinity of the phase transition temperature. Polycrystalline samples display no pronounces jump of conductivity, but the conductivity curve has two bends, i.e. the phase transition is ''diffused''. The activation energy before the transition differs from that after the transition

  19. Pressure-induced phase transitions and metallization in VO2

    Science.gov (United States)

    Bai, Ligang; Li, Quan; Corr, Serena A.; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-03-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M 1 ,P 21/c ) and the high-temperature rutile phase (R ,P 42/m n m ) of VO2 undergo phase transitions to a distorted M 1 monoclinic phase (M 1' ,P 21/c ) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, P n n m ) above 13.7 GPa, respectively. Upon further compression, both high-pressure phases transform into a new phase (phase X ) above 34.3 and 38.3 GPa at room temperature and 383 K, respectively. The room temperature M 1 -M 1' phase transition structurally resembles the R -CaCl2 phase transition at 383 K, suggesting a second-order displacive type of transition. Contrary to previous studies, our electrical resistivity results, Raman measurements, as well as ab initio calculations indicate that the new phase X , rather than the M 1' phase, is responsible for the metallization under pressure. The metallization mechanism is discussed based on the proposed crystal structure.

  20. First-order chiral to non-chiral transition in the angular dependence of the upper critical induction of the Scharnberg-Klemm $p$-wave pair state

    OpenAIRE

    Zhang, Jingchuan; Lörscher, Christopher; Gu, Qiang; Klemm, Richard A.

    2014-01-01

    We calculate the temperature $T$ and angular $(\\theta,\\phi)$ dependence of the upper critical induction $B_{c2}(\\theta,\\phi,T)$ for parallel-spin superconductors with an axially symmetric $p$-wave pairing interaction pinned to the lattice and a dominant ellipsoidal Fermi surface (FS). For all FS anisotropies, the chiral Scharnberg-Klemm state $B_{c2}(\\theta,\\phi,T)$ exceeds that of the chiral Anderson-Brinkman-Morel state, and exhibits a kink at $\\theta=\\theta^{*}(T,\\phi)$, indicative of a fi...

  1. Quantum phase transitions between bosonic symmetry-protected topological states without sign problem: Nonlinear sigma model with a topological term

    Science.gov (United States)

    You, Yi-Zhuang; Bi, Zhen; Mao, Dan; Xu, Cenke

    2016-03-01

    We propose a series of simple two-dimensional (2D) lattice interacting fermion models that we demonstrate at low energy describe bosonic symmetry-protected topological (SPT) states and quantum phase transitions between them. This is because due to interaction, the fermions are gapped both at the boundary of the SPT states and at the bulk quantum phase transition, thus these models at low energy can be described completely by bosonic degrees of freedom. We show that the bulk of these models is described by a Sp (N ) principal chiral model with a topological Θ term, whose boundary is described by a Sp (N ) principal chiral model with a Wess-Zumino-Witten term at level 1. The quantum phase transition between SPT states in the bulk is tuned by a particular interaction term, which corresponds to tuning Θ in the field theory, and the phase transition occurs at Θ =π . The simplest version of these models with N =1 is equivalent to the familiar O(4) nonlinear sigma model (NLSM) with a topological term, whose boundary is a (1 +1 )D conformal field theory with central charge c =1 . After breaking the O(4) symmetry to its subgroups, this model can be viewed as bosonic SPT states with U(1), or Z2 symmetries, etc. All of these fermion models, including the bulk quantum phase transitions, can be simulated with the determinant quantum Monte Carlo method without the sign problem. Recent numerical results strongly suggest that the quantum disordered phase of the O(4) NLSM with precisely Θ =π is a stable (2 +1 )D conformal field theory with gapless bosonic modes.

  2. Characterization of a chiral phase in an achiral bent-core liquid crystal by polarization studies of resonant x-ray forbidden reflections

    Energy Technology Data Exchange (ETDEWEB)

    Ponsinet, V.; Pindak, R.; Barois, P.; Pan, L.; Wang, S.; Huang, C.C.; Wang, S.T.; Baumeister, U. and Weissflog, W.

    2011-07-15

    The chiral antiferroelectric structure of an achiral bent-core liquid crystal is characterized by resonant x-ray scattering at chlorine K edge. The 'forbidden' reflections resulting from the glide or screw symmetry elements are restored by the anisotropy of the tensor structure factor, which we calculate for two possible structural models. A careful analysis of the polarization states of the restored 'forbidden' reflections enables an unambiguous identification of a chiral structure (i.e., the so-called anticlinic, antiferroelectric smectic-C or Sm-C{sub A}P{sub A}) coexisting with the achiral synclinic antiferroelectric smectic-C or Sm-C{sub S}P{sub A}. The method proves to be quite powerful as it identifies the chiral structure within coexisting phases despite an imperfect orientation of the sample. The volume fraction of the chiral phase and the distribution of alignment are extracted from the data.

