WorldWideScience

Sample records for chiral phase transition

  1. Neutrino Oscillation Induced by Chiral Phase Transition

    Institute of Scientific and Technical Information of China (English)

    MU Cheng-Fu; SUN Gao-Feng; ZHUANG Peng-Fei

    2009-01-01

    Electric charge neutrality provides a relationship between chiral dynamics and neutrino propagation in compact stars.Due to the sudden drop of the electron density at the first-order chiral phase transition,the oscillation for low energy neutrinos is significant and can be regarded as a signature of chiral symmetry restoration in the core of compact stars.

  2. Chirality effects on 2D phase transitions

    DEFF Research Database (Denmark)

    Scalas, E.; Brezesinski, G.; Möhwald, H.

    1996-01-01

    -nearest neighbours (NNN) and an NNN-distorted lattice is observed. At 5 degrees C, the transition pressure is 15 mN m(-1), whereas at 20 degrees C it is 18 mN m(-1). Chirality destroys this transition: the pure enantiomer always exhibits an oblique lattice with tilted molecules, and the azimuths of tilt...... and distortion continuously vary from a direction close to NN to a direction close to NNN. The nature of the phase transition and the influence of chirality on it are discussed within the framework of Landau's theory of phase transitions....

  3. Dynamics of the chiral phase transition

    CERN Document Server

    van Hees, H; Meistrenko, A; Greiner, C

    2013-01-01

    The intention of this study is the search for signatures of the chiral phase transition in heavy-ion collisions. To investigate the impact of fluctuations, e.g., of the baryon number, at the transition or at a critical point, the linear sigma model is treated in a dynamical (3+1)-dimensional numerical simulation. Chiral fields are approximated as classical mean fields, and quarks are described as quasi particles in a Vlasov equation. Additional dynamics is implemented by quark-quark and quark-sigma-field interactions. For a consistent description of field-particle interactions, a new Monte-Carlo-Langevin-like formalism has been developed and is discussed.

  4. Chiral phase transition in QED3 at finite temperature

    Science.gov (United States)

    Yin, Pei-Lin; Xiao, Hai-Xiao; Wei, Wei; Feng, Hong-Tao; Zong, Hong-Shi

    2016-12-01

    In the framework of Dyson-Schwinger equations, we employ two kinds of criteria (one kind is the chiral condensate, the other kind is thermodynamic quantities, such as the pressure, the entropy, and the specific heat) to investigate the nature of chiral phase transitions in QED3 for different fermion flavors. It is found that the chiral phase transitions in QED3 for different fermion flavors are all typical second-order phase transitions; the critical temperature and order of the chiral phase transition obtained from the chiral condensate and susceptibility are the same with that obtained by the thermodynamic quantities, which means that they are equivalent in describing the chiral phase transition; the critical temperature decreases as the number of fermion flavors increases and there is a boundary that separates the Tc-Nf plane into chiral symmetry breaking and restoration regions.

  5. Chiral phase transition from string theory.

    Science.gov (United States)

    Parnachev, Andrei; Sahakyan, David A

    2006-09-15

    The low energy dynamics of a certain D-brane configuration in string theory is described at weak t'Hooft coupling by a nonlocal version of the Nambu-Jona-Lasinio model. We study this system at finite temperature and strong t'Hooft coupling, using the string theory dual. We show that for sufficiently low temperatures chiral symmetry is broken, while for temperatures larger then the critical value, it gets restored. We compute the latent heat and observe that the phase transition is of the first order.

  6. Charge fluctuations in chiral models and the QCD phase transition

    CERN Document Server

    Skokov, V; Karsch, F; Redlich, K

    2011-01-01

    We consider the Polyakov loop-extended two flavor chiral quark--meson model and discuss critical phenomena related with the spontaneous breaking of the chiral symmetry. The model is explored beyond the mean-field approximation in the framework of the functional renormalisation group. We discuss properties of the net-quark number density fluctuations as well as their higher cumulants. We show that with the increasing net-quark number density, the higher order cumulants exhibit a strong sensitivity to the chiral crossover transition. We discuss their role as probes of the chiral phase transition in heavy-ion collisions at RHIC and LHC.

  7. Characteristics of the chiral phase transition in nonlocal quark models

    CERN Document Server

    Dumm, D G

    2004-01-01

    The characteristics of the chiral phase transition are analyzed within the framework of chiral quark models with nonlocal interactions in the mean field approximation (MFA). In the chiral limit, we show that there is a region of low values of the chemical potential in which the transition is a second order one. In that region, it is possible to perform a Landau expansion and determine the critical exponents which, as expected, turn out to be the MFA ones. Our analysis also allows to obtain semi-analytical expressions for the transition curve and the location of the tricritical point. For the case of finite current quark masses, we study the behavior of various thermodynamical and chiral response functions across the phase transition.

  8. How tetraquarks can generate a second chiral phase transition

    CERN Document Server

    Pisarski, Robert D

    2016-01-01

    We consider how tetraquarks can affect the chiral phase transition in theories like QCD, with light quarks coupled to three colors. For two flavors the tetraquark field is an isosinglet, and its effect is minimal. For three flavors, however, the tetraquark field transforms in the same representation of the chiral symmetry group as the usual chiral order parameter, and so for very light quarks there may be two chiral phase transitions, which are both of first order. In QCD, results from the lattice indicate that any transition from the tetraquark condensate is a smooth crossover. In the plane of temperature and quark chemical potential, though, a crossover line for the tetraquark condensate is naturally related to the transition line for color superconductivity. For four flavors we suggest that a triquark field, antisymmetric in both flavor and color, combine to form hexaquarks.

  9. Chiral phase transition in QED$_3$ at finite temperature

    CERN Document Server

    Wei, Wei; Zong, Hong-Shi

    2016-01-01

    Chiral phase transition in (2+1)-dimensional quantum electrodynamics (QED$_3$) at finite temperature is investigated in the framework of truncated Dyson-Schwinger equations (DSEs). We go beyond the widely used instantaneous approximation and adopt a method that retains the full frequency dependence of the fermion self-energy. We also take further step to include the effects of wave-function renormalizations and introduce a minimal dressing of the bare vertex. Finally, with the more complete solutions of the truncated DSEs, we revisit the study of chiral phase transition in finite-temperature QED$_3$.

  10. On SU(3) effective models and chiral phase-transition

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    The sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL) model as an effective theory of quark dynamics to chiral symmetry has been utilized in studying the QCD phase-diagram. Also, Poyakov linear sigma-model (PLSM), in which information about the confining glue sector of the theory was included through Polyakov-loop potential. Furthermore, from quasi-particle model (QPM), the gluonic sector of QPM is integrated to LSM in order to reproduce recent lattice calculations. We review PLSM, QLSM, PNJL and HRG with respect to their descriptions for the chiral phase-transition. We analyse chiral order-parameter M(T), normalized net-strange condensate Delta_{q,s}(T) and chiral phase-diagram and compare the results with lattice QCD. We conclude that PLSM works perfectly in reproducing M(T) and Delta_{q,s}(T). HRG model reproduces Delta_{q,s}(T), while PNJL and QLSM seem to fail. These differences are present in QCD chiral phase-diagram. PLSM chiral boundary is located in upper band of lattice QCD calculations and agree we...

  11. On SU(3 Effective Models and Chiral Phase Transition

    Directory of Open Access Journals (Sweden)

    Abdel Nasser Tawfik

    2015-01-01

    Full Text Available Sensitivity of Polyakov Nambu-Jona-Lasinio (PNJL model and Polyakov linear sigma-model (PLSM has been utilized in studying QCD phase-diagram. From quasi-particle model (QPM a gluonic sector is integrated into LSM. The hadron resonance gas (HRG model is used in calculating the thermal and dense dependence of quark-antiquark condensate. We review these four models with respect to their descriptions for the chiral phase transition. We analyze the chiral order parameter, normalized net-strange condensate, and chiral phase-diagram and compare the results with recent lattice calculations. We find that PLSM chiral boundary is located in upper band of the lattice QCD calculations and agree well with the freeze-out results deduced from various high-energy experiments and thermal models. Also, we find that the chiral temperature calculated from HRG is larger than that from PLSM. This is also larger than the freeze-out temperatures calculated in lattice QCD and deduced from experiments and thermal models. The corresponding temperature and chemical potential are very similar to that of PLSM. Although the results from PNJL and QLSM keep the same behavior, their chiral temperature is higher than that of PLSM and HRG. This might be interpreted due the very heavy quark masses implemented in both models.

  12. On the Chiral Phase Transition in the Linear Sigma Model

    CERN Document Server

    Phat, T H; Hoa, L V; Phat, Tran Huu; Anh, Nguyen Tuan; Hoa, Le Viet

    2004-01-01

    The Cornwall-Jackiw-Tomboulis (CJT) effective action for composite operators at finite temperature is used to investigate the chiral phase transition within the framework of the linear sigma model as the low-energy effective model of quantum chromodynamics (QCD). A new renormalization prescription for the CJT effective action in the Hartree-Fock (HF) approximation is proposed. A numerical study, which incorporates both thermal and quantum effect, shows that in this approximation the phase transition is of first order. However, taking into account the higher-loop diagrams contribution the order of phase transition is unchanged.

  13. Disorienting the Chiral Condensate at the QCD Phase Transition

    CERN Document Server

    Rajagopal, K

    1997-01-01

    I sketch how long wavelength modes of the pion field can be amplified during the QCD phase transition. If nature had been kinder, and had made the pion mass significantly less than the critical temperature for the transition, then this phenomenon would have characterized the transition in thermal equilibrium. Instead, these long wavelength oscillations of the orientation of the chiral condensate can only arise out of equilibrium. There is a simple non-equilibrium mechanism, plausibly operational during heavy ion collisions, which naturally amplifies these oscillations. The characteristic signature of this phenomenon is large fluctuations in the ratio of the number of neutral pions to the total number of pions in regions of momentum space, that is in phase space in a detector. Detection in a heavy ion collision would imply an out of equilbrium chiral transition.

  14. Chiral Phase Transition at Finite Isospin Density in Linear Sigma Model

    Institute of Scientific and Technical Information of China (English)

    SHU Song; LI Jia-Rong

    2005-01-01

    Using the linear sigma model, we have introduced the pion isospin chemical potential. The chiral phase transition is studied at finite temperatures and finite isospin densities. We have studied the μ - T phase diagram for the chiral phase transition and found the transition cannot happen below a certain low temperature because of the BoseEinstein condensation in this system. Above that temperature, the chiral phase transition is studied by the isotherms of pressure versus density. We indicate that the transition, in the chiral limit, is a first-order transition from a low-density phase to a high-density phase like a gas-liquid phase transition.

  15. Dynamic aspect of the chiral phase transition in the mode coupling theory

    CERN Document Server

    Ohnishi, K; Ohta, K

    2005-01-01

    We analyze the dynamic aspect of the chiral phase transition. We apply the mode coupling theory to the linear sigma model and derive the kinetic equation for the chiral phase transition. We challenge Hohenberg and Halperin's classification scheme of dynamic critical phenomena in which the dynamic universality class of the chiral phase transition has been identified with that of the antiferromagnet. We point out a crucial difference between the chiral dynamics and the antiferromagnet system. We also calculate the dynamic critical exponent for the chiral phase transition. Our result is $z=1-\\eta/2\\cong 0.98$ which is contrasted with $z=d/2=1.5$ of the antiferromagnet.

  16. The QCD phase transition with physical-mass, chiral quarks

    CERN Document Server

    Bhattacharya, Tanmoy; Christ, Norman H; Ding, H -T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-01-01

    We report on the first lattice calculation of the QCD phase transition using chiral fermions at physical values of the quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm$)^3$ and (11 fm$)^3$ and temperatures between 139 and 196 MeV . Each temperature was calculated using a single lattice spacing corresponding to a temporal Euclidean extent of $N_t=8$. The disconnected chiral susceptibility, $\\chi_{\\rm disc}$ shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability in the region of the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD ``phase transition'' is not first order but a continuous cross-over for $m_\\pi=135$ MeV. The peak location determines a pseudo-critical temperature $T_c = 155(1)(8)$ MeV. Chiral $SU(2)_L\\times SU(2)_R$ symmetry is fully restored above 164 MeV, but anomalous $U(1)_A$ symmetry breaking is non-zero above $T...

  17. QCD phase transition with chiral quarks and physical quark masses.

    Science.gov (United States)

    Bhattacharya, Tanmoy; Buchoff, Michael I; Christ, Norman H; Ding, H-T; Gupta, Rajan; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; McGlynn, Greg; Mukherjee, Swagato; Murphy, David; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Soltz, R A; Vranas, P M; Yin, Hantao

    2014-08-22

    We report on the first lattice calculation of the QCD phase transition using chiral fermions with physical quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm)(3) and (11 fm)(3) and temperatures between 139 and 196 MeV. Each temperature is calculated at a single lattice spacing corresponding to a temporal Euclidean extent of N(t) = 8. The disconnected chiral susceptibility, χ(disc) shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability near the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD "phase transition" is not first order but a continuous crossover for m(π) = 135 MeV. The peak location determines a pseudocritical temperature T(c) = 155(1)(8) MeV, in agreement with earlier staggered fermion results. However, the peak height is 50% greater than that suggested by previous staggered results. Chiral SU(2)(L) × SU(2)(R) symmetry is fully restored above 164 MeV, but anomalous U(1)(A) symmetry breaking is nonzero above T(c) and vanishes as T is increased to 196 MeV.

  18. Topological String in Quantum-Chromodynamical Chiral Phase Transitions

    Institute of Scientific and Technical Information of China (English)

    LI Yun-De

    2005-01-01

    @@ It is pointed out that if in heavy ion collision processes, the quark-gluon plasma SU(2) chiral phase transition really takes place and the phase transition is a second order. Then the topological string, i.e., the π string, will be formed. The main effect of this phenomenon is that there will be a number of pions produced by decay of the π string in the final state. The pions from the decay of the π string lead to the same effect of decreasing the Hanbury-Brown-Twiss peak in two-pion spectra which is just as that of the long-lived hadronic resonances.At relativistic heavy-ion collision and large hadron collision energies, it is expected that the factors are about α~ 0.7 - 0.9 and α~ 0.6 - 0.85, respectively.

  19. The effect of the chiral chemical potential on the chiral phase transition in the NJL model with different regularization schemes

    CERN Document Server

    Yu, Lang; Huang, Mei

    2015-01-01

    We study the chiral phase transition in the presence of the chiral chemical potential $\\mu_5$ using the two-flavor Nambu--Jona-Lasinio model. In particular, we analyze the reason why one can obtain two opposite behaviors of the chiral critical temperature as a function of $\\mu_5$ in the framework of different regularization schemes. We compare the modifications of the chiral condensate and the critical temperature due to $\\mu_5$ in different regularization schemes, analytically and numerically. Finally, we find that, for the conventional hard-cutoff regularization scheme, the increasing dependence of the critical temperature on the chiral chemical potential is an artifact, which is caused by the fact that it does not include complete contribution from the thermal fluctuations. When the thermal contribution is fully taken into account, the chiral critical temperature should decrease with $\\mu_5$.

  20. Recent progress in understanding deconfinement and chiral restoration phase transitions

    CERN Document Server

    Shuryak, Edward

    2016-01-01

    Paradigme shift in gauge topology, from instantons to their constituents -- instanton-dyons -- has recently lead to very significant advances. Like instantons, they have fermionic zero modes, and their collectivization at sufficiently high density explains the chiral symmetry breaking. Unlike instantons, these objects have electric and magnetic charges. Their back reaction on the mean value of the Polyakov line (holonomy) allows to explain the deconfinement transition. The talk summarizes recent works on the dyon ensemble, done in the mean field approximation (MFA), and also by direct numerical statistical simulation. Introduction of non-trivial quark periodicity conditions leads to drastic changes in both deconfinement and chiral transitions. In particulaly, in the so called Z(N_c)-QCD model the former gets much stronger, while the latter does not seem to occur at all.

  1. Influence of boson mass on chiral phase transition in QED3

    Science.gov (United States)

    Feng, Hong-tao; Wang, Xiu-Zhen; Yu, Xin-hua; Zong, Hong-shi

    2016-08-01

    Based on the truncated Dyson-Schwinger equations for the fermion propagator with N fermion flavors at zero temperature, the chiral phase transition of quantum electrodynamics in 2 +1 dimensions (QED3 ) with boson mass—which is obtained via the Anderson-Higgs mechanism—is investigated. In the chiral limit, we find that the critical behavior of QED3 with a massless boson is different from that with a massive boson: the chiral phase transition in the presence of a nonzero boson mass reveals the typical second-order phase transition, at either the critical boson mass or a critical number of fermion flavors, while for a vanishing boson mass it exhibits a higher than second-order phase transition at the critical number of fermion flavors. Furthermore, it is shown that the system undergoes a crossover behavior from a small number of fermion flavors or boson mass to its larger one beyond the chiral limit.

  2. O(N) universality and the chiral phase transition in QCD

    CERN Document Server

    Karsch, Frithjof

    2010-01-01

    We discuss universal scaling properties of (2+1)-flavor QCD in the vicinity of the chiral phase transition at vanishing as well as non-vanishing light quark chemical potential (mu_l). We provide evidence for O(N) scaling of the chiral order parameter in (2+1)-flavor QCD and show that the scaling analysis of its derivative with respect to the light quark chemical potential provides a unique approach to the determination of the curvature of the chiral phase transition line in the vicinity of mu_l/T=0.

  3. Peak of Chiral Susceptibility and Chiral Phase Transition in QED3

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yu-Qing; YANG Yong-Hong

    2011-01-01

    A general expression for the scalar susceptibility in QEDs is given. We adopt the Dyson-Schwinger equation for the fermion propagator to solve xc within a range of the number of fermion flavors, N, in chiral symmetry breaking phase. We show that the scalar susceptibility has a peak and the corresponding N is less than the critical number of fermion flavors for chiral symmetry.%@@ A general expression for the scalar susceptibility in QED3 is given.We adopt the Dyson-Schwinger equation for the fermion propagator to solve Xc within a range of the number of fermion flavors, N, in chiral symmetry breaking phase.We show that the scalar susceptibility has a peak and the corresponding N is less than thecritical number of fermion flavors for chiral symmetry.

  4. Chiral phase transition in charge ordered 1T-TiSe2.

    Science.gov (United States)

    Castellan, John-Paul; Rosenkranz, Stephan; Osborn, Ray; Li, Qing'an; Gray, K E; Luo, X; Welp, U; Karapetrov, Goran; Ruff, J P C; van Wezel, Jasper

    2013-05-10

    It was recently discovered that the low-temperature, charge-ordered phase of 1T-TiSe(2) has a chiral character. This unexpected chirality in a system described by a scalar order parameter could be explained in a model where the emergence of relative phase shifts between three charge density wave components breaks the inversion symmetry of the lattice. Here, we present experimental evidence for the sequence of phase transitions predicted by that theory, going from disorder to nonchiral and finally to chiral charge order. Employing x-ray diffraction, specific heat, and electrical transport measurements, we find that a novel phase transition occurs ~7 K below the main charge ordering transition in TiSe(2), in agreement with the predicted hierarchy of charge-ordered phases.

  5. Structure of chiral phase transitions at finite temperature in abelian gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Fukazawa, Kenji [Kure National College of Technology, Kure (Japan); Inagaki, Tomohiro [Information Media Center, Hiroshima Univ., Hiroshima (Japan); Mukaigawa, Seiji [Department of Electrical and Electronic Engineering, Faculty of Engineering, Iwate Univ., Iwate (Japan); Muta, Taizo [Department of Physics, Hiroshima Univ., Hiroshima (Japan)

    2001-06-01

    The mechanism of chiral symmetry breaking is investigated in strong-coupling Abelian gauge theories at finite temperature. The Schwinger-Dyson equation in the Landau gauge is employed in the real time formalism and is solved numerically within the framework of the instantaneous exchange approximation, including the effect of the thermal mass for the photon propagator. It is found that the chiral symmetry is broken below the critical temperature T for sufficiently large coupling {alpha}. The chiral phase transition is found to be of second order, and the phase diagram in the T-{alpha} plane is obtained. It is investigated how the structure of the chiral phase transition is affected by the thermal mass in the photon propagator. (author)

  6. Structure of chiral phase transitions at finite temperature in Abelian gauge theories

    CERN Document Server

    Fukazawa, K; Mukaigawa, S; Muta, T; Fukazawa, Kenji; Inagaki, Tomohiro; Mukaigawa, Seiji; Muta, Taizo

    1999-01-01

    The mechanism of the chiral symmetry breaking is investigated in the strong-coupling Abelian gauge theories at finite temperature. The Schwinger-Dyson equation in Landau gauge is employed in the real time formalism and is solved numerically within the framework of the instantaneous exchange approximation including the effect of the hard thermal loop for the photon propagator. It is found that the chiral symmetry is broken below the critical temperature T for sufficiently large coupling. The chiral phase transition is found to be of the 2nd order and the phase diagram on the $T-\\alpha$ plane is obtained. It is investigated how the structure of the chiral phase transition is affected by the hard thermal loops in the photon propagator.

  7. Effects of gauge boson mass on chiral and deconfinement phase transitions in QED$_{3}$

    CERN Document Server

    Yin, Pei-Lin; Feng, Hong-Tao; Zong, Hong-Shi

    2016-01-01

    Based on the experimental observation that there is a coexisting region between the antiferromagnetic (AF) and $\\textit{d}$-wave superconducting ($\\textit{d}$SC) phases, the influences of gauge boson mass $m_{a}$ on chiral symmetry restoration and deconfinement phase transitions in QED$_{3}$ are investigated simultaneously within a unified framework, i.e., Dyson-Schwinger equations. The results show that the chiral symmetry restoration phase transition in the presence of the gauge boson mass $m_{a}$ is a typical second-order phase transition; the chiral symmetry restoration and deconfinement phase transitions are coincident; the critical number of fermion flavors $N^{c}_{f}$ decreases as the gauge boson mass $m_{a}$ increases and there exists a boundary that separates the $N^{c}_{f}$-$m_{a}$ plane into chiral symmetry breaking/confinement region for ($N_{f}^{c}$, $m_{a}$) below the boundary and chiral symmetry restoration/deconfinement region for ($N_{f}^{c}$, $m_{a}$) above it.

  8. Amplification of Quantum Meson Modes in the Late Time of the Chiral Phase Transition

    CERN Document Server

    Watanabe, K

    2007-01-01

    We investigate the time evolution of the quantum meson modes in the late time of chiral phase transition. In particular, it is shown that there exists a possible solution to the equation of motion for the quantum meson modes, which reveals a parametric resonance and/or resonance through forced oscillation induced by the small oscillation of the chiral condensate. After that, we demonstrate the unstable regions for the quantum meson modes in both the cases of a uniform and spatially expanding system.

  9. Chiral phase transition of QCD with N f = 2 + 1 flavors from holography

    Science.gov (United States)

    Li, Danning; Huang, Mei

    2017-02-01

    Chiral phase transition for three-flavor N f = 2 + 1 QCD with m u = m d ≠ m s is investigated in a modified soft-wall holographic QCD model. Solving temperature dependent chiral condensates from equations of motion of the modified soft-wall model, we extract the quark mass dependence of the order of chiral phase transition in the case of N f = 2 + 1, and the result is in agreement with the "Columbia Plot", which is summarized from lattice simulations and other non-perturbative methods. First order phase transition is observed around the three flavor chiral limit m u/ d = 0, m s = 0, while at sufficient large quark masses it turns to be a crossover phase transition. The first order and crossover regions are separated by a second order phase transition line. The second order line is divided into two parts by the m u/ d = m s line, and the m s dependence of the transition temperature in these two parts are totally contrast, which might indicate that the two parts are governed by different universality classes.

  10. The chicken or the egg; or Who ordered the chiral phase transition?

    CERN Document Server

    Kogan, I I; Tekin, B; Kogan, Ian I.; Kovner, Alex; Tekin, Bayram

    2001-01-01

    We draw an analogy between the deconfining transition in the 2+1 dimensional Georgi-Glashow model and the chiral phase transition in 3+1 dimensional QCD. Based on the detailed analysis of the former (hep-th/0010201) we suggest that the chiral symmetry restoration in QCD at high temperature is driven by the thermal ensemble of baryons and antibaryons. The chiral symmetry is restored when roughly half of the volume is occupied by the baryons. Surprisingly enough, even though baryons are rather heavy, a crude estimate for the critical temperature gives $T_c=180$ Mev. In this scenario the binding of the instantons is not the cause but rather a consequence of the chiral symmetry restoration.

  11. Time evolution of chiral phase transition at finite temperature and density in the linear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K.; Koide, Tomoi; Maruyama, Masahiro [Tohoku Univ., Faculty of Science, Sendai, Miyagi (Japan)

    1999-08-01

    There are various approaches to nonequilibrium system. We use the projection operator method investigated by F. Shibata and N. Hashitsume on the linear sigma model at finite temperature and density. We derive a differential equation of the time evolution for the order parameter and pion number density in chiral phase transition. (author)

  12. Phenomena at the QCD phase transition in nonequilibrium chiral fluid dynamics (NχFD)

    Energy Technology Data Exchange (ETDEWEB)

    Nahrgang, Marlene [Duke University, Department of Physics, Durham, NC (United States); Herold, Christoph [Suranaree University of Technology, School of Physics, Nakhon Ratchasima (Thailand)

    2016-08-15

    Heavy-ion collisions performed in the beam energy range accessible by the NICA collider facility are expected to produce systems of extreme net-baryon densities and can thus reach yet unexplored regions of the QCD phase diagram. Here, one expects the phase transition between the plasma of deconfined quarks and gluons and the hadronic matter to be of first order. A discovery of the first-order phase transition would as well prove the existence of the QCD critical point, a landmark in the phase diagram. In order to understand possible signals of the first-order phase transition in heavy-ion collision experiments it is very important to develop dynamical models of the phase transition. Here, we discuss the opportunities of studying dynamical effects at the QCD first-order phase transition within our model of nonequilibrium chiral fluid dynamics. (orig.)

  13. Multi critical point structure for chiral phase transition induce by charge neutrality and vector interaction

    CERN Document Server

    Zhang, Zhao

    2010-01-01

    The combined effect of the repulsive vector interaction and the positive electric chemical potential on the chiral phase transition is investigated by considering neutral color superconductivity. Under the charge-neutrality constraint, the chiral condensate, diquark condensate and quark number densities are obtained in two-plus-one-flavor Nambu-Jona-Lasinio model with the so called Kobayashi-Maskawa-'t Hooft term. We demonstrate that multiple chiral critical-point structures always exist in the Nambu-Jona-Lasinio model within the self-consistent mean-field approximation, and that the number of chiral critical points can vary from zero to four, which is dependent on the magnitudes of vector interaction and the diquark coupling.

  14. Chiral phase transition of $N_f$=2+1 QCD with the HISQ action

    CERN Document Server

    Ding, H -T; Karsch, F; Maezawa, Y; Mukherjee, Swagato; Petreczky, P

    2013-01-01

    We present studies of universal properties of the chiral phase transition in $N_f$=2+1 QCD based on the simulations using Highly Improved Staggered fermions on lattices with temporal extent $N_\\tau$=6. We analyze the quark mass and volume dependence of the chiral condensates and chiral susceptibilities in QCD with two degenerate light quarks and a strange quark. The strange quark mass is chosen to be fixed to its physical value ($m^{phy}_s$) and five values of light quark masses ($m_l$) that are varied in the interval 1/20$\\gtrsim m_l/m^{phy}_s \\gtrsim$1/80. Here various quark masses correspond to pseudo Goldstone pion masses ranging from about 160 MeV to about 80 MeV. The O(N) scaling of chiral observables and the influence of universal scaling on physical observables in the region of physical quark mass values are also discussed.

  15. The $N_f= 2$ chiral phase transition from imaginary chemical potential with Wilson Fermions

    CERN Document Server

    Philipsen, Owe

    2015-01-01

    The order of the thermal transition in the chiral limit of QCD with two dynamical flavours of quarks is a long-standing issue. Still, it is not definitely known whether the transition is of first or second order in the continuum limit. Which of the two scenarios is realized has important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. Settling this issue by simulating at successively decreased pion mass was not conclusive yet. Recently, an alternative approach was proposed, extrapolating the first order phase transition found at imaginary chemical potential to zero chemical potential with known exponents, which are induced by the Roberge-Weiss symmetry. For staggered fermions on $N_t=4$ lattices, this results in a first order transition in the chiral limit. Here we report of $N_t=4$ simulations with Wilson fermions, where the first order region is found to be large.

  16. The Chirality Of Life: From Phase Transitions To Astrobiology

    CERN Document Server

    Gleiser, Marcelo

    2008-01-01

    The search for life elsewhere in the universe is a pivotal question in modern science. However, to address whether life is common in the universe we must first understand the likelihood of abiogenesis by studying the origin of life on Earth. A key missing piece is the origin of biomolecular homochirality: permeating almost every life-form on Earth is the presence of exclusively levorotary amino acids and dextrorotary sugars. In this work we discuss recent results suggesting that life's homochirality resulted from sequential chiral symmetry breaking triggered by environmental events in a mechanism referred to as punctuated chirality. Applying these arguments to other potentially life-bearing platforms has significant implications for the search for extraterrestrial life: we predict that a statistically representative sampling of extraterrestrial stereochemistry will be racemic on average.

  17. The chiral phase transition in a random matrix model with molecular correlations

    CERN Document Server

    Wettig, T; Weidenmüller, H A; Wettig, Tilo

    1995-01-01

    The chiral phase transition of QCD is analyzed in a model combining random matrix elements of the Dirac operator with specially chosen non-random ones. The special form of the latter is motivated by the assumption that the fermionic quasi-zero modes associated with instanton and anti-instanton configurations determine the chiral properties of QCD. Our results show that the degree of correlation between these modes plays the decisive role. To reduce the value of the chiral condensate by more than a factor of 2 about 95 percent of the instantons and anti-instantons must form so-called molecules. This conclusion agrees with numerical results of the Stony Brook group.

  18. Chiral phase transition and Schwinger mechanism in a pure electric field

    CERN Document Server

    Cao, Gaoqing

    2016-01-01

    We systematically study the chiral symmetry breaking and restoration in the presence of a pure electric field in the Nambu--Jona-Lasinio (NJL) model at finite temperature and baryon chemical potential. In addition, we also study the effect of the chiral phase transition on the charged pair production due to the Schwinger mechanism. For these purposes, a general formalism for parallel electric and magnetic fields is developed at finite temperature and chemical potential for the first time. In the pure electric field limit $B\\rightarrow0$, we compute the order parameter, the transverse-to-longitudinal ratio of the Goldstone mode velocities, and the Schwinger pair production rate as functions of the electric field. The inverse catalysis effect of the electric field to chiral symmetry breaking is recovered. And the Goldstone mode is find to disperse anisotropically such that the transverse velocity is always smaller than the longitudinal one, especially at nonzero temperature and baryon chemical potential. As exp...

  19. The $N_f=2 chiral phase transition from imaginary chemical potential with Wilson Fermions

    CERN Document Server

    Cuteri, Francesca; Philipsen, Owe; Pinke, Christopher

    2015-01-01

    The finite temperature chiral and deconfinement phase transitions at zero density for light and heavy quarks, respectively, have analytic continuations to imaginary chemical potential. At some critical imaginary chemical potential, they meet the Roberge-Weiss transition between adjacent $Z3$ sectors. For light and heavy quarks, where the chiral and deconfinement transitions are first order, the transition lines meet in a triple point. For intermediate masses chiral or deconfinement transitions are crossover and the Roberge-Weiss transition ends in a second order point. At the boundary between these regimes the junction is a tricritical point, as shown in studies with $N_f=2,3$ flavors of staggered and Wilson quarks on $N_\\tau=4$ lattices. Employing finite size scaling we investigate the nature of this point as a function of quark mass for $N_f=2$ flavors of Wilson fermions with a temporal lattice extent of $N_\\tau=6$. In particular we are interested in the change of the location of tricritical points compared...

  20. The chiral phase transition in two-flavor QCD from imaginary chemical potential

    CERN Document Server

    Bonati, Claudio; D'Elia, Massimo; Philipsen, Owe; Sanfilippo, Francesco

    2014-01-01

    We investigate the order of the finite temperature chiral symmetry restoration transition for QCD with two massless fermions, by using a novel method, based on simulating imaginary values of the quark chemical potential $\\mu=i\\mu_i,\\mu_i\\in\\mathbb{R}$. Our method exploits the fact that, for low enough quark mass $m$ and large enough chemical potential $\\mu_i$, the chiral transition is decidedly first order, then turning into crossover at a critical mass $m_c(\\mu)$. It is thus possible to determine the critical line in the $m - \\mu^2$ plane, which can be safely extrapolated to the chiral limit by taking advantage of the known tricritical indices governing its shape. We test this method with standard staggered fermions and the result of our simulations is that $m_c(\\mu=0)$ is positive, so that the phase transition at zero density is definitely first order in the chiral limit, on our coarse $N_t=4$ lattices with $a\\simeq 0.3\\,\\mathrm{fm}$.

  1. Pulse and quench induced dynamical phase transition in a chiral multiferroic spin chain

    Science.gov (United States)

    Azimi, M.; Sekania, M.; Mishra, S. K.; Chotorlishvili, L.; Toklikishvili, Z.; Berakdar, J.

    2016-08-01

    Quantum dynamics of magnetic order in a chiral multiferroic chain is studied. We consider two different scenarios: ultrashort terahertz excitations or a sudden electric field quench. Performing analytical and numerical exact diagonalization calculations, we trace the pulse induced spin dynamics and extract quantities that are relevant to quantum information processing. In particular, we analyze the dynamics of the system chirality, the von Neumann entropy, and the pairwise and many-body entanglement. If the characteristic frequencies of the generated states are noncommensurate, then a partial loss of pair concurrence occurs. Increasing the system size, this effect becomes even more pronounced. Many-particle entanglement and chirality are robust and persist in the incommensurate phase. To analyze the dynamical quantum transitions for the quenched and pulsed dynamics we combined the Weierstrass factorization technique for entire functions and the Lanczos exact diagonalization method. For a small system we obtained analytical results including the rate function of the Loschmidt echo. Exact numerical calculations for a system up to 40 spins confirm phase transition. Quench-induced dynamical transitions have been extensively studied recently. Here we show that related dynamical transitions can be achieved and controlled by appropriate electric field pulses.

  2. Chiral Phase Transition in the Soft-Wall Model of AdS/QCD

    CERN Document Server

    Chelabi, Kaddour; Huang, Mei; Li, Danning; Wu, Yue-Liang

    2015-01-01

    We investigate the chiral phase transition in the soft-wall model of AdS/QCD at zero chemical potential for two-flavor and three-flavor cases, respectively. We show that there is no spontaneous chiral symmetry breaking in the original soft-wall model. After detailed analysis, we find that in order to realize chiral symmetry breaking and restoration, both profiles for the scalar potential and the dilaton field are essential. The scalar potential determines the possible solution structure of the chiral condensate, except the mass term, it takes another quartic term for the two-flavor case, and for the three-flavor case, one has to take into account an extra cubic term due to the t'Hooft determinant interaction. The profile of the dilaton field reflects the gluodynamics, which is negative at a certain ultraviolet scale and approaches positive quadratic behavior at far infrared region. With this set-up, the spontaneous chiral symmetry breaking in the vacuum and its restoration at finite temperature can be realize...

  3. Phase transitions and ordering structures of a model of a chiral helimagnet in three dimensions

    Science.gov (United States)

    Nishikawa, Yoshihiko; Hukushima, Koji

    2016-08-01

    Phase transitions in a classical Heisenberg spin model of a chiral helimagnet with the Dzyaloshinskii-Moriya interaction in three dimensions are numerically studied. By using the event-chain Monte Carlo algorithm recently developed for particle and continuous spin systems, we perform equilibrium Monte Carlo simulations for large systems up to about 106 spins. Without magnetic fields, the system undergoes a continuous phase transition with critical exponents of the three-dimensional XY model, and a uniaxial periodic helical structure emerges in the low-temperature region. In the presence of a magnetic field perpendicular to the axis of the helical structure, it is found that there exists a critical point on the temperature and magnetic-field phase diagram and that above the critical point the system exhibits a phase transition with strong divergence of the specific heat and the uniform magnetic susceptibility.

  4. Floquet topological phase transitions and chiral edge states in a kagome lattice

    Energy Technology Data Exchange (ETDEWEB)

    He, Chaocheng; Zhang, Zhiyong, E-mail: zyzhang@nju.edu.cn

    2014-09-05

    The Floquet topological phases and chiral edge states in a kagome lattice under a circularly-polarized driving field are studied. In the off-resonant case, the system exhibits the similar character as the kagome lattice model with staggered magnetic fluxes, but the total band width is damped in oscillation. In the on-resonant case, the degeneracy splitting at the Γ point does not always result in a gap. The positions of the other two gaps are influenced by the flat band. With the field intensity increased, these two gaps undergo closing-then-reopening processes, accompanied with the changing of the winding numbers. - Highlights: • A kagome lattice under a circularly-polarized driving field is studied. • The band structures and chiral edge states are studied via exact Floquet method. • Various modifications of the Floquet band structure are found. • Floquet topological phase transitions appear in both off- and on-resonant cases.

  5. Fractal butterflies of chiral fermions in bilayer graphene: Phase transitions and emergent properties

    Science.gov (United States)

    Ghazaryan, Areg; Chakraborty, Tapash

    2015-12-01

    We have studied the influence of electron-electron interaction on the fractal butterfly spectrum of Dirac fermions in biased bilayer graphene in the fractional quantum Hall effect (FQHE) regime. We demonstrate that the butterfly spectrum exhibits remarkable phase transitions between the FQHE gap and the butterfly gap for chiral electrons in bilayer graphene, when the periodic potential strength or the bias voltage is varied. We also find that, in addition to those phase transitions, by varying the bias voltage one can effectively control the periodic potential strength experienced by the electrons. The electron-electron interaction causes the butterfly spectrum to exhibit new gaps inside the Bloch sub-bands not found in the single-particle case. We expect that both the observed phase transition and other new features in the butterfly spectrum of interacting Dirac fermions will be of great interest to researchers from diverse fields.

  6. Chiral phase transition in a planar four-Fermi model in a tilted magnetic field

    CERN Document Server

    Ramos, Rudnei O

    2013-01-01

    We study a planar four-Fermi Gross-Neveu model in the presence of a tilted magnetic field, with components parallel and perpendicular to the system's plane. We determine how this combination of magnetic field components, when applied simultaneously, affects the phase diagram of the model. It is shown that each component of the magnetic field causes a competing effect on the chiral symmetry in these fermionic systems. While the perpendicular component of the magnetic field tends to make the chiral symmetry breaking to become stronger, the effect of the parallel component of the field in these planar systems is to weaken the chiral symmetry. We show that this competing effect, when combined also with temperature and chemical potential, can lead to a rich phase diagram, with the emergence of multiple critical points and reentrant phase transitions. We also study how the presence of these multiple critical points and reentrant phases can manifest in the quantum Hall effect. Our results provide a possible way to p...

  7. Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD

    CERN Document Server

    Cui, Zhu-Fang; Shi, Yuan-Mei; Wang, Yong-Long; Zong, Hong-Shi

    2015-01-01

    The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial-vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson-Schwinger equations.

  8. Progress in vacuum susceptibilities and their applications to the chiral phase transition of QCD

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Zhu-Fang, E-mail: phycui@nju.edu.cn [Department of Physics, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190 (China); Hou, Feng-Yao [Institute of Theoretical Physics, CAS, Beijing 100190 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190 (China); Shi, Yuan-Mei [Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics and Electronic Engineering, Nanjing Xiaozhuang University, Nanjing 211171 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190 (China); Wang, Yong-Long [Department of Physics, Nanjing University, Nanjing 210093 (China); Department of Physics, School of Science, Linyi University, Linyi 276005 (China); Zong, Hong-Shi, E-mail: zonghs@nju.edu.cn [Department of Physics, Nanjing University, Nanjing 210093 (China); Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093 (China); State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, CAS, Beijing, 100190 (China)

    2015-07-15

    The QCD vacuum condensates and various vacuum susceptibilities are all important parameters which characterize the nonperturbative properties of the QCD vacuum. In the QCD sum rules external field formula, various QCD vacuum susceptibilities play important roles in determining the properties of hadrons. In this paper, we review the recent progress in studies of vacuum susceptibilities together with their applications to the chiral phase transition of QCD. The results of the tensor, the vector, the axial–vector, the scalar, and the pseudo-scalar vacuum susceptibilities are shown in detail in the framework of Dyson–Schwinger equations.

  9. Scaling behavior of chiral phase transition in two-flavor QCD with improved Wilson quarks at finite density

    CERN Document Server

    Ejiri, S; Aoki, S; Kanaya, K; Ohno, H; Saito, H; Hatsuda, T; Maezawa, Y; Umeda, T

    2010-01-01

    We study scaling behavior of a chiral order parameter performing a simulation of two-flavor QCD with improved Wilson quarks. It has been shown that the scaling behavior of the chiral order parameter defined by a Ward-Takahashi identity agrees with the scaling function of the three-dimensional O(4) spin model at zero chemical potential. We extend the scaling study to finite density QCD. Calculating derivatives of the chiral order parameter with respect to the chemical potential in two-flavor QCD, the scaling property of chiral phase transition is discussed in the low density region. We moreover calculate the curvature of the phase boundary of the chirl phase transition in the temperature and chemical potential plane assuming the O(4) scaling relation.

  10. Floquet engineering of Haldane Chern insulators and chiral bosonic phase transitions

    Science.gov (United States)

    Plekhanov, Kirill; Roux, Guillaume; Le Hur, Karyn

    2017-01-01

    The realization of synthetic gauge fields has attracted a lot of attention recently in relation to periodically driven systems and the Floquet theory. In ultracold atom systems in optical lattices and photonic networks, this allows one to simulate exotic phases of matter such as quantum Hall phases, anomalous quantum Hall phases, and analogs of topological insulators. In this paper, we apply the Floquet theory to engineer anisotropic Haldane models on the honeycomb lattice and two-leg ladder systems. We show that these anisotropic Haldane models still possess a topologically nontrivial band structure associated with chiral edge modes. Focusing on (interacting) boson systems in s -wave bands of the lattice, we show how to engineer through the Floquet theory, a quantum phase transition (QPT) between a uniform superfluid and a Bose-Einstein condensate analog of Fulde-Ferrell-Larkin-Ovchinnikov states, where bosons condense at nonzero wave vectors. We perform a Ginzburg-Landau analysis of the QPT on the graphene lattice, and compute observables such as chiral currents and the momentum distribution. The results are supported by exact diagonalization calculations and compared with those of the isotropic situation. The validity of high-frequency expansion in the Floquet theory is also tested using time-dependent simulations for various parameters of the model. Last, we show that the anisotropic choice for the effective vector potential allows a bosonization approach in equivalent ladder (strip) geometries.

  11. Effects of Tsallis distribution on parametric resonance in chiral phase transitions

    CERN Document Server

    Ishihara, Masamichi

    2016-01-01

    The parametric resonance was studied in chiral phase transitions when the momentum distribution is described by a Tsallis distribution. A Tsallis distribution has two parameters, the temperature $T$ and the entropic index $q$. The amplification was estimated in two cases: 1) expansionless case and 2) one dimensional expansion case. In an expansionless case, the temperature $T$ is constant, and the amplified modes as a function of $T$ were calculated for various $q$. In one dimensional expansion case, the temperature $T$ decreases as a function of the proper time, and the amplification as a function of the transverse momentum was calculated for various $q$. In the expansionless case, the following facts were found: 1) the larger the value $q$ is, the softer the amplified modes are for the first and second resonance bands, 2) the amplified mode of the first resonance band decreases and vanishes, as the temperature $T$ increases, and 3) the amplified mode of the second resonance band decreases and approaches to ...

  12. The phase boundary for the chiral transition in (2+1)-flavor QCD at small values of the chemical potential

    CERN Document Server

    Karsch, F; Miao, C; Mukherjee, S; Petreczky, P; Schmidt, C; Soeldner, W; Unger, W

    2010-01-01

    We determine the chiral phase transition line in (2+1)-flavor QCD for small values of the light quark chemical potential. We show that for small values of the chemical potential the curvature of the phase transition line can be deduced from an analysis of scaling properties of the chiral condensate and its susceptibilities. To do so we extend earlier studies of the magnetic equation of state in (2+1)-flavor QCD to finer lattice spacings, aT=1/8. We use these universal scaling properties of the chiral order parameter to extract the curvature of the transition line at two values of the cut-off, aT=1/4 and 1/8. We find that cut-off effects are small for the curvature parameter and determine the transition line in the chiral limit to leading order in the light quark chemical potential. We obtain Tc(\\mu_q)/Tc(0) = 1 - 0.059(2)(4) (\\mu_q/T)^2 +O(\\mu_q^4).

  13. Phase diagram of hot QCD in an external magnetic field: possible splitting of deconfinement and chiral transitions

    CERN Document Server

    Mizher, A J; Fraga, E S

    2010-01-01

    The structure of the phase diagram for strong interactions becomes richer in the presence of a magnetic background, which enters as a new control parameter for the thermodynamics. Motivated by the relevance of this physical setting for current and future high-energy heavy ion collision experiments and for the cosmological QCD transitions, we use the linear sigma model coupled to quarks and to Polyakov loops as an effective theory to investigate how the chiral and the deconfining transitions are affected, and present a general picture for the temperature--magnetic field phase diagram. We compute and discuss each contribution to the effective potential for the approximate order parameters, and uncover new phenomena such as the paramagnetically-induced breaking of global $\\mathbb{Z}_3$ symmetry, and possible splitting of deconfinement and chiral transitions in a strong magnetic field.

  14. Effects from inhomogeneities in the chiral transition

    CERN Document Server

    Taketani, B G; Taketani, Bruno G.; Fraga, Eduardo S.

    2006-01-01

    We consider an approximation procedure to evaluate the finite-temperature one-loop fermionic density in the presence of a chiral background field which systematically incorporates effects from inhomogeneities in the chiral field through a derivative expansion. We apply the method to the case of a simple low-energy effective chiral model which is commonly used in the study of the chiral phase transition, the linear sigma-model coupled to quarks. The modifications in the effective potential and their consequences for the bubble nucleation process are discussed.

  15. Scaling properties of the chiral phase transition in the low density region of two-flavor QCD with improved Wilson fermions

    CERN Document Server

    Umeda, T; Kanaya, K; Maezawa, Y; Nakagawa, Y; Ohno, H; Saito, H; Yoshida, S

    2013-01-01

    We study scaling behavior of a chiral order parameter in the low density region, performing a simulation of two-flavor QCD with improved Wilson quarks. The scaling behavior of the chiral order parameter defined by a Ward-Takahashi identity agrees with the scaling function of the three-dimensional O(4) spin model at zero chemical potential. We extend the scaling study to finite density QCD. Applying the reweighting method and calculating derivatives of the chiral order parameter with respect to the chemical potential, the scaling properties of the chiral phase transition are discussed in the low density region. We moreover calculate the curvature of the phase boundary of the chiral phase transition in the temperature and chemical potential plane assuming the O(4) scaling relation.

  16. The effect of the Polyakov loop on the chiral phase transition

    Directory of Open Access Journals (Sweden)

    Szép Zs.

    2011-04-01

    Full Text Available The Polyakov loop is included in the S U(2L × S U(2R chiral quark-meson model by considering the propagation of the constituent quarks, coupled to the (σ, π meson multiplet, on the homogeneous background of a temporal gauge field, diagonal in color space. The model is solved at finite temperature and quark baryon chemical potential both in the chiral limit and for the physical value of the pion mass by using an expansion in the number of flavors Nf. Keeping the fermion propagator at its tree-level, a resummation on the pion propagator is constructed which resums infinitely many orders in 1/Nf, where O(1/Nf represents the order at which the fermions start to contribute in the pion propagator. The influence of the Polyakov loop on the tricritical or the critical point in the µq – T phase diagram is studied for various forms of the Polyakov loop potential.

  17. Quark matter in a parallel electric and magnetic field background: Chiral phase transition and equilibration of chiral density

    Science.gov (United States)

    Ruggieri, M.; Peng, G. X.

    2016-05-01

    In this article, we study spontaneous chiral symmetry breaking for quark matter in the background of static and homogeneous parallel electric field E and magnetic field B . We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at a finite temperature for a wide range of E and B . We study the effect of this background on the inverse catalysis of chiral symmetry breaking for E and B of the same order of magnitude. We then focus on the effect of the equilibration of chiral density n5 , produced dynamically by an axial anomaly on the critical temperature. The equilibration of n5 , a consequence of chirality-flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential μ5, which is computed self-consistently as a function of the temperature and field strength by coupling the number equation to the gap equation and solving the two within an expansion in E /T2 , B /T2 , and μ52/T2 . We find that even if chirality is produced and equilibrates within a relaxation time τM , it does not change drastically the thermodynamics, with particular reference to the inverse catalysis induced by the external fields, as long as the average μ5 at equilibrium is not too large.

  18. Anomalous dimension, chiral phase transition and inverse magnetic catalysis in soft-wall AdS/QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Zhen, E-mail: fangzhen@itp.ac.cn [Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Science, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing (China)

    2016-07-10

    A modified soft-wall AdS/QCD model with a z-dependent bulk scalar mass is proposed. We argue for the necessity of a modified bulk scalar mass from the quark mass anomalous dimension and carefully constrain the form of bulk mass by the corresponding UV and IR asymptotics. After fixing the form of bulk scalar mass, we calculate the mass spectra of (axial-)vector and pseudoscalar mesons, which have a good agreement with the experimental data. The behavior of chiral phase transition is also investigated, and the results are consistent with the standard scenario and lattice simulations. Finally, the issue of chiral magnetic effects is addressed. We find that the inverse magnetic catalysis emerges naturally from the modified soft-wall model, which is consistent with the recent lattice simulations.

  19. Quark Matter in a Parallel Electric and Magnetic Field Background: Equilibrated Chiral Density Effect on Chiral Phase Transition

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study spontaneous chiral symmetry breaking for quark matter in the background of an electric-magnetic flux tube with static, homogeneous and parallel electric field $\\bm E$ and magnetic field $\\bm B$. We use a Nambu-Jona-Lasinio model with a local kernel interaction to compute the relevant quantities to describe chiral symmetry breaking at finite temperature for a wide range of $E$ and $B$. We study the effect of the flux tube background on inverse catalysis of chiral symmetry breaking for $E$ and $B$ of the same order of magnitude. We then focus on the effect of equilibration of chiral density, $n_5$, produced dynamically by axial anomaly on the critical temperature. The equilibration of $n_5$, a consequence of chirality flipping processes in the thermal bath, allows for the introduction of the chiral chemical potential, $\\mu_5$, which is computed self-consistently as a function of temperature and field strength by coupling the number equation to the gap equation. We find that even if chir...

  20. The $N_f=2$ QCD chiral phase transition with Wilson fermions at zero and imaginary chemical potential

    CERN Document Server

    Philipsen, Owe

    2016-01-01

    The order of the thermal phase transition in the chiral limit of Quantum Chromodynamics (QCD) with two dynamical flavors of quarks is a long-standing issue and still not known in the continuum limit. Whether the transition is first or second order has important implications for the QCD phase diagram and the existence of a critical endpoint at finite densities. We follow a recently proposed approach to explicitly determine the region of first order chiral transitions at imaginary chemical potential, where it is large enough to be simulated, and extrapolate it to zero chemical potential with known critical exponents. Using unimproved Wilson fermions on coarse $N_t=4$ lattices, the first order region turns out to be so large that no extrapolation is necessary. The critical pion mass $m_\\pi^c\\approx 560$ MeV is by nearly a factor 10 larger than the corresponding one using staggered fermions. Our results are in line with investigations of three-flavour QCD using improved Wilson fermions and indicate that the syste...

  1. Chiral phase transition of $N_f$=2+1 and 3 QCD at vanishing baryon chemical potential

    CERN Document Server

    Ding, Heng-Tong

    2015-01-01

    We present updated results on chiral phase structure in (2+1)-flavor ($N_f$=2+1) and 3-flavor ($N_f=3$) QCD based on the simulations using Highly Improved Staggered Quarks on lattices with temporal extent $N_\\tau$ =6 at vanishing baryon chemical potential. In $N_f$=2+1 QCD we have performed simulations with a strange quark fixed to its physical value and two degenerate light quarks whose values are adjusted to have 5 values of Goldstone pion masses in the region of 160 - 80 MeV in the continuum limit. The universal scaling behavior of chiral condensates as well as chiral susceptibilities is discussed and the tri-critical point is suggested to be located below the physical point, i.e. at smaller than physical strange quark mass. In $N_f$=3 QCD simulations with 6 different masses of 3 degenerate quarks corresponding to the Goldstone pion masses in the region of 230 - 80 MeV have also been performed. Our results suggest that the QCD transition with these values of quark masses is of crossover type and an upper b...

  2. Novel Lifshitz point for chiral transition in the magnetic field

    Directory of Open Access Journals (Sweden)

    Toshitaka Tatsumi

    2015-04-01

    Full Text Available Based on the generalized Ginzburg–Landau theory, chiral phase transition is discussed in the presence of magnetic field. Considering the chiral density wave we show that chiral anomaly gives rise to an inhomogeneous chiral phase for nonzero quark-number chemical potential. Novel Lifshitz point appears on the vanishing chemical potential line, which may be directly explored by the lattice QCD simulation.

