WorldWideScience

Sample records for chiral perturbation theory

  1. Chiral perturbation theory

    International Nuclear Information System (INIS)

    After a general introduction to the structure of effective field theories, the main ingredients of chiral perturbation theory are reviewed. Applications include the light quark mass ratios and pion-pion scattering to two-loop accuracy. In the pion-nucleon system, the linear σ model is contrasted with chiral perturbation theory. The heavy-nucleon expansion is used to construct the effective pion-nucleon Lagrangian to third order in the low-energy expansion, with applications to nucleon Compton scattering. (author)

  2. Baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  3. Baryon chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2011-01-01

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order ${\\cal O}(q^6)$ and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  4. Baryon chiral perturbation theory

    Science.gov (United States)

    Scherer, S.

    2012-03-01

    We provide a short introduction to the one-nucleon sector of chiral perturbation theory and address the issue of power counting and renormalization. We discuss the infrared regularization and the extended on-mass-shell scheme. Both allow for the inclusion of further degrees of freedom beyond pions and nucleons and the application to higher-loop calculations. As applications we consider the chiral expansion of the nucleon mass to order Script O(q6) and the inclusion of vector and axial-vector mesons in the calculation of nucleon form factors. Finally, we address the complex-mass scheme for describing unstable particles in effective field theory.

  5. Review of chiral perturbation theory

    Indian Academy of Sciences (India)

    B Ananthanarayan

    2003-11-01

    A review of chiral perturbation theory and recent developments on the comparison of its predictions with experiment is presented. Some interesting topics with scope for further elaboration are touched upon.

  6. Chiral perturbation theory with nucleons

    International Nuclear Information System (INIS)

    I review the constraints posed on the interactions of pions, nucleons and photons by the spontaneously broken chiral symmetry of QCD. The framework to perform these calculations, chiral perturbation theory, is briefly discussed in the meson sector. The method is a simultaneous expansion of the Greens functions in powers of external moments and quark masses around the massless case, the chiral limit. To perform this expansion, use is made of a phenomenological Lagrangian which encodes the Ward-identities and pertinent symmetries of QCD. The concept of chiral power counting is introduced. The main part of the lectures of consists in describing how to include baryons (nucleons) and how the chiral structure is modified by the fact that the nucleon mass in the chiral limit does not vanish. Particular emphasis is put on working out applications to show the strengths and limitations of the methods. Some processes which are discussed are threshold photopion production, low-energy compton scattering off nucleons, πN scattering and the σ-term. The implications of the broken chiral symmetry on the nuclear forces are briefly described. An alternative approach, in which the baryons are treated as very heavy fields, is touched upon

  7. Quenched Chiral Perturbation Theory to one loop

    NARCIS (Netherlands)

    Colangelo, G.; Pallante, E.

    1998-01-01

    The divergences of the generating functional of quenched Chiral Perturbation theory (qCHPT) to one loop are computed in closed form. We show how the quenched chiral logarithms can be reabsorbed in the renormalization of the B0 parameter of the leading order Lagrangian. Finally, we do the chiral powe

  8. Unphysical phases in staggered chiral perturbation theory

    Science.gov (United States)

    Aubin, Christopher; Colletti, Katrina; Davila, George

    2016-04-01

    We study the phase diagram for staggered quarks using chiral perturbation theory. In beyond-the-standard-model simulations using a large number (>8 ) of staggered fermions, unphysical phases appear for coarse enough lattice spacing. We argue that chiral perturbation theory can be used to interpret one of these phases. In addition, we show that only three broken phases for staggered quarks exist, at least for lattice spacings in the regime a2≪ΛQCD2 .

  9. Staggered Heavy Baryon Chiral Perturbation Theory

    CERN Document Server

    Bailey, Jon A

    2007-01-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms the order of the cubed pion mass, which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms the order of the squared lattice spacing. The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in d...

  10. Radiative meson decays in chiral perturbation theory

    International Nuclear Information System (INIS)

    Radiative meson decays are a fertile field for chiral perturbation theory. Chiral symmetry together with gauge invariance yield stringent constraints on radiative decay amplitudes. In addition to predicting decay rates and spectra, the chiral approach allows for a unified description of CP violation in radiative K decays. The chiral viewpoint in the recent controversy over the magnitude of two-photon exchange in the decay KL→ π0e+e- is exposed. The radiative decay η→π0γγ is discussed as an intriguing case where the leading result of chiral perturbation theory seems to be too small by two orders of magnitude in rate. 32 refs., 3 figs. (Author)

  11. Staggered heavy baryon chiral perturbation theory

    Science.gov (United States)

    Bailey, Jon A.

    2008-03-01

    Although taste violations significantly affect the results of staggered calculations of pseudoscalar and heavy-light mesonic quantities, those entering staggered calculations of baryonic quantities have not been quantified. Here I develop staggered chiral perturbation theory in the light-quark baryon sector by mapping the Symanzik action into heavy baryon chiral perturbation theory. For 2+1 dynamical quark flavors, the masses of flavor-symmetric nucleons are calculated to third order in partially quenched and fully dynamical staggered chiral perturbation theory. To this order the expansion includes the leading chiral logarithms, which come from loops with virtual decuplet-like states, as well as terms of O(mπ3), which come from loops with virtual octet-like states. Taste violations enter through the meson propagators in loops and tree-level terms of O(a2). The pattern of taste symmetry breaking and the resulting degeneracies and mixings are discussed in detail. The resulting chiral forms are appropriate to lattice results obtained with operators already in use and could be used to study the restoration of taste symmetry in the continuum limit. I assume that the fourth root of the fermion determinant can be incorporated in staggered chiral perturbation theory using the replica method.

  12. Tests of Chiral Perturbation Theory with COMPASS

    CERN Document Server

    Friedrich, Jan

    2010-01-01

    The COMPASS experiment at the CERN SPS studies with high precision pion-photon induced reactions via the Primakoff effect on nuclear targets. This offers the test of chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the long-standing question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.

  13. Tests of Chiral Perturbation Theory with COMPASS

    International Nuclear Information System (INIS)

    The COMPASS experiment at CERN studies with high precision pion-photon induced reactions on nuclear targets via the Primakoff effect. This offers the possibility to test chiral perturbation theory (ChPT) in various channels: Pion Compton scattering allows to clarify the longstanding question of the pion polarisabilities, single neutral pion production is related to the chiral anomaly, and for the two-pion production cross sections exist as yet untested ChPT predictions.

  14. A primer for Chiral Perturbative Theory

    International Nuclear Information System (INIS)

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)

  15. A primer for Chiral Perturbative Theory

    Energy Technology Data Exchange (ETDEWEB)

    Scherer, Stefan [Mainz Univ. (Germany). Inst. fuer Kernphysik; Schindler, Matthias R. [South Carolina Univ., Columbia, SC (United States). Dept. of Physics; George Washington Univ., Washington, DC (United States). Dept. of Physics

    2012-07-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques. (orig.)

  16. A primer for chiral perturbation theory

    CERN Document Server

    Scherer, Stefan

    2012-01-01

    Chiral Perturbation Theory, as effective field theory, is a commonly accepted and well established working tool, approximating quantum chromodynamics at energies well below typical hadron masses. This volume, based on a number of lectures and supplemented with additional material, provides a pedagogical introduction for graduate students and newcomers entering the field from related areas of nuclear and particle physics. Starting with the the Lagrangian of the strong interactions and general symmetry principles, the basic concepts of Chiral Perturbation Theory in the mesonic and baryonic sectors are developed. The application of these concepts is then illustrated with a number of examples. A large number of exercises (81, with complete solutions) are included to familiarize the reader with helpful calculational techniques.

  17. Relating lattice QCD and chiral perturbation theory

    International Nuclear Information System (INIS)

    We present simulation results for lattice QCD using chiral lattice fermions, which obey the Ginsparg Wilson relation. After discuss first conceptual issues, and then numerical results. In the epsilon regime we evaluated the low lying modes in Dirac spectrum and the axial correlation functions for very light quarks. These provide information about the leading low energy constants in chiral perturbation theory: the pion decay constant and the scalar condensate. In the p regime we measured light meson masses, the PCAC quark mass and the renormalisation constant ZA

  18. Is SU(3) Chiral Perturbation Theory an Effective Field Theory?

    OpenAIRE

    Holstein, Barry R.

    1998-01-01

    We argue that the difficulties associated with the convergence properties of conventional SU(3) chiral perturbation theory can be ameliorated by use of a cutoff, which suppresses the model-dependent short distance effects in such calculations.

  19. Tests of Chiral perturbation theory with COMPASS

    Directory of Open Access Journals (Sweden)

    Friedrich Jan M.

    2014-06-01

    Full Text Available The COMPASS experiment at CERN accesses pion-photon reactions via the Primakoff effect., where high-energetic pions react with the quasi-real photon field surrounding the target nuclei. When a single real photon is produced, pion Compton scattering is accessed and from the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from ChPT. In the same experimental data taking, reactions with neutral and charged pions in the final state are measured and analyzed in the context of chiral perturbation theory.

  20. Chiral perturbation theory for lattice QCD

    International Nuclear Information System (INIS)

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  1. Chiral perturbation theory for lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Baer, Oliver

    2010-07-21

    The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)

  2. Hadronic Lorentz Violation in Chiral Perturbation Theory

    CERN Document Server

    Kamand, Rasha; Schindler, Matthias R

    2016-01-01

    Any possible Lorentz violation in the hadron sector must be tied to Lorentz violation at the underlying quark level. The relationships between the theories at these two levels are studied using chiral perturbation theory. Starting from a two-flavor quark theory that includes dimension-four Lorentz-violation operators, the effective Lagrangians are derived for both pions and nucleons, with novel terms appearing in both sectors. Since the Lorentz violation coefficients for nucleons and pions are all related to a single set of underlying quark coefficients, it is possible to place approximate bounds on pion Lorentz violation using only proton and neutron observations. The resulting bounds on four pion parameters are at the $10^{-23}$ level, representing improvements of ten orders of magnitude.

  3. The chiral perturbation theory: theoretical aims and experimental perspectives; La theorie des perturbations chirales: enjeux theoriques et perspectives experimentales

    Energy Technology Data Exchange (ETDEWEB)

    Knecht, M. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1996-12-31

    Chiral perturbation theory enables to link some hadronic processes at low energy involving {pi},K and {eta} pseudo scalar mesons with some non-perturbative QCD observables which reflect chiral symmetry breaking. The possibilities of investigating the chiral structure of QCD emptiness in several experimental projects within the field of hadronic physics are reviewed 44 refs.

  4. Chiral dynamics in U(3) unitary chiral perturbation theory

    International Nuclear Information System (INIS)

    We perform a complete one-loop calculation of meson-meson scattering, and of the scalar and pseudoscalar form factors in U(3) chiral perturbation theory with the inclusion of explicit resonance fields. This effective field theory takes into account the low-energy effects of the QCD UA(1) anomaly explicitly in the dynamics. The calculations are supplied by non-perturbative unitarization techniques that provide the final results for the meson-meson scattering partial waves and the scalar form factors considered. We present thorough analyses on the scattering data, resonance spectroscopy, spectral functions, Weinberg-like sum rules and semi-local duality. The last two requirements establish relations between the scalar spectrum with the pseudoscalar and vector ones, respectively. The NC extrapolation of the various quantities is studied as well. The fulfillment of all these non-trivial aspects of the QCD dynamics by our results gives a strong support to the emerging picture for the scalar dynamics and its related spectrum.

  5. Chiral perturbation theory for nucleon generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik

    2006-08-15

    We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)

  6. One-loop Chiral Perturbation Theory with two fermion representations

    CERN Document Server

    DeGrand, Thomas; Neil, Ethan T; Shamir, Yigal

    2016-01-01

    We develop Chiral Perturbation Theory for chirally broken theories with fermions in two different representations of the gauge group. Any such theory has a non-anomalous singlet $U(1)_A$ symmetry, yielding an additional Nambu-Goldstone boson when spontaneously broken. We calculate the next-to-leading order corrections for the pseudoscalar masses and decay constants, which include the singlet Nambu-Goldstone boson, as well as for the two condensates. The results can be generalized to more than two representations.

  7. (Pi+Pi-) Atom in Chiral Perturbation Theory

    OpenAIRE

    Ivanov, M. A.; Lyubovitskij, V. E.; Lipartia, E. Z.; Rusetsky, A. G.

    1998-01-01

    Hadronic (Pi+Pi-) atom is studied in the relativistic perturbative approach based on the Bethe-Salpeter equation. The general expression for the atom lifetime is derived. Lowest-order corrections to the relativistic Deser-type formula for the atom lifetime are evaluated within the Chiral Perturbation Theory.

  8. Applications of chiral perturbation theory to lattice QCD

    CERN Document Server

    Golterman, Maarten

    2011-01-01

    These notes contain the written version of lectures given at the 2009 Les Houches Summer School "Modern perspectives in lattice QCD: Quantum field theory and high performance computing." The goal is to provide a pedagogical introduction to the subject, and not a comprehensive review. Topics covered include a general introduction, the inclusion of scaling violations in chiral perturbation theory, partial quenching and mixed actions, chiral perturbation theory with heavy kaons, and the effects of finite volume, both in the p- and epsilon-regimes.

  9. Vector and axial currents in Wilson chiral perturbation theory

    International Nuclear Information System (INIS)

    We reconsider the construction of the vector and axial-vector currents in Wilson Chiral Perturbation Theory, the low-energy effective theory for lattice QCD with Wilson fermions. We discuss in detail the finite renormalization of the currents that has to be taken into account in order to properly match the currents. We explicitly show that imposing the chiral Ward identities on the currents does, in general, affect the axial-vector current at O(a). As an application of our results we compute the pion decay constant to one loop in the two-flavor theory. Our result differs from previously published ones.

  10. Testing Lorentz Symmetry using Chiral Perturbation Theory

    CERN Document Server

    Noordmans, J P

    2016-01-01

    We consider the low-energy effects of a selected set of Lorentz- and CPT-violating quark and gluon operators by deriving the corresponding chiral effective lagrangian. Using this effective lagrangian, low-energy hadronic observables can be calculated. We apply this to magnetometer experiments and derive the best bounds on some of the Lorentz-violating coefficients. We point out that progress can be made by studying the nucleon-nucleon potential, and by considering storage-ring experiments for deuterons and other light nuclei.

  11. Neutral B Mixing in Staggered Chiral Perturbation Theory

    CERN Document Server

    Bernard, C

    2013-01-01

    I calculate, at one loop in staggered chiral perturbation theory, the matrix elements of the complete set of five local operators that may contribute to B mixing both in the Standard Model and in beyond-the-Standard-Model theories. Lattice computations of these matrix elements by the Fermilab Lattice/MILC collaborations (and earlier by the HPQCD collaboration) convert a light staggered quark into a naive quark, and construct the relevant 4-quark operators as local products of two local bilinears, each involving the naive light quark and the heavy quark. This particular representation of the operators turns out to be important in the chiral calculation, and it results in the presence of "wrong-spin" operators, whose contributions however vanish in the continuum limit. If the matrix elements of all five operators are computed on the lattice, then no additional low energy constants are required to describe wrong-spin chiral effects.

  12. Double chiral logarithms of Generalized Chiral Perturbation Theory for low-energy pi-pi scattering

    OpenAIRE

    L. GirlandaPadua U. & INFN

    2015-01-01

    We express the two-massless-flavor Gell-Mann--Oakes--Renner ratio in terms of low-energy pi-pi observables, including the O(p^6) double chiral logarithms of generalized chiral perturbation theory. Their contribution is sizeable and tends to compensate the one from the single chiral logarithms. However it is not large enough to spoil the convergence of the chiral expansion. As a signal of reduced theoretical uncertainty, we find that the scale dependence from the one-loop single logarithms is ...

  13. Three-nucleon scattering by using chiral perturbation theory potential

    International Nuclear Information System (INIS)

    Three-nucleon scattering problems are studied by using two-nucleon and three-nucleon potentials derived from chiral perturbation theory. The three-nucleon term is shown to appear in the effective potential of the rank of next-to-next-to-leading order (NNLO). New three-nucleon forces are taken into consideration in addition to the conventional Fujita-Miyazawa (FM) type three-nucleon potential. Two-nucleon potential of the chiral perturbation theory is as precise as the conventional ones in low energy region. The FM type three-nucleon force which explains Sagara discrepancy in high energy region is introduced automatically. Concerning the Ay puzzle, the results seems to behave as if the puzzle has been solved at the level of NLO, but at the NNLO (without three-nucleon force) level the result is similar to the cases of conventional potential indicating the need of three-nucleon force. In contrast to the FM type three-nucleon force, five free parameters exist in the new D and E type three-nucleon forces introduced by the NNLO, but they are reduced to two independent parameters by antisymmetrization, which are found to be sensitive to the coupling energy of tritons and to the nd scattering length (spin doublet state). Parameters determined from them cannot give satisfactory answer to the Ay puzzle. It seems, however, too hasty to conclude that Ay puzzle cannot be solved by the chiral perturbation theory. (S. Funahashi)

  14. Decuplet baryon masses in covariant baryon chiral perturbation theory

    OpenAIRE

    Ren, Xiu-Lei; Geng, Li-Sheng; Meng, Jie

    2013-01-01

    We present an analysis of the lowest-lying decuplet baryon masses in the covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. In order to determine the $14$ low-energy constants, we perform a simultaneous fit of the $n_f=2+1$ lattice QCD data from the PACS-CS, QCDSF-UKQCD, and HSC Collaborations, taking finite-volume corrections into account self-consistently. We show that up to next-to-next-to-next-to-leading order on...

  15. CHIRAL perturbation theory and off-shell electromagnetic form factors

    International Nuclear Information System (INIS)

    The off-shell electromagnetic vertex of pions and kaons is calculated to 0(p4) in the momentum expansion within the framework of chiral perturbation theory to one loop. The formalism of Gasser and Leutwyler is extended to accommodate the most general form for off-shell Green's functions in the pseudoscalar meson sector. To that end we identify the structures at 0(p4) which were initially removed by using the equation of motion of the lowest order lagrangian. (authors). 5 refs

  16. Masses and Sigma Terms of Pentaquarks in Chiral Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    LI Xiao-Ya; L(U) Xiao-Fu

    2006-01-01

    Assuming that the recently θ+ and other exotic resonances belong to the pentaquark (-1-0) of SU(3)f with JP= 1/2, we constructed a relativistic effective lagrangian in the frame work of baryon chiral perturbation theory.The masses of pentaquarks under isospin symmetry is determined by calculating the propagator to one loop, where the extended on-mass-shell renormalization scheme is applied. Using the experimental data for masses of θ+, (I) and N, we estimated the mass of Σ. And the σ terms.

  17. Applications Of Chiral Perturbation Theory To Lattice Qcd

    CERN Document Server

    Van de Water, R S

    2005-01-01

    Quantum chromodynamics (QCD) is the fundamental theory that describes the interaction of quarks and gluons. Thus, in principle, one should be able to calculate all properties of hadrons from the QCD Lagrangian. It turns out, however, that such calculations can only be performed numerically on a computer using the nonperturbative method of lattice QCD, in which QCD is simulated on a discrete spacetime grid. Because lattice simulations use unphysically heavy quark masses (for computational reasons), lattice results must be connected to the real world using expressions calculated in chiral perturbation theory (χPT), the low-energy effective theory of QCD. Moreover, because real spacetime is continuous, they must be extrapolated to the continuum using an extension of χPT that includes lattice discretization effects, such as staggered χPT. This thesis is organized as follows. We motivate the need for lattice QCD and present the basic methodology in Chapter 1. We describe a common approximat...

  18. Neutral pion electroproduction off light nuclei in chiral perturbation theory

    International Nuclear Information System (INIS)

    Threshold pion electroproduction on tri-nucleon systems is investigated in the framework of baryon Chiral Perturbation Theory (ChPT) at next-to-leading one-loop order O(q4) in the chiral expansion. To this order in small momenta, the production operator is a sum of one- and two-nucleon terms. While the one-nucleon terms resemble the impulse approximation, the two-nucleon contributions represent corrections due to the relevant nuclear interactions, e.g. pion-exchange interactions, which prove to be dominant, and due to recoil effects of the participating nucleons, which appear to be negligible. We calculate the expectation value of the production operator using chiral wave functions in a three-dimensional approach without partial wave expansion. The resulting integrals are evaluated using adaptive Monte Carlo integration, the VEGAS algorithm of Lepage. We obtain results for the threshold production multipoles E0+ and L0+ on 3He and 3H and comment on the sensitivity to the fundamental neutron amplitude E0+π0n. 3He appears to be a particularly promising target to extract information about the neutron amplitude. This idea is usually invoked for spin-dependent quantities since the 3He wave function is strongly dominated by the principal S-state component which suggests that its spin is largely driven by the one of the neutron.