  3. Phase transitions and domain structures in multiferroics

    Science.gov (United States)

    Vlahos, Eftihia

    2011-12-01

    Thin film ferroelectrics and multiferroics are two important classes of materials interesting both from a scientific and a technological prospective. The volatility of lead and bismuth as well as environmental issues regarding the toxicity of lead are two disadvantages of the most commonly used ferroelectric random access memory (FeRAM) materials such as Pb(Zr,Ti)O3 and SrBi2Ta2O9. Therefore lead-free thin film ferroelectrics are promising substitutes as long as (a) they can be grown on technologically important substrates such as silicon, and (b) their T c and Pr become comparable to that of well established ferroelectrics. On the other hand, the development of functional room temperature ferroelectric ferromagnetic multiferroics could lead to very interesting phenomena such as control of magnetism with electric fields and control of electrical polarization with magnetic fields. This thesis focuses on the understanding of material structure-property relations using nonlinear optical spectroscopy. Nonlinear spectroscopy is an excellent tool for probing the onset of ferroelectricity, and domain dynamics in strained ferroelectrics and multiferroics. Second harmonic generation was used to detect ferroelectricity and the antiferrodistortive phase transition in thin film SrTiO3. Incipient ferroelectric CaTiO3 has been shown to become ferroelectric when strained with a combination of SHG and dielectric measurements. The tensorial nature of the induced nonlinear polarization allows for probing of the BaTiO3 and SrTiO3 polarization contributions in nanoscale BaTiO3/SrTiO3 superlattices. In addition, nonlinear optics was used to demonstrate ferroelectricity in multiferroic EuTiO3. Finally, confocal SHG and Raman microscopy were utilized to visualize polar domains in incipient ferroelectric and ferroelastic CaTiO3.

  4. High pressure phase transitions for CdSe

    Indian Academy of Sciences (India)

    Bo Kong; Ti-Xian Zeng; Zhu-Wen Zhou; De-Liang Chen; Xiao-Wei Sun

    2014-05-01

    The structure and pressure-induced phase transitions for CdSe are investigated using first-principles calculations. The pressure-induced phase transition sequence WZ/ZB $\\to$ Rs $\\to$ $\\to$ CsCl for CdSe is drawn reasonably for the fist time, the corresponding transition pressures are 3.8, 29 and 107 GPa, respectively and the intermediate states between the structure and the CsCl structure should exist.

  5. Phase transition of Bose—Einstein condensate under decoherence

    International Nuclear Information System (INIS)

    The effect of decoherence on the phase transition of a Bose—Einstein condensate in a symmetric double-well potential is determined by the mean atom number difference. It still has two phases, the tunneling phase and the self-trapping phase, even under decoherence. The density matrix and the operator fidelity also show very different behaviors in the two phases. This suggests that operator fidelity can be used to characterize the phase transition of this Bose—Einstein condensate model, even under decoherence. (condensed matter: structural, mechanical, and thermal properties)

  6. Pressure-induced phase transitions and metallization in VO2

    OpenAIRE

    Bai, Ligang; Li, Quan; Corr, Serena A; Meng, Yue; Park, Changyong; Sinogeikin, Stanislav V.; Ko, Changhyun; Wu, Junqiao; Shen, Guoyin

    2015-01-01

    We report the results of pressure-induced phase transitions and metallization in VO2 based on synchrotron x-ray diffraction, electrical resistivity, and Raman spectroscopy. Our isothermal compression experiments at room temperature and 383 K show that the room temperature monoclinic phase (M1,P21/c) and the high-temperature rutile phase (R,P42/mnm) of VO2 undergo phase transitions to a distorted M1 monoclinic phase (M1′,P21/c) above 13.0 GPa and to an orthorhombic phase (CaCl2-like, Pnnm) abo...

  7. Diamagnetic phase transitions in two-dimensional conductors

    Energy Technology Data Exchange (ETDEWEB)

    Bakaleinikov, L.A., E-mail: bakal.ammp@mail.ioffe.ru [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel); Gordon, A. [Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel)

    2014-11-15

    A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET){sub 2}X with X=Cu(NCS){sub 2},KHg(SCN){sub 4},I{sub 3},AuBr{sub 2},IBr{sub 2}, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals. - Highlights: • A theory of diamagnetic phase transitions (DPTs) is presented in 2D organic conductors. • The behaviour of the susceptibility amplitude and the induction splitting is shown near the DPT. • The calculated quantities are described by the mean-field theory of phase transitions.

  8. Phase transition and PTCR effect in erbium doped BT ceramics

    International Nuclear Information System (INIS)

    Highlights: ► Erbium influence the dielectric response BaTiO3 ceramics. ► Features of the phase transition are not explained by phenomenological models. ► Relaxation parameters do not show influence on ferroelectric–paraelectric phase transition. ► Dielectric anomaly on BET phase transition is associated with the PTCR effect. - Abstract: In this work the dielectric behaviour and main features of the phase transition of BaTiO3 and Ba0.99Er0.01TiO3 ceramics were carefully investigated. The temperature and frequency dependences of the dielectric properties of erbium doped BaTiO3 ceramics were measured in the 25–225 °C and 100 Hz to 10 MHz ranges, respectively. From this study, a dielectric anomaly in the ferroelectric–paraelectric phase transition of the Ba0.99Er0.01TiO3 ceramic was observed. The features of the samples phase transition were analysed by using Curie–Weiss, Santos–Eiras’ and order parameter local phenomenological models. In the BaTiO3 system, all models showed a normal phase transition, while was not possible to establish the character of the phase transition in the Ba0.99Er0.01TiO3 system. The relaxation parameters of conductive processes for the study ferroelectric materials, analysed in the time domain, did not show any influence on the ferroelectric–paraelectric phase transition. Finally, it was demonstrated that the anomaly observed on the phase transition of the erbium doped BaTiO3 ceramics is associated with the processes that results in the PTCR effect.