  3. Monte-Carlo approach to particle-field interactions and the kinetics of the chiral phase transition

    CERN Document Server

    Greiner, Carsten; van Hees, Hendrik; Meistrenko, Alex

    2015-01-01

    The kinetics of the chiral phase transition is studied within a linear quark-meson-$\\sigma$ model, using a Monte-Carlo approach to semiclassical particle-field dynamics. The meson fields are described on the mean-field level and quarks and antiquarks as ensembles of test particles. Collisions between quarks and antiquarks as well as the $q\\overline{q}$ annihilation to $\\sigma$ mesons and the decay of $\\sigma$ mesons is treated, using the corresponding transition-matrix elements from the underlying quantum field theory, obeying strictly the rule of detailed balance and energy-momentum conservation. The approach allows to study fluctuations without making ad hoc assumptions concerning the statistical nature of the random process as necessary in Langevin-Fokker-Planck frameworks.

  4. Unusual dileptions at RHIC a field theoretic approach based on a non-equilibrium chiral phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, F. [Los Alamos National Labs., NM (United States)

    1997-09-22

    This paper contains viewgraphs on unusual dileptons at Brookhaven RHIC. A field theory approach is used based on a non-equilibrium chiral phase transformation utilizing the schroedinger and Heisenberg picture.

  5. Chiral transition and deconfinement in QCD

    CERN Document Server

    D'Elia, M; Pica, C

    2006-01-01

    The study of QCD with two light dynamical fermions is of fundamental importance to understand the mechanism of color confinement. We present results of a numerical investigation on the order of the chiral phase transition with $N_f = 2$ by use of a novel strategy in finite size scaling analysis. We compare the critical behaviour of the specific heat, of the chiral susceptibility and of the equation of state with the possible critical behaviours. A second order transition in the O(4) and O(2) universality classes are excluded by our data and substantial evidence emerges for a first order transition. Like in most of previous works we have used the standard staggered action with $L_t = 4$: possible scaling violations and the need for further studies are discussed.

  6. Chiral transition in a strong magnetic background

    CERN Document Server

    Fraga, Eduardo S

    2008-01-01

    The presence of a strong magnetic background can modify the nature and the dynamics of the chiral phase transition at finite temperature. We compute the modified effective potential in the linear sigma model with quarks to one loop in the $\\bar{MS}$ scheme for $N_{f}=2$. For fields $eB\\sim 5 m_{\\pi}^{2}$ and larger a crossover is turned into a weak first-order transition. We discuss possible implications for non-central heavy ion collisions at RHIC and LHC, and for the primordial QCD transition.

  7. On the strength of the $U_A(1)$ anomaly at the chiral phase transition in $N_f=2$ QCD

    CERN Document Server

    Brandt, Bastian B; Meyer, Harvey B; Philipsen, Owe; Robaina, Daniel; Wittig, Hartmut

    2016-01-01

    We study the thermal transition of QCD with two degenerate light flavours by lattice simulations using $O(a)$-improved Wilson quarks. Temperature scans are performed at a fixed value of $N_t = (aT)^{-1}=16$, where $a$ is the lattice spacing and $T$ the temperature, at three fixed zero-temperature pion masses between 200 MeV and 540 MeV. In this range we find that the transition is consistent with a broad crossover. As a probe of the restoration of chiral symmetry, we study the static screening spectrum. We observe a degeneracy between the transverse isovector vector and axial-vector channels starting from the transition temperature. Particularly striking is the strong reduction of the splitting between isovector scalar and pseudoscalar screening masses around the chiral phase transition by at least a factor of three compared to its value at zero temperature. In fact, the splitting is consistent with zero within our uncertainties. This disfavours a chiral phase transition in the $O(4)$ universality class.

  8. Chiral transition and deconfinement in N_f = 2 QCD

    CERN Document Server

    D'Elia, M; Lucini, B; Paffuti, G; Pica, C

    2004-01-01

    The transition is studied by means of a disorder parameter detecting condensation of magnetic monopoles in the vacuum. The deconfining transition is found to coincide with the chiral transition and the susceptibility \\rho, related to the disorder parameter, is consistent with a first order phase transition.

  9. Topological phase transitions and chiral inelastic transport induced by the squeezing of light

    Science.gov (United States)

    Peano, Vittorio; Houde, Martin; Brendel, Christian; Marquardt, Florian; Clerk, Aashish A.

    2016-01-01

    There is enormous interest in engineering topological photonic systems. Despite intense activity, most works on topological photonic states (and more generally bosonic states) amount in the end to replicating a well-known fermionic single-particle Hamiltonian. Here we show how the squeezing of light can lead to the formation of qualitatively new kinds of topological states. Such states are characterized by non-trivial Chern numbers, and exhibit protected edge modes, which give rise to chiral elastic and inelastic photon transport. These topological bosonic states are not equivalent to their fermionic (topological superconductor) counterparts and, in addition, cannot be mapped by a local transformation onto topological states found in particle-conserving models. They thus represent a new type of topological system. We study this physics in detail in the case of a kagome lattice model, and discuss possible realizations using nonlinear photonic crystals or superconducting circuits. PMID:26931620

  10. Chiral phase transitions in quantum chromodynamics at finite temperature: Hard-thermal-loop resummed Dyson–Schwinger equation in the real time formalism

    Indian Academy of Sciences (India)

    Hisao Nakkagawa; Hiroshi Yokota; Koji Yoshida; Yuko Fueki

    2003-05-01

    Chiral phase transition in thermal QCD is studied by using the Dyson–Schwinger (DS) equation in the real time hard thermal loop approximation. Our results on the critical temperature and the critical coupling are significantly different from those in the preceding analyses in the ladder DS equation, showing the importance of properly taking into account the essential thermal effects, namely the Landau damping and the unstable nature of thermal quasiparticles.

  11. Chiral transition with magnetic fields

    CERN Document Server

    Ayala, Alejandro; Mizher, Ana Julia; Rojas, Juan Cristobal; Villavicencio, Cristian

    2014-01-01

    We study the nature of the chiral transition for an effective theory with spontaneous breaking of symmetry, where charged bosons and fermions are subject to the effects of a constant external magnetic field. The problem is studied in terms of the relative intensity of the magnetic field with respect to the mass and the temperature. When the former is the smallest of the scales, we present a suitable method to obtain magnetic and thermal corrections up to ring order at high temperature. By these means, we solve the problem of the instability in the boson sector for these theories, where the squared masses, taken as functions of the order parameter, can vanish and even become negative. The solution is found by considering the screening properties of the plasma, encoded in the resummation of the ring diagrams at high temperature. We also study the case where the magnetic field is the intermediate of the three scales and explore the nature of the chiral transition as we vary the field strength, the coupling const...

  12. Phase transition from focal conic to cubic smectic blue phase in partially fluorinated cyano-phenyl alkyl benzoate ester doped with ultrahigh twisting power chiral dopant

    CERN Document Server

    Nayek, Prasenjit; Li, Guoqiang

    2015-01-01

    Blue phase liquid crystal (BPLC) has important applications in adaptive lenses and phase modulators due to its polarization-independent property. During our efforts for development of the new materials, we found a novel phenomenology of phase transition, from focal conic smectic to smectic blue phase in a partially fluorinated cyanophenyl alkyl benzoate ester based nematic liquid crystal (LCM-5773) doped by ultra-high twisting power [H.T.P~160 um^-1] chiral dopant (R5011/3 wt%). Polarized optical microscopy (POM) investigations revealed focal conic and fan-shaped textures typical for columnar mesophases. These focal conic domains (FCDs) are squeezed under electric field and finally at a critical electric field they undergo a dark state. When the electric field is withdrawn, the FCDs are regrown in a one dimensional array with smaller domain size. Interestingly, we have observed the domain size of the FCDs can grow several times by decreasing the cooling rate (0.02 degrees(C)/min.) ten times without any change...

  13. Finite-volume effects on phase transition in the Polyakov-loop extended Nambu-Jona-Lasinio model with a chiral chemical potential

    CERN Document Server

    Pan, Zan; Chang, Chao-Hsi; Zong, Hong-Shi

    2016-01-01

    To investigate finite-volume effects on the chiral symmetry restoration and the deconfinement transition and some impacts of possible global topological background for a quantum chromodynamics (QCD) system with $N_f=2$ (two quark flavors), we apply the Polyakov-loop extended Nambu-Jona-Lasinio model by introducing a chiral chemical potential $\\mu_5$ artificially. The final numerical results indicate that the introduced chiral chemical potential does not change the critical exponents but shifts the location of critical end point (CEP) significantly; the ratios for the chiral chemical potentials and temperatures at CEP, $\\mu_c/\\mu_{5c}$ and $T_c/T_{5c}$, are significantly affected by the system size $R$. The behavior is that $T_c$ increases slowly with $\\mu_5$ when $R$ is large and $T_c$ decreases first and then increases with $\\mu_5$ when $R$ is small. It is also found that for a fixed $\\mu_5$, there is a $R_{\\text{min}}$, where the critical end point vanishes, and the whole phase diagram becomes a crossover w...

  14. Phase transitions

    CERN Document Server

    Solé, Ricard V

    2011-01-01

    Phase transitions--changes between different states of organization in a complex system--have long helped to explain physics concepts, such as why water freezes into a solid or boils to become a gas. How might phase transitions shed light on important problems in biological and ecological complex systems? Exploring the origins and implications of sudden changes in nature and society, Phase Transitions examines different dynamical behaviors in a broad range of complex systems. Using a compelling set of examples, from gene networks and ant colonies to human language and the degradation o

  15. Chiral transition of fundamental and adjoint quarks

    Energy Technology Data Exchange (ETDEWEB)

    Capdevilla, R.M. [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Doff, A., E-mail: agomes@utfpr.edu.br [Universidade Tecnológica Federal do Paraná – UTFPR – DAFIS, Av. Monteiro Lobato Km 04, 84016-210 Ponta Grossa, PR (Brazil); Natale, A.A., E-mail: natale@ift.unesp.br [Instituto de Física Teórica, UNESP – Universidade Estadual Paulista, Rua Dr. Bento T. Ferraz, 271, Bloco II, 01140-070 São Paulo, SP (Brazil); Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, SP (Brazil)

    2014-01-20

    The chiral symmetry breaking transition of quarks in the fundamental and adjoint representation is studied in a model where the gap equation contains two contributions, one containing a confining propagator and another corresponding to the exchange of one-dressed dynamically massive gluons. When quarks are in the fundamental representation the confinement effect dominates the chiral symmetry breaking while the gluon exchange is suppressed due to the dynamical gluon mass effect in the propagator and in the coupling constant. In this case the chiral and deconfinement transition temperatures are approximately the same. For quarks in the adjoint representation, due to the larger Casimir eigenvalue, the gluon exchange is operative and the chiral transition happens at a larger temperature than the deconfinement one.

  16. The chiral and deconfinement aspects of the QCD transition

    CERN Document Server

    Bazavov, A; Cheng, M; DeTar, C; Ding, H -T; Gottlieb, Steven; Gupta, R; Hegde, P; Heller, U M; Karsch, F; Laermann, E; Levkova, L; Mukherjee, S; Petreczky, P; Schmidt, C; Soltz, R A; Soeldner, W; Sugar, R; Toussaint, D; Unger, W; Vranas, P

    2011-01-01

    We present results on the chiral and deconfinement properties of the QCD transition at finite temperature. Calculations are performed with 2+1 flavors of quarks using the p4, asqtad and HISQ/tree actions. Lattices with temporal extent N_tau=6, 8 and 12 are used to understand and control discretization errors and to reliably extrapolate estimates obtained at finite lattice spacings to the continuum limit. The chiral transition temperature is defined in terms of the phase transition in a theory with two massless flavors and analyzed using O(N) scaling fits to the chiral condensate and susceptibility. We find consistent estimates from the HISQ/tree and asqtad actions and our main result is T_c=154 +/- 9 MeV.

  17. Finite-Temperature Phase Structure in the Chiral σ-ω Model with Dilatons

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xiao-Bing ZHANG Xiao-Bing; LI Xue-Qian; NING Ping-Zhi

    2000-01-01

    We investigate the finite-temperature phase structure in a scaled chiral model which includes the dilaton (glueball) field. It is shown that hot nuclear matter undergoes a discontinuous transition in the mean field of scalar mesons as well as the Lee-Wick abnormal transition. The corresponding behavior of the gluon condensate during the chiral phase transition is also studied.

  18. Chiral phases of fundamental and adjoint quarks

    Energy Technology Data Exchange (ETDEWEB)

    Natale, A. A. [Centro de Ciências Naturais e Humanas, Universidade Federal do ABC 09210-170, Santo André, SP (Brazil); Instituto de Física Teórica - UNESP Rua Dr. Bento T. Ferraz, 271, Bl.II - 01140-070, São Paulo, SP (Brazil)

    2016-01-22

    We consider a QCD chiral symmetry breaking model where the gap equation contains an effective confining propagator and a dressed gluon propagator with a dynamically generated mass. This model is able to explain the ratios between the chiral transition and deconfinement temperatures in the case of fundamental and adjoint quarks. It also predicts the recovery of the chiral symmetry for a large number of quarks (n{sub f} ≈ 11 – 13) in agreement with lattice data.

  19. Possible splitting of deconfinement and chiral transitions in strong magnetic fields in QCD

    CERN Document Server

    Fraga, Eduardo S; Chernodub, M N

    2010-01-01

    We show that finite-temperature deconfinement and chiral transitions can split in a strong enough magnetic field. The splitting in critical temperatures of these transitions in a constant magnetic field of a typical LHC magnitude is of the order of 10 MeV. A new deconfined phase with broken chiral symmetry appears.

  20. Insights on some chiral smectic phases

    Indian Academy of Sciences (India)

    B Pansu

    2003-08-01

    Combining layered positional order as smectic order and chirality can generate complex architectures since twist parallel to the layers is not allowed. This paper will review some new experimental results on different phases resulting from the competition between smectic positional order and twist orientational order. It concerns the TGBA and the NL*, that is the liquid line phase as well as the SmQ phase. Chiral effects in the isotropic phase will also be discussed.

  1. Symmetry structure and phase transitions

    Indian Academy of Sciences (India)

    Ashok Goyal; Meenu Dahiya; Deepak Chandra

    2003-05-01

    We study chiral symmetry structure at finite density and temperature in the presence of external magnetic field and gravity, a situation relevant in the early Universe and in the core of compact stars. We then investigate the dynamical evolution of phase transition in the expanding early Universe and possible formation of quark nuggets and their survival.

  2. Phases and Phase Transitions

    Science.gov (United States)

    Gitterman, Moshe

    2014-09-01

    In discussing phase transitions, the first thing that we have to do is to define a phase. This is a concept from thermodynamics and statistical mechanics, where a phase is defined as a homogeneous system. As a simple example, let us consider instant coffee. This consists of coffee powder dissolved in water, and after stirring it we have a homogeneous mixture, i.e., a single phase. If we add to a cup of coffee a spoonful of sugar and stir it well, we still have a single phase -- sweet coffee. However, if we add ten spoonfuls of sugar, then the contents of the cup will no longer be homogeneous, but rather a mixture of two homogeneous systems or phases, sweet liquid coffee on top and coffee-flavored wet sugar at the bottom...

  3. Electromagnetic chirality-induced negative refraction with the same amplitude and anti-phase of the two chirality coefficients

    Institute of Scientific and Technical Information of China (English)

    Zhao Shun-Cai; Liu Zheng-Dong; Zheng Jun; Li Gen

    2011-01-01

    This paper suggests a scheme of electromagnetic chirality-induced negative refraction utilizing magneto-electric cross coupling in a four-level atomic system. The negative refraction can be achieved with the two chirality coefficients having the same amplitude but the opposite phase, without requiring the simultaneous presence of an electric-dipole and a magnetic-dipole transition near the same transition frequency.

  4. Chiral Liquid Crystals: Structures, Phases, Effects

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2014-06-01

    Full Text Available The introduction of chirality, i.e., the lack of mirror symmetry, has a profound effect on liquid crystals, not only on the molecular scale but also on the supermolecular scale and phase. I review these effects, which are related to the formation of supermolecular helicity, the occurrence of novel thermodynamic phases, as well as electro-optic effects which can only be observed in chiral liquid crystalline materials. In particular, I will discuss the formation of helical superstructures in cholesteric, Twist Grain Boundary and ferroelectric phases. As examples for the occurrence of novel phases the Blue Phases and Twist Grain Boundary phases are introduced. Chirality related effects are demonstrated through the occurrence of ferroelectricity in both thermotropic as well as lyotropic liquid crystals. Lack of mirror symmetry is also discussed briefly for some biopolymers such as cellulose and DNA, together with its influence on liquid crystalline behavior.

  5. Deconfinement, chiral transition and localisation in a QCD-like model

    Science.gov (United States)

    Giordano, Matteo; Katz, Sándor D.; Kovács, Tamás G.; Pittler, Ferenc

    2017-02-01

    We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension N T = 4. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice.

  6. Cosmological phase transitions from lattice field theory

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2011-11-22

    In this proceedings contribution we discuss the fate of the electroweak and the quantum chromodynamics phase transitions relevant for the early stage of the universe at non-zero temperature. These phase transitions are related to the Higgs mechanism and the breaking of chiral symmetry, respectively. We will review that non-perturbative lattice field theory simulations show that these phase transitions actually do not occur in nature and that physical observables show a completely smooth behaviour as a function of the temperature.

  7. Fluctuations of Goldstone modes and the chiral transition in QCD

    CERN Document Server

    Karsch, Frithjof

    2008-01-01

    We provide evidence for the influence of thermal fluctuations of Goldstone modes on the chiral condensate at finite temperature. We show that at fixed temperature, Tchiral transition temperature this leads to a characteristic dependence of the chiral condensate on the square root of the light quark mass (m_l), which is expected for 3-dimensional models with broken O(N) symmetry. As a consequence the chiral susceptibility shows a strong quark mass dependence for all temperatures below Tc and diverges like 1/sqrt(m_l) in the chiral limit.

  8. Magnetic properties in the inhomogeneous chiral phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Toshitaka

    2016-01-01

    We investigate the magnetic properties of quark matter in the inhomogeneous chiral phase, where both scalar and pseudoscalar condensates spatially modulate. The energy spectrum of the lowest Landau level becomes asymmetric about zero in the external magnetic field, and gives rise to the remarkably magnetic properties: quark matter has a spontaneous magnetization, while the magnetic susceptibility does not diverge on the critical point.

  9. Electromagnetic transitions in multiple chiral doublet bands

    CERN Document Server

    Jia, Hui; Wang, Shou-Yu; Wang, Shuo; Liu, Chen

    2016-01-01

    Multiple chiral doublet bands (M$\\chi$D) in the $80$, 130 and $190$ mass regions are studied by the model of $\\gamma$=90$^{\\circ}$ triaxial rotor coupled with identical symmetric proton-neutron configurations. By selecting the suitable basis, the calculated wave functions are explicitly exhibited to be symmetric under the operator $\\hat{A}$, which is defined as rotation by $90^{\\circ}$ about 3-axis with the exchange of valance proton and neutron. We found that both $M1$ and $E2$ transitions are allowed between the levels with different values of $A$, while are forbidden between the levels with same values of $A$. Such a selection rule holds true for M$\\chi$D in different mass regions.

  10. Deconfinement, chiral transition and localisation in a QCD-like model

    CERN Document Server

    Giordano, Matteo; Kovacs, Tamas G; Pittler, Ferenc

    2016-01-01

    We study the problems of deconfinement, chiral symmetry restoration and localisation of the low Dirac eigenmodes in a toy model of QCD, namely unimproved staggered fermions on lattices of temporal extension $N_T=4$. This model displays a genuine deconfining and chirally-restoring first-order phase transition at some critical value of the gauge coupling. Our results indicate that the onset of localisation of the lowest Dirac eigenmodes takes place at the same critical coupling where the system undergoes the first-order phase transition. This provides further evidence of the close relation between deconfinement, chiral symmetry restoration and localisation of the low modes of the Dirac operator on the lattice.

  11. Simultaneous Chiral SeparationUsing a Combinatorial Molecular Imprinting Phase

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Molecular imprinting chiral stationary phase against Cbz-L-Serine (Cbz-L-Ser) and Cbz-L-Alaine (Cbz-L-Ala) were prepared utilizing acrylamide + 2-vinylpyridine as combined basic functional monomers.Cross-selectivity was used to obtain simultaneous chiral separations of Cbz-DL-Ser and Cbz-DL-Ala by connecting two columns packed with Cbz-L-Ser and Cbz-L-Ala imprinted chiral stationary phase, respectively.

  12. Phase structure of the massive chiral Gross-Neveu model from Hartree-Fock

    CERN Document Server

    Boehmer, Christian; Kraus, Sebastian; Thies, Michael

    2008-01-01

    The phase diagram of the massive chiral Gross-Neveu model (the massive Nambu-Jona-Lasinio model in 1+1 dimensions) is constructed. In the large N limit, the Hartree-Fock approach can be used. We find numerically a chiral crystal phase separated from a massive Fermi gas phase by a 1st order transition. Using perturbation theory, we also construct the critical sheet where the homogeneous phase becomes unstable in a 2nd order transition. A tricritical curve is located. The phase diagram is mapped out as a function of fermion mass, chemical potential and temperature and compared with the one of the discrete chiral Gross-Neveu model. As a by-product, we illustrate the crystal structure of matter at zero temperature for various densities and fermion masses.

  13. Enantioseparation of Novel Chiral Tetrahedral Clusters on an Amylose Tris-(3,5-dimethylphenylcarbamate) Chiral Stationary Phase by Normal Phase HPLC

    Institute of Scientific and Technical Information of China (English)

    LI,Wen-Zhi(李文智); WANG,Xia(王霞); ZHANG,Wei-Qiang(张伟强); CHEN Li-Ren(陈立仁); LI,Yong-Min(李永民); MA,Chun-Lin(马春林); YIN,Yuan-Qi(殷元骐)

    2004-01-01

    Amylose tris(3,5-dimethylphenylcarbamate) (ADMPC) coated on a kind of small particle silica gel was prepared. On this ADMPC chiral stationary phase (CSP), the direct enantiomeric separation of six novel chiral transition metal tetrahedral clusters has firstly been achieved using n-hexane as the mobile phase containing various alcohols as modifiers. The effect of mobile phase modifiers and the structural variation of the solutes on their retention factors (k′) and resolutions (Rs) were investigated. The result suggests that not only the structure and concentration of alcohol in mobile phase, but also the structural differences in racemates can have a pronounced effect on enantiomeric separation. ADMPC-CSP is a suitable CSP for the optical resolution of chiral tetrahedral cluster by HPLC.

  14. Chiral topological excitons in the monolayer transition metal dichalcogenides

    Science.gov (United States)

    Gong, Z. R.; Luo, W. Z.; Jiang, Z. F.; Fu, H. C.

    2017-02-01

    We theoretically investigate the chiral topological excitons emerging in the monolayer transition metal dichalcogenides, where a bulk energy gap of valley excitons is opened up by a position dependent external magnetic field. We find two emerging chiral topological nontrivial excitons states, which exactly connects to the bulk topological properties, i.e., Chern number = 2. The dependence of the spectrum of the chiral topological excitons on the width of the magnetic field domain wall as well as the magnetic filed strength is numerically revealed. The chiral topological valley excitons are not only important to the excitonic transport due to prevention of the backscattering, but also give rise to the quantum coherent control in the optoelectronic applications.

  15. Quark-hadron phase transition in massive gravity

    Science.gov (United States)

    Atazadeh, K.

    2016-11-01

    We study the quark-hadron phase transition in the framework of massive gravity. We show that the modification of the FRW cosmological equations leads to the quark-hadron phase transition in the early massive Universe. Using numerical analysis, we consider that a phase transition based on the chiral symmetry breaking after the electroweak transition, occurred at approximately 10 μs after the Big Bang to convert a plasma of free quarks and gluons into hadrons.

  16. Can a strong magnetic background modify the nature of the chiral transition in QCD?

    OpenAIRE

    Fraga, Eduardo S.; Mizher, Ana Júlia

    2008-01-01

    The presence of a strong magnetic background can modify the nature and the dynamics of the chiral phase transition at finite temperature: for high enough magnetic fields, comparable to the ones expected to be created in noncentral high-energy heavy ion collisions at RHIC and the LHC, the original crossover is turned into a first-order transition. We illustrate this effect within the linear sigma model with quarks to one loop in the ${\\rm MS}$ scheme for $N_{f}=2$.

  17. Directing the phase behavior of polyelectrolyte complexes using chiral patterned peptides

    Science.gov (United States)

    Pacalin, Naomi M.; Leon, Lorraine; Tirrell, Matthew

    2016-10-01

    Polyelectrolyte complexes (PECs) have a broad range of promising applications as soft materials due to their self-assembly and diversity of structure and chemical composition. Peptide polymer PECs are highly biocompatible and biodegradable, making them particularly useful for encapsulation of food additives and flavors, micellar drug delivery, medical and underwater adhesives, fetal membrane patches, and scaffolds for cell growth in tissue engineering. While parameters affecting PEC formation and stability in regards to charge effects are well researched, little is known about the effects of van der Waals interactions, hydrogen bonding, and secondary structure in these materials. Peptide chirality provides a unique opportunity to manipulate PEC phase to modulate the amount of solid-like (precipitate) or liquid-like (coacervate) character by influencing hydrogen bonding interactions among peptide chains. In previous work, we showed that chiral peptides form solid complexes, while complexes with even one racemic peptide were fluid. This raised the interesting question of how long a homochiral sequence must be to result in solid phase formation. In this work, we designed chiral patterned peptides of polyglutamic acid and polylysine ranging from 50 to 90% L-chiral residues with increasing numbers of sequential L-chiral residues before a chirality change. These polymers were mixed together to form PECs. We observed that 8 or more sequential L-chiral residues are necessary to achieve both the appearance of a precipitate phase and sustained β-sheets in the complex, as determined by optical imaging and FTIR Spectroscopy. Less homochiral content results in formation of a coacervate phase. Thus, we show that chiral sequence can be used to control the phase transition of PECs. Understanding how to manipulate PEC phase using chiral sequence as presented here may enable tuning of the material properties to achieve the desired mechanical strength for coatings and polymer

  18. Martensitic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Petry, W.; Neuhaus, J. [Techn. Universitaet Muenchen, Physik Department E13, Munich (Germany)

    1996-11-01

    Many elements transform from a high temperature bcc phase to a more dense packed temperature phase. The great majority of these transitions are of 1st order, displacive and reconstructive. The lattice potentials which govern these martensitic transitions can be probed by inelastic neutron scattering, thereby answering fundamental questions like : Will the transition be announced by dynamical or static fluctuations? What are the trajectories for the displacements needed for the transformation? Does the vibrational entropy stabilize the high temperature phase? Are the unusual transport properties in these materials related to their ability to transform? (author) 17 figs., 1 tab., 46 refs.

  19. Phase transitions modern applications

    CERN Document Server

    Gitterman, Moshe

    2014-01-01

    This book provides a comprehensive review of the theory of phase transitions and its modern applications, based on the five pillars of the modern theory of phase transitions i.e. the Ising model, mean field, scaling, renormalization group and universality. This expanded second edition includes, along with a description of vortices and high temperature superconductivity, a discussion of phase transitions in chemical reaction and moving systems. The book covers a close connection between phase transitions and small world phenomena as well as scale-free systems such as the stock market and the Internet. Readership: Scientists working in different fields of physics, chemistry, biology and economics as well as teaching material for undergraduate and graduate courses.

  20. Polyakov SU(3) extended linear $\\sigma$-model: Sixteen mesonic states in chiral phase-structure

    CERN Document Server

    Tawfik, Abdel Nasser

    2014-01-01

    The derivative of the grand potential in mean field approximation, non-strange and strange condensates and deconfinement phase-transition in thermal and dense hadronic medium are verified in extended SU(3) linear sigma-model (eLSM). In determining the chiral phase-transition, the chiral condensates sigma_x and sigma_y are analysed. The chiral mesonic phase-structures in temperature- and density-dependence are taken as free parameters to be fitted. These parameters are classified corresponding to scalar meson nonets; (pseudo)-scalar and (axial)-vector. For deconfinement phase-transition, effective Polyakov loop-potentials phi and phi^* are utilized. We investigated the in-medium effects on the masses of sixteen mesonic states states. The results are presented for two different forms for the effective Polyakov loop-potential and compared with other models with and without anomalous terms. The Polyakov loop potential in LSM has considerable effects on the chiral phase-transition in meson masses so that the resto...

  1. The SAT phase transition

    Institute of Scientific and Technical Information of China (English)

    许可; 李未

    1999-01-01

    Phase transition is an important feature of SAT problem. For random k-SAT model, it is proved that as r(ratio of clauses to variables) increases, the structure of solutions will undergo a sudden change like satisfiability phase transition when r reaches a threshold point (r=rcr). This phenomenon shows that the satisfying truth assignments suddenly shift from being relatively different from each other to being very similar to each other.##属性不符

  2. Chiral transition, eigenmode localisation and Anderson-like models

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2016-01-01

    We discuss chiral symmetry restoration and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We argue that the features of QCD relevant to both phenomena are the presence of order in the Polyakov line configuration, and the correlations that this induces between spatial links across time slices. This ties the fate of chiral symmetry and of localisation of the lowest Dirac eigenmodes to the confining properties of the theory. We then show numerical results obtained in a QCD-inspired Anderson-like toy model, derived by radically simplifying the QCD dynamics while keeping the important features mentioned above. The toy model reproduces all the important qualitative aspects of chiral symmetry breaking and localisation in QCD, thus supporting the central role played by the confinement/deconfinement transition in triggering both phenomena.

  3. Magnetic fluctuations and correlations in MnSi: Evidence for a chiral skyrmion spin liquid phase

    NARCIS (Netherlands)

    Pappas, C.; Lelièvre-Berna, E.; Bentley, P.; Falus, P.; Fouquet, P.; Farago, B.

    2011-01-01

    We present a comprehensive analysis of high-resolution neutron scattering data involving neutron spin echo spectroscopy and spherical polarimetry, which confirm the first-order nature of the helical transition in MnSi. The experiments reveal the existence of a totally chiral dynamic phase in a very

  4. The chiral transition in two-flavor QCD

    CERN Document Server

    D'Elia, M; Pica, C

    2005-01-01

    QCD with N_f=2 is a specially interesting system to investigate the chiral transition. The order of the transition has still not been established. We report the results of an in-depth numerical investigation performed with staggered fermions on lattices with L_t=4 and L_s=12,16,20,24,32 and quark masses am_q ranging from 0.01335 to 0.307036. Using finite-size techniques we compare the scaling behavior of a number of thermodynamical susceptibilities with the expectations of O(4) and O(2) universality classes. Clear disagreement is observed. Indications of a first order transition are found.

  5. KN Phase Shifts in Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    HUANGFei; ZHANGZong-Ye; YUYou-Wen

    2004-01-01

    The isospin I = 0 and I = 1 kaon-nucleon S and P partial waves phase shifts have been studied in the chiral SU(3) quark model by solving a resonating group method equation. When the parameters of the chiral fields are taken in a reasonable region, the numerical results of S-wave are in good agreement with the experimental data, and the P-wave phase shifts can also be explained qualitatively by the calculation of only central force considered.

  6. Thermodynamic studies of induced antiferroelectric phases in chiral and racemic systems

    Science.gov (United States)

    Filipowicz, M.; Kula, P.; Czuprynski, Krzysztof

    2004-09-01

    Bi- and multicomponent mixtures consisted of two groups of synclinic chiral esters: first one with a partially fluorinated terminal chain and the second one with hydrogenated terminal chain have been used for investigations. For some systems the induction of the anticlinic smectic CA* phase was observed. Enthalpies of the phase transitions for the systems with induced smectic CA phase upon compositions and specific heat were measured by DSC method.

  7. T-\\mu phase diagram of the chiral quark model from a large flavor number expansion

    CERN Document Server

    Jakovác, A; Szép, Z; Szépfalusy, P; Szep, Zs.

    2004-01-01

    The chiral phase boundary of strong matter is determined in the T-\\mu plane from the chiral quark model, applying a non-perturbatively renormalised treatment, involving chains of pion-bubbles and 1-loop fermion contributions. In the absence of explicit symmetry breaking the second order portion of the phase boundary and the location of the tricritical point (TCP) are determined analytically. Sensitivity of the results to the renormalisation scale is carefully investigated. The softening of the sigma-pole near the second order transitions is confirmed.

  8. Non-local effects at the onset of the chiral transition

    CERN Document Server

    Palhares, L F; Kodama, T; Krein, G; Palhares, Let\\'icia F.; Fraga, Eduardo S.; Kodama, Takeshi; Krein, Gast\\~ao

    2007-01-01

    Inspired by analytic results obtained for a systematic expansion of the memory kernel in dissipative quantum mechanics, we propose a phenomenological procedure to incorporate non-markovian corrections to the Langevin dynamics of an order parameter in field theory systematically. In this note, we restrict our analysis to the onset of the evolution. As an example, we consider the process of phase conversion in the chiral transition.

  9. Chiral Floquet Phases of Many-Body Localized Bosons

    Science.gov (United States)

    Po, Hoi Chun; Fidkowski, Lukasz; Morimoto, Takahiro; Potter, Andrew C.; Vishwanath, Ashvin

    2016-10-01

    We construct and classify chiral topological phases in driven (Floquet) systems of strongly interacting bosons, with finite-dimensional site Hilbert spaces, in two spatial dimensions. The construction proceeds by introducing exactly soluble models with chiral edges, which in the presence of many-body localization (MBL) in the bulk are argued to lead to stable chiral phases. These chiral phases do not require any symmetry and in fact owe their existence to the absence of energy conservation in driven systems. Surprisingly, we show that they are classified by a quantized many-body index, which is well defined for any MBL Floquet system. The value of this index, which is always the logarithm of a positive rational number, can be interpreted as the entropy per Floquet cycle pumped along the edge, formalizing the notion of quantum-information flow. We explicitly compute this index for specific models and show that the nontrivial topology leads to edge thermalization, which provides an interesting link between bulk topology and chaos at the edge. We also discuss chiral Floquet phases in interacting fermionic systems and their relation to chiral bosonic phases.

  10. Electronic phase transitions

    CERN Document Server

    Kopaev, YuV

    1992-01-01

    Electronic Phase Transitions deals with topics, which are presently at the forefront of scientific research in modern solid-state theory. Anderson localization, which has fundamental implications in many areas of solid-state physics as well as spin glasses, with its influence on quite different research activities such as neural networks, are two examples that are reviewed in this book. The ab initio statistical mechanics of structural phase transitions is another prime example, where the interplay and connection of two unrelated disciplines of solid-state theory - first principle ele

  11. Chiral and deconfinement transitions in a magnetic background using the functional renormalization group with the Polyakov loop

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, Jens O.; Naylor, William R. [Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, N-7491 Trondheim (Norway); Tranberg, Anders [Faculty of Science and Technology, University of Stavanger, N-4036 Stavanger (Norway)

    2014-04-30

    We use the Polyakov loop coupled quark-meson model to approximate low energy QCD and present results for the chiral and deconfinement transitions in the presence of a constant magnetic background B at finite temperature T and baryon chemical potential μ{sub B}. We investigate effects of various gluonic potentials on the deconfinement transition with and without a fermionic backreaction at finite B. Additionally we investigate the effect of the Polyakov loop on the chiral phase transition, finding that magnetic catalysis at low μ{sub B} is present, but weakened by the Polyakov loop.

  12. Novel local symmetries and chiral-symmetry-broken phases in S = 1/2 triangular-lattice Heisenberg model

    Science.gov (United States)

    Baskaran, G.

    1989-01-01

    Using a nonmean-field approach the triangular-lattice S = 1/2 Heisenberg antiferromagnet with nearest- and next-nearest-neighbor couplings is shown undergo an Ising-type phase transition into a chiral-symmetry-broken phase (Kalmeyer-Laughlin-like state) at small T. Removal of next-nearest-neighbor coupling introduces a local Z2 symmetry, thereby suppressing any finite-T chiral order.

  13. Photoinduced phase transitions

    CERN Document Server

    Nasu, K

    2004-01-01

    A new class of insulating solids was recently discovered. Whenirradiated by a few visible photons, these solids give rise to amacroscopic excited domain that has new structural and electronicorders quite different from the starting ground state. This occurrenceis called "photoinduced phase transition", and this multi-authoredbook reviews recent theoretical and experimental studies of this newphenomenon.

  14. Thermodynamic phases and mesonic fluctuations in a chiral nucleon-meson model

    CERN Document Server

    Drews, Matthias; Klein, Bertram; Weise, Wolfram

    2013-01-01

    Studies of the QCD phase diagram must properly include nucleonic degrees of freedom and their thermodynamics in the range of baryon chemical potentials characteristic of nuclear matter. A useful framework for incorporating relevant nuclear physics constraints in this context is a chiral nucleon-meson effective Lagrangian. In the present paper, such a chiral nucleon-meson model is extended with systematic inclusion of mesonic fluctuations using the functional renormalization group approach. The resulting description of the nuclear liquid-gas phase transition shows a remarkable agreement with three-loop calculations based on in-medium chiral effective field theory. No signs of a chiral first-order phase transition and its critical endpoint are found in the region of applicability of the model, at least up to twice the density of normal nuclear matter and at temperatures T<100 MeV. Fluctuations close to the critical point of the first-order liquid-gas transition are also examined with a detailed study of the ...

  15. Langevin dynamics for the chiral transition and DCC formation

    Energy Technology Data Exchange (ETDEWEB)

    Kroff, Daniel; Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro (IF/UFRJ), RJ (Brazil). Inst. de Fisica

    2011-07-01

    Full text: The theory of the strong interactions allows for the formation of metastable exotic configurations of the vacuum. Such metastable states can, in principle, be produced in high-energy heavy ion collisions taking place in accelerators like the LHC and in cosmic rays in the atmosphere. In this work, we consider disoriented chiral condensates (DCC), treating them through an effective field theory - the linear-sigma model couple to quarks - and consider possible consequences for ultra-energetic cosmic ray observations performed by the Pierre Auger observatory. After a high-energy collision, the state of the system can be chirally rotated from its true vacuum orientation. Later, this disoriented state (DCC) will relax into the ordinary vacuum configuration, emitting pions. This leads to an asymmetry between charged and neutral pions. This is especially interesting in the context of cosmic rays, where the primary collision in the atmosphere presents favorable conditions for the formation of DCCs. Such exotics might be related to the Centauro and Anti-Centauro events observed by Lattes and collaborators in high-energy cosmic rays experiments. We consider the possibility of DCC formation during a first-order chiral transition, studying the order parameter evolution in a Langevin description. We analyse the DCC influence on the typical time scales of transition and also calculate the pion production rate. (author)

  16. Deconfinement phase transition in neutron star matter

    Institute of Scientific and Technical Information of China (English)

    LI Ang; PENG Guang-Xiong; Lombardo U

    2009-01-01

    The transition from hadron phase to strange quark phase in dense matter is investigated. Instead of using the conventional bag model in quark sect, we achieve the confinement by a density-dependent quark mass derived from in-medium chiral condensates, with a thermodynamic problem improved. In nuclear slot,we adopt the equation of state from Brueckner-Bethe-Goldstone approach with three-body force. It is found that the mixed phase can occur, for reasonable confinement parameter, near the normal saturation density,and transit to pure quark matter at 4-5 times the saturation, which is quite different from the previous results from other quark models that pure quark phase can not appear at neutron-star densities.

  17. An Anderson-like model of the QCD chiral transition

    CERN Document Server

    Giordano, Matteo; Pittler, Ferenc

    2016-01-01

    We study the problems of chiral symmetry breaking and eigenmode localisation in finite-temperature QCD by looking at the lattice Dirac operator as a random Hamiltonian. We recast the staggered Dirac operator into an unconventional three-dimensional Anderson Hamiltonian ("Dirac-Anderson Hamiltonian") carrying internal degrees of freedom, with disorder provided by the fluctuations of the gauge links. In this framework, we identify the features relevant to chiral symmetry restoration and localisation of the low-lying Dirac eigenmodes in the ordering of the local Polyakov lines, and in the related correlation between spatial links across time slices, thus tying the two phenomena to the deconfinement transition. We then build a toy model based on QCD and on the Dirac-Anderson approach, replacing the Polyakov lines with spin variables and simplifying the dynamics of the spatial gauge links, but preserving the above-mentioned relevant dynamical features. Our toy model successfully reproduces the main features of the...

  18. Can a strong magnetic background modify the nature of the chiral transition in QCD?

    CERN Document Server

    Fraga, Eduardo S

    2008-01-01

    The presence of a strong magnetic background can modify the nature and the dynamics of the chiral phase transition at finite temperature: for high enough magnetic fields, comparable to the ones expected to be created in noncentral high-energy heavy ion collisions at RHIC and the LHC, the original crossover is turned into a first-order transition. We illustrate this effect within the linear sigma model with quarks to one loop in the $\\overline{\\rm MS}$ scheme for $N_{f}=2$.

  19. Can a strong magnetic background modify the nature of the chiral transition in QCD?

    Energy Technology Data Exchange (ETDEWEB)

    Fraga, Eduardo S.; Mizher, Ana Julia [Instituto de Fisica, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro, RJ 21941-972 (Brazil)

    2009-04-01

    The presence of a strong magnetic background can modify the nature and the dynamics of the chiral phase transition at finite temperature: for high enough magnetic fields, comparable to the ones expected to be created in noncentral high-energy heavy ion collisions at RHIC and the LHC, the original crossover is turned into a first-order transition. We illustrate this effect within the linear sigma model with quarks to one loop in the MS-bar scheme for N{sub f}=2.

  20. Chiral Paramagnetic Skyrmion-like Phase in MnSi

    NARCIS (Netherlands)

    Pappas, C.; Lelièvre-Berna, E.; Falus, P.; Bentley, P.M.; Moskvin, E.; Grigoriev, S.; Fouquet, P.; Farago, B.

    2009-01-01

    We present a comprehensive study of chiral fluctuations in the reference helimagnet MnSi by polarized neutron scattering and neutron spin echo spectroscopy, which reveals the existence of a completely left-handed and dynamically disordered phase. This phase may be identified as a spontaneous Skyrmio

  1. Understanding quantum phase transitions

    CERN Document Server

    Carr, Lincoln

    2010-01-01

    Quantum phase transitions (QPTs) offer wonderful examples of the radical macroscopic effects inherent in quantum physics: phase changes between different forms of matter driven by quantum rather than thermal fluctuations, typically at very low temperatures. QPTs provide new insight into outstanding problems such as high-temperature superconductivity and display fundamental aspects of quantum theory, such as strong correlations and entanglement. Over the last two decades, our understanding of QPTs has increased tremendously due to a plethora of experimental examples, powerful new numerical meth

  2. Can sigma models describe finite temperature chiral transitions?

    CERN Document Server

    Kocic, Aleksandar; Aleksandar KOCIC; John KOGUT

    1995-01-01

    Large-N expansions and computer simulations indicate that the universality class of the finite temperature chiral symmetry restoration transition in the 3D Gross-Neveu model is mean field theory. This is a counterexample to the standard 'sigma model' scenario which predicts the 2D Ising model universality class. We trace the breakdown of the standard scenario (dimensional reduction and universality) to the absence of canonical scalar fields in the model. We point out that our results could be generic for theories with dynamical symmetry breaking, such as Quantum Chromodynamics.

  3. Enantiomeric Separation of Four Chiral Compounds Using Immobilized Cellulose 3, 5-Dimethylphenylcarbamate as Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    Yong Fei MING; Liang ZHAO; Hong Li ZHANG; Yan Ping SHI; Yong Min LI; Li Ren CHEN

    2006-01-01

    A new chiral stationary phase of 3, 5-dimethylphenylcarbamates of cellulose,chemically bonded to 3-aminopropylsilica gel at the 6-positions of the glucose units, was prepared.The solvent versatility of the CSP was investigated for the enantioselective separation of four pairs of enantiomers using THF and chloroform as non-standard mobile phase eluent in HPLC. The influence of temperature on the resolution was investigated.

  4. Electroweak phase transitions

    CERN Document Server

    Fodor, Z

    2000-01-01

    Recent developments on the four dimensional (4d) lattice studies of the finite temperature electroweak phase transition (EWPT) are summarized. The phase diagram is given in the continuum limit. The finite temperature SU(2)-Higgs phase transition is of first order for Higgs-boson masses m/sub H/<66.5+or-1.4 GeV. Above this endpoint only a rapid cross-over can be seen. The full 4d result agrees completely with that of the dimensional reduction approximation. The Higgs-boson endpoint mass in the standard model (SM) would be 72.1+or-1. 4 GeV. Taking into account the LEP Higgs-boson mass lower bound excludes any EWPT in the SM. A one-loop calculation of the static potential in the SU(2)-Higgs model enables a precise comparison between lattice simulations and perturbative results. The most popular extension of the SM, the minimal supersymmetric SM (MSSM) is also studied on 4d lattices. (17 refs).

  5. Simultaneous Chiral Symmetry Restoration and Deconfinement Consequences for the QCD Phase Diagram

    Science.gov (United States)

    Klähn, Thomas; Fischer, Tobias; Hempel, Matthias

    2017-02-01

    For studies of quark matter in astrophysical scenarios, the thermodynamic bag model is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Klähn & Fischer we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant {B}{dc} from a given hadronic equation of state in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction, the phase diagram, and implications for protoneutron stars.

  6. Simultaneous chiral symmetry restoration and deconfinement - Consequences for the QCD phase diagram

    CERN Document Server

    Klahn, Thomas; Hempel, Matthias

    2016-01-01

    For studies of quark matter in astrophysical scenarios the thermodynamic bag model (tdBag) is commonly employed. Although successful, it does not account for dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction which is crucial to explain recent observations of massive, two solar mass neutron stars. In Kl\\"ahn & Fischer (2015) we developed the novel vBag quark matter model which takes these effects into account. This article extends vBag to finite temperatures and isospin asymmetry. Another particular feature of vBag is the determination of the deconfinement bag constant $B_{\\rm dc}$ from a given hadronic equation of state (EoS) in order to ensure that chiral and deconfinement transitions coincide. We discuss consequences of this novel approach for the phase transition construction and the phase diagram.

  7. Generalized Ginzburg–Landau approach to inhomogeneous phases in nonlocal chiral quark models

    Energy Technology Data Exchange (ETDEWEB)

    Carlomagno, J.P. [IFLP, CONICET – Dpto. de Física, FCE, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Gómez Dumm, D., E-mail: dumm@fisica.unlp.edu.ar [IFLP, CONICET – Dpto. de Física, FCE, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Scoccola, N.N. [CONICET, Rivadavia 1917, 1033 Buenos Aires (Argentina); Physics Department, Comisión Nacional de Energía Atómica, Av. Libertador 8250, 1429 Buenos Aires (Argentina); Universidad Favaloro, Solís 453, 1078 Buenos Aires (Argentina)

    2015-05-18

    We analyze the presence of inhomogeneous phases in the QCD phase diagram within the framework of nonlocal chiral quark models. We concentrate in particular in the positions of the tricritical (TCP) and Lifshitz (LP) points, which are studied in a general context using a generalized Ginzburg–Landau approach. We find that for all the phenomenologically acceptable model parametrizations considered the TCP is located at a higher temperature and a lower chemical potential in comparison with the LP. Consequently, these models seem to favor a scenario in which the onset of the first order transition between homogeneous phases is not covered by an inhomogeneous, energetically favored phase.

  8. Enantioseparation of Racemic Naproxen Esters on Cellulose Tris (4-methylbenzoate) Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Several kinds of racemic naproxen ester were successfully separated on CTMB chiral stationary phase with hexane-ethanol (98:2, vol./vol.) as the mobile phase. The influence of mobile phase composition and structure of racemic naproxen ester on chiral separation was studied and the chiral recognition mechanism of CTMB was discussed.

  9. Enantioseparation of Racemic Naproxen Esters on Cellulose Tris(4—methylbenzoate) Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    BaoHaiSHAO; XiuZhuXU; 等

    2002-01-01

    Several kinds of racemic naproxen ester were successfully separated on CTMB chiral stationary phase with hexane-ethanol(98:2,vol./vol.) as the mobile phase. The influence of mobile phase composition and structure of racemic naproxen ester on chiral separation was studied and the chiral recognition mechanism of CTMB was discussed.

  10. Quantum phase transitions in the noncommutative Dirac Oscillator

    CERN Document Server

    Panella, O

    2014-01-01

    We study the (2+1) dimensional Dirac oscillator in a homogeneous magnetic field in the non-commutative plane. It is shown that the effect of non-commutativity is twofold: $i$) momentum non commuting coordinates simply shift the critical value ($B_{\\text{cr}}$) of the magnetic field at which the well known left-right chiral quantum phase transition takes place (in the commuting phase); $ii$) non-commutativity in the space coordinates induces a new critical value of the magnetic field, $B_{\\text{cr}}^*$, where there is a second quantum phase transition (right-left), --this critical point disappears in the commutative limit--. The change in chirality associated with the magnitude of the magnetic field is examined in detail for both critical points. The phase transitions are described in terms of the magnetisation of the system. Possible applications to the physics of silicene and graphene are briefly discussed.

  11. Phases of (Asymptotically) Safe Chiral Theories with(out) Scalars

    CERN Document Server

    Molgaard, Esben

    2016-01-01

    We unveil the dynamics of four dimensional chiral gauge-Yukawa theories featuring several scalar degrees of freedom transforming according to distinct representations of the underlying gauge group. We consider generalized Georgi-Glashow and Bars-Yankielowicz theories. We determine, to the maximum known order in perturbation theory, the phase diagram of these theories and further disentangle their ultraviolet asymptotic nature according to whether they are asymptotically free or safe. We therefore extend the number of theories that are known to be fundamental in the Wilsonian sense to the case of chiral gauge theories with scalars.

  12. Mass transfer mechanism in chiral reversed phase liquid chromatography.

    Science.gov (United States)

    Gritti, Fabrice; Guiochon, Georges

    2014-03-01

    The mechanism of mass transfer in chiral chromatography was investigated using an experimental protocol already applied in RPLC and HILIC chromatography. The different contributions to the reduced height equivalent to a theoretical plate (HETP) include the longitudinal diffusion HETP term, the solid-liquid mass transfer resistance HETP term, the short-range eddy dispersion HETP term, and the long-range eddy dispersion HETP term. Their accurate measurement permits the determination of the adsorption rate constant kads of trans-stilbene enantiomers on a column packed with Lux 5 μm Cellulose-1 particles. The experimental results demonstrate that the number of adsorption-desorption steps per unit time of chiral compounds on polysaccharide-based chiral stationary phases is four orders of magnitude smaller than that of achiral compounds.

  13. Detecting, visualizing, and measuring gold nanoparticle chirality using helical pitch measurements in nematic liquid crystal phases.

    Science.gov (United States)

    Sharma, Anshul; Mori, Taizo; Lee, Huey-Charn; Worden, Matthew; Bidwell, Eric; Hegmann, Torsten

    2014-12-23

    Chirality at the nanoscale, or more precisely, the chirality or chiroptical effects of chiral ligand-capped metal nanoparticles (NPs) is an intriguing and rapidly evolving field in nanomaterial research with promising applications in catalysis, metamaterials, and chiral sensing. The aim of this work was to seek out a system that not only allows the detection and understanding of NP chirality but also permits visualization of the extent of chirality transfer to a surrounding medium. The nematic liquid crystal phase is an ideal candidate, displaying characteristic defect texture changes upon doping with chiral additives. To test this, we synthesized chiral cholesterol-capped gold NPs and prepared well-dispersed mixtures in two nematic liquid crystal hosts. Induced circular dichroism spectropolarimetry and polarized light optical microscopy revealed that all three gold NPs induce chiral nematic phases, and that those synthesized in the presence of a chiral bias (disulfide) are more powerful chiral inducers than those where the NP was formed in the absence of a chiral bias (prepared by conjugation of a chiral silane to preformed NPs). Helical pitch data here visually show a clear dependence on the NP size and the number of chiral ligands bound to the NP surface, thereby supporting earlier experimental and theoretical data that smaller metal NPs made in the presence of a chiral bias are stronger chiral inducers.

  14. Phase diagram of 4D field theories with chiral anomaly from holography

    CERN Document Server

    Ammon, Martin; Macedo, Rodrigo P

    2016-01-01

    Within gauge/gravity duality, we study the class of four dimensional CFTs with chiral anomaly described by Einstein-Maxwell-Chern-Simons theory in five dimensions. In particular we determine the phase diagram at finite temperature, chemical potential and magnetic field. At high temperatures the solution is given by an electrically and magnetically charged AdS Reissner-Nordstroem black brane. For sufficiently large Chern-Simons coupling and at sufficiently low temperatures and small magnetic fields, we find a new phase with helical order, breaking translational invariance spontaneously. For the Chern-Simons couplings studied, the phase transition is second order with mean field exponents. Since the entropy density vanishes in the limit of zero temperature we are confident that this is the true ground state which is the holographic version of a chiral magnetic spiral.

  15. Mixed phases during the phase transitions

    CERN Document Server

    Tatsumi, Toshitaka; Maruyama, Toshiki

    2011-01-01

    Quest for a new form of matter inside compact stars compels us to examine the thermodynamical properties of the phase transitions. We closely consider the first-order phase transitions and the phase equilibrium on the basis of the Gibbs conditions, taking the liquid-gas phase transition in asymmetric nuclear matter as an example. Characteristic features of the mixed phase are figured out by solving the coupled equations for mean-fields and densities of constituent particles self-consistently within the Thomas-Fermi approximation. The mixed phase is inhomogeneous matter composed of two phases in equilibrium; it takes a crystalline structure with a unit of various geometrical shapes, inside of which one phase with a characteristic shape, called "pasta", is embedded in another phase by some volume fraction. This framework enables us to properly take into account the Coulomb interaction and the interface energy, and thereby sometimes we see the mechanical instability of the geometric structures of the mixed phase...