  19. A Review of Heavy-Quark and Chiral Perturbation Theory

    CERN Document Server

    Naboulsi, R

    2003-01-01

    In this paper we discuss the relations between various decays that can be obtained by combining heavy-quark perturbation theory and chiral perturbation theory for the emission of soft pseudoscalar particles. In the heavy-quark limit of QCD the interactions of the heavy quark Q are simplified because of a new set of symmetries not manifestly present in the full QCD. This fact is usually used in the construction of the new effective theory where the heavy-quark mass goes to infinity $(m_Q\\gg \\Lambda_{QCD})$ with its four-velocity fixed. The spin-flavor symmetry group of this new theory with N heavy quarks is SU(2N) because the interactions of the heavy quarks are independent of their spins and flavors. This fact is widely used in the description of the semileptonic decays of $B$ mesons to $D$ and $D^\\ast$ mesons where heavy-quark symmetry allows a parameterization of the decay amplitudes in terms of the single Isgur-Wise function [1].

  20. KTeV Results on Chiral Perturbation Theory

    CERN Document Server

    Cheu, E

    2006-01-01

    The KTeV experiment has carried out a broad program of studies of rare kaon decays. In this paper we present results on KL -> pi0 gamma gamma, KL -> pi0 e+ e- gamma and KL -> pi0 pi0 gamma. These decays provide a window for testing chiral perturbation theory at O(p^6). We find BR(KL-> pi0 pi0 gamma) = (1.30 +/- 0.03 +/- 0.04)E-6, BR(KL-> pi0 e+ e- gamma) = (1.90 +/- 0.16 +/- 0.12)E-8, and set the limit BR(KL->pi0 pi0 gamma)< 2.32E-7. The KTeV measurements are competitive with or better than the world's best results in these decays.

  1. Magnetic moments of charm baryons in chiral perturbation theory

    International Nuclear Information System (INIS)

    Magnetic moments of the charm baryons of the sextet and of the 3*-plet are re-evaluated in the framework of Heavy Hadron Chiral Perturbation Theory (HHCPT). NRQM and broken SU(4) unitary symmetry model are used to obtain tree-level magnetic moments. Calculations of a unitary symmetry part of one-loop contributions to magnetic moments of the charm baryons are performed in detail in terms of the SU(4) couplings of charm baryons to Goldstone bosons. The relations between the magnetic moments of the sextet 1/2 baryons with the one-loop corrections are shown to coincide with the NRQM relations. The correspondence between HHCPT results and those of NRQM and unitary symmetry model is discussed. It is shown that one-loop corrections can effectively be absorbed into the tree-level formulae for the magnetic moments of the charm baryons in the broken SU(4) unitary symmetry model and partially in the NRQM. (author)

  2. Chiral perturbation theory analysis of baryon temperature mass shifts

    CERN Document Server

    Bedaque, P F

    1995-01-01

    We compute the finite temperature pole mass shifts of the octet and decuplet baryons using heavy baryon chiral perturbation theory and the 1/N_c expansion, where N_c is the number of QCD colors. We consider the temperatures of the order of the pion mass m_\\pi, and expand truncate the chiral and 1/N_c expansions assuming that m_\\pi \\sim 1/N_c. There are three scales in the problem: the temperature T, the pion mass m_\\pi, and the octet--decuplet mass difference. Therefore, the result is not simply a power series in T. We find that the nucleon and \\Delta temperature mass shifts are opposite in sign, and that their mass difference changes by 20% in the temperature range 90 MeV < T < 130 MeV, that is the range where the freeze out in relativistic heavy ion collisions is expected to occur. We argue that our results are insensitive to the neglect of 1/N_c- supressed effects; the main purpose of the 1/N_c expansion in this work is to justify our treatment of the decuplet states.

  3. Leading logarithms in N-flavour mesonic Chiral Perturbation Theory

    International Nuclear Information System (INIS)

    We extend earlier work on leading logarithms in the massive nonlinear O(n) sigma model to the case of SU(N)×SU(N)/SU(N) which coincides with mesonic Chiral Perturbation Theory for N flavours of light quarks. We discuss the leading logarithms for the mass and decay constant to six loops and for the vacuum expectation value 〈q¯q〉 to seven loops. For dynamical quantities the expressions grow extremely large much faster such that we only quote the leading logarithms to five loops for the vector and scalar form factor and for meson–meson scattering. The last quantity we consider is the vector–vector to meson–meson amplitude where we quote results up to four loops for a subset of quantities, in particular for the pion polarizabilities. As a side result we provide an elementary proof that the factors of N appearing at each loop order are odd or even depending on the order and the remaining traces over external flavours

  4. Chiral Extrapolations of light resonances from dispersion relations and Chiral Perturbation Theory

    OpenAIRE

    Ríos, Guillermo; Nicola, Ángel Gómez; Hanhart, Christoph; Peláez, José Ramón

    2009-01-01

    We review our recent study of the pion mass dependence of the rho and sigma resonances generated from one-loop SU(2) Chiral Perturbation Theory (ChPT) with the Inverse Amplitude Method (IAM) which was modified to properly account for the Adler zero. The method is based on analyticity, elastic unitarity and ChPT at low energies, thus yielding the pion mass dependence of the resonance pole positions from the ChPT series up to a given order. We find that the rho-pi-pi coupling constant is almost...

  5. The axial charge of the nucleon: lattice results compared with chiral perturbation theory

    International Nuclear Information System (INIS)

    We present recent Monte Carlo data for the axial charge of the nucleon obtained by the QCDSF-UKQCD collaboration for Nf=2 dynamical quarks. A comparison with chiral perturbation theory in finite and infinite volume is attempted

  6. Lattice regularization of chiral gauge theories to all orders of perturbation theory

    OpenAIRE

    Lüscher, Martin

    2000-01-01

    In the framework of perturbation theory, it is possible to put chiral gauge theories on the lattice without violating the gauge symmetry or other fundamental principles, provided the fermion representation of the gauge group is anomaly-free. The basic elements of this construction (which starts from the Ginsparg-Wilson relation) are briefly recalled and the exact cancellation of the gauge anomaly, at any fixed value of the lattice spacing and for any compact gauge group, is then proved rigoro...

  7. Sigma Terms and Strangeness Contents of Baryon Octet in Modified Chiral Perturbation Theory

    International Nuclear Information System (INIS)

    In the frame work of chiral perturbation theory, a modified effective Lagrangian for meson-baryon system is constructed, where the SU(3) breaking effect for meson is considered. The difference between physical and chiral limit decay constants is taken into account. Calculated to one loop at O(p3), the sigma terms and strangeness contents of baryon octet are obtained.

  8. Chiral perturbation theory and U(3)L x U(3)R chiral theory of mesons

    International Nuclear Information System (INIS)

    In terms of the path integration theory, we examine U(3)L x U(3)R chiral theory of mesons (Li model) through integrating out fields of vector and axial-vector mesons. The corresponding effective Lagrangian for pseudoscalar mesons at order p4 have been obtained, and five quark-mass independent coupling constants Li(i = 1, 2, 3, 9, 10) in it have been calculated. It has been found that they are in good agreement with the values of χPT's at μ = mp. (author). 12 refs, 1 tab

  9. Chiral perturbation theory of muonic-hydrogen Lamb shift: polarizability contribution

    OpenAIRE

    Alarcón, Jose Manuel; Lensky, Vadim; Pascalutsa, Vladimir

    2014-01-01

    The proton polarizability effect in the muonic-hydrogen Lamb shift comes out as a prediction of baryon chiral perturbation theory at leading order and our calculation yields ΔE(pol)(2P-2S)=8-1+3μ eV. This result is consistent with most of evaluations based on dispersive sum rules, but it is about a factor of 2 smaller than the recent result obtained in heavy-baryon chiral perturbation theory. We also find that the effect of Δ(1232) -resonance excitation on the Lamb shift is suppressed, as is ...

  10. Gold-plated moments of nucleon structure functions in baryon chiral perturbation theory

    CERN Document Server

    Lensky, Vadim; Pascalutsa, Vladimir

    2014-01-01

    We obtain leading- and next-to-leading order predictions of chiral perturbation theory for several prominent moments of nucleon structure functions. These free-parameter free results turn out to be in overall agreement with the available empirical information on all of the considered moments, in the region of low-momentum transfer ($Q^2 < 0.3$ GeV$^2$). Especially surprising is the situation for the $\\delta_{LT}$ moment, which thus far was not reproducible for proton and neutron simultaneously in chiral perturbation theory. This problem, known as the "$\\delta_{LT}$ puzzle," is not seen in the present calculation.

  11. The magnetic moments and electromagnetic form factors of the decuplet baryons in chiral perturbation theory

    CERN Document Server

    Li, Hao-Song; Chen, Xiao-Lin; Deng, Wei-Zhen; Zhu, Shi-Lin

    2016-01-01

    We have systematically investigated the magnetic moments and magnetic form factors of the decuplet baryons to the next-to-next-leading order in the framework of the heavy baryon chiral perturbation theory. Our calculation includes the contributions from both the intermediate decuplet and octet baryon states in the loops. We also calculate the charge and magnetic dipole form factors of the decuplet baryons. Our results may be useful to the chiral extrapolation of the lattice simulations of the decuplet electromagnetic properties.

  12. New lessons from the nucleon mass, lattice QCD and heavy baryon chiral perturbation theory

    OpenAIRE

    Walker-Loud, Andre

    2008-01-01

    I will review heavy baryon chiral perturbation theory for the nucleon delta degrees of freedom and then examine the recent dynamical lattice calculations of the nucleon mass from the BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD and RBC/UKQCD Collaborations. Performing the chiral extrapolations of these results, one finds remarkable agreement with the physical nucleon mass, from each lattice data set. However, a careful examination of the lattice data and the resulting extrapolatio...

  13. The role of the Delta isobar in chiral perturbation theory and hedgehog soliton models

    OpenAIRE

    Cohen, Thomas D.; Broniowski, Wojciech

    1992-01-01

    Hedgehog model predictions for the leading nonanalytic behavior (in $m^{2}_{\\pi }$) of certain observables are shown to agree with the predictions of chiral perturbation theory up to an overall factor which depends on the operator. This factor can be understood in terms of contributions of the $\\Delta$ isobar in chiral loops. These physically motivated contributions are analyzed in an expansion in which both $m_{\\pi}$ and $M_{\\Delta}-M_N$ are taken as small parameters, and are shown to yield ...

  14. An Analytic Approach to Sunset Diagrams in Chiral Perturbation Theory: Theory and Practice

    CERN Document Server

    Ananthanarayan, B; Ghosh, Shayan; Hebbar, Aditya

    2016-01-01

    We demonstrate the use of several code implementations of the Mellin-Barnes method available in the public domain to derive analytic expressions for the sunset diagrams that arise in the two-loop contribution to the pion mass and decay constant in three-flavoured chiral perturbation theory. We also provide results for all possible two-mass configurations of the sunset integral, and derive a new one-dimensional integral representation for the one mass sunset integral with arbitrary external momentum. Thoroughly annotated Mathematica notebooks are provided as ancillary files, which may serve as pedagogical supplements to the methods described in this paper.

  15. pi-pi and pi-K scatterings in three-flavour resummed chiral perturbation theory

    CERN Document Server

    Descotes-Genon, S

    2008-01-01

    The (light but not-so-light) strange quark may play a special role in the low-energy dynamics of QCD. The presence of strange quark pairs in the sea may have a significant impact of the pattern of chiral symmetry breaking : in particular large differences can occur between the chiral limits of two and three massless flavours (i.e., whether m_s is kept at its physical value or sent to zero). This may induce problems of convergence in three-flavour chiral expansions. To cope with such difficulties, we introduce a new framework, called Resummed Chiral Perturbation Theory. We exploit it to analyse pi-pi and pi-K scatterings and match them with dispersive results in a frequentist framework. Constraints on three-flavour chiral order parameters are derived.

  16. The width of the $\\Delta$-resonance at two loop order in baryon chiral perturbation theory

    CERN Document Server

    Gegelia, Jambul; Siemens, Dmitrij; Yao, De-Liang

    2016-01-01

    We calculate the width of the delta resonance at leading two-loop order in baryon chiral perturbation theory. This gives a correlation between the leading pion-nucleon-delta and pion-delta couplings, which is relevant for the analysis of pion-nucleon scattering and other processes.

  17. Renormalization of the baryon axial vector current in large-Nc chiral perturbation theory

    International Nuclear Information System (INIS)

    The baryon axial vector current is considered within the combined framework of large-Nc baryon chiral perturbation theory (where Nc is the number of colors) and the baryon axial vector couplings are extracted. Loop graphs with octet and decuplet intermediate states are systematically incorporated into the analysis

  18. Determination of low-energy constants of Wilson chiral perturbation theory

    International Nuclear Information System (INIS)

    By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants W6', W8' and their linear combination c2. We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.

  19. Even- and Odd-Parity Charmed Meson Masses in Heavy Hadron Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Mehen; Roxanne Springer

    2005-03-01

    We derive mass formulae for the ground state, J{sup P} = 0{sup -} and 1{sup -}, and first excited even-parity, J{sup P} = 0{sup +} and 1{sup +}, charmed mesons including one loop chiral corrections and {Omicron}(1/m{sub c}) counterterms in heavy hadron chiral perturbation theory. We show a variety of fits to the current data. We find that certain parameter relations in the parity doubling model are not renormalized at one loop, providing a natural explanation for the equality of the hyperfine splittings of ground state and excited doublets.

  20. Predictions of covariant chiral perturbation theory for nucleon polarisabilities and polarised Compton scattering

    CERN Document Server

    Lensky, Vadim; Pascalutsa, Vladimir

    2015-01-01

    We update the predictions of the SU(2) baryon chiral perturbation theory for the dipole polarisabilities of the proton, $\\{\\alpha_{E1},\\,\\beta_{M1}\\}_p=\\{11.2(0.7),\\,3.9(0.7)\\}\\times10^{-4}$fm$^3$, and obtain the corresponding predictions for the quadrupole, dispersive, and spin polarisabilities: $\\{\\alpha_{E2},\\,\\beta_{M2}\\}_p=\\{17.3(3.9),\\,-15.5(3.5)\\}\\times10^{-4}$fm$^5$, $\\{\\alpha_{E1\

  1. In-Medium Effective Pion Mass from Heavy-Baryon Chiral Perturbation Theory

    CERN Document Server

    Park, T S; Min, D P; Park, Tae-Sun; Jung, Hong; Min, Dong-Pil

    2002-01-01

    Using heavy-baryon chiral perturbation theory, we have calculated all the diagrams up to two-loop order which contribute to the S-wave pion self-energy in symmetric nuclear matter. Some subtleties related to the definition of pion fields are discussed. The in-medium pion mass is turned out to be increased by only (6 - 7) per cents in normal nuclear matter density, without any off-shell ambiguity.

  2. Determination of low-energy constants of Wilson chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Herdoiza, Gregorio [Mainz Univ. (Germany). Inst fuer Kernphysik, PRISMA Cluster of Excellence; Univ. Autonoma de Madrid, Contoblanco (Spain). Dept. de Fisica Teorica; Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica UAM/CSIC; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Univ. Cyprus, Nicosia (Cyprus). Dept. of Physics; Michael, Chris [Liverpool Univ. (United Kingdom). Theoretical Physics Division; Ottnad, Konstantin; Urbach, Carsten [Bonn Univ. (Germany). Helmholtz-Institut fuer Strahlen und Kernphysik; Univ. Bonn (Germany). Bethe Center for Theoretical Physics; Collaboration: European Twisted Mass Collaboration

    2013-03-15

    By matching Wilson twisted mass lattice QCD determinations of pseudoscalar meson masses to Wilson Chiral Perturbation Theory we determine the low-energy constants W{sub 6}{sup '}, W{sub 8}{sup '} and their linear combination c{sub 2}. We explore the dependence of these low-energy constants on the choice of the lattice action and on the number of dynamical flavours.

  3. SIMP model at NNLO in chiral perturbation theory

    DEFF Research Database (Denmark)

    Hansen, Martin Rasmus Lundquist; Langaeble, K.; Sannino, F.

    2015-01-01

    We investigate the phenomenological viability of a recently proposed class of composite dark matter models where the relic density is determined by 3 to 2 number-changing processes in the dark sector. Here the pions of the strongly interacting field theory constitute the dark matter particles. By...... phenomenological constraints challenging the viability of the simplest realisation of the strongly interacting massive particle (SIMP) paradigm....

  4. The relation between random matrix theory, chiral perturbation theory and lattice-QCD; Die Beziehungen zwischen Random-Matrix-Theorie, chiraler Stoerungstheorie und Gitter-QCD

    Energy Technology Data Exchange (ETDEWEB)

    Hehl, H.

    2002-07-01

    This thesis has studied the range of validity of the chiral random matrix theory in QCD on the example of the quenched staggered Dirac operator. The eigenvalues of this operator in the neighbourhood of zero are essential for the understanding of the spontaneous breaking of the chiral symmetry and the phase transition connected with this. The phase transition cannot be understood in the framework of perturbation theory, so that the formulation of QCD on the lattice has been chosen as the only non-perturbative approach. In order to circumvent both the problem of the fermion doubling and to study chiral properties on the lattice with acceptable numerical effort, quenched Kogut-Susskind fermions have been applied. The corresponding Dirac operator can be completely diagonalized by the Lanczos procedure of Cullum and Willoughby. Monte carlo simulations on hypercubic lattice have been performed and the Dirac operators of very much configurations diagonalized at different lattice lengths and coupling constants. The eigenvalue correlations on the microscopic scale are completely described by the chiral random matrix theory for the topological sector zero, which has been studied by means of the distribution of the smallest eigenvalue, the microscopic spectral density and the corresponding 2-point correlation function. The found universal behaviour shows, that on the scale of the lowest eigenvalue only completely general properties of the theory are important, but not the full dynamics. In order to determine the energy scale, from which the chiral random matrix theory losses its validity, - the Thouless energy - with the scalar susceptibilities observables have been analyzed, which are because of their spectral mass dependence sensitive on this. For each combination of the lattice parameter so the deviation point has been identified.

  5. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    Science.gov (United States)

    Yao, De-Liang; Siemens, D.; Bernard, V.; Epelbaum, E.; Gasparyan, A. M.; Gegelia, J.; Krebs, H.; Meißner, Ulf-G.

    2016-05-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the S- and P -partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the D and F waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in order to determine the strangeness content of the nucleon, we calculate the octet baryon masses in the presence of decuplet resonances up to next-to-next-to-leading order in SU(3) baryon chiral perturbation theory. The octet baryon sigma terms are predicted as a byproduct of this calculation.

  6. Spectrum of the SU(3) Dirac operator on the lattice Transition from random matrix theory to chiral perturbation theory

    CERN Document Server

    Göckeler, M; Rakow, P E L; Schäfer, A; Wettig, T

    2002-01-01

    We calculate complete spectra of the Kogut-Susskind Dirac operator on the lattice in quenched SU(3) gauge theory for various values of coupling constant and lattice size. From these spectra we compute the connected and disconnected scalar susceptibilities and find agreement with chiral random matrix theory up to a certain energy scale, the Thouless energy. The dependence of this scale on the lattice volume is analyzed. In the case of the connected susceptibility this dependence is anomalous, and we explain the reason for this. We present a model of chiral perturbation theory that is capable of describing the data beyond the Thouless energy and that has a common range of applicability with chiral random matrix theory.

  7. Baryon masses at second order in large-N chiral perturbation theory

    International Nuclear Information System (INIS)

    We consider flavor breaking in the octet and decuplet baryon masses at second order in large-N chiral perturbation theory, where N is the number of QCD colors. We assume that 1/N∼1/NF∼ms/Λ>mu,d/Λ,αEM, where NF is the number of light quark flavors, and mu,d,s/Λ are the parameters controlling SU(NF) flavor breaking in chiral perturbation theory. We consistently include nonanalytic contributions to the baryon masses at orders mq3/2, m2qlnmq, and (mqlnmq)/N. The mq3/2 corrections are small for the relations that follow from SU(NF) symmetry alone, but the corrections to the large-N relations are large and have the wrong sign. Chiral power counting and large-N consistency allow a two-loop contribution at order m2qlnmq, and a nontrivial explicit calculation is required to show that this contribution vanishes. At second order in the expansion, there are eight relations that are nontrivial consequences of the 1/N expansion, all of which are well satisfied within the experimental errors. The average deviation at this order is 7 MeV for the ΔI=0 mass differences and 0.35 MeV for the ΔI≠0 mass differences, consistent with the expectation that the error is of order 1/N2∼10%. copyright 1996 The American Physical Society

  8. Chiral Perturbation Theory and the $\\bar B \\bar B$ Strong Interaction

    CERN Document Server

    Liu, Zhan-Wei; Zhu, Shi-Lin

    2012-01-01

    We have calculated the potentials of the heavy (charmed or bottomed) pseudoscalar mesons up to $O(\\epsilon^2)$ with the heavy meson chiral perturbation theory. We take into account the contributions from the football, triangle, box, and crossed diagrams with the 2$\\phi$ exchange and one-loop corrections to the contact terms. We notice that the total 2$\\phi$-exchange potential alone is attractive in the small momentum region in the channel ${\\bar B \\bar B}^{I=1}$, ${\\bar B_s \\bar B_s}^{I=0}$, or ${\\bar B \\bar B_s}^{I=1/2}$, while repulsive in the channel ${\\bar B \\bar B}^{I=0}$. Hopefully the analytical chiral structures of the potentials may be useful in the extrapolation of the heavy meson interaction from lattice QCD simulation.