  9. Phase transition and PTCR effect in erbium doped BT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Leyet, Y. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); Instituto Federal de Educacao Ciencia e Tecnologia (IFAM), Av. 7 de Setembro 1975, Centro, Manaus 69020-120, AM (Brazil); Pena, R.; Zulueta, Y. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); Guerrero, F. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); CESI, Universidade do Estado do Amazonas, Ave Mario Andreaza, Amazonas (Brazil); Anglada-Rivera, J. [CESI, Universidade do Estado do Amazonas, Ave Mario Andreaza, Amazonas (Brazil); Romaguera, Y. [INESC TEC, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Perez de la Cruz, J., E-mail: jcruz@inescporto.pt [INESC TEC, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2012-06-25

    Highlights: Black-Right-Pointing-Pointer Erbium influence the dielectric response BaTiO{sub 3} ceramics. Black-Right-Pointing-Pointer Features of the phase transition are not explained by phenomenological models. Black-Right-Pointing-Pointer Relaxation parameters do not show influence on ferroelectric-paraelectric phase transition. Black-Right-Pointing-Pointer Dielectric anomaly on BET phase transition is associated with the PTCR effect. - Abstract: In this work the dielectric behaviour and main features of the phase transition of BaTiO{sub 3} and Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} ceramics were carefully investigated. The temperature and frequency dependences of the dielectric properties of erbium doped BaTiO{sub 3} ceramics were measured in the 25-225 Degree-Sign C and 100 Hz to 10 MHz ranges, respectively. From this study, a dielectric anomaly in the ferroelectric-paraelectric phase transition of the Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} ceramic was observed. The features of the samples phase transition were analysed by using Curie-Weiss, Santos-Eiras' and order parameter local phenomenological models. In the BaTiO{sub 3} system, all models showed a normal phase transition, while was not possible to establish the character of the phase transition in the Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} system. The relaxation parameters of conductive processes for the study ferroelectric materials, analysed in the time domain, did not show any influence on the ferroelectric-paraelectric phase transition. Finally, it was demonstrated that the anomaly observed on the phase transition of the erbium doped BaTiO{sub 3} ceramics is associated with the processes that results in the PTCR effect.

  10. Symmetry origin of the phase transitions and phase separation in manganites at low doping

    OpenAIRE

    Wang, ZD; Zhong, F

    1999-01-01

    We analyze the symmetry changes of paramagnetic to A-type antiferromagnetic and to ferromagnetic phase transitions in undoped and moderately doped LaMnO 3, respectively. We show that in orthorhombic-distorted perovskite manganites the phase separation at low doping is associated with the noncollinear nature of the magnetic orders permitted by symmetry. A simple model for the competition between the two phase transitions is put forward within the framework of the Landau theory of phase transit...

  11. Magnetic study of phase transitions in magnetite

    Czech Academy of Sciences Publication Activity Database

    Švindrych, Z.; Janů, Zdeněk; Hadač, J.

    Praha : MATFYZPRESS, 2007, s. 42-46. ISBN 978-80-7378-025-8. [WDS´07 (Week of Doktoral Students). Praha (CZ), 05.06.2007-08.06.2007] Institutional research plan: CEZ:AV0Z10100520 Keywords : metal-insulator transitions and other electronic transitions * spin glasses and other random magnets * dynamic properties Subject RIV: BM - Solid Matter Physics ; Magnetism

  12. Quantum phase transition in field-induced ordering phases of anisotropic Haldane systems

    International Nuclear Information System (INIS)

    Being motivated by the novel phase transition found in the Haldane compound, Ni(C5H14N2)2N3(PF6), we have investigated the field-induced quantum phase transitions in the anisotropic S=1 Haldane system by means of the density matrix renormalization group method. With increasing magnetic fields, in addition to the Haldane to ordered phase transition, the spin-reorientation transition between the ordered phases is predicted to occur in the case where the magnetic field is inclined from the principal axes of the anisotropy. Physical consequences of this transition are discussed in connection with the experimental result

  13. Realization of chiral symmetry breaking and restoration in holographic QCD

    CERN Document Server

    Chelabi, Kaddour; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2015-01-01

    With proper profiles of the scalar potential and the dilaton field, for the first time, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature are correctly realized in the holographic QCD framework. In the chiral limit, a nonzero chiral condensate develops in the vacuum and decreases with temperature, and the phase transition is of 2nd order for two-flavor case and of 1st order for three-flavor case. In the case of explicit chiral symmetry breaking, in two-flavor case, the 2nd order phase transition turns to crossover with any nonzero current quark mass, and in three-flavor case, the 1st order phase transition turns to crossover at a finite current quark mass. The correct description of chiral symmetry breaking and restoration makes the holographic QCD models more powerful in dealing with non-perturbative QCD phenomena. This framework can be regarded as a general set up in application of AdS/CFT to describe conventional Ginzburg-Landau-Wilson type phase transitions, ...