  16. Magnetic transitions in the chiral armchair-kagome system Mn2Sb2O7

    Science.gov (United States)

    Peets, Darren C.; Sim, Hasung; Choi, Seongil; Avdeev, Maxim; Lee, Seongsu; Kim, Su Jae; Kang, Hoju; Ahn, Docheon; Park, Je-Geun

    2017-01-01

    The competition between interactions in frustrated magnets allows a wide variety of new ground states, often exhibiting emergent physics and unique excitations. Expanding the suite of lattices available for study enhances our chances of finding exotic physics. Mn2Sb2O7forms in a chiral, kagome-based structure in which a fourth member is added to the kagome-plane triangles to form an armchair unit and link adjacent kagome planes. This structural motif may be viewed as intermediate between the triangles of the kagome network and the tetrahedra in the pyrochlore lattice. Mn2Sb2O7exhibits two distinct magnetic phase transitions, at 11.1 and 14.2 K, at least one of which has a weak ferromagnetic component. The magnetic propagation vector does not change through the lower transition, suggesting a metamagnetic transition or a transition involving a multicomponent order parameter. Although previously reported in the P 3121 space group, Mn2Sb2O7actually crystallizes in P 2 , which allows ferroelectricity, and we show clear evidence of magnetoelectric coupling indicative of multiferroic order. The quasi-two-dimensional "armchair-kagome" lattice presents a promising platform for probing chiral magnetism and the effect of dimensionality in highly frustrated systems.

  17. Learning phase transitions by confusion

    CERN Document Server

    van Nieuwenburg, Evert P L; Huber, Sebastian D

    2016-01-01

    Classifying phases of matter is a central problem in physics. For quantum mechanical systems, this task can be daunting owing to the exponentially large Hilbert space. Thanks to the available computing power and access to ever larger data sets, classification problems are now routinely solved using machine learning techniques. Here, we propose to use a neural network based approach to find phase transitions depending on the performance of the neural network after training it with deliberately incorrectly labelled data. We demonstrate the success of this method on the topological phase transition in the Kitaev chain, the thermal phase transition in the classical Ising model, and the many-body-localization transition in a disordered quantum spin chain. Our method does not depend on order parameters, knowledge of the topological content of the phases, or any other specifics of the transition at hand. It therefore paves the way to a generic tool to identify unexplored phase transitions.

  18. Deconfinement and chiral transition in AdS/QCD wall models supplemented with a magnetic field

    CERN Document Server

    Dudal, David; Mertens, Thomas G

    2016-01-01

    We discuss the phenomenon of (inverse) magnetic catalysis for both the deconfinement and chiral transition. We discriminate between the hard and soft wall model, which we suitably generalize to include a magnetic field. Our findings show a critical deconfinement temperature going down, in contrast with the chiral restoration temperature growing with increasing magnetic field. This is at odds with contemporary lattice data, so the quest for a holographic QCD model capable of capturing inverse magnetic catalysis in the chiral sector remains open.

  19. Vacuum Polarization and Dynamical Chiral Symmetry Breaking: Phase Diagram of QED with Four-Fermion Contact Interaction

    CERN Document Server

    Akram, F; Gutierrez-Guerrero, L X; Masud, B; Rodriguez-Quintero, J; Calcaneo-Roldan, C; Tejeda-Yeomans, M E

    2012-01-01

    We study chiral symmetry breaking for fundamental charged fermions coupled electromagnetically to photons with the inclusion of four-fermion contact self-interaction term. We employ multiplicatively renormalizable models for the photon dressing function and the electron-photon vertex which minimally ensures mass anomalous dimension = 1. Vacuum polarization screens the interaction strength. Consequently, the pattern of dynamical mass generation for fermions is characterized by a critical number of massless fermion flavors above which chiral symmetry is restored. This effect is in diametrical opposition to the existence of criticality for the minimum interaction strength necessary to break chiral symmetry dynamically. The presence of virtual fermions dictates the nature of phase transition. Miransky scaling laws for the electromagnetic interaction strength and the four-fermion coupling, observed for quenched QED, are replaced by a mean-field power law behavior corresponding to a second order phase transition. T...

  20. [Enantioseparation behavior of chiral stationary phases AD, AS and OD].

    Science.gov (United States)

    Li, Liqun; Fan, Jun; Zhang, Jing; Chen, Xiaodong; Wang, Tai; He, Jianfeng; Zhang, Weiguang

    2016-01-01

    Over the past decades, HPLC enantioseparation with chiral stationary phases (CSPs) has been widely applied in chiral analysis and preparation of new pharmaceuticals, pesticides, food, etc. Herein, enantioseparation of 20 chiral compounds have been carried out on three polysaccharide-based CSPs (EnantioPak AD, AS and OD) with normal phases by HPLC, separately. The influences of skeletal structure and the kinds of derivative groups on separation behaviors of these CSPs have been studied in detail. As results indicated, except for compound 13, the other compounds were baseline separated on EnantioPak AD, with most of resolution over 2. 0; in addition, better separation for acidic or basic compounds was achieved through adding acidic/basic additives into the mobile phase of hexane-alcohol. For four aromatic alcohols (compounds 13-16), their retention in the EnantioPak AD column showed a weakening tendency with increase of carbon number in side chain group, and the reverse trend of their resolution was observed. Furthermore, EnantioPak AD showed much better separation performance for eight compounds (13-20) than the others. In short, these results have provided some references for further investigation of separation behavior and applications of polysaccharide-based CSPs.

  1. Phase Transitions of Simple Systems

    CERN Document Server

    Berry, Stephen

    2008-01-01

    This monograph develops a unified microscopic basis for phases and phase changes of bulk matter and small systems in terms of classical physics. The origins of such phase changes are derived from simple but physically relevant models of how transitions between rigid crystalline, glassy and fluid states occur, how phase equilibria arise, and how bulk properties evolve from those of small systems.

  2. Extraction of Phenylalanine Phase Systems Containing Enantiomers by Aqueous Two Combinatorial Chiral Selector

    Institute of Scientific and Technical Information of China (English)

    陈晓青; 刘莉; 焦飞鹏; 王珍

    2012-01-01

    In order to obtain a better enantioselectivity of phenylalanine enantiomers and establish the optimal chiral ex- traction conditions, the distribution behavior was investigated in aqueous two-phase systems which were composed of polyethylene glycol and ammonium sulfate containing combinatorial chiral selector: β-cyclodextrin and HP-β-cyclodextrin. The influence of the molar concentration ratio of combinatorial chiral selectors, the total molar concentration of combinatorial chiral selectors, pH value, buffer type and its concentration were thoroughly studied, respectively. The results show that the enantioselectivity reaches 1.53 under the optimal chiral extraction conditions This extraction is a potential economical and effective way for chiral resolution.

  3. Electroweak phase transition in technicolor

    CERN Document Server

    Jarvinen, Matti

    2010-01-01

    Several phenomenologically viable walking technicolor models have been proposed recently. I demonstrate that these models can have first order electroweak phase transitions, which are sufficiently strong for electroweak baryogenesis. Strong dynamics can also lead to several separate transitions at the electroweak scale, with the possibility of a temporary restoration and an extra breaking of the electroweak symmetry. First order phase transitions will produce gravitational waves, which may be detectable at future experiments.

  4. Magnetic resonance of phase transitions

    CERN Document Server

    Owens, Frank J; Farach, Horacio A

    1979-01-01

    Magnetic Resonance of Phase Transitions shows how the effects of phase transitions are manifested in the magnetic resonance data. The book discusses the basic concepts of structural phase and magnetic resonance; various types of magnetic resonances and their underlying principles; and the radiofrequency methods of nuclear magnetic resonance. The text also describes quadrupole methods; the microwave technique of electron spin resonance; and the Mössbauer effect. Phase transitions in various systems such as fluids, liquid crystals, and crystals, including paramagnets and ferroelectrics, are also

  5. Thermal Chiral and Deconfining Transitions in the Presence of a Magnetic Background

    Science.gov (United States)

    Fraga, Eduardo S.

    We review the influence of a magnetic background on the phase diagram of strong interactions and how the chiral and deconfining transitions can be affected. First we summarize results for both transitions obtained in the framework of the linear sigma model coupled to quarks and to the Polyakov loop, and how they compare to other effective model approaches and to lattice QCD. Then we discuss the outcome of the magnetic MIT bag model that yields a behavior for the critical deconfining temperature which is compatible with recent lattice results and magnetic catalysis. The qualitative success of the magnetic MIT bag model hints to T c being a confinement-driven quantity, and leads us to the discussion of its behavior as predicted within the large-N c limit of QCD, which is also in line with the most recent lattice QCD results provided that quarks behave paramagnetically.

  6. Thermal chiral and deconfining transitions in the presence of a magnetic background

    CERN Document Server

    Fraga, Eduardo S

    2012-01-01

    We review the influence of a magnetic background on the phase diagram of strong interactions and how the chiral and deconfining transitions can be affected. First we summarize results for both transitions obtained in the framework of the linear sigma model coupled to quarks and to the Polyakov loop, and how they compare to other effective model approaches and to lattice QCD. Then we discuss the outcome of the magnetic MIT bag model that yields a behavior for the critical deconfining temperature which is compatible with recent lattice results and magnetic catalysis. The qualitative success of the magnetic MIT bag model hints to $T_{c}$ being a confinement-driven quantity, and leads us to the discussion of its behavior as predicted within the large-$N_{c}$ limit of QCD, which is also in line with the most recent lattice QCD results provided that quarks behave paramagnetically.

  7. Surface tension in the cold and dense chiral transition and astrophysical applications

    CERN Document Server

    Palhares, L F

    2011-01-01

    The surface tension of cold and dense QCD phase transitions has appeared recently as a key ingredient in different astrophysical scenarios, ranging from core-colapse supernovae explosions to compact star structure. If the surface tension is low enough, observable consequences are possible. Its value is however not known from first-principle methods in QCD, calling for effective approaches. Working within the framework of homogeneous nucleation by Langer, we discuss the steps that are needed to obtain the nucleation parameters from a given effective potential. As a model for deriving the effective potential for the chiral transition, we adopt the linear sigma model with constituent quarks at very low temperatures, which provides an effective description for the thermodynamics of the strong interaction in cold and dense matter, and predict a surface tension of Sigma ~ 5--15 MeV/fm^2, well below previous estimates. Including temperature effects and vacuum logarithmic corrections, we find a clear competition betw...

  8. Light baryon magnetic moments and N -> Delta gamma transition in a Lorentz covariant chiral quark approach

    CERN Document Server

    Faessler, A; Holstein, Barry R; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Thomas; Holstein, Barry R.; Lyubovitskij, Valery E.; Nicmorus, Diana; Pumsa-ard, Kem

    2006-01-01

    We calculate magnetic moments of light baryons and N -> Delta gamma transition characteristics using a manifestly Lorentz covariant chiral quark approach for the study of baryons as bound states of constituent quarks dressed by a cloud of pseudoscalar mesons.

  9. Multiobjective Optimization and Phase Transitions

    CERN Document Server

    Seoane, Luís F

    2015-01-01

    Many complex systems obey to optimality conditions that are usually not simple. Conflicting traits often interact making a Multi Objective Optimization (MOO) approach necessary. Recent MOO research on complex systems report about the Pareto front (optimal designs implementing the best trade-off) in a qualitative manner. Meanwhile, research on traditional Simple Objective Optimization (SOO) often finds phase transitions and critical points. We summarize a robust framework that accounts for phase transitions located through SOO techniques and indicates what MOO features resolutely lead to phase transitions. These appear determined by the shape of the Pareto front, which at the same time is deeply related to the thermodynamic Gibbs surface. Indeed, thermodynamics can be written as an MOO from where its phase transitions can be parsimoniously derived; suggesting that the similarities between transitions in MOO-SOO and Statistical Mechanics go beyond mere coincidence.

  10. Non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte; Lübeck, Sven

    2009-01-01

    This book describes two main classes of non-equilibrium phase-transitions: (a) static and dynamics of transitions into an absorbing state, and (b) dynamical scaling in far-from-equilibrium relaxation behaviour and ageing. The first volume begins with an introductory chapter which recalls the main concepts of phase-transitions, set for the convenience of the reader in an equilibrium context. The extension to non-equilibrium systems is made by using directed percolation as the main paradigm of absorbing phase transitions and in view of the richness of the known results an entire chapter is devoted to it, including a discussion of recent experimental results. Scaling theories and a large set of both numerical and analytical methods for the study of non-equilibrium phase transitions are thoroughly discussed. The techniques used for directed percolation are then extended to other universality classes and many important results on model parameters are provided for easy reference.

  11. New chiral reverse phase HPLC method for enantioselective analysis of ketorolac using chiral AGP column

    Institute of Scientific and Technical Information of China (English)

    Sunil K. Dubey; Jangala Hemanth; Chiranjeevi Venkatesh K.; R.N. Saha; S. Pasha

    2012-01-01

    A simple, specific, precise, sensitive and rapid reverse phase-HPLC method was developed for determination of ketorolac enantiomers, a potent nonnarcotic analgesic in pharmaceutical formulations. The method was developed on a chiral AGP column. Mobile phase was 0.1 M sodium phosphate buffer (pH 4.5): lsopropanol (98:2, v/v), at a flow rate of 1 mL/min with run time of 15 min. Ultraviolet detection was made at 322 nm. The linearity range was 0.02 10 μg/mL for each of the enantiomers. The mobile phase composition was systematically studied to find the optimum chromatographic conditions. Validation of the method under the conditions selected showed that it was selective and precise and that the detector response was linear function of ketorolac.

  12. Chiral-glass transition and replica symmetry breaking of a three-dimensional heisenberg spin glass

    Science.gov (United States)

    Hukushima; Kawamura

    2000-02-01

    Extensive equilibrium Monte Carlo simulations are performed for a three-dimensional Heisenberg spin glass with the nearest-neighbor Gaussian coupling to investigate its spin-glass and chiral-glass orderings. The occurrence of a finite-temperature chiral-glass transition without the conventional spin-glass order is established. Critical exponents characterizing the transition are different from those of the standard Ising spin glass. The calculated overlap distribution suggests the appearance of a peculiar type of replica-symmetry breaking in the chiral-glass ordered state.

  13. Nucleation in the chiral transition with an inhomogeneous background

    CERN Document Server

    Taketani, B G; Taketani, Bruno G.; Fraga, Eduardo S.

    2007-01-01

    We consider an approximation procedure to evaluate the finite-temperature one-loop fermionic density in the presence of a chiral background field which systematically incorporates effects from inhomogeneities in the chiral field through a derivative expansion. Modifications in the effective potential and their consequences for the bubble nucleation process are discussed.

  14. Synthesis of novel chiral stationary phases for high-performance liquid chromatography

    Institute of Scientific and Technical Information of China (English)

    Xu Lin Tan; Shi Cong Hou; Qing Hua Bian; Min Wang

    2007-01-01

    Three novel chiral selectors 4a-c were synthesized from (S)-amino acids and (R)- 1-phenyl-2-(4-methylphenyl)ethylamine. 4a-c were connected to 3-aminopropylsilanized silica gel to be used as the chiral stationary phase for HPLC. Five amino acid derivatives and two pyrethroid insecticides were fairly resolved on these three new chiral stationary phases under normal phase condition.

  15. Separation of piracetam derivatives on polysaccharide-based chiral stationary phases.

    Science.gov (United States)

    Kažoka, H; Koliškina, O; Veinberg, G; Vorona, M

    2013-03-15

    High-performance liquid chromatography was used for the enantiomeric separation of two chiral piracetam derivatives. The suitability of six commercially available polysaccharide-based chiral stationary phases (CSPs) under normal phase mode for direct enantioseparation has been investigated. The influence of the CSPs as well the nature and content of an alcoholic modifier in the mobile phase on separation and elution order was studied. It was established that CSP Lux Amylose-2 shows high chiral recognition ability towards 4-phenylsubstituted piracetam derivatives.

  16. QCD phase transitions via a refined truncation of Dyson-Schwinger equations

    CERN Document Server

    Gao, Fei

    2016-01-01

    We investigate both the chiral and deconfinement phase transitions of QCD matter in a refined scheme of Dyson-Schwinger equations, which have been shown to be successful in giving the meson mass spectrum and matching the interaction with the results from ab initio computation. We verify the equivalence of the chiral susceptibility criterion with different definitions for the susceptibility and confirm that the chiral susceptibility criterion is efficient to fix not only the chiral phase boundary but also the critical end point (CEP), especially when one could not have the effective thermodynamical potential. We propose a generalized Schwinger function criterion for the confinement. We give the phase diagram of both phase transitions and show that in the refined scheme the position of the CEP shifts to lower chemical potential and higher temperature. Based on our calculation and previous results of the chemical freeze out conditions, we propose that the CEP locates in the states of the matter generated by the ...

  17. Vortex driven phase transition in Topologically Massive QED

    CERN Document Server

    Hoshino, Yuichi

    2016-01-01

    There is chiral like symmetry for 4-component massless fermion in (2+1)-dimensional gauge theory.Since QED$_{3}$ with Chern-Simons term contains vortex solution for vector potential,one may expect vortex driven phase transition as Kosterlitz-Thouless type where chiral condensate is washed away at zero temperature.To study this possibility,we evaluate the fermion propagator by Dyson-Schwinger equation numerically and spectral function analytically in the Landau gauge.For quenched case we adopt Ball-Chiu vertex to keep gauge invariance of the results.The critical value of topological mass,above which chiral condensate washed away, turned out to be $O(10^{-2})e^{2}$ at least for weak coupling in both cases.

  18. Signals of the QCD Phase Transition in the Heavens

    CERN Document Server

    Schaffner-Bielich, J

    2007-01-01

    The modern phase diagram of strongly interacting matter reveals a rich structure at high-densities due to phase transitions related to the chiral symmetry of quantum chromodynamics (QCD) and the phenomenon of color superconductivity. These exotic phases have significant impacts on high-density astrophysics as the properties of neutron stars and the evolution of astrophysical systems as proto-neutron stars, core-collapse supernovae and neutron star mergers. Most recent pulsar mass measurements and constraints on neutron star radii are critically discussed. Astrophysical signals for exotic matter and phase transitions in high-density matter proposed recently in the literature are outlined. A strong first order phase transition leads to the emergence of a third family of compact stars besides white dwarfs and neutron stars. The different microphysics of quark matter results in an enhanced r-mode stability window for rotating compact stars compared to normal neutron stars. Future telescope and satellite data will...

  19. Glucose, cellobiose, lactose and raffinose used as chiral stationary phases in HPLC

    Institute of Scientific and Technical Information of China (English)

    Jian Yu Wang; Feng Zhao; Mei Zhang; Ya Peng; Li Ming Yuan

    2008-01-01

    This paper presents the enantioseparation using glucose,cellobiose,lactose and raffinose as chiral selector bonded to silica gel via an arm in HPLC.Surprisingly,they also possess high enantioseparation selectivity,may be used in normal-phase and reversedphase mode.and there is a big chiral discriminating complementary.This work indicates that oligosacchafides could soon become very attractive as a new class of chiral stationary phase for HPLC.

  20. Synthesis and characterization of mesoporous silica modified with chiral auxiliaries for their potential application as chiral stationary phase.

    Science.gov (United States)

    Mayani, Vishal J; Abdi, S H R; Kureshy, R I; Khan, N H; Agrawal, Santosh; Jasra, R V

    2008-05-16

    Novel chiral stationary phase (CSP) based on chiral aminoalcohol immobilized on ordered mesoporous silica SBA-15 1a and standard silica 1b and their copper complexes 1a' and 1b', respectively, was synthesized as potential material for chiral ligand exchange chromatography (CLEC). Microanalysis, inductively coupled plasma spectroscopy (ICP), thermo-gravimetric analysis (TGA), cross polarized magic angle spinning (CP-MAS) (13)C NMR, Powder X-ray diffraction (PXRD), FTIR, N(2) adsorption isotherm, scanning electron microscopy (SEM), transmitted electron microscope (TEM) and solid reflectance UV-vis spectroscopy were used to characterize these materials. All the chiral stationary phases thus synthesized were used for the separation of different racemic compounds such as mandelic acid, 2,2'-dihydroxy-1,1'-binaphthalene BINOL) and diethyl tartrate by simple medium-pressure column chromatography. Successful enantio-separation of racemic mandelic acid was achieved with all the stationary phases but 1a and 1b gave slightly better resolution than their copper complexes 1a' and 1b'. Remarkably these materials are stable under the given experimental conditions and can be used repeatedly for several cycles of enantioresolution. It was observed that the porosity and surface area of the stationary phase play an important role in the chiral separation.

  1. Chiral Kosterlitz-Thouless transition in the frustrated Heisenberg antiferromagnet on a pyrochlore slab.

    Science.gov (United States)

    Kawamura, Hikaru; Arimori, Takuya

    2002-02-18

    Ordering of the geometrically frustrated two-dimensional Heisenberg antiferromagnet on a pyrochlore slab is studied by Monte Carlo simulations. In contrast to the kagomé Heisenberg antiferromagnet, the model exhibits locally noncoplanar spin structures at low temperatures, bearing nontrivial chiral degrees of freedom. Under certain conditions, the model exhibits a novel Kosterlitz-Thouless-type transition at a finite temperature associated with these chiral degrees of freedom.

  2. Incommensurate phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Currat, R. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1996-11-01

    We review the characteristic aspects of modulated crystals from the point of view of inelastic neutron scattering. We discuss the phenomenological Landau theory of the normal-to-incommensurate displacive instability and its predictions concerning the fluctuation spectrum of the modulated phase. General results on the form of the normal-mode eigenvectors and on the inelastic scattering channels through which they couple to the probe are established using the superspace approach. We illustrate these results on a simple discrete model symmetry and we review available inelastic neutron scattering data on several displacively modulated compounds. (author) 21 figs., 73 refs.

  3. Chirality-dependent vapor-phase epitaxial growth and termination of single-wall carbon nanotubes.

    Science.gov (United States)

    Liu, Bilu; Liu, Jia; Tu, Xiaomin; Zhang, Jialu; Zheng, Ming; Zhou, Chongwu

    2013-09-11

    Structurally uniform and chirality-pure single-wall carbon nanotubes are highly desired for both fundamental study and many of their technological applications, such as electronics, optoelectronics, and biomedical imaging. Considerable efforts have been invested in the synthesis of nanotubes with defined chiralities by tuning the growth recipes but the approach has only limited success. Recently, we have shown that chirality-pure short nanotubes can be used as seeds for vapor-phase epitaxial cloning growth, opening up a new route toward chirality-controlled carbon nanotube synthesis. Nevertheless, the yield of vapor-phase epitaxial growth is rather limited at the present stage, due in large part to the lack of mechanistic understanding of the process. Here we report chirality-dependent growth kinetics and termination mechanism for the vapor-phase epitaxial growth of seven single-chirality nanotubes of (9, 1), (6, 5), (8, 3), (7, 6), (10, 2), (6, 6), and (7, 7), covering near zigzag, medium chiral angle, and near armchair semiconductors, as well as armchair metallic nanotubes. Our results reveal that the growth rates of nanotubes increase with their chiral angles while the active lifetimes of the growth hold opposite trend. Consequently, the chirality distribution of a nanotube ensemble is jointly determined by both growth rates and lifetimes. These results correlate nanotube structures and properties with their growth behaviors and deepen our understanding of chirality-controlled growth of nanotubes.

  4. 信息动态%Preparation of Polysaccharide Derivatives-based Composite Chiral Stationary Phases and Their Chiral Recognition

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Two coated-type composite chiral stationary phases (CSPs) were prepared based on cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) and amylose tris (3,5-dimethylphenylcarbamate)(ADMPC) by coating the corresponding derivatives onto 3-aminopropyl silica gel separately and then mixing or by coating the mixed derivatives onto silica gel. The CSPs containing only CDMPC or ADMPC were also prepared for comparison. The mixing method does not significantly influence the enantioselectivities. The composite CSPs generally show chiral recognition abilities intermediate between those of the two individual phases, while some racemates were poorer and at the same time one was better resolved on the composite CSPs.

  5. Higher-order baryon number susceptibilities: interplay between the chiral and the nuclear liquid-gas transitions

    CERN Document Server

    Mukherjee, A; Schramm, S

    2016-01-01

    We use an improved version of the SU(3) flavour parity-doublet quark-hadron model to investigate the higher order baryon number susceptibilities near the chiral and the nuclear liquid-gas transitions. The parity-doublet model has been improved by adding higher-order interaction terms of the scalar fields in the effective mean field Lagrangian, resulting in a much-improved description of nuclear ground-state properties, in particular the nuclear compressibility. The resulting phase diagram of the model agrees qualitatively with expectations from lattice QCD, i.e., it shows a crossover at zero net baryo-chemical potential and a critical point at finite density. Using this model, we investigate the dependence of the higher-order baryon number susceptibilities as function of temperature and chemical potential. We observe a string interplay between the chiral and liquid-gas transition at intermediate baryo chemical potentials. Due to this interplay between the chiral and the nuclear liquid-gas transitions, the exp...

  6. Phase diagrams of charged colloidal rods: Can a uniaxial charge distribution break chiral symmetry?

    Science.gov (United States)

    Drwenski, Tara; Dussi, Simone; Hermes, Michiel; Dijkstra, Marjolein; van Roij, René

    2016-03-07

    We construct phase diagrams for charged rodlike colloids within the second-virial approximation as a function of rod concentration, salt concentration, and colloidal charge. Besides the expected isotropic-nematic transition, we also find parameter regimes with a coexistence between a nematic and a second, more highly aligned nematic phase including an isotropic-nematic-nematic triple point and a nematic-nematic critical point, which can all be explained in terms of the twisting effect. We compute the Frank elastic constants to see if the twist elastic constant can become negative, which would indicate the possibility of a cholesteric phase spontaneously forming. Although the twisting effect reduces the twist elastic constant, we find that it always remains positive. In addition, we find that for finite aspect-ratio rods the twist elastic constant is also always positive, such that there is no evidence of chiral symmetry breaking due to a uniaxial charge distribution.

  7. Phase transitions in operational risk.

    Science.gov (United States)

    Anand, Kartik; Kühn, Reimer

    2007-01-01

    In this paper we explore the functional correlation approach to operational risk. We consider networks with heterogeneous a priori conditional and unconditional failure probability. In the limit of sparse connectivity, self-consistent expressions for the dynamical evolution of order parameters are obtained. Under equilibrium conditions, expressions for the stationary states are also obtained. Consequences of the analytical theory developed are analyzed using phase diagrams. We find coexistence of operational and nonoperational phases, much as in liquid-gas systems. Such systems are susceptible to discontinuous phase transitions from the operational to nonoperational phase via catastrophic breakdown. We find this feature to be robust against variation of the microscopic modeling assumptions.

  8. Chiral separation of novel diazenes on a polysaccharide-based stationary phase in the reversed-phase mode.

    Science.gov (United States)

    Vojtylová, Terézia; Hamplová, Věra; Galewski, Zbigniew; Korbecka, Izabela; Sýkora, David

    2017-01-31

    Chiral high-performance liquid chromatography separation of two recently synthesized liquid crystalline materials C1 and C2 was studied in the reversed-phase mode. Both materials have an azo-moiety and one chiral centre in their molecular structures. They were available in racemic and pure S forms. For the enantiomeric separations, a Chiralpak AY-RH stationary phase based on amylose tris(5-chloro-2-methylphenylcarbamate) coated on 5 μm silica was used. The compounds were analyzed in both of their possible forms, the more thermodynamically stable E form and the labile Z form. The conditions and time scale of the UV-induced E to Z transition were briefly evaluated. Under the optimized conditions, we were able to baseline separate S and R enantiomers of both of the studied materials not only in their E forms but also in their Z forms. In comparison to the separation in the normal-phase mode, which we have reported recently, the resolution in the reversed-phase mode is significantly better. Interestingly, peak reversal was noticed for the S and R enantiomers when the separation was carried out with E versus Z forms of both compounds. This article is protected by copyright. All rights reserved.

  9. Interface Effect in QCD Phase Transitions via Dyson-Schwinger Equation Approach

    CERN Document Server

    Gao, Fei

    2016-01-01

    With the chiral susceptibility criterion we obtain the phase diagram of strong-interaction matter in terms of temperature and chemical potential in the framework of Dyson-Schwinger equations (DSEs) of QCD.After calculating the pressure and some other thermodynamic properties of the matter in the DSE method, we get the phase diagram in terms of temperature and baryon number density. We also obtain the interface tension and the interface entropy density to describe the inhomogeneity of the two phases in the coexistence region of the first order phase transition. After including the interface effect, we find that the total entropy density of the system increases in both the deconfinement (dynamical chiral symmetry restoration) and the hadronization (dynamical chiral symmetry breaking) processes of the first order phase transitions and thus solve the entropy puzzle in the hadronization process.

  10. Interface effect in QCD phase transitions via Dyson-Schwinger equation approach

    Science.gov (United States)

    Gao, Fei; Liu, Yu-xin

    2016-11-01

    With the chiral susceptibility criterion, we obtain the phase diagram of strong-interaction matter in terms of temperature and chemical potential in the framework of Dyson-Schwinger equations of QCD. After calculating the pressure and some other thermodynamic properties of the matter in the Dyson-Schwinger method, we get the phase diagram in terms of temperature and baryon number density. We also obtain the interface tension and the interface entropy density to describe the inhomogeneity of the two phases in the coexistence region of the first-order phase transition. After including the interface effect, we find that the total entropy density of the system increases in both the deconfinement (dynamical chiral symmetry restoration) and the hadronization (dynamical chiral symmetry breaking) processes of the first-order phase transitions and thus solve the entropy puzzle in the hadronization process.

  11. Enantioseparation of Timolol on a Novel β-Cyclodextrin Derivative Chiral Stationary Phase in HPLC.

    Science.gov (United States)

    Zhou, Jie; Sun, Fang; Du, Qiuzheng; Zhao, Suzhen; Pei, Wenjuan

    2016-01-01

    A novel chiral stationary phase was prepared by bonding a novel β-cyclodextrin derivative on silica gel, and it was used for the separation of timolol in high efficiency liquid phase. In the reverse mode, the factors such as the proportion of chiral additives, flow rate, column temperature, repeatability and stability were investigated. The optimum chromatographic conditions are as follows: column temperature was 25°C, flow rate was 0.6 mL min(-1) and mobile phase was methanol-25 mM KH2PO4 (80/20, v/v). The chiral column has good reproducibility (Rs = 4.49, 4.51 and 4.40, respectively) and a certain degree of stability (Rs = 4.49, 3.01 and 0.72, respectively). This chiral stationary phase presented good chiral recognition performance toward timolol with good resolution (Rs = 4.49).

  12. Phase transitions in finite systems

    Energy Technology Data Exchange (ETDEWEB)

    Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), DSM-CEA / IN2P3-CNRS, 14 - Caen (France); Gulminelli, F. [Caen Univ., 14 (France). Lab. de Physique Corpusculaire

    2002-07-01

    In this series of lectures we will first review the general theory of phase transition in the framework of information theory and briefly address some of the well known mean field solutions of three dimensional problems. The theory of phase transitions in finite systems will then be discussed, with a special emphasis to the conceptual problems linked to a thermodynamical description for small, short-lived, open systems as metal clusters and data samples coming from nuclear collisions. The concept of negative heat capacity developed in the early seventies in the context of self-gravitating systems will be reinterpreted in the general framework of convexity anomalies of thermo-statistical potentials. The connection with the distribution of the order parameter will lead us to a definition of first order phase transitions in finite systems based on topology anomalies of the event distribution in the space of observations. Finally a careful study of the thermodynamical limit will provide a bridge with the standard theory of phase transitions and show that in a wide class of physical situations the different statistical ensembles are irreducibly inequivalent. (authors)

  13. Field-induced transition from chiral spin-triplet to mixed-parity Fulde-Ferrell-Larkin-Ovchinnikov superconductivity

    Science.gov (United States)

    Romano, Alfonso; Cuoco, Mario; Noce, Canio; Gentile, Paola; Annunziata, Gaetano

    2010-02-01

    We analyze the response to a magnetic field of a two-dimensional spin-triplet superconductor with chiral order parameter when triplet pairing is closely competing with the singlet one. The study is performed via numerical solution of the Bogoliubov-de Gennes equations, assuming that the translational symmetry is broken in one direction by the presence of an interface beyond which superconducting pairing is not effective. We show that as the intensity of the magnetic field is increased above a threshold value, the system undergoes a transition to a spatially inhomogeneous state of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) type where chirality disappears and a singlet-triplet mixing takes place along the direction perpendicular to the interface. Subdominant singlet components are found to accompany the triplet dominant ones in both phases. They develop close to the interface at low fields, then turning continuously into oscillating long-range ones as the field is increased. A similar behavior is found for the magnetization. It nucleates at the interface in the chiral phase, then acquiring in the FFLO phase an oscillatory behavior reaching its maximum amplitude at the sites where the dominant triplet component has a node. At these sites, the local spin-resolved density of states exhibits strong resonances, associated with the formation of Andreev bound states, which tend to broaden and decay in intensity as increasingly high magnetic fields are considered.

  14. Pairing Phase Transitions of Matter under Rotation

    CERN Document Server

    Jiang, Yin

    2016-01-01

    The phases and properties of matter under global rotation have attracted much interest recently. In this paper we investigate the pairing phenomena in a system of fermions under the presence of rotation. We find that there is a generic suppression effect on pairing states with zero angular momentum. We demonstrate this effect with the chiral condensation and the color superconductivity in hot dense QCD matter as explicit examples. In the case of chiral condensation, a new phase diagram in the temperature-rotation parameter space is found, with a nontrivial critical point.

  15. Observation of chirality transition of quasiparticles at stacking solitons in trilayer graphene

    Science.gov (United States)

    Yin, Long-Jing; Wang, Wen-Xiao; Zhang, Yu; Ou, Yang-Yang; Zhang, Hao-Ting; Shen, Cai-Yun; He, Lin

    2017-02-01

    Trilayer graphene (TLG) exhibits rich, alternative electronic properties and extraordinary quantum Hall phenomena owing to enhanced electronic interactions and tunable chirality of its quasiparticles. Here, we report direct observation of chirality transition of quasiparticles at stacking solitons of TLG via spatial-resolved Landau level spectroscopy. The one-dimensional stacking solitons with width of the order of 10 nm separate adjacent Bernal-stacked TLG and rhombohedral-stacked TLG. By using high-field tunneling spectra from scanning tunneling microscopy, we measured Landau quantization in both the Bernal-stacked TLG and the rhombohedral-stacked TLG and, importantly, we observed evolution of quasiparticles between the chiral degree l =1 and 2 and l =3 across the stacking domain-wall solitons. Our experiment indicates that such a chirality transition occurs smoothly, accompanying the transition of the stacking orders of TLG, around the domain-wall solitons. This result demonstrates the important relationship between the crystallographic stacking order and the chirality of quasiparticles in graphene systems.

  16. Meson Effects on the Chiral Condensate at Finite Density

    Institute of Scientific and Technical Information of China (English)

    HUANG Mei; ZHUANG Peng-Fei; ZHAO Wei-Qin

    2002-01-01

    Meson corrections on the chiral condensate up to next-to-leading order in a 1/Nc expansion at finite densityare investigated in the NJL model with explicit chiral symmetry breaking. Compared with mean-field results, the chiralphase transition is still of the first order while the properties near the critical density for chiral phase transition are foundto change significantly.

  17. Universal properties of bulk viscosity near the QCD phase transition

    CERN Document Server

    Karsch, F; Tuchin, K

    2008-01-01

    We extract the bulk viscosity of hot quark-gluon matter in the presence of light quarks from the recent lattice data on the QCD equation of state. For that purpose we extend the sum rule analysis by including the contribution of light quarks. We also discuss the universal properties of bulk viscosity in the vicinity of a second order phase transition, as it might occur in the chiral limit of QCD at fixed strange quark mass and most likely does occur in two-flavor QCD. We point out that a chiral transition in the O(4) universality class at zero baryon density as well as the transition at the chiral critical point which belongs to the Z(2) universality class both lead to the critical behavior of bulk viscosity. In particular, the latter universality class implies the divergence of the bulk viscosity, which may be used as a signature of the critical point. We discuss the physical picture behind the dramatic increase of bulk viscosity seen in our analysis, and devise possible experimental tests of related phenome...

  18. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    Science.gov (United States)

    Fischer, Tobias; Klähn, Thomas; Hempel, Matthias

    2016-08-01

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D χ SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Klähn and Fischer (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D χ SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.

  19. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    CERN Document Server

    Fischer, Tobias; Hempel, Matthias

    2016-01-01

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D$\\chi$SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Kl\\"ahn and Fischer (2015) (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D$\\chi$SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium.

  20. Consequences of simultaneous chiral symmetry breaking and deconfinement for the isospin symmetric phase diagram

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Tobias; Klaehn, Thomas [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Hempel, Matthias [University of Basel, Department of Physics, Basel (Switzerland)

    2016-08-15

    The thermodynamic bag model (tdBag) has been applied widely to model quark matter properties in both heavy-ion and astrophysics communities. Several fundamental physics aspects are missing in tdBag, e.g., dynamical chiral symmetry breaking (D χ SB) and repulsions due to the vector interaction are both included explicitly in the novel vBag quark matter model of Klaehn and Fischer (Astrophys. J. 810, 134 (2015)). An important feature of vBag is the simultaneous D χ SB and deconfinement, where the latter links vBag to a given hadronic model for the construction of the phase transition. In this article we discuss the extension to finite temperatures and the resulting phase diagram for the isospin symmetric medium. (orig.)

  1. Preparation and evaluation of novel chiral stationary phases based on quinine derivatives comprising crown ether moieties.

    Science.gov (United States)

    Wang, Dongqiang; Zhao, Jianchao; Wu, Haixia; Wu, Haibo; Cai, Jianfeng; Ke, Yanxiong; Liang, Xinmiao

    2015-01-01

    The C9-position of quinine was modified by meta- or para-substituted benzo-18-crown-6, and immobilized on 3-mercaptopropyl-modified silica gel through the radical thiol-ene addition reaction. These two chiral stationary phases were evaluated by chiral acids, amino acids, and chiral primary amines. The crown ether moiety on the quinine anion exchanger provided a ligand-exchange site for primary amino groups, which played an important role in the retention and enantioselectivity for chiral compounds containing primary amine groups. These two stationary phases showed good selectivity for some amino acids. The complex interaction between crown ether and protonated primary amino group was investigated by the addition of inorganic salts such as LiCl, NH4Cl, NaCl, and KCl to the mobile phase. The resolution results showed that the simultaneous interactions between two function moieties (quinine and crown ether) and amino acids were important for the chiral separation.

  2. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2001-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. It has moved into a central place in condensed matter studies.Statistical physics, and more specifically, the theory of transitions between states of matter, more or less defines what we know about 'everyday' matter and its transformations.The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable in

  3. ({alpha},{eta}) phase diagrams in tilted chiral smectics

    Energy Technology Data Exchange (ETDEWEB)

    Rjili, M., E-mail: medrjili@yahoo.fr [Laboratoire de Physique de la Matiere Molle et de la Modelisation Electromagnetique, Faculte des Sciences de Tunis, Universite Tunis El Manar, 2092 El Manar Tunis (Tunisia); Marcerou, J.P., E-mail: marcerou@crpp-bordeaux.cnrs.fr [Centre de Recherches Paul Pascal, 115, Av. Albert-Schweitzer, 33600 Pessac (France); Gharbi, A.; Othman, T. [Laboratoire de Physique de la Matiere Molle et de la Modelisation Electromagnetique, Faculte des Sciences de Tunis, Universite Tunis El Manar, 2092 El Manar Tunis (Tunisia)

    2013-02-01

    The polymorphism of tilted chiral smectics liquid crystals is incredibly rich and encompasses many subphases such as SmC{sub A}{sup Low-Asterisk }; SmC{sub Fi1}{sup Low-Asterisk }; SmC{sub Fi2}{sup Low-Asterisk }; SmC{sup Low-Asterisk }; SmC{sub {alpha}}{sup Low-Asterisk }. The continuum theory established by Marcerou (2010) is used to derive an expression for the free energy density of those subphases. The minimization of this free energy is obtained through a combination of analytical and numerical methods. It leads to a phase diagram built in the ({alpha},{eta}) plane where {alpha} is local angular parameter and {eta} describes the variation of the temperature. From this graphical representation, many experimentally observed phase sequences of ferroelectric liquid crystals can be explained, even them including subphases which were recently observed like the SmC{sub 5}{sup Low-Asterisk} and the SmC{sub 6}{sup Low-Asterisk} ones. However, it should be emphasized that the details of predicted phase diagram are strongly dependent on the compound studied.

  4. The helical phase of chiral nematic liquid crystals as the Bianchi VII(0) group manifold

    CERN Document Server

    Gibbons, G W

    2011-01-01

    We show that the optical structure of the helical phase of a chiral nematic is naturally associated with the Bianchi VII(0) group manifold. The Joets-Ribotta metric governing propagation of the extraordinary rays is invariant under the simply transitive action of the universal cover of the three dimensional Euclidean group of two dimensions. Thus extraordinary light rays are geodesics of a left-invariant metric on this Bianchi type VII(0) group. We are able to solve by separation of variables both the wave equation and the Hamilton-Jacobi equation for this metric. The former reduces to Mathieu's equation and the later to the quadrantal pendulum equation. We further discuss Maxwell's equations for uniaxial optical materials where the configuration is invariant under a group action. The material is not assumed to be impedance matched, thus going beyond the usual scope of transformation optics. We show that for a chiral nematic in its helical phase Maxwell's equations reduce to a generalised Mathieu equation. Ou...

  5. Sliding Over a Phase Transition

    Science.gov (United States)

    Tosatti, Erio; Benassi, Andrea; Vanossi, Andrea; Santoro, Giuseppe E.

    2011-03-01

    The frictional response experienced by a stick-slip slider when a phase transition occurs in the underlying solid substrate is a potentially exciting, poorly explored problem. We show, based on 2-dimensional simulations modeling the sliding of a nanotip, that indeed friction may be heavily affected by a continuous structural transition. First, friction turns nonmonotonic as temperature crosses the transition, peaking at the critical temperature Tc where fluctuations are strongest. Second, below Tc friction depends upon order parameter directions, and is much larger for those where the frictional slip can cause a local flip. This may open a route towards control of atomic scale friction by switching the order parameter direction by an external field or strain, with possible application to e.g., displacive ferroelectrics such as BaTi O3 , as well as ferro- and antiferro-distortive materials. Supported by project ESF FANAS/AFRI sponsored by the Italian Research Council (CNR).

  6. Electroweak phase transition recent results

    CERN Document Server

    Csikor, Ferenc

    2000-01-01

    Recent results of four-dimensional (4d) lattice simulations on the finite temperature electroweak phase transition (EWPT) are discussed. The phase transition is of first order in the SU(2)-Higgs model below the end point Higgs mass 66.5$\\pm$1.4 GeV. For larger masses a rapid cross-over appears. This result completely agrees with the results of the dimensional reduction approach. Including the full Standard Model (SM) perturbatively the end point is at 72.1$\\pm$1.4 GeV. Combined with recent LEP Higgs mass lower bounds, this excludes any EWPT in the SM. A one-loop calculation of the static potential makes possible a precise comparison of the lattice and perturbative results. Recent 4d lattice studies of the Minimal Supersymmetric SM (MSSM) are also mentioned.

  7. Chiral gap effect in curved space

    CERN Document Server

    Flachi, Antonino

    2014-01-01

    We discuss a new type of QCD phenomenon induced in curved space. In the QCD vacuum a mass gap of Dirac fermions is attributed to the spontaneous breaking of chiral symmetry. If the curvature is positive large, the chiral condensate melts but a chiral invariant mass gap can still remain, which we name the chiral gap effect in curved space. This leads to decoupling of quark deconfinement which implies a view of black holes surrounded by a first-order QCD phase transition.

  8. Chiral perturbation theory study of the axial $N\\to\\Delta(1232)$ transition

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We have performed a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in covariant baryon chiral perturbation theory within a formalism in which the unphysical spin-1/2 components of the $\\Delta$ fields are decoupled.

  9. Liquid Crystal Phases of Molecular Bananas: Polarity and Chirality as Broken Symmetries

    Science.gov (United States)

    Clark, Noel

    2006-03-01

    The study of the interplay of chirality and polarity has been a particularly rich theme of soft matter science since Meyer's seminal discovery that tilted smectics of chiral molecules are macroscopically polar. This event, and the subsequent realization of polar domains and high-speed electro-optic switching in chiral smectics, engaged the liquid crystal community in a worldwide pursuit of novel smectics for applications, featured by the synthesis of more than 50,000 new liquid crystal compounds, and by a consequent broad diversification of the palette of liquid crystal phases and possibilities for supermolecular ordering. A current important activity in this scenario is the study of polar order in synthetically achiral molecules, for example, in molecular bananas, which, as their shape suggests, might be expected to organize in a polar way. Indeed they do, but beyond this, almost everything learned about them has been surprising, including their persistent tendency to exhibit chirality as a spontaneously broken symmetry. I will discuss some of these new phases and phenomena, including the discovery of fluid conglomerates (Pasteur's experiment in a fluid), triclinic fluid order, chiral twist grain boundary phases of achiral molecules, chirality flipping and field-induced deracemization, ferroelectric and antiferroelectric phases with supermolecular- scale polarization modulation, and chiral thermotropic sponge phases.

  10. Transition State Models for Understanding the Origin of Chiral Induction in Asymmetric Catalysis.

    Science.gov (United States)

    Sunoj, Raghavan B

    2016-05-17

    In asymmetric catalysis, a chiral catalyst bearing chiral center(s) is employed to impart chirality to developing stereogenic center(s). A rich and diverse set of chiral catalysts is now available in the repertoire of synthetic organic chemistry. The most recent trends point to the emergence of axially chiral catalysts based on binaphthyl motifs, in particular, BINOL-derived phosphoric acids and phosphoramidites. More fascinating ideas took shape in the form of cooperative multicatalysis wherein organo- and transition-metal catalysts are made to work in concert. At the heart of all such manifestations of asymmetric catalysis, classical or contemporary, is the stereodetermining transition state, which holds a perennial control over the stereochemical outcome of the catalytic process. Delving one step deeper, one would find that the origin of the stereoselectivity is delicately dependent on the relative stabilization of one transition state, responsible for the formation of the predominant stereoisomer, over the other transition state for the minor stereoisomer. The most frequently used working hypothesis to rationalize the experimentally observed stereoselectivity places an undue emphasis on steric factors and tends to regard the same as the origin of facial discrimination between the prochiral faces of the reacting partners. In light of the increasing number of asymmetric catalysts that rely on hydrogen bonding as well as other weak non-covalent interactions, it is important to take cognizance of the involvement of such interactions in the sterocontrolling transition states. Modern density functional theories offer a pragmatic and effective way to capture non-covalent interactions in transition states. Aided by the availability of such improved computational tools, it is quite timely that the molecular origin of stereoselectivity is subjected to more intelligible analysis. In this Account, we describe interesting molecular insights into the stereocontrolling

  11. Detection of Zak phases and topological invariants in a chiral photonic quantum walk

    CERN Document Server

    Cardano, F; Dauphin, A; Maffei, M; Piccirillo, B; de Lisio, C; De Filippis, G; Cataudella, V; Santamato, E; Marrucci, L; Lewenstein, M; Massignan, P

    2016-01-01

    Topological insulators are fascinating states of matter exhibiting protected edge states and robust quantized features in their bulk. Here, we propose and validate experimentally a method to detect topological properties in the bulk of one-dimensional chiral systems. We first introduce the mean chiral displacement, and we show that it rapidly approaches a multiple of the Zak phase in the long time limit. Then we measure the Zak phase in a photonic quantum walk, by direct observation of the mean chiral displacement in its bulk. Next, we measure the Zak phase in an alternative, inequivalent timeframe, and combine the two windings to characterize the full phase diagram of this Floquet system. Finally, we prove the robustness of the measure by introducing dynamical disorder in the system. This detection method is extremely general, as it can be applied to all one-dimensional platforms simulating static or Floquet chiral systems.

  12. High-performance liquid chromatographic separations of stereoisomers of chiral basic agrochemicals with polysaccharide-based chiral columns and polar organic mobile phases.

    Science.gov (United States)

    Matarashvili, Iza; Shvangiradze, Iamze; Chankvetadze, Lali; Sidamonidze, Shota; Takaishvili, Nino; Farkas, Tivadar; Chankvetadze, Bezhan

    2015-12-01

    The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide-based chiral columns in high-performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination.

  13. Gibbs measures and phase transitions

    CERN Document Server

    Georgii, Hans-Otto

    2011-01-01

    From a review of the first edition: ""This book […] covers in depth a broad range of topics in the mathematical theory of phase transition in statistical mechanics. […] It is in fact one of the author's stated aims that this comprehensive monograph should serve both as an introductory text and as a reference for the expert."" (F. Papangelou, Zentralblatt MATH) The second edition has been extended by a new section on large deviations and some comments on the more recent developments in the area.

  14. Phase Transition in Tensor Models

    CERN Document Server

    Delepouve, Thibault

    2015-01-01

    Generalizing matrix models, tensor models generate dynamical triangulations in any dimension and support a $1/N$ expansion. Using the intermediate field representation we explicitly rewrite a quartic tensor model as a field theory for a fluctuation field around a vacuum state corresponding to the resummation of the entire leading order in $1/N$ (a resummation of the melonic family). We then prove that the critical regime in which the continuum limit in the sense of dynamical triangulations is reached is precisely a phase transition in the field theory sense for the fluctuation field.

  15. Phase transitions and critical phenomena

    CERN Document Server

    Domb, Cyril

    2000-01-01

    The field of phase transitions and critical phenomena continues to be active in research, producing a steady stream of interesting and fruitful results. No longer an area of specialist interest, it has acquired a central focus in condensed matter studies. The major aim of this serial is to provide review articles that can serve as standard references for research workers in the field, and for graduate students and others wishing to obtain reliable information on important recent developments.The two review articles in this volume complement each other in a remarkable way. Both deal with what m

  16. Light scattering near phase transitions

    CERN Document Server

    Cummins, HZ

    1983-01-01

    Since the development of the laser in the early 1960's, light scattering has played an increasingly crucial role in the investigation of many types of phase transitions and the published work in this field is now widely dispersed in a large number of books and journals.A comprehensive overview of contemporary theoretical and experimental research in this field is presented here. The reviews are written by authors who have actively contributed to the developments that have taken place in both Eastern and Western countries.

  17. Phase transitions in Bergshoeff–Hohm–Townsend massive gravity

    Science.gov (United States)

    Ghodrati, Mahdis; Naseh, Ali

    2017-04-01

    We present the Hawking–Page phase diagrams in the Bergshoeff–Hohm–Townsend (BHT) massive gravity theory for different solutions, such as the phase transitions between vacuum \\text{Ad}{{\\text{S}}3} and BTZ black hole, warped \\text{Ad}{{\\text{S}}3} and warped BTZ black hole in grand canonical and in non-local/quadratic ensembles, Lifshitz black hole and the new hairy black hole solutions. We observe that except for the black holes in quadratic ensemble, for other cases in the non-chiral theory of BHT the phase diagrams are symmetric with respect to the direction of angular momentum, as we expected. We conclude that for presenting the phase diagrams of warped \\text{Ad}{{\\text{S}}3} black holes, only the grand canonical ensemble should be used.

  18. Volume phase transitions of cholesteric liquid crystalline gels

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Akihiko, E-mail: matuyama@bio.kyutech.ac.jp [Department of Bioscience and Bioinformatics, Faculty of Computer Science and Systems Engineering, Kyushu Institute of Technology, Kawazu 680-4, Iizuka, Fukuoka 820-8502 (Japan)

    2015-05-07

    We present a mean field theory to describe anisotropic deformations of a cholesteric elastomer without solvent molecules and a cholesteric liquid crystalline gel immersed in isotropic solvents at a thermal equilibrium state. Based on the neoclassical rubber theory of nematic elastomers, we derive an elastic energy and a twist distortion energy, which are important to determine the shape of a cholesteric elastomer (or gel). We demonstrate that when the elastic energy dominates in the free energy, the cholesteric elastomer causes a spontaneous compression in the pitch axis and elongates along the director on the plane perpendicular to the pitch axis. Our theory can qualitatively describe the experimental results of a cholesteric elastomer. We also predict the first-order volume phase transitions and anisotropic deformations of a gel at the cholesteric-isotropic phase transition temperature. Depending on a chirality of a gel, we find a prolate or oblate shape of cholesteric gels.

  19. Description and Evaluation of Chiral Interactive Sites on Bonded Cyclodextrin Stationary Phases for Liquid Chromatography

    Science.gov (United States)

    Beesley, Thomas E.

    Development of chiral separations has been essential to the drug discovery and development process. The solubility requirements for a number of methods and/or the mobile phase requirements for application of certain detection systems have opened up many opportunities for cyclodextrin-based CSPs for liquid chromatography. Even though a few chiral stationary phases cover a wide area of enantioselectivity, they do not meet the entire needs of the industry. Cyclodextrin phases offer some unique mechanisms and opportunities to resolve chiral separation problems especially in the aqueous reversed-phase and non-aqueous polar organic modes. This chapter addresses the need to understand the chiral stationary phase structure, the mechanisms at work, and the role mobile phase composition plays in driving those mechanisms to produce enantioselectivity. In addition, the development of certain derivatives has played an essential part in expanding that basic role for certain chiral separations. What these derivatives contribute in concert with the basic structure is a critical part of the understanding to the effective use of these phases. During this study it was determined that the role of steric hindrance has been vastly underestimated, both to the extent that it has occurred and to its effectiveness for obtaining enantioselectivity. References to the entire 20-year history of the cyclodextrin phase development and application literature up to this current date have been reviewed and incorporated.