  9. Equation of state of imbalanced cold matter from chiral perturbation theory

    CERN Document Server

    Carignano, Stefano; Mannarelli, Massimo

    2016-01-01

    We study the thermodynamic properties of matter at vanishing temperature for non-extreme values of the isospin chemical potential and of the strange quark chemical potential. From the leading order pressure obtained by maximizing the static chiral Lagrangian density we derive a simple expression for the equation of state in the pion condensed phase and in the kaon condensed phase. We find an analytical expression for the maximum of the ratio between the chiral perturbation energy density and the Stefan-Boltzmann energy density as well as for the isospin chemical potential at the peak in good agreement with lattice simulations of quantum chromodynamics. We speculate on the location of the crossover from the Bose-Einstein condensate state to the Bardeen-Cooper-Schrieffer state by a simple analysis of the thermodynamic properties of the system. For $\\mu_I \\gtrsim 2 m_\\pi$ the leading order chiral perturbation theory breaks down; as an example it underestimates the energy density of the system and leads to a wron...

  10. $\\eta$-$\\eta'$ mixing in large-$N_c$ chiral perturbation theory: discussion, phenomenology, and prospects

    CERN Document Server

    Bickert, Patricia; Scherer, Stefan

    2015-01-01

    A systematic study of the $\\eta$-$\\eta'$ mixing in Large-$N_c$ chiral perturbation theory is presented with special emphasis on the role of the next-to-next-to-leading-order contributions in the combined momentum, quark-mass, and $1/N_c$ expansions. At this order, loop corrections as well as OZI-rule-violating pieces need to be included. Mixing angles as well as pseudoscalar decay constants are discussed within this framework. The results are compared with recent phenomenological approaches.

  11. Octet baryon masses and sigma terms in covariant baryon chiral perturbation theory

    OpenAIRE

    Ren, Xiu-Lei; Geng, Li-Sheng; Meng, Jie

    2015-01-01

    We report on a recent study of the ground-state octet baryon masses and sigma terms in covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. To take into account lattice QCD artifacts, the finite-volume corrections and finite lattice spacing discretization effects are carefully examined. We performed a simultaneous fit of all the $n_f = 2+1$ lattice octet baryon masses and found that the various lattice simulations are ...

  12. Virtual decuplet effects on octet baryon masses in covariant baryon chiral perturbation theory

    OpenAIRE

    Ren, Xiu-Lei; Geng, Lisheng; Meng, Jie; Toki, Hiroshi

    2013-01-01

    We extend a previous analysis of the lowest-lying octet baryon masses in covariant baryon chiral perturbation theory (ChPT) by explicitly taking into account the contribution of the virtual decuplet baryons. Up to next-to-next-to-next-to-leading order (N$^3$LO), the effects of these heavier degrees of freedom are systematically studied. Their effects on the light-quark mass dependence of the octet baryon masses are shown to be relatively small and can be absorbed by the available low-energy c...

  13. Consistency between SU(3) and SU(2) chiral perturbation theory for the nucleon mass

    OpenAIRE

    Ren, Xiu-Lei; Alvarez-Ruso, L.; Geng, Li-Sheng; Ledwig, T.; Meng, Jie; Vacas, M. J. Vicente

    2016-01-01

    Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~\\cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants...

  14. Finite-volume effects on octet-baryon masses in covariant baryon chiral perturbation theory

    OpenAIRE

    Geng, Li-Sheng; Ren, Xiu-Lei; Martin-Camalich, J.; Weise, W.

    2011-01-01

    We study finite-volume effects on the masses of the ground-state octet baryons using covariant baryon chiral perturbation theory (ChPT) up to next-to-leading order by analyzing the latest $n_f=2+1$ lattice Quantum ChromoDynamics (LQCD) results from the NPLQCD collaboration. Contributions of virtual decuplet baryons are taken into account using the "consistent" coupling scheme. We compare our results with those obtained from heavy baryon ChPT and show that, although both approaches can describ...

  15. Lowest-lying octet baryon masses in covariant baryon chiral perturbation theory

    OpenAIRE

    Ren, Xiu-Lei; Geng, Lisheng; Meng, Jie; Toki, Hiroshi

    2013-01-01

    We report on a systematic study of the ground-state octet baryon masses in the covariant baryon chiral perturbation theory with the extended-on-mass-shell renormalization scheme up to next-to-next-to-next-to-leading order, taking into account the contributions of the virtual decuplet baryons. A reasonable description of the lattice results is achieved by fitting simultaneously all the publicly available $n_f = 2+1$ lattice QCD data. It confirms that the various lattice simulations are consist...

  16. The width of the Roper resonance in baryon chiral perturbation theory

    CERN Document Server

    Gegelia, Jambul; Yao, De-Liang

    2016-01-01

    We calculate the width of the Roper resonance at next-to-leading order in a systematic expansion of baryon chiral perturbation theory with pions, nucleons, and the delta and Roper resonances as dynamical degrees of freedom. Three unknown low-energy constants contribute up to the given order. One of them can be fixed by reproducing the empirical value for the width of the Roper decay into a pion and a nucleon. Assuming that the remaining two couplings of the Roper interaction take values equal to those of the nucleon, the result for the width of the Roper decaying into a nucleon and two pions is consistent with the experimental value.

  17. Radiative and Nonradiative Muon Capture on the Proton in Heavy-Baryon Chiral Perturbation Theory

    CERN Document Server

    Fearing, Harold W; Mobed, N; Scherer, S; Fearing, Harold W.; Lewis, Randy; Mobed, Nader; Scherer, Stefan

    1997-01-01

    We have evaluated the amplitude for muon capture by a proton, mu + p --> n + nu, to O(p^3) within the context of heavy baryon chiral perturbation theory (HBChPT) using the new O(p^3) Lagrangian of Ecker and Mojzis (E&M). We obtain expressions for the standard muon capture form factors and determine three of the coefficients of the E&M Lagrangian, namely, b_7, b_{19}, and b_{23}. We describe progress on the next step, a calculation of the radiative muon capture process, mu + p --> n + nu + gamma.

  18. The reaction $\\pi N \\to \\pi \\pi N$ above threshold in chiral perturbation theory

    CERN Document Server

    Bernard, V; Meißner, Ulf G

    1997-01-01

    Single pion production off nucleons is studied in the framework of relativistic baryon chiral perturbation theory at tree level with the inclusion of the terms from the dimension two effective pion-nucleon Lagrangian. The five appearing low-energy constants are fixed from pion-nucleon scattering data. Despite the simplicity of the approach, most of the existing data for total and differential cross sections as well as for the angular correlation functions for incoming pion kinetic energies up to 400 MeV can be satisfactorily described.

  19. Chiral symmetry in perturbative QCD

    International Nuclear Information System (INIS)

    The chiral symmetry of quantum chromodynamics with massless quarks is unbroken in perturbation theory. Dimensional regularization is used. The ratio of the vector and axial vector renormalization constante is shown to be independent of the renormalization mass. The general results are explicitly verified to fourth order in g, the QCD coupling constant

  20. Consistency tests of Ampcalculator and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial-based approach

    International Nuclear Information System (INIS)

    Ampcalculator (AMPC) is a Mathematica copyright based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O(p 4)) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G27. Another illustrative set of amplitudes at tree level we provide is in the context of τ-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics. (orig.)

  1. Consistency tests of Ampcalculator and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial-based approach

    Science.gov (United States)

    Ananthanarayan, B.; Das, Diganta; Sentitemsu Imsong, I.

    2012-10-01

    Ampcalculator (AMPC) is a Mathematica © based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes at one loop (upto O( p 4) in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and non-leptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity non-leptonic decay sector involving the coupling G 27. Another illustrative set of amplitudes at tree level we provide is in the context of τ-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes have been checked. The Kaon-Compton amplitude has been checked and a minor error in the published results has been pointed out. This exercise is a tutorial-based one, wherein several input and output notebooks are also being made available as ancillary files on the arXiv. Some of the additional notebooks we provide contain explicit expressions that we have used for comparison with established results. The purpose is to encourage users to apply the software to suit their specific needs. An automatic amplitude generator of this type can provide error-free outputs that could be used as inputs for further simplification, and in varied scenarios such as applications of chiral perturbation theory at finite temperature, density and volume. This can also be used by students as a learning aid in low-energy hadron dynamics.

  2. Electromagnetic pion production in manifestly Lorentz invariant baryonic chiral perturbation theory

    International Nuclear Information System (INIS)

    This thesis is concerned with electromagnetic pion production within manifestly Lorentz-invariant chiral perturbation theory using the assumption of isospin symmetry. In a one-loop calculation up to the chiral order O(q4), 105 Feynman diagrams contribute, consisting of 20 tree graphs and 85 loop diagrams. The tree graphs are classified as 16 pole diagrams and 4 contact graphs. Of the 85 loop diagrams, 50 diagrams are of order three and 35 diagrams are of fourth order. To calculate the pion production amplitude algorithms are developed on the basis of the Mathematica package FeynCalc. The one-photon-exchange approximation allows one to parametrise the pion production amplitude as the product of the polarisation vector of the (virtual) photon and the matrix element of the transition current. The polarisation vector is related to the leptonic vertex and the photon propagator and is well-known from QED. The dependence of the amplitude on the strong interaction is contained in the matrix element of the transition current, and we use chiral perturbation theory to describe this matrix element. The transition current can be expressed in terms of six gauge invariant amplitudes, each of which can again be decomposed into three isospin amplitudes. Linear combinations of these amplitudes allow us to describe the physical amplitudes. The one-loop integrals appearing within this calculation are determined numerically by the program LoopTools. In the case of tensorial integrals it is required to perform the method of Passarino and Veltman first. Furthermore, we apply the reformulated infrared regularisation which ensures that the results fulfill the chiral power counting. For this purpose algorithms are developed which determine the subtraction terms automatically. The obtained isospin amplitudes are integrated in the program MAID. As tests the s-wave multipoles E0+ and L0+ (using results up to chiral order O(q3)) are calculated in the threshold region. Within the estimated

  3. Elastic pion-nucleon scattering in chiral perturbation theory: A fresh look

    CERN Document Server

    Siemens, D; Epelbaum, E; Gasparyan, A; Krebs, H; Meißner, Ulf-G

    2016-01-01

    Elastic pion-nucleon scattering is analyzed in the framework of chiral perturbation theory up to fourth order within the heavy-baryon expansion and a covariant approach based on an extended on-mass-shell renormalization scheme. We discuss in detail the renormalization of the various low-energy constants and provide explicit expressions for the relevant $\\beta$-functions and the finite subtractions of the power-counting breaking terms within the covariant formulation. To estimate the theoretical uncertainty from the truncation of the chiral expansion, we employ an approach which has been successfully applied in the most recent analysis of the nuclear forces. This allows us to reliably extract the relevant low-energy constants from the available scattering data at low energy. The obtained results provide a clear evidence that the breakdown scale of the chiral expansion for this reaction is related to the $\\Delta$-resonance. The explicit inclusion of the leading contributions of the $\\Delta$-isobar is demonstrat...

  4. New lessons from the nucleon mass, lattice QCD and heavy baryon chiral perturbation theory

    CERN Document Server

    Walker-Loud, A

    2008-01-01

    I will review heavy baryon chiral perturbation theory for the nucleon delta degrees of freedom and then examine the recent dynamical lattice calculations of the nucleon mass from the BMW, ETM, JLQCD, LHP, MILC, NPLQCD, PACS-CS, QCDSF/UKQCD and RBC/UKQCD Collaborations. Performing the chiral extrapolations of these results, one finds remarkable agreement with the physical nucleon mass, from each lattice data set. However, a careful examination of the lattice data and the resulting extrapolation functions reveals some unexpected results, serving to highlight the significant challenges in performing chiral extrapolations of baryon quantities. All the N_f=2+1 dynamical results can be quantitatively described by theoretically unmotivated fit function linear in the pion mass with m_pi ~ 750 -190 MeV. When extrapolated to the physical point, the results are in striking agreement with the physical nucleon mass. I will argue that knowledge of each lattice datum of the nucleon mass is required at the 1-2% level, includ...

  5. Impact of the Delta (1232) resonance on neutral pion photoproduction in chiral perturbation theory

    CERN Document Server

    Cawthorne, Lloyd W

    2015-01-01

    We present an ongoing project to assess the importance of D-waves and the $\\Delta (1232)$ resonance for descriptions of neutral pion photoproduction in Heavy Baryon Chiral Perturbation Theory. This research has been motivated by data published by the A2 and CB-TAPS collaborations at MAMI [1]. This data has reached unprecedented levels of accuracy from threshold through to the $\\Delta$ resonance. Accompanying the experimental work, there has also been a series of publications studying the theory that show that, to go beyond an energy of $E_\\gamma=170$ MeV, it is necessary to include other aspects, in particular the $\\Delta (1232)$ as a degree of freedom [2] and possibly higher partial waves [3].

  6. Partially quenched chiral perturbation theory in the epsilon regime at next-to-leading order

    International Nuclear Information System (INIS)

    We calculate the partition function of partially quenched chiral perturbation theory in the epsilon regime at next-to-leading order using the supersymmetry method in the formulation without a singlet particle. We include a nonzero imaginary chemical potential and show that the finite-volume corrections to the low-energy constants Σ and F for the partially quenched partition function, and hence for spectral correlation functions of the Dirac operator, are the same as for the unquenched partition function. We briefly comment on how to minimize these corrections in lattice simulations of QCD. As a side result, we show that the zero-momentum integral in the formulation without a singlet particle agrees with previous results from random matrix theory.

  7. Mass Spectra of Heavy-Light Mesons in Heavy Hadron Chiral Perturbation Theory

    CERN Document Server

    Alhakami, Mohammad H

    2016-01-01

    We study the masses of the low-lying charm and bottom mesons within the framework of heavy- hadron chiral perturbation theory. We work to third order in the chiral expansion, where meson loops contribute. In contrast to previous approaches, we use physical meson masses in evaluating these loops. This ensures that their imaginary parts are consistent with the observed widths of the D-mesons. The lowest odd- and even-parity, strange and nonstrange charm mesons provide enough constraints to determine only certain linear combinations of the low-energy constants (LECs) in the effective Lagrangian. We comment on how lattice QCD could provide further information to disentangle these constants. Then we use the results from the charm sector to predict the spectrum of odd- and even-parity of the bottom mesons. The predicted masses from our theory are in good agreement with experimentally measured masses for the case of the odd-parity sector. For the even-parity sector, the B-meson states have not yet been observed; thu...

  8. Pion-nucleon scattering in covariant baryon chiral perturbation theory with explicit Delta resonances

    CERN Document Server

    Yao, De-Liang; Bernard, V; Epelbaum, E; Gasparyan, A M; Gegelia, J; Krebs, H; Meißner, Ulf-G

    2016-01-01

    We present the results of a third order calculation of the pion-nucleon scattering amplitude in a chiral effective field theory with pions, nucleons and delta resonances as explicit degrees of freedom. We work in a manifestly Lorentz invariant formulation of baryon chiral perturbation theory using dimensional regularization and the extended on-mass-shell renormalization scheme. In the delta resonance sector, the on mass-shell renormalization is realized as a complex-mass scheme. By fitting the low-energy constants of the effective Lagrangian to the $S$- and $P$-partial waves a satisfactory description of the phase shifts from the analysis of the Roy-Steiner equations is obtained. We predict the phase shifts for the $D$ and $F$ waves and compare them with the results of the analysis of the George Washington University group. The threshold parameters are calculated both in the delta-less and delta-full cases. Based on the determined low-energy constants, we discuss the pion-nucleon sigma term. Additionally, in ...

  9. Renormalization of the low-energy constants of chiral perturbation theory from loops with dynamical vector mesons

    Science.gov (United States)

    Terschlüsen, Carla; Leupold, Stefan

    2016-07-01

    Starting from a relativistic Lagrangian for pseudoscalar Goldstone bosons and vector mesons in the antisymmetric tensor representation, a one-loop calculation is performed to pin down the divergent structures that appear for the effective low-energy action at chiral orders Q2 and Q4 . The corresponding renormalization-scale dependencies of all low-energy constants up to chiral order Q4 are determined. Calculations are carried out for both the pseudoscalar octet and the pseudoscalar nonet, the latter in the framework of chiral perturbation theory in the limit of a large number of colors.

  10. Chiral perturbation theory for vertical bar ΔI vertical bar = (3(2)) hyperon decays

    International Nuclear Information System (INIS)

    We study the vertical bar ΔI vertical bar = (3(2)) amplitudes of hyperon non-leptonic decays of the form B → B'π in the context of chiral perturbation theory. The lowest-order predictions are determined in terms of only one unknown parameter and are consistent within errors with current data. We investigate the theoretical uncertainty of these predictions by calculating the leading non-analytic corrections. We also present an estimate for the size of the S-wave Λ and Ξ decays which vanish at leading order. We find that the corrections to the lowest-order predictions are within the expectations of naive power counting and, therefore, that this picture can be tested more accurately with improved measurements

  11. Consistency between SU(3) and SU(2) chiral perturbation theory for the nucleon mass

    CERN Document Server

    Ren, Xiu-Lei; Geng, Li-Sheng; Ledwig, T; Meng, Jie; Vacas, M J Vicente

    2016-01-01

    Treating the strange quark mass as a heavy scale compared to the light quark mass, we perform a matching of the nucleon mass in the SU(3) sector to the two-flavor case in covariant baryon chiral perturbation theory. The validity of the $19$ low-energy constants appearing in the octet baryon masses up to next-to-next-to-next-to-leading order~\\cite{Ren:2014vea} is supported by comparing the effective parameters (the combinations of the $19$ couplings) with the corresponding low-energy constants in the SU(2) sector~\\cite{Alvarez-Ruso:2013fza}. In addition, it is shown that the dependence of the effective parameters and the pion-nucleon sigma term on the strange quark mass is relatively weak around its physical value, thus providing support to the assumption made in Ref.~\\cite{Alvarez-Ruso:2013fza}.

  12. Pion properties at finite nuclear density based on in-medium chiral perturbation theory

    CERN Document Server

    Goda, Soichiro

    2013-01-01

    The in-medium pion properties, {\\it i.e.} the temporal pion decay constant $f_t$, the pion mass $m_\\pi^*$ and the wave function renormalization, in symmetric nuclear matter are calculated in an in-medium chiral perturbation theory up to the next-to-leading order of the density expansion $O(k_F^4)$. The chiral Lagrangian for the pion-nucleon interaction is determined in vacuum, and the low energy constants are fixed by the experimental observables. We carefully define the in-medium state of the pion and find that the pion wave function plays an essential role for the in-medium pion properties. We show that the linear density correction is dominated and the next-leading corrections is not so large at the saturation density, while their contributions can be significant in higher densities. The main contribution of the next-leading order comes from the double scattering term. We also discuss whether the low energy theorems, the Gell-Mann--Oakes--Renner relation and the Glashow--Weinberg relation, are satisfied in...

  13. Perturbative analysis of the Gauss-law anomaly in chiral gauge theories

    International Nuclear Information System (INIS)

    We discuss the Gauss-law constraint in chiral gauge theories. A unitarity condition for the Gauss constraint is introduced and shown to be equivalent to the diagrammatic form of the Ward identities. We give a simple derivation of the chiral anomaly and relate it to the breakdown of the unitarity condition

  14. Consistency tests of AMPCALCULATOR and chiral amplitudes in SU(3) Chiral Perturbation Theory: A tutorial based approach

    CERN Document Server

    Ananthanarayan, B; Imsong, I Sentitemsu

    2012-01-01

    AMPCALCULATOR is a mathematica-based program that was made publicly available some time ago by Unterdorfer and Ecker. It enables the user to compute several processes upto $O(p^4)$ in SU(3) chiral perturbation theory. They include computing matrix elements and form factors for strong and nonleptonic weak processes with at most six external states. It was used to compute some novel processes and was tested against some well-known results by the original authors. Here we present the results of several thorough checks of the package. Exhaustive checks performed by the original authors are not publicly available, and hence the present effort. Some new results are obtained from the software especially in the kaon odd-intrinsic parity nonleptonic decay sector involving the coupling $G_{27}$. Another illustrative set of amplitudes at tree level we provide is in the context of $\\tau$-decays with several mesons including quark mass effects, of use to the BELLE experiment. All eight meson-meson scattering amplitudes ha...