  14. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities

    Energy Technology Data Exchange (ETDEWEB)

    Mustonen, K.; Laiho, P.; Kaskela, A.; Zhu, Z.; Reynaud, O.; Houbenov, N.; Tian, Y.; Jiang, H.; Kauppinen, E. I., E-mail: esko.kauppinen@aalto.fi [Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Susi, T. [Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna (Austria); Nasibulin, A. G. [Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto (Finland); Skolkovo Institute of Science and Technology, Nobel str. 3, 143026 (Russian Federation); Saint-Petersburg State Polytechnical University, 29 Polytechniheskaya st., St. Petersburg, 195251 (Russian Federation)

    2015-07-06

    We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3–4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ∼10{sup 5 }cm{sup −3} prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light.

  15. Gas phase synthesis of non-bundled, small diameter single-walled carbon nanotubes with near-armchair chiralities

    International Nuclear Information System (INIS)

    We present a floating catalyst synthesis route for individual, i.e., non-bundled, small diameter single-walled carbon nanotubes (SWCNTs) with a narrow chiral angle distribution peaking at high chiralities near the armchair species. An ex situ spark discharge generator was used to form iron particles with geometric number mean diameters of 3–4 nm and fed into a laminar flow chemical vapour deposition reactor for the continuous synthesis of long and high-quality SWCNTs from ambient pressure carbon monoxide. The intensity ratio of G/D peaks in Raman spectra up to 48 and mean tube lengths up to 4 μm were observed. The chiral distributions, as directly determined by electron diffraction in the transmission electron microscope, clustered around the (n,m) indices (7,6), (8,6), (8,7), and (9,6), with up to 70% of tubes having chiral angles over 20°. The mean diameter of SWCNTs was reduced from 1.10 to 1.04 nm by decreasing the growth temperature from 880 to 750 °C, which simultaneously increased the fraction of semiconducting tubes from 67% to 80%. Limiting the nanotube gas phase number concentration to ∼105 cm−3 prevented nanotube bundle formation that is due to collisions induced by Brownian diffusion. Up to 80% of 500 as-deposited tubes observed by atomic force and transmission electron microscopy were individual. Transparent conducting films deposited from these SWCNTs exhibited record low sheet resistances of 63 Ω/□ at 90% transparency for 550 nm light

  16. Phase Transitions In M-Theory And F-Theory

    OpenAIRE

    Witten, Edward

    1996-01-01

    Phase transitions are studied in $M$-theory and $F$-theory. In $M$-theory compactification to five dimensions on a Calabi-Yau, there are topology-changing transitions similar to those seen in conformal field theory, but the non-geometrical phases known in conformal field theory are absent. At boundaries of moduli space where such phases might have been expected, the moduli space ends, by a conventional or unconventional physical mechanism. The unconventional mechanisms, which roughly involve ...

  17. Ferroelectric phase transition in monoclinic TlS

    Science.gov (United States)

    Kashida, S.; Nakamura, K.; Katayama, S.

    1992-04-01

    The dielectric property of newly found monoclinic thallium monosulfide (TlS) has been investigated in the temperature range from 285 to 380 K. The dielectric constants show anomalous increases at 3186 and 341.1 K suggesting the occurrence of successive phase transitions. A study of the polarization hysteresis loop shows that this compound is ferroelectric in the room temperature phase. The nature of the phase transitions is probed by calorimetric and X-ray measurements.

  18. Phase transition in the assignment problem for random matrices

    Science.gov (United States)

    Esteve, J. G.; Falceto, F.

    2005-12-01

    We report an analytic and numerical study of a phase transition in a P problem (the assignment problem) that separates two phases whose representatives are the simple matching problem (an easy P problem) and the traveling-salesman problem (a NP-complete problem). Like other phase transitions found in combinatoric problems (K-satisfiability, number partitioning) this can help to understand the nature of the difficulties in solving NP problems an to find more accurate algorithms for them.