  20. Quark Deconfinement Phase Transition in Neutron Stars

    CERN Document Server

    Alaverdyan, G B

    2009-01-01

    The hadron-quark phase transition in the interior of compact stars is investigated, when the transition proceeds through a mixed phase. The hadronic phase is described in the framework of relativistic mean-field theory, when also the scalar-isovector delta-meson mean-field is taken into account. The changes of the parameters of phase transition caused by the presence of delta-meson field are explored. The results of calculation of structure of the mixed phase (Glendenning construction) are compared with the results of usual first-order phase transition (Maxwell construction).

  1. Nanocellulose 3, 5-Dimethylphenylcarbamate Derivative Coated Chiral Stationary Phase: Preparation and Enantioseparation Performance.

    Science.gov (United States)

    Zhang, Xiaoli; Wang, Litao; Dong, Shuqing; Zhang, Xia; Wu, Qi; Zhao, Liang; Shi, Yanping

    2016-05-01

    Nanocrystalline cellulose (NCC) with high surface area and high ordered crystalline structure was prepared from microcrystalline cellulose (MCC) under the hydrolysis of sodium hypochlorite. NCC was further reacted with 3,5-dimethylphenyl isocyanate to obtain the nanocellulose derivative, and then coated successfully on the surface of silica gel to a prepared NCC-coated chiral stationary phase (CSP) as a new kind of chiral separation material. Similarly, MCC derivative-coated CSP was also prepared as contrast. The chiral separation performance of NCC-based CSP was evaluated and compared with MCC-based CSP by high-performance liquid chromatography. Moreover, the effects of the alcohol modifiers, mobile phase additives, and flow rates on chiral separations were investigated in detail. The results showed that 10 chiral compounds were separated on NCC-based CSP with better peak shape and higher column efficiency than MCC-based CSP, which confirmed that NCC-based CSP was a promising packing material for the resolution of chiral compounds.Chirality 28:376-381, 2016. © 2016 Wiley Periodicals, Inc.

  2. Preparation of Two New Diasteromeric Chiral Stationary Phases Based on (+-(18-Crown-6-2,3,11,12-tetracarboxylic Acid and (R- or (S-1-(1-Naphthylethylamine and Chiral Tethering Group Effect on the Chiral Recognition

    Directory of Open Access Journals (Sweden)

    Rajalingam Agneeswari

    2016-08-01

    Full Text Available Two new diastereomeric chiral stationary phases (CSPs based on (+-(18-crown-6-2,3,11,12-tetracarboxylic acid as a chiral tethering group and a Π-basic chiral unit such as (R-1-(1-naphthylethylamine (CSP 1 or (S-1-(1-naphthylethylamine (CSP 2 were prepared. The two CSPs were applied to the enantiomeric separation of N-(3,5-dinitrobenzoyl-1-phenylalkylamines and N-(3,5-dinitrobenzoyl-α-amino acid derivatives using 20% isopropyl alcohol in hexane as a normal mobile phase. To elucidate the effect of the two chiral units on the chiral recognition, the chiral recognition abilities of the two CSPs were compared with each other and with that of a CSP (CSP 3 based on (R-1-(1-naphthylethylamine. From the chromatographic chiral recognition results, (R-1-(1-naphthylethylamine and (+−(18-crown-6-2,3,11,12-tetracarboxylic acid constituting CSP 1 were concluded to show a cooperative (“matched” effect on the chiral recognition while (S-1-(1-naphthylethylamine and (+-(18-crown-6-2,3,11,12-tetracarboxylic acid constituting CSP 2 were concluded to show an uncooperative (“mismatched” effect on the chiral recognition. From these results, it was concluded that (+-(18-crown-6-2,3,11,12-tetracarboxylic acid can be successfully used as a chiral tethering group for the preparation of new CSPs.

  3. Preparation of Two New Diasteromeric Chiral Stationary Phases Based on (+)-(18-Crown-6)-2,3,11,12-tetracarboxylic Acid and (R)- or (S)-1-(1-Naphthyl)ethylamine and Chiral Tethering Group Effect on the Chiral Recognition.

    Science.gov (United States)

    Agneeswari, Rajalingam; Sung, Ji Yeong; Jo, Eun Sol; Jeon, Hee Young; Tamilavan, Vellaiappillai; Hyun, Myung Ho

    2016-08-12

    Two new diastereomeric chiral stationary phases (CSPs) based on (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid as a chiral tethering group and a Π-basic chiral unit such as (R)-1-(1-naphthyl)ethylamine (CSP 1) or (S)-1-(1-naphthyl)ethylamine (CSP 2) were prepared. The two CSPs were applied to the enantiomeric separation of N-(3,5-dinitrobenzoyl)-1-phenylalkylamines and N-(3,5-dinitrobenzoyl)-α-amino acid derivatives using 20% isopropyl alcohol in hexane as a normal mobile phase. To elucidate the effect of the two chiral units on the chiral recognition, the chiral recognition abilities of the two CSPs were compared with each other and with that of a CSP (CSP 3) based on (R)-1-(1-naphthyl)ethylamine. From the chromatographic chiral recognition results, (R)-1-(1-naphthyl)ethylamine and (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid constituting CSP 1 were concluded to show a cooperative ("matched") effect on the chiral recognition while (S)-1-(1-naphthyl)ethylamine and (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid constituting CSP 2 were concluded to show an uncooperative ("mismatched") effect on the chiral recognition. From these results, it was concluded that (+)-(18-crown-6)-2,3,11,12-tetracarboxylic acid can be successfully used as a chiral tethering group for the preparation of new CSPs.

  4. Interacting Weyl fermions: Phases, phase transitions and global phase diagram

    CERN Document Server

    Roy, Bitan; Juricic, Vladimir

    2016-01-01

    We study the effects of short-range interactions on a generalized three-dimensional Weyl semimetal, where the band touching points act as the (anti)monopoles of Abelian Berry curvature of strength $n$. We show that any local interaction has a \\emph{negative} scaling dimension $-2/n$. Consequently all Weyl semimetals are stable against weak short-range interactions. For sufficiently strong interactions, we demonstrate that the Weyl semimetal either undergoes a first order transition into a band insulator or a continuous transition into a symmetry breaking phase. A translational symmetry breaking axion insulator and a rotational symmetry breaking semimetal are two prominent candidates for the broken symmetry phase. At one loop level, the correlation length exponent for continuous transitions is $\

  5. QCD Phase Transitions, Volume 15

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, T.; Shuryak, E.

    1999-03-20

    The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.

  6. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1976-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low energ...... energies and showed “softening” as the transition was approached from above.......Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase transition from a tetragonal to an orthorhombic form at 160 K is a first order transition. A transverse acoustic phonon mode, which has the symmetry of the transition was observed at very low...

  7. Electromagnetic nucleon-delta transition in the perturbative chiral quark model

    CERN Document Server

    Pumsa-ard, K; Gutsche, T; Faessler, A; Cheedket, S; Gutsche, Th.; Faessler, Amand

    2003-01-01

    We apply the perturbative chiral quark model to the gamma N -> Delta transition. The four momentum dependence of the respective transverse helicity amplitudes A(1/2) and A(3/2) is determined at one loop in the pseudoscalar Goldstone boson fluctuations. Inclusion of excited states in the quark propagator is shown to result in a reasonable description of the experimental values for the helicity amplitudes at the real photon point.

  8. Nucleon-to-Delta axial transition form factors in relativistic baryon chiral perturbation theory

    CERN Document Server

    Geng, L S; Alvarez-Ruso, L; Vacas, M J Vicente

    2008-01-01

    We report a theoretical study of the axial Nucleon to Delta(1232) ($N\\to\\Delta$) transition form factors up to one-loop order in relativistic baryon chiral perturbation theory. We adopt a formalism in which the $\\Delta$ couplings obey the spin-3/2 gauge symmetry and, therefore, decouple the unphysical spin-1/2 fields. We compare the results with phenomenological form factors obtained from neutrino bubble chamber data and in quark models.

  9. QGP phase transition and multiplicity fluctuations

    Institute of Scientific and Technical Information of China (English)

    杨纯斌; 王晓荣; 蔡勖

    1997-01-01

    The scaled factorial moments in QGP phase transitions are studied analytically by the extended Ginzburg-Landau model.The dependence of InFq on phase space interval is different for the first- and second-order QGP phase transitions.When lnFq are fitted to polynomials of X=δ1/3,the relative sign between the fitted coefficients of X and bq,l calculated theoretically can be used to judge the order of phase transitions.Two sets of experimental data are reanalysed and the phase transitions are the first order for one set of data but the second order for another.

  10. Holographic Phase Transition Probed by Nonlocal Observables

    Directory of Open Access Journals (Sweden)

    Xiao-Xiong Zeng

    2016-01-01

    Full Text Available From the viewpoint of holography, the phase structure of a 5-dimensional Reissner-Nordström-AdS black hole is probed by the two-point correlation function, Wilson loop, and entanglement entropy. As the case of thermal entropy, we find for all the probes that the black hole undergoes a Hawking-Page phase transition, a first-order phase transition, and a second-order phase transition successively before it reaches a stable phase. In addition, for these probes, we find that the equal area law for the first-order phase transition is valid always and the critical exponent of the heat capacity for the second-order phase transition coincides with that of the mean field theory regardless of the size of the boundary region.

  11. Separation of chiral primary amino compounds by forming a sandwiched complex in reversed-phase high performance liquid chromatography.

    Science.gov (United States)

    Zhang, Chen; Huang, Wei X; Chen, Zhi; Rustum, Abu M

    2010-07-23

    Separation of chiral primary amino compounds was efficiently achieved under reversed-phase high performance liquid chromatography (RP-HPLC) conditions using a mixture of non-chiral crown ether (18-crown-6) and dimethyl-beta-cyclodextrin (DM-beta-CD) in the mobile phase. Under these conditions, the amino group of the chiral compound was protonated in a low pH mobile phase, and then interacted with 18-crown-6 and DM-beta-CD to form a sandwiched complex [18-crown-6+amine+CD]. Enantiomers of the compound in the sandwiched complex were separated with good enantioselectivity. Formation of the sandwiched complex among the chiral compound and additives in the mobile phase is a key step of the chiral separation. Four different chiral amino compounds namely, 1-aminoindan (AI), 1,2,3,4-tetrahydro-1-naphthylamine (THNA), tyrosine (Tyr), and phenylalanine (Phe), were selected to demonstrate the separation using the sandwiched complex mechanism in RP-HPLC.

  12. Chiral anion exchangers applied to capillary electrochromatography enantioseparation of oppositely charged chiral analytes: investigation of stationary and mobile phase parameters.

    Science.gov (United States)

    Lämmerhofer, M; Tobler, E; Lindner, W

    2000-07-28

    Weak anion-exchange (WAX) type chiral stationary phases (CSPs) based on tert.-butyl carbamoyl quinine as chiral selector (SO) and different types of silica particles (porous and non-porous) as chromatographic support are evaluated in packed capillary electrochromatography (CEC). Their ability to resolve the enantiomers of negatively charged chiral analytes, e.g., N-derivatized amino acids, in the anion-exchange mode and their electrochromatographic characteristics are described in dependence of several mobile phase parameters (pH, buffer type and concentration, organic modifier type and concentration) and other experimental variables (electric field strength, capillary temperature). The inherent "zwitterionic" surface character of such silica-based WAX type CSPs (positively charged SO and negatively charged residual silanols) allows the reversal of the electroosmotic flow (EOF) towards the anode at pH values below the isoelectric point (pI) of the modified surface, whereas a cathodic EOF results at pH values above the pI. Since for negatively charged analytes also an electrophoretic transport increment has to be considered, which can be either in or against the EOF direction, several distinct modes of elution have been observed under different stationary phase and mobile phase conditions: (i) co-electrophoretic elution of the negatively charged solutes with the anodic EOF in the negative polarity mode, (ii) counter-electrophoretic elution with the cathodic EOF in the positive polarity mode, and (iii) electrophoretically dominated elution in the negative polarity mode with a cathodic EOF directed to the injection end of the capillary. Useful enantioseparations of chiral acids have been obtained with all three modes. Enantioselectivity values as high as under pressure-driven conditions and theoretical plate numbers up to 120000 per meter could be achieved under electrically driven conditions. A repeatability study yielded RSD values below 2% for retention times and

  13. Low symmetry tetrahedral nematic liquid crystal phases: Ambidextrous chirality and ambidextrous helicity.

    Science.gov (United States)

    Pleiner, Harald; Brand, Helmut R

    2014-02-01

    We discuss the symmetry properties as well as the dynamic behavior of various non-polar nematic liquid crystal phases with tetrahedral order. We concentrate on systems that show biaxial nematic order coexisting with octupolar (tetrahedral) order. Non-polar examples are phases with D2 and S4 symmetries, which can be characterized as biaxial nematics lacking inversion symmetry. It is this combination that allows for new features in the statics and dynamics of these phases. The D2-symmetric phase is chiral, even for achiral molecules, and shows ambidextrous chirality in all three preferred directions. The achiral S4-symmetric phase allows for ambidextrous helicity, similar to the higher-symmetric D2d-symmetric phase. Such phases are candidates for nematic phases made from banana-shaped molecules.

  14. PHOTOINDUCED HOLOGRAPHIC PHASE GRATINGS BURIED IN AZOBENZENE SIDE-CHAIN POLYMER FILMS WITH A CHIRAL GROUP

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    An optically active polymer (PM1) containing azobenzene moieties with a chiral group (s-2-methyl-butyl) was synthesized by homopolymerization of monomer, 4-[2-(methacryloyloxy)ethyloxy]-4'-(s-2-methyl-1-butyloxycarbonyl)azobenzene, using the free radical polymerization method. The polymer dissolved in tetrahydrofuran (THF) could be easily processed into high optical quality films. The optical anisotropy of the polymer films was investigated by polarizing optical microscopy (POM). The experimental results showed that irradiation with a circularly polarized beam could align the orientation of the molecules in the polymer films. Moreover, the holographic phase gratings of photo-induced polymer films were detected by atomic force microscopy (AFM) and POM. In comparison with polymer containing no chiral group, it was found from the preliminary measurement of the photo-induced holographic phase gratings that PM1 containing a chiral group could form holographic phase gratings buried in the films.

  15. The phi-meson and Chiral-mass-meson production in heavy-ion collisions as potential probes of quark-gluon-plasma and Chiral symmetry transitions

    Science.gov (United States)

    Takahashi, Y.; Eby, P. B.

    1985-01-01

    Possibilities of observing abundances of phi mesons and narrow hadronic pairs, as results of QGP and Chiral transitions, are considered for nucleus-nucleus interactions. Kinematical requirements in forming close pairs are satisfied in K+K decays of S(975) and delta (980) mesons with small phi, and phi (91020) mesons with large PT, and in pi-pi decays of familiar resonance mesons only in a partially restored chiral symmetry. Gluon-gluon dominance in QGP can enhance phi meson production. High hadronization rates of primordial resonance mesons which form narrow hadronic pairs are not implausible. Past cosmic ray evidences of anomalous phi production and narrow pair abundances are considered.

  16. Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Tositaka

    2015-01-01

    Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly, and gives rise to the spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in pulsars and/or magnetars.

  17. Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

    Directory of Open Access Journals (Sweden)

    R. Yoshiike

    2015-12-01

    Full Text Available Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly, and gives rise to the spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in pulsars and/or magnetars.

  18. Preparation of novel chiral stationary phase based on click chemistry for ligand exchange chromatography

    Institute of Scientific and Technical Information of China (English)

    Chun Mei Fu; Hong Yu Shi; Guang Sheng Qian; Zhang Wan Li

    2009-01-01

    Click chemistry was applied to immobilize L-proline derivative onto azide-modified silica gel to give a novel chiral stationary phase (denoted as click-CSP) for ligand exchange chromatography. The developed protocol combines the benefits of operational simplicity, exceptionally mild conditions and high surface loadings. The enantioselectivity α of some DE-amino acids on the click-CSP were found to be in the range from 1.13 to 3.46. The chromatographic resolutions of some DL-amino acids and the stability study firmly illustrate the potential of click chemistry for preparation chiral stationary phase for ligand exchange chromatography.

  19. Berry Phase of Light under Bragg Reflection by Chiral Liquid-Crystal Media

    Science.gov (United States)

    Barboza, Raouf; Bortolozzo, Umberto; Clerc, Marcel G.; Residori, Stefania

    2016-07-01

    A Berry phase is revealed for circularly polarized light when it is Bragg reflected by a chiral liquid-crystal medium of the same handedness. By using a chiral nematic layer we demonstrate that if the input plane of the layer is rotated with respect to a fixed reference frame, a geometric phase effect occurs for the circularly polarized light reflected by the periodic helical structure of the medium. Theory and numerical simulations are supported by an experimental observation, disclosing novel applications in the field of optical manipulation and fundamental optical phenomena.

  20. Berry phase of light Bragg-reflected by chiral liquid crystal media

    CERN Document Server

    Barboza, Raouf; Residori, Stefania; Clerc, Marcel G

    2016-01-01

    Berry phase is revealed for circularly polarized light when it is Bragg-reflected by a chiral liquid crystal medium of the same handedness. By using a chiral nematic layer we demonstrate that if the input plane of the layer is rotated with respect to a fixed reference frame, then, a geometric phase effect occurs for the circularly polarized light reflected by the periodic helical structure of the medium. Theory and numerical simulations are supported by an experimental observation, disclosing novel applications in the field of optical manipulation and fundamental optical phenomena.

  1. Enantioseparation of Six Antihistamines with Immobilized Cellulose Chiral Stationary Phase by HPLC

    Science.gov (United States)

    Zhou, Jie; Luo, Pei; Chen, Shanshan; Meng, Lingchang; Sun, Chong; Du, Qiuzheng; Sun, Fang

    2016-01-01

    A stereoselective high performance liquid chromatography method has been developed for the chiral separation of the enantiomers of six antihistamines, doxylamine, carbinoxamine, dioxopromethazine, oxomemazine, cetirizine and hydroxyzine. The effects of mobile phase additive, column temperature and flow rate on the retention time and resolution were studied. Enantiomeric separation of cetirizine, doxylamine and hydroxyzine were achieved on cellulose tris-(3,5-dichlorophenylcarbamate) immobilized on silica gel chiral stationary phase known as Chiralpak IC (RS = 3.74, RS = 1.85 and RS = 1.74, respectively). PMID:26657408

  2. Enantioseparation of Six Antihistamines with Immobilized Cellulose Chiral Stationary Phase by HPLC.

    Science.gov (United States)

    Zhou, Jie; Luo, Pei; Chen, Shanshan; Meng, Lingchang; Sun, Chong; Du, Qiuzheng; Sun, Fang

    2016-04-01

    A stereoselective high performance liquid chromatography method has been developed for the chiral separation of the enantiomers of six antihistamines, doxylamine, carbinoxamine, dioxopromethazine, oxomemazine, cetirizine and hydroxyzine. The effects of mobile phase additive, column temperature and flow rate on the retention time and resolution were studied. Enantiomeric separation of cetirizine, doxylamine and hydroxyzine were achieved on cellulose tris-(3,5-dichlorophenylcarbamate) immobilized on silica gel chiral stationary phase known as Chiralpak IC (RS = 3.74, RS = 1.85 and RS = 1.74, respectively).

  3. Nanocellulose Derivative/Silica Hybrid Core-Shell Chiral Stationary Phase: Preparation and Enantioseparation Performance

    Directory of Open Access Journals (Sweden)

    Xiaoli Zhang

    2016-05-01

    Full Text Available Core-shell silica microspheres with a nanocellulose derivative in the hybrid shell were successfully prepared as a chiral stationary phase by a layer-by-layer self-assembly method. The hybrid shell assembled on the silica core was formed using a surfactant as template by the copolymerization reaction of tetraethyl orthosilicate and the nanocellulose derivative bearing triethoxysilyl and 3,5-dimethylphenyl groups. The resulting nanocellulose hybrid core-shell chiral packing materials (CPMs were characterized and packed into columns, and their enantioseparation performance was evaluated by high performance liquid chromatography. The results showed that CPMs exhibited uniform surface morphology and core-shell structures. Various types of chiral compounds were efficiently separated under normal and reversed phase mode. Moreover, chloroform and tetrahydrofuran as mobile phase additives could obviously improve the resolution during the chiral separation processes. CPMs still have good chiral separation property when eluted with solvent systems with a high content of tetrahydrofuran and chloroform, which proved the high solvent resistance of this new material.

  4. Quantum Phase Transitions in a Finite System

    CERN Document Server

    Leviatan, A

    2006-01-01

    A general procedure for studying finite-N effects in quantum phase transitions of finite systems is presented and applied to the critical-point dynamics of nuclei undergoing a shape-phase transition of second-order (continuous), and of first-order with an arbitrary barrier.

  5. The Structural Phase Transition in Solid DCN

    DEFF Research Database (Denmark)

    Dietrich, O. W.; Mackenzie, Gordon A.; Pawley, G. S.

    1975-01-01

    Neutron scattering measurements on deuterated hydrogen cyanide have shown that the structural phase change from a tetragonal to an orthorhombic form at 160K is a first-order transition. A transverse acoustic phonon mode, which has the symmetry of the phase change, was observed at very low energies...... and showed 'softening' as the transition temperature was approached from above....

  6. Phase transitions in the web of science

    Science.gov (United States)

    Phillips, J. C.

    2015-06-01

    The Internet age is changing the structure of science, and affecting interdisciplinary interactions. Publication profiles connecting mathematics with molecular biology and condensed matter physics over the last 40 years exhibit common phase transitions indicative of the critical role played by specific interdisciplinary interactions. The strengths of the phase transitions quantify the importance of interdisciplinary interactions.

  7. QCD phase transitions via a refined truncation of Dyson-Schwinger equations

    Science.gov (United States)

    Gao, Fei; Liu, Yu-xin

    2016-10-01

    We investigate both the chiral and deconfinement phase transitions of QCD matter in a refined scheme of Dyson-Schwinger equations, which have been shown to be successful in giving the meson mass spectrum and matching the interaction with the results from ab initio computation. We verify the equivalence of the chiral susceptibility criterion with different definitions for the susceptibility and confirm that the chiral susceptibility criterion is efficient to fix not only the chiral phase boundary but also the critical end point (CEP), especially when one could not have the effective thermodynamical potential. We propose a generalized Schwinger function criterion for the confinement. We give the phase diagram of both phase transitions and show that in the refined scheme the position of the CEP shifts to lower chemical potential and higher temperature. Based on our calculation and previous results of the chemical freeze-out conditions, we propose that the CEP is located in the states of the matter generated by the Au-Au collisions with √{sN N }=9 - 15 GeV .

  8. Characteristics of QCD phase transitions in an extended Skyrme model on S$^{3}$

    CERN Document Server

    Kim, J H; Lee, H K; Kim, Joon Ha; Yee, Sooman; Lee, Hyun Kyu

    1994-01-01

    We study the characteristics of the QCD phase transitions in dense hadronic matter using the Skyrme model constructed on S^3. We find numerically the localized solutions on S^3 using the extended Skyrme model which implements correctly the scale symmetry of QCD. The transition from the localized phase to the delocalized phase is found to be of first order at the critical radius of the hypersphere, L_c. The chiral restoration and the gluon decondensation also take place at the same critical size.

  9. SUSY and the Electroweak Phase Transition

    CERN Document Server

    Farrar, Glennys R S; Farrar, Glennys R.; Losada, Marta

    1996-01-01

    We analyze the effective 3 dimensional theory previously constructed for the MSSM and multi-Higgs models to determine the regions of parameter space in which the electroweak phase transition is sufficiently strong for a $B+L$ asymmetry to survive in the low temperature phase. We find that the inclusion of all supersymmetric scalars and all 1-loop corrections has the effect of enhancing the strength of the phase transition. Without a light stop or extension of the MSSM the phase transition is sufficiently first order only if the lightest Higgs mass $M_{h}\\lsi 70$ GeV and $tan\\beta\\lsi 1.75$.

  10. SU(3) Polyakov Linear $\\sigma$-Model in Magnetic Field: Thermodynamics, Higher-Order Moments, Chiral Phase Structure and Meson Masses

    CERN Document Server

    Tawfik, Abdel Nasser

    2015-01-01

    Effects of external magnetic field on various properties of the quantum chromodynamics under extreme conditions of temperature and density have been analysed. To this end, we use SU(3) Polyakov linear sigma-model and assume that the external magnetic field eB adds some restrictions to the quarks energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization. This requires an additional temperature to drive the system through the chiral phase-transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase-transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of magnetic field on chiral phase-transition. We found that both critical temperature T_c and critical chemical potential increase with increasing the magnetic f...

  11. Effect of Single-walled Carbon Nanotubes on Cellulose Phenylcarbamate Chiral Stationary Phases

    Institute of Scientific and Technical Information of China (English)

    CHANG Yin-xia; REN Chao-xing; RUAN Qiong; YUAN Li-ming

    2007-01-01

    Single-walled carbon nanotubes(SWNTs) have a high adsorption ability and nanoscale interactions. Cellulose trisphenylcarbamates possess high enantioseparation ability in high-performance liquid chromatography(HPLC). Single-walled carbon nanotubes mixed with cellulose trisphenylcarbamate are coated on the silica gel as chiral stationary phases and higher enantioseparation factors are obtained. After a single-walled carbon nanotube is linked to the 6-position of cellulose 2,3-bisphenylcarbamate, its enantioseparation resolution increases compared to that of the cellulose trisphenylcarbamate. It is the first time that SWNTs have been applied to enantioseparation. The results indicate that the single-walled carbon nanotubes are good promoters of chiral recognition. This method can be used to improve the enantioseparation efficiency of the polysaccharide chiral stationary phases.

  12. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome.

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G

    2016-06-17

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.

  13. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    Science.gov (United States)

    Zhang, Bin; Wolynes, Peter G.

    2016-06-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pairwise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows that the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking, which is limited by the topologically associating domain interaction strength.

  14. Shape Transitions and Chiral Symmetry Breaking in the Energy Landscape of the Mitotic Chromosome

    CERN Document Server

    Zhang, Bin

    2015-01-01

    We derive an unbiased information theoretic energy landscape for chromosomes at metaphase using a maximum entropy approach that accurately reproduces the details of the experimentally measured pair-wise contact probabilities between genomic loci. Dynamical simulations using this landscape lead to cylindrical, helically twisted structures reflecting liquid crystalline order. These structures are similar to those arising from a generic ideal homogenized chromosome energy landscape. The helical twist can be either right or left handed so chiral symmetry is broken spontaneously. The ideal chromosome landscape when augmented by interactions like those leading to topologically associating domain (TAD) formation in the interphase chromosome reproduces these behaviors. The phase diagram of this landscape shows the helical fiber order and the cylindrical shape persist at temperatures above the onset of chiral symmetry breaking which is limited by the TAD interaction strength.

  15. $B \\to A$ transitions in the light-cone QCD sum rules with the chiral current

    CERN Document Server

    Yan-Jun, Sun; Tao, Huang

    2011-01-01

    In this article, we calculate the form-factors of the transitions $B \\to a_1(1260)$, $b_1(1235) $ in the leading-order approximation using the light-cone QCD sum rules. In calculations, we choose the chiral current to interpolate the $B$-meson, which has outstanding advantage that the twist-3 light-cone distribution amplitudes of the axial-vector mesons have no contributions, and the resulting sum rules for the form-factors suffer from much less uncertainties. Then we study the semi-leptonic decays $B \\to a_1(1260) l\\bar{\

  16. Spontaneous Magnetization of Quark Matter in Inhomogeneous Chiral Phase

    CERN Document Server

    Yoshiike, Ryo; Tatsumi, Toshitaka

    2015-01-01

    Considering the density wave of scalar and pseudoscalar condensates, we study the response of quark matter to a weak external magnetic field. In an external magnetic field, the energy spectrum of the lowest Landau level becomes asymmetric about zero, which is closely related to chiral anomaly. This spectral asymmetry gives rise to spontaneous magnetization. This mechanism may be one of candidates for the origin of the strong magnetic field in magnetars. Furthermore, using the generalized Ginzburg-Landau(gGL) expansion, we show that magnetic susceptibility exhibits a peculiar feature

  17. Transition state models for probing stereoinduction in Evans chiral auxiliary-based asymmetric aldol reactions.

    Science.gov (United States)

    Shinisha, C B; Sunoj, Raghavan B

    2010-09-08

    The use of chiral auxiliaries is one of the most fundamental protocols employed in asymmetric synthesis. In the present study, stereoselectivity-determining factors in a chiral auxiliary-based asymmetric aldol reaction promoted by TiCl(4) are investigated by using density functional theory methods. The aldol reaction between chiral titanium enolate [derived from Evans propionyl oxazolidinone (1a) and its variants oxazolidinethione (1b) and thiazolidinethione (1c)] and benzaldehyde is examined by using transition-state modeling. Different stereochemical possibilities for the addition of titanium enolates to aldehyde are compared. On the basis of the coordination of the carbonyl/thiocarbonyl group of the chiral auxiliary with titanium, both pathways involving nonchelated and chelated transition states (TSs) are considered. The computed relative energies of the stereoselectivity-determining C-C bond formation TSs in the nonchelated pathway, for both 1a and 1c, indicate a preference toward Evans syn aldol product. The presence of a ring carbonyl or thiocarbonyl group in the chiral auxiliary renders the formation of neutral TiCl(3)-enolate, which otherwise is energetically less favored as compared to the anionic TiCl(4)-enolate. Hence, under suitable conditions, the reaction between titanium enolate and aldehyde is expected to be viable through chelated TSs leading to the selective formation of non-Evans syn aldol product. Experimentally known high stereoselectivity toward Evans syn aldol product is effectively rationalized by using the larger energy differences between the corresponding diastereomeric TSs. In both chelated and nonchelated pathways, the attack by the less hindered face of the enolate on aldehyde through a chair-like TS with an equatorial disposition of the aldehydic substituent is identified as the preferred mode. The steric hindrance offered by the isopropyl group and the possible chelation are identified as the key reasons behind the interesting

  18. OPTICAL PHASE CONJUGATION RESPONSE OF PHOTOINDUCED POLYMER FILMS CONTAINING AZOBENZENE MOIETIES WITH CHIRAL GROUP

    Institute of Scientific and Technical Information of China (English)

    Ze-da Xu; Yong Zhang; Xing-he Fan; Xin-hua Wan; Qi-feng Zhou

    2002-01-01

    An optically active monomer containing azobenzene moieties with chiral group (s-2-methyl-butyl), 4-[2-(methacryloyloxy)ethyloxy]-4'-(s-2-methyl-1-butyloxycarbonyl) azobenzene (M1) was synthesized. Polymer (PM1) possessing optical phase conjugated response was obtained by homopolymerization of the optically active monomer (M1) using free radical polymerization. The polymer was very soluble in common solvents and good optical quality films could be easily fabricated by spin coating. The optical phase conjugated responses of the polymer PM1 were measured by degenerate four-wave mixing (DFWM). In comparison with polymer containing no chiral group, it was found from the preliminary measurement of photoisomeric change that optical phase conjugated response of the PM1 in the long-range order hexagonal symmetry microstructure could be easily controlled by choosing the appropriate polarization direction of the irradiating beams (514.5 nm) and the irradiating number, presumably due to the chiral group in the PM1 molecular structure. For the case of the polymer investigated here, a chiral group side chain was introduced to increase optical phase conjugated response intensity with different polarization directions of the irradiating beams, which aims originally at searching for a new photoactive material.

  19. COVALENTLY BONDING CHIRAL POLYURETHANE ON AMINATED SILICA GEL: A NEW STRATEGY TO PREPARE CHIRAL STATIONARY PHASE FOR HIGH PERFORMANCE LIQUID CHROMATOGRAPHY

    Institute of Scientific and Technical Information of China (English)

    Shao-hua Huang; Zheng-wu Bai; Chuan-qi Yin; Shi-rong Li

    2006-01-01

    Two polyurethanes of different molecular weights were prepared by the copolymerization of phenyl diisocyanate and diisopropyl tartrate. The polyurethanes having terminal isocyanate groups were reacted with 3-aminopropyl silica gel to afford two chiral stationary phases. The (M-)n of the two polyurethanes were 4057 g/mol and 6442 g/mol. The polyurethanes and the corresponding chiral stationary phases were characterized by FT-IR, 1H NMR and elemental analysis. The loading capacities of the polyurethanes on silica gel were 0.68 mmol units/g and 0.61 mmol units/g, respectively. The separation performance and the influence of additives, triethylamine and trichloroacetic acid, on the separation of chiral compounds were investigated by HPLC. The chiral stationary phase prepared from polyurethane with (M-)n of 4057 g/mol demonstrated better enantioseparation capability than that with (M-)n of 6442 g/mol. Additionally, it was found that the addition of triethylamine and trichloroacetic acid in the mobile phases significantly improved the enantioseparation for these two chiral stationary phases.

  20. Phase transition in finite density and temperature lattice QCD

    CERN Document Server

    Wang, Rui; Gong, Ming; Liu, Chuan; Liu, Yu-Bin; Liu, Zhao-Feng; Ma, Jian-Ping; Meng, Xiang-Fei; Zhang, Jian-Bo

    2015-01-01

    We investigate the behavior of the chiral condensate in lattice QCD at finite temperature and finite chemical potential. The study was done using two flavors of light quarks and with a series of $\\beta$ and $ma$ at the lattice size $24\\times12^{2}\\times6$. The calculation was done in the Taylar expansion formalism. We are able to calculate the first and second order derivatives of $\\langle\\bar{\\psi}\\psi\\rangle$ in both isoscalar and isovector channels. With the first derivatives being small, we find that the second derivatives are sizable close to the phase transition and the magnitude of $\\bar{\\psi}\\psi$ decreases under the influence of finite chemical potential in both channels.

  1. Silica-based polypeptide-monolithic stationary phase for hydrophilic chromatography and chiral separation.

    Science.gov (United States)

    Zhao, Licong; Yang, Limin; Wang, Qiuquan

    2016-05-13

    Glutathione (GSH)-, somatostatin acetate (ST)- and ovomucoid (OV)-functionalized silica-monolithic stationary phases were designed and synthesized for HILIC and chiral separation using capillary electrochromatography (CEC). GSH, ST and OV were covalently incorporated into the silica skeleton via the epoxy ring-opening reaction between their amino groups and the glycidyl moiety in γ-glycidoxypropyltrimethoxysilane (GPTMS) together with polycondensation and copolymerization of tetramethyloxysilane and GPTMS. Not only could the direction and electroosmotic flow magnitude on the prepared GSH-, ST- and OV-silica hybrid monolithic stationary phases be controlled by the pH of the mobile phase, but also a typical HILIC behavior was observed so that the nucleotides and HPLC peptide standard mixture could be baseline separated using an aqueous mobile phase without any acetonitrile during CEC. Moreover, the prepared monolithic columns had a chiral separation ability to separate dl-amino acids. The OV-silica hybrid monolithic column was most effective in chiral separation and could separate dl-glutamic acid (Glu) (the resolution R=1.07), dl-tyrosine (Tyr) (1.57) and dl-histidine (His) (1.06). Importantly, the chiral separation ability of the GSH-silica hybrid monolithic column could be remarkably enhanced when using gold nanoparticles (AuNPs) to fabricate an AuNP-mediated GSH-AuNP-GSH-silica hybrid monolithic column. The R of dl-Glu, dl-Tyr and dl-His reached 1.19, 1.60 and 2.03. This monolithic column was thus applied to separate drug enantiomers, and quantitative separation of all four R/S drug enantiomers were achieved with R ranging from 4.36 to 5.64. These peptide- and protein-silica monolithic stationary phases with typical HILIC separation behavior and chiral separation ability implied their promise for the analysis of not only the future metabolic studies, but also drug enantiomers recognition.

  2. Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet

    Science.gov (United States)

    Karube, K.; White, J. S.; Reynolds, N.; Gavilano, J. L.; Oike, H.; Kikkawa, A.; Kagawa, F.; Tokunaga, Y.; Rønnow, H. M.; Tokura, Y.; Taguchi, Y.

    2016-12-01

    Skyrmions, topologically protected nanometric spin vortices, are being investigated extensively in various magnets. Among them, many structurally chiral cubic magnets host the triangular-lattice skyrmion crystal (SkX) as the thermodynamic equilibrium state. However, this state exists only in a narrow temperature and magnetic-field region just below the magnetic transition temperature Tc, while a helical or conical magnetic state prevails at lower temperatures. Here we describe that for a room-temperature skyrmion material, β-Mn-type Co 8Zn 8Mn 4, a field-cooling via the equilibrium SkX state can suppress the transition to the helical or conical state, instead realizing robust metastable SkX states that survive over a very wide temperature and magnetic-field region. Furthermore, the lattice form of the metastable SkX is found to undergo reversible transitions between a conventional triangular lattice and a novel square lattice upon varying the temperature and magnetic field. These findings exemplify the topological robustness of the once-created skyrmions, and establish metastable skyrmion phases as a fertile ground for technological applications.

  3. The Optical Resolution of Chiral Tetrahedrone-type Clusters Contai- ning SCoFeM (M=Mo or W) Using High Performance Liquid Chromatography Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Amylose tris (phenylcarbamate) chiral stationary phase (ATPC-CSP) was prepared and used for optical resolution of clusters 1 and 2. n-Hexane/2-propanol ( 99/1; v/v) were found to be the most suitable mobile phase on ATPC-CSP.

  4. A Review of Salam Phase Transition in Protein Amino Acids Implication for Biomolecular Homochirality

    CERN Document Server

    Bai, F; Bai, Fan; Wang, Wenqing

    2002-01-01

    The origin of chirality, closely related to the evolution of life on the earth, has long been debated. In 1991, Abdus Salam suggested a novel approach to achieve biomolecular homochirality by a phase transition. In his subsequent publication, he predicted that this phase transition could eventually change D-amino acids to L-amino acids as C -H bond would break and H atom became a superconductive atom. Since many experiments denied the configuration change in amino acids, Salam hypothesis aroused suspicion. This paper is aimed to provide direct experimental evidence of a phase transition in alanine, valine single crystals but deny the configuration change of D- to L- enantiomers. New views on Salam phase transition are presented to revalidate its great importance in the origin of homochirality.

  5. Chirally symmetric but confined hadrons at finite density

    CERN Document Server

    Glozman, L Ya

    2008-01-01

    At a critical finite chemical potential and low temperature QCD undergoes the chiral restoration phase transition. The folklore tradition is that simultaneously hadrons are deconfined and there appears the quark matter. We demonstrate that it is possible to have confined but chirally symmetric hadrons at a finite chemical potential and hence beyond the chiral restoration point at a finite chemical potential and low temperature there could exist a chirally symmetric matter consisting of chirally symmetric but confined hadrons. If it does happen in QCD, then the QCD phase diagram should be reconsidered with obvious implications for heavy ion programs and astrophysics.

  6. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  7. Chiral-induced self-assembly sphere phase liquid crystal with fast switching time

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Ji-Liang; Ni, Shui-Bin; Ping Chen, Chao; Lu, Jian-Gang, E-mail: lujg@sjtu.edu.cn; Su, Yikai [National Engineering Lab for TFT-LCD Materials and Technologies, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wu, Dong-Qing [College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Song, Xiao-Long; Chen, Chao-Yuan [The Jiangsu Hecheng Display Technology Co., Ltd., Nanjing 211300 (China); Shieh, Han-Ping D. [National Engineering Lab for TFT-LCD Materials and Technologies, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Photonics and Display Institute, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2014-03-03

    A fluid self-assembly sphere phase (SP) of liquid crystal induced by chiral dopant is observed in a narrow temperature range between isotropic and blue phase or between isotropic and chiral nematic phase. The SP consists of three-dimensional twist spheres (3-DTSs) and disclinations among 3-DTSs. The temperature range of the SP has been broadened to more than 85 °C by stabilizing the disclinations with amorphous polymer chains. The electro-optical switching time of the polymer-stabilized SP is demonstrated in sub-millisecond with a low switching electric field of 4.4 V μm{sup −1}, which is of promising applications in displays, 3-D tunable photonic crystals, and phase modulators.

  8. Conductor-insulator quantum phase transitions

    CERN Document Server

    Trivedi, Nandini; Valles, James M

    2012-01-01

    When many particles come together how do they organise themselves? And what destroys this organisation? Combining experiments and theory, this book describes intriguing quantum phases - metals, superconductors and insulators - and transitions between them.

  9. Finite-temperature phase transition of $N_{f}=3$ QCD with exact center symmetry

    CERN Document Server

    Misumi, Tatsuhiro; Itou, Etsuko

    2015-01-01

    For the $Z_{3}$-symmetric lattice QCD-like theory ($Z_3$-QCD), in which $SU(3)$ gauge theory is coupled with three fundamental Wilson quarks with flavor-dependent twisted boundary conditions, we calculate the expectation values of Polyakov loop and chiral condensate as functions of temperature on $16^3 \\times4$ and $20^3 \\times 4$ lattices with $m_{PS}/m_{V}=0.70$ fixed. We find the first-order phase transition with respect to the $Z_{3}$ center symmetry, where the Polyakov loop exhibits a hysteresis depending on the initial condition of thermalization process. We also show that the crossover behavior of chiral condensate around the critical temperature of the center transition and the manifestation of flavor symmetry breaking in the high-temperature phase.

  10. Synthesis of novel glucose-based polymers and their applications as chiral stationary phases for high performance liquid chromatography

    Institute of Scientific and Technical Information of China (English)

    Tomoyuki IKAI; Takayuki YAMADA

    2016-01-01

    Two novel polymers containing glucose units as the main-chain that only differ in terms of their regioregularity were synthesized to evaluate their chiral recognition abilities as chiral stationary phases( CSPs) for high performance liquid chromatography( HPLC). The regioregular polymer( poly-5)shows clear resolution ability for the racemate of cobalt(Ⅲ)acetylacetonate( Co( acac)3 ),whereas the corresponding regioirregular polymer(poly-3)does not show any chiral recognition for Co(acac)3. The regioregular polymer main-chain seems to play an important role not only in providing an efficient interaction with the racemate but also in expressing the chiral recognition ability as a CSP for HPLC.

  11. Pion-to-photon transition distribution amplitudes in the non-local chiral quark model

    CERN Document Server

    Kotko, Piotr

    2008-01-01

    We apply the non-local chiral quark model to study vector and axial pion-to-photon transition amplitudes that are needed as a nonperturbative input to estimate the cross section of pion annihilation into the real and virtual photon. We use a simple form of the non-locality that allows to perform all calculations in the Minkowski space and guaranties polynomiality of the TDA's. We note only residual dependence on the precise form of the cut-off function, however vector TDA that is symmetric in skewedness parameter in the local quark model is no longer symmetric in the non-local case. We calculate also the transition form-factors and compare them with existing experimental parametrizations.

  12. Magnetic Fields from the Electroweak Phase Transition

    CERN Document Server

    Törnkvist, O

    1998-01-01

    I review some of the mechanisms through which primordial magnetic fields may be created in the electroweak phase transition. I show that no magnetic fields are produced initially from two-bubble collisions in a first-order transition. The initial field produced in a three-bubble collision is computed. The evolution of fields at later times is discussed.

  13. Molecular markers of phase transition in locusts

    Institute of Scientific and Technical Information of China (English)

    ARNOLD DE LOOF; ILSE CLAEYS; GERT SIMONET; PETER VERLEYEN; TIM VANDERSMISSEN; FILIP SAS; JURGEN HUYBRECHTS

    2006-01-01

    The changes accompanying the transition from the gregarious to the solitary phase state in locusts are so drastic that for a long time these phases were considered as distinct species. It was Boris Uvarov who introduced the concept of polyphenism. Decades of research revealed that phase transition implies changes in morphometry, the color of the cuticle, behavior and several aspects of physiology. In particular, in the recent decade, quite a number of molecular studies have been undertaken to uncover phase-related differences.They resulted in novel insights into the role of corazonin, neuroparsins, some protease inhibitors, phenylacetonitrile and so on. The advent of EST-databases of locusts (e.g. Kang et al., 2004) is a most encouraging novel development in physiological and behavioral locust research. Yet, the answer to the most intriguing question, namely whether or not there is a primordial molecular inducer of phase transition, is probably not within reach in the very near future.

  14. Polymorphic phase transition in Superhydrous Phase B

    Science.gov (United States)

    Koch-Müller, M.; Dera, P.; Fei, Y.; Hellwig, H.; Liu, Z.; Orman, J. Van; Wirth, R.

    2005-09-01

    We synthesized superhydrous phase B (shy-B) at 22 GPa and two different temperatures: 1200°C (LT) and 1400°C (HT) using a multi-anvil apparatus. The samples were investigated by transmission electron microscopy (TEM), single crystal X-ray diffraction, Raman and IR spectroscopy. The IR spectra were collected on polycrystalline thin-films and single crystals using synchrotron radiation, as well as a conventional IR source at ambient conditions and in situ at various pressures (up to 15 GPa) and temperatures (down to -180°C). Our studies show that shy-B exists in two polymorphic forms. As expected from crystal chemistry, the LT polymorph crystallizes in a lower symmetry space group ( Pnn2), whereas the HT polymorph assumes a higher symmetry space group ( Pnnm). TEM shows that both modifications consist of nearly perfect crystals with almost no lattice defects or inclusions of additional phases. IR spectra taken on polycrystalline thin films exhibit just one symmetric OH band and 29 lattice modes for the HT polymorph in contrast to two intense but asymmetric OH stretching bands and at least 48 lattice modes for the LT sample. The IR spectra differ not only in the number of bands, but also in the response of the bands to changes in pressure. The pressure derivatives for the IR bands are higher for the HT polymorph indicating that the high symmetry form is more compressible than the low symmetry form. Polarized, low-temperature single-crystal IR spectra indicate that in the LT-polymorph extensive ordering occurs not only at the Mg sites but also at the hydrogen sites.

  15. Polymorphic Phase Transition in Superhydrous Phase B

    Energy Technology Data Exchange (ETDEWEB)

    Koch-Muller,M.; Dera, P.; Fei, Y.; Hellwig, H.; Liu, Z.; Van Orman, J.; Wirth, R.

    2005-01-01

    We synthesized superhydrous phase B (shy-B) at 22 GPa and two different temperatures: 1200 C (LT) and 1400 C (HT) using a multi-anvil apparatus. The samples were investigated by transmission electron microscopy (TEM), single crystal X-ray diffraction, Raman and IR spectroscopy. The IR spectra were collected on polycrystalline thin-films and single crystals using synchrotron radiation, as well as a conventional IR source at ambient conditions and in situ at various pressures (up to 15 GPa) and temperatures (down to -180 C). Our studies show that shy-B exists in two polymorphic forms. As expected from crystal chemistry, the LT polymorph crystallizes in a lower symmetry space group (Pnn2), whereas the HT polymorph assumes a higher symmetry space group (Pnnm). TEM shows that both modifications consist of nearly perfect crystals with almost no lattice defects or inclusions of additional phases. IR spectra taken on polycrystalline thin films exhibit just one symmetric OH band and 29 lattice modes for the HT polymorph in contrast to two intense but asymmetric OH stretching bands and at least 48 lattice modes for the LT sample. The IR spectra differ not only in the number of bands, but also in the response of the bands to changes in pressure. The pressure derivatives for the IR bands are higher for the HT polymorph indicating that the high symmetry form is more compressible than the low symmetry form. Polarized, low-temperature single-crystal IR spectra indicate that in the LT-polymorph extensive ordering occurs not only at the Mg sites but also at the hydrogen sites.

  16. Contemporary research of dynamically induced phase transitions

    Science.gov (United States)

    Hull, L. M.

    2017-01-01

    Dynamically induced phase transitions in metals, within the present discussion, are those that take place within a time scale characteristic of the shock waves and any reflections or rarefactions involved in the loading structure along with associated plastic flow. Contemporary topics of interest include the influence of loading wave shape, the effect of shear produced by directionality of the loading relative to the sample dimensions and initial velocity field, and the loading duration (kinetic effects, hysteresis) on the appearance and longevity of a transformed phase. These topics often arise while considering the loading of parts of various shapes with high explosives, are typically two or three-dimensional, and are often selected because of the potential of the transformed phase to significantly modify the motion. In this paper, we look at current work on phase transitions in metals influenced by shear reported in the literature, and relate recent work conducted at Los Alamos on iron's epsilon phase transition that indicates a significant response to shear produced by reflected elastic waves. A brief discussion of criteria for the occurrence of stress induced phase transitions is provided. Closing remarks regard certain physical processes, such as fragmentation and jet formation, which may be strongly influenced by phase transitions.

  17. Novel chiral stationary phases based on peptoid combining a quinine/quinidine moiety through a C9-position carbamate group.

    Science.gov (United States)

    Wu, Haibo; Wang, Dongqiang; Song, Guangjun; Ke, Yanxiong; Liang, Xinmiao

    2014-04-01

    By connecting a quinine or quinidine moiety to the peptoid chain through the C9-position carbamate group, we synthesized two new chiral selectors. After immobilizing them onto 3-mercaptopropyl-modified silica gel, two novel chiral stationary phases were prepared. With neutral, acid, and basic chiral compounds as analytes, we evaluated these two stationary phases and compared their chromatographic performance with chiral columns based on quinine tert-butyl carbamate and the previous peptoid. From the resolution of neutral and basic analytes under normal-phase mode, it was found that the new stationary phases exhibited much better enantioselectivity than the quinine tert-butyl carbamate column; the peptoid moiety played an important role in enantiorecognition, which controlled the elution orders of enantiomers; the assisting role of the cinchona alkaloid moieties was observed in some separations. Under acid polar organic phase mode, it was proved that cinchona alkaloid moieties introduced excellent enantiorecognitions for chiral acid compounds; in some separations, the peptoid moiety affected enantioseparations as well. Overall, chiral moieties with specific enantioselectivity were demonstrated to improve the performance of peptoid chiral stationary phase efficiently.

  18. Zwitterionic chiral stationary phases based on cinchona and chiral sulfonic acids for the direct stereoselective separation of amino acids and other amphoteric compounds.

    Science.gov (United States)

    Zhang, Tong; Holder, Emilie; Franco, Pilar; Lindner, Wolfgang

    2014-06-01

    An extensive series of free amino acids and analogs were directly resolved into enantiomers (and stereoisomers where appropriate) by HPLC on zwitterionic chiral stationary phases (Chiralpak ZWIX(+) and Chiralpak ZWIX(-)). The interaction and chiral recognition mechanisms were based on the synergistic double ion-paring process between the analyte and the chiral selectors. The chiral separation and elution order were found to be predictable for primary α-amino acids with apolar aliphatic side chains. A systematic investigation was undertaken to gain an insight into the influence of the structural features on the enantiorecognition. The presence of polar and/or aromatic groups in the analyte structure is believed to tune the double ion-paring equilibrium by the involvement of the secondary interaction forces such as hydrogen bonding, Van der Waals forces and π-π stacking in concert with steric parameters. The ZWIX chiral columns were able to separate enantiomers and stereoisomers of various amphoteric compounds with no need for precolumn derivatization. Column switching between ZWIX(+) and ZWIX(-) is believed to be an instrumental tool to reverse or control the enantiomers elution order, due to the complementarity of the applied chiral selectors.

  19. Magnetic phase transitions in layered intermetallic compounds

    Science.gov (United States)

    Mushnikov, N. V.; Gerasimov, E. G.; Rosenfeld, E. V.; Terent'ev, P. B.; Gaviko, V. S.

    2012-10-01

    Magnetic, magnetoelastic, and magnetotransport properties have been studied for the RMn2Si2 and RMn6Sn6 (R is a rare earth metal) intermetallic compounds with natural layered structure. The compounds exhibit wide variety of magnetic structures and magnetic phase transitions. Substitution of different R atoms allows us to modify the interatomic distances and interlayer exchange interactions thus providing the transition from antiferromagnetic to ferromagnetic state. Near the boundary of this transition the magnetic structures are very sensitive to the external field, temperature and pressure. The field-induced transitions are accompanied by considerable change in the sample size and resistivity. It has been shown that various magnetic structures and magnetic phase transitions observed in the layered compounds arise as a result of competition of the Mn-Mn and Mn-R exchange interactions.

  20. An absorbing phase transition from a structured active particle phase

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Cristobal [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain); Ramos, Francisco [Departamento de Electromagnetismo y Fisica de la Materia and Instituto de Fisica Teorica y Computacional Carlos I, Facultad de Ciencias, Universidad de Granada, 18071 Granada (Spain); Hernandez-GarcIa, Emilio [Instituto Mediterraneo de Estudios Avanzados IMEDEA (CSIC-UIB), Campus de la Universidad de las Islas Baleares, E-07122 Palma de Mallorca (Spain)

    2007-02-14

    In this work we study the absorbing state phase transition of a recently introduced model for interacting particles with neighbourhood-dependent reproduction rates. The novelty of the transition is that as soon as the active phase is reached by increasing a control parameter a periodically arranged structure of particle clusters appears. A numerical study in one and two dimensions shows that the system falls into the directed percolation universality class.

  1. Numerical Study of Phase Transition in Thermoviscoelasticity

    Institute of Scientific and Technical Information of China (English)

    ShaoqingTANG

    1997-01-01

    We study the spatially periodic problem of thermoviscoelasticity with nonmonotone structure relations.By pseudo-spectral method.we demosnstrate numerically phase transitions for certain symmetric initial data.Without symmetry,the simulations show that a translation occurs for the phase boundary.