  15. The Kaon B-parameter in mixed action chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Aubin, C.; /Columbia U.; Laiho, Jack; Van de Water, Ruth S.; /Fermilab

    2006-09-01

    We calculate the kaon B-parameter, B{sub K}, in chiral perturbation theory for a partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and staggered sea quarks. We find that the resulting expression is similar to that in the continuum, and in fact has only two additional unknown parameters. At one-loop order, taste-symmetry violations in the staggered sea sector only contribute to flavor-disconnected diagrams by generating an {Omicron}(a{sup 2}) shift to the masses of taste-singlet sea-sea mesons. Lattice discretization errors also give rise to an analytic term which shifts the tree-level value of B{sub K} by an amount of {Omicron}(a{sup 2}). This term, however, is not strictly due to taste-breaking, and is therefore also present in the expression for B{sub K} for pure G-W lattice fermions. We also present a numerical study of the mixed B{sub K} expression in order to demonstrate that both discretization errors and finite volume effects are small and under control on the MILC improved staggered lattices.

  16. Improved description of the πN-scattering phenomenology in covariant baryon chiral perturbation theory

    Directory of Open Access Journals (Sweden)

    Alarcón Jose Manuel

    2014-06-01

    Full Text Available We highlight some of the recent advances in the application of chiral effective field theory (chiral EFT with baryons to the πN scattering process. We recall some problems that cast doubt on the applicability of chiral EFT to πN and show how the relativistic formalism, once the Δ(1232-resonance is included as an explicit degree of freedom, solves these issues. Finally it is shown how this approach can be used to extract the σ-terms from phenomenological information.

  17. A Lattice Non-Perturbative Definition of an SO(10) Chiral Gauge Theory and Its Induced Standard Model

    OpenAIRE

    Wen, Xiao-Gang

    2013-01-01

    The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently. The standard model is defined perturbatively and describes all elementary particles (except gravitons) very well. However, for a long time, we do not know if we can have a non-perturbative definition of the standard model as a Hamiltonian quantum mechanical theory. Here we propose a way to give a modified standard model (with 48 two-component Weyl fermions) a non...

  18. A lattice non-perturbative definition of an SO(10) chiral gauge theory and its induced standard model

    OpenAIRE

    Wen, Xiao-Gang

    2013-01-01

    The standard model is a chiral gauge theory where the gauge fields couple to the right-hand and the left-hand fermions differently. The standard model is defined perturbatively and describes all elementary particles (except gravitons) very well. However, for a long time, we do not know if we can have a non-perturbative definition of standard model as a Hamiltonian quantum mechanical theory. In this paper, we propose a way to give a modified standard model (with 48 two-component Weyl fermions)...

  19. Octet baryon masses and sigma terms in covariant baryon chiral perturbation theory

    CERN Document Server

    Ren, Xiu-Lei; Meng, Jie

    2015-01-01

    We report on a recent study of the ground-state octet baryon masses and sigma terms in covariant baryon chiral perturbation theory with the extended-on-mass-shell scheme up to next-to-next-to-next-to-leading order. To take into account lattice QCD artifacts, the finite-volume corrections and finite lattice spacing discretization effects are carefully examined. We performed a simultaneous fit of all the $n_f = 2+1$ lattice octet baryon masses and found that the various lattice simulations are consistent with each other. Although the finite lattice spacing discretization effects up to $\\mathcal{O}(a^2)$ can be safely ignored, but the finite volume corrections cannot even for configurations with $M_\\phi L>4$. As an application, we predicted the octet baryon sigma terms using the Feynman-Hellmann theorem. In particular, the pion- and strangeness-nucleon sigma terms are found to be $\\sigma_{\\pi N} = 55(1)(4)$ MeV and $\\sigma_{sN} = 27(27)(4)$ MeV, respectively.

  20. What $\\pi-\\pi$ Scattering Tells Us About Chiral Perturbation Theory

    CERN Document Server

    Stern, J; Fuchs, N

    1993-01-01

    We describe a rearrangement of the standard expansion of the symmetry breaking part of the QCD effective Lagrangian that includes into each order additional terms which in the standard chiral perturbation theory ($\\chi$PT) are relegated to higher orders. The new expansion represents a systematic and unambiguous generalization of the standard $\\chi$PT, and is more likely to converge rapidly. It provides a consistent framework for a measurement of the importance of additional ``higher order'' terms whose smallness is usually assumed but has never been checked. A method of measuring, among other quantities, the QCD parameters $\\hat{m}\\langle\\bar{q}q\\rangle$ and the quark mass ratio $m_s/\\hat{m}$ is elaborated in detail. The method is illustrated using various sets of available data. Both of these parameters might be considerably smaller than their respective leading order standard $\\chi$PT values. The importance of new, more accurate, experimental information on low-energy $\\pi-\\pi$ scattering is stressed.

  1. Chiral Perturbation Theory, the 1/N_c expansion and Regge behavior determine the structure of the lightest scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Pelaez, J. R. [Univ. Complutense Madrid (Spain); Pennington, Michael R. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); de Elvira, J. Ruiz [Univ. Complutense Madrid (Spain); Wilson, D. J. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2011-11-01

    The leading 1/N{sub c} behavior of Unitarized Chiral Perturbation Theory distinguishes the nature of the {rho} and the {sigma}. At one loop order the {rho} is a {bar q}q meson, while the {sigma} is not. However, semi-local duality between resonances and Regge behaviour cannot be satisfied for larger N{sub c}, if such a distinction holds. While the {sigma} at N{sub c}= 3 is inevitably dominated by its di-pion component, Unitarised Chiral Perturbation Theory beyond one loop order reveals that as N{sub c} increases above 6-8, the {sigma} has a sub-dominant {bar q}q fraction up at 1.2 GeV. Remarkably this ensures semi-local duality is fulfilled for the range of N{sub c} {approx}< 15-30, where the unitarization procedure adopted applies.

  2. Nuclear structure with accurate chiral perturbation theory nucleon-nucleon potential: Application to 6Li and 10B

    Energy Technology Data Exchange (ETDEWEB)

    Navratil, P; Caurier, E

    2003-10-14

    The authors calculate properties of A = 6 system using the accurate charge-dependent nucleon-nucleon (NN) potential at fourth order of chiral perturbation theory. By application of the ab initio no-core shell model (NCSM) and a variational calculation in the harmonic oscillator basis with basis size up to 16 {h_bar}{Omega} they obtain the {sup 6}Li binding energy of 28.5(5) MeV and a converged excitation spectrum. Also, they calculate properties of {sup 10}B using the same NN potential in a basis space of up to 8 {h_bar}{Omega}. The results are consistent with results obtained by standard accurate NN potentials and demonstrate a deficiency of Hamiltonians consisting of only two-body terms. At this order of chiral perturbation theory three-body terms appear. It is expected that inclusion of such terms in the Hamiltonian will improve agreement with experiment.

  3. On lattice extraction of $K \\to \\pi \\pi$ amplitudes to $O(p^{4})$ in Chiral Perturbation Theory

    CERN Document Server

    Laiho, J; Laiho, Jack; Soni, Amarjit

    2002-01-01

    We show that lattice calculation of $K\\to\\pi\\pi$ and $\\epe$ amplitudes for (8,1) and (27,1) operators to $O(p^4)$ in chiral perturbation theory is feasible when one uses $K\\to\\pi\\pi$ computations at the two unphysical kinematics allowed by the Maiani-Testa theorem, along with the usual (computable) two and three point functions, namely $K\\to0$, $K\\to\\pi$ (with momentum) and $K-\\bar K$.

  4. Two-nucleon one-loop corrections to pion double charge exchange within heavy baryon chiral perturbation theory

    International Nuclear Information System (INIS)

    One-loop corrections at the two-nucleon level to pion double charge exchange scattering off a nuclear target at threshold are calculated within the framework of heavy baryon chiral perturbation theory. An estimate for the (two-nucleon) one-loop correction is obtained in the static limit and using an impulse approximation. We find a small (1.6%) increase relative to the leading order tree graphs. (c) 2000 The American Physical Society

  5. Perturbation theory

    International Nuclear Information System (INIS)

    After noting some advantages of using perturbation theory some of the various types are related on a chart and described, including many-body nonlinear summations, quartic force-field fit for geometry, fourth-order correlation approximations, and a survey of some recent work. Alternative initial approximations in perturbation theory are also discussed. 25 references

  6. Low-energy pi-pi and pi-K scatterings revisited in three-flavour resummed chiral perturbation theory

    CERN Document Server

    Descotes-Genon, S

    2007-01-01

    Chiral symmetry breaking may exhibit significantly different patterns in two chiral limits: N_f=2 massless flavours (m_u=m_d=0, m_s physical) and N_f=3 massless flavours (m_u=m_d=0=m_s=0). Such a difference may arise due to vacuum fluctuations of s-bar{s} pairs related to the violation of the Zweig rule in the scalar sector, and could yield a numerical competition between contributions counted as leading order and next-to-leading in the chiral expansions of observables. We recall and extend Resummed Chiral Perturbation Theory (ReChPT), a framework that we introduced previously to deal with such instabilities: it requires a more careful definition of the relevant observables and their one-loop chiral expansions. We analyse the amplitudes for low-energy pi-pi and pi-K scatterings within ReChPT, which we match in subthreshold regions with dispersive representations obtained from the solutions Roy and Roy-Steiner equations. Using a frequentist approach, we constrain the quark mass ratio as well as the quark conde...

  7. Predictions of covariant chiral perturbation theory for nucleon polarisabilities and polarised Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany); Institute for Theoretical and Experimental Physics, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow (Russian Federation); University of Manchester, Theoretical Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); McGovern, Judith A. [University of Manchester, Theoretical Physics Group, School of Physics and Astronomy, Manchester (United Kingdom); Pascalutsa, Vladimir [Johannes Gutenberg Universitaet Mainz, Institut fuer Kernphysik and PRISMA Cluster of Excellence, Mainz (Germany)

    2015-12-15

    We update the predictions of the SU(2) baryon chiral perturbation theory for the dipole polarisabilities of the proton, {α_E_1, β_M_1}{sub p} = {11.2(0.7), 3.9(0.7)} x 10{sup -4} fm{sup 3}, and obtain the corresponding predictions for the quadrupole, dispersive, and spin polarisabilities: {α_E_2, β_M_2}{sub p} = {17.3(3.9),.15.5(3.5)} x 10{sup -4} fm{sup 5}, {α_E_1_ν, β_M_1_ν}{sub p} = {-1.3(1.0), 7.1(2.5)} x 10{sup -4} fm{sup 5}, and {γ_E_1_E_1, γ_M_1_M_1, γ_E_1_M_2, γ_M_1_E_2}{sub p} = {-3.3(0.8), 2.9(1.5), 0.2(0.2), 1.1 (0.3)} x 10{sup -4} fm{sup 4}. The results for the scalar polarisabilities are in significant disagreement with semi-empirical analyses based on dispersion relations; however, the results for the spin polarisabilities agree remarkably well. Results for proton Compton-scattering multipoles and polarised observables up to the Delta(1232) resonance region are presented too. The asymmetries Σ{sub 3} and Σ{sub 2x} reproduce the experimental data from LEGS and MAMI. Results for Σ{sub 2z} agree with a recent sum rule evaluation in the forward kinematics. The asymmetry Σ{sub 1z} near the pion production threshold shows a large sensitivity to chiral dynamics, but no data is available for this observable. We also provide the predictions for the polarisabilities of the neutron, the numerical values being {α_E_1, β_M_1}{sub n} = {13.7(3.1), 4.6(2.7)} x 10{sup -4} fm{sup 3}, {α_E_2, β_M_2}{sub n} = {16.2(3.7),.15.8(3.6)} x 10{sup -4} fm{sup 5}, {α_E_1_ν, β_M_1_ν}{sub n} = {0.1(1.0), 7.2(2.5)} x 10{sup -4} fm{sup 5}, and {γ_E_1_E_1, γ_M_1_M_1, γ_E_1_M_2, γ_M_1_E_2}{sub n} = {-4.7(1.1), 2.9(1.5), 0.2(0.2), 1.6(0.4)} x 10{sup -4} fm{sup 4}. The neutron dynamical polarisabilities and multipoles are examined too. We also discuss subtleties related to matching the dynamical and static polarisabilities. (orig.)

  8. Predictions of covariant chiral perturbation theory for nucleon polarisabilities and polarised Compton scattering

    Energy Technology Data Exchange (ETDEWEB)

    Lensky, Vadim, E-mail: lensky@itep.ru [Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg Universität Mainz, 55128, Mainz (Germany); Institute for Theoretical and Experimental Physics, 117218, Moscow (Russian Federation); National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409, Moscow (Russian Federation); Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, M13 9PL, Manchester (United Kingdom); McGovern, Judith A. [Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, M13 9PL, Manchester (United Kingdom); Pascalutsa, Vladimir [Institut für Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg Universität Mainz, 55128, Mainz (Germany)

    2015-12-19

    We update the predictions of the SU(2) baryon chiral perturbation theory for the dipole polarisabilities of the proton, {α_E_1, β_M_1}{sub p}={11.2(0.7), 3.9(0.7)}×10{sup -4} fm{sup 3}, and obtain the corresponding predictions for the quadrupole, dispersive, and spin polarisabilities: {α_E_2, β_M_2}{sub p}={17.3(3.9), -15.5(3.5)}×10{sup -4} fm{sup 5}, {α_E_1_ν, β_M_1_ν}{sub p}={-1.3(1.0), 7.1(2.5)}×10{sup -4} fm{sup 5}, and {γ_E_1_E_1, γ_M_1_M_1,γ_E_1_M_2, γ_M_1_E_2}{sub p}={-3.3(0.8), 2.9(1.5), 0.2(0.2),1.1(0.3)}×10{sup -4} fm{sup 4}. The results for the scalar polarisabilities are in significant disagreement with semi-empirical analyses based on dispersion relations; however, the results for the spin polarisabilities agree remarkably well. Results for proton Compton-scattering multipoles and polarised observables up to the Delta(1232) resonance region are presented too. The asymmetries Σ{sub 3} and Σ{sub 2x} reproduce the experimental data from LEGS and MAMI. Results for Σ{sub 2z} agree with a recent sum rule evaluation in the forward kinematics. The asymmetry Σ{sub 1z} near the pion production threshold shows a large sensitivity to chiral dynamics, but no data is available for this observable. We also provide the predictions for the polarisabilities of the neutron, the numerical values being {α_E_1, β_M_1}{sub n}={13.7(3.1), 4.6(2.7)}×10{sup -4} fm{sup 3}, {α_E_2, β_M_2}{sub n}={16.2(3.7), -15.8(3.6)}×10{sup -4} fm{sup 5}, {α_E_1_ν, β_M_1_ν}{sub n}={0.1(1.0), 7.2(2.5)}×10{sup -4} fm{sup 5}, and {γ_E_1_E_1, γ_M_1_M_1, γ_E_1_M_2, γ_M_1_E_2}{sub n}={-4.7(1.1),2.9(1.5), 0.2(0.2), 1.6(0.4)}×10{sup -4} fm{sup 4}. The neutron dynamical polarisabilities and multipoles are examined too. We also discuss subtleties related to matching the dynamical and static polarisabilities.

  9. Finite Volume for Three-Flavour Partially Quenched Chiral Perturbation Theory through NNLO in the Meson Sector

    CERN Document Server

    Bijnens, Johan

    2015-01-01

    We present a calculation of the finite volume corrections to meson masses and decay constants in three flavour Partially Quenched Chiral Perturbation Theory (PQChPT) through two-loop order in the chiral expansion for the flavour-charged (or off-diagonal) pseudoscalar mesons. The analytical results are obtained for three sea quark flavours with one, two or three different masses. We reproduce the known infinite volume results and the finite volume results in the unquenched case. The calculation has been performed using the supersymmetric formulation of PQChPT as well as with a quark-flow technique. Partial analytical results can be found in the appendices. Some examples of cases relevant to lattice QCD are studied numerically. Numerical programs for all results are available as part of the CHIRON package.

  10. Trace Formulae of Characteristic Polynomial and Cayley-Hamilton's Theorem, and Applications to Chiral Perturbation Theory and General Relativity

    International Nuclear Information System (INIS)

    By using combinatorics, we give a new proof for the recurrence relations of the characteristic polynomial coefficients, and we further obtain an explicit expression for the generic term of the coefficient sequence, which yields the trace formulae of the Cayley-Hamilton's theorem with all coefficients explicitly given. This implies a byproduct, a complete expression for the determinant of any finite-dimensional matrix in terms of the traces of its successive powers. And we discuss some of their applications to chiral perturbation theory and general relativity

  11. Next to Leading Order Chiral Perturbation theory of $K \\pi \\to \\pi$ and $K\\to\\pi\\pi$ amplitudes

    OpenAIRE

    Kim, Changhoan

    2008-01-01

    It is shown that the low energy coefficients of the next-to-leading order (NLO) chiral perturbation theory needed to determine $\\Delta I=1/2$, $K\\to\\pi\\pi$ decay amplitudes can be fixed by calculating $K\\pi\\to\\pi$ amplitudes on lattice. Unlike using NLO $K\\to\\pi\\pi$ amplitudes proposed by Laiho and Soni, simulating $K\\pi\\to\\pi$ transitions on lattice does not require evaluations of s-channel disconnected diagrams which have been an obstacle in practice.

  12. Systematic 1/M expansion for spin 3/2 particles in baryon chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Hemmert, T.R.; Holstein, B.R. [Massachusetts Univ., Amherst, MA (United States). Dept. of Physics and Astronomy; Kambor, J. [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire

    1995-12-31

    Starting from a relativistic formulation of the pion-nucleon-delta system, the most general structure of 1/M corrections for a heavy baryon chiral Lagrangian including spin 3/2 resonances is given. The heavy components of relativistic nucleon and delta fields are integrated out and their contributions to the next-to-leading order Lagrangians are constructed explicitly. The effective theory obtained admits a systematic expansion in terms of soft momenta, the pion mass m{sub {pi}} and the delta-nucleon mass difference {Delta}. As an application, neutral pion photoproduction at threshold to third order in this small scale expansion is discussed. (author). 14 refs.

  13. Electromagnetic pion production in manifestly Lorentz invariant baryonic chiral perturbation theory; Elektromagnetische Pionproduktion in manifest Lorentz-invarianter baryonischer chiraler Stoerungstheorie

    Energy Technology Data Exchange (ETDEWEB)

    Lehnhart, B.C.

    2007-05-15

    This thesis is concerned with electromagnetic pion production within manifestly Lorentz-invariant chiral perturbation theory using the assumption of isospin symmetry. In a one-loop calculation up to the chiral order O(q{sup 4}), 105 Feynman diagrams contribute, consisting of 20 tree graphs and 85 loop diagrams. The tree graphs are classified as 16 pole diagrams and 4 contact graphs. Of the 85 loop diagrams, 50 diagrams are of order three and 35 diagrams are of fourth order. To calculate the pion production amplitude algorithms are developed on the basis of the Mathematica package FeynCalc. The one-photon-exchange approximation allows one to parametrise the pion production amplitude as the product of the polarisation vector of the (virtual) photon and the matrix element of the transition current. The polarisation vector is related to the leptonic vertex and the photon propagator and is well-known from QED. The dependence of the amplitude on the strong interaction is contained in the matrix element of the transition current, and we use chiral perturbation theory to describe this matrix element. The transition current can be expressed in terms of six gauge invariant amplitudes, each of which can again be decomposed into three isospin amplitudes. Linear combinations of these amplitudes allow us to describe the physical amplitudes. The one-loop integrals appearing within this calculation are determined numerically by the program LoopTools. In the case of tensorial integrals it is required to perform the method of Passarino and Veltman first. Furthermore, we apply the reformulated infrared regularisation which ensures that the results fulfill the chiral power counting. For this purpose algorithms are developed which determine the subtraction terms automatically. The obtained isospin amplitudes are integrated in the program MAID. As tests the s-wave multipoles E{sub 0+} and L{sub 0+} (using results up to chiral order O(q{sup 3})) are calculated in the threshold region

  14. The Electric Dipole Form Factor of the Nucleon in Chiral Perturbation Theory to Sub-leading Order

    CERN Document Server

    Mereghetti, E; Hockings, W H; Maekawa, C M; van Kolck, U

    2011-01-01

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD theta term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the theta term, the expected lower bound on the deuteron electric dipole moment is |d_d| > 1.4 10^(-4) \\theta e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation ---appearing, in particular, in the radius of the form factor--- is the pion mass.

  15. The electric dipole form factor of the nucleon in chiral perturbation theory to sub-leading order

    International Nuclear Information System (INIS)

    The electric dipole form factor (EDFF) of the nucleon stemming from the QCD θ-bar term and from the quark color-electric dipole moments is calculated in chiral perturbation theory to sub-leading order. This is the lowest order in which the isoscalar EDFF receives a calculable, non-analytic contribution from the pion cloud. In the case of the θ-bar term, the expected lower bound on the deuteron electric dipole moment is |dd|≥1.4.10-4θ-bar e fm. The momentum dependence of the isovector EDFF is proportional to a non-derivative time-reversal-violating pion-nucleon coupling, and the scale for momentum variation-appearing, in particular, in the radius of the form factor-is the pion mass.