  19. Enantioseparation of Citalopram by RP-HPLC, Using Sulfobutyl Ether-β-Cyclodextrin as a Chiral Mobile Phase Additive.

    Science.gov (United States)

    Peng, Yangfeng; He, Quan Sophia; Cai, Jiang

    2016-01-01

    Enantiomeric separation of citalopram (CIT) was developed using a reversed phase HPLC (RP-HPLC) with sulfobutylether-β-cyclodextrin (SBE-β-CD) as a chiral mobile phase additive. The effects of the pH value of aqueous buffer, concentration of chiral additive, composition of mobile phase, and column temperature on the enantioseparation of CIT were investigated on the Hedera ODS-2 C18 column (250 mm × 4.6 mm × 5.0 um). A satisfactory resolution was achieved at 25°C using a mobile phase consisting of a mixture of aqueous buffer (pH of 2.5, 5 mM sodium dihydrogen phosphate, and 12 mM SBE-β-CD), methanol, and acetonitrile with a volumetric ratio of 21 : 3 : 1 and flow rate of 1.0 mL/min. This analytical method was evaluated by examining the precision (lower than 3.0%), linearity (regression coefficients close to 1), limit of detection (0.070 µg/mL for (R)-CIT and 0.076 µg/mL for (S)-CIT), and limit of quantitation (0.235 µg/mL for (R)-CIT and 0.254 µg/mL for (S)-CIT). PMID:26880921

  20. Enantioseparation of Citalopram by RP-HPLC, Using Sulfobutyl Ether-β-Cyclodextrin as a Chiral Mobile Phase Additive

    Directory of Open Access Journals (Sweden)

    Yangfeng Peng

    2016-01-01

    Full Text Available Enantiomeric separation of citalopram (CIT was developed using a reversed phase HPLC (RP-HPLC with sulfobutylether-β-cyclodextrin (SBE-β-CD as a chiral mobile phase additive. The effects of the pH value of aqueous buffer, concentration of chiral additive, composition of mobile phase, and column temperature on the enantioseparation of CIT were investigated on the Hedera ODS-2 C18 column (250 mm × 4.6 mm × 5.0 um. A satisfactory resolution was achieved at 25°C using a mobile phase consisting of a mixture of aqueous buffer (pH of 2.5, 5 mM sodium dihydrogen phosphate, and 12 mM SBE-β-CD, methanol, and acetonitrile with a volumetric ratio of 21 : 3 : 1 and flow rate of 1.0 mL/min. This analytical method was evaluated by examining the precision (lower than 3.0%, linearity (regression coefficients close to 1, limit of detection (0.070 µg/mL for (R-CIT and 0.076 µg/mL for (S-CIT, and limit of quantitation (0.235 µg/mL for (R-CIT and 0.254 µg/mL for (S-CIT.

  1. Viscoelastic modes in chiral liquid crystals

    Indian Academy of Sciences (India)

    K A Suresh

    2003-08-01

    Viscoelastic properties of liquid crystals are very important for applications like display technology. However, there are not many direct techniques to study them. In this review, we describe our studies on the viscoelastic modes of some chiral liquid crystals using dynamic light scattering. We discuss viscoelastic modes corresponding to the C director fluctuations in the chiral smectic C phase and the behaviour of the Goldstone-mode near the chiral smectic C–smectic A phase transition. In cholesteric liquid crystals, we consider the director fluctuations in a wavevector range comparable to the inverse pitch of the cholesteric. Here, the study of the scattered light in the vicinity of the Bragg reflection using a novel geometry will be presented.

  2. Subtle Is The Manifestation Of Chiral Symmetry In Nuclei And Dense Nuclear Matter

    OpenAIRE

    Rho, Mannque

    2010-01-01

    The history of how chiral symmetry has entered in nuclear physics, in which Gerry Brown and I have participated from 1970 up to today, is described from my personal viewpoint. The route of development we have traversed together goes from meson exchange currents, to "little chiral bag," to chiral effective field theory, to "Brown-Rho scaling" and then to dense matter and chiral phase transition. It has been a great fun and exciting, some right and some wrong in what we have done together, but ...

  3. Micellar structures in lyotropic liquid crystals and phase transitions

    Science.gov (United States)

    Saupe, A.; Xu, S. Y.; Plumley, Sulakshana; Zhu, Y. K.; Photinos, P.

    1991-05-01

    The formation of micellar nematics is discussed with emphasis on the transitions between nematic phases and nematic-smectic transitions. Phase diagrams for MTAB/l-decanol/D,O systems show a direct transition between uniaxial nematics. Electrical conductivity and birefringence measurements on a mixture of sodium decylsulfate. 1-decanol, D,O demonstrate, on the other hand, the existence of a biaxial nemantic range that separates the Uniaxial nematics. On a mixture of cesium perflouroctanoate and H 2O the electrical conductivity and rotational viscosity are used to discuss the relevant features of nematic-lamellar-smectic transitions. The formation of elongated ribbon-like micelles at the nematic-smectic transition is suggested. Transitions between different nematic phases in the MTAB system may be connected with a structural change from long micelles with a fairly circular cross section to similar micelles with a more elliptical cross section.

  4. Application of an eremomycin-chiral stationary phase for the separation of DL-methionine using simulated moving bed technology.