  2. Phase Transition in the Simplest Plasma Model

    CERN Document Server

    Iosilevskiy, Igor

    2009-01-01

    We have investigated the phase transition of the gas-liquid type, with an upper critical point, in a variant of the One Component Plasma model (OCP) that has a uniform but compressible compensating background. We have calculated the parameters of the critical and triple points, spinodals, and two-phase coexistence curves (binodals). We have analyzed the connection of this simplest plasma phase transition with anomalies in the spatial charge profiles of equilibrium non-uniform plasma in the local-density approximations of Thomas-Fermi or Poisson-Boltzmann-type.

  3. End point of the electroweak phase transition

    CERN Document Server

    Csikor, Ferenc; Heitger, J; Aoki, Y; Ukawa, A

    1999-01-01

    We study the hot electroweak phase transition (EWPT) by 4-dimensional lattice simulations on lattices with symmetric and asymmetric lattice spacings and give the phase diagram. A continuum extrapolation is done. We find first order phase transition for Higgs-boson masses $m_H<66.5 \\pm 1.4$ GeV. Above this end point a rapid cross-over occurs. Our result agrees with that of the dimensional reduction approach. It also indicates that the fermionic sector of the Standard Model (SM) may be included perturbatively. We get for the SM end point $72.4 the SM.

  4. Phase Transition Induced Fission in Lipid Vesicles

    CERN Document Server

    Leirer, C; Myles, V M; Schneider, M F

    2010-01-01

    In this work we demonstrate how the first order phase transition in giant unilamellar vesicles (GUVs) can function as a trigger for membrane fission. When driven through their gel-fluid phase transition GUVs exhibit budding or pearl formation. These buds remain connected to the mother vesicle presumably by a small neck. Cooling these vesicles from the fluid phase (T>Tm) through the phase transition into the gel state (T

  5. The QCD chiral transition, $\\ua$ symmetry and the Dirac spectrum using domain wall fermions

    CERN Document Server

    Buchoff, Michael I; Christ, Norman H; Ding, H -T; Jung, Chulwoo; Karsch, F; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Renfrew, Dwight; Schroeder, Chris; Vranas, P M; Yin, Hantao; Lin, Zhongjie

    2013-01-01

    We report on a study of the finite-temperature QCD transition region for temperatures between 139 and 196 MeV, with a pion mass of 200 MeV and two space-time volumes: $24^3\\times8$ and $32^3\\times8$, where the larger volume varies in linear size between 5.6 fm (at T=139 MeV) and 4.0 fm (at T=195 MeV). These results are compared with the results of an earlier calculation using the same action and quark masses but a smaller, $16^3\\times8$ volume. The chiral domain wall fermion formulation with a combined Iwasaki and dislocation suppressing determinant ratio gauge action are used. This lattice action accurately reproduces the $\\sua$ and $\\ua$ symmetries of the continuum. Results are reported for the chiral condensates, connected and disconnected susceptibilities and the Dirac eigenvalue spectrum. We find a pseudo-critical temperature, $T_c$, of approximately 165 MeV consistent with previous results and strong finite volume dependence below $T_c$. Clear evidence is seen for $\\ua$ symmetry breaking above $T_c$ whi...

  6. Microgravity Two-Phase Flow Transition

    Science.gov (United States)

    Parang, M.; Chao, D.

    1999-01-01

    Two-phase flows under microgravity condition find a large number of important applications in fluid handling and storage, and spacecraft thermal management. Specifically, under microgravity condition heat transfer between heat exchanger surfaces and fluids depend critically on the distribution and interaction between different fluid phases which are often qualitatively different from the gravity-based systems. Heat transfer and flow analysis in two-phase flows under these conditions require a clear understanding of the flow pattern transition and development of appropriate dimensionless scales for its modeling and prediction. The physics of this flow is however very complex and remains poorly understood. This has led to various inadequacies in flow and heat transfer modeling and has made prediction of flow transition difficult in engineering design of efficient thermal and flow systems. In the present study the available published data for flow transition under microgravity condition are considered for mapping. The transition from slug to annular flow and from bubbly to slug flow are mapped using dimensionless variable combination developed in a previous study by the authors. The result indicate that the new maps describe the flow transitions reasonably well over the range of the data available. The transition maps are examined and the results are discussed in relation to the presumed balance of forces and flow dynamics. It is suggested that further evaluation of the proposed flow and transition mapping will require a wider range of microgravity data expected to be made available in future studies.

  7. PT phase transition in multidimensional quantum systems

    CERN Document Server

    Bender, Carl M

    2012-01-01

    Non-Hermitian PT-symmetric quantum-mechanical Hamiltonians generally exhibit a phase transition that separates two parametric regions, (i) a region of unbroken PT symmetry in which the eigenvalues are all real, and (ii) a region of broken PT symmetry in which some of the eigenvalues are complex. This transition has recently been observed experimentally in a variety of physical systems. Until now, theoretical studies of the PT phase transition have generally been limited to one-dimensional models. Here, four nontrivial coupled PT-symmetric Hamiltonians, $H=p^2/2+x^2/2+q^2/2+y^2/2+igx^2y$, $H=p^2/2+x^2/2+q^2/2+y^2+igx^2y$, $H=p^2/2+x^2/2+q^2/2+y^2/2+r^2/2+z^2/2+igxyz$, and $H=p^2/2+x^2/2+q^2/2+y^2+r^2/2+3z^2/2+igxyz$ are examined. Based on extensive numerical studies, this paper conjectures that all four models exhibit a phase transition. The transitions are found to occur at $g\\approx 0.1$, $g\\approx 0.04$, $g\\approx 0.1$, and $g\\approx 0.05$. These results suggest that the PT phase transition is a robust phen...

  8. QCD Phase-transition and chemical freezeout in nonzero magnetic field at NICA

    CERN Document Server

    Tawfik, Abdel Nasser

    2016-01-01

    Because of relativistic off-center motion of the charged spectators and the local momentum-imbalance experienced by the participants, a huge magnetic field is likely generated in high-energy collisions. The influence of such short-lived magnetic field on the QCD phase-transition(s) shall be analysed. From Polyakov linear-sigma model, we study the chiral phase-transition and the magnetic response and susceptibility in dependence on temperature, density and magnetic field strength. The systematic measurements of the phase-transition characterizing signals, such as the fluctuations, the dynamical correlations and the in-medium modifications of rho-meson, for instance, in different interacting systems and collision centralities are conjectured to reveal an almost complete description for the QCD phase-structure and the chemical freezeout. We limit the discussion to NICA energies.

  9. Comparative Optical Separation of Racemic Ibuprofen by Using Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    Dalkeun; PARK; Joong; Kee; LEE; 等

    2002-01-01

    Ibprofen is widely used as a non-steroidal anti-inflammatory drug and poduced as racemic mixture.Its pharmacological activity resides only is S-(+)-enantiomer,and R-(-)-enantiomer is not only inactive but also has many side effects.Thus it is necessary to separate Renantiomer from racemic ibuprofen.We studied optical separation of racemic Ibuprofen with chiral high performance liquid chromatography(HPLC).,Out of three different chiral stationary phases,which were selected on the basis of structure and availability,two were found to be effective.There was optimum eluent composition for each stationary phase for good resolution in optical separation.Resolution decreased with increase of eluent flow rate,but effect of injection volume on resolution was insignificant at high eluent flow rate.

  10. Chiral HPLC analysis of milnacipran and its FMOC-derivative on cellulose-based stationary phases.

    Science.gov (United States)

    Patti, Angela; Pedotti, Sonia; Sanfilippo, Claudia

    2008-02-01

    The HPLC enantioseparation of the last generation antidepressive drug milnacipran (+/-)-1 was investigated on different cellulose-based chiral stationary phases (CSPs). On carbamate-type columns, Chiralcel OD and OD-H (+/-)-1 could be separated with alpha value about 1.20 but the resolution was quite low because of the tailing of the peaks. Direct determination of (+/-)-1 with high selectivity and resolution was obtained on Chiralcel OJ in normal phase mode elution. Precolumn derivatization of milnacipran with Fmoc-Cl gave compound (+/-)-2 which was enantioseparated on all the investigated CSPs and allowed enhanced UV or fluorimetric detection. The Chiralpak IB, that could be considered the immobilized version of Chiralcel OD-H, was found completely ineffective in the chiral recognition of (+/-)-1 and moderately efficient in the separation of (+/-)-2.

  11. Linear and nonlinear resistivity of YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} ceramics at chiral-glass transition

    Energy Technology Data Exchange (ETDEWEB)

    Deguchi, H., E-mail: deguchi@tobata.isc.kyutech.ac.j [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu (Japan); Hashimoto, Y.; Shoho, T.; Mito, M.; Takagi, S. [Faculty of Engineering, Kyushu Institute of Technology, Kitakyushu (Japan); Koyama, K. [Faculty of Integrated Arts and Sciences, University of Tokushima, Tokushima (Japan); Hagiwara, M. [Faculty of Engineering and Design, Kyoto Institute of Technology, Kyoto (Japan)

    2010-12-15

    Ceramic YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} composed of sub-micron size grains has shown successive phase transitions under zero field. The first transition occurs inside each grain at T{sub c1} and the second transition occurs among the grains at T{sub c2} (chiral-glass ordering occurs at T{sub c2}.

  12. \\pi N transition distribution amplitudes: their symmetries and constraints from chiral dynamics

    CERN Document Server

    Pire, Bernard; Szymanowski, Lech

    2011-01-01

    Baryon to meson Transition Distribution Amplitudes (TDAs) extend the concept of generalized parton distributions. Baryon to meson TDAs appear as building blocks in the colinear factorized description of amplitudes for a class of hard exclusive reactions, prominent examples of which being hard exclusive meson electroproduction off a nucleon in the backward region and baryon-antibaryon annihilation into a meson and a lepton pair. We study general properties of these objects following from the underlying symmetries of QCD. In particular, the Lorentz symmetry results in the polynomiality property of the Mellin moments in longitudinal momentum fractions. We present a detailed account of isotopic and permutation symmetry properties of nucleon to pion (\\pi N) TDAs. This restricts the number of independent leading twist \\pi N TDAs to eight functions providing description of all isotopic channels. Using chiral symmetry and the crossing relation between \\pi N TDAs and \\pi N generalized distribution amplitudes we establ...

  13. B→A transitions in the light-cone QCD sum rules with the chiral current

    Institute of Scientific and Technical Information of China (English)

    SUN Yan-Jun; WANG Zhi-Gang; HUANG Tao

    2012-01-01

    In this article,we calculate the form-factors of the transitions B → a1(1260),b1(1235) in the leading-order approximation using the light-cone QCD sum rules.In calculations,we choose the chiral current to interpolate the B-meson,which has the outstanding advantage that the twist-3 light-cone distribution amplitudes of the axial-vector mesons make no contributions,and the resulting sum rules for the form-factors suffer from far fewer uncertainties.Then we study the semi-leptonic decays B → a1(1260)l(v1),b1(1235)l(v1) (l =e,μ,Τ),and make predictions for the differential decay widths and decay widths,which can be compared with the experimental data in the coming future.

  14. Geometric phase and o-mode blue shift in a chiral anisotropic medium inside a Fabry-P\\'erot cavity

    CERN Document Server

    Timofeev, I V; Sutormin, V S; Myslivets, S A; Arkhipkin, V G; Vetrov, S Ya; Lee, W; Zyryanov, V Ya

    2015-01-01

    Anomalous spectral shift of transmission peaks is observed in a Fabry--P\\'erot cavity filled with a chiral anisotropic medium. The effective refractive index value resides out of the interval between the ordinary and the extraordinary refractive indices. The spectral shift is explained by contribution of a geometric phase. The problem is solved analytically using the approximate Jones matrix method, numerically using the accurate Berreman method and geometrically using the generalized Mauguin--Poincar\\'e rolling cone method. The $o$-mode blue shift is measured for a 4-methoxybenzylidene-4'-$n$-butylaniline twisted--nematic layer inside the Fabry--P\\'erot cavity. The twist is electrically induced due to the homeoplanar--twisted configuration transition in an ionic-surfactant-doped liquid crystal layer. Experimental evidence confirms the validity of the theoretical model.

  15. Geometric phase and o-mode blueshift in a chiral anisotropic medium inside a Fabry-Pérot cavity.

    Science.gov (United States)

    Timofeev, Ivan V; Gunyakov, Vladimir A; Sutormin, Vitaly S; Myslivets, Sergey A; Arkhipkin, Vasily G; Vetrov, Stepan Ya; Lee, Wei; Zyryanov, Victor Ya

    2015-11-01

    Anomalous spectral shift of transmission peaks is observed in a Fabry-Pérot cavity filled with a chiral anisotropic medium. The effective refractive index value resides out of the interval between the ordinary and the extraordinary refractive indices. The spectral shift is explained by contribution of a geometric phase. The problem is solved analytically using the approximate Jones matrix method, numerically using the accurate Berreman method, and geometrically using the generalized Mauguin-Poincaré rolling cone method. The o-mode blueshift is measured for a 4-methoxybenzylidene-4'-n-butylaniline twisted-nematic layer inside the Fabry-Pérot cavity. The twist is electrically induced due to the homeoplanar-twisted configuration transition in an ionic-surfactant-doped liquid crystal layer. Experimental evidence confirms the validity of the theoretical model.

  16. Copolymerization preparation of cationic cyclodextrin chiral stationary phases for drug enantioseparation in chromatography

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Ren-Qi Wang, Teng-Teng Ong, Ke Huang, Weihua Tang & Siu-Choon Ng ### Abstract We described a facile and effective protocol wherein radical copolymerization is employed to covalently bond cationic β-cyclodextrin (β-CD) onto silica particles with extended linkage, resulting in a chiral stationary phase (IMPCSP) that can be used for the enantioseparation of racemic drugs in both high-performance liquid chromatography (HPLC) and supercritical fluid chromatography (SFC). Start...

  17. Quantum phase transitions with dynamical flavors

    CERN Document Server

    Bea, Yago; Ramallo, Alfonso V

    2016-01-01

    We study the properties of a D6-brane probe in the ABJM background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and non-vanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at non-zero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number $N_f$ of unquenched quarks of the background.

  18. The diamagnetic phase transition in Magnetars

    CERN Document Server

    Wang, Zhaojun; Zhu, Chunhua; Wu, Baoshan

    2016-01-01

    Neutron stars are ideal astrophysical laboratories for testing theories of the de Haas-van Alphen (dHvA) effect and diamagnetic phase transition which is associated with magnetic domain formation. The "magnetic interaction" between delocalized magnetic moments of electrons (the Shoenberg effect), can result in an effect of the diamagnetic phase transition into domains of alternating magnetization (Condon's domains). Associated with the domain formation are prominent magnetic field oscillation and anisotropic magnetic stress which may be large enough to fracture the crust of magnetar with a super-strong field. Even if the fracture is impossible as in "low-field" magnetar, the depinning phase transition of domain wall motion driven by low field rate (mainly due to the Hall effect) in the randomly perturbed crust can result in a catastrophically variation of magnetic field. This intermittent motion, similar to the avalanche process, makes the Hall effect be dissipative. These qualitative consequences about magne...

  19. Thermogeometric phase transition in a unified framework

    CERN Document Server

    Banerjee, Rabin; Samanta, Saurav

    2016-01-01

    Using geomterothermodynamics (GTD), we investigate the phase transition of black hole in a metric independent way. We show that for any black hole, curvature scalar (of equilibrium state space geometry) is singular at the point where specific heat diverges. Previously such a result could only be shown by taking specific examples on a case by case basis. A different type of phase transition, where inverse specific heat diverges, is also studied within this framework. We show that in the latter case, metric (of equilibrium state space geometry) is singular instead of curvature scalar. Since a metric singularity may be a coordinate artifact, we propose that GTD indicates that it is the singularity of specific heat and not inverse specific heat which indicates a phase transition of black holes.

  20. Quantum phase transitions with dynamical flavors

    Science.gov (United States)

    Bea, Yago; Jokela, Niko; Ramallo, Alfonso V.

    2016-07-01

    We study the properties of a D6-brane probe in the Aharony-Bergman-Jafferis-Maldacena (ABJM) background with smeared massless dynamical quarks in the Veneziano limit. Working at zero temperature and nonvanishing charge density, we show that the system undergoes a quantum phase transition in which the topology of the brane embedding changes from a black hole to a Minkowski embedding. In the unflavored background the phase transition is of second order and takes place when the charge density vanishes. We determine the corresponding critical exponents and show that the scaling behavior near the quantum critical point has multiplicative logarithmic corrections. In the background with dynamical quarks the phase transition is of first order and occurs at nonzero charge density. In this case we compute the discontinuity of several physical quantities as functions of the number Nf of unquenched quarks of the background.

  1. Late-time cosmological phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, D.N. (Chicago Univ., IL (USA) Fermi National Accelerator Lab., Batavia, IL (USA))

    1990-11-01

    It is shown that the potential galaxy formation and large-scale structure problems of objects existing at high redshifts (Z {approx gt} 5), structures existing on scales of 100M pc as well as velocity flows on such scales, and minimal microwave anisotropies ({Delta}T/T) {approx lt} 10{sup {minus}5} can be solved if the seeds needed to generate structure form in a vacuum phase transition after decoupling. It is argued that the basic physics of such a phase transition is no more exotic than that utilized in the more traditional GUT scale phase transitions, and that, just as in the GUT case, significant random gaussian fluctuations and/or topological defects can form. Scale lengths of {approximately}100M pc for large-scale structure as well as {approximately}1 M pc for galaxy formation occur naturally. Possible support for new physics that might be associated with such a late-time transition comes from the preliminary results of the SAGE solar neutrino experiment, implying neutrino flavor mixing with values similar to those required for a late-time transition. It is also noted that a see-saw model for the neutrino masses might also imply a tau neutrino mass that is an ideal hot dark matter candidate. However, in general either hot or cold dark matter can be consistent with a late-time transition. 47 refs., 2 figs.

  2. Exceptional Points and Dynamical Phase Transitions

    Directory of Open Access Journals (Sweden)

    I. Rotter

    2010-01-01

    Full Text Available In the framework of non-Hermitian quantum physics, the relation between exceptional points,dynamical phase transitions and the counter intuitive behavior of quantum systems at high level density is considered. The theoretical results obtained for open quantum systems and proven experimentally some years ago on a microwave cavity, may explain environmentally induce deffects (including dynamical phase transitions, which have been observed in various experimental studies. They also agree(qualitatively with the experimental results reported recently in PT symmetric optical lattices.

  3. Scaling Concepts in Describing Continuous Phase Transitions

    Indian Academy of Sciences (India)

    2016-10-01

    Phase transitions, like the boiling of water upon increasingtemperature, are a part of everyday experience and are yet,upon closer inspection, unusual phenomena, and reveal a hostof fascinating features. Comprehending key aspects of phasetransitions has lead to the uncovering of new ways of describingmatter composed of large numbers of interacting elements,which form a dominant way of analysis in contemporarystatistical mechanics and much else. An introductorydiscussion is presented here of the concepts of scaling, universalityand renormalization, which forms the foundation ofthe study of continuous phase transitions, such as the spontaneousmagnetization of ferromagnetic substances.

  4. Phase Transition in Loop Quantum Gravity

    CERN Document Server

    Mäkelä, Jarmo

    2016-01-01

    We point out that with a specific counting of states loop quantum gravity implies that black holes perform a phase transition at a certain characteristic temperature $T_C$. In this phase transition the punctures of the spin network on the stretched horizon of the black hole jump, in effect, from the vacuum to the excited states. The characteristic temperature $T_C$ may be regarded as the lowest possible temperature of the hole. From the point of view of a distant observer at rest with respect to the hole the characteristic temperature $T_C$ corresponds to the Hawking temperature of the hole.

  5. Queueing phase transition: theory of translation.

    Science.gov (United States)

    Romano, M Carmen; Thiel, Marco; Stansfield, Ian; Grebogi, Celso

    2009-05-15

    We study the current of particles on a lattice, where to each site a different hopping probability has been associated and the particles can move only in one direction. We show that the queueing of the particles behind a slow site can lead to a first-order phase transition, and derive analytical expressions for the configuration of slow sites for this to happen. We apply this stochastic model to describe the translation of mRNAs. We show that the first-order phase transition, uncovered in this work, is the process responsible for the classification of the proteins having different biological functions.

  6. Fluctuations near the deconfinement phase transition boundary

    CERN Document Server

    Mishustin, I N

    2005-01-01

    In this talk I discuss how a first order phase transition may proceed in rapidly expanding partonic matter produced in a relativistic heavy-ion collision. The resulting picture is that a strong collective flow of matter will lead to the fragmentation of a metastable phase into droplets. If the transition from quark-gluon plasma to hadron gas is of the first order, it will manifest itself by strong nonstatistical fluctuations in observable hadron distributions. I discuss shortly existing experimental data on the multiplicity fluctuations.

  7. Resolution of α-cyclohexyl-mandelic acid enantiomers by two-phase (O/W) recognition chiral extraction

    Institute of Scientific and Technical Information of China (English)

    TANG; KeWen; ZHANG; GuoLi; HUANG; KeLong; LI; Yuanjian; YI; JianMin

    2007-01-01

    This paper presents a new chiral separation technology: two-phase (O/W) recognition chiral extraction. Distribution behavior of α-cyclohexyl-mandelic acid enantiomers was studied in the extraction system with D(L)-isobutyl tartrate in 1,2-dichloroethane organic phase and β-CD derivatives in aqueous phase, and the influence of the kind and concentration of extractant and pH on extraction performance was investigated. The experimental results indicate that two-phase (O/W) recognition chiral extraction is of strong chiral separation ability. HP-β-CD, HE-β-CD and Me-β-CD have higher recognition ability for S-CHMA than that for R-CHMA, among which HP-β-CD has the strongest ability; whereas, D-isobutyl tartrate has reversed recognition ability for them. In the extraction system containing HP-β-CD and D-isobutyl tartrate, e.e.% of S-CHMA in aqueous phase reached 27.6% by one stage extraction, and the distribution ratio for R-CHMA(kR) and for S-CHMA(kS) and separation factor (α) are 2.44, 0.89 and 2.49, respectively. Meanwhile, pH and concentration of extractant have great effects on chiral separation ability. Two-phase (O/W) recognition chiral extraction has great significance for preparative separation of racemic compounds.

  8. Density functional calculations on electronic circular dichroism spectra of chiral transition metal complexes.

    Science.gov (United States)

    Autschbach, Jochen; Jorge, Francisco E; Ziegler, Tom

    2003-05-05

    Time-dependent density functional theory (TD-DFT) has for the first time been applied to the computation of circular dichroism (CD) spectra of transition metal complexes, and a detailed comparison with experimental spectra has been made. Absorption spectra are also reported. Various Co(III) complexes as well as [Rh(en)(3)](3+) are studied in this work. The resulting simulated CD spectra are generally in good agreement with experimental spectra after corrections for systematic errors in a few of the lowest excitation energies are applied. This allows for an interpretation and assignment of the spectra for the whole experimentally accessible energy range (UV/vis). Solvent effects on the excitations are estimated via inclusion of a continuum solvent model. This significantly improves the computed excitation energies for charge-transfer bands for complexes of charge +3, but has only a small effect on those for neutral or singly charged complexes. The energies of the weak d-to-d transitions of the Co complexes are systematically overestimated due to deficiencies of the density functionals. These errors are much smaller for the 4d metal complex. Taking these systematic errors and the effect of a solvent into consideration, TD-DFT computations are demonstrated to be a reliable tool in order to assist with the assignment and interpretation of CD spectra of chiral transition metal complexes.

  9. Water-Soluble Phosphine-Protected Au₁₁ Clusters: Synthesis, Electronic Structure, and Chiral Phase Transfer in a Synergistic Fashion.

    Science.gov (United States)

    Yao, Hiroshi; Iwatsu, Mana

    2016-04-05

    Synthesis of atomically precise, water-soluble phosphine-protected gold clusters is still currently limited probably due to a stability issue. We here present the synthesis, magic-number isolation, and exploration of the electronic structures as well as the asymmetric conversion of triphenylphosphine monosulfonate (TPPS)-protected gold clusters. Electrospray ionization mass spectrometry and elemental analysis result in the primary formation of Au11(TPPS)9Cl undecagold cluster compound. Magnetic circular dichroism (MCD) spectroscopy clarifies that extremely weak transitions are present in the low-energy region unresolved in the UV-vis absorption, which can be due to the Faraday B-terms based on the magnetically allowed transitions in the cluster. Asymmetric conversion without changing the nuclearity is remarkable by the chiral phase transfer in a synergistic fashion, which yields a rather small anisotropy factor (g-factor) of at most (2.5-7.0) × 10(-5). Quantum chemical calculations for model undecagold cluster compounds are then used to evaluate the optical and chiroptical responses induced by the chiral phase transfer. On this basis, we find that the Au core distortion is ignorable, and the chiral ion-pairing causes a slight increase in the CD response of the Au11 cluster.

  10. Endpoint of the hot electroweak phase transition

    CERN Document Server

    Csikor, Ferenc; Heitger, J

    1999-01-01

    We give the nonperturbative phase diagram of the four-dimensional hot electroweak phase transition. The Monte-Carlo analysis is done on lattices with different lattice spacings ($a$). A systematic extrapolation $a \\to 0$ is done. Our results show that the finite temperature SU(2)-Higgs phase transition is of first order for Higgs-boson masses $m_H<66.5 \\pm 1.4$ GeV. At this endpoint the phase transition is of second order, whereas above it only a rapid cross-over can be seen. The full four-dimensional result agrees completely with that of the dimensional reduction approximation. This fact is of particular importance, because it indicates that the fermionic sector of the Standard Model can be included perturbatively. We obtain that the Higgs-boson endpoint mass in the Standard Model is $72.4 \\pm 1.7$ GeV. Taking into account the LEP Higgs-boson mass lower bound excludes any electroweak phase transition in the Standard Model.

  11. Transition to turbulence in pipe flow as a phase transition

    Science.gov (United States)

    Vasudevan, Mukund; Hof, Björn

    2015-11-01

    In pipe flow, turbulence first arises in the form of localized turbulent patches called puffs. The flow undergoes a transition to sustained turbulence via spatio-temporal intermittency, with puffs splitting, decaying and merging in the background laminar flow. However, the due to mean advection of the puffs and the long timescales involved (~107 advective time units), it is not possible to study the transition in typical laboratory set-ups. So far, it has only been possible to indirectly estimate the critical point for the transition. Here, we exploit the stochastic memoryless nature of the puff decay and splitting processes to construct a pipe flow set-up, that is periodic in a statistical sense. It then becomes possible to study the flow for sufficiently long times and characterize the transition in detail. We present measurements of the turbulent fraction as a function of Reynolds number which in turn allows a direct estimate of the critical point. We present evidence that the transition has features of a phase transition of second order.

  12. Chiral stationary phases based on chitosan bis(methylphenylcarbamate)-(isobutyrylamide) for high-performance liquid chromatography.

    Science.gov (United States)

    Tang, Sheng; Bin, Qin; Chen, Wei; Bai, Zheng-Wu; Huang, Shao-Hua

    2016-04-01

    A series of chitosan bis(methylphenylcarbamate)-(isobutyrylamide) derivatives were synthesized by carbamylating chitosan isobutyrylamide with different methylphenyl isocyanates. Then the prepared chitosan derivatives were coated onto 3-aminopropyl silica particles, resulting in a series of new chiral stationary phases (CSPs) for high-performance liquid chromatography. It was observed that the chiral recognition abilities of these coated-type CSPs depended very much on the substituents on the phenyl moieties of the chitosan derivatives, the eluent composition, as well as the structure of racemates. As a typical example, the eluent tolerance of the prepared CSP with the best enantioseparation ability was investigated in detail, and the results revealed that the CSP exhibited extraordinary solvent tolerance and could still work without significant loss in enantioseparation capability after being flushed with chloroform (100%), ethyl acetate (100%) and even THF/n-hexane (70/30, v/v), while the traditional coated-type CSPs based on the cellulose and amylose derivatives, such as cellulose tris(3,5-dimethylphenylcarbamate) (CDMPC) and amylose tris(3,5-dimethylphenylcarbamate) (ADMPC), might be dissolved or highly swollen in these eluents. Therefore, the application of the resultant CSPs could address the problem of the dissolution and high swelling of traditional coated-type CSPs in some unusual eluents, broadening the possibility of eluent choice. In addition, a comparison of the prepared CSPs with the well known CDMPC- and ADMPC- based CSPs concerning the chiral recognition ability was also made. Separation performances achieved on the as-prepared CSPs in different eluents were found to be even superior to CDMPC- and ADMPC-based CSPs for the tested chiral compounds. In summary, we could safely draw the conclusion that the CSPs derived from chitosan isobutyrylamide derivatives were capable of excellent chiral recognition ability, and meanwhile possessed satisfactory

  13. SU(3) Polyakov linear-σ model in magnetic fields: Thermodynamics, higher-order moments, chiral phase structure, and meson masses

    Science.gov (United States)

    Tawfik, Abdel Nasser; Magdy, Niseem

    2015-01-01

    Effects of an external magnetic field on various properties of quantum chromodynamics (QCD) matter under extreme conditions of temperature and density (chemical potential) have been analyzed. To this end, we use SU(3) Polyakov linear-σ model and assume that the external magnetic field (e B ) adds some restrictions to the quarks' energy due to the existence of free charges in the plasma phase. In doing this, we apply the Landau theory of quantization, which assumes that the cyclotron orbits of charged particles in a magnetic field should be quantized. This requires an additional temperature to drive the system through the chiral phase transition. Accordingly, the dependence of the critical temperature of chiral and confinement phase transitions on the magnetic field is characterized. Based on this, we have studied the thermal evolution of thermodynamic quantities (energy density and trace anomaly) and the first four higher-order moment of particle multiplicity. Having all these calculations, we have studied the effects of the magnetic field on the chiral phase transition. We found that both critical temperature Tc and critical chemical potential increase with increasing magnetic field, e B . Last but not least, the magnetic effects of the thermal evolution of four scalar and four pseudoscalar meson states are studied. We concluded that the meson masses decrease as the temperature increases up to Tc. Then, the vacuum effect becomes dominant and rapidly increases with the temperature T . At low T , the scalar meson masses normalized to the lowest Matsubara frequency rapidly decrease as T increases. Then, starting from Tc, we find that the thermal dependence almost vanishes. Furthermore, the meson masses increase with increasing magnetic field. This gives a characteristic phase diagram of T vs external magnetic field e B . At high T , we find that the masses of almost all meson states become temperature independent. It is worthwhile to highlight that the various meson

  14. Oriented circular dichroism analysis of chiral surface-anchored metal-organic frameworks grown by liquid-phase epitaxy and upon loading with chiral guest compounds

    KAUST Repository

    Gu, Zhigang

    2014-06-17

    Oriented circular dichroism (OCD) is explored and successfully applied to investigate chiral surface-anchored metal-organic frameworks (SURMOFs) based on camphoric acid (D- and Lcam) with the composition [Cu2(Dcam) 2x(Lcam)2-2x(dabco)]n (dabco=1,4-diazabicyclo- [2.2.2]-octane). The three-dimensional chiral SURMOFs with high-quality orientation were grown on quartz glass plates by using a layer-by-layer liquid-phase epitaxy method. The growth orientation, as determined by X-ray diffraction (XRD), could be switched between the [001] and [110] direction by using either OH- or COOH-terminated substrates. These SURMOFs were characterized by using OCD, which confirmed the ratio as well as the orientation of the enantiomeric linker molecules. Theoretical computations demonstrate that the OCD band intensities of the enantiopure [Cu2(Dcam)2(dabco)] n grown in different orientations are a direct result of the anisotropic nature of the chiral SURMOFs. Finally, the enantiopure [Cu 2(Dcam)2(dabco)]n and [Cu2(Lcam) 2(dabco)]n SURMOFs were loaded with the two chiral forms of ethyl lactate [(+)-ethyl-D-lactate and (-)-ethyl-L-lactate)]. An enantioselective enrichment of >60 % was observed by OCD when the chiral host scaffold was loaded from the racemic mixture. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Liquid gas phase transition in hypernuclei

    CERN Document Server

    Mallik, S

    2016-01-01

    The fragmentation of excited hypernuclear system formed in heavy ion collisions has been described by the canonical thermodynamical model extended to three component systems. The multiplicity distribution of the fragments has been analyzed in detail and it has been observed that the hyperons have the tendency to get attached to the heavier fragments. Another important observation is the phase coexistence of the hyperons, a phenomenon which is linked to liquid gas phase transition in strange matter.

  16. Phase transition in the SRG flow of nuclear interactions

    CERN Document Server

    Timoteo, Varese S; Szpigel, S

    2016-01-01

    We use a chiral interaction at N3LO in the 1S0 channel of the nucleon- nucleon interaction in order to investigate the on-shell transition along the similarity renormalization group flow towards the infrared limit. We find a crossover at a scale that depends on the number of grid points used to discretise the momentum space.

  17. Chiral separation of cathinone and amphetamine derivatives by HPLC/UV using sulfated ß-cyclodextrin as chiral mobile phase additive.

    Science.gov (United States)

    Taschwer, Magdalena; Seidl, Yvonne; Mohr, Stefan; Schmid, Martin G

    2014-08-01

    In the last years the identification of new legal and illegal highs has become a huge challenge for the police and prosecution authorities. In an analytical context, only a few analytical methods are available to identify these new substances. Moreover, many of these recreational drugs are chiral and it is supposed that the enantiomers differ in their pharmacological potency. Since nonenantioselective synthesis is easier and cheaper, they are mainly sold as racemic mixtures. The goal of this research work was to develop an inexpensive method for the chiral separation of cathinones and amphetamines. This should help to discover if the substances are sold as racemic mixtures and give further information about their quality as well as their origin. Chiral separation of a set of 6 amphetamine and 25 cathinone derivatives, mainly purchased from various Internet shops, is presented. A LiChrospher 100 RP-18e, 250 x 4 mm, 5 µm served as the stationary phase. The chiral mobile phase consisted of methanol, water, and sulfated ß-cyclodextrin. Measurements were performed under isocratic conditions in reversed phase mode using UV detection. Four model compounds of the two substance classes were used to optimize the mobile phase. Under final conditions (methanol:water 2.5:97.5 + 2% sulfated ß-cyclodextrin) enantiomers of amphetamine and five derivatives were baseline separated within 23 min. In all, 17 cathinones were completely or partially chirally separated. However, as only 3 of 25 cathinones were baseline resolved, the application of this method is limited for cathinone analogs. Additionally, the results were compared with an RP-8e column.

  18. Asymmetric cyclopropanation of chalcones using chiral phase-transfer catalysts

    OpenAIRE

    2013-01-01

    The first phase-transfer catalyzed cyclopropanation reaction of chalcones using bromomalonates as the nucleophiles in a Michael Initiated Ring Closing reaction (MIRC) was developed. Key to success was the use of a free OH-containing cinchona alkaloid ammonium salt catalyst and carefully optimized liquid/liquid reaction conditions. The reaction performed well for electron neutral and electron deficient chalcones giving the products in yields up to 98% and with enantiomeric ratios up to 91:9.

  19. Chaos: Butterflies also Generate Phase Transitions

    Science.gov (United States)

    Leplaideur, Renaud

    2015-10-01

    We exhibit examples of mixing subshifts of finite type and of continuous potentials such that there are phase transitions but the pressure is always strictly convex. More surprisingly, we show that the pressure can be analytic on some interval although there exist several equilibrium states.

  20. The Structural Phase Transition in Octaflournaphtalene

    DEFF Research Database (Denmark)

    Mackenzie, Gordon A.; Arthur, J. W.; Pawley, G. S.

    1977-01-01

    The phase transition in octafluoronaphthalene has been investigated by Raman scattering and neutron powder diffraction. The weight of the experimental evidence points to a unit cell doubling in the a direction, but with no change in space group symmetry. Lattice dynamics calculations support...

  1. Problem of phase transitions in nuclear structure

    Energy Technology Data Exchange (ETDEWEB)

    Scharff-Goldhaber, G

    1980-01-01

    Phase transitions between rotational and vibrational nuclei are discussed from the point of view of the variable moment of inertia model. A three-dimensional plot of the ground-state moments of inertia of even-even nuclei vs N and Z is shown. 3 figures. (RWR)

  2. Caloric materials near ferroic phase transitions

    Science.gov (United States)

    Moya, X.; Kar-Narayan, S.; Mathur, N. D.

    2014-05-01

    A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.

  3. Higgs Couplings and Electroweak Phase Transition

    CERN Document Server

    Katz, Andrey

    2014-01-01

    We argue that extensions of the Standard Model (SM) with a strongly first-order electroweak phase transition generically predict significant deviations of the Higgs couplings to gluons, photons, and Z bosons from their SM values. Precise experimental measurements of the Higgs couplings at the LHC and at the proposed next-generation facilities will allow for a robust test of the phase transition dynamics. To illustrate this point, in this paper we focus on the scenario in which loops of a new scalar field are responsible for the first-order phase transition, and study a selection of benchmark models with various SM gauge quantum numbers of the new scalar. We find that the current LHC measurement of the Higgs coupling to gluons already excludes the possibility of a first-order phase transition induced by a scalar in a sextet, or larger, representation of the SU(3)_c. Future LHC experiments (including HL-LHC) will be able to definitively probe the case when the new scalar is a color triplet. If the new scalar is...

  4. Passive Supporters of Terrorism and Phase Transitions

    CERN Document Server

    August, Friedrich; Delitzscher, Sascha; Hiller, Gerald; Krueger, Tyll

    2010-01-01

    We discuss some social contagion processes to describe the formation and spread of radical opinions. The dynamics of opinion spread involves local threshold processes as well as mean field effects. We calculate and observe phase transitions in the dynamical variables resulting in a rapidly increasing number of passive supporters. This strongly indicates that military solutions are inappropriate.

  5. Hysteresis in the phase transition of chocolate

    Science.gov (United States)

    Ren, Ruilong; Lu, Qunfeng; Lin, Sihua; Dong, Xiaoyan; Fu, Hao; Wu, Shaoyi; Wu, Minghe; Teng, Baohua

    2016-01-01

    We designed an experiment to reproduce the hysteresis phenomenon of chocolate appearing in the heating and cooling process, and then established a model to relate the solidification degree to the order parameter. Based on the Landau-Devonshire theory, our model gave a description of the hysteresis phenomenon in chocolate, which lays the foundations for the study of the phase transition behavior of chocolate.

  6. The transition to chaotic phase synchronization

    DEFF Research Database (Denmark)

    Mosekilde, E.; Laugesen, J. L.; Zhusubaliyev, Zh. T.

    2012-01-01

    The transition to chaotic phase synchronization for a periodically driven spiral-type chaotic oscillator is known to involve a dense set of saddle-node bifurcations. By following the synchronization transition through the cascade of period-doubling bifurcations in a forced Ro¨ssler system......, this paper describes how these saddle-node bifurcations arise and how their characteristic cyclic organisation develops. We identify the cycles that are involved in the various saddle-node bifurcations and describe how the formation of multi-layered resonance cycles in the synchronization domain is related...... varying arterial blood pressure. The paper finally discusses how an alternative transition to chaotic phase synchronization may occur in the mutual synchronization of two chaotically oscillating period-doubling systems....

  7. New studies on molecular chirality in the gas phase: enantiomer differentiation and determination of enantiomeric excess.

    Science.gov (United States)

    Patterson, David; Schnell, Melanie

    2014-06-21

    Chirality plays a fundamental role in the activity of biological molecules and broad classes of chemical reactions. The chemistry of life is built almost exclusively on left-handed amino acids and right-handed sugars, a phenomenon known as "homochirality of life". Furthermore, most drugs developed in the last decade are of specified chirality. Thus, fast and reliable methods that can differentiate molecules of different handedness, determine the enantiomeric excess of even molecular mixtures, and allow for an unambiguous determination of molecular handedness are of great interest, in particular with respect to complex mixtures. In this perspective article, we discuss the recent developments, with an emphasis on modern spectroscopic methods using gas-phase samples, such as photoelectron circular dichroism, Coulomb explosion imaging, and microwave three-wave mixing.

  8. Dimensional phase transitions in small Yukawa clusters

    CERN Document Server

    Sheridan, T E

    2009-01-01

    We investigate the one- to two-dimensional zigzag transition in clusters consisting of a small number of particles interacting through a Yukawa (Debye) potential and confined in a two-dimensional biharmonic potential well. Dusty (complex) plasma clusters with $n \\le 19$ monodisperse particles are characterized experimentally for two different confining wells. The well anisotropy is accurately measured, and the Debye shielding parameter is determined from the longitudinal breathing frequency. Debye shielding is shown to be important. A model for this system is used to predict equilibrium particle configurations. The experiment and model exhibit excellent agreement. The critical value of $n$ for the zigzag transition is found to be less than that predicted for an unshielded Coulomb interaction. The zigzag transition is shown to behave as a continuous phase transition from a one-dimensional to a two-dimensional state, where the state variables are the number of particles, the well anisotropy and the Debye shield...

  9. Phase transition to QGP matter : confined vs deconfined matter

    CERN Multimedia

    Maire, Antonin

    2015-01-01

    Simplified phase diagram of the nuclear phase transition, from the regular hadronic matter to the QGP phase. The sketch is meant to describe the transition foreseen along the temperature axis, at low baryochemical potential, µB.

  10. Phase transitions in Pareto optimal complex networks

    CERN Document Server

    Seoane, Luís F

    2015-01-01

    The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem finding phase transitions of different kinds. Distinct phases are associated to different arrangements of the connections; but the need of drastic topological changes does not determine the presence, nor the nature of the phase transit...

  11. Phase transition – Break down the walls

    DEFF Research Database (Denmark)

    Wandahl, Søren

    2012-01-01

    -phase issues of the construction process. This research first identifies the problems theoretically, and looks into which framework to be used in understanding of the phase transition problem. This combined with data from interviews reveal 8 major issues in phase transition, which decrease the value....... In a popular term this problem is often called “over the wall syndrome”. The manufacturing industry has worked with this for many years, in e.g. integrated product development, concurrent engineering, supply chain management, etc. Now the construction industry needs to focus more on these crucial inter...... tender often is limited due to regulations. Therefore, contractors miss a large amount of non-operational information, and the client and his consulting engineers never mange to share their tacit knowledge of project preconditions....

  12. Phase diagrams and kinetics of phase transitions in protein solutions.

    Science.gov (United States)

    Vekilov, Peter G

    2012-05-16

    The phase behavior of proteins is of interest for fundamental and practical reasons. The nucleation of new phases is one of the last major unresolved problems of nature. The formation of protein condensed phases (crystals, polymers, and other solid aggregates, as well as dense liquids and gels) underlies pathological conditions, plays a crucial role in the biological function of the respective protein, or is an essential part of laboratory and industrial processes. In this review, we focus on phase transitions of proteins in their properly folded state. We first summarize the recently acquired understanding of physical processes underlying the phase diagrams of the protein solutions and the thermodynamics of protein phase transitions. Then we review recent findings on the kinetics of nucleation of dense liquid droplets and crystals. We explore the transition from nucleation to spinodal decomposition for liquid-liquid separation and introduce the new concept of solution-to-crystal spinodal. We review the two-step mechanism of protein crystal nucleation, in which mesoscopic metastable protein clusters serve as precursors to the ordered crystal nuclei. The concepts and mechanisms reviewed here provide powerful tools for control of the nucleation process by varying the solution thermodynamic parameters.

  13. Relation Between Chiral Susceptibility and Solutions of Gap Equation in Nambu--Jona-Lasinio Model

    CERN Document Server

    Zhao, Y; Liu, Y; Yuan, W; Chang, Lei; Liu, Yu-xin; Yuan, Wei; Zhao, Yue

    2006-01-01

    We study the solutions of the gap equation, the thermodynamic potential and the chiral susceptibility in and beyond the chiral limit at finite chemical potential in the Nambu--Jona-Lasinio (NJL) model. We give an explicit relation between the chiral susceptibility and the thermodynamic potential in the NJL model. We find that the chiral susceptibility is a quantity being able to represent the furcation of the solutions of the gap equation and the concavo-convexity of the thermodynamic potential in NJL model. It indicates that the chiral susceptibility can identify the stable state and the possibility of the chiral phase transition in NJL model.

  14. The comfortable driving model revisited: Traffic phases and phase transitions

    CERN Document Server

    Knorr, Florian

    2013-01-01

    We study the spatiotemporal patterns resulting from different boundary conditions for a microscopic traffic model and contrast it with empirical results. By evaluating the time series of local measurements, the local traffic states are assigned to the different traffic phases of Kerner's three-phase traffic theory. For this classification we use the rule-based FOTO-method, which provides `hard' rules for this assignment. Using this approach, our analysis shows that the model is indeed able to reproduce three qualitatively different traffic phases: free flow (F), synchronized traffic (S), and wide moving jams (J). In addition, we investigate the likelihood of transitions between the three traffic phases. We show that a transition from free flow (F) to a wide moving jam (J) often involves an intermediate transition; first from free flow F to synchronized flow S and then from synchronized flow to a wide moving jam. This is supported by the fact that the so called F->S transition (from free flow to synchronized t...

  15. Phase transitions in Pareto optimal complex networks.

    Science.gov (United States)

    Seoane, Luís F; Solé, Ricard

    2015-09-01

    The organization of interactions in complex systems can be described by networks connecting different units. These graphs are useful representations of the local and global complexity of the underlying systems. The origin of their topological structure can be diverse, resulting from different mechanisms including multiplicative processes and optimization. In spatial networks or in graphs where cost constraints are at work, as it occurs in a plethora of situations from power grids to the wiring of neurons in the brain, optimization plays an important part in shaping their organization. In this paper we study network designs resulting from a Pareto optimization process, where different simultaneous constraints are the targets of selection. We analyze three variations on a problem, finding phase transitions of different kinds. Distinct phases are associated with different arrangements of the connections, but the need of drastic topological changes does not determine the presence or the nature of the phase transitions encountered. Instead, the functions under optimization do play a determinant role. This reinforces the view that phase transitions do not arise from intrinsic properties of a system alone, but from the interplay of that system with its external constraints.

  16. Remote Control of the Planar Chirality in Peptide-Bound Metallomacrocycles and Dynamic-to-Static Planar Chirality Control Triggered by Solvent-Induced 3(10)-to-α-Helix Transitions.

    Science.gov (United States)

    Mamiya, Fumihiko; Ousaka, Naoki; Yashima, Eiji

    2015-11-23

    The dynamic planar chirality in a peptide-bound Ni(II)-salphen-based macrocycle can be remotely controlled. First, a right-handed (P)-3(10)-helix is induced in the dynamic helical oligopeptides by a chiral amino acid residue far from the macrocyclic framework. The induced planar chirality remains dynamic in chloroform and acetonitrile, but is almost completely locked in fluoroalcohols as a result of the solvent-induced transition of the peptide chains from a 3(10)-helix to a wider α-helix, which freezes the rotation of the pendant peptide units around the macrocycle.

  17. Liquid chromatography with mass spectrometry enantioseparation of pomalidomide on cyclodextrin-bonded chiral stationary phases and the elucidation of the chiral recognition mechanisms by NMR spectroscopy and molecular modeling.

    Science.gov (United States)

    Szabó, Zoltán-István; Szőcs, Levente; Horváth, Péter; Komjáti, Balázs; Nagy, József; Jánoska, Ádám; Muntean, Daniela-Lucia; Noszál, Béla; Tóth, Gergő

    2016-08-01

    A sensitive and validated liquid chromatography with mass spectrometry method was developed for the enantioseparation of the racemic mixture of pomalidomide, a novel, second-generation immunomodulatory drug, using β-cyclodextrin-bonded stationary phases. Four cyclodextrin columns (β-, hydroxypropyl-β-, carboxymethyl-β-, and sulfobutyl-β-cyclodextrin) were screened and the effects of eluent composition, flow rate, temperature, and organic modifier on enantioseparation were studied. Optimized parameters, offering baseline separation (resolution = 2.70 ± 0.02) were the following: β-cyclodextrin stationary phase, thermostatted at 15°C, and mobile phase consisting of methanol/0.1% acetic acid 10:90 v/v, delivered with 0.8 mL/min flow rate. For the optimized parameter at multiple reaction monitoring mode 274.1-201.0 transition with 20 eV collision energy and 100 V fragmentor voltage the limit of detection and limit of quantitation were 0.75 and 2.00 ng/mL, respectively. Since enantiopure standards were not available, elution order was determined upon comparison of the circular dichroism signals of the separated pomalidomide enantiomers with that of enantiopure thalidomide. The mechanisms underlying the chiral discrimination between the enantiomers were also investigated. Pomalidomide-β-cyclodextrin inclusion complex was characterized using nuclear magnetic resonance spectroscopy and molecular modeling. The thermodynamic aspects of chiral separation were also studied.

  18. The Next Generation Transit Survey - Prototyping Phase

    CERN Document Server

    McCormac, James; Wheatley, Peter; West, Richard; Walker, Simon; Bento, Joao; Skillen, Ian; Faedi, Francesca; Burleigh, Matt; Casewell, Sarah; Chazelas, Bruno; Genolet, Ludovic; Gibson, Neale; Goad, Mike; Lawrie, Katherine; Ryans, Robert; Todd, Ian; Udry, Stephan; Watson, Christopher

    2016-01-01

    We present the prototype telescope for the Next Generation Transit Survey, which was built in the UK in 2008/09 and tested on La Palma in the Canary Islands in 2010. The goals for the prototype system were severalfold: to determine the level of systematic noise in an NGTS-like system; demonstrate that we can perform photometry at the (sub) millimagnitude level on transit timescales across a wide field; show that it is possible to detect transiting super-Earth and Neptune-sized exoplanets and prove the technical feasibility of the proposed planet survey. We tested the system for around 100 nights and met each of the goals above. Several key areas for improvement were highlighted during the prototyping phase. They have been subsequently addressed in the final NGTS facility which was recently commissioned at ESO Cerro Paranal, Chile.

  19. A nonequilibrium phase transition in immune response

    Institute of Scientific and Technical Information of China (English)

    Zhang Wei; Qi An-Shen

    2004-01-01

    The dynamics of immune response correlated to signal transduction in immune thymic cells (T cells) is studied.In particular, the problem of the phosphorylation of the immune-receptor tyrosine-based activation motifs (ITAM) is explored. A nonlinear model is established on the basis of experimental observations. The behaviours of the model can be well analysed using the concepts of nonequilibrium phase transitions. In addition, the Riemann-Hugoniot cusp catastrophe is demonstrated by the model. Due to the application of the theory of nonequilibrium phase transitions,the biological phenomena can be clarified more precisely. The results can also be used to further explain the signal transduction and signal discrimination of an important type of immune T cell.

  20. Phase transition in the countdown problem

    Science.gov (United States)

    Lacasa, Lucas; Luque, Bartolo

    2012-07-01

    We present a combinatorial decision problem, inspired by the celebrated quiz show called Countdown, that involves the computation of a given target number T from a set of k randomly chosen integers along with a set of arithmetic operations. We find that the probability of winning the game evidences a threshold phenomenon that can be understood in the terms of an algorithmic phase transition as a function of the set size k. Numerical simulations show that such probability sharply transitions from zero to one at some critical value of the control parameter, hence separating the algorithm's parameter space in different phases. We also find that the system is maximally efficient close to the critical point. We derive analytical expressions that match the numerical results for finite size and permit us to extrapolate the behavior in the thermodynamic limit.

  1. Holographic phase transitions at finite chemical potential

    Science.gov (United States)

    Mateos, David; Matsuura, Shunji; Myers, Robert C.; Thomson, Rowan M.

    2007-11-01

    Recently, holographic techniques have been used to study the thermal properties of Script N = 2 super-Yang-Mills theory, with gauge group SU(Nc) and coupled to Nf coupling. Here we consider the phase diagram as a function of temperature and baryon chemical potential μb. For fixed μb transitions separating a region with vanishing baryon density and one with nonzero density. For fixed μb>Nc Mq there is no phase transition as a function of the temperature and the baryon density is always nonzero. We also compare the present results for the grand canonical ensemble with those for canonical ensemble in which the baryon density is held fixed [1].

  2. Nonequilibrium phase transitions in biomolecular signal transduction

    Science.gov (United States)

    Smith, Eric; Krishnamurthy, Supriya; Fontana, Walter; Krakauer, David

    2011-11-01

    We study a mechanism for reliable switching in biomolecular signal-transduction cascades. Steady bistable states are created by system-size cooperative effects in populations of proteins, in spite of the fact that the phosphorylation-state transitions of any molecule, by means of which the switch is implemented, are highly stochastic. The emergence of switching is a nonequilibrium phase transition in an energetically driven, dissipative system described by a master equation. We use operator and functional integral methods from reaction-diffusion theory to solve for the phase structure, noise spectrum, and escape trajectories and first-passage times of a class of minimal models of switches, showing how all critical properties for switch behavior can be computed within a unified framework.

  3. Extracellular ice phase transitions in insects.

    Science.gov (United States)

    Hawes, T C

    2014-01-01

    At temperatures below their temperature of crystallization (Tc), the extracellular body fluids of insects undergo a phase transition from liquid to solid. Insects that survive the transition to equilibrium (complete freezing of the body fluids) are designated as freeze tolerant. Although this phenomenon has been reported and described in many Insecta, current nomenclature and theory does not clearly delineate between the process of transition (freezing) and the final solid phase itself (the frozen state). Thus freeze tolerant insects are currently, by convention, described in terms of the temperature at which the crystallization of their body fluids is initiated, Tc. In fact, the correct descriptor for insects that tolerate freezing is the temperature of equilibrium freezing, Tef. The process of freezing is itself a separate physical event with unique physiological stresses that are associated with ice growth. Correspondingly there are a number of insects whose physiological cryo-limits are very specifically delineated by this transitional envelope. The distinction also has considerable significance for our understanding of insect cryobiology: firstly, because the ability to manage endogenous ice growth is a fundamental segregator of cryotype; and secondly, because our understanding of internal ice management is still largely nascent.