  16. Low energy analysis of $\\pi N$ scattering and the pion-nucleon sigma term with covariant baryon chiral perturbation theory

    CERN Document Server

    Alarcón, J M; Oller, J A

    2013-01-01

    The pion-nucleon sigma term ($\\sigma_{\\pi N}$) is an observable of fundamental importance because embodies information about the internal scalar structure of the nucleon. Nowadays this quantity has triggered renewed interest because it is a key input for a reliable estimation of the dark matter-nucleon spin independent elastic scattering cross section. In this proceeding we present how this quantity can be reliably extracted by employing only experimental information with the use covariant baryon chiral perturbation theory. We also contrast our extraction with updated phenomenology related to $\\sigma_{\\pi N}$ and show how this phenomenology favours a relatively large value of $\\sigma_{\\pi N}$. Finally, we extract a value of $\\sigma_{\\pi N}=59(7)$ MeV from modern partial wave analyses data.

  17. Higher moments of nucleon spin structure functions in heavy baryon chiral perturbation theory and in a resonance model

    International Nuclear Information System (INIS)

    The third moment d2 of the twist-3 part of the nucleon spin structure function g2 is generalized to arbitrary momentum transfer Q2 and is evaluated in heavy baryon chiral perturbation theory (HBChPT) up to order Ο(p4) and in a unitary isobar model (MAID). We show how to link d2 as well as higher moments of the nucleon spin structure functions g1 and g2 to nucleon spin polarizabilities. We compare our results with the most recent experimental data, and find a good description of these available data within the unitary isobar model. We proceed to extract the twist-4 matrix element f2 which appears in the 1/Q2 suppressed term in the twist expansion of the spin structure function g1 for proton and neutron

  18. Assuming Regge trajectories in holographic QCD: from OPE to chiral perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Cappiello, Luigi; Greynat, David [Universita di Napoli ' ' Federico II' ' , Dipartimento di Fisica, Naples (Italy); INFN-Sezione di Napoli, Naples (Italy); D' Ambrosio, Giancarlo [INFN-Sezione di Napoli, Naples (Italy); CERN Theory Division, Geneva 23 (Switzerland)

    2015-10-15

    The soft wall model in holographic QCD has Regge trajectories but wrong operator product expansion (OPE) for the two-point vectorial QCD Green function. We modify the dilaton potential to comply with the OPE. We study also the axial two-point function using the same modified dilaton field and an additional scalar field to address chiral symmetry breaking. OPE is recovered adding a boundary term and low energy chiral parameters, F{sub π} and L{sub 10}, are well described analytically by the model in terms of Regge spacing and QCD condensates. The model nicely supports and extends previous theoretical analyses advocating Digamma function to study QCD two-point functions in different momentum regions. (orig.)

  19. Chiral dynamics of baryons in the perturbative chiral quark model

    Energy Technology Data Exchange (ETDEWEB)

    Pumsa-ard, K.

    2006-07-01

    In this work we develop and apply variants of a perturbative chiral quark model (PCQM) to the study of baryonic properties dominantly in the low-energy region. In a first step we consider a noncovariant form of the PCQM, where confinement is modelled by a static, effective potential and chiral corrections are treated to second order, in line with similar chiral quark models. We apply the PCQM to the study of the electromagnetic form factors of the baryon octet. We focus in particular on the low-energy observables such as the magnetic moments, the charge and magnetic radii. In addition, the electromagnetic N-delta transition is also studied in the framework of the PCQM. In the chiral loop calculations we consider a quark propagator, which is restricted to the quark ground state, or in hadronic language to nucleon and delta intermediate states, for simplicity. We furthermore include the low-lying excited states to the quark propagator. In particular, the charge radius of the neutron and the transverse helicity amplitudes of the N-delta transition are considerably improved by this additional effect. In a next step we develop a manifestly Lorentz covariant version of the PCQM, where in addition higher order chiral corrections are included. The full chiral quark Lagrangian is motivated by and in analogy to the one of Chiral Perturbation Theory (ChPT). This Lagrangian contains a set of low energy constants (LECs), which are parameters encoding short distance effects and heavy degrees of freedom. We evaluate the chiral Lagrangian to order O(p{sup 4}) and to one loop to generate the dressing of the bare quark operators by pseudoscalar mesons. In addition we include the vector meson degrees of freedom in our study. Projection of the dressed quark operators on the baryonic level serves to calculate the relevant matrix elements. In a first application of this scheme, we resort to a parameterization of the valence quark form factors in the electromagnetic sector. Constraints

  20. Extension of the chiral perturbation theory meson Lagrangian to order p6

    International Nuclear Information System (INIS)

    We have derived the most general chirally invariant Lagrangian L6 for the meson sector at order p6. The result provides an extension of the standard Gasser-Leutwyler Lagrangian L4 to one higher order, including as well all the odd intrinsic parity terms in the Lagrangian. The most difficult part of the derivation was developing a systematic strategy so as to get all of the independent terms and eliminate the redundant ones in an efficient way. The equation of motion terms, which are redundant in the sense that they can be transformed away via field transformations, are separated out explicitly. The resulting Lagrangian has been separated into groupings of terms contributing to increasingly more complicated processes, so that one does not have to deal with the full result when calculating p6 contributions to simple processes. (author). 53 refs., 10 tabs

  1. Convergence properties of $\\eta\\to 3\\pi$ decays in chiral perturbation theory

    CERN Document Server

    Kolesar, Marian

    2016-01-01

    Theoretical efforts to describe and explain the $\\eta\\to 3\\pi$ decays reach far back in time. Even today, the convergence of the decay widths and some of the Dalitz plot parameters seems problematic in low energy QCD. In the framework of resummed CHPT, we explore the question of compatibility of experimental data with a reasonable convergence of a carefully defined chiral series, where NNLO remainders are assumed to be small. By treating the uncertainties in the higher orders statistically, we numerically generate a large set of theoretical predictions, which are then confronted with experimental information. In the case of the decay widths, the experimental values can be reconstructed for a reasonable range of the free parameters and thus no tension is observed, in spite of what some of the traditional calculations suggest. The Dalitz plot parameters $a$ and $d$ can be described very well too. When the parameters $b$ and $\\alpha$ are concerned, we find a mild tension for the whole range of the free parameter...

  2. Random Matrix Theory and Chiral Logarithms

    OpenAIRE

    Berbenni-Bitsch, M. E.; Göckeler, M.; Hehl, H.; Meyer, S.; Rakow, P. E. L.; Schäfer, A.; Wettig, T.

    1999-01-01

    Abstract: Recently, the contributions of chiral logarithms predicted by quenched chiral perturbation theory have been extracted from lattice calculations of hadron masses. We argue that a detailed comparison of random matrix theory and lattice calculations allows for a precise determination of such corrections. We estimate the relative size of the m log(m), m, and m^2 corrections to the chiral condensate for quenched SU(2).

  3. The two-photon exchange contribution to muonic hydrogen from chiral perturbation theory

    International Nuclear Information System (INIS)

    We compute the spin-dependent and spin-independent structure functions of the forward virtual-photon Compton tensor of the proton at O(p3) using heavy baryon effective theory including the Delta particle. We compare with previous results when existing. Using these results we obtain the leading hadronic contributions, associated to the pion and Delta particles, to the Wilson coefficients of the lepton–proton four fermion operators in NRQED. The spin-independent coefficient yields a pure prediction for the two-photon exchange contribution to the muonic hydrogen Lamb shift, ΔETPE(π and Δ)=34(13) μeV. We also compute the charge, 〈rn〉, and Zemach, 〈rn〉(2), moments for n≥3. Finally, we discuss the spin-dependent case, for which we compute the difference between the four-fermion Wilson coefficients relevant for hydrogen and muonic hydrogen

  4. Copter: Cosmological perturbation theory

    Science.gov (United States)

    Carlson, Jordan

    2013-04-01

    Copter is a software package for doing calculations in cosmological perturbation theory. Specifically, Copter includes code for computing statistical observables in the large-scale structure of matter using various forms of perturbation theory, including linear theory, standard perturbation theory, renormalized perturbation theory, and many others. Copter is written in C++ and makes use of the Boost C++ library headers.

  5. Complete Leading Order Analysis in Chiral Perturbation Theory of the Decays $K_L \\to \\gamma\\gamma$ and $K_L \\to \\ell^+ \\ell^- \\gamma$

    CERN Document Server

    Goity, J L; Zhang, Longzhe

    1997-01-01

    The decays $K_L\\to \\gamma\\gamma$ and $K_L \\to \\ell^+ \\ell^- \\gamma$ are studied at the leading order p^6 in Chiral Perturbation Theory. One-loop contributions stemming from the odd intrinsic parity $\\mid \\Delta S\\mid =1$ effective Lagrangian of order p^4 are included and shown to be of possible relevance. They affect the decay $K_L \\to \\gamma\\gamma$ adding to the usual pole terms a piece free of counterterm uncertainties. In the case of the $K_L dilepton invariant mass requires a counterterm. The form factor may receive a sizeable contribution from chiral logarithms. Including considerations from the $K_L \\to \\pi^+ \\pi^- \\gamma$ direct emission amplitude, we obtain two consistent scenarios. In one scenario the long distance contributions from the one-loop terms are important, while in the other they are marginal. In both cases the counterterm is shown to be significant.

  6. The Low Energy Constants of $SU(2)$ Partially Quenched Chiral Perturbation Theory from $N_{f}=2+1$ Domain Wall QCD

    CERN Document Server

    Boyle, P A; Garron, N; Jung, C; Jüttner, A; Kelly, C; Mawhinney, R D; McGlynn, G; Murphy, D J; Ohta, S; Portelli, A; Sachrajda, C T

    2015-01-01

    We have performed fits of the pseudoscalar masses and decay constants, from a variety of RBC-UKQCD domain wall fermion ensembles, to $SU(2)$ partially quenched chiral perturbation theory at next-to leading order (NLO) and next-to-next-to leading order (NNLO). We report values for 9 NLO and 8 linearly independent combinations of NNLO partially quenched low energy constants, which we compare to other lattice and phenomenological determinations. We discuss the size of successive terms in the chiral expansion and use our large set of low energy constants to make predictions for mass splittings due to QCD isospin breaking effects and the S-wave $\\pi \\pi$ scattering lengths. We conclude that, for the range of pseudoscalar masses explored in this work, $115~\\mathrm{MeV} \\lesssim m_{\\rm PS} \\lesssim 430~\\mathrm{MeV}$, the NNLO $SU(2)$ expansion is quite robust and can fit lattice data with percent-scale accuracy.

  7. Consistency constraints on m{sub s} from QCD dispersion relations and chiral perturbation theory in K{sub l3} decays

    Energy Technology Data Exchange (ETDEWEB)

    Richard F. Lebed; Karl Schilcher

    1997-10-01

    The authors use both old and new theoretical developments in QCD dispersion relation constraints on the scalar form factor in the decay K {r_arrow} {pi}l{nu}{sub l} to obtain constraints on the strange quark mass. The perturbative QCD side of the calculation incorporates up to four-loop corrections, while the hadronic side uses a recently developed parameterization constructed explicitly to satisfy the dispersive constraints. Using chiral perturbation theory ({chi}PT) as a model for soon-to-be measured data, they find a series of lower bounds on m{sub s} increasing with the accuracy to which one believes {chi}PT to represent the full QCD result.

  8. Chiral gauge theories on a lattice

    International Nuclear Information System (INIS)

    The authors formulate a chiral gauge invariant theory of lattice fermions by introducing extra degrees of freedom. It is applied to the chiral U(1) gauge theories in two and four dimensions and the effective actions of the gauge fields are calculated which indicate the mass generation of the gauge bosons. The difficulty is pointed out to execute the perturbation with a finite gauge boson mass in four dimensions

  9. Automated Lattice Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Monahan, Christopher

    2014-11-01

    I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.

  10. Generalized Supersymmetric Perturbation Theory

    Institute of Scientific and Technical Information of China (English)

    B. G(o)n(ǖ)l

    2004-01-01

    @@ Using the basic ingredient of supersymmetry, a simple alternative approach is developed to perturbation theory in one-dimensional non-relativistic quantum mechanics. The formulae for the energy shifts and wavefunctions do not involve tedious calculations which appear in the available perturbation theories. The model applicable in the same form to both the ground state and excited bound states, unlike the recently introduced supersymmetric perturbation technique which, together with other approaches based on logarithmic perturbation theory, are involved within the more general framework of the present formalism.

  11. Chiral perturbation in dense matter and meson condensation controversy

    CERN Document Server

    Kubodera, K

    1994-01-01

    An outstanding problem in the study of possible kaon condensation is the striking discrepancy between the results of chiral perturbation theory and those of the PCAC-plus-current-algebra approach. I discuss here what causes this discrepancy and what needs to be done to solve the problem. In addition, I point out the importance of examining the validity of the non-relativistic approximation universally employed in the existing treatments of kaon condensation.

  12. Superstring perturbation theory

    OpenAIRE

    Adam, I.

    2009-01-01

    The state of superstring perturbation theory is reviewed with an emphasis on the state of the pure spinor superstring perturbation theory. We begin with a brief summary of the state of perturbation theory in the Ramond–Neveu–Schwarz and in the Green–Schwarz formulations of the superstring. Then we proceed to a quick review of the minimal and non-minimal pure spinor formulations of the superstring and discuss the multi-loop amplitude prescriptions in each of them. We end with a summary and ope...

  13. Low-Energy Constants from Resonance Chiral Theory

    OpenAIRE

    Pich, Antonio

    2008-01-01

    I discuss the recent attempts to build an effective chiral Lagrangian incorporating massive resonance states. A useful approximation scheme to organize the resonance Lagrangian is provided by the large-Nc limit of QCD. Integrating out the resonance fields, one recovers the usual chiral perturbation theory Lagrangian with explicit values for the low-energy constants, parameterized in terms of resonance masses and couplings. The resonance chiral theory generates Green functions that interpolate...

  14. Neutron matter with chiral EFT interactions: Perturbative and first QMC calculations

    OpenAIRE

    Tews, I.; Krüger, T.; Gezerlis, A.; Hebeler, K.; Schwenk, A.

    2013-01-01

    Neutron matter presents a unique system in chiral effective field theory (EFT), because all many-body forces among neutrons are predicted to next-to-next-to-next-to-leading order (N3LO). We discuss perturbative and first Quantum Monte Carlo (QMC) calculations of neutron matter with chiral EFT interactions and their astrophysical impact for the equation of state and neutron stars.

  15. Chiral unitary theory: Application to nuclear problems

    Indian Academy of Sciences (India)

    E Oset; D Cabrera; H C Chiang; C Garcia Recio; S Hirenzaki; S S Kamalov; J Nieves; Y Okumura; A Ramos; H Toki; M J Vicente Vacas

    2001-08-01

    In this talk we briefly describe some basic elements of chiral perturbation theory, , and how the implementation of unitarity and other novel elements lead to a better expansion of the -matrix for meson–meson and meson–baryon interactions. Applications are then done to the interaction in nuclear matter in the scalar and vector channels, antikaons in nuclei and - atoms, and how the meson properties are changed in a nuclear medium.

  16. Degenerate Density Perturbation Theory

    CERN Document Server

    Palenik, Mark C

    2016-01-01

    Fractional occupation numbers can be used in density functional theory to create a symmetric Kohn-Sham potential, resulting in orbitals with degenerate eigenvalues. We develop the corresponding perturbation theory and apply it to a system of $N_d$ degenerate electrons in a harmonic oscillator potential. The order-by-order expansions of both the fractional occupation numbers and unitary transformations within the degenerate subspace are determined by the requirement that a differentiable map exists connecting the initial and perturbed states. Using the X$\\alpha$ exchange-correlation (XC) functional, we find an analytic solution for the first-order density and first through third-order energies as a function of $\\alpha$, with and without a self-interaction correction. The fact that the XC Hessian is not positive definite plays an important role in the behavior of the occupation numbers.

  17. Collisions in Chiral Kinetic Theory.

    Science.gov (United States)

    Chen, Jing-Yuan; Son, Dam T; Stephanov, Mikhail A

    2015-07-10

    Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order O(ℏ), which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the H function obeying Boltzmann's H theorem. We demonstrate their use by finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing the chiral vortical effect. PMID:26207458

  18. Collisions in Chiral Kinetic Theory

    CERN Document Server

    Chen, Jing-Yuan; Stephanov, Mikhail A

    2015-01-01

    Using a covariant formalism, we construct a chiral kinetic theory Lorentz invariant to order $\\mathcal O(\\hbar)$ which includes collisions. We find a new contribution to the particle number current due to the side jumps required by the conservation of angular momentum during collisions. We also find a conserved symmetric stress-energy tensor as well as the $H$-function obeying Boltzmann's $H$-theorem. We demonstrate their use by finding a general equilibrium solution and the values of the anomalous transport coefficients characterizing chiral vortical effect.

  19. Phases of chiral gauge theories

    International Nuclear Information System (INIS)

    We discuss the behavior of two non-supersymmetric chiral SU(N) gauge theories, involving fermions in the symmetric and antisymmetric two-index tensor representations respectively. In addition to global anomaly matching, we employ a recently proposed inequality constraint on the number of effective low energy (massless) degrees of freedom of a theory, based on the thermodynamic free energy. Several possible zero temperature phases are consistent with the constraints. A simple picture for the phase structure emerges if these theories choose the phase, consistent with global anomaly matching, that minimizes the massless degree of freedom count defined through the free energy. This idea suggests that confinement with the preservation of the global symmetries through the formation of massless composite fermions is in general not preferred. While our discussion is restricted mainly to bilinear condensate formation, higher dimensional condensates are considered for one case. We conclude by commenting briefly on two related supersymmetric chiral theories. (c) 2000 The American Physical Society

  20. Staggered chiral random matrix theory

    International Nuclear Information System (INIS)

    We present a random matrix theory for the staggered lattice QCD Dirac operator. The staggered random matrix theory is equivalent to the zero-momentum limit of the staggered chiral Lagrangian and includes all taste breaking terms at their leading order. This is an extension of previous work which only included some of the taste breaking terms. We will also present some results for the taste breaking contributions to the partition function and the Dirac eigenvalues.

  1. Target Spaces from Chiral Gauge Theories

    CERN Document Server

    Melnikov, Ilarion V; Sethi, Savdeep; Stern, Mark

    2012-01-01

    Chiral gauge theories in two dimensions with (0,2) supersymmetry are central in the study of string compactifications. Remarkably little is known about generic (0,2) theories. We consider theories with branches on which multiplets with a net gauge anomaly become massive. The simplest example is a relevant perturbation of the gauge theory that flows to the CP(n) model. To compute the effective action, we derive a useful set of Feynman rules for (0,2) supergraphs. From the effective action, we see that the infra-red geometry reflects the gauge anomaly by the presence of a boundary at finite distance. In generic examples, there are boundaries, fluxes and branes; the resulting spaces are non-Kahler.

  2. Canonical density matrix perturbation theory.

    Science.gov (United States)

    Niklasson, Anders M N; Cawkwell, M J; Rubensson, Emanuel H; Rudberg, Elias

    2015-12-01

    Density matrix perturbation theory [Niklasson and Challacombe, Phys. Rev. Lett. 92, 193001 (2004)] is generalized to canonical (NVT) free-energy ensembles in tight-binding, Hartree-Fock, or Kohn-Sham density-functional theory. The canonical density matrix perturbation theory can be used to calculate temperature-dependent response properties from the coupled perturbed self-consistent field equations as in density-functional perturbation theory. The method is well suited to take advantage of sparse matrix algebra to achieve linear scaling complexity in the computational cost as a function of system size for sufficiently large nonmetallic materials and metals at high temperatures. PMID:26764847

  3. A Wilson-Majorana regularization for lattice chiral gauge theories

    International Nuclear Information System (INIS)

    We discuss the regularization of chiral gauge theories on the lattice introducing only physical degrees of freedom. This is obtained by writing the Wilson term in a Majorana form, at the expense of the U(1) symmetry related to fermion number conservation. The idea of restoring chiral invariance in the continuum by introducing a properly chosen set of counterterms to be added to the tree level action is checked against one-loop perturbative calculations. (orig.)