    Science.gov (United States)

    Zhang, L; Gedicke, K; Kuznetsov, M A; Staroverov, S M; Seidel-Morgenstern, A

    2007-08-24

    Recently a new chiral stationary phase (CSP) was introduced, based on the immobilization of the macrocyclic glycopeptide eremomycin to epoxy-activated silica. The application of this new CSP to preparative enantioseparation using simulated moving bed (SMB) chromatography will be presented. MeOH-H(2)O (0.1M NaH(2)PO(4))=20/80 (v/v) was used as the mobile phase to separate the enantiomers of methionine. Successful separation was realized providing productivities around 15 g(product)/l(stat)/h for both l and d-methionine under nonlinear conditions. In such delicate continuous chromatographic separation processes, besides productivity, the long-term stability of the applied stationary phases is of importance. Column to column fluctuations were negligible and long-term stability of the preparative stationary phase was satisfactory according to the results of perturbation experiments performed before and after long-term SMB runs. PMID:17482626

  5. Different scenarios of topological phase transitions in homogeneous neutron matter

    CERN Document Server

    Pankratov, S S; Zverev, M V

    2012-01-01

    We study different scenarios of topological phase transitions in the vicinity of \\pi^0 condensation point in neutron matter. The transitions occur between the Fermi liquid state and a topologically different one with two sheets of the Fermi surface. Two possibilities of a rearrangement of quasiparticle degrees of freedom are shown: the first order topological phase transition and the second order one. The order of the phase transition is found to be strongly dependent on the value of the critical wave vector of the soft \\pi^0 mode. The thermodynamics of the system is also studied. It is shown that the topology of the quasiparticle momentum distribution is mainly determined by the neutron matter density, while the temperature T is essential in a narrow density region. A simple explanation of the first order topological phase transition at T=0 is given.

  6. Primordial Magnetic Fields from Cosmological First Order Phase Transitions

    CERN Document Server

    Sigl, G; Jedamzik, K; Sigl, Guenter; Olinto, Angela; Jedamzik, Karsten

    1996-01-01

    We give an improved estimate of primordial magnetic fields generated during cosmological first order phase transitions. We examine the charge distribution at the nucleated bubble wall and its dynamics. We consider instabilities on the bubble walls developing during the phase transition. It is found that damping of these instabilities due to viscosity and heat conductivity caused by particle diffusion can be important in the QCD phase transition, but is probably negligible in the electroweak transition. We show how such instabilities together with the surface charge densities on bubble walls excite magnetic fields within a certain range of wavelengths. We discuss how these magnetic seed fields may be amplified by MHD effects in the turbulent fluid. The strength and spectrum of the primordial magnetic field at the present time for the cases where this mechanism was operative during the electroweak or the QCD phase transition are estimated. On a 10 Mpc comoving scale, field strengths of the order 10**(-29) G for...

  7. The Electroweak Phase Transition in the Inert Doublet Model

    CERN Document Server

    Blinov, Nikita; Stefaniak, Tim

    2015-01-01

    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  8. The electroweak phase transition in the Inert Doublet Model

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, Nikita [Department of Physics, University of California Santa Cruz,1156 High St, Santa Cruz, CA 95064 (United States); Santa Cruz Institute for Particle Physics,1156 High St, Santa Cruz, CA 95064 (United States); Theory Department, TRIUMF,4004 Wesbrook Mall, Vancouver, BC V6T 2A3 (Canada); Department of Physics and Astronomy, University of British Columbia,Vancouver, BC V6T 1Z1 (Canada); Profumo, Stefano; Stefaniak, Tim [Department of Physics, University of California Santa Cruz,1156 High St, Santa Cruz, CA 95064 (United States); Santa Cruz Institute for Particle Physics,1156 High St, Santa Cruz, CA 95064 (United States)

    2015-07-21

    We study the strength of a first-order electroweak phase transition in the Inert Doublet Model (IDM), where particle dark matter (DM) is comprised of the lightest neutral inert Higgs boson. We improve over previous studies in the description and treatment of the finite-temperature effective potential and of the electroweak phase transition. We focus on a set of benchmark models inspired by the key mechanisms in the IDM leading to a viable dark matter particle candidate, and illustrate how to enhance the strength of the electroweak phase transition by adjusting the masses of the yet undiscovered IDM Higgs states. We argue that across a variety of DM masses, obtaining a strong enough first-order phase transition is a generic possibility in the IDM. We find that due to direct dark matter searches and collider constraints, a sufficiently strong transition and a thermal relic density matching the universal DM abundance is possible only in the Higgs funnel regime.

  9. Dynamics of Phase Transitions by Hysteresis Methods I

    CERN Document Server

    Berg, B A; Meyer-Ortmanns, H; Velytsky, A; Berg, Bernd A.; Heller, Urs M.; Meyer-Ortmanns, Hildegard; Velytsky, Alexander

    2004-01-01

    In studies of the QCD deconfining phase transition or crossover by means of heavy ion experiments, one ought to be concerned about non-equilibrium effects due to heating and cooling of the system. Motivated by this, we look at hysteresis methods to study the dynamics of phase transitions. Our systems are temperature driven through the phase transition using updating procedures in the Glauber universality class. Hysteresis calculations are presented for a number of observables, including the (internal) energy, properties of Fortuin-Kasteleyn clusters and structure functions. We test the methods for 2d Potts models, which provide a rich collection of phase transitions with a number of rigorously known properties. Comparing with equilibrium configurations we find a scenario where the dynamics of the transition leads to a spinodal decomposition which dominates the statistical properties of the configurations. One may expect an enhancement of low energy gluon production due to spinodal decomposition of the Polyako...