  4. Holographic phase transitions at finite chemical potential

    CERN Document Server

    Mateos, David; Myers, Robert C; Thomson, Rowan M

    2007-01-01

    Recently holographic techniques have been used to study the thermal properties of N=2 SYM theory, with gauge group SU(Nc) and coupled to Nf Nc Mq there is no phase transition as a function of the temperature and the baryon density is always nonzero. We also compare the present results for the grand canonical ensemble with those for canonical ensemble in which the baryon density is held fixed [1].

  5. Quantum phase transitions in constrained Bose systems

    OpenAIRE

    Bonnes, Lars

    2011-01-01

    This doctoral thesis studies low dimensional quantum systems that can be realized in recent cold atom experiments. From the viewpoint of quantum statistical mechanics, the main emphasis is on the detailed study of the different quantum and thermal phases and their transitions using numerical methods, such as quantum Monte Carlo and the Tensor Network Renormalization Group. The first part of this work deals with a lattice Boson model subject to strong three-body losses. In a quantum-Zeno li...

  6. Recent theoretical advances on superradiant phase transitions

    Science.gov (United States)

    Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano

    2013-03-01

    The Dicke model describing a single-mode boson field coupled to two-level systems is an important paradigm in quantum optics. In particular, the physics of ``superradiant phase transitions'' in the ultrastrong coupling regime is the subject of a vigorous research activity in both cavity and circuit QED. Recently, we explored the rich physics of two interesting generalizations of the Dicke model: (i) A model describing the coupling of a boson mode to two independent chains A and B of two-level systems, where chain A is coupled to one quadrature of the boson field and chain B to the orthogonal quadrature. This original model leads to a quantum phase transition with a double symmetry breaking and a fourfold ground state degeneracy. (ii) A generalized Dicke model with three-level systems including the diamagnetic term. In contrast to the case of two-level atoms for which no-go theorems exist, in the case of three-level system we prove that the Thomas-Reich-Kuhn sum rule does not always prevent a superradiant phase transition.

  7. Superconducting phase transition in STM tips

    Energy Technology Data Exchange (ETDEWEB)

    Eltschka, Matthias; Jaeck, Berthold; Assig, Maximilian; Etzkorn, Markus; Ast, Christian R. [Max Planck Institute for Solid State Research, Stuttgart (Germany); Kern, Klaus [Max Planck Institute for Solid State Research, Stuttgart (Germany); Ecole Polytechnique Federale de Lausanne (Switzerland)

    2015-07-01

    The superconducting properties of systems with dimensions comparable to the London penetration depth considerably differ from macroscopic systems. We have studied the superconducting phase transition of vanadium STM tips in external magnetic fields. Employing Maki's theory we extract the superconducting parameters such as the gap or the Zeeman splitting from differential conductance spectra. While the Zeeman splitting follows the theoretical description of a system with s=1/2 and g=2, the superconducting gaps as well as the critical fields depend on the specific tip. For a better understanding of the experimental results, we solve a one dimensional Usadel equation modeling the superconducting tip as a cone with the opening angle α in an external magnetic field. We find that only a small region at the apex of the tip is superconducting in high magnetic fields and that the order of the phase transition is directly determined by α. Further, the spectral broadening increases with α indicating an intrinsic broadening mechanism due to the conical shape of the tip. Comparing these calculations to our experimental results reveals the order of the superconducting phase transition of the STM tips.

  8. Dynamical quantum phase transitions (Review Article)

    Science.gov (United States)

    Zvyagin, A. A.

    2016-11-01

    During recent years the interest to dynamics of quantum systems has grown considerably. Quantum many body systems out of equilibrium often manifest behavior, different from the one predicted by standard statistical mechanics and thermodynamics in equilibrium. Since the dynamics of a many-body quantum system typically involve many excited eigenstates, with a non-thermal distribution, the time evolution of such a system provides an unique way for investigation of non-equilibrium quantum statistical mechanics. Last decade such new subjects like quantum quenches, thermalization, pre-thermalization, equilibration, generalized Gibbs ensemble, etc. are among the most attractive topics of investigation in modern quantum physics. One of the most interesting themes in the study of dynamics of quantum many-body systems out of equilibrium is connected with the recently proposed important concept of dynamical quantum phase transitions. During the last few years a great progress has been achieved in studying of those singularities in the time dependence of characteristics of quantum mechanical systems, in particular, in understanding how the quantum critical points of equilibrium thermodynamics affect their dynamical properties. Dynamical quantum phase transitions reveal universality, scaling, connection to the topology, and many other interesting features. Here we review the recent achievements of this quickly developing part of low-temperature quantum physics. The study of dynamical quantum phase transitions is especially important in context of their connection to the problem of the modern theory of quantum information, where namely non-equilibrium dynamics of many-body quantum system plays the major role.

  9. HPLC Enantioseparation of Phenylcarbamic Acid Derivatives by Using Macrocyclic Chiral Stationary Phases

    Directory of Open Access Journals (Sweden)

    Hroboňová Katarína

    2016-06-01

    Full Text Available The HPLC by using chiral stationary phases based on macrocyclic antibiotics, dimethylphenyl carbamate cyklofructan 7 and β-cyclodextrin in terms of polar-organic separation mode (mobile phase methanol/acetonitrile/acetic acid/triethylamine were used for enantioseparation of alkoxy derivatives of phenylcarbamic acid. The effect of the analyte structures on the efficiency of enantioseparation was investigated. The most suitable stationary phase was teicoplanin aglycone, where the separations of the enantiomers were obtained (the resolution value from 0.65 to 2.90, depending on the structure of the analyte. Significant effect on the resolution of the enantiomers has position of alkoxy substituent in the hydrophobic part of the molecule. The enantiorecognition was achieved for 3-alkoxysubstituted derivatives.

  10. Chiral superconductors.

    Science.gov (United States)

    Kallin, Catherine; Berlinsky, John

    2016-05-01

    Chiral superconductivity is a striking quantum phenomenon in which an unconventional superconductor spontaneously develops an angular momentum and lowers its free energy by eliminating nodes in the gap. It is a topologically non-trivial state and, as such, exhibits distinctive topological modes at surfaces and defects. In this paper we discuss the current theory and experimental results on chiral superconductors, focusing on two of the best-studied systems, Sr2RuO4, which is thought to be a chiral triplet p-wave superconductor, and UPt3, which has two low-temperature superconducting phases (in zero magnetic field), the lower of which is believed to be chiral triplet f-wave. Other systems that may exhibit chiral superconductivity are also discussed. Key signatures of chiral superconductivity are surface currents and chiral Majorana modes, Majorana states in vortex cores, and the possibility of half-flux quantum vortices in the case of triplet pairing. Experimental evidence for chiral superconductivity from μSR, NMR, strain, polar Kerr effect and Josephson tunneling experiments are discussed.

  11. Influence of Mobile Phase Composition on the Enantioseparation of Methoxyl Flavanones with Self-prepared CDMPC Column and Chiral Recognition Mechanism

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The influence of different alcohol modifiers in mobile phase on the chiral separation of 4`-methoxyl flavanone, 5-methoxyl flavanone and 6-methoxyl flavanone on cellulose tris (3, 5-dimethylphenylcarbamate) (CDMPC) column was studied and the chiral recognition mechanism was discussed. Using hexane-tert-butanol (1.31 mol L-1) as the mobile phase, those three methoxyl flavanones were excellently separated on CDMPC chiral column.

  12. Stability and Existence of Multidimensional Subsonic Phase Transitions

    Institute of Scientific and Technical Information of China (English)

    Ya-Guang Wang; Zhouping Xin

    2003-01-01

    The purpose of this paper is to prove the uniform stability of multidimensional subsonic phase transitions satisfying the viscosity-capillarity criterion in a van der Waals fluid, and further to establish the local existence of phase transition solutions.

  13. Phase transitions of ε-HNIW in compound systems

    Directory of Open Access Journals (Sweden)

    Jing-yuan Zhang

    2016-05-01

    Full Text Available The heat-induced phase transitions of ε-HNIW, both neat and coated with various additives used in plastic bonded explosives, were investigated using powder X-ray diffraction and differential scanning calorimetry. It was found that ε-HNIW, after being held at 70°C for 60h, remained in the ε-phase. Applying other conditions, various phase transition parameters were determined, including Tc (the critical phase transition temperature, T50 (the temperature at which 50% of the phase transition is complete and T180 (the percentage of γ-HNIW present in samples heated to 180°C. According to the above three parameters, additives were divided into three categories: those that delay phase transition, those that raise the critical temperature and the transition rate, and those that promote the phase transition. Based on the above data, a phase transition mechanism is proposed.

  14. [Separation mechanism of chiral stationary phase based on quinine and crown ether for the direct stereoselective separation of amino acids].

    Science.gov (United States)

    Wu, Haixia; Wang, Dongqiang; Zhao, Jianchao; Ke, Yanxiong; Liang, Xinmiao

    2016-01-01

    A novel chiral stationary phase combining quinine and crown ether (QN-CR CSP) was developed to separate amino acid enantiomers. This CSP showed good enantioselectivity for some amino acids. Since the synergistic effect of ion exchange and complexation in chiral recognition of amino acids, a new adsorption isotherm was built. Using the method of frontal analysis by characteristic point (FACP), the adsorption isotherms of tryptophan (Trp) under different mobile phase conditions were determined and fitted the proposed adsorption isotherm model well. With the increase of the competition between metal cationic and amino to crown ether, the equilibrium constant of complexing adsorption was found increased. The chiral separation ability was decreased. The adsorption isotherm improved the understanding of the retention behavior of amino acids on QN-CR CSP, which was also benefit to optimize the structure of the stationary phase.

  15. eta/s and the phase transition of the Non-Linear Sigma Model

    CERN Document Server

    Dobado, Antonio; Torres-Rincon, Juan M

    2008-01-01

    We present a calculation of eta/s for the meson gas (zero baryon number) within unitarized NLO chiral perturbation theory and confirm the observation that eta/s decreases towards the possible phase transition to a quark-gluon plasma/liquid. The value is however somewhat higher than previously estimated in LO chiPT. We then study the behavior of the viscosity over entropy density across the known second order phase transition in the Non-Linear Sigma Model, and establish that it has indeed a minimum that, within calculational uncertainties, can be identified with the phase transition. Finally we examine the case of atomic Argon gas to check the discontinuity of eta/s across a first order phase transition. Our results reinforce the possibility of employing the KSS number to pin down the phase transition and critical point to a cross-over in strongly interacting nuclear matter between the hadron gas and the quark and gluon plasma/liquid.

  16. Holography and the Electroweak Phase Transition

    CERN Document Server

    Creminelli, P; Rattazzi, Riccardo; Creminelli, Paolo; Nicolis, Alberto; Rattazzi, Riccardo

    2002-01-01

    We study through holography the compact Randall-Sundrum (RS) model at finite temperature. In the presence of radius stabilization, the system is described at low enough temperature by the RS solution. At high temperature it is described by the AdS-Schwarzshild solution with an event horizon replacing the TeV brane. We calculate the transition temperature T_c between the two phases and we find it to be somewhat smaller than the TeV scale. Assuming that the Universe starts out at T >> T_c and cools down by expansion, we study the rate of the transition to the RS phase. We find that the transition is too slow and the Universe ends up in an old inflation scenario unless tight bounds are satisfied by the model parameters. In particular we find that the AdS curvature must be comparable to the 5D Planck mass and that the radius stabilization mechanism must lead to a sizeable distortion of the basic RS metric.

  17. Second-order phase transitions of pure substances

    NARCIS (Netherlands)

    Schaftenaar, H.P.C.

    2009-01-01

    In this report we are dealing with the thermodynamic theory of second-order phase transitions or continuous transitions of unary systems. The first classification of these phase transitions is due to Ehrenfest (1933), based on chemical potentials. First-order transitions are changes in which the der

  18. The order of the chiral transition in N_f=2 QCD

    CERN Document Server

    D'Elia, M; Pica, C

    2004-01-01

    A strategy is developed to investigate the order of the transition using finite size scaling and its relation to color confinement. An in-depth numerical investigation has been performed with KS fermions on lattices with N_t=4 and N_s=12,16,20,24,32 and quark masses am_q ranging from 0.01335 to 0.35. The specific heat and a number of susceptibilities have been measured and compared with the expectation of an O(4) second order and a first order phase transition. A second order O(4) is excluded, whilst data are consistent with a first order.

  19. A resolution approach of racemic phenylalanine with aqueous two-phase systems of chiral tropine ionic liquids.

    Science.gov (United States)

    Wu, Haoran; Yao, Shun; Qian, Guofei; Yao, Tian; Song, Hang

    2015-10-30

    Aqueous two-phase systems (ATPS) based on tropine type chiral ionic liquids and inorganic salt solution were designed and prepared for the enantiomeric separation of racemic phenylalanine. The phase behavior of IL-based ATPS was comprehensive investigated, and phase equilibrium data were correlated by Merchuk equation. Various factors were also systematically investigated for their influence on separation efficiency. Under the appropriate conditions (0.13g/g [C8Tropine]pro, 35mg/g Cu(Ac)2, 20mg/g d,l-phenylalanine, 0.51g/g H2O and 0.30g/g K2HPO4), the enantiomeric excess value of phenylalanine in solid phase (mainly containing l-enantiomer) was 65%. Finally, the interaction mechanism was studied via 1D and 2D NMR. The results indicate that d-enantiomer of phenylalanine interacts more strongly with chiral ILs and Cu(2+) based on the chiral ion-pairs space coordination mechanism, which makes it tend to remain in the top IL-rich phase. By contrast, l-enantiomer is transferred into the solid phase. Above chiral ionic liquids aqueous two-phase systems have demonstrated obvious resolution to racemic phenylalanine and could be promising alterative resolution approach for racemic amino acids in aqueous circumstance.

  20. Chiral-phase high-performance liquid chromatography of rotenoid racemates

    Science.gov (United States)

    Abidi, S.L.

    1987-01-01

    The high-performance liquid chromatograhic (HPLC) behavior of parent rotenoids (type I) and the hydroxyl-analogues (type II) on three different chiral stationary phases (CSPs) was studied. Separations of optical isomers were achieved in various degrees depending largely upon the rotenoidal structures and the CSP types employed. Enantiomers of all but elliptone compounds were separable on β-cyclodextrin-bonded silica (CDS). Without exception, the 12a-hydroxyrotenoid antipodes were resolved on Pirkle's phenylglycine-bonded silica (PGS) despite unsuccessful attenmpts to resolve the type I rotenoidal racemates. Conversely, optical resolution of the latter rotenoids was accomplished by using a helical polytriphenylmethylacrylate-coated silica (TPS) column and the observed separation factors (α values) ranged from 1.14 to 1.90. The results from HPLC of type II rotenoids on TPS (α = 1.00–1.63) suggested that variations in E-ring structures had profound influence on the resolution outcome. Conjugated double bonds on the E-ring and the desisopropylation of the five-membered E-ring ot type II rotenoids appeared to be important structural features for chiral recognition involving the TPS substrate. In both reversed-phase (CDS) and normal-pahse (PGS and TPS) HPLC modes, the less polar enantiomers were the 6aβ,12aβ-rotenoids as observed in most cases, though this relationship was reversed in the cases of deguelin and hydroxyelliptone probably due to conformational effects of rotenoidal ring systems.

  1. Development and Validation of a Reversed-Phase Chiral HPLC Method to Determine the Chiral Purity of Bulk Batches of (S)-Enantiomer in Afoxolaner.

    Science.gov (United States)

    Kumar, Satish; Rustum, Abu; Padivitage, Nilusha

    2016-10-13

    Afoxolaner is a new antiparasitic molecule from the isoxazoline family that acts on insect acarine γ-aminobutyric acid and glutamate receptors. Afoxolaner is a racemic mixture, which has a chiral center at the isoxazoline ring. A reversed-phase chiral HPLC method has been developed to determine the chiral purity of bulk batches of (S)-enantiomer in afoxolaner for the first time. This method can also be used to verify that afoxolaner is a racemic mixture, which was demonstrated by specific rotation. ChromSword, an artificial intelligence method development tool, was used for initial method development. The column selected for the final method was CHIRALPAK AD-RH (150 × 4.6 mm, 5 μm particle size), maintained at 45°C, and isocratic elution using water-isopropanol-acetonitrile (40 + 50 + 10, v/v/v) as the mobile phase with a detection wavelength of 312 nm. The run time for the method was 11 min. The resolution and selectivity factors of the two enantiomers were 2.3 and 1.24, respectively. LOQ and LOD of the method were 1.6 and 0.8 μg/mL, respectively. This method was appropriately validated according to International Conference on Harmonization guidelines for its intended use.

  2. Landau Theory in the Region of First Order Phase Transitions

    Directory of Open Access Journals (Sweden)

    O.G. Medvedovskaya

    2014-04-01

    Full Text Available For the case when the line of the first order phase transitions does not transform into the line of the second order phase transitions, i.e. not as ends with the tricritical point but not with a critical one: critical lines, limiting the region of metastable states, by using the Landau theory of phase transitions were determined.

  3. Locating phase transitions in computationally hard problems

    Indian Academy of Sciences (India)

    B Ashok; T K Patra

    2010-09-01

    We discuss how phase-transitions may be detected in computationally hard problems in the context of anytime algorithms. Treating the computational time, value and utility functions involved in the search results in analogy with quantities in statistical physics, we indicate how the onset of a computationally hard regime can be detected and the transit to higher quality solutions be quantified by an appropriate response function. The existence of a dynamical critical exponent is shown, enabling one to predict the onset of critical slowing down, rather than finding it after the event, in the specific case of a travelling salesman problem (TSP). This can be used as a means of improving efficiency and speed in searches, and avoiding needless computations.

  4. Scale invariance from phase transitions to turbulence

    CERN Document Server

    Lesne, Annick

    2012-01-01

    During a century, from the Van der Waals mean field description (1874) of gases to the introduction of renormalization group (RG techniques 1970), thermodynamics and statistical physics were just unable to account for the incredible universality which was observed in numerous critical phenomena. The great success of RG techniques is not only to solve perfectly this challenge of critical behaviour in thermal transitions but to introduce extremely useful tools in a wide field of daily situations where a system exhibits scale invariance. The introduction of scaling, scale invariance and universality concepts has been a significant turn in modern physics and more generally in natural sciences. Since then, a new "physics of scaling laws and critical exponents", rooted in scaling approaches, allows quantitative descriptions of numerous phenomena, ranging from phase transitions to earthquakes, polymer conformations, heartbeat rhythm, diffusion, interface growth and roughening, DNA sequence, dynamical systems, chaos ...

  5. Phase transition in SONFIS&SORST

    CERN Document Server

    Owladeghaffari, Hamed

    2008-01-01

    In this study, we introduce general frame of MAny Connected Intelligent Particles Systems (MACIPS). Connections and interconnections between particles get a complex behavior of such merely simple system (system in system).Contribution of natural computing, under information granulation theory, are the main topics of this spacious skeleton. Upon this clue, we organize two algorithms involved a few prominent intelligent computing and approximate reasoning methods: self organizing feature map (SOM), Neuro- Fuzzy Inference System and Rough Set Theory (RST). Over this, we show how our algorithms can be taken as a linkage of government-society interaction, where government catches various fashions of behavior: solid (absolute) or flexible. So, transition of such society, by changing of connectivity parameters (noise) from order to disorder is inferred. Add to this, one may find an indirect mapping among finical systems and eventual market fluctuations with MACIPS. Keywords: phase transition, SONFIS, SORST, many con...

  6. Dynamical phase transitions in quantum mechanics

    Directory of Open Access Journals (Sweden)

    Rotter Ingrid

    2012-02-01

    Full Text Available The nucleus is described as an open many-body quantum system with a non-Hermitian Hamilton operator the eigenvalues of which are complex, in general. The eigenvalues may cross in the complex plane (exceptional points, the phases of the eigenfunctions are not rigid in approaching the crossing points and the widths bifurcate. By varying only one parameter, the eigenvalue trajectories usually avoid crossing and width bifurcation occurs at the critical value of avoided crossing. An analog spectroscopic redistribution takes place for discrete states below the particle decay threshold. By this means, a dynamical phase transition occurs in the many-level system starting at a critical value of the level density. Hence the properties of the low-lying nuclear states (described well by the shell model and those of highly excited nuclear states (described by random ensembles differ fundamentally from one another. The statement of Niels Bohr on the collective features of compound nucleus states at high level density is therefore not in contradiction to the shell-model description of nuclear (and atomic states at low level density. Dynamical phase transitions are observed experimentally in different quantum mechanical systems by varying one or two parameters.

  7. First order phase transition in finite density QCD using the modulus of the Dirac determinant

    CERN Document Server

    Aloisio, R; Di Carlo, G; Galante, A; Grillo, A F

    1998-01-01

    We report results of simulations of strong coupling, finite density QCD obtained within a MFA inspired approach where the fermion determinant in the integration measure is replaced by its absolute value. Contrary to the standard wisdom, we show that within this approach a clear signal of a phase transition appears with a critical chemical potential in extremely good agreement with the results obtained with the Glasgow algorithm. The modulus of the fermion determinant seems therefore to preserve some of the relevant physical properties of the system. We also analyze the dependence of our results on the quark mass, including both the chiral and large mass limit, and the theory in the quenched approximation.

  8. Preparation and Evaluation of a Novel Cellulose Tris(N-3,5-dimethylphenylcarbamate) Chiral Stationary Phase

    Institute of Scientific and Technical Information of China (English)

    GE,Jin; ZHAO,Liang; SHI,Yan-Ping

    2008-01-01

    A novel cellulose tris(N-3,5-dimethylphenylcarbamate) (CDMPC) chiral stationary phase (CSP) was prepared by coating CDMPC on TiO2/SiO2, which was prepared by coating titania nanoparticles on silica through a self-assemble technique. At first, 2-hydroxyl-phenyl acetonitrile and α-phenylethanol were separated on this new CSP to evaluate the chiral separation ability. Then, two pesticides, matalaxyl and diclofop-methyl were separated.The influence of the mobile phase composition on the enantioselectivity was discussed, and the repeatability and stability of the CSP were studied too.

  9. Phases and phase transitions in the algebraic microscopic shell model

    Directory of Open Access Journals (Sweden)

    Georgieva A. I.

    2016-01-01

    Full Text Available We explore the dynamical symmetries of the shell model number conserving algebra, which define three types of pairing and quadrupole phases, with the aim to obtain the prevailing phase or phase transition for the real nuclear systems in a single shell. This is achieved by establishing a correspondence between each of the pairing bases with the Elliott’s SU(3 basis that describes collective rotation of nuclear systems. This allows for a complete classification of the basis states of different number of particles in all the limiting cases. The probability distribution of the SU(3 basis states within theirs corresponding pairing states is also obtained. The relative strengths of dynamically symmetric quadrupole-quadrupole interaction in respect to the isoscalar, isovector and total pairing interactions define a control parameter, which estimates the importance of each term of the Hamiltonian in the correct reproduction of the experimental data for the considered nuclei.

  10. Early Work on Defect Driven Phase Transitions

    Science.gov (United States)

    Kosterlitz, J. Michael; Thouless, David J.

    2016-12-01

    This article summarizes the early history of the theory of phase transitions driven by topological defects, such as vortices in superfluid helium films or dislocations and disclinations in two-dimensional solids. We start with a review of our two earliest papers, pointing out their errors and omissions as well as their insights. We then describe the work, partly done by Kosterlitz but mostly done by other people, which corrected these oversights, and applied these ideas to experimental systems, and to numerical and experimental simulations.

  11. Melonic phase transition in group field theory

    CERN Document Server

    Baratin, Aristide; Oriti, Daniele; Ryan, James P; Smerlak, Matteo

    2013-01-01

    Group field theories have recently been shown to admit a 1/N expansion dominated by so-called `melonic graphs', dual to triangulated spheres. In this note, we deepen the analysis of this melonic sector. We obtain a combinatorial formula for the melonic amplitudes in terms of a graph polynomial related to a higher dimensional generalization of the Kirchhoff tree-matrix theorem. Simple bounds on these amplitudes show the existence of a phase transition driven by melonic interaction processes. We restrict our study to the Boulatov-Ooguri models, which describe topological BF theories and are the basis for the construction of four dimensional models of quantum gravity.

  12. Detonations and deflagrations in cosmological phase transitions

    CERN Document Server

    Megevand, Ariel

    2009-01-01

    We study the steady state motion of bubble walls in cosmological phase transitions. Taking into account the boundary and continuity conditions for the fluid variables, we calculate numerically the wall velocity as a function of the nucleation temperature, the latent heat, and a friction parameter. We determine regions in the space of these parameters in which detonations and/or deflagrations are allowed. In order to apply the results to a physical case, we calculate these quantities in a specific model, which consists of an extension of the Standard Model with singlet scalar fields. We also obtain analytic approximations for deflagrations and detonations.

  13. Observables of non-equilibrium phase transition

    CERN Document Server

    Tomasik, Boris; Melo, Ivan; Kopecna, Renata

    2015-01-01

    Rapidly expanding fireball which undergoes first-order phase transition will supercool and proceed via spinodal decomposition. Hadrons are produced from the individual fragments as well as leftover matter filling the space between them. Emission from fragments should be visible in rapidity correlations, particularly of protons. Also, even within narrow centrality classes, rapidity distributions will be fluctuating from one event to another in case of fragmentation. This can be identified with the help of Kolmogorov-Smirnov test. Finally, a method is presented which allows to sort events with varying rapidity distributions in such a way, that events with similar rapidity histograms are grouped together.

  14. Berry phase transition in twisted bilayer graphene

    Science.gov (United States)

    Rode, Johannes C.; Smirnov, Dmitri; Schmidt, Hennrik; Haug, Rolf J.

    2016-09-01

    The electronic dispersion of a graphene bilayer is highly dependent on rotational mismatch between layers and can be further manipulated by electrical gating. This allows for an unprecedented control over electronic properties and opens up the possibility of flexible band structure engineering. Here we present novel magnetotransport data in a twisted bilayer, crossing the energetic border between decoupled monolayers and coupled bilayer. In addition a transition in Berry phase between π and 2π is observed at intermediate magnetic fields. Analysis of Fermi velocities and gate induced charge carrier densities suggests an important role of strong layer asymmetry for the observed phenomena.

  15. Adiabatic quantum computation and quantum phase transitions

    CERN Document Server

    Latorre, J I; Latorre, Jose Ignacio; Orus, Roman

    2003-01-01

    We analyze the ground state entanglement in a quantum adiabatic evolution algorithm designed to solve the NP-complete Exact Cover problem. The entropy of entanglement seems to obey linear and universal scaling at the point where the mass gap becomes small, suggesting that the system passes near a quantum phase transition. Such a large scaling of entanglement suggests that the effective connectivity of the system diverges as the number of qubits goes to infinity and that this algorithm cannot be efficiently simulated by classical means. On the other hand, entanglement in Grover's algorithm is bounded by a constant.

  16. Examining a possible cascade effect in chiral symmetry breaking

    CERN Document Server

    Fariborz, Amir H

    2016-01-01

    We examine a toy model and a cascade effect for confinement and chiral symmetry breaking which consists in several phase transitions corresponding to the formation of bound states and chiral condensates with different number of fermions for a strong group. We analyze two examples: regular QCD where we calculate the "four quark" vacuum condensate and a preon composite model based on QCD at higher scales. In this context we also determine the number of flavors at which the second chiral and confinement phase transitions occur and discuss the consequences.

  17. Preparation of new hybrid organic/inorganic polymeric chiral stationary phases for ligand-exchange chromatography

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Three new hybrid organic/inorganic polymeric ligand-exchange chiral stationary phases were developed by radical chain transfer reaction and surface grafting on silica gel, and successfully used for the enantioseparations of DL-amino acids and DL-hydroxyl acids. The resolutions were achieved by using water containing 2.0 × 10-4 mol/L of CuAc2 as a mobile phase, column temperature of 40 ℃, flow rate of 1.0 mL/min and detection at UV 254 mn. The elution order of D-isomer before L-isomer was observed for all DL-amino acids resolved except DL-Pro.

  18. Kagome Chiral Spin Liquid as a Gauged U (1 ) Symmetry Protected Topological Phase

    Science.gov (United States)

    He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank; Moessner, R.

    2015-12-01

    While the existence of a chiral spin liquid (CSL) on a class of spin-1 /2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U (1 ) symmetry protected topological (SPT) phase, which upon promoting its U (1 ) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.

  19. Low-Energy Kπ Phase Shifts in Chiral SU(3) Quark Model

    Institute of Scientific and Technical Information of China (English)

    HUANG Fei; ZHANG Zong-Ye; YU You-Wen

    2005-01-01

    The low-energy region kaon-pion S- and P-wave phase shifts with isospin I = 1/2 and I = 3/2 are dynamically studied in the chiral SU(3) quark model by solving a resonating group method equation. The model parameters are taken to be the values fitted by the energies of the baryon ground states and the kaon-nucleon elastic scattering phase shifts of different partial waves. As a preliminary study the s-channel q(-q) annihilation interactions are not included since they only act in the very short range and are subsequently assumed to be unimportant in the low-energy domain. The numerical results are in qualitative agreement with the experimental data.

  20. Kagome Chiral Spin Liquid as a Gauged U(1) Symmetry Protected Topological Phase.

    Science.gov (United States)

    He, Yin-Chen; Bhattacharjee, Subhro; Pollmann, Frank; Moessner, R

    2015-12-31

    While the existence of a chiral spin liquid (CSL) on a class of spin-1/2 kagome antiferromagnets is by now well established numerically, a controlled theoretical path from the lattice model leading to a low-energy topological field theory is still lacking. This we provide via an explicit construction starting from reformulating a microscopic model for a CSL as a lattice gauge theory and deriving the low-energy form of its continuum limit. A crucial ingredient is the realization that the bosonic spinons of the gauge theory exhibit a U(1) symmetry protected topological (SPT) phase, which upon promoting its U(1) global symmetry to a local gauge structure ("gauging"), yields the CSL. We suggest that such an explicit lattice-based construction involving gauging of a SPT phase can be applied more generally to understand topological spin liquids.

  1. Phase transition equilibrium of terthiophene isomers

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Jose C.S.; Lima, Carlos F.R.A.C.; Rocha, Marisa A.A. [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Gomes, Ligia R. [CIAGEB, Faculdade de Ciencias de Saude Escola Superior de Saude da UFP, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, P-4200-150 Porto (Portugal); REQUIMTE, Departamento de Quimica e Bioquimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal); Santos, Luis M.N.B.F., E-mail: lbsantos@fc.up.p [Centro de Investigacao em Quimica, Departamento de Quimica e Bioquimica, Faculdade de Ciencias da Universidade do Porto, Rua do Campo Alegre, 687, P-4169-007 Porto (Portugal)

    2011-02-15

    The thermodynamic study of the phase transition (fusion and sublimation) of 2,2':5',2''-terthiophene and 3,2':5',3''-terthiophene is presented. The obtained data is used to evaluate the (solid + liquid) and (solid + gas) phase equilibrium, and draw the phase diagrams of the pure compounds near the triple point coordinates. For each compound the vapour pressures at different temperatures were measured by a combined Knudsen effusion method with a vacuum quartz crystal microbalance. Based on the previous results, the standard molar enthalpies, entropies and Gibbs energies of sublimation were derived at T = 298.15 K. For the two terthiophenes and for 3,3'-bithiophene, the temperature, and the molar enthalpies of fusion were measured in a power compensated differential scanning calorimetry. The relationship between structure and energetics is discussed based on the experimental results, ab initio calculations and previous literature data for 2,2'-bithiophene and 3,3'-bithiophene. The 3,2':5',3''-terthiophene shows a higher solid phase stability than the 2,2':5',2''-terthiophene isomer arising from the higher cohesive energy due to positioning of the sulphur atom in the thiophene ring. The higher phase stability of 3,3'-bithiophene relative to 2,2'-bithiophene isomer is also related to its higher absolute entropy in the solid phase associated with the ring positional degeneracy observed in the crystal structure of this isomer. A significant differentiation in the crystal phase stability between isomers was found.

  2. Transitional Phenomena on Phase Change Materials

    Directory of Open Access Journals (Sweden)

    Wójcik Tadeusz M.

    2014-03-01

    Full Text Available One of the most significant problem with technology development is transferring of large heat fluxes, which requires constant heat transfer temperature (in the specified temperature range. This problem concern mainly the nuclear energetics, space technologies, military technologies and most of all electronics containing integrated circuits with very large scale of integrations. Intensive heat transfer and thermal energy storage are possible by the use of phase change materials (PCMs. In the paper there are presented preliminary results of research on the use of liquid-gas (L-G PCMs and solid-solid phase change materials (S-S PCMs. For L-G PCMs the boiling characteristics were determined by increasing and decreasing the heat flux, which for certain sets of structural parameters of the heating surface and the physical properties of the liquid induce a variety of forms of transitional phenomena. Thermal energy storage is much more effective when using PCMs than sensible heat.

  3. Topological phase transitions in superradiance lattices

    CERN Document Server

    Wang, Da-Wei; Yuan, Luqi; Liu, Ren-Bao; Zhu, Shi-Yao

    2015-01-01

    The discovery of the quantum Hall effect (QHE) reveals a new class of matter phases, topological insulators (TI's), which have been extensively studied in solid-state materials and recently in photonic structures, time-periodic systems and optical lattices of cold atoms. All these topological systems are lattices in real space. Our recent study shows that Scully's timed Dicke states (TDS) can form a superradiance lattice (SL) in momentum space. Here we report the discovery of topological phase transitions in a two-dimensional SL in electromagnetically induced transparency (EIT). By periodically modulating the three EIT coupling fields, we can create a Haldane model with in-situ tunable topological properties. The Chern numbers of the energy bands and hence the topological properties of the SL manifest themselves in the contrast between diffraction signals emitted by superradiant TDS. The topological superradiance lattices (TSL) provide a controllable platform for simulating exotic phenomena in condensed matte...

  4. Phase transitions in fluids and biological systems

    Science.gov (United States)

    Sipos, Maksim

    metric to 16S rRNA metagenomic studies of 6 vertebrate gastrointestinal microbiomes and find that they assembled through a highly non-neutral process. I then consider a phase transition that may occur in nutrient-poor environments such as ocean surface waters. In these systems, I find that the experimentally observed genome streamlining, specialization and opportunism may well be generic statistical phenomena.

  5. Topological electromagnetic responses of bosonic quantum Hall, topological insulator, and chiral semimetal phases in all dimensions

    Science.gov (United States)

    Lapa, Matthew F.; Jian, Chao-Ming; Ye, Peng; Hughes, Taylor L.

    2017-01-01

    We calculate the topological part of the electromagnetic response of bosonic integer quantum Hall (BIQH) phases in odd (space-time) dimensions, and bosonic topological insulator (BTI) and bosonic chiral semimetal (BCSM) phases in even dimensions. To do this, we use the nonlinear sigma model (NLSM) description of bosonic symmetry-protected topological (SPT) phases, and the method of gauged Wess-Zumino (WZ) actions. We find the surprising result that for BIQH states in dimension 2 m -1 (m =1 ,2 ,⋯ ), the bulk response to an electromagnetic field Aμ is characterized by a Chern-Simons term for Aμ with a level quantized in integer multiples of m ! (factorial). We also show that BTI states (which have an extra Z2 symmetry) can exhibit a Z2-breaking quantum Hall effect on their boundaries, with this boundary quantum Hall effect described by a Chern-Simons term at level m/! 2 . We show that the factor of m ! can be understood by requiring gauge invariance of the exponential of the Chern-Simons term on a general Euclidean manifold, and we also use this argument to characterize the electromagnetic and gravitational responses of fermionic SPT phases with U(1 ) symmetry in all odd dimensions. We then use our gauged boundary actions for the BIQH and BTI states to (i) construct a bosonic analog of a chiral semimetal (BCSM) in even dimensions, (ii) show that the boundary of the BTI state exhibits a bosonic analog of the parity anomaly of Dirac fermions in odd dimensions, and (iii) study anomaly inflow at domain walls on the boundary of BTI states. In a series of Appendixes we derive important formulas and additional results. In particular, in Appendix A we use the connection between equivariant cohomology and gauged WZ actions to give a mathematical interpretation of the actions for the BIQH and BTI boundaries constructed in this paper.

  6. On Phase Transition of Compressed Sensing in the Complex Domain

    CERN Document Server

    Yang, Zai; Xie, Lihua

    2011-01-01

    The phase transition is a performance measure of the sparsity-undersampling tradeoff in compressed sensing (CS). This letter reports, for the first time, the existence of an exact phase transition for the $\\ell_1$ minimization approach to the complex valued CS problem. This discovery is not only a complementary result to the known phase transition of the real valued CS but also shows considerable superiority of the phase transition of complex valued CS over that of the real valued CS. The results are obtained by extending the recently developed ONE-L1 algorithms to complex valued CS and applying their optimal and iterative solutions to empirically evaluate the phase transition.

  7. Nuclear binding near a quantum phase transition

    CERN Document Server

    Elhatisari, Serdar; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-nan; Meißner, Ulf-G; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A; Lee, Dean; Rupak, Gautam

    2016-01-01

    How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. The existence of the nearby first-order ...

  8. Nuclear Binding Near a Quantum Phase Transition

    Science.gov (United States)

    Elhatisari, Serdar; Li, Ning; Rokash, Alexander; Alarcón, Jose Manuel; Du, Dechuan; Klein, Nico; Lu, Bing-nan; Meißner, Ulf-G.; Epelbaum, Evgeny; Krebs, Hermann; Lähde, Timo A.; Lee, Dean; Rupak, Gautam

    2016-09-01

    How do protons and neutrons bind to form nuclei? This is the central question of ab initio nuclear structure theory. While the answer may seem as simple as the fact that nuclear forces are attractive, the full story is more complex and interesting. In this work we present numerical evidence from ab initio lattice simulations showing that nature is near a quantum phase transition, a zero-temperature transition driven by quantum fluctuations. Using lattice effective field theory, we perform Monte Carlo simulations for systems with up to twenty nucleons. For even and equal numbers of protons and neutrons, we discover a first-order transition at zero temperature from a Bose-condensed gas of alpha particles (4He nuclei) to a nuclear liquid. Whether one has an alpha-particle gas or nuclear liquid is determined by the strength of the alpha-alpha interactions, and we show that the alpha-alpha interactions depend on the strength and locality of the nucleon-nucleon interactions. This insight should be useful in improving calculations of nuclear structure and important astrophysical reactions involving alpha capture on nuclei. Our findings also provide a tool to probe the structure of alpha cluster states such as the Hoyle state responsible for the production of carbon in red giant stars and point to a connection between nuclear states and the universal physics of bosons at large scattering length.

  9. Phase transitions in Thirring’s model

    Science.gov (United States)

    Campa, Alessandro; Casetti, Lapo; Latella, Ivan; Pérez-Madrid, Agustín; Ruffo, Stefano

    2016-07-01

    In his pioneering work on negative specific heat, Walter Thirring introduced a model that is solvable in the microcanonical ensemble. Here, we give a complete description of the phase-diagram of this model in both the microcanonical and the canonical ensemble, highlighting the main features of ensemble inequivalence. In both ensembles, we find a line of first-order phase transitions which ends in a critical point. However, neither the line nor the point have the same location in the phase-diagram of the two ensembles. We also show that the microcanonical and canonical critical points can be analytically related to each other using a Landau expansion of entropy and free energy, respectively, in analogy with what has been done in (Cohen and Mukamel 2012 J. Stat. Mech. P12017). Examples of systems with certain symmetries restricting the Landau expansion have been considered in this reference, while no such restrictions are present in Thirring’s model. This leads to a phase diagram that can be seen as a prototype for what happens in systems of particles with kinematic degrees of freedom dominated by long-range interactions.

  10. Multifractality and Network Analysis of Phase Transition

    Science.gov (United States)

    Li, Wei; Yang, Chunbin; Han, Jihui; Su, Zhu; Zou, Yijiang

    2017-01-01

    Many models and real complex systems possess critical thresholds at which the systems shift dramatically from one sate to another. The discovery of early-warnings in the vicinity of critical points are of great importance to estimate how far the systems are away from the critical states. Multifractal Detrended Fluctuation analysis (MF-DFA) and visibility graph method have been employed to investigate the multifractal and geometrical properties of the magnetization time series of the two-dimensional Ising model. Multifractality of the time series near the critical point has been uncovered from the generalized Hurst exponents and singularity spectrum. Both long-term correlation and broad probability density function are identified to be the sources of multifractality. Heterogeneous nature of the networks constructed from magnetization time series have validated the fractal properties. Evolution of the topological quantities of the visibility graph, along with the variation of multifractality, serve as new early-warnings of phase transition. Those methods and results may provide new insights about the analysis of phase transition problems and can be used as early-warnings for a variety of complex systems. PMID:28107414

  11. Preon model and cosmological quantum-hyperchromodynamic phase transition

    Science.gov (United States)

    Nishimura, H.; Hayashi, Y.

    1987-05-01

    From the cosmological viewpoint, we investigate whether or not recent preon models are compatible with the picture of the first-order phase transition from the preon phase to the composite quark-lepton phase. It is shown that the current models accepting the 't Hooft anomaly-matching condition together with quantum hyperchromodynamics are consistent with the cosmological first-order phase transition.

  12. First-order phase transitions in spinor Bose gases and frustrated magnets

    Science.gov (United States)

    Debelhoir, T.; Dupuis, N.

    2016-11-01

    We show that phase transitions in spin-1 Bose gases and stacked triangular Heisenberg antiferromagnets—an example of frustrated magnets with competing interactions—are described by the same Landau-Ginzburg-Wilson Hamiltonian with O (3 )×O (2 ) symmetry. In agreement with previous nonperturbative-renormalization-group studies of the three-dimensional O (3 )×O (2 ) model, we find that the transition from the normal phase to the superfluid ferromagnetic phase in a spin-1 Bose gas is weakly first order and shows pseudoscaling behavior. The (nonuniversal) pseudoscaling exponent ν is fully determined by the scattering lengths a0 and a2. We provide estimates of ν in 87Rb,41K, and 7Li atom gases which can be tested experimentally. We argue that pseudoscaling comes from either a crossover phenomenon due to proximity of the O(6) Wilson-Fisher fixed point (87Rb and 41K) or the existence of two unphysical fixed points (with complex coordinates) which slow down the RG flow (7Li). These unphysical fixed points are a remnant of the chiral and antichiral fixed points that exist in the O (N )×O (2 ) model when N is larger than Nc≃5.3 (the transition being then second order and controlled by the chiral fixed point). Finally, we discuss a O (2 )×O (2 ) lattice model and show that our results, even though we find the transition to be first order, are compatible with Monte Carlo simulations yielding an apparent second-order transition.

  13. Stress induced phase transitions in silicon

    Science.gov (United States)

    Budnitzki, M.; Kuna, M.

    2016-10-01

    Silicon has a tremendous importance as an electronic, structural and optical material. Modeling the interaction of a silicon surface with a pointed asperity at room temperature is a major step towards the understanding of various phenomena related to brittle as well as ductile regime machining of this semiconductor. If subjected to pressure or contact loading, silicon undergoes a series of stress-driven phase transitions accompanied by large volume changes. In order to understand the material's response for complex non-hydrostatic loading situations, dedicated constitutive models are required. While a significant body of literature exists for the dislocation dominated high-temperature deformation regime, the constitutive laws used for the technologically relevant rapid low-temperature loading have severe limitations, as they do not account for the relevant phase transitions. We developed a novel finite deformation constitutive model set within the framework of thermodynamics with internal variables that captures the stress induced semiconductor-to-metal (cd-Si → β-Si), metal-to-amorphous (β-Si → a-Si) as well as amorphous-to-amorphous (a-Si → hda-Si, hda-Si → a-Si) transitions. The model parameters were identified in part directly from diamond anvil cell data and in part from instrumented indentation by the solution of an inverse problem. The constitutive model was verified by successfully predicting the transformation stress under uniaxial compression and load-displacement curves for different indenters for single loading-unloading cycles as well as repeated indentation. To the authors' knowledge this is the first constitutive model that is able to adequately describe cyclic indentation in silicon.

  14. Enantiomer-Specific State Transfer of Chiral Molecules

    CERN Document Server

    Eibenberger, Sandra; Patterson, David

    2016-01-01

    State-selective enantiomeric excess is realized using microwave-driven coherent population transfer. The method selectively promotes either R- or S- molecules to a higher rotational state by phase-controlled microwave pulses that drive electric-dipole allowed rotational transitions. We demonstrate the method using a racemic mixture of 1,2-propanediol. This method of chiral enrichment can be applied to nearly any chiral molecule that can be vaporized and cooled to the point where rotationally resolved spectroscopy is possible, including molecules that rapidly racemize. The rapid chiral switching demonstrated here allows for new applications in high-precision spectroscopic searches for parity violation in chiral molecules.

  15. Topology in the SU(Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology

    CERN Document Server

    Azcoiti, Vicente

    2016-01-01

    We investigate the topological properties of unquenched QCD on the basis of numerical results of simulations at fixed topological charge, recently reported by Borsanyi et al., and analytical predictions of the dilute instanton gas approximation. We demonstrate that the mean value of the chiral condensate at fixed topological charge is, in both cases, inconsistent with the analytical prediction of the large volume expansion around the saddle point, and argue that the most plausible explanation for the failure of the saddle point expansion is a vacuum energy density theta-independent at high temperatures, but surprisingly not too high (T\\sim 2T_c), a result which would imply a vanishing topological susceptibility, and the absence of all physical effects of the U(1) axial anomaly at these temperatures. We also show that under a general assumption concerning the high temperature phase of QCD, where the SU(Nf)_A symmetry is restored, the analytical prediction for the chiral condensate at fixed topological charge i...

  16. Topology in the S U (Nf) chiral symmetry restored phase of unquenched QCD and axion cosmology

    Science.gov (United States)

    Azcoiti, Vicente

    2016-11-01

    We investigate the topological properties of unquenched QCD on the basis of numerical results of simulations at fixed topological charge, recently reported by Borsanyi et al. We demonstrate that their results for the mean value of the chiral condensate at fixed topological charge are inconsistent with the analytical prediction of the large-volume expansion around the saddle point, and argue that the most plausible explanation for the failure of the saddle-point expansion is a vacuum energy density that is θ -independent at high temperatures, but surprisingly not too high (T ˜2 Tc), a result which would imply a vanishing topological susceptibility and the absence of all physical effects of the U (1 ) axial anomaly at these temperatures. We also show that under a general assumption concerning the high-temperature phase of QCD, where the S U (Nf)A symmetry is restored, the analytical prediction for the chiral condensate at fixed topological charge is in very good agreement with the numerical results of Borsanyi et al., all effects of the axial anomaly should disappear, the topological susceptibility and all the θ derivatives of the vacuum energy density vanish, and the theory becomes θ independent at any T >Tc in the infinite-volume limit.

  17. Exotic quantum phase transitions of strongly interacting topological insulators

    Science.gov (United States)

    Slagle, Kevin; You, Yi-Zhuang; Xu, Cenke

    2015-03-01

    Using determinant quantum Monte Carlo simulations, we demonstrate that an extended Hubbard model on a bilayer honeycomb lattice has two novel quantum phase transitions. The first is a quantum phase transition between the weakly interacting gapless Dirac fermion phase and a strongly interacting fully gapped and symmetric trivial phase, which cannot be described by the standard Gross-Neveu model. The second is a quantum critical point between a quantum spin Hall insulator with spin Sz conservation and the previously mentioned strongly interacting fully gapped phase. At the latter quantum critical point the single-particle excitations remain gapped, while spin and charge gaps both close. We argue that the first quantum phase transition is related to the Z16 classification of the topological superconductor 3He-B phase with interactions, while the second quantum phase transition is a topological phase transition described by a bosonic O (4 ) nonlinear sigma model field theory with a Θ term.

  18. Influence of heavy hadronic states on the QCD phase diagram and on the freeze-out within a hadronic chiral model; Einfluss schwerer hadronischer Zustaende auf das QCD-Phasendiagramm und die Ausfrierbedingungen in einem hadronischen chiralen Modell

    Energy Technology Data Exchange (ETDEWEB)

    Zeeb, G.

    2006-07-01

    In this thesis the thermodynamical properties of strongly interacting hadronic matter and the microscopic in-medium properties of hadrons are investigated at high temperatures and high baryonic densities within a chiral flavor-SU(3) model. The applied model is a generalized {sigma}-{omega} model in mean-field approximation with baryons and mesons as effective degrees of freedom. It is built on spontaneously broken chiral symmetry and scale invariance. The phase transition behavior is systematically analyzed and is thus shown to depend significantly on the couplings of additional heavier hadronic degrees of freedom. A phase diagram in qualitative agreement with current lattice QCD (lQCD) calculations can result from an according coupling of the lowest lying baryonic decuplet to the model. Alternatively, the coupling of a heavy baryonic test-resonance is investigated, which effectively represents the spectrum of the heavy hadronic states. For a certain range of parameters one can even obtain a phase diagram in quantitative agreement with the lQCD calculations and, simultaneously, a successful description of the ground state properties of nuclear matter. It is shown that (within the model assumptions) the phase transition region is experimentally accessible for the CBM experiment at the upcoming FAIR facility at GSI Darmstadt. The chiral model is further applied to particle yield ratios measured in heavy-ion collisions from AGS, SPS and RHIC. For these investigations parameter sets with strongly differing phase diagrams due to different couplings of the baryon decuplet are used and in addition an ideal hadron gas. At the lower and mid collision energies the chiral parameter sets show an improved description as compared to the ideal hadron gas, especially for parameter sets with phase diagrams similar to the lQCD predictions. The interaction within the chiral model leads to in-medium modifications of the chemical potentials and the hadron masses. Therefore the

  19. Improved Procedure for Preparation of Covalently Bonded Cellulose Tris-phenylcarbamate Chiral Stationary Phases

    Institute of Scientific and Technical Information of China (English)

    秦峰; 陈小明; 刘月启; 邹汉法; 王俊德

    2005-01-01

    The classical method for preparation of covalently boned cellulose derivative chiral stationary phases (CSP) with diisocyanate as spacer was improved. Diisocyanate was firstly allowed to react with 3-aminopropyltriethoxysilane, and the resulting product was then applied as the spacer reagent to immobilize cellulose derivatives onto silica gel. Influences of the amount and the length of the spacer on the optical resolution ability of the CSP were investigated. Comparing improved procedure to classical diisocyanate method, the cross-linking between the glucose units of the cellulose derivatives was avoided to the most extent. With the improved procedure, regio-nonselective ways could be adooted to prepare covalently bonded CSP, which showed an advantage for the rapid preparation.

  20. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    Science.gov (United States)

    Sharma, Sayantan; Dick, Viktor; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2016-12-01

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a systematic study of the finite size and cut-off effects since the signals of U(1) violation are sensitive to it. We also provide a glimpse of the microscopic topological structures of the QCD medium that are responsible for the strongly interacting nature of the quark gluon plasma phase. We study the effect of these microscopic constituents through our first calculations for the topological susceptibility of QCD at finite temperature, which could be a crucial input for the equation of state for anomalous hydrodynamics.

  1. Chiral conducting polymers.

    Science.gov (United States)

    Kane-Maguire, Leon A P; Wallace, Gordon G

    2010-07-01

    This critical review describes the preparation and properties of a relatively new class of chiral macromolecules, namely chiral conducting polymers. It focuses in particular on examples based on polypyrrole, polythiophene and polyaniline. They possess remarkable properties, combining not only chirality with electrical conductivity but also the ability to undergo facile redox and pH switching. These unique properties have opened up a range of exciting new potential applications, including as chiral sensors, as novel stationary phases for chiral separations, and as chiral electrodes for electrochemical asymmetric synthesis (153 references).

  2. Right-handed double-helix ultrashort DNA yields chiral nematic phases with both right- and left-handed director twist.

    Science.gov (United States)

    Zanchetta, Giuliano; Giavazzi, Fabio; Nakata, Michi; Buscaglia, Marco; Cerbino, Roberto; Clark, Noel A; Bellini, Tommaso

    2010-10-12

    Concentrated solutions of duplex-forming DNA oligomers organize into various mesophases among which is the nematic (N(∗)), which exhibits a macroscopic chiral helical precession of molecular orientation because of the chirality of the DNA molecule. Using a quantitative analysis of the transmission spectra in polarized optical microscopy, we have determined the handedness and pitch of this chiral nematic helix for a large number of sequences ranging from 8 to 20 bases. The B-DNA molecule exhibits a right-handed molecular double-helix structure that, for long molecules, always yields N(∗) phases with left-handed pitch in the μm range. We report here that ultrashort oligomeric duplexes show an extremely diverse behavior, with both left- and right-handed N(∗) helices and pitches ranging from macroscopic down to 0.3 μm. The behavior depends on the length and the sequence of the oligomers, and on the nature of the end-to-end interactions between helices. In particular, the N(∗) handedness strongly correlates with the oligomer length and concentration. Right-handed phases are found only for oligomers shorter than 14 base pairs, and for the sequences having the transition to the N(∗) phase at concentration larger than 620 mg/mL. Our findings indicate that in short DNA, the intermolecular double-helical interactions switch the preferred liquid crystal handedness when the columns of stacked duplexes are forced at high concentrations to separations comparable to the DNA double-helix pitch, a regime still to be theoretically described.

  3. Information Dynamics at a Phase Transition

    Science.gov (United States)

    Sowinski, Damian; Gleiser, Marcelo

    2017-03-01

    We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg-Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and fidelity of information processing is maximized at criticality.