  4. Ratio of a strange quark mass ms to up or down quark mass mu,d predicted by a quark propagator in the framework of the chiral perturbation theory

    Institute of Scientific and Technical Information of China (English)

    PENG Jin-Song; ZHOU Li-Juan; MENG Cheng-Ju; PAN Ji-Huan; MA Wei-Xing; YUAN Tong-Quan

    2013-01-01

    Based on the fully dressed quark propagator and chiral perturbation theory,we study the ratio of the strange quark mass ms to up or down quark mass mu,d.The ratio is related to the determination of quark masses which are fundamental input parameters of QCD Lagrangian in the Standard Model of particle physics and can not be directly measured since the quark is confined within a hadron.An accurate determination of these QCD free parameters is extremely important for both phenomenological and theoretical applications.We begin with a brief introduction to the non-perturbation QCD theory,and then study the mass ratio in the framework of the chiral perturbation theory (xPT) with a parameterized fully dressed quark propagator which describes confining fully dressed quark propagation and is analytic everywhere in the finite complex p2-plane and has no Lehmann representation so there are no quark production thresholds in any theoretical calculations of observable data.Our prediction for the ratio ms/mu,d is consistent with other model predictions such as Lattice QCD,instanton model,QCD sum rules and the empirical values used widely in the literature.As a by-product of this study,our theoretical results,together with other predictions of physical quantities that used this quark propagator in our previous publications,clearly show that the parameterized form of the fully dressed quark propagator is an applicable and reliable approximation to the solution of the Dyson-Schwinger Equation of quark propagator in the QCD.

  5. Perturbative chiral violations for domain-wall QCD with improved gauge actions

    International Nuclear Information System (INIS)

    We investigate, in the framework of perturbation theory at finite Ns, the effectiveness of improved gauge actions in suppressing the chiral violations of domain-wall fermions. Our calculations show substantial reductions of the residual mass when it is compared at the same value of the gauge coupling, the largest suppression being obtained when the DBW2 action is used. Similar effects can also be observed for a power-divergent mixing coefficient which is chirally suppressed. No significant reduction instead can be seen in the case of the difference between the vector and axial-vector renormalization constants when improved gauge actions are used in place of the plaquette action. We also find that one-loop perturbation theory is not an adequate tool to carry out comparisons at the same energy scale (of about 2 GeV), and in fact in this case even an enhancement of the chiral violations is frequently obtained

  6. Dimensional regularization and perturbative solution of the chiral Schwinger model

    International Nuclear Information System (INIS)

    The anomalous chiral Schwinger model is regulated by the method of dimensional regularization and is solved by diagrammatic perturbative expansion. It is shown that there is a regulation ambiguity in the solution. The result disagrees with Das's assertion and agrees with that of Jackiw, Rajaraman, and others

  7. Graph rings and integrable perturbations of N = 2 superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Di Francesco, P. (Service de Physique Theorique de Saclay, 91 Gif sur Yvette (France)); Lesage, F. (Service de Physique Theorique de Saclay, 91 Gif sur Yvette (France)); Zuber, J.B. (Service de Physique Theorique de Saclay, 91 Gif sur Yvette (France))

    1993-11-15

    We show that the connection between certain integrable perturbations of N = 2 superconformal theories and graphs found by Lerche and Warner extends to a broader class. These perturbations are such that the generators of the perturbed chiral ring may be diagonalized in an orthonormal basis. This allows one to define a dual ring, whose generators are labelled by the ground states of the theory and are encoded in a graph or set of graphs, that reproduce the pattern of the ground states and interpolating solitons. All known perturbations of the ADE potentials and some others are shown to satisfy this criterion. This suggests a test of integrability. (orig.)

  8. Quantum Monte Carlo calculations with chiral effective field theory interactions

    International Nuclear Information System (INIS)

    comparing these results with many-body perturbation theory (MBPT), we can study the perturbative convergence of local chiral interactions. We have shown that soft, low-cutoff potentials converge well and can be reliably used in MBPT, while harder potentials are less perturbative and have to be treated within AFDMC. We have also derived consistent local chiral 3N interactions and study these forces in detail. Our results show that local regulators lead to less repulsion from 3N forces compared to nonlocal 3N forces. Finally, we present the neutron-matter equation of state based on local chiral NN and 3N interactions using the AFDMC method as well as results for light nuclei and neutron drops. This work paves the way for systematic QMC calculations with chiral EFT interactions for nuclei and nucleonic matter.

  9. Quantum Monte Carlo calculations with chiral effective field theory interactions

    Energy Technology Data Exchange (ETDEWEB)

    Tews, Ingo

    2015-10-12

    comparing these results with many-body perturbation theory (MBPT), we can study the perturbative convergence of local chiral interactions. We have shown that soft, low-cutoff potentials converge well and can be reliably used in MBPT, while harder potentials are less perturbative and have to be treated within AFDMC. We have also derived consistent local chiral 3N interactions and study these forces in detail. Our results show that local regulators lead to less repulsion from 3N forces compared to nonlocal 3N forces. Finally, we present the neutron-matter equation of state based on local chiral NN and 3N interactions using the AFDMC method as well as results for light nuclei and neutron drops. This work paves the way for systematic QMC calculations with chiral EFT interactions for nuclei and nucleonic matter.

  10. Complete leading order analysis in Chiral Perturbation Theory of the decays K{sub L}{r_arrow}{gamma}{gamma} and K{sub L}{r_arrow}l{sub +}l{sub {minus}}{gamma}

    Energy Technology Data Exchange (ETDEWEB)

    J. L. Goity; Longzhe Zhang

    1997-02-01

    The decays K{sub L}{r_arrow}{gamma}{gamma} and K{sub L}{r_arrow}l{sup +}l{sup {minus}}{gamma} are studied at the leading order p{sup 6} in Chiral Perturbation Theory. One-loop contributions stemming from the odd intrinsic parity {vert_bar}{Delta}S{vert_bar}=1 effective Lagrangian of order p{sup 4} are included and shown to be of possible relevance. They affect the decay K{sub L}{r_arrow}{gamma}{gamma} adding to the usual pole terms a piece free of counterterm uncertainties. In the case of the K{sub L}{r_arrow}l{sup +}l{sup {minus}}{gamma} decays the dependence of the form factor on the dilepton invariant mass requires a counterterm. The form factor may receive a sizeable contribution from chiral logarithms. Including considerations from the K{sub L}{r_arrow}{pi}{sup +}{pi}{sup {minus}}{gamma} direct emission amplitude, the authors obtain two consistent scenarios. In one scenario the long distance contributions from the one-loop terms are important, while in the other they are marginal. In both cases the counterterm is shown to be significant.

  11. Perturbative Quantization of Gravity Theories

    OpenAIRE

    Bern, Z.

    2001-01-01

    We discuss string theory relations between gravity and gauge theory tree amplitudes. Together with $D$-dimensional unitarity, these relations can be used to perturbatively quantize gravity theories, i.e. they contain the necessary information for calculating complete gravity $S$-matrices to any loop orders. This leads to a practical method for computing non-trivial gravity $S$-matrix elements by relating them to much simpler gauge theory ones. We also describe arguments that N=8 D=4 supergrav...

  12. Is the chiral U(1) theory trivial?

    International Nuclear Information System (INIS)

    The chiral U(1) theory differs from the corresponding vector theory by an imaginary contribution to the effective action which amounts to a phase factor in the partition function. The vector theory, i.e. QED, is known to be trivial in the continuum limit. It is argued that the presence of the phase factor will not alter this result and the chiral theory is non-interacting as well. (orig.)

  13. Basics of QCD perturbation theory

    International Nuclear Information System (INIS)

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs

  14. Basics of QCD perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Soper, D.E. [Univ. of Oregon, Eugene, OR (United States). Inst. of Theoretical Science

    1997-06-01

    This is an introduction to the use of QCD perturbation theory, emphasizing generic features of the theory that enable one to separate short-time and long-time effects. The author also covers some important classes of applications: electron-positron annihilation to hadrons, deeply inelastic scattering, and hard processes in hadron-hadron collisions. 31 refs., 38 figs.

  15. Nuclear Axial Currents in Chiral Effective Field Theory

    OpenAIRE

    Baroni, A.; Girlanda, L.; Pastore, S.; Schiavilla, R.; Viviani, M

    2015-01-01

    Two-nucleon axial charge and current operators are derived in chiral effective field theory up to one loop. The derivation is based on time-ordered perturbation theory, and accounts for cancellations between the contributions of irreducible diagrams and the contributions due to non-static corrections from energy denominators of reducible diagrams. Ultraviolet divergencies associated with the loop corrections are isolated in dimensional regularization. The resulting axial current is finite and...

  16. The theory of singular perturbations

    CERN Document Server

    De Jager, E M

    1996-01-01

    The subject of this textbook is the mathematical theory of singular perturbations, which despite its respectable history is still in a state of vigorous development. Singular perturbations of cumulative and of boundary layer type are presented. Attention has been given to composite expansions of solutions of initial and boundary value problems for ordinary and partial differential equations, linear as well as quasilinear; also turning points are discussed. The main emphasis lies on several methods of approximation for solutions of singularly perturbed differential equations and on the mathemat

  17. Nucleon electromagnetic form factors on the lattice and in chiral effective field theory

    International Nuclear Information System (INIS)

    We compute the electromagnetic form factors of the nucleon in quenched lattice QCD, using non-perturbatively improved Wilson fermions, and compare the results with phenomenology and chiral effective field theory. (orig.)

  18. SU(3) Chiral Symmetry in Non-Relativistic Field Theory

    CERN Document Server

    Ouellette, S M

    2001-01-01

    Applications imposing SU(3) chiral symmetry on non-relativistic field theory are considered. The first example is a calculation of the self-energy shifts of the spin-3/2 decuplet baryons in nuclear matter, from the chiral effective Lagrangian coupling octet and decuplet baryon fields. Special attention is paid to the self-energy of the delta baryon near the saturation density of nuclear matter. We find contributions to the mass shifts from contact terms in the effective Lagrangian with coefficients of unknown value. As a second application, we formulate an effecive field theory with manifest SU(2) chiral symmetry for the interactions of K and eta mesons with pions at low energy. SU(3) chiral symmetry is imposed on the effective field theory by a matching calculation onto three-flavor chiral perturbation theory. The effective Lagrangian for the pi-K and pi-eta sectors is worked out to order Q^4; the effective Lagrangian for the K-K sector is worked out to order Q^2 with contact interactions to order Q^4. As an...

  19. The chiral condensate from renormalization group optimized perturbation

    CERN Document Server

    Kneur, J -L

    2015-01-01

    Our recently developed variant of variationnally optimized perturbation (OPT), in particular consistently incorporating renormalization group properties (RGOPT), is adapted to the calculation of the QCD spectral density of the Dirac operator and the related chiral quark condensate $\\langle \\bar q q \\rangle$ in the chiral limit, for $n_f=2$ and $n_f=3$ massless quarks. The results of successive sequences of approximations at two-, three-, and four-loop orders of this modified perturbation, exhibit a remarkable stability. We obtain $\\langle \\bar q q\\rangle^{1/3}_{n_f=2}(2\\, {\\rm GeV}) = -(0.833-0.845) \\bar\\Lambda_2 $, and $ \\langle\\bar q q\\rangle^{1/3}_{n_f=3}(2\\, {\\rm GeV}) = -(0.814-0.838) \\bar\\Lambda_3 $ where the range spanned by the first and second numbers (respectively four- and three-loop order results) defines our theoretical error, and $\\bar\\Lambda_{n_f}$ is the basic QCD scale in the $\\overline{MS}$-scheme. We obtain a moderate suppression of the chiral condensate when going from $n_f=2$ to $n_f=3$. ...

  20. CP breaking in lattice chiral gauge theories

    International Nuclear Information System (INIS)

    The CP symmetry is not manifestly implemented for the local and doubler-free Ginsparg-Wilson operator in lattice chiral gauge theory. We precisely identify where the effects of this CP breaking appear. We show that they appear in: (I) Overall constant phase of the fermion generating functional. (II) Overall constant coefficient of the fermion generating functional. (III) Fermion propagator appearing in external fermion lines and the propagator connected to Yukawa vertices. The first effect appears from the transformation of the path integral measure and it is absorbed into a suitable definition of the constant phase factor for each topological sector; in this sense there appears no 'CP anomaly'. The second constant arises from the explicit breaking in the action and it is absorbed by the suitable weights with which topological sectors are summed. The last one in the propagator is inherent to this formulation and cannot be avoided by a mere modification of the projection operator, for example, in the framework of the Ginsparg-Wilson operator. This breaking emerges as an (almost) contact term in the propagator when the Higgs field, which is treated perturbatively, has no vacuum expectation value. In the presence of the vacuum expectation value, however, a completely new situation arises and the breaking becomes intrinsically non-local, though this breaking may still be removed in a suitable continuum limit. This non-local CP breaking is expected to persist for a non-perturbative treatment of the Higgs coupling. (author)

  1. SU(N) chiral gauge theories on the lattice

    International Nuclear Information System (INIS)

    We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to the non-Abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of critical point which is only accessible through gauge fixing, as we have shown before in the Abelian case. The new ingredient allowing us to deal with the non-Abelian case as well is the use of equivariant gauge fixing, which handles Gribov copies correctly, and avoids Neuberger's no-go theorem. We use this method in order to gauge fix the non-Abelian group (which we will take to be SU(N)) down to its maximal Abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix also the remaining Abelian gauge symmetry. This modifies the equivariant Becchi-Rouet-Stora-Tyutin (BRST) identities, but their use in proving unitarity remains intact, as we show in perturbation theory. On the lattice, equivariant BRST symmetry as well as the Abelian gauge invariance are broken, and a judiciously chosen irrelevant term must be added to the lattice gauge-fixing action in order to have access to the desired critical point in the phase diagram. We argue that gauge invariance is restored in the continuum limit by adjusting a finite number of counter terms. We emphasize that weak-coupling perturbation theory applies at the critical point which defines the continuum limit of our lattice chiral gauge theory

  2. Asymptotic perturbation theory of waves

    CERN Document Server

    Ostrovsky, Lev

    2014-01-01

    This book is an introduction to the perturbation theory for linear and nonlinear waves in dispersive and dissipative media. The main focus is on the direct asymptotic method which is based on the asymptotic expansion of the solution in series of one or more small parameters and demanding finiteness of the perturbations; this results in slow variation of the main-order solution. The method, which does not depend on integrability of basic equations, is applied to quasi-harmonic and non-harmonic periodic waves, as well as to localized waves such as solitons, kinks, and autowaves. The basic theor

  3. Cosmological perturbation theory and quantum gravity

    OpenAIRE

    Brunetti, Romeo; Fredenhagen, Klaus; Hack, Thomas-Paul; Pinamonti, Nicola; Rejzner, Katarzyna

    2016-01-01

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are pr...

  4. Cosmological perturbation theory and quantum gravity

    CERN Document Server

    Brunetti, Romeo; Hack, Thomas-Paul; Pinamonti, Nicola; Rejzner, Katarzyna

    2016-01-01

    It is shown how cosmological perturbation theory arises from a fully quantized perturbative theory of quantum gravity. Central for the derivation is a non-perturbative concept of gauge-invariant local observables by means of which perturbative invariant expressions of arbitrary order are generated. In particular, in the linearised theory, first order gauge-invariant observables familiar from cosmological perturbation theory are recovered. Explicit expressions of second order quantities are presented as well.

  5. aryon chiral perturbation theory with Wilson fermions up to (a2) and discretization effects of latest nf=2+1 LQCD octet baryon masses

    OpenAIRE

    Ren, Xiu-LeiSchool of Physics and Nuclear Energy Engineering, Beihang University, 100191, Beijing, China; Geng, Li-Sheng; Meng, Jie

    2014-01-01

    We construct the chiral Lagrangians relevant in studies of the ground-state octet baryon masses up to (a2) by taking into account discretization effects. We calculate the masses up to (p4) in the extended-on-mass-shell scheme. As an application, we study the latest nf=2+1 LQCD data on the ground-state octet baryon masses from the PACS-CS, QCDSF-UKQCD, HSC, and NPLQCD Collaborations. It is shown that the discretization effects for the studied LQCD simulations are at the order of 1–2 % for la...

  6. An introduction to perturbative and non-perturbative string theory

    OpenAIRE

    Antoniadis, Ignatios; Ovarlez, Guillaume

    1999-01-01

    In these lectures we give a brief introduction to perturbative and non-perturbative string theory. The outline is the following: 1. Introduction to perturbative string theory 1.1 From point particle to extended objects 1.2 Free closed and open string spectrum 1.3 Compactification on a circle and T-duality 1.4 The Superstring: type IIA and IIB 1.5 Heterotic string and orbifold compactifications 1.6 Type I string theory 1.7 Effective field theories References 2. Introduction to non-perturbative...

  7. Baryon chiral perturbation theory withWilson fermions up to O(a2) and discretization effects of latest nf = 2 + 1 LQCD octet baryon masses

    International Nuclear Information System (INIS)

    We construct the chiral Lagrangians relevant in studies of the ground-state octet baryon masses up to O(a2) by taking into account discretization effects. We calculate the masses up to O(p4) in the extended-on-mass-shell scheme. As an application, we study the latest nf = 2+1 LQCD data on the ground-state octet baryon masses from the PACS-CS, QCDSF-UKQCD, HSC, and NPLQCD Collaborations. It is shown that the discretization effects for the studied LQCD simulations are at the order of 1-2 % for lattice spacings up to 0.15 fm and the pion mass up to 500 MeV. (orig.)

  8. Reactivity coefficients by perturbation theory

    International Nuclear Information System (INIS)

    The development of the formulae of perturbation theory provides a good opportunity to use one of the principal devices of mathematical heuristics, i.e. proceeding by analogy from something that is simple to something that is more complicated. This paper: (a) Reviews the formulation of perturbation theory as a method of calculating reactivity coefficients; this consists mainly of developing the differential equation for the adjoint flux, as a continuous function of position and lethargy, by proceeding by analogy from the one-group differential equation for adjoint flux. (b) Presents an application of the two-group form of perturbation theory to a boiling-mercury-cooled fast-breeder reactor (MCBR). It is seen that the net Hg density coefficient of reactivity for the first-design-try for the MCBR is negative for some regions and positive for others. However, it is negative for regions of highest statistical weight and where the density change for a power change would be the greatest. The overall Hg density coefficient is thus negative, i.e. the void coefficient is positive-an unsafe condition. It can be easily seen from the two-group formulation what design changes had to be made to obtain a design which would have a negative void coefficient. It developed in subsequent investigations that there were such design changes that could be made and a design of the MCBR with a negative void coefficient was eventually achieved. (author)

  9. Chiral symmetry and lattice gauge theory

    International Nuclear Information System (INIS)

    I review the problem of formulating chiral symmetry in lattice gauge theory. I discuss recent approaches involving an infinite tower of additional heavy states to absorb Fermion doublers. For hadronic physics this provides a natural scheme for taking quark masses to zero without requiring a precise tuning of parameters. A mirror Fermion variation provides a possible way of extending the picture to chirally coupled light Fermions

  10. Gauge fields without perturbation theory

    International Nuclear Information System (INIS)

    Methods for investigating gauge theories not based on perturbation theory have been considered. It is pointed out that the Monte-Carlo method is the most powerful one for gauge lattice theories. This method is indicative of the absence of phase transition in SU(3)-gluodynamics. Spectrum of lower hadrons as well as a number of other physical values disregarding quark polarization of vacuum, are calculated by this method. The method of expansion in the inverse number of the degrees of feedom proved to be very interesting and promiing for understanding qualitative picture of calculations in QCD. The study of gluodynamics in D-meric space-time is reduced to the study of O-meric tasks, which constituted the main achievement in the study of multicolour QCD for the last year

  11. Quantum field perturbation theory revisited

    Science.gov (United States)

    Matone, Marco

    2016-03-01

    Schwinger's formalism in quantum field theory can be easily implemented in the case of scalar theories in D dimension with exponential interactions, such as μDexp (α ϕ ). In particular, we use the relation exp (α δ/δ J (x ) )exp (-Z0[J ])=exp (-Z0[J +αx]) with J the external source, and αx(y )=α δ (y -x ). Such a shift is strictly related to the normal ordering of exp (α ϕ ) and to a scaling relation which follows by renormalizing μ . Next, we derive a new formulation of perturbation theory for the potentials V (ϕ )=λ/n ! :ϕn: , using the generating functional associated to :exp (α ϕ ):. The Δ (0 )-terms related to the normal ordering are absorbed at once. The functional derivatives with respect to J to compute the generating functional are replaced by ordinary derivatives with respect to auxiliary parameters. We focus on scalar theories, but the method is general and similar investigations extend to other theories.