  10. Ferrofluid nucleus phase transitions in an external uniform magnetic field

    OpenAIRE

    Tanygin, B. M.; Shulyma, S. I.; Kovalenko, V. F.; Petrychuk, M.V.

    2015-01-01

    The phase transition between a massive dense phase and a diluted superparamagnetic phase has been studied by means of a direct molecular dynamics simulation. The equilibrium structures of the ferrofluid aggregate nucleus are obtained for different values of a temperature and an external magnetic field magnitude. An approximate match of experiment and simulation has been shown for the ferrofluid phase diagram coordinates "field-temperature". The provided phase coexistence curve has an opposite...

  11. Deviatoric stress-induced phase transitions in diamantane

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fan; Lin, Yu [Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Dahl, Jeremy E. P.; Carlson, Robert M. K. [Stanford Institute for Materials and Energy Science, Stanford, California 94305 (United States); Mao, Wendy L. [Geological and Environmental Sciences, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Science, Stanford, California 94305 (United States); Photon Science, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2014-10-21

    The high-pressure behavior of diamantane was investigated using angle-dispersive synchrotron x-ray diffraction (XRD) and Raman spectroscopy in diamond anvil cells. Our experiments revealed that the structural transitions in diamantane were extremely sensitive to deviatoric stress. Under non-hydrostatic conditions, diamantane underwent a cubic (space group Pa3) to a monoclinic phase transition at below 0.15 GPa, the lowest pressure we were able to measure. Upon further compression to 3.5 GPa, this monoclinic phase transformed into another high-pressure monoclinic phase which persisted to 32 GPa, the highest pressure studied in our experiments. However, under more hydrostatic conditions using silicone oil as a pressure medium, the transition pressure to the first high-pressure monoclinic phase was elevated to 7–10 GPa, which coincided with the hydrostatic limit of silicone oil. In another experiment using helium as a pressure medium, no phase transitions were observed to the highest pressure we reached (13 GPa). In addition, large hysteresis and sluggish transition kinetics were observed upon decompression. Over the pressure range where phase transitions were confirmed by XRD, only continuous changes in the Raman spectra were observed. This suggests that these phase transitions are associated with unit cell distortions and modifications in molecular packing rather than the formation of new carbon-carbon bonds under pressure.

  12. High-pressure phase transitions - Examples of classical predictability

    Science.gov (United States)

    Celebonovic, Vladan

    1992-09-01

    The applicability of the Savic and Kasanin (1962-1967) classical theory of dense matter to laboratory experiments requiring estimates of high-pressure phase transitions was examined by determining phase transition pressures for a set of 19 chemical substances (including elements, hydrocarbons, metal oxides, and salts) for which experimental data were available. A comparison between experimental and transition points and those predicted by the Savic-Kasanin theory showed that the theory can be used for estimating values of transition pressures. The results also support conclusions obtained in previous astronomical applications of the Savic-Kasanin theory.

  13. Photothermoelectric (PTE) Versus Photopyroelectric (PPE) Detection of Phase Transitions

    Science.gov (United States)

    Dadarlat, D.; Guilmeau, E.; Hadj Sahraoui, A.; Tudoran, C.; Surducan, V.; Bourgès, C.; Lemoine, P.

    2016-05-01

    The photopyroelectric (PPE) technique is one of the photothermal (PT) methods mostly used for phase transitions investigations. In this paper, we want to compare the PPE results with those obtained using another, recently developed PT method [the photothermoelectric (PTE) calorimetry] for the same purpose of detecting phase transitions. The well-known ferro-paraelectric phase transition of TGS, taking place at a convenient temperature (about 49 {}^{circ }hbox {C}), has been selected for demonstration. A comparison of the two PPE and PTE methods, both in the back detection configuration (in the special case of optically opaque sample and thermally thick regime for both sensors and sample) shows that they are equally suitable for phase transitions detection. Performing a proper calibration, the amplitude and phase of the signals can be used in order to obtain the critical behaviour of all sample's static and dynamic thermal parameters.

  14. Phase-separation transitions in asymmetric lipid bilayers

    CERN Document Server

    Shimobayashi, Shunsuke F; Taniguchi, Takashi

    2015-01-01

    Morphological transitions of phase separation associated with the asymmetry of lipid composition were investigated using micrometer-sized vesicles of lipid bilayers made from a lipid mixture. The complete macro-phase-separated morphology undergoes a transition to a micro-phase-separation-like morphology via a lorate morphology as a metastable state. The transition leads to the emergence of monodisperse nanosized domains through repeated domain scission events. Moreover, we have numerically confirmed the transitions using the time-dependent Ginzburg-Landau model describing phase separation and the bending elastic membrane, which is quantitatively consistent with experimental results by fixing one free parameter. Our findings suggest that the local spontaneous curvature due to the asymmetric composition plays an essential role in the thermodynamic stabilization of micro-phase separation in lipid bilayers.