  4. The phase transition of Axelrod's model revisited

    CERN Document Server

    Reia, Sandro M

    2016-01-01

    Axelrod's model with $F=2$ cultural features, where each feature can assume $k$ states drawn from a Poisson distribution of parameter $q$, exhibits a continuous nonequilibrium phase transition in the square lattice. Here we use extensive Monte Carlo simulations and finite size scaling to study the critical behavior of the order parameter $\\rho$, which is the fraction of sites that belong to the largest domain of an absorbing configuration averaged over many runs. We find that it vanishes as $\\rho \\sim \\left (q_c^0 - q \\right)^\\beta$ with $\\beta \\approx 0.25$ at the critical point $q_c^0 \\approx 3.10$ and that the exponent that measures the width of the critical region is $\

  5. Magnetocaloric materials and first order phase transitions

    DEFF Research Database (Denmark)

    Neves Bez, Henrique

    of the properties of such materials.The experimental characterization of these materials is done through various different methods, such as X-ray diffraction, magnetometry, calorimetry, direct measurements of entropy change, capacitance dilatometry, scanning electron microscopy,energy-dispersive X-ray spectrometry......This thesis studies the first order phase transitions of the magnetocaloric materials La0.67Ca0.33MnO3 and La(Fe,Mn,Si)13Hz trying to overcome challenges that these materials face when applied in active magnetic regenerators. The study is done through experimental characterization and modelling...... and magnetocaloric regenerative tests. The magnetic, thermal and structural properties obtained from such measurements are then evaluated through different models, i.e. the Curie-Weiss law, the Bean-Rodbell model, the free electron model and the Debye model.The measured magnetocaloric properties of La0.67Ca0.33MnO3...

  6. Phase transitions in open quantum systems

    CERN Document Server

    Jung, C; Rotter, I

    1999-01-01

    We consider the behaviour of open quantum systems in dependence on the coupling to one decay channel by introducing the coupling parameter $\\alpha$ being proportional to the average degree of overlapping. Under critical conditions, a reorganization of the spectrum takes place which creates a bifurcation of the time scales with respect to the lifetimes of the resonance states. We derive analytically the conditions under which the reorganization process can be understood as a second-order phase transition and illustrate our results by numerical investigations. The conditions are fulfilled e.g. for a picket fence with equal coupling of the states to the continuum. Energy dependencies within the system are included. We consider also the generic case of an unfolded Gaussian Orthogonal Ensemble. In all these cases, the reorganization of the spectrum occurs at the critical value $\\alpha_{crit}$ of the control parameter globally over the whole energy range of the spectrum. All states act cooperatively.

  7. Scaling theory of topological phase transitions

    Science.gov (United States)

    Chen, Wei

    2016-02-01

    Topologically ordered systems are characterized by topological invariants that are often calculated from the momentum space integration of a certain function that represents the curvature of the many-body state. The curvature function may be Berry curvature, Berry connection, or other quantities depending on the system. Akin to stretching a messy string to reveal the number of knots it contains, a scaling procedure is proposed for the curvature function in inversion symmetric systems, from which the topological phase transition can be identified from the flow of the driving energy parameters that control the topology (hopping, chemical potential, etc) under scaling. At an infinitesimal operation, one obtains the renormalization group (RG) equations for the driving energy parameters. A length scale defined from the curvature function near the gap-closing momentum is suggested to characterize the scale invariance at critical points and fixed points, and displays a universal critical behavior in a variety of systems examined.

  8. Observables of non-equilibrium phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Tomasik, Boris [Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia); Ceske vysoke uceni technicke v Praze, FJFI, Prague (Czech Republic); Schulc, Martin; Kopecna, Renata [Ceske vysoke uceni technicke v Praze, FJFI, Prague (Czech Republic); Melo, Ivan [Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia); Zilinska univerzita, Elektrotechnicka fakulta, Zilina (Slovakia)

    2016-08-15

    A rapidly expanding fireball which undergoes first-order phase transition will supercool and proceed via spinodal decomposition. Hadrons are produced from the individual fragments as well as the left-over matter filling the space between them. Emission from fragments should be visible in rapidity correlations, particularly of protons. In addition to that, even within narrow centrality classes, rapidity distributions will be fluctuating from one event to another in case of fragmentation. This can be identified with the help of the Kolmogorov-Smirnov test. Finally, we present a method which allows to sort events with varying rapidity distributions, in such a way that events with similar rapidity histograms are grouped together. (orig.)

  9. Information Dynamics at a Phase Transition

    CERN Document Server

    Sowinski, Damian

    2016-01-01

    We propose a new way of investigating phase transitions in the context of information theory. We use an information-entropic measure of spatial complexity known as configurational entropy (CE) to quantify both the storage and exchange of information in a lattice simulation of a Ginzburg-Landau model with a scalar order parameter coupled to a heat bath. The CE is built from the Fourier spectrum of fluctuations around the mean-field and reaches a minimum at criticality. In particular, we investigate the behavior of CE near and at criticality, exploring the relation between information and the emergence of ordered domains. We show that as the temperature is increased from below, the CE displays three essential scaling regimes at different spatial scales: scale free, turbulent, and critical. Together, they offer an information-entropic characterization of critical behavior where the storage and processing of information is maximized at criticality.

  10. Valleytronics and phase transition in silicene

    Science.gov (United States)

    Aftab, Tayyaba

    2017-03-01

    Magnetic and transport properties of silicene in the presence of perpendicular electromagnetic fields and a ferromagnetic material are studied. It is shown that for small exchange field, the magnetic moment associated with each valley is opposite for the other and it gives a shift in band energy, by a Zeeman-like coupling term. Thus opening a new horizon for valley-orbit coupling. Magnetic proximity effect is seen to adjust the spintronics of each valley. Valley polarization is calculated using the semi classical formulation of electron dynamics. It can be modified and measured due to its contribution in Hall conductivity. Quantum phase transitions are observed in silicene, providing a tool to control the topological state experimentally. The strong dependence of the physical properties on valley degree of freedom is an important step towards valleytronics.

  11. Observation of Intrinsic Magnus Force and Direct Detection of Chirality in Superfluid 3He-A

    Science.gov (United States)

    Ikegami, Hiroki; Tsutsumi, Yasumasa; Kono, Kimitoshi

    2015-04-01

    We report details of the observation of the intrinsic Magnus (IM) force acting on negative and positive ions trapped just below a free surface of the A phase of superfluid 3He (3He-A). From the transport measurements of the ions along the surface, we found that the IM force acts on both the negative and positive ions. We also demonstrate that the transport measurements could distinguish whether the surface is composed of a chiral monodomain or multiple chiral domains. For multiple chiral domains, the current of the ions was found to be irreproducible and unstable, which was reasonably explained by the formation of the chiral domain structure and the dynamics of the chiral domain walls. For chiral monodomains, the appearance ratio of chirality emerging upon cooling through the superfluid transition temperature was found to depend on the direction of the external magnetic field, which implies the existence of an unknown coupling between the chirality and the magnetic field.

  12. Modeling the competing phase transition pathways in nanoscale olivine electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Tang Ming, E-mail: tang25@llnl.go [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Carter, W. Craig [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Belak, James F. [Condensed Matter and Materials Division, Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Chiang, Yet-Ming [Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States)

    2010-12-30

    Recent experimental developments reveal that nanoscale lithium iron phosphate (LiFePO{sub 4}) olivine particles exhibit very different phase transition behavior from the bulk olivine phase. A crystalline-to-amorphous phase transition has been observed in nanosized particles in competition with the equilibrium phase transition between the lithium-rich and lithium-poor olivine phases. Here we apply a diffuse-interface (phase-field) model to study the kinetics of the different phase transition pathways in nanosized LiFePO{sub 4} particles upon delithiation. We find that the nucleation and growth kinetics of the crystalline-to-crystalline and crystalline-to-amorphous phase transformations are sensitive to the applied electrical overpotential and particle size, which collectively determine the preferred phase transition pathway. While the crystalline-to-crystalline phase transition is favored by either faster nucleation or growth kinetics at low or high overpotentials, particle amorphization dominates at intermediate overpotentials. Decreasing particle size expands the overpotential region in which amorphization is preferred. The asymmetry in the nucleation energy barriers for amorphization and recrystallization results in a phase transition hysteresis that should promote the accumulation of the amorphous phase in electrodes after repeated electrochemical cycling. The predicted overpotential- and size-dependent phase transition behavior of nanoscale LiFePO{sub 4} particles is consistent with experimental observations.

  13. Phase Transitions in Living Neural Networks

    Science.gov (United States)

    Williams-Garcia, Rashid Vladimir

    Our nervous systems are composed of intricate webs of interconnected neurons interacting in complex ways. These complex interactions result in a wide range of collective behaviors with implications for features of brain function, e.g., information processing. Under certain conditions, such interactions can drive neural network dynamics towards critical phase transitions, where power-law scaling is conjectured to allow optimal behavior. Recent experimental evidence is consistent with this idea and it seems plausible that healthy neural networks would tend towards optimality. This hypothesis, however, is based on two problematic assumptions, which I describe and for which I present alternatives in this thesis. First, critical transitions may vanish due to the influence of an environment, e.g., a sensory stimulus, and so living neural networks may be incapable of achieving "critical" optimality. I develop a framework known as quasicriticality, in which a relative optimality can be achieved depending on the strength of the environmental influence. Second, the power-law scaling supporting this hypothesis is based on statistical analysis of cascades of activity known as neuronal avalanches, which conflate causal and non-causal activity, thus confounding important dynamical information. In this thesis, I present a new method to unveil causal links, known as causal webs, between neuronal activations, thus allowing for experimental tests of the quasicriticality hypothesis and other practical applications.

  14. Phase Transitions in Networks of Memristive Elements

    Science.gov (United States)

    Sheldon, Forrest; di Ventra, Massimiliano

    The memory features of memristive elements (resistors with memory), analogous to those found in biological synapses, have spurred the development of neuromorphic systems based on them (see, e.g.,). In turn, this requires a fundamental understanding of the collective dynamics of networks of memristive systems. Here, we study an experimentally-inspired model of disordered memristive networks in the limit of a slowly ramped voltage and show through simulations that these networks undergo a first-order phase transition in the conductivity for sufficiently high values of memory, as quantified by the memristive ON/OFF ratio. We provide also a mean-field theory that reproduces many features of the transition and particularly examine the role of boundary conditions and current- vs. voltage-controlled networks. The dynamics of the mean-field theory suggest a distribution of conductance jumps which may be accessible experimentally. We finally discuss the ability of these networks to support massively-parallel computation. Work supported in part by the Center for Memory and Recording Research at UCSD.

  15. Topological and geometrical aspects of phase transitions

    Science.gov (United States)

    Santos, F. A. N.; Rehn, J. A.; Coutinho-Filho, M. D.

    2014-03-01

    In the first part of this review, we use a topological approach to describe the frustration- and field-induced phase transitions exhibited by the infinite-range XY model on the AB2 chain, including noncollinear spin structures. For this purpose, we have computed the Euler characteristic, χ, as well as other topological invariants, which are found to behave similarly as a function of the energy level in the context of Morse theory. Our findings and those available in the literature suggest that the cusp-like singularity exhibited by χ at the critical energy, Ec, put together with the divergence of the density of Jacobian's critical points emerge as necessary and sufficient conditions for the occurrence of finite-temperature topology-induced phase transitions. In the second part, we present an alternative solution of the Ising chain in a field under free and periodic boundary conditions, in the microcanonical, canonical, and grand canonical ensembles, from a unified combinatorial and topological perspective. In particular, the computation of the per-site entropy as a function of the energy unveils a residual value for critical values of the magnetic field, a phenomenon for which we provide a topological interpretation and a connection with the Fibonacci sequence. We also show that, in the thermodynamic limit, the per-site microcanonical entropy is equal to the logarithm of the per-site Euler characteristic. Finally, we emphasize that our combinatorial approach to the canonical ensemble allows exact computation of the thermally averaged value (T) of the Euler characteristic; our results show that the conjecture (Tc)= 0, where Tc is the critical temperature, is valid for the Ising chain.

  16. The Deconfinement Phase Transition in the Interior of Neutron Stars

    CERN Document Server

    Zhou, Xia

    2010-01-01

    The decon?nement phase transition which happens in the interior of neutron stars are investigated. Coupled with the spin evolution of the stars, the effect of entropy production and deconfinement heat generation during the deconfinement phase transition in the mixed phase of the neutron stars are discussed. The entropy production of deconfinement phase transition can be act as a signature of phase transition, but less important and does not significantly change the thermal evolution of neutron stars. The deconfinement heat can change the thermal evolution of neutron star distinctly.

  17. Enantioselective and diastereoselective separation of synthetic pyrethroid insecticides on a novel chiral stationary phase by high-performance liquid chromatography.

    Science.gov (United States)

    Tan, Xulin; Hou, Shicong; Wang, Min

    2007-07-01

    A novel chiral packing material for high-performance liquid chromatography (HPLC) was prepared by connecting (R)-1-phenyl-2-(4-methylphenyl) ethylamine (PTE) amide derivative of (S)-isoleucine to aminopropyl silica gel through 2-amino-3,5-dinitro-1-carboxamido-benzene unit. This chiral stationary phase was applied to the enantioselective and diastereoselective separation of five pyrethroid insecticides by HPLC under normal phase condition. To achieve satisfactory baseline separation an optimization of the variables of mobile phase composition was required. The two enantiomers of fenpropathrin and four stereoisomers of fenvalerate were baseline separated using hexane-1,2-dichloroethane-2-propanol as mobile phase. The results show that the enantioselectivity of CSP is better than Pirkle type 1-A column for these compounds. Only partial separations for the cypermethrin and cyfluthrin stereoisomers were observed. Seven peaks and eight peaks were observed for cypermethrin and cyfluthrin, respectively. The elution orders were assigned by using different stereoisomer-enriched products.

  18. Non-equilibrium phase transitions in complex plasma

    NARCIS (Netherlands)

    Sutterlin, K. R.; Wysocki, A.; Rath, C.; Ivlev, A. V.; Thomas, H. M.; Khrapak, S.; Zhdanov, S.; Rubin-Zuzic, M.; W. J. Goedheer,; Fortov, V. E.; Lipaev, A. M.; Molotkov, V. I.; Petrov, O. F.; Morfill, G. E.; Lowen, H.

    2010-01-01

    Complex plasma being the 'plasma state of soft matter' is especially suitable for investigations of non-equilibrium phase transitions. Non-equilibrium phase transitions can manifest in dissipative structures or self-organization. Two specific examples are lane formation and phase separatio

  19. Quinine-Based Zwitterionic Chiral Stationary Phase as a Complementary Tool for Peptide Analysis: Mobile Phase Effects on Enantio- and Stereoselectivity of Underivatized Oligopeptides.

    Science.gov (United States)

    Ianni, Federica; Sardella, Roccaldo; Carotti, Andrea; Natalini, Benedetto; Lindner, Wolfgang; Lämmerhofer, Michael

    2016-01-01

    Peptide stereoisomer analysis is of importance for quality control of therapeutic peptides, the analysis of stereochemical integrity of bioactive peptides in food, and the elucidation of the stereochemistry of peptides from a natural chiral pool which often contains one or more D-amino acid residues. In this work, a series of model peptide stereoisomers (enantiomers and diastereomers) were analyzed on a zwitterionic ion-exchanger chiral stationary phase (Chiralpak ZWIX(+) 5 µm), in order to investigate the retention and separation performance for such compounds on this chiral stationary phase and elucidate its utility for this purpose. The goal of the study focused on 1) investigations of the effects of the sample matrix used to dissolve the peptide samples; 2) optimization of the mobile phase (enabling deriving information on factors of relevance for retention and separation); and 3) derivation of structure-selectivity relationships. It turned out that small di- and tripeptides can be well resolved under optimized conditions, typically with resolutions larger than 1.5. The optimized mobile phase often consisted of methanol-tetrahydrofuran-water (49:49:2; v/v/v) with 25 mM formic acid and 12.5 mM diethylamine. This work proposes some guidance on which mobile phases can be most efficiently used for peptide stereoisomer separations on Chiralpak ZWIX. Chirality 28:5-16, 2016. © 2015 Wiley Periodicals, Inc.

  20. Phase transitions in a gas of anyons

    CERN Document Server

    MacKenzie, R; Paranjape, M B; Richer, J

    2010-01-01

    We continue our numerical Monte Carlo simulation of a gas of closed loops on a 3 dimensional lattice, however now in the presence of a topological term added to the action corresponding to the total linking number between the loops. We compute the linking number using certain notions from knot theory. Adding the topological term converts the particles into anyons. Using the correspondence that the model is an effective theory that describes the 2+1-dimensional Abelian Higgs model in the asymptotic strong coupling regime, the topological linking number simply corresponds to the addition to the action of the Chern-Simons term. We find the following new results. The system continues to exhibit a phase transition as a function of the anyon mass as it becomes small \\cite{mnp}, although the phases do not change the manifestation of the symmetry. The Chern-Simons term has no effect on the Wilson loop, but it does affect the {\\rm '}t Hooft loop. For a given configuration it adds the linking number of the 't Hooft loo...

  1. Phase transitions in strongly interacting quantum field theories. QED{sub 3} vs. QCD

    Energy Technology Data Exchange (ETDEWEB)

    Bonnet, J.A.

    2013-07-15

    In this thesis, we investigate strongly coupled quantum field theories on the examples of (2+1) dimensional Quantumelectrodynamics (QED{sub 3}) and (3+1) dimensional Quantum Chromodynamics (QCD) in the framework of Dyson-Schwinger equations. We firstly focus on the chiral phase transition in QED{sub 3} as a low-energy effective theory for high-temperature superconductors. These materials are inherently anisotropic, as shown by experiments. We therefore focus on the influence of an anisotropic spacetime onto the critical number of fermion flavors for chiral symmetry breaking at zero and finite temperature. The findings are summarized in phase diagrams for the critical number of fermion flavors as a function of the independent anisotropic velocities and temperature. These were the first calculations considering anisotropic QED{sub 3} at finite temperatures. Furthermore, the presented investigations elaborate on the critical scaling behavior close to the merging region of the thermal phase transition line and the quantum phase transition point. The most important results include the finding that anisotropy provides an external parameter that determines the scaling scenario. Secondly, the QCD part of this thesis consists of a feasibility study of the implementation of external magnetic fields into the Dyson-Schwinger formalism. This study serves as a basis for further investigations of e.g. the dynamical mass generation at finite temperatures and densities. This will allow to contribute to the discussions on the phenomenon of (inverse) magnetic catalysis from a functional methods' point of view. Furthermore, we present the first successful extraction of a dressed Wilson loop from Dyson-Schwinger equations. It represents an observable for confinement that was recently introduced in the framework of lattice gauge theory. In addition, its connection with the conventional Wilson loop allows for a direct extraction of the string tension.

  2. Bubble nucleation and growth in very strong cosmological phase transitions

    CERN Document Server

    Megevand, Ariel

    2016-01-01

    Strongly first-order phase transitions, i.e., those with a large order parameter, are characterized by a considerable supercooling and high velocities of phase transition fronts. A very strong phase transition may have important cosmological consequences due to the departures from equilibrium caused in the plasma. In general, there is a limit to the strength, since the metastability of the old phase may prevent the transition to complete. Near this limit, the bubble nucleation rate achieves a maximum and thus departs from the widely assumed behavior in which it grows exponentially with time. We study the dynamics of this kind of phase transitions. We show that in some cases a gaussian approximation for the nucleation rate is more suitable, and in such a case we solve analytically the evolution of the phase transition. We compare the gaussian and exponential approximations with realistic cases and we determine their ranges of validity. We also discuss the implications for cosmic remnants such as gravitational ...

  3. Pressure-induced phase transition in CrO2.

    Science.gov (United States)

    Alptekin, Sebahaddin

    2015-12-01

    The ab initio constant pressure molecular dynamics technique and density functional theory with generalized gradient approximation (GGA) was used to study the pressure-induced phase transition of CrO2. The phase transition of the rutile (P42/mnm) to the orthorhombic CaCl2 (Pnnm) structure at 30 GPa was determined successfully in a constant pressure simulation. This phase transition was analyzed from total energy calculations and, from the enthalpy calculation, occurred at around 17 GPa. Structural properties such as bulk modules, lattice parameters and phase transition were compared with experimental results. The phase transition at 12 ± 3 GPa was in good agreement with experimental results, as was the phase transition from the orthorhombic CaCl2 (Pnnm) to the monoclinic (P21/c) structure also found at 35 GPa.

  4. Detecting the chirality for coupled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Cao Huijuan [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China); Hu Lian [Institute for Condensed Matter Physics, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510631 (China)], E-mail: huliancaohj@yahoo.com

    2008-04-21

    We propose a scheme to detect the chirality for a system consisting of three coupled quantum dots. The chirality is found to be determined by the frequency of the transition between chiral states under the chiral symmetry broken perturbation. The results are important to construct quantum gates and to demonstrate chiral entangle states in the triangle spin dots.

  5. Quantum phase transition and entanglement in Li atom system

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    By use of the exact diagonalization method, the quantum phase transition and en- tanglement in a 6-Li atom system are studied. It is found that entanglement appears before the quantum phase transition and disappears after it in this exactly solvable quantum system. The present results show that the von Neumann entropy, as a measure of entanglement, may reveal the quantum phase transition in this model.

  6. Discord under the influence of a quantum phase transition

    Institute of Scientific and Technical Information of China (English)

    Wang Lin-cheng; Shen Jian; Yi Xue-Xi

    2011-01-01

    This paper studies the discord of a bipartite two-level system coupling to an XY spin-chain environment in a transverse field and investigates the relationship between the discord property and the environment's quantum phase transition. The results show that the quantum discord is also able to characterize the quantum phase transitions. We also discuss the difference between discord and entanglement, and show that quantum discord may reveal more general information than quantum entanglement for characterizing the environment's quantum phase transition.

  7. Gravitational waves from global second order phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Jr, John T. Giblin [Department of Physics, Kenyon College, 201 North College Rd, Gambier, OH 43022 (United States); Price, Larry R.; Siemens, Xavier; Vlcek, Brian, E-mail: giblinj@kenyon.edu, E-mail: larryp@caltech.edu, E-mail: siemens@gravity.phys.uwm.edu, E-mail: bvlcek@uwm.edu [Center for Gravitation and Cosmology, Department of Physics, University of Wisconsin-Milwaukee, P.O. Box 413, Milwaukee, WI 53201 (United States)

    2012-11-01

    Global second-order phase transitions are expected to produce scale-invariant gravitational wave spectra. In this manuscript we explore the dynamics of a symmetry-breaking phase transition using lattice simulations. We explicitly calculate the stochastic gravitational wave background produced during the transition and subsequent self-ordering phase. We comment on this signal as it compares to the scale-invariant spectrum produced during inflation.

  8. The chiral transition and U(1)_A symmetry restoration from lattice QCD using Domain Wall Fermions

    CERN Document Server

    Bazavov, A; Buchoff, Michael I; Cheng, Michael; Christ, N H; Ding, H -T; Gupta, Rajan; Hegde, Prasad; Jung, Chulwoo; Karsch, F; Lin, Zhongjie; Mawhinney, R D; Mukherjee, Swagato; Petreczky, P; Soltz, R A; Vranas, P M; Yin, Hantao

    2012-01-01

    We present results on both the restoration of the spontaneously broken chiral symmetry and the effective restoration of the anomalously broken U(1)_A symmetry in finite temperature QCD at zero chemical potential using lattice QCD. We employ domain wall fermions on lattices with fixed temporal extent N_\\tau = 8 and spatial extent N_\\sigma = 16 in a temperature range of T = 139 - 195 MeV, corresponding to lattice spacings of a \\approx 0.12 - 0.18 fm. In these calculations, we include two degenerate light quarks and a strange quark at fixed pion mass m_\\pi = 200 MeV. The strange quark mass is set near its physical value. We also present results from a second set of finite temperature gauge configurations at the same volume and temporal extent with slightly heavier pion mass. To study chiral symmetry restoration, we calculate the chiral condensate, the disconnected chiral susceptibility, and susceptibilities in several meson channels of different quantum numbers. To study U(1)_A restoration, we calculate spatial ...

  9. Holographic phase transition probed by non-local observables

    CERN Document Server

    Zeng, Xiao-Xiong

    2016-01-01

    From the viewpoint of holography, the phase structure of a 5-dimensional Reissner-Nordstr\\"{o}m-AdS black hole is probed by the two point correlation function, Wilson loop, and entanglement entropy. As the case of thermal entropy, we find for all the probes, the black hole undergos a Hawking-Page phase transition, a first order phase transition and a second order phase transition successively before it reaches to a stable phase. In addition, for these probes, we find the equal area law for the first order phase transition is valid always and the critical exponent of the heat capacity for the second order phase transition coincides with that of the mean field theory regardless of the size of the boundary region.

  10. The topological structures in strongly coupled QGP with chiral fermions on the lattice

    CERN Document Server

    Sharma, Sayantan; Karsch, Frithjof; Laermann, Edwin; Mukherjee, Swagato

    2016-01-01

    The nature of chiral phase transition for two flavor QCD is an interesting but unresolved problem. One of the most intriguing issues is whether or not the anomalous U(1) symmetry in the flavor sector is effectively restored along with the chiral symmetry. This may determine the universality class of the chiral phase transition. Since the physics near the chiral phase transition is essentially non-perturbative, we employ first principles lattice techniques to address this issue. We use overlap fermions, which have exact chiral symmetry on the lattice, to probe the anomalous U(1) symmetry violation of 2+1 flavor dynamical QCD configurations with domain wall fermions. The latter also optimally preserves chiral and flavor symmetries on the lattice, since it is known that the remnant chiral symmetry of the light quarks influences the scaling of the chiral condensate in the crossover transition region. We observe that the anomalous U(1) is not effectively restored in the chiral crossover region. We perform a system...

  11. Dynamic Behavior of Clobazam on High-Performance Liquid Chromatography Chiral Stationary Phases.

    Science.gov (United States)

    Sabia, Rocchina; De Martino, Michela; Cavazzini, Alberto; Villani, Claudio

    2016-01-01

    Clobazam, a 1,5-benzodiazepin-2,4-dione, is a chiral molecule because its ground state conformation features a nonplanar seven-membered ring lacking reflection symmetry elements. The two conformational enantiomers of clobazam interconvert at room temperature by a simple ring-flipping process. Variable temperature HPLC on the Pirkle type (R)-N-(3,5-dinitronenzoyl)phenylglycine and (R,R)-Whelk-O1 chiral stationary phases (CSPs) allowed us to separate for the first time the conformational enantiomers of clobazam and to observe peak coalescence-decoalescence phenomena due to concomitant separation and interconversion processes occurring on the same time scale. Clobazam showed temperature dependent dynamic high-performance liquid chromatography (HPLC) profiles with interconversion plateaus on the two CSPs indicative of on-column enantiomer interconversion. (enantiomerization) in the column temperature range between Tcol = 10°C and Tcol = 30°C, whereas on-column interconversion was absent at temperature close to or lower than Tcol = 5°C. Computer simulation of exchange-deformed HPLC profiles using a program based on the stochastic model yielded the apparent rate constants for the on-column enantiomerization and the corresponding free energy activation barriers. At Tcol = 20°C the averaged enantiomerization barriers, ΔG(‡), for clobazam were found in the range 21.08-21.53 kcal mol(-1) on the two CSPs. The experimental dynamic chromatograms and the corresponding interconversion barriers reported in this article are consistent with the literature data measured by DNMR at higher temperatures and in different solvents.

  12. Effects of QCD phase transition on gravitational radiation from two-dimensional collapse and bounce of massive stars

    CERN Document Server

    Yasutake, N; Hashimoto, M; Yamada, S; Yasutake, Nobutoshi; Kotake, Kei; Hashimoto, Masa-aki; Yamada, Shoichi

    2007-01-01

    We perform two-dimensional, magnetohydrodynamical core-collapse simulations of massive stars accompanying the QCD phase transition. We study how the phase transition affects the gravitational waveforms near the epoch of core-bounce. As for initial models, we change the strength of rotation and magnetic fields. Particularly, the degree of differential rotation in the iron core (Fe-core) is changed parametrically. As for the microphysics, we adopt a phenomenological equation of state above the nuclear density, including two parameters to change the hardness before the transition. We assume the first order phase transition, where the conversion of bulk nuclear matter to a chirally symmetric quark-gluon phase is described by the MIT bag model. Based on these computations, we find that the phase transition can make the maximum amplitudes larger up to $\\sim$ 10 percents than the ones without the phase transition. On the other hand, the maximum amplitudes become smaller up to $\\sim$ 10 percents owing to the phase tr...

  13. Robust Type-II Weyl Semimetal Phase in Transition Metal Diphosphides X P2 (X =Mo , W)

    Science.gov (United States)

    Autès, G.; Gresch, D.; Troyer, M.; Soluyanov, A. A.; Yazyev, O. V.

    2016-08-01

    The recently discovered type-II Weyl points appear at the boundary between electron and hole pockets. Type-II Weyl semimetals that host such points are predicted to exhibit a new type of chiral anomaly and possess thermodynamic properties very different from their type-I counterparts. In this Letter, we describe the prediction of a type-II Weyl semimetal phase in the transition metal diphosphides MoP2 and WP2 . These materials are characterized by relatively simple band structures with four pairs of type-II Weyl points. Neighboring Weyl points have the same chirality, which makes the predicted topological phase robust with respect to small perturbations of the crystalline lattice. In addition, this peculiar arrangement of the Weyl points results in long topological Fermi arcs, thus making them readily accessible in angle-resolved photoemission spectroscopy.

  14. Enantioseparation Using Cellulose Tris(3,5-dimethylphenylcarbamate as Chiral Stationary Phase for HPLC: Influence of Molecular Weight of Cellulose

    Directory of Open Access Journals (Sweden)

    Yuji Okada

    2016-11-01

    Full Text Available The cellulose oligomers with different degrees of polymerization (DP, 7, 11, 18, 24, 26, 40 and 52, were prepared by hydrolysis of microcrystalline cellulose with phosphoric acid. These oligomers including the starting microcrystalline cellulose (DP 124 were converted to tris(3,5-dimethylphenylcarbamate (CDMPC derivatives by the reaction with an excess of 3,5-dimethylphenyl isocyanate to be used as the chiral stationary phase (CSP in high-performance liquid chromatography (HPLC. The structures of the CDMPC derivatives were investigated by infrared spectroscopy (IR, 1H-NMR, circular dichroism (CD and size exclusion chromatography (SEC, and the DPs of the derivatives estimated by SEC agreed with those estimated by 1H-NMR. After coating the derivatives on silica gel, their chiral recognition abilities were evaluated using eight racemates under a normal phase condition with a hexane-2-propanol (99/1 mixture as an eluent. The chiral recognition abilities of 7- and 11-mers, particularly the former, were lower than those of the higher oligomers from DP 18 to 52, which had rather similar abilities to that of 124-mer, although the abilities depended on the racemates. DP 18 seems to be sufficient for CDMPC to exhibit chiral recognition similar to that of the CDMPC with larger DPs.

  15. Kinetics of shock-induced polymorphic phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, D.B.

    1976-01-01

    Shock-loading induces polymorphic phase transitions in some solids if the pressure exceeds that at which phase transition occurs under quasi-static compression. Volume changes in shock-induced transitions must occur very rapidly to produce the structured shock waves observed, so transition rates are large under these dynamic conditions. By contrast, the same transition might require minutes or hours under quasi-static loading. If shock-induced transition is so rapid that kinetic effects can be ignored, a steady two-wave structure is propagated. The first wave, of amplitude equal to the transition pressure, shocks the material to the phase boundary but produces no transition; the second, slower wave produces the transformed phase. When kinetic effects are important, this two-wave structure does not form immediately but by an evolutionary process which produces transients in the amplitudes and rise times of the stress waves. By measuring these transient effects, some facts about the kinetics of phase transitions have been inferred. Comprehensive studies on phase-transition kinetics in antimony, iron, and potassium chloride are described, with emphasis on a thermodynamic description of the intermediate states during transition. Complicating effects such as shear strength and wave perturbations due to free surfaces are discussed.

  16. High performance liquid chromatographic separation of eight drugs collected in Chinese Pharmacopoeia 2010 on amylose ramification chiral stationary phase

    Directory of Open Access Journals (Sweden)

    Yan Wang

    2012-10-01

    Full Text Available The enantiomers separation of eight pharmaceutical racemates collected in Chinese Pharmacopoeia 2010 (Ch.P2010, including nitrendipine, felodipine, omeprazole, praziquantel, sulpiride, clenbuterol hydrochloride, verapamil hydrochloride and chlorphenamine maleate, was performed on chiral stationary phase of amylose ramification by high performance liquid chromatography (HPLC on Chiralpak AD-H column and Chiralpak AS-H column with the mobile phase consisted of isopropanol and n-hexane. The detection wavelength and the flow rate were set at 254 nm and 0.7 mL/min, respectively. The effects of proportion of organic additives, alcohol displacer and temperature on the separation were investigated. The results indicated that eight chiral drugs were separated on chiral stationary phase of amylase ramification in normal phase chromatographic system. The chromatographic retention and resolution of enantiomers were adjusted by factors, including the changes of the concentration of alcohol displacer in mobile phase, organic alkaline modifier and column temperature. It was shown that the resolution was improved with reducing concentration of alcohol displacer. When the concentration of organic alkaline modifier was 0.2%, the resolution and the peak shape were fairly good. Most racemates mentioned above had the best resolution at column temperature of 25 °C. The best temperature should be kept unchanged in the process of separation so as to obtain stable separation results.

  17. Elastic phase transitions in metals at high pressures.

    Science.gov (United States)

    Krasilnikov, O M; Vekilov, Yu Kh; Mosyagin, I Yu; Isaev, E I; Bondarenko, N G

    2012-04-19

    The elastic phase transitions of cubic metals at high pressures are investigated within the framework of Landau theory. It is shown that at pressures comparable with the magnitude of the bulk modulus the phase transition is connected with the loss of stability relative to uniform deformation of the crystalline lattice. Discontinuity of the order parameter at the transition point and its equilibrium value are expressed through the second- to fourth-order elastic constants. The second-,third- and fourth-order elastic constants and phonon dispersion curves of vanadium under hydrostatic pressure are obtained by first-principles calculations. Structural transformation in vanadium under pressure is studied using the obtained results. It is shown that the experimentally observed at P ≈ 69 GPa phase transition in vanadium is the first-order phase transition close to a second-order phase transition.

  18. Pressure induced phase transitions in ceramic compounds containing tetragonal zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, R.G.; Pfeiffer, G.; Paesler, M.A.

    1988-12-01

    Stabilized tetragonal zirconia compounds exhibit a transformation toughening process in which stress applied to the material induces a crystallographic phase transition. The phase transition is accompanied by a volume expansion in the stressed region thereby dissipating stress and increasing the fracture strength of the material. The hydrostatic component of the stress required to induce the phase transition can be investigated by the use of a high pressure technique in combination with Micro-Raman spectroscopy. The intensity of Raman lines characteristic for the crystallographic phases can be used to calculate the amount of material that has undergone the transition as a function of pressure. It was found that pressures on the order of 2-5 kBar were sufficient to produce an almost complete transition from the original tetragonal to the less dense monoclinic phase; while a further increase in pressure caused a gradual reversal of the transition back to the original tetragonal structure.

  19. Van der Waals phase transition in the framework of holography

    CERN Document Server

    Zeng, Xiao-Xiong

    2015-01-01

    Phase structure of the quintessence Reissner-Nordstr\\"{o}m-AdS black hole is probed with the nonlocal observables such as holographic entanglement entropy and two point correlation function. Our result shows that, as the case of the thermal entropy, both the observables exhibit the similar Van der Waals-like phase transition. To reinforce the conclusion, we further check the equal area law for the first order phase transition and critical exponent of the heat capacity for the second order phase transition. We also discuss the effect of the state parameter on the phase structure of the nonlocal observables.

  20. ATLAS Transition Region Upgrade at Phase-1

    CERN Document Server

    Song, H; The ATLAS collaboration

    2014-01-01

    This report presents the L1 Muon trigger transition region (1.0<|ƞ|<1.3) upgrade of ATLAS Detector at phase-1. The high fake trigger rate in the Endcap region 1.0<|ƞ|<2.4 would become a serious problem for the ATLAS L1 Muon trigger system at high luminosity. For the region 1.3<|ƞ|<2.4, covered by the Small Wheel, ATLAS is enhancing the present muon trigger by adding local fake rejection and track angle measurement capabilities. To reduce the rate in the remaining ƞ interval it has been proposed a similar enhancement by adding at the edge of the inner barrel a structure of 3-layers RPCs of a new generation. These RPCs will be based on a thinner gas gap and electrodes with respect to the ATLAS standards, a new high performance Front End, integrating fast TDC capabilities, and a new low profile and light mechanical structure allowing the installation in the tiny space available.This design effectively suppresses fake triggers by making the coincidence with both end-cap and interaction point...

  1. Phase transitions in models of human cooperation

    Science.gov (United States)

    Perc, Matjaž

    2016-08-01

    If only the fittest survive, why should one cooperate? Why should one sacrifice personal benefits for the common good? Recent research indicates that a comprehensive answer to such questions requires that we look beyond the individual and focus on the collective behavior that emerges as a result of the interactions among individuals, groups, and societies. Although undoubtedly driven also by culture and cognition, human cooperation is just as well an emergent, collective phenomenon in a complex system. Nonequilibrium statistical physics, in particular the collective behavior of interacting particles near phase transitions, has already been recognized as very valuable for understanding counterintuitive evolutionary outcomes. However, unlike pairwise interactions among particles that typically govern solid-state physics systems, interactions among humans often involve group interactions, and they also involve a larger number of possible states even for the most simplified description of reality. Here we briefly review research done in the realm of the public goods game, and we outline future research directions with an emphasis on merging the most recent advances in the social sciences with methods of nonequilibrium statistical physics. By having a firm theoretical grip on human cooperation, we can hope to engineer better social systems and develop more efficient policies for a sustainable and better future.

  2. Swarms, Phase Transitions, and Collective Intelligence

    CERN Document Server

    Millonas, M M

    1993-01-01

    A spacially extended model of the collective behavior of a large number of locally acting organisms is proposed in which organisms move probabilistically between local cells in space, but with weights dependent on local morphogenetic substances, or morphogens. The morphogens are in turn are effected by the passage of an organism. The evolution of the morphogens, and the corresponding flow of the organisms constitutes the collective behavior of the group. Such models have various types of phase transitions and self-organizing properties controlled both by the level of the noise, and other parameters. The model is then applied to the specific case of ants moving on a lattice. The local behavior of the ants is inspired by the actual behavior observed in the laboratory, and analytic results for the collective behavior are compared to the corresponding laboratory results. It is hoped that the present model might serve as a paradigmatic example of a complex cooperative system in nature. In particular swarm models c...

  3. Entanglement, quantum phase transitions and quantum algorithms

    CERN Document Server

    Orus, R

    2006-01-01

    The work that we present in this thesis tries to be at the crossover of quantum information science, quantum many-body physics, and quantum field theory. We use tools from these three fields to analyze problems that arise in the interdisciplinary intersection. More concretely, in Chapter 1 we consider the irreversibility of renormalization group flows from a quantum information perspective by using majorization theory and conformal field theory. In Chapter 2 we compute the entanglement of a single copy of a bipartite quantum system for a variety of models by using techniques from conformal field theory and Toeplitz matrices. The entanglement entropy of the so-called Lipkin-Meshkov-Glick model is computed in Chapter 3, showing analogies with that of (1+1)-dimensional quantum systems. In Chapter 4 we apply the ideas of scaling of quantum correlations in quantum phase transitions to the study of quantum algorithms, focusing on Shor's factorization algorithm and quantum algorithms by adiabatic evolution solving a...

  4. Phase Transitions in Two-Dimensional Traffic Flow Models

    CERN Document Server

    Cuesta, J A; Molera, J M; Cuesta, José A; Martinez, Froilán C; Molera, Juan M

    1993-01-01

    Abstract: We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.

  5. Phase Transitions in Two-Dimensional Traffic Flow Models

    CERN Document Server

    Cuesta, José A; Molera, Juan M; Escuela, Angel Sánchez; 10.1103/PhysRevE.48.R4175

    2009-01-01

    We introduce two simple two-dimensional lattice models to study traffic flow in cities. We have found that a few basic elements give rise to the characteristic phase diagram of a first-order phase transition from a freely moving phase to a jammed state, with a critical point. The jammed phase presents new transitions corresponding to structural transformations of the jam. We discuss their relevance in the infinite size limit.

  6. Magnetic anisotropy and the phase diagram of chiral MnSb2O6

    Science.gov (United States)

    Werner, J.; Koo, C.; Klingeler, R.; Vasiliev, A. N.; Ovchenkov, Y. A.; Polovkova, A. S.; Raganyan, G. V.; Zvereva, E. A.

    2016-09-01

    The magnetic phase diagram and low-energy magnon excitations of structurally and magnetically chiral MnSb2O6 are reported. The specific heat and the static magnetization are investigated in magnetic fields up to 9 and 30 T, respectively, while the dynamic magnetic properties are probed by X-band as well as tunable high-frequency electron spin-resonance spectroscopy. Below TN=11.5 K, we observe antiferromagnetic resonance modes which imply small but finite planar anisotropy showing up in a zero-field splitting of 20 GHz. The data are well described by means of an easy-plane two-sublattice model with the anisotropy field BA=0.02 T. The exchange field BE=13 T is obtained from the saturation field derived from the pulsed-field magnetization. A crucial role of the small anisotropy for the spin structure is reflected by competing antiferromagnetic phases appearing, at T =2 K, in small magnetic fields at BC 1 ≈0.5 T and BC 2=0.9 T. We discuss the results in terms of spin reorientation and of small magnetic fields favoring helical spin structure over the cycloidal ground state which, at B =0 , is stabilized by the planar anisotropy. Above TN, short-range magnetic correlations up to ≳60 K and magnetic entropy changes well above TN reflect the frustrated triangular arrangement of Mn2 + ions in MnSb2O6 .

  7. Phase diagram and two-particle structure of the $Z_3$-chiral Potts model

    CERN Document Server

    Von Gehlen, G

    1992-01-01

    We calculate the low-lying part of the spectrum of the $Z_3$-symmetrical chiral Potts quantum chain in its self-dual and integrable versions, using numerical diagonalisation of the hamiltonian for $N \\leq 12$ sites and extrapolation $N \\ra \\infty$. From the sequences of levels crossing we show that the massive phases have oscillatory correlation functions. We calculate the wave vector scaling exponent. In the high-temperature massive phase the pattern of the low-lying levels can be explained assuming the existence of two particles, with $Z_3$-charge $Q\\!=\\!1$ and $Q\\!=\\!2$, and their scattering states. In the superintegrable case the $Q\\!=\\!2$-particle has twice the mass of the $Q\\!=\\!1$-particle. Exponential convergence in $N$ is observed for the single particle gaps, while power convergence is seen for the scattering levels. In the high temperature limit of the self-dual model the parity violation in the particle dispersion relation is equivalent to the presence of a macroscopic momentum $P_m = \\pm \\vph/3$,...

  8. Comparison of the performance of chiral stationary phase for separation of fluoxetine enantiomers

    Institute of Scientific and Technical Information of China (English)

    ZHOU Jie; YANG Yi-wen; WEI Feng; WU Ping-dong

    2007-01-01

    Separation of fluoxetine enantiomers on five chiral stationary phases (chiralcel OD-H, chiralcel OJ-H, chiralpak AD-H, cyclobond I 2000 DM and kromasil CHI-TBB) was investigated. The optimal mobile phase compositions of fluoxetine separation on each column were hexane/isopropanol/diethyl amine (98/2/0.2, v/v/v), hexane/isopropanol/diethyl amine (99/1/0.1,v/v/v), hexane/isopropanol/diethyl amine (98/2/0.2, v/v/v), methanol/0.2% triethylamine acetic acid (TEAA) (25/75, v/v; pH 3.8)and hexane/isopropanol/diethyl amine (98/2/0.2, v/v/v), respectively. Experimental results demonstrated that baseline separation (RS>1.5) of fluoxetine enantiomers was obtained on chiralcel OD-H, chiralpak AD-H, and cyclobond I 2000 DM while the best separation was obtained on the last one. The eluate orders of fluoxetine enantiomers on the columns were determined. The first eluate by chiralcel OJ-H and kromasil CHI-TBB is the S-enantiomer, while by chiralpak AD-H and cyclobond I 2000 DM is the R-enantiomer.

  9. Application of cyanuric chloride-based six new chiral derivatizing reagents having amino acids and amino acid amides as chiral auxiliaries for enantioresolution of proteinogenic amino acids by reversed-phase high-performance liquid chromatography.

    Science.gov (United States)

    Bhushan, Ravi; Dixit, Shuchi

    2012-04-01

    Six dichloro-s-triazine (DCT) reagents having L-Leu, D-Phg, L-Val, L-Met, L-Ala and L-Met-NH(2) as chiral auxiliaries in cyanuric chloride were introduced for enantioseparation of 13 proteinogenic amino acids. Four other DCTs and six monochloro-s-triazine (MCT) reagents having amino acid amides as chiral auxiliaries were also synthesized. These 16 chiral derivatizing reagents (CDRs) were used for synthesis of diastereomers of all the 13 analytes using microwave irradiation, which were resolved by reversed-phase high-performance liquid chromatography (RP-HPLC) using C18 column and gradient eluting mixture of aqueous TFA and acetonitrile with UV detection at 230 nm. It required only 60-90 s for derivatization using microwave irradiation. Better resolution and lower retention times were observed for the diastereomers prepared with CDRs having amino acids as chiral auxiliaries as compared to counterparts prepared with reagents having amino acid amides as chiral auxiliaries. As the best resolution of all the 13 analytes was observed for their diastereomers prepared using the DCT reagent having L-Leu as chiral auxiliary, this CDR was further employed for derivatization of Lys, Tyr, His and Arg followed by RP-HPLC analysis of resulting diastereomers. The results are discussed in light of acid and amide groups of chiral auxiliaries constituting CDRs, electronegativities of the atoms of achiral moieties constituting CDRs and hydrophobicities of side chains of amino acids constituting CDRs and analytes.

  10. Cosmological Consequences of QCD Phase Transition(s) in Early Universe

    CERN Document Server

    Tawfik, A

    2008-01-01

    We discuss the cosmological consequences of QCD phase transition(s) on the early universe. We argue that our recent knowledge about the transport properties of quark-gluon plasma (QGP) should throw additional lights on the actual time evolution of our universe. Understanding the nature of QCD phase transition(s), which can be studied in lattice gauge theory and verified in heavy ion experiments, provides an explanation for cosmological phenomenon stem from early universe.

  11. Fast phase transitions induced by picosecond electrical pulses on phase change memory cells

    Science.gov (United States)

    Wang, W. J.; Shi, L. P.; Zhao, R.; Lim, K. G.; Lee, H. K.; Chong, T. C.; Wu, Y. H.

    2008-07-01

    The reversible and fast phase transitions induced by picosecond electrical pulses are observed in the nanostructured GeSbTe materials, which provide opportunities in the application of high speed nonvolatile random access memory devices. The mechanisms for fast phase transition are discussed based on the investigation of the correlation between phase transition speed and material size. With the shrinkage of material dimensions, the size effects play increasingly important roles in enabling the ultrafast phase transition under electrical activation. The understanding of how the size effects contribute to the phase transition speed is of great importance for ultrafast phenomena and applications.

  12. Enantiomer Separation of α-Dimethyl Dicarboxylate Biphenyl and Related Biphenyl Compounds by Normal Phase HPLC on Polysaccharide Based Chiral Stationary Phases

    Institute of Scientific and Technical Information of China (English)

    LIU,Yue-Qi(刘月启); HAN,Xiao-Qian(韩小茜); Qi,Bang-Feng(齐邦峰); LIU,Chun-Hui(柳春辉); LI,Yong-Min(李永民); CHEN,Li-Ren(陈立仁)

    2002-01-01

    Cellulose tris(4-methylphenylcarbamate), amylose tris(3,5-dimethylpphenylcarbamate) and amylose tris (phenylcarbamate)were prepared by the method reported by Okamoto and were coated onto an aminopropylated mesoporous spherical silica gel. These final products were used as chiral stationary phases of high performance liquid chromatography for the eighteen structurally related biphenyl conmpounds. The resolution was made using normal-phase methodology with a mobile phase consisting of n-hexane-alcohol (ethanol, 1-propanol, 2-propanol or 1-butanol). The effects of various aliphatic alcohols in the mobile phase were studied. The structural features of the solutes that influence their k'were discussed. A dominant effect of trifluoroaetic acid on chiral separation of aacidicdic solutes was noted.

  13. Enantiomeric separation of volatile organics by gas chromatography for the in situ analysis of extraterrestrial materials: kinetics and thermodynamics investigation of various chiral stationary phases.

    Science.gov (United States)

    Freissinet, C; Buch, A; Szopa, C; Sternberg, R

    2013-09-01

    The performances of several commercial chiral capillary columns have been evaluated with the aim of determining the one most suitable for enantiomeric separation in a gas chromatograph onboard a space probe. We compared the GC-MS response of three capillary columns coated with different chiral stationary phases (CSP) using volatile chiral organic molecules which are potential markers of a prebiotic organic chemistry. The three different chiral capillary columns are Chirasil-Val, with an amino acid derivative CSP, ChiralDex-β-PM, with a CSP composed of dissolved permethylated β-cyclodextrins in polysiloxane, and Chirasil-Dex, with a CSP made of modified cyclodextrins chemically bonded to the polysiloxane backbone. Both kinetics and thermodynamics studies have been carried out to evaluate the chiral recognition potential in these different types of columns. The thermodynamic parameters also allow a better understanding of the driving forces affecting the retention and separation of the enantiomers. The Chirasil-Dex-CSP displays the best characteristics for an optimal resolution of the chiral compounds, without preliminary derivatization. This CSP had been chosen to be the only chiral column in the Sample Analysis at Mars (SAM) experiment onboard the current Mars Science Laboratory (MSL) mission, and is also part of the Mars Organic Molecules Analyzer (MOMA) gas chromatograph onboard the next Martian mission ExoMars. The use of this column could also be extended to all space missions aimed at studying chirality in space.

  14. Theory of ion-chirality relation in ferroelectric liquid crystals

    Science.gov (United States)

    Lahiri, T.; Pal Majumder, T.

    2012-04-01

    The presence of impurity ions in ferroelectric liquid crystals (FLC) could produce a significant impact on the chirality of the medium with a possible modification in the polarization profile of the system. We theoretically observed these possibilities by considering an in-plane and bulk free energy density for the sample. Based on a suitable chirality transfer formalism, we explained the role of impurity ions in altering the chiral nature of a FLC medium. A continuous transition from modulated phases to uniform phases is also predicted within the framework of this theory. Then, we investigated the possible modification in the polarization profile driven by ionic impurities.

  15. Enantiomeric Excess Determination for Monosaccharides Using Chiral Transmission to Cold Gas-Phase Tryptophan in Ultraviolet Photodissociation

    Science.gov (United States)

    Fujihara, Akimasa; Maeda, Naoto; Doan, Thuc N.; Hayakawa, Shigeo

    2017-02-01

    Chiral transmission between monosaccharides and amino acids via photodissociation in the gas phase was examined using a tandem mass spectrometer fitted with an electrospray ionization source and a cold ion trap in order to investigate the origin of the homochirality of biomolecules in molecular clouds. Ultraviolet photodissociation mass spectra of cold gas-phase noncovalent complexes of the monosaccharide enantiomers glucose (Glc) and galactose (Gal) with protonated l-tryptophan H+( l-Trp) were obtained by photoexcitation of the indole ring of l-Trp. l-Trp dissociated via Cα-Cβ bond cleavage when noncovalently complexed with d-Glc; however, no dissociation of l-Trp occurred in the homochiral H+( l-Trp)( l-Glc) noncovalent complex, where the energy absorbed by l-Trp was released through the evaporation of l-Glc. This enantioselective photodissociation of Trp was due to the transmission of chirality from Glc to Trp via photodissociation in the gas-phase noncovalent complexes, and was applied to the quantitative chiral analysis of monosaccharides. The enantiomeric excess of monosaccharides in solution could be determined by measuring the relative abundance of the two product ions in a single photodissociation mass spectrum of the cold gas-phase noncovalent complex with H+( l-Trp), and by referring to the linear relationships derived in this work.

  16. Liquid-liquid phase transition in Stillinger-Weber silicon

    Energy Technology Data Exchange (ETDEWEB)

    Beaucage, Philippe; Mousseau, Normand [Departement de Physique and Regroupement Quebecois sur les Materiaux de Pointe, Universite de Montreal, CP 6128, Succursale Centre-ville, Montreal, QC, H3C 3J7 (Canada)

    2005-04-20

    It was recently demonstrated that Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell 2003 Nat. Mater. 2 739). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5%. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase.

  17. Quantum phase transitions in Bose-Fermi systems

    CERN Document Server

    Petrellis, D; Iachello, F

    2011-01-01

    Quantum phase transitions in a system of N bosons with angular momentum L=0,2 (s,d) and a single fermion with angular momentum j are investigated both classically and quantum mechanically. It is shown that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially the critical value of the control parameter at which the phase transition occurs. Experimental evidence for the U(5)-SU(3) (spherical to axially-deformed) transition in odd-even nuclei is presented.

  18. Liquid-Gas Phase Transition in Nuclear Equation of State

    CERN Document Server

    Lee, S J

    1997-01-01

    A canonical ensemble model is used to describe a caloric curve of nuclear liquid-gas phase transition. Allowing a discontinuity in the freeze out density from one spinodal density to another for a given initial temperature, the nuclear liquid-gas phase transition can be described as first order. Averaging over various freeze out densities of all the possible initial temperatures for a given total reaction energy, the first order characteristics of liquid-gas phase transition is smeared out to a smooth transition. Two experiments, one at low beam energy and one at high beam energy show different caloric behaviors and are discussed.