  12. Geometric Hamiltonian structures and perturbation theory

    International Nuclear Information System (INIS)

    We have been engaged in a program of investigating the Hamiltonian structure of the various perturbation theories used in practice. We describe the geometry of a Hamiltonian structure for non-singular perturbation theory applied to Hamiltonian systems on symplectic manifolds and the connection with singular perturbation techniques based on the method of averaging

  13. Photo- and pion electroproduction in chiral effective field theory; Photo- und Elektropionproduktion in chiraler effektiver Feldtheorie

    Energy Technology Data Exchange (ETDEWEB)

    Hilt, Marius

    2011-12-13

    This thesis is concerned with pion photoproduction (PPP) and pion electroproduction (PEP) in the framework of manifestly Lorentz-invariant baryon chiral perturbation theory. For that purpose two different approaches are used. Firstly, a one-loop-order calculation up to chiral order O(q{sup 4}) including pions and nucleons as degrees of freedom, is performed to describe the energy dependence of the reactions over a large range. To improve the dependence on the virtuality of the photon in PEP, in a second approach vector mesons are included as explicit degrees of freedom. The latter calculation includes one-loop contributions up to chiral order O(q{sup 3}). Only three of the four physical processes of PPP and PEP can be accessed experimentally. These reactions are measured at several different facilities, e.g. Mainz, Bonn, or Saskatoon. The data obtained there are used to explore the limits of chiral perturbation theory. This thesis is the first complete manifestly Lorentz-invariant calculation up to order O(q{sup 4}) for PPP and PEP, and the first calculation ever for these processes including vector mesons explicitly. Beside the calculation of physical observables, a partial wave decomposition is performed and the most important multipoles are analyzed. They may be extracted from the calculated amplitudes and allow one to examine the nucleon and {delta} resonances. The number of diagrams one has to calculate is very large. In order to handle these expressions, several routines were developed for the computer algebra system Mathematica. For the multipole decomposition, two different programs are used. On the one hand, a modified version of the so-called {chi}MAID has been employed. On the other hand, similar routines were developed for Mathematica. In the end, the different calculations are compared with respect to their applicability to PPP and PEP.

  14. Chiral effective field theory and nuclear forces

    CERN Document Server

    Machleidt, R

    2011-01-01

    We review how nuclear forces emerge from low-energy QCD via chiral effective field theory. The presentation is accessible to the non-specialist. At the same time, we also provide considerable detailed information (mostly in appendices) for the benefit of researchers who wish to start working in this field.

  15. Timer ordered perturbation theory for nonlocal interactions

    International Nuclear Information System (INIS)

    Full text: In the past decades, time ordered perturbation theory was very successful in describing relativistic scattering processes. It was developed for local quantum field theories. However, there are field theories which are governed by nonlocal interactions, for example noncommutative quantum field theory (NCQFT). In general, the perturbation theory for local interactions only involving Feynman propagators is not applicable any more for nonlocal theories, especially when noncommutativity involves time. Thus, we expanded time ordered perturbation theory for nonlocal field theories. A few applications will also be discussed. (author)

  16. Generalized perturbation theory for thermalhydraulics problems

    International Nuclear Information System (INIS)

    The Oblow's perturbation expressions are presented for a generic functional in a heat and mass transfer transient problem for a typical subset of nuclear reactor using the generalized perturbation theory formalism proposed by Gandini. (E.G.)

  17. "Phonon" scattering beyond perturbation theory

    Science.gov (United States)

    Qiu, WuJie; Ke, XueZhi; Xi, LiLi; Wu, LiHua; Yang, Jiong; Zhang, WenQing

    2016-02-01

    Searching and designing materials with intrinsically low lattice thermal conductivity (LTC) have attracted extensive consideration in thermoelectrics and thermal management community. The concept of part-crystalline part-liquid state, or even part-crystalline part-amorphous state, has recently been proposed to describe the exotic structure of materials with chemical- bond hierarchy, in which a set of atoms is weakly bonded to the rest species while the other sublattices retain relatively strong rigidity. The whole system inherently manifests the coexistence of rigid crystalline sublattices and fluctuating noncrystalline substructures. Representative materials in the unusual state can be classified into two categories, i.e., caged and non-caged ones. LTCs in both systems deviate from the traditional T -1 relationship ( T, the absolute temperature), which can hardly be described by small-parameter-based perturbation approaches. Beyond the classical perturbation theory, an extra rattling-like scattering should be considered to interpret the liquid-like and sublattice-amorphization-induced heat transport. Such a kind of compounds could be promising high-performance thermoelectric materials, due to the extremely low LTCs. Other physical properties for these part-crystalline substances should also exhibit certain novelty and deserve further exploration.

  18. Random Lattice QCD and chiral effective theories

    OpenAIRE

    Pavlovsky, O. V.

    2004-01-01

    Resent developments in the Random Matrix and Random Lattice Theories give a possibility to find low-energy theorems for many physical models in the Born-Infeld form. In our approach that based on the Random Lattice regularization of QCD we try to used the similar ideas in the low-energy baryon physics for finding of the low-energy theory for the chiral fields in the strong-coupling regime.

  19. The chiral anomaly from M theory

    CERN Document Server

    Gursoy, U; Portugues, R; Gursoy, Umut; Hartnoll, Sean A.; Portugues, Ruben

    2003-01-01

    We argue that the chiral anomaly of $\\Ncal = 1$ super Yang-Mills theory admits a dual description as spontaneous symmetry breaking in M theory on $G_2$ holonomy manifolds. We identify an angle of the $G_2$ background dual to the anomalous $U(1)_R$ current in field theory. This angle is not an isometry of the metric and we therefore develop a theory of ``massive isometry'' to describe fluctuations about such angles. Another example of a massive isometry occurs in the Atiyah-Hitchin metric.

  20. Non-Perturbative Theory of Dispersion Interactions

    CERN Document Server

    Boström, M; Persson, C; Parsons, D F; Buhmann, S Y; Brevik, I; Sernelius, Bo E

    2015-01-01

    Some open questions exist with fluctuation-induced forces between extended dipoles. Conventional intuition derives from large-separation perturbative approximations to dispersion force theory. Here we present a full non-perturbative theory. In addition we discuss how one can take into account finite dipole size corrections. It is of fundamental value to investigate the limits of validity of the perturbative dispersion force theory.

  1. Nonperturbative Regulator for Chiral Gauge Theories?

    Science.gov (United States)

    Grabowska, Dorota M; Kaplan, David B

    2016-05-27

    We propose a nonperturbative gauge-invariant regulator for d-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in d+1 dimensions with quantum gauge fields that reside on one d-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local d-dimensional interpretation only if the chiral fermion representation is anomaly free. A physical realization of this construction would imply the existence of mirror fermions in the standard model that are invisible except for interactions induced by vacuum topology, and which could gravitate differently than conventional matter. PMID:27284646

  2. A Nonperturbative Regulator for Chiral Gauge Theories

    CERN Document Server

    Grabowska, Dorota M

    2015-01-01

    We propose a nonperturbative gauge invariant regulator for $d$-dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in $d+1$ dimensions with quantum gauge fields that reside on one $d$-dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local $d$-dimensional interpretation if and only if the chiral fermion representation is anomaly free. A physical realization of this construction leads to mirror fermions in the Standard Model with soft form factors for gauge fields and gravity. These mirror particles could evade detection except by sensitive probes at extremely low energy, and yet still affect vacuum topology, and could gravitate differently than conventional matter.

  3. Nonperturbative Regulator for Chiral Gauge Theories?

    Science.gov (United States)

    Grabowska, Dorota M.; Kaplan, David B.

    2016-05-01

    We propose a nonperturbative gauge-invariant regulator for d -dimensional chiral gauge theories on the lattice. The method involves simulating domain wall fermions in d +1 dimensions with quantum gauge fields that reside on one d -dimensional surface and are extended into the bulk via gradient flow. The result is a theory of gauged fermions plus mirror fermions, where the mirror fermions couple to the gauge fields via a form factor that becomes exponentially soft with the separation between domain walls. The resultant theory has a local d -dimensional interpretation only if the chiral fermion representation is anomaly free. A physical realization of this construction would imply the existence of mirror fermions in the standard model that are invisible except for interactions induced by vacuum topology, and which could gravitate differently than conventional matter.

  4. Tests of Chiral perturbation theory with COMPASS

    OpenAIRE

    Friedrich Jan M.

    2014-01-01

    The COMPASS experiment at CERN accesses pion-photon reactions via the Primakoff effect., where high-energetic pions react with the quasi-real photon field surrounding the target nuclei. When a single real photon is produced, pion Compton scattering is accessed and from the measured cross-section shape, the pion polarisability is determined. The COMPASS measurement is in contradiction to the earlier dedicated measurements, and rather in agreement with the theoretical expectation from ChPT. In ...

  5. Removal of chiral anomalies in abelian gauge theories

    International Nuclear Information System (INIS)

    It is shown that chiral anomalies can be removed in abelian gauge theories. After a discussion of the two dimensional case where exact solutions are available we study the four dimensional theory. We use perturbation theory, i.e. analyse the triangle Feynman integrals, and determine the general subtraction structure of the gauge current. Then we show that gauges exist for which current conservation holds and the theory is gauge invariant. As far as the generating functional is concerned the anomaly is employed first as gauge fixing condition. After rewriting the interaction in a gauge invariant form the gauge fixing condition can be imposed as usual. In our approach the integration over the gauge group remains trivial. (author)

  6. Linearisation with Cosmological Perturbation Theory

    CERN Document Server

    Kitaura, F S

    2011-01-01

    We propose a new method to linearise cosmological mass density fields using higher order Lagrangian perturbation theory (LPT). We demonstrate that a given density field can be expressed as the sum of a linear and a nonlinear component which are tightly coupled to each other by the tidal field tensor within the LPT framework. The linear component corresponds to the initial density field in Eulerian coordinates, and its mean relation with the total field can be approximated by a logarithm (giving theoretical support to recent attempts to find such component). We also propose to use a combination of the linearisation method and the continuity equation to find the mapping between Eulerian and Lagrangian coordinates. In addition, we note that this method opens the possibility of use directly higher order LPT on nonlinear fields. We test our linearization scheme by applying it to the z~0.5 density field from an N-body simulation. We find that the linearised version of the full density field can be successfully reco...

  7. Perturbative theory for Brownian vortexes.

    Science.gov (United States)

    Moyses, Henrique W; Bauer, Ross O; Grosberg, Alexander Y; Grier, David G

    2015-06-01

    Brownian vortexes are stochastic machines that use static nonconservative force fields to bias random thermal fluctuations into steadily circulating currents. The archetype for this class of systems is a colloidal sphere in an optical tweezer. Trapped near the focus of a strongly converging beam of light, the particle is displaced by random thermal kicks into the nonconservative part of the optical force field arising from radiation pressure, which then biases its diffusion. Assuming the particle remains localized within the trap, its time-averaged trajectory traces out a toroidal vortex. Unlike trivial Brownian vortexes, such as the biased Brownian pendulum, which circulate preferentially in the direction of the bias, the general Brownian vortex can change direction and even topology in response to temperature changes. Here we introduce a theory based on a perturbative expansion of the Fokker-Planck equation for weak nonconservative driving. The first-order solution takes the form of a modified Boltzmann relation and accounts for the rich phenomenology observed in experiments on micrometer-scale colloidal spheres in optical tweezers. PMID:26172698

  8. Variational Perturbation Theory for Markov Processes

    OpenAIRE

    Kleinert, Hagen; Pelster, Axel; Mihai V. Putz

    2002-01-01

    We develop a convergent variational perturbation theory for conditional probability densities of Markov processes. The power of the theory is illustrated by applying it to the diffusion of a particle in an anharmonic potential.

  9. Chiral symmetry and effective field theories for hadronic, nuclear and stellar matter

    CERN Document Server

    Holt, Jeremy W; Weise, Wolfram

    2014-01-01

    Chiral symmetry, first entering in nuclear physics in the 1970's for which Gerry Brown played a seminal role, has led to a stunningly successful framework for describing strongly-correlated nuclear dynamics both in finite and infinite systems. We review how the early germinal idea, conceived with the soft-pion theorems in the pre-QCD era, has evolved into a highly predictive theoretical framework for nuclear physics, aptly assessed by Steven Weinberg: "it (chiral effective field theory) allows one to show in a fairly convincing way that what they (nuclear physicists) have been doing all along... is the correct first step in a consistent approximation scheme." Our review recounts both how the theory presently fares in confronting Nature and how one can understand its extremely intricate workings in terms of the multifaceted aspects of chiral symmetry, namely, chiral perturbation theory, skyrmions, Landau Fermi-liquid theory, the Cheshire cat phenomenon, and hidden local and mended symmetries.

  10. Power counting regime of chiral effective field theory and beyond

    International Nuclear Information System (INIS)

    Chiral effective field theory (χEFT) complements numerical simulations of quantum chromodynamics (QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of the power-counting regime (PCR) of χEFT, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety of renormalization schemes and associated parameters, techniques to identify the PCR where results are independent of the renormalization scheme are established. The nucleon mass is considered as a benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation results are also examined to search for the possible presence of an intrinsic scale which may be used in a nonperturbative manner to describe lattice simulation results outside of the PCR. Positive results that improve on the current optimistic application of chiral perturbation theory (χPT) beyond the PCR are reported.

  11. Perturbation Theory for Population Dynamics

    CERN Document Server

    Fernandez, Francisco M

    2007-01-01

    We prove that a recently proposed homotopy perturbation method for the treatment of population dynamics is just the Taylor expansion of the population variables about initial time. Our results show that this perturbation method fails to provide the global features of the ecosystem dynamics.

  12. SU(N) chiral gauge theories on the lattice

    CERN Document Server

    Golterman, M F L; Golterman, Maarten; Shamir, Yigal

    2004-01-01

    We extend the construction of lattice chiral gauge theories based on non-perturbative gauge fixing to the non-abelian case. A key ingredient is that fermion doublers can be avoided at a novel type of critical point which is only accessible through gauge fixing, as we have shown before in the abelian case. The new ingredient allowing us to deal with the non-abelian case as well is the use of equivariant gauge fixing, which handles Gribov copies correctly, and avoids Neuberger's no-go theorem. We use this method in order to gauge fix the non-abelian group (which we will take to be SU(N)) down to its maximal abelian subgroup. Obtaining an undoubled, chiral fermion content requires us to gauge-fix also the remaining abelian gauge symmetry. This modifies the equivariant BRST identities, but their use in proving unitarity remains intact, as we show in perturbation theory. On the lattice, equivariant BRST symmetry as well as the abelian gauge invariance are broken, and a judiciously chosen irrelevant term must be ad...

  13. Perturbation theory in light-cone quantization

    Energy Technology Data Exchange (ETDEWEB)

    Langnau, A.

    1992-01-01

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory.

  14. Perturbation theory in light-cone quantization

    International Nuclear Information System (INIS)

    A thorough investigation of light-cone properties which are characteristic for higher dimensions is very important. The easiest way of addressing these issues is by analyzing the perturbative structure of light-cone field theories first. Perturbative studies cannot be substituted for an analysis of problems related to a nonperturbative approach. However, in order to lay down groundwork for upcoming nonperturbative studies, it is indispensable to validate the renormalization methods at the perturbative level, i.e., to gain control over the perturbative treatment first. A clear understanding of divergences in perturbation theory, as well as their numerical treatment, is a necessary first step towards formulating such a program. The first objective of this dissertation is to clarify this issue, at least in second and fourth-order in perturbation theory. The work in this dissertation can provide guidance for the choice of counterterms in Discrete Light-Cone Quantization or the Tamm-Dancoff approach. A second objective of this work is the study of light-cone perturbation theory as a competitive tool for conducting perturbative Feynman diagram calculations. Feynman perturbation theory has become the most practical tool for computing cross sections in high energy physics and other physical properties of field theory. Although this standard covariant method has been applied to a great range of problems, computations beyond one-loop corrections are very difficult. Because of the algebraic complexity of the Feynman calculations in higher-order perturbation theory, it is desirable to automatize Feynman diagram calculations so that algebraic manipulation programs can carry out almost the entire calculation. This thesis presents a step in this direction. The technique we are elaborating on here is known as light-cone perturbation theory

  15. Chiral anomalies in higher-derivative supersymmetric 6D gauge theories

    International Nuclear Information System (INIS)

    We show that the recently constructed higher-derivative 6D SYM theory involves internal chiral anomaly breaking gauge invariance. The anomaly is cancelled when adding to the theory an adjoint matter hyper-multiplet. One shows that as the effective charge grows at high energies, the theories are not consistently defined nonperturbatively. Constructing a nontrivial 6D theory that would be internally consistent both perturbatively and nonperturbatively remains a major challenge. (author)

  16. U(1) chiral gauge theory on lattice with gauge-fixed domain wall fermions

    International Nuclear Information System (INIS)

    We investigate a U(1) lattice chiral gauge theory (LξGT) with domain wall fermions and gauge fixing. In the reduced model limit, our perturbative and numerical investigations at Yukawa coupling y = 1 show that there are no extra mirror chiral modes. The longitudinal gauge degrees of freedom have no effect on the free domain wall fermion spectrum consisting of opposite chiral modes at the domain wall and the anti-domain wall which have an exponentially damped overlap. Our numerical investigation at small Yukawa couplings (y << 1) also leads to similar conclusions as above

  17. Concise theory of chiral lipid membranes

    CERN Document Server

    Tu, Z C

    2007-01-01

    A theory of chiral lipid membranes is proposed on the basis of a concise free energy density which includes the contributions of the bending and the surface tension of membranes, as well as the chirality and orientational variation of tilting molecules. This theory is consistent with the previous experiments [J.M. Schnur \\textit{et al.}, Science \\textbf{264}, 945 (1994); M.S. Spector \\textit{et al.}, Langmuir \\textbf{14}, 3493 (1998); Y. Zhao, \\textit{et al.}, Proc. Natl. Acad. Sci. USA \\textbf{102}, 7438 (2005)] on self-assembled chiral lipid membranes of DC$_{8,9}$PC. A torus with the ratio between its two generated radii larger than $\\sqrt{2}$ is predicted from the Euler-Lagrange equations. It is found that tubules with helically modulated tilting state are not admitted by the Euler-Lagrange equations, and that they are less energetically favorable than helical ripples in tubules. The pitch angles of helical ripples are theoretically estimated to be about 0$^\\circ$ and 35$^\\circ$, which are close to the mo...

  18. Perturbation Theory for Arbitrary Coupling Strength ?

    CERN Document Server

    Mahapatra, B P

    2016-01-01

    We demonstrate Borel summability for arbitrary coupling strength in a new formulation of perturbation theory (designated here as "Mean Field Perturbation Theory (MFPT)") by applying it to one dimensional anharmonic-interactions, which includes the case of the quartic and sextic anharmonic oscillators(AHO) and the quartic double-well-oscillator (QDWO).It is well known that the perturbation-series is not Borel-summable for the QDWO in the standard formulation of perturbation theory(SFPT). In contrast, MFPT leads to a Borel-summable perturbation series and accurate values for the energy-spectra for arbitrary (physical) value of the coupling strength in each case as stated above. The general nature and the simplicity of the formulation underlying MFPT leads us to conjecture that this scheme may be applicable to arbitrary interactions in quantum theory.

  19. Ambiguity of perturbative Dirac theory

    International Nuclear Information System (INIS)

    Degeneracy of parity even and odd electron solutions of the free Dirac equation may cause uncertainties in first order calculation of the perturbative energy. Choosing the even parity solution to start perturbation is though direct, not theoretically well supported. The arbitrariness in choosing lowest order electron wave functions causes uncertainties in the Foldy-Wouthuysen transformations and the reduction of the Pauli equation from the Dirac equation

  20. Discrete state perturbation theory via Green's functions

    International Nuclear Information System (INIS)

    The exposition of stationary-state perturbation theory via the Green's function method in Goldberger and Watson's Collision Theory is reworked in a way that makes explicit its mathematical basis. It is stressed that the theory consists of the construction of, and manipulations on, a mathematical identity. The perturbation series fall out of the identity almost immediately. The logical status of the method is commented on

  1. Chiral heat wave and mixed waves in kinetic theory

    CERN Document Server

    Frenklakh, D

    2016-01-01

    We study collective excitations in hot rotating chiral media in presence of magnetic field in kinetic theory, namely Chiral Heat Wave and its' mixings with Chiral Vortical Wave and Chiral Magnetic Wave. Our results for velocities of these waves have slight alterations from those obtained earlier. We explain the origin of these alterations and also give the most general expressions for the velocities of all these waves in hydrodynamic approach.

  2. D-brane Instantons as Gauge Instantons in Orientifolds of Chiral Quiver Theories

    CERN Document Server

    Franco, Sebastian; Uranga, Angel

    2015-01-01

    Systems of D3-branes at orientifold singularities can receive non-perturbative D-brane instanton corrections, inducing field theory operators in the 4d effective theory. In certain non-chiral examples, these systems have been realized as the infrared endpoint of a Seiberg duality cascade, in which the D-brane instanton effects arise from strong gauge theory dynamics. We present the first UV duality cascade completion of chiral D3-brane theories, in which the D-brane instantons arise from gauge theory dynamics. Chiral examples are interesting because the instanton fermion zero mode sector is topologically protected, and therefore lead to more robust setups. As an application of our results, we provide a UV completion of certain D-brane orientifold systems recently claimed to produce conformal field theories with conformal invariance broken only by D-brane instantons.

  3. 't Hooft loops and perturbation theory

    OpenAIRE

    de Forcrand, Philippe; Lucini, Biagio; Noth, David

    2005-01-01

    We show that high-temperature perturbation theory describes extremely well the area law of SU(N) spatial 't Hooft loops, or equivalently the tension of the interface between different Z_N vacua in the deconfined phase. For SU(2), the disagreement between Monte Carlo data and lattice perturbation theory for sigma(T)/T^2 is less than 2%, down to temperatures O(10) T_c. For SU(N), N>3, the ratios of interface tensions, (sigma_k/sigma_1)(T), agree with perturbation theory, which predicts tiny dev...