  15. Phase transition of pure zirconia under irradiation: A textbook example

    International Nuclear Information System (INIS)

    One of the most important goals in ceramic and materials science is to be able to design materials with specific properties. Irradiation seems to be a powerful tool for the design of advanced ceramics because of its ability to modify over different scales the microstructure of solids. Nowadays, it is clearly proved that irradiation induces order-disorder phase transitions in metallic alloys and in some ceramics. In this paper, we show that a displacive phase transition can also be induced by irradiation. Based on many experimental facts, a microscopic model is proposed to explain the displacive phase transition observed in this material after irradiation. Defects, produced in the oxygen sublattice, induce important strain fields on a nanometric scale. This strain field can be handled as a secondary order parameter within the Landau theory approach, leading to a decrease of the phase transition temperature and thus quenching the high temperature tetragonal phase

  16. Herzberg Circuit and Berry's Phase in Chirality-based Coded Qubit in a Triangular Triple Quantum Dot

    OpenAIRE

    Hsieh, Chang-Yu; Rene, Alexandre; Hawrylak, Pawel

    2011-01-01

    We present a theoretical proposal for the Herzberg circuit and controlled accumulation of Berry's phase in a chirality-based coded qubit in a triangular triple quantum dot molecule with one electron spin each. The qubit is encoded in the two degenerate states of a three spin complex with total spin $S=1/2$. Using a Hubbard and Heisenberg model the Herzberg circuit encircling the degeneracy point is realized by adiabatically tuning the successive on-site energies of quantum dots and tunnel cou...

  17. Enantiomeric separation of amlodipine and its two chiral impurities by nano-liquid chromatography and capillary electrochromatography using a chiral stationary phase based on cellulose tris(4-chloro-3-methylphenylcarbamate).

    Science.gov (United States)

    Auditore, Roberta; Santagati, Natale A; Aturki, Zeineb; Fanali, Salvatore

    2013-09-01

    In this work, a novel polysaccharide-based chiral stationary phase, cellulose tris(4-chloro-3-methylphenylcarbamate), also called Sepapak 4 has been evaluated for the chiral separation of amlodipine (AML) and its two impurities. AML is a powerful vasodilatator drug used for the treatment of hypertension. Capillary columns of 100 μm id packed with the chiral stationary phase were used for both nano-LC and CEC experiments. The optimization of the mobile phase composed of ACN/water, (90:10, v/v) containing 15 mM ammonium borate pH 10.0 in nano-LC allowed the chiral separation of AML and the two impurities, but not in a single run. With the purpose to obtain the separation of the three pairs of enantiomers simultaneously, CEC analyses were performed in the same conditions achieving better enantioresolution and higher separation efficiencies for each compound. To fully resolve the mixture of six enantiomers, parameters such as buffer pH and concentration sample injection have been then investigated. A mixture of ACN/water (90:10, v/v) containing 5 mM ammonium borate buffer pH 9.0 enabled the complete separation of the three couples of enantiomers in less than 30 min. The optimized CEC method was therefore validated and applied to the analysis of pharmaceutical formulation declared to contain only AML racemate. PMID:23775281

  18. Weakly First Order Cosmological Phase Transitions and Fermion Production

    CERN Document Server

    Gleiser, Marcello; Gleiser, Marcelo; Trodden, Mark

    2001-01-01

    We study weakly first order cosmological phase transitions in finite temperature field theories. Focusing on the standard electroweak theory and its minimal supersymmetric extension, we identify the regimes of Higgs masses for which the phase transition in these models proceeds by significant phase mixing and the coarsening of the subsequent domain network. This dynamics is distinct from that for strongly first order transitions, which proceed by the nucleation and propagation of critical bubbles. We describe how electroweak baryogenesis might take place in these models, explaining how our new picture can relax the sphaleron washout bound of traditional scenarios.

  19. Phase transition of quantum-corrected Schwarzschild black hole

    International Nuclear Information System (INIS)

    We study the thermodynamic phase transition of a quantum-corrected Schwarzschild black hole. The modified metric affects the critical temperature which is slightly less than the conventional one. The space without black holes is not the hot flat space but the hot curved space due to vacuum fluctuations so that there appears a type of Gross-Perry-Yaffe phase transition even for the very small size of black hole, which is impossible for the thermodynamics of the conventional Schwarzschild black hole. We discuss physical consequences of the new phase transition in this framework.

  20. Theory of Coupled Phase Transitions: Phase Separation and Variation of Order Parameter

    OpenAIRE

    Zhong, Fan

    1998-01-01

    A simplified Ginzburg-Landau theory is presented to study generally a coupling of a first-order phase transition (FOPT) to a second-order phase transition (SOPT). We show analytically that, due to the coupling between the two phase transitions, the SOPT may exhibit a FOPT-like phase separation in which an ordered phase is separated from a disordered one. This phase separation results in a distinct behavior in the variation of the order parameter of the SOPT, namely, it is primarily the propor...