  19. Diamagnetic phase transitions in two-dimensional conductors

    Science.gov (United States)

    Bakaleinikov, L. A.; Gordon, A.

    2014-11-01

    A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET)2X with X=Cu(NCS)2, KHg(SCN)4, I3, AuBr2, IBr2, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals.

  20. Quantum Monte Carlo simulation of topological phase transitions

    Science.gov (United States)

    Yamamoto, Arata; Kimura, Taro

    2016-12-01

    We study the electron-electron interaction effects on topological phase transitions by the ab initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.

  1. Experimental and theoretical investigations on shock wave induced phase transitions

    Science.gov (United States)

    Gupta, Satish C.; Sikka, S. K.

    2001-06-01

    Shock wave loading of a material can cause variety of phase transitions, like polymorphism, amorphization, metallization and molecular dissociations. As the shocked state lasts only for a very short duration (about a few microseconds or less), in-situ microscopic measurements are very difficult. Although such studies are beginning to be possible, most of the shock-induced phase transitions are detected using macroscopic measurements. The microscopic nature of the transition is then inferred from comparison with static pressure data or interpreted by theoretical methods. For irreversible phase transitions, microscopic measurements on recovered samples, together with orientation relations determined from selected area electron diffraction and examination of the morphology of growth of the new phase can provide insight into mechanism of phase transitions. On theoretical side, the current ab initio band structure techniques based on density functional formalism provide capability for accurate computation of the small energy differences (a few mRy or smaller) between different plausible structures. Total energy calculation along the path of a phase transition can furnish estimates of activation barrier, which has implications for understanding kinetics of phase transitions. Molecular dynamics calculations, where the new structure evolves naturally, are becoming increasingly popular especially for understanding crystal to amorphous phase transitions. Illustrations from work at our laboratory will be presented.

  2. Quantum Monte Carlo simulation of topological phase transitions

    CERN Document Server

    Yamamoto, Arata

    2016-01-01

    We study the electron-electron interaction effects on topological phase transitions by the ab-initio quantum Monte Carlo simulation. We analyze two-dimensional class A topological insulators and three-dimensional Weyl semimetals with the long-range Coulomb interaction. The direct computation of the Chern number shows the electron-electron interaction modifies or extinguishes topological phase transitions.

  3. Nuclear Liquid-Gas Phase Transition: Experimental Signals

    Science.gov (United States)

    D'Agostino, M.; Bruno, M.; Gulminelli, F.; Cannata, F.; Chomaz, Ph.; Casini, G.; Geraci, E.; Gramegna, F.; Moroni, A.; Vannini, G.

    2005-03-01

    The connection between the thermodynamics of charged finite nuclear systems and the asymptotically measured partitions in heavy ion collisions is discussed. Different independent signals compatible with a liquid-to-gas-like phase transition are reported. In particular abnormally large fluctuations in the measured observables are presented as a strong evidence of a first order phase transition with negative heat capacity.

  4. Nuclear liquid-gas phase transition: Experimental signals

    Energy Technology Data Exchange (ETDEWEB)

    D' Agostino, M. [Dipartimento di Fisica and INFN, Bologna (Italy); Bruno, M. [Dipartimento di Fisica and INFN, Bologna (Italy); Gulminelli, F. [LPC Caen (IN2P3-CNRS/ISMRA et Universite), F-14050 Caen Cedex (France); Cannata, F. [Dipartimento di Fisica and INFN, Bologna (Italy); Chomaz, Ph. [GANIL, DSM-CEA/IN2P3-CNRS (France); Casini, G. [INFN Sezione di Firenze (Italy); Geraci, E. [Dipartimento di Fisica and INFN, Bologna (Italy); Gramegna, F. [INFN Laboratorio Nazionale di Legnaro (Italy); Moroni, A. [Dipartimento di Fisica and INFN, Milano (Italy); Vannini, G. [Dipartimento di Fisica and INFN, Bologna (Italy)

    2005-03-07

    The connection between the thermodynamics of charged finite nuclear systems and the asymptotically measured partitions in heavy ion collisions is discussed. Different independent signals compatible with a liquid-to-gas-like phase transition are reported. In particular abnormally large fluctuations in the measured observables are presented as a strong evidence of a first order phase transition with negative heat capacity.

  5. Two kinds of Phase transitions in a Voting model

    CERN Document Server

    Hisakado, Masato

    2012-01-01

    In this paper, we discuss a voting model with two candidates, C_1 and C_2. We consider two types of voters--herders and independents. The voting of independents is based on their fundamental values; on the other hand, the voting of herders is based on the number of previous votes. We can identify two kinds of phase transitions. One is information cascade transition similar to a phase transition seen in Ising model. The other is a transition of super and normal diffusions. These phase transitions coexist together. We compared our results to the conclusions of experiments and identified the phase transitions in the upper t limit using analysis of human behavior obtained from experiments.

  6. Recent development of oligosaccharides chiral stationary phases and their applications in chromatography%寡糖手性固定相研究进展

    Institute of Scientific and Technical Information of China (English)

    赵峰; 袁黎明; 熊汝琴

    2015-01-01

    In this paper ,The development of the Oligosaccharide chiral stationary phase for the HPLC chiral stationa‐ry phase is reviewed ,the study found that these sugars as the hplc chiral stationary phase is effect better ,more promis‐ing ,and the prospect of the chiral stationary phase is reviewed .%介绍了葡萄糖、纤维二塘、棉子糖、乳糖等用来作为高效液相色谱手性固定相的研究进展,研究发现这几种糖类作为高效液相色谱的手性固定相拆分效果比较好,比较有前途。同时展望了高效液相色谱手性固定相的发展前景。

  7. Helicity-selective phase-matching and quasi-phase matching of circularly polarized high-order harmonics: towards chiral attosecond pulses

    Science.gov (United States)

    Kfir, Ofer; Grychtol, Patrik; Turgut, Emrah; Knut, Ronny; Zusin, Dmitriy; Fleischer, Avner; Bordo, Eliyahu; Fan, Tingting; Popmintchev, Dimitar; Popmintchev, Tenio; Kapteyn, Henry; Murnane, Margaret; Cohen, Oren

    2016-06-01

    Phase matching of circularly polarized high-order harmonics driven by counter-rotating bi-chromatic lasers was recently predicted theoretically and demonstrated experimentally. In that work, phase matching was analyzed by assuming that the total energy, spin angular momentum and linear momentum of the photons participating in the process are conserved. Here we propose a new perspective on phase matching of circularly polarized high harmonics. We derive an extended phase matching condition by requiring a new propagation matching condition between the classical vectorial bi-chromatic laser pump and harmonics fields. This allows us to include the influence of the laser pulse envelopes on phase matching. We find that the helicity dependent phase matching facilitates generation of high harmonics beams with a high degree of chirality. Indeed, we present an experimentally measured chiral spectrum that can support a train of attosecond pulses with a high degree of circular polarization. Moreover, while the degree of circularity of the most intense pulse approaches unity, all other pulses exhibit reduced circularity. This feature suggests the possibility of using a train of attosecond pulses as an isolated attosecond probe for chiral-sensitive experiments.

  8. Separation mechanism of chiral impurities, ephedrine and pseudoephedrine, found in amphetamine-type substances using achiral modifiers in the gas phase.

    Science.gov (United States)

    Holness, Howard K; Jamal, Adeel; Mebel, Alexander; Almirall, José R

    2012-11-01

    A new mechanism is proposed that describes the gas-phase separation of chiral molecules found in amphetamine-type substances (ATS) by the use of high-resolution ion mobility spectrometry (IMS). Straight-chain achiral alcohols of increasing carbon chain length, from methanol to n-octanol, are used as drift gas modifiers in IMS to highlight the mechanism proposed for gas-phase separations of these chiral molecules. The results suggest the possibility of using these achiral modifiers to separate the chiral molecules (R,S) and (S,R)-ephedrine and (S,S) and (R,R)-pseudoephedrine which contain an internal hydroxyl group at the first chiral center and an amino group at the other chiral center. Ionization was achieved with an electrospray source, the ions were introduced into an IMS with a resolving power of 80, and the resulting ion clusters were characterized with a coupled quadrupole mass spectrometer detector. A complementary computational study conducted at the density functional B3LYP/6-31g level of theory for the electronic structure of the analyte-modifier clusters was also performed, and showed either "bridged" or "independent" binding. The combined experimental and simulation data support the proposed mechanism for gas-phase chiral separations using achiral modifiers in the gas phase, thus enhancing the potential to conduct fast chiral separations with relative ease and efficiency.

  9. Quantum Phase Transitions in Odd-Mass Nuclei

    CERN Document Server

    Leviatan, A; Iachello, F

    2011-01-01

    Quantum shape-phase transitions in odd-even nuclei are investigated in the framework of the interacting boson-fermion model. Classical and quantum analysis show that the presence of the odd fermion strongly influences the location and nature of the phase transition, especially near the critical point. Experimental evidence for the occurrence of spherical to axially-deformed transitions in odd-proton nuclei Pm, Eu and Tb (Z=61, 63, 65) is presented.

  10. Deconfinement Phase Transition Heating and Thermal Evolution of Neutron Stars

    CERN Document Server

    Kang, Miao; Wang, Xiaodong

    2007-01-01

    The deconfinement phase transition will lead to the release of latent heat during spins down of neutron stars if the transition is the first-order one.We have investigated the thermal evolution of neutron stars undergoing such deconfinement phase transition. The results show that neutron stars may be heated to higher temperature.This feature could be particularly interesting for high temperature of low-magnetic field millisecond pulsar at late stage.

  11. High pressure phase transitions for CdSe

    Indian Academy of Sciences (India)

    Bo Kong; Ti-Xian Zeng; Zhu-Wen Zhou; De-Liang Chen; Xiao-Wei Sun

    2014-05-01

    The structure and pressure-induced phase transitions for CdSe are investigated using first-principles calculations. The pressure-induced phase transition sequence WZ/ZB $\\to$ Rs $\\to$ $\\to$ CsCl for CdSe is drawn reasonably for the fist time, the corresponding transition pressures are 3.8, 29 and 107 GPa, respectively and the intermediate states between the structure and the CsCl structure should exist.

  12. Transition to and from the skyrmion lattice phase by electric fields in a magnetoelectric compound

    Science.gov (United States)

    Okamura, Y.; Kagawa, F.; Seki, S.; Tokura, Y.

    2016-09-01

    Dissipation-less electric control of magnetic state variable is an important target of contemporary spintronics. The non-volatile control of magnetic skyrmions, nanometre-sized spin-swirling objects, with electric fields may exemplify this goal. The skyrmion-hosting magnetoelectric chiral magnet Cu2OSeO3 provides a unique platform for the implementation of such control; however, the hysteresis that accompanies the first-order transition associated with the skyrmion phase is negligibly narrow in practice. Here we demonstrate another method that functions irrespective of the transition boundary. Combination of magnetic-susceptibility measurements and microwave spectroscopy reveals that although the metastable skyrmion lattice is normally hidden behind a more thermodynamically stable conical phase, it emerges under electric fields and persists down to the lowest temperature. Once created, this metastable skyrmion lattice remains without electric fields, establishing a bistability distinct from the transition hysteresis. This bistability thus enables non-volatile electric-field control of the skyrmion lattice even in temperature/magnetic-field regions far from the transition boundary.

  13. Molecular model for chirality phenomena.

    Science.gov (United States)

    Latinwo, Folarin; Stillinger, Frank H; Debenedetti, Pablo G

    2016-10-21

    Chirality is a hallmark feature for molecular recognition in biology and chemical physics. We present a three-dimensional continuum model for studying chirality phenomena in condensed phases using molecular simulations. Our model system is based upon a simple four-site molecule and incorporates non-trivial kinetic behavior, including the ability to switch chirality or racemize, as well as thermodynamics arising from an energetic preference for specific chiral interactions. In particular, we introduce a chiral renormalization parameter that can locally favor either homochiral or heterochiral configurations. Using this model, we explore a range of chirality-specific phenomena, including the kinetics of chiral inversion, the mechanism of spontaneous chiral symmetry breaking in the liquid, chirally driven liquid-liquid phase separation, and chiral crystal structures.

  14. Random matrix model approach to chiral symmetry

    CERN Document Server

    Verbaarschot, J J M

    1996-01-01

    We review the application of random matrix theory (RMT) to chiral symmetry in QCD. Starting from the general philosophy of RMT we introduce a chiral random matrix model with the global symmetries of QCD. Exact results are obtained for universal properties of the Dirac spectrum: i) finite volume corrections to valence quark mass dependence of the chiral condensate, and ii) microscopic fluctuations of Dirac spectra. Comparisons with lattice QCD simulations are made. Most notably, the variance of the number of levels in an interval containing $n$ levels on average is suppressed by a factor $(\\log n)/\\pi^2 n$. An extension of the random matrix model model to nonzero temperatures and chemical potential provides us with a schematic model of the chiral phase transition. In particular, this elucidates the nature of the quenched approximation at nonzero chemical potential.

  15. Diamagnetic phase transitions in two-dimensional conductors

    Energy Technology Data Exchange (ETDEWEB)

    Bakaleinikov, L.A., E-mail: bakal.ammp@mail.ioffe.ru [A.F. Ioffe Physico-Technical Institute, Russian Academy of Sciences, St. Petersburg 194021 (Russian Federation); Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel); Gordon, A. [Department of Mathematics and Physics, Faculty of Natural Sciences, University of Haifa, Campus Oranim, Tivon 36006 (Israel)

    2014-11-15

    A theory describing the susceptibility amplitude and the magnetic induction bifurcation near the dHvA driven diamagnetic phase transitions in quasi two-dimensional (2D) organic conductors of the (ET){sub 2}X with X=Cu(NCS){sub 2},KHg(SCN){sub 4},I{sub 3},AuBr{sub 2},IBr{sub 2}, etc. is presented. We show that there is a drastic increase in the temperature and magnetic field dependence of the susceptibility amplitude on approaching the diamagnetic phase transition point. Near the phase transition point the temperature and magnetic field dependences are fitted by the ones typical of the mean-field phase transition theory. These dependences confirm the long-range character of the magnetic interactions among the conduction electrons leading to diamagnetic phase transitions. We demonstrate that the magnetic induction splitting of nuclear magnetic resonance (NMR) and muon spin-rotation spectroscopy (μSR) lines due to two Condon domains decreases tending to zero on approaching the diamagnetic phase transition. This decrease is fitted by the temperature and magnetic field dependence of the susceptibility characteristic of the mean-field theory of phase transitions. Performing new susceptibility, NMR and μSR experiments will enable to detect diamagnetic phase transitions and Condon domains in quasi 2D metals. - Highlights: • A theory of diamagnetic phase transitions (DPTs) is presented in 2D organic conductors. • The behaviour of the susceptibility amplitude and the induction splitting is shown near the DPT. • The calculated quantities are described by the mean-field theory of phase transitions.

  16. Phase transition and PTCR effect in erbium doped BT ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Leyet, Y. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); Instituto Federal de Educacao Ciencia e Tecnologia (IFAM), Av. 7 de Setembro 1975, Centro, Manaus 69020-120, AM (Brazil); Pena, R.; Zulueta, Y. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); Guerrero, F. [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, C.P. 90500 Santiago de Cuba (Cuba); CESI, Universidade do Estado do Amazonas, Ave Mario Andreaza, Amazonas (Brazil); Anglada-Rivera, J. [CESI, Universidade do Estado do Amazonas, Ave Mario Andreaza, Amazonas (Brazil); Romaguera, Y. [INESC TEC, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Perez de la Cruz, J., E-mail: jcruz@inescporto.pt [INESC TEC, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2012-06-25

    Highlights: Black-Right-Pointing-Pointer Erbium influence the dielectric response BaTiO{sub 3} ceramics. Black-Right-Pointing-Pointer Features of the phase transition are not explained by phenomenological models. Black-Right-Pointing-Pointer Relaxation parameters do not show influence on ferroelectric-paraelectric phase transition. Black-Right-Pointing-Pointer Dielectric anomaly on BET phase transition is associated with the PTCR effect. - Abstract: In this work the dielectric behaviour and main features of the phase transition of BaTiO{sub 3} and Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} ceramics were carefully investigated. The temperature and frequency dependences of the dielectric properties of erbium doped BaTiO{sub 3} ceramics were measured in the 25-225 Degree-Sign C and 100 Hz to 10 MHz ranges, respectively. From this study, a dielectric anomaly in the ferroelectric-paraelectric phase transition of the Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} ceramic was observed. The features of the samples phase transition were analysed by using Curie-Weiss, Santos-Eiras' and order parameter local phenomenological models. In the BaTiO{sub 3} system, all models showed a normal phase transition, while was not possible to establish the character of the phase transition in the Ba{sub 0.99}Er{sub 0.01}TiO{sub 3} system. The relaxation parameters of conductive processes for the study ferroelectric materials, analysed in the time domain, did not show any influence on the ferroelectric-paraelectric phase transition. Finally, it was demonstrated that the anomaly observed on the phase transition of the erbium doped BaTiO{sub 3} ceramics is associated with the processes that results in the PTCR effect.

  17. Reentrant Phase Transitions in Rotating AdS Black Holes

    CERN Document Server

    Altamirano, Natacha; Mann, Robert B

    2013-01-01

    We study the thermodynamics of higher-dimensional singly spinning asymptotically AdS black holes in the canonical (fixed J) ensemble of extended phase space, where the cosmological constant is treated as pressure and the corresponding conjugate quantity is interpreted as thermodynamic volume. Along with the usual small/large black hole phase transition, we find a new phenomenon of reentrant phase transitions for all d>5 dimensions, in which a monotonic variation of the temperature yields two phase transitions from large to small and back to large black holes. This situation is similar to that seen in multicomponent liquids.

  18. Thermodynamics of Phase Transitions of a Kerr Nonlinear Blackbody

    Institute of Scientific and Technical Information of China (English)

    CHENG Ze

    2008-01-01

    We study the thermodynamics of phase transitions of a blackbody whose interior is filled by a Kerr nonlinear crystal. There is a transition temperature To, above which the Kerr nonlinear blackbody is in the normal thermal radiation state, and below which it is in the squeezed thermal radiation state. At To, the Gibbs free energy of the two phases is continuous but the entropy density of the two phases is discontinuous. Hence, there is a jump in the entropy density and this leads to a latent heat density. The photon system undergoes a first-order phase transition from the normal to the squeezed thermal radiation state.

  19. Large N Phase Transitions, Finite Volume, and Entanglement Entropy

    CERN Document Server

    Johnson, Clifford V

    2014-01-01

    Holographic studies of the entanglement entropy of field theories dual to charged and neutral black holes in asymptotically global AdS4 spacetimes are presented. The goal is to elucidate various properties of the quantity that are peculiar to working in finite volume, and to gain access to the behaviour of the entanglement entropy in the rich thermodynamic phase structure that is present at finite volume and large N. The entropy is followed through various first order phase transitions, and also a novel second order phase transition. Behaviour is found that contrasts interestingly with an earlier holographic study of a second order phase transition dual to an holographic superconductor.

  20. Quantum phase transitions between bosonic symmetry-protected topological states without sign problem: Nonlinear sigma model with a topological term

    Science.gov (United States)

    You, Yi-Zhuang; Bi, Zhen; Mao, Dan; Xu, Cenke

    2016-03-01

    We propose a series of simple two-dimensional (2D) lattice interacting fermion models that we demonstrate at low energy describe bosonic symmetry-protected topological (SPT) states and quantum phase transitions between them. This is because due to interaction, the fermions are gapped both at the boundary of the SPT states and at the bulk quantum phase transition, thus these models at low energy can be described completely by bosonic degrees of freedom. We show that the bulk of these models is described by a Sp (N ) principal chiral model with a topological Θ term, whose boundary is described by a Sp (N ) principal chiral model with a Wess-Zumino-Witten term at level 1. The quantum phase transition between SPT states in the bulk is tuned by a particular interaction term, which corresponds to tuning Θ in the field theory, and the phase transition occurs at Θ =π . The simplest version of these models with N =1 is equivalent to the familiar O(4) nonlinear sigma model (NLSM) with a topological term, whose boundary is a (1 +1 )D conformal field theory with central charge c =1 . After breaking the O(4) symmetry to its subgroups, this model can be viewed as bosonic SPT states with U(1), or Z2 symmetries, etc. All of these fermion models, including the bulk quantum phase transitions, can be simulated with the determinant quantum Monte Carlo method without the sign problem. Recent numerical results strongly suggest that the quantum disordered phase of the O(4) NLSM with precisely Θ =π is a stable (2 +1 )D conformal field theory with gapless bosonic modes.

  1. CO2 Capture from Flue Gas by Phase Transitional Absorption

    Energy Technology Data Exchange (ETDEWEB)

    Liang Hu

    2009-06-30

    A novel absorption process called Phase Transitional Absorption was invented. What is the Phase Transitional Absorption? Phase Transitional Absorption is a two or multi phase absorption system, CO{sub 2} rich phase and CO{sub 2} lean phase. During Absorption, CO{sub 2} is accumulated in CO{sub 2} rich phase. After separating the two phases, CO{sub 2} rich phase is forward to regeneration. After regeneration, the regenerated CO{sub 2} rich phase combines CO{sub 2} lean phase to form absorbent again to complete the cycle. The advantage for Phase Transitional Absorption is obvious, significantly saving on regeneration energy. Because CO{sub 2} lean phase was separated before regeneration, only CO{sub 2} rich phase was forward to regeneration. The absorption system we developed has the features of high absorption rate, high loading and working capacity, low corrosion, low regeneration heat, no toxic to environment, etc. The process evaluation shows that our process is able to save 80% energy cost by comparing with MEA process.

  2. The influence of chiral chemical potential, parallel electric and magnetic fields on the critical temperature of QCD

    CERN Document Server

    Ruggieri, M; Peng, G X

    2016-01-01

    We study the influence of external electric, $E$, and magnetic, $B$, fields parallel to each other, and of a chiral chemical potential, $\\mu_5$, on the chiral phase transition of Quantum Chromodynamics. Our theoretical framework is a Nambu-Jona-Lasinio model with a contact interaction. Within this model we compute the critical temperature of chiral symmetry restoration, $T_c$, as a function of the chiral chemical potential and field strengths. We find that the fields inhibit and $\\mu_5$ enhances chiral symmetry breaking, in agreement with previous studies.

  3. First-order electroweak phase transition powered by additional F-term loop effects in an extended supersymmetric Higgs sector

    CERN Document Server

    Kanemura, Shinya; Shindou, Tetsuo

    2011-01-01

    We investigate the one-loop effect of new charged scalar bosons on the Higgs potential at finite temperatures in the supersymmetric standard model with four Higgs doublet chiral superfields as well as a pair of charged singlet chiral superfields. In this model, the mass of the lightest Higgs boson $h$ is determined only by the D-term in the Higgs potential at the tree-level, while the triple Higgs boson coupling for $hhh$ can receive a significant radiative correction due to nondecoupling one-loop contributions of the additional charged scalar bosons. We find that the same nondecoupling mechanism can also contribute to realize stronger first order electroweak phase transition than that in the minimal supersymmetric standard model, which is definitely required for a successful scenario of electroweak baryogenesis. Therefore, this model can be a new candidate for a model in which the baryon asymmetry of the Universe is explained at the electroweak scale.

  4. Direct enantioseparation of underivatized aliphatic 3-hydroxyalkanoic acids with a quinine-based zwitterionic chiral stationary phase.

    Science.gov (United States)

    Ianni, Federica; Pataj, Zoltán; Gross, Harald; Sardella, Roccaldo; Natalini, Benedetto; Lindner, Wolfgang; Lämmerhofer, Michael

    2014-10-10

    While aliphatic 2-hydroxyalkanoic acids have been more or less successfully enantioseparated with various chiral stationary phases by HPLC and GC, analogous applications on underivatized aliphatic 3-hydroxyalkanoic acids are completely absent in the scientific literature. With the aim of closing this gap, the enantioseparation of 3-hydroxybutyric acid, 3-hydroxydecanoic acid and 3-hydroxymyristic acid has been performed with two ion-exchange type chiral stationary phases (CSPs): one containing the anion-exchange type tert-butyl carbamoyl quinine chiral selector motif (Chiralpak QN-AX), and the other carrying the new zwitterionic variant based on trans-(S,S)-2-aminocyclohexanesulfonic acid-derivatized quinine carbamate (Chiralpak ZWIX(+)) as the chiral selector and enantiodiscriminating element, respectively. The zwitterionic enantiorecognition material provided better results in terms of enantioselectivity and resolution compared to the anion-exchanger CSP at reduced retention times due to the intramolecular counterion effect imposed by the sulfonic acid moiety and its competition with the 3-hydroxyalkanoic acid analyte for ionic interaction at the quininium-anion exchanger site. It is thus recommended as the CSP of first choice for enantioseparations of the class of aliphatic 3-hydroxyalkanoic acids. With use of polar organic eluent composed of ACN/MeOH/AcOH - 95/5/0.05 (v/v/v), a good compromise in terms of analysis time and enantioresolution quality was accomplished. The major experimental variables have been investigated for optimization of the resolution and allowed to derive information on the enantiorecognition mechanism. Corresponding Chiralpak ZWIX(-), based on pseudo-enantiomeric selector derived from quinidine and trans-(R,R)-2-aminocyclohexanesulfonic acid with opposite configurations provided reversed enantiomer elution orders. It has further to be stressed that these separations can be obtained with mass spectrometry compatible mobile phases.

  5. Preparation and evaluation of a chiral stationary phase covalently bound with a chiral pseudo-18-crown-6 ether having a phenolic hydroxy group for enantiomer separation of amino compounds.

    Science.gov (United States)

    Yongzhu, Jin; Hirose, Keiji; Nakamura, Takashi; Nishioka, Ryota; Ueshige, Tetsuro; Tobe, Yoshito

    2006-10-06

    In order to develop a chiral stationary phase (CSP), which has even higher separation ability than the corresponding commercially available crown ether based CSP (OA-8000 having a pseudo-18-crown-6 ether with an OMe group as a selector), chemically bonded type CSP having a phenolic OH group on a crown ring was developed. Normal mobile phases with or without acid additive can be used with this OH type CSP in contrast to the conventional OMe type CSP which has a neutral chiral selector. Enantiomers of 25 out of 27 amino compounds, including 20 amino acids, 5 amino alcohols, and 2 lipophilic amines, were efficiently separated on a column with this CSP. Nine amino compounds out of 27 were separated with better separation factors than the corresponding OMe type CSP. It is noteworthy that the chromatography on this CSP exhibited excellent enantiomer-separations for amines and amino alcohols when triethyl amine was used as an additive in the mobile phase. Comparison of enantiomer separation ability on this OH type of CSP and on the OMe type of CSP and correlation between the enantioselectivity in chiral chromatography and that of the corresponding model compounds in solution imply that the chiral separation arose from chiral recognition in host guest interactions.

  6. Phase Transition Induced by Small Molecules in Confined Copolymer Films

    Institute of Scientific and Technical Information of China (English)

    ZHOU Ling

    2007-01-01

    We investigate the phase transition induced by small molecules in confined copolymer films by using density functional theory.It is found that the addition of small molecules can effectively promote the phase separation of copolymers.In a symmetric diblock copolymer film,the affinity and concentration of small molecules play an important role in the structure transjtions.The disordered-lamellar transitions lamellar-lamellar transitions and the re-entrant transitions of the same structures are observed.Our results have potential applications in the fabrication of new functional materials.

  7. Phase-separation transitions in asymmetric lipid bilayers

    CERN Document Server

    Shimobayashi, Shunsuke F; Taniguchi, Takashi

    2015-01-01

    Morphological transitions of phase separation associated with the asymmetry of lipid composition were investigated using micrometer-sized vesicles of lipid bilayers made from a lipid mixture. The complete macro-phase-separated morphology undergoes a transition to a micro-phase-separation-like morphology via a lorate morphology as a metastable state. The transition leads to the emergence of monodisperse nanosized domains through repeated domain scission events. Moreover, we have numerically confirmed the transitions using the time-dependent Ginzburg-Landau model describing phase separation and the bending elastic membrane, which is quantitatively consistent with experimental results by fixing one free parameter. Our findings suggest that the local spontaneous curvature due to the asymmetric composition plays an essential role in the thermodynamic stabilization of micro-phase separation in lipid bilayers.

  8. Superradiant phase transitions with three-level systems

    Science.gov (United States)

    Baksic, Alexandre; Nataf, Pierre; Ciuti, Cristiano

    2013-02-01

    We determine the phase diagram of N identical three-level systems interacting with a single photonic mode in the thermodynamical limit (N→∞) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in the presence of a diamagnetic term.

  9. Phase transitions in pure and dilute thin ferromagnetic films

    Science.gov (United States)

    Korneta, W.; Pytel, Z.

    1983-10-01

    The mean-field model of a thin ferromagnetic film where the nearest-neighbor exchange coupling in surface layers can be different from that inside the film is considered. The phase diagram, equations for the second-order phase-transition lines, and the spontaneous magnetization profiles near the phase transitions are given. It is shown that there is no extra-ordinary transition in a thin film. If the thickness of the film tends to infinity the well-known results for the mean-field model of a semi-infinite ferromagnet are obtained. The generalization for disordered dilute thin ferromagnetic films and semi-infinite ferromagnets is also given.

  10. Superradiant phase transitions with three-level systems

    CERN Document Server

    Baksic, Alexandre; Ciuti, Cristiano

    2013-01-01

    We determine the phase diagram of $N$ identical three-level systems interacting with a single photonic mode in the thermodynamical limit ($N \\to \\infty$) by accounting for the so-called diamagnetic term and the inequalities imposed by the Thomas-Reich-Kuhn (TRK) oscillator strength sum rule. The key role of transitions between excited levels and the occurrence of first-order phase transitions is discussed. We show that, in contrast to two-level systems, in the three-level case the TRK inequalities do not always prevent a superradiant phase transition in presence of a diamagnetic term.

  11. Nature of chiral spin liquids on the kagome lattice

    Science.gov (United States)

    Wietek, Alexander; Sterdyniak, Antoine; Läuchli, Andreas M.

    2015-09-01

    We investigate the stability and the nature of the chiral spin liquids which were recently uncovered in extended Heisenberg models on the kagome lattice. Using a Gutzwiller projected wave function approach, i.e., a parton construction, we obtain large overlaps with ground states of these extended Heisenberg models. We further suggest that the appearance of the chiral spin liquid in the time-reversal invariant case is linked to a classical transition line between two magnetically ordered phases.

  12. Structural and dynamical properties of the chiral smectic C phase of ferroelectric liquid crystals showing high spontaneous polarizations

    Energy Technology Data Exchange (ETDEWEB)

    Hemine, J. [Laboratoire de Physique de la Matiere Condensee, Universite Hassan II, F.S.T. Mohammedia BP 146 (Morocco)]. E-mail: hemine1@yahoo.fr; Daoudi, A. [Laboratoire de Thermophysique de la Matiere, Universite du Littoral-Cote d' Opale, 145, Avenue Maurice Schumann, 59 140 Dunkerque, France. (France); Legrand, C. [Laboratoire d' Etude des Materiaux et des Composants pour l' Electronique, EA 2601, Universite du Littoral-Cote d' Opale BP 717, Calais (France); Isaert, N. [Laboratoire de Dynamique et Structures des Materiaux Moleculaires, URA No 801, Universite de Lille 1, 59655 Villeneuve d' Ascq (France); El kaaouachi, A. [Laboratoire de Physique de la Matiere Condensee, Faculte des Sciences Ibnou Zohr, BP 28/S 80000, Agadir (Morocco); Nguyen, H.T. [Centre de Recherche Paul Pascal, Universite de Bordeaux 1, 33600 Pessac (France)

    2007-10-01

    Electro-optical and dielectric investigations of a ferroelectric liquid crystal (FLC) exhibiting the chiral smectic C phase (SmC*) have been carried out as a function of temperature. These experimental studies have been applied to a new FLC having high spontaneous polarization and relaxation frequency. The Goldstone relaxation mode was studied from the dielectric response of FLC cells without DC bias voltage. The rotational viscosity corresponding to molecular motion in the SmC* phase was also determined from both electro-optical and dielectric measurements. An Arrhenius-type behaviour of the rotational viscosity was obtained and the corresponding activation energies were evaluated.

  13. Chiral symmetry breaking, color superconductivity and quark matter phase diagram: a variational approach 12.38.Gc

    CERN Document Server

    Mishra, H

    2001-01-01

    We discuss in this note simultaneous existence of chiral symmetry breaking and color superconductivity at finite temperature and density in a Nambu-Jona-Lasinio type model. The methodology involves an explicit construction of a variational ground state and minimisation of the thermodynamic potential. There exist nontrivial solutions to the gap equations at finite densities with both quark-antiquark as well as diquark condensates for the 'ground' state. However, such a phase is thermodynamically unstable with the pressure being negative in this region. We also compute the equation of state, and obtain the structure of the phase diagram in the model.

  14. Phase sensitive quantum interference on forbidden transition in ladder scheme

    CERN Document Server

    Koganov, Gennady A

    2014-01-01

    A three level ladder system is analyzed and the coherence of initially electric-dipole forbidden transition is calculated. Due to the presence of two laser fields the initially dipole forbidden transition becomes dynamically permitted due to ac Stark effect. It is shown that such transitions exhibit quantum-interference-related phenomena, such as electromagnetically induced transparency, gain without inversion and enhanced refractive index. Gain and dispersion characteristics of such transitions strongly depend upon the relative phase between the driving and the probe fields. Unlike allowed transitions, gain/absorption behavior of ac-Stark allowed transitions exhibit antisymmetric feature on the Rabi sidebands. It is found that absorption/gain spectra possess extremely narrow sub-natural resonances on these ac Stark allowed forbidden transitions. An interesting finding is simultaneous existence of gain and negative dispersion at Autler-Townes transition which may lead to both reduction of the group velocity a...

  15. The topological quantum phase transitions in Lieb lattice driven by the Rashba SOC and exchange field

    Science.gov (United States)

    Wang, Rui; Qiao, Qian; Wang, Bin; Ding, Xiu-Huan; Zhang, Yi-Fu

    2016-09-01

    The quantum spin Hall (QSH) effect and the quantum anomalous Hall (QAH) effect in Lieb lattice are investigated in the presence of both Rashba spin-orbit coupling (SOC) and uniform exchange field. The Lieb lattice has a simple cubic symmetry, which is characterized by the single Dirac-cone per Brillouin zone and the middle flat band in the band structure. The intrinsic SOC is essentially needed to open the full energy gap in the bulk. The QSH effect could survive even in the presence of the exchange field. In terms of the first Chern number and the spin Chern number, we study the topological nature and the topological phase transition from the time-reversal symmetry broken QSH effect to the QAH effect. For Lieb lattice ribbons, the energy spectrum and the wave-function distributions are obtained numerically, where the helical edge states and the chiral edge states reveal the non-trivial topological QSH and QAH properties, respectively.

  16. Safety performance of traffic phases and phase transitions in three phase traffic theory.

    Science.gov (United States)

    Xu, Chengcheng; Liu, Pan; Wang, Wei; Li, Zhibin

    2015-12-01

    Crash risk prediction models were developed to link safety to various phases and phase transitions defined by the three phase traffic theory. Results of the Bayesian conditional logit analysis showed that different traffic states differed distinctly with respect to safety performance. The random-parameter logit approach was utilized to account for the heterogeneity caused by unobserved factors. The Bayesian inference approach based on the Markov Chain Monte Carlo (MCMC) method was used for the estimation of the random-parameter logit model. The proposed approach increased the prediction performance of the crash risk models as compared with the conventional logit model. The three phase traffic theory can help us better understand the mechanism of crash occurrences in various traffic states. The contributing factors to crash likelihood can be well explained by the mechanism of phase transitions. We further discovered that the free flow state can be divided into two sub-phases on the basis of safety performance, including a true free flow state in which the interactions between vehicles are minor, and a platooned traffic state in which bunched vehicles travel in successions. The results of this study suggest that a safety perspective can be added to the three phase traffic theory. The results also suggest that the heterogeneity between different traffic states should be considered when estimating the risks of crash occurrences on freeways.

  17. Synthesis of fluorescent label, DBD-beta-proline, and the resolution efficiency for chiral amines by reversed-phase chromatography.

    Science.gov (United States)

    Min, Jun Zhe; Toyo'oka, Toshimasa; Kato, Masaru; Fukushima, Takeshi

    2005-01-01

    DBD-d(and l)-beta-proline, new fluorescent chiral derivatization reagents, were synthesized from the reaction of 4-(N,N-dimethylaminosulfonyl)-7- fl uoro-2,1,3-benzoxadiazole (DBD-F) with beta-proline. The racemic mixture synthesized was separated by a chiral stationary phase (CSP) column, Chiralpak AD-H, with n-hexane-EtOH-TFA-diethylamine (70:30:0.1:0.1) as the mobile phase. The dl-forms were decided according to the results obtained from a circular dichroism (CD) detector after separation by the CSP column. The fractionated enantiomers reacted with chiral amine to produce a couple of diastereomers. The labeling proceeded in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and pyridine as the activation reagents. The reaction conditions were mild and no racemization occurred during the diastereomer formation. The resulting diastereomers fluoresced at around 570 nm (excitation at around 460 nm). Good linearity of the calibration curves was obtained in the range 1-75 pmol and the detection limits on chromatogram were less than 1 pmol. The separability of the diastereomers was compared with the diastereomers derived from DBD-d(or l)-proline. The resolution values (Rs) obtained from the diastereomers of three chiral amines with DBD-d(or l)-beta-proline were higher than those derived from DBD-d(or l)-proline, e.g. dl-phenylalanine methylester (dl-PAME), 2.23 vs 1.37; (R)(S)-1-phenylethylamine [(R)(S)-PEA], 2.09 vs 1.13; and (R)(S)-1-(1-naphthyl)ethylamines [(R)(S)-NEA], 5.19 vs 1.23. The results suggest that the position of COOH group on pyrrolidine moiety in the structures is one of the important factors for the efficient separation of a couple of the diastereomers.

  18. Chiral nuclear thermodynamics

    CERN Document Server

    Fiorilla, Salvatore; Weise, Wolfram

    2011-01-01

    We calculate the equation of state of nuclear matter for arbitrary isospin-asymmetry up to three loop order in the free energy density in the framework of in-medium chiral perturbation theory. In our approach 1\\pi- and 2\\pi-exchange dynamics with the inclusion of the \\Delta-isobar excitation as an explicit degree of freedom, corresponding to the long- and intermediate-range correlations, are treated explicitly. Few contact terms fixed to reproduce selected known properties of nuclear matter encode the short-distance physics. Two-body as well as three-body forces are systematically included. We find a critical temperature of about 15 MeV for symmetric nuclear matter. We investigate the dependence of the liquid-gas first-order phase transition on isospin-asymmetry. In the same chiral framework we calculate the chiral condensate of isospin-symmetric nuclear matter at finite temperatures. The contribution of the \\Delta-isobar excitation is essential for stabilizing the condensate. As a result, we find no indicati...

  19. Phase transitions in ferroelectric silicon doped hafnium oxide

    Science.gov (United States)

    Böscke, T. S.; Teichert, St.; Bräuhaus, D.; Müller, J.; Schröder, U.; Böttger, U.; Mikolajick, T.

    2011-09-01

    We investigated phase transitions in ferroelectric silicon doped hafnium oxide (FE-Si:HfO2) by temperature dependent polarization and x-ray diffraction measurements. If heated under mechanical confinement, the orthorhombic ferroelectric phase reversibly transforms into a phase with antiferroelectric behavior. Without confinement, a transformation into a monoclinic/tetragonal phase mixture is observed during cooling. These results suggest the existence of a common higher symmetry parent phase to the orthorhombic and monoclinic phases, while transformation between these phases appears to be inhibited by an energy barrier.

  20. Phase transitions in simplified models with long-range interactions

    Science.gov (United States)

    Rocha Filho, T. M.; Amato, M. A.; Mello, B. A.; Figueiredo, A.

    2011-10-01

    We study the origin of phase transitions in several simplified models with long-range interactions. For the self-gravitating ring model, we are unable to observe a possible phase transition predicted by Nardini and Casetti [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.80.060103 80, 060103R (2009).] from an energy landscape analysis. Instead we observe a sharp, although without any nonanalyticity, change from a core-halo to a core-only configuration in the spatial distribution functions for low energies. By introducing a different class of solvable simplified models without any critical points in the potential energy we show that a behavior similar to the thermodynamics of the ring model is obtained, with a first-order phase transition from an almost homogeneous high-energy phase to a clustered phase and the same core-halo to core configuration transition at lower energies. We discuss the origin of these features for the simplified models and show that the first-order phase transition comes from the maximization of the entropy of the system as a function of energy and an order parameter, as previously discussed by Hahn and Kastner [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.72.056134 72, 056134 (2005); Eur. Phys. J. BEPJBFY1434-602810.1140/epjb/e2006-00100-7 50, 311 (2006)], which seems to be the main mechanism causing phase transitions in long-range interacting systems.

  1. Common screening approaches for efficient analytical method development in LC and SFC on columns packed with immobilized polysaccharide-derived chiral stationary phases.

    Science.gov (United States)

    Franco, Pilar; Zhang, Tong

    2013-01-01

    Owing to their remarkable enantioselectivity, versatility, and stability, immobilized polysaccharide-based chiral stationary phases (CSPs) have been successfully integrated into the tool box of many research and industry groups for the separation of enantiomers or stereoisomers by liquid and supercritical fluid chromatography. Due to the structurally diverse range of compounds available, efficient method development for chiral separations utilizing such CSPs is a challenging subject. In this chapter, we will discuss simplified screening protocols and straightforward approaches to achieve chiral separations in HPLC and SFC using the column series CHIRALPAK™ IA, IB, IC, and ID in reasonable time frame and with limited experimental work and a high success rate.

  2. Integrability and Quantum Phase Transitions in Interacting Boson Models

    CERN Document Server

    Dukelsky, J; García-Ramos, J E; Pittel, S

    2003-01-01

    The exact solution of the boson pairing hamiltonian given by Richardson in the sixties is used to study the phenomena of level crossings and quantum phase transitions in the integrable regions of the sd and sdg interacting boson models.

  3. Instabilities of uniform filtration flows with phase transition

    Science.gov (United States)

    Il'Ichev, A. T.; Tsypkin, G. G.

    2008-10-01

    New mechanisms of instability are described for vertical flows with phase transition through horizontally extended two-dimensional regions of a porous medium. A plane surface of phase transition becomes unstable at an infinitely large wavenumber and at zero wavenumber. In the latter case, the unstable flow undergoes reversible subcritical bifurcations leading to the development of secondary flows (which may not be horizontally uniform). The evolution of subcritical modes near the instability threshold is governed by the Kolmogorov-Petrovskii-Piskunov equation. Two examples of flow through a porous medium are considered. One is the unstable flow across a water-bearing layer above a layer that carries a vapor-air mixture under isothermal conditions in the presence of capillary forces at the phase transition interface. The other is the vertical flow with phase transition in a high-temperature geothermal reservoir consisting of two high-permeability regions separated by a low-permeability stratum.

  4. Phase transitions in the coal-water-methane system

    Energy Technology Data Exchange (ETDEWEB)

    Alexeev, A.D.; Ulyanova, E.V.; Kalugina, N.A.; Degtyar, S.E. [Institute of Physical & Mining Processes, Donetsk (Ukraine)

    2006-07-01

    Low temperature phase transitions in water and methane occurring in fossil coals were studied experimentally using Nuclear Magnetic Resonance (NMR) techniques. Contributions of constituent fluids into narrow line of {sup 1}H NMR wide line spectrum were analyzed.

  5. Lifshitz Transitions in Magnetic Phases of the Periodic Anderson Model

    Science.gov (United States)

    Kubo, Katsunori

    2015-09-01

    We investigate the reconstruction of a Fermi surface, which is called a Lifshitz transition, in magnetically ordered phases of the periodic Anderson model on a square lattice with a finite Coulomb interaction between f electrons. We apply the variational Monte Carlo method to the model by using the Gutzwiller wavefunctions for the paramagnetic, antiferromagnetic, ferromagnetic, and charge-density-wave states. We find that an antiferromagnetic phase is realized around half-filling and a ferromagnetic phase is realized when the system is far away from half-filling. In both magnetic phases, Lifshitz transitions take place. By analyzing the electronic states, we conclude that the Lifshitz transitions to large ordered-moment states can be regarded as itinerant-localized transitions of the f electrons.

  6. Behavior of the Lyapunov Exponent and Phase Transition in Nuclei

    Institute of Scientific and Technical Information of China (English)

    WANG Nan; WU Xi-Zhen; LI Zhu-Xia; WANG Ning; ZHUO Yi-Zhong; SUN Xiu-Quan

    2000-01-01

    Based on the quantum molecular dynamics model, we investigate the dynamical behaviors of the excited nuclear system to simulate the latter stage of heavy ion reactions, which associate with a liquid-gas phase transition. We try to search a microscopic way to describe the phase transition in realnuclei. The Lyapunov exponent is employed and examined for our purpose. We find out that the Lyapunov exponent is one of good microscopic quantities to describe the phase transition in hot nuclei. Coulomb potential and the finite size effect may give a strong influence on the critical temperature. However, the collision term plays a minor role in the process of the liquid-gas phase transition in finite systems.

  7. Dynamical symmetries and causality in non-equilibrium phase transitions

    CERN Document Server

    Henkel, Malte

    2015-01-01

    Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant $n$-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  8. Dynamical Symmetries and Causality in Non-Equilibrium Phase Transitions

    Directory of Open Access Journals (Sweden)

    Malte Henkel

    2015-11-01

    Full Text Available Dynamical symmetries are of considerable importance in elucidating the complex behaviour of strongly interacting systems with many degrees of freedom. Paradigmatic examples are cooperative phenomena as they arise in phase transitions, where conformal invariance has led to enormous progress in equilibrium phase transitions, especially in two dimensions. Non-equilibrium phase transitions can arise in much larger portions of the parameter space than equilibrium phase transitions. The state of the art of recent attempts to generalise conformal invariance to a new generic symmetry, taking into account the different scaling behaviour of space and time, will be reviewed. Particular attention will be given to the causality properties as they follow for co-variant n-point functions. These are important for the physical identification of n-point functions as responses or correlators.

  9. Entropy, Macroscopic Information, and Phase Transitions

    OpenAIRE

    Parrondo, Juan M. R.

    1999-01-01

    The relationship between entropy and information is reviewed, taking into account that information is stored in macroscopic degrees of freedom, such as the order parameter in a system exhibiting spontaneous symmetry breaking. It is shown that most problems of the relationship between entropy and information, embodied in a variety of Maxwell demons, are also present in any symmetry breaking transition.

  10. Phase transition in L-alaninium oxalate by photoacoustics

    Indian Academy of Sciences (India)

    M Sivabarathy; S Natarajan; S K Ramakrishnan; K Ramachandran

    2004-10-01

    Phase transition in L-alaninium oxalate is studied by using TG, DTA and photoacoustic spectroscopy. A sharp transition at 378 K by photoacoustics is observed whereas at the same temperature the endothermic energy change observed by TG and DTA is not very sharp. This is discussed in detail with reference to the other known data for the organic crystals.

  11. Quantum Shape-Phase Transitions in Finite Nuclei

    CERN Document Server

    Leviatan, A

    2007-01-01

    Quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Critical-point Hamiltonians for first- and second-order transitions are identified by resolving them into intrinsic and collective parts. Suitable wave functions and finite-N estimates for observables at the critical-points are derived.

  12. Quantum Shape-Phase Transitions in Finite Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel)

    2007-05-15

    Quantum shape-phase transitions in finite nuclei are considered in the framework of the interacting boson model. Critical-point Hamiltonians for first- and second-order transitions are identified by resolving them into intrinsic and collective parts. Suitable wave functions and finite-N estimates for observables at the critical-points are derived.

  13. Phase transition of bismuth telluride thin films grown by MBE

    DEFF Research Database (Denmark)

    Fülöp, Attila; Song, Yuxin; Charpentier, Sophie

    2014-01-01

    A previously unreported phase transition between Bi2Te3 and Bi4Te3 in bismuth telluride grown by molecular beam epitaxy is recorded via XRD, AFM, and SIMS observations. This transition is found to be related to the Te/Bi beam equivalent pressure (BEP) ratio. BEP ratios below 17 favor the formation...

  14. The QCD phase transitions: From mechanism to observables

    Energy Technology Data Exchange (ETDEWEB)

    Shuryak, E.V.

    1997-09-22

    This paper contains viewgraphs on quantum chromodynamic phase transformations during heavy ion collisions. Some topics briefly described are: finite T transitions of I molecule pairs; finite density transitions of diquarks polymers; and the softtest point of the equation of state as a source of discontinuous behavior as a function of collision energy or centrality.

  15. Baryogenesis via leptonic CP-violating phase transition

    CERN Document Server

    Pascoli, Silvia; Zhou, Ye-Ling

    2016-01-01

    We propose a new mechanism to generate a lepton asymmetry based on the vacuum CP-violating phase transition (CPPT). This approach differs from classical thermal leptogenesis as a specific seesaw model, and its UV completion, need not be specified. The lepton asymmetry is generated via the dynamically realised coupling of the Weinberg operator during the phase transition. This mechanism provides strong connections with low-energy neutrino experiments.

  16. Quark-gluon plasma phase transition using cluster expansion method

    Science.gov (United States)

    Syam Kumar, A. M.; Prasanth, J. P.; Bannur, Vishnu M.

    2015-08-01

    This study investigates the phase transitions in QCD using Mayer's cluster expansion method. The inter quark potential is modified Cornell potential. The equation of state (EoS) is evaluated for a homogeneous system. The behaviour is studied by varying the temperature as well as the number of Charm Quarks. The results clearly show signs of phase transition from Hadrons to Quark-Gluon Plasma (QGP).

  17. Partial dynamical symmetry at critical points of quantum phase transitions.

    Science.gov (United States)

    Leviatan, A

    2007-06-15

    We show that partial dynamical symmetries can occur at critical points of quantum phase transitions, in which case underlying competing symmetries are conserved exactly by a subset of states, and mix strongly in other states. Several types of partial dynamical symmetries are demonstrated with the example of critical-point Hamiltonians for first- and second-order transitions in the framework of the interacting boson model, whose dynamical symmetries correspond to different shape phases in nuclei.

  18. Effect of point defects and disorder on structural phase transitions

    Energy Technology Data Exchange (ETDEWEB)

    Toulouse, J.

    1997-06-01

    Since the beginning in 1986, the object of this project has been Structural Phase Transitions (SPT) in real as opposed to ideal materials. The first stage of the study has been centered around the role of Point Defects in SPT`s. Our intent was to use the previous knowledge we had acquired in the study of point defects in non-transforming insulators and apply it to the study of point defects in insulators undergoing phase transitions. In non-transforming insulators, point defects, in low concentrations, marginally affect the bulk properties of the host. It is nevertheless possible by resonance or relaxation methods to study the point defects themselves via their local motion. In transforming solids, however, close to a phase transition, atomic motions become correlated over very large distances; there, even point defects far removed from one another can undergo correlated motions which may strongly affect the transition behavior of the host. Near a structural transition, the elastic properties win be most strongly affected so as to either raise or decrease the transition temperature, prevent the transition from taking place altogether, or simply modify its nature and the microstructure or domain structure of the resulting phase. One of the well known practical examples is calcium-stabilized zirconia in which the high temperature cubic phase is stabilized at room temperature with greatly improved mechanical properties.

  19. Preparation and application of methylcalix[4]resorcinarene-bonded silica particles as chiral stationary phase in high-performance liquid chromatography.

    Science.gov (United States)

    Tan, Huey Min; Soh, Shu Fang; Zhao, Jia; Yong, E L; Gong, Yinhan

    2011-01-01

    Two new types of methylcalix[4]resorcinarene-bonded stationary phases, (3-(C-methylcalix[4]resorcinarene)-2-hydroxypropoxy)-propylsilyl-appended silica particles (MCR-HPS) and bromoacetate-substituted MCR-HPS particles (BAMCR-HPS), have been synthesized and used as chiral stationary phases for high-performance liquid chromatography (HPLC) for the first time. The synthetic stationary phases are characterized by means of elemental analysis and Fourier-transform infrared spectroscopy. The chromatographic behavior of MCR-HPS and BAMCR-HPS was studied with several disubstituted benzenes and some chiral drug compounds under both normal phase and reversed-phase conditions. The results show that MCR-HPS has excellent selectivity for the separation of aromatic positional isomers and BAMCR-HPS exhibits excellent performance for separation of enantiomers of chiral compounds.

  20. Quark-Hadron Phase Transitions in Viscous Early Universe

    CERN Document Server

    Tawfik, A

    2011-01-01

    Based on hot big bang theory, the cosmological matter is conjectured to undergo QCD phase transition(s) to hadrons, when the universe was about $1-10 \\mu$s old. In the present work, we study the quark-hadron phase transition, by taking into account the effect of the bulk viscosity. We analyze the evolution of the quantities relevant for the physical description of the early universe, namely, the energy density $\\rho$, temperature $T$, Hubble parameter $H$ and scale factor $a$ before, during and after the phase transition. To study the cosmological dynamics and the time evolution we use both analytical and numerical methods. By assuming that the phase transition may be described by an effective nucleation theory (prompt {\\it first-order} phase transition), we also consider the case where the universe evolved through a mixed phase with a small initial supercooling and monotonically growing hadronic bubbles. The numerical estimation of the cosmological parameters, $a$ and $H$ for instance, makes it clear that th...