  4. Closed form bound-state perturbation theory

    Directory of Open Access Journals (Sweden)

    Ollie J. Rose

    1980-01-01

    Full Text Available The perturbed Schrödinger eigenvalue problem for bound states is cast into integral form using Green's Functions. A systematic algorithm is developed and applied to the resulting equation giving rise to approximate solutions expressed as functions of the given perturbation parameter. As a by-product, convergence radii for the traditional Rayleigh-Schrödinger and Brillouin-Wigner perturbation theories emerge in a natural way.

  5. Chiral Dynamics of Baryons from String Theory

    CERN Document Server

    Hong, D K; Yee, H U; Yi, P; Hong, Deog Ki; Rho, Mannque; Yee, Ho-Ung; Yi, Piljin

    2007-01-01

    We study baryons in an AdS/CFT model of QCD by Sakai and Sugimoto, realized as small instantons with fundamental string hairs. We introduce an effective field theory of the baryons in the five-dimensional setting, and show that the instanton interpretation implies a particular magnetic coupling. Dimensional reduction to four dimensions reproduces the usual chiral effective action, and in particular we estimate the axial coupling $g_A$ between baryons and pions and the magnetic dipole moments, both of which are proportional to $N_c$. We extrapolate to finite $N_c$ and discuss subleading corrections.

  6. The recursion relation in Lagrangian perturbation theory

    International Nuclear Information System (INIS)

    We derive a recursion relation in the framework of Lagrangian perturbation theory, appropriate for studying the inhomogeneities of the large scale structure of the universe. We use the fact that the perturbative expansion of the matter density contrast is in one-to-one correspondence with standard perturbation theory (SPT) at any order. This correspondence has been recently shown to be valid up to fourth order for a non-relativistic, irrotational and dust-like component. Assuming it to be valid at arbitrary (higher) order, we express the Lagrangian displacement field in terms of the perturbative kernels of SPT, which are itself given by their own and well-known recursion relation. We argue that the Lagrangian solution always contains more non-linear information in comparison with the SPT solution, (mainly) if the non-perturbative density contrast is restored after the displacement field is obtained

  7. On Yang--Mills Theories with Chiral Matter at Strong Coupling

    Energy Technology Data Exchange (ETDEWEB)

    Shifman, M.; /Minnesota U., Theor. Phys. Inst. /Saclay, SPhT; Unsal, Mithat; /SLAC /Stanford U., Phys. Dept.

    2008-08-20

    Strong coupling dynamics of Yang-Mills theories with chiral fermion content remained largely elusive despite much effort over the years. In this work, we propose a dynamical framework in which we can address non-perturbative properties of chiral, non-supersymmetric gauge theories, in particular, chiral quiver theories on S{sub 1} x R{sub 3}. Double-trace deformations are used to stabilize the center-symmetric vacuum. This allows one to smoothly connect smaller(S{sub 1}) to larger(S{sub 1}) physics (R{sub 4} is the limiting case) where the double-trace deformations are switched off. In particular, occurrence of the mass gap in the gauge sector and linear confinement due to bions are analytically demonstrated. We find the pattern of the chiral symmetry realization which depends on the structure of the ring operators, a novel class of topological excitations. The deformed chiral theory, unlike the undeformed one, satisfies volume independence down to arbitrarily small volumes (a working Eguchi-Kawai reduction) in the large N limit. This equivalence, may open new perspectives on strong coupling chiral gauge theories on R{sub 4}.

  8. Dirac brackets for the chiral Schwinger model with chiral constraint

    International Nuclear Information System (INIS)

    Dirac brackets for the chiral Schwinger model with chiral constraint are derived perturbatively from the correlation function by the BJL limit method. The results show that the Poissons brackets are not consistent in this theory. (author)

  9. Covariant Perturbation Theory of Non-Abelian Kinetic Theory

    Institute of Scientific and Technical Information of China (English)

    郑小平; 李家荣

    2002-01-01

    A "double perturbation" theory is presented in the framework of the kinetic theory of quark-gluon plasma. A solvable set of equations from the double perturbation are derived and proven to be gauge invariant. The Landau damping rate for the plasmon at zero momentum is shown to be a convergent series in correlators.

  10. Cohomology Methods in Causal Perturbation Theory

    International Nuclear Information System (INIS)

    Various problems in perturbation theory of (quantum) gauge models can be rephrased in the language of cohomology theory. This was already noticed in the functional formulation of perturbative gauge theories. Causal perturbation theory is a fully quantum approach: is works only with the chronological products which are defined as operator-valued distributions in the Fock space of the model. The use of causal perturbation theory leads to similar cohomology problems; the main difference with respect to the functional methods comes from the fact that the gauge transformation of the causal approach is, essentially, the linear part of the non-linear BRST transformation.Using these methods it is possible to give a nice determination of the interaction Lagrangians for gauge models (Yang-Mills and gravitation in the linear approximation); one obtains with this method the unicity of the interaction Lagrangian up to trivial terms. The case of quantum gravity is highly non-trivial and can be generalized with this method to the massive graviton case. Going to higher orders of perturbation theory one finds quantum anomalies. Again the cohomological methods can be used to determine the generic form of these anomalies. Finally, one can investigate the arbitrariness of the chronological products in higher orders and reduce this problem to cohomology methods also.

  11. Homological Perturbation Theory and Mirror Symmetry

    Institute of Scientific and Technical Information of China (English)

    Jian ZHOU

    2003-01-01

    We explain how deformation theories of geometric objects such as complex structures,Poisson structures and holomorphic bundle structures lead to differential Gerstenhaber or Poisson al-gebras. We use homological perturbation theory to construct A∞ algebra structures on the cohomology,and their canonically defined deformations. Such constructions are used to formulate a version of A∞algebraic mirror symmetry.

  12. Algebraic perturbation theory for singular potentials

    International Nuclear Information System (INIS)

    A purely algebraic theory based on dynamical groups is developed. It allows one to determine the energy shifts without taking any matrix elements. In particular potentials of the form 1/rN and rN are treated explicitly, some examples which cannot be calculated by the usual perturbation theory are discussed. ((orig.))

  13. Chiral rings and anomalies in supersymmetric gauge theory

    International Nuclear Information System (INIS)

    Motivated by recent work of Dijkgraaf and Vafa, we study anomalies and the chiral ring structure in a supersymmetric U(N) gauge theory with an adjoint chiral superfield and an arbitrary superpotential. A certain generalization of the Konishi anomaly leads to an equation which is identical to the loop equation of a bosonic matrix model. This allows us to solve for the expectation values of the chiral operators as functions of a finite number of 'integration constants'. From this, we can derive the Dijkgraaf-Vafa relation of the effective superpotential to a matrix model. Some of our results are applicable to more general theories. For example, we determine the classical relations and quantum deformations of the chiral ring of N=1 super Yang-Mills theory with SU(N) gauge group, showing, as one consequence, that all supersymmetric vacua of this theory have a nonzero chiral condensate. (author)

  14. Operator Decomposition Framework for Perturbation Theory

    International Nuclear Information System (INIS)

    This summary describes a new framework for perturbation theory intended to improve its performance, in terms of the associated computational cost and the complexity of implementation, for routine reactor calculations in support of design, analysis, and regulation. Since its first introduction in reactor analysis by Winger, perturbation theory has assumed an aura of sophistication with regard to its implementation and its capabilities. Only few reactor physicists, typically mathematically proficient, have contributed to its development, with the general body of the nuclear engineering community remaining unaware of its current status, capabilities, and challenges. Given its perceived sophistication and the small body of community users, the application of perturbation theory has been limited to investigatory analyses only. It is safe to say that the nuclear community is split into two groups, a small one which understands the theory and, and a much bigger group with the perceived notion that perturbation theory is nothing but a fancy mathematical approach that has very little use in practice. Over the past three years, research has demonstrated two goals. First, reduce the computational cost of perturbation theory in order to enable its use for routine reactor calculations. Second, expose some of the myth about perturbation theory and present it in a form that is simple and relatable in order to stimulate the interest of nuclear practitioners, especially those who are currently working on the development of next generation reactor design and analysis tools. The operator decomposition approach has its roots in linear algebra and can be easily understood by code developers, especially those involved in the design of iterative numerical solution strategies

  15. Relativistic Chiral Theory of Nuclear Matter and QCD Constraints

    OpenAIRE

    Chanfray, G.; Ericson, M.

    2009-01-01

    Talk given by G. Chanfray at PANIC 08, Eilat (Israel), november 10-14, 2008 We present a relativistic chiral theory of nuclear matter which includes the effect of confinement. Nuclear binding is obtained with a chiral invariant scalar background field associated with the radial fluctuations of the chiral condensate Nuclear matter stability is ensured once the scalar response of the nucleon depending on the quark confinement mechanism is properly incorporated. All the parameters are fixed o...

  16. Six-dimensional regularization of chiral gauge theories

    CERN Document Server

    Fukaya, Hidenori; Yamamoto, Shota; Yamamura, Ryo

    2016-01-01

    We propose a non-perturbative regularization of four dimensional chiral gauge theories. In our formulation, we consider a Dirac fermion in six dimensions with two different mass terms having domain-wall profiles in the fifth and the sixth directions, respectively. A Weyl fermion appears as a localized mode at the junction of two different domain-walls. One domain-wall naturally exhibits the Stora-Zumino chain of the anomaly descent equations, starting from the axial U(1) anomaly in six-dimensions to the gauge anomaly in four-dimensions. Another domain-wall mediates a similar inflow of the global anomalies. The anomaly free condition is equivalent to requiring that the axial U(1) anomaly and the parity anomaly are canceled among the six-dimensional Dirac fermions. Since our formulation is a massive vector-like theory, a non-perturbative regularization is possible on a lattice. Putting the gauge field at the four-dimensional junction and extending it to the bulk using the Yang-Mills gradient flow, as recently p...

  17. Resummation Approach in QCD Analytic Perturbation Theory

    OpenAIRE

    Bakulev, Alexander P.; Potapova, Irina V.

    2011-01-01

    We discuss the resummation approach in QCD Analytic Perturbation Theory (APT). We start with a simple example of asymptotic power series for a zero-dimensional analog of the scalar $g\\,\\phi^4$ model. Then we give a short historic preamble of APT and show that renormgroup improvement of the QCD perturbation theory dictates to use the Fractional APT (FAPT). After that we discuss the (F)APT resummation of nonpower series and provide the one-, two-, and three-loop resummation recipes. We show the...

  18. Introduction to chiral symmetry

    International Nuclear Information System (INIS)

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented

  19. Fermion-boson metamorphosis in a chiral invariant theory

    International Nuclear Information System (INIS)

    A chiral invariant theory in two dimensions with massless fermions is examined in its Bose form. Dynamical generation of mass occurs via boson transmutation, which preserves the chiral symmetry of the massless theory and is independent of the number of fermions. Several new features of the fermion theory, such as hidden symmetry, duality and triality symmetries are discovered. Some interesting connections with other two-dimensional models are also presented. (orig.)

  20. Vanishing chiral couplings in the large-Nc resonance theory

    OpenAIRE

    Portolés, Jorge; Rosell, Ignasi; Ruiz Femenía, Pedro

    2007-01-01

    The construction of a resonance theory involving hadrons requires implementing the information from higher scales into the couplings of the effective Lagrangian. We consider the large-Nc chiral resonance theory incorporating scalars and pseudoscalars, and we find that, by imposing LO short-distance constraints on form factors of QCD currents constructed within this theory, the chiral low-energy constants satisfy resonance saturation at NLO in the 1/Nc expansion.

  1. The non chiral fusion rules in rational conformal field theories

    CERN Document Server

    Rida, A

    1999-01-01

    We introduce a general method to construct the non chiral fusion rules in rational conformal field theories. We are particularly interested by the models of the complementary series or like-D series which are solutions of modular invariant partition function. The form proposed of the non chiral fusion rules has a structure of Zn grading.

  2. Chiral Boson Theory on the Light-Front

    CERN Document Server

    Srivastava, P P

    1999-01-01

    The {\\it front form} framework for describing the quantized theory of chiral boson is discussed. It avoids the conflict with the requirement of the principle of microcausality as is found in the conventional equal- time treatment. The discussion of the Floreanini-Jackiw model and its modified version for describing the chiral boson becomes very transparent on the light-front.

  3. On the overlap formulation of chiral gauge theory

    International Nuclear Information System (INIS)

    The overlap formula proposed by Narayanan and Neuberger in chiral gauge theories is examined. The free chiral and Dirac Green's functions are constructed in this formalism. Four dimensional anomalies are calculated and the usual anomaly cancellation for one standard family of quarks and leptons is verified. (author). 4 refs

  4. Chiral effective theory with a light scalar and lattice QCD

    CERN Document Server

    Soto, J; Tarrús, J

    2011-01-01

    We extend the usual chiral perturbation theory framework ($\\chi$PT) to allow the inclusion of a light dynamical isosinglet scalar. Using lattice QCD results, and a few phenomenological inputs, we explore the parameter space of the effective theory. The extended theory collects already at LO the ball park contribution to the pion mass and decay constant, thus achieving an accuracy that is comparable to the one of the standard $\\chi$PT at NLO results. We check explicitly that radiative corrections do not spoil this behavior and keep the theory stable under mild variations of the parameters. The parameter sets that are compatible with the current mass and width of the sigma resonance turn out to reproduce the experimental values of the S-wave pion-pion scattering lengths very accurately. We also extract the average value of the two light quark--masses and evaluate the impact of the dynamical singlet field in the low--energy constants $\\bar{l}_3$ and $\\bar{l}_4$ of $\\chi$PT. We emphasize that more accurate lattic...

  5. Perturbative Non-Equilibrium Thermal Field Theory

    CERN Document Server

    Millington, Peter

    2013-01-01

    We present a new perturbative formulation of non-equilibrium thermal field theory, based upon non-homogeneous free propagators and time-dependent vertices. Our approach to non-equilibrium dynamics yields time-dependent diagrammatic perturbation series that are free of pinch singularities, without the need to resort to quasi-particle approximation or effective resummations of finite widths. In our formalism, the avoidance of pinch singularities is a consequence of the consistent inclusion of finite-time effects and the proper consideration of the time of observation. After introducing a physically meaningful definition of particle number densities, we derive master time evolution equations for statistical distribution functions, which are valid to all orders in perturbation theory. The resulting equations do not rely upon a gradient expansion of Wigner transforms or involve any separation of time scales. To illustrate the key features of our formalism, we study out-of-equilibrium decay dynamics of unstable par...

  6. Numerical Stochastic Perturbation Theory for full QCD

    OpenAIRE

    F. Di Renzo; Scorzato, L.

    2004-01-01

    We give a full account of the Numerical Stochastic Perturbation Theory method for Lattice Gauge Theories. Particular relevance is given to the inclusion of dynamical fermions, which turns out to be surprisingly cheap in this context. We analyse the underlying stochastic process and discuss the convergence properties. We perform some benchmark calculations and - as a byproduct - we present original results for Wilson loops and the 3-loop critical mass for Wilson fermions.

  7. Aharonov-Bohm Effect in Perturbation Theory.

    Science.gov (United States)

    Purcell, Kay M.; Henneberger, Walter C.

    1978-01-01

    The Aharonov-Bohn effect is obtained in first-order perturbation theory. It is shown that the effect occurs only when the initial state is a superposition of eigenstates of Lz corresponding to eigenvalues having opposite sign. (Author/GA)

  8. Analytic Perturbation Theory and Inclusive Tau Decay

    OpenAIRE

    Milton, K A; Solovtsov, I. L.; Solovtsova, O. P.

    1997-01-01

    We apply analytic perturbation theory to the inclusive decay of a $\\tau$ lepton into hadrons. It is shown that the resulting analyticity of the coupling constant strongly influences the value of the QCD $\\Lambda$-parameter extracted from the experimental data on $\\tau$ decay.

  9. Chiral symmetry and lattice fermions

    CERN Document Server

    Creutz, Michael

    2013-01-01

    Lattice gauge theory and chiral perturbation theory are among the primary tools for understanding non-perturbative aspects of QCD. I review several subtle and sometimes controversial issues that arise when combining these techniques. Among these are one failure of partially quenched chiral perturbation theory when the valence quarks become lighter than the average sea quark mass and a potential ambiguity in comparisons of perturbative and lattice properties of non-degenerate quarks.

  10. Perturbative Double Field Theory on General Backgrounds

    CERN Document Server

    Hohm, Olaf

    2015-01-01

    We develop the perturbation theory of double field theory around arbitrary solutions of its field equations. The exact gauge transformations are written in a manifestly background covariant way and contain at most quadratic terms in the field fluctuations. We expand the generalized curvature scalar to cubic order in fluctuations and thereby determine the cubic action in a manifestly background covariant form. As a first application we specialize this theory to group manifold backgrounds, such as $SU(2) \\simeq S^3$ with $H$-flux. In the full string theory this corresponds to a WZW background CFT. Starting from closed string field theory, the cubic action around such backgrounds has been computed before by Blumenhagen, Hassler and L\\"ust. We establish precise agreement with the cubic action derived from double field theory. This result confirms that double field theory is applicable to arbitrary curved background solutions, disproving assertions in the literature to the contrary.

  11. Geometric perturbation theory and plasma physics

    International Nuclear Information System (INIS)

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism

  12. Geometric perturbation theory and plasma physics

    Energy Technology Data Exchange (ETDEWEB)

    Omohundro, S.M.

    1985-04-04

    Modern differential geometric techniques are used to unify the physical asymptotics underlying mechanics, wave theory and statistical mechanics. The approach gives new insights into the structure of physical theories and is suited to the needs of modern large-scale computer simulation and symbol manipulation systems. A coordinate-free formulation of non-singular perturbation theory is given, from which a new Hamiltonian perturbation structure is derived and related to the unperturbed structure. The theory of perturbations in the presence of symmetry is developed, and the method of averaging is related to reduction by a circle group action. The pseudo-forces and magnetic Poisson bracket terms due to reduction are given a natural asymptotic interpretation. Similar terms due to changing reference frames are related to the method of variation of parameters, which is also given a Hamiltonian formulation. These methods are used to answer a question about nearly periodic systems. The answer leads to a new secular perturbation theory that contains no ad hoc elements. Eikonal wave theory is given a Hamiltonian formulation that generalizes Whitham's Lagrangian approach. The evolution of wave action density on ray phase space is given a Hamiltonian structure using a Lie-Poisson bracket. The relationship between dissipative and Hamiltonian systems is discussed. A new type of attractor is defined which attracts both forward and backward in time and is shown to occur in infinite-dimensional Hamiltonian systems with dissipative behavior. The theory of Smale horseshoes is applied to gyromotion in the neighborhood of a magnetic field reversal and the phenomenon of reinsertion in area-preserving horseshoes is introduced. The central limit theorem is proved by renormalization group techniques. A natural symplectic structure for thermodynamics is shown to arise asymptotically from the maximum entropy formalism.

  13. Chiral Perturbation in the Hidden Local Symmetry and Vector Manifestation of Chiral Symmetry

    OpenAIRE

    Harada, Masayasu

    2001-01-01

    In this talk I summarize our recent works on the chiral phase transition in the large flavor QCD studied by the hidden local symmetry (HLS). Bare parameters in the HLS are determined by matching the HLS with the underlying QCD at the matching scale through the Wilsonian matching. This leads to the vector manifestation of the Wigner realization of the chiral symmetry in which the symmetry is restored by the massless degenerate pion (and its flavor partners) and rho meson (and its flavor partne...

  14. pi K scattering in effective chiral theory of mesons

    OpenAIRE

    Li, Bing An; Gao, Dao-Neng; Yan, Mu-Lin

    1998-01-01

    In the framework of an effective chiral theory of mesons, pi K scattering is stydied. The scattering lengths, phase shifts, and cross sections are calculated. Theoretical results agree well with data. There is no new parameter in this study.

  15. Nuclear forces from chiral effective field theory: a primer

    OpenAIRE

    Epelbaum, Evgeny

    2010-01-01

    This paper is a write-up of introductory lectures on the modern approach to the nuclear force problem based on chiral effective field theory given at the 2009 Joliot-Curie School, Lacanau, France, 27 September - 3 October 2009.

  16. Multiloop Calculations In Perturbative Quantum Field Theory

    CERN Document Server

    Blokland, I R

    2004-01-01

    This thesis deals with high-precision calculations in perturbative quantum field theory. In conjunction with detailed experimental measurements, perturbative quantum field theory provides the quantitative framework with which much of modern particle physics is understood. The results of three new theoretical calculations are presented. The first is a definitive resolution of a recent controversy involving the interaction of a muon with a magnetic field. Specifically, the light-by-light scattering contribution to the anomalous magnetic moment of the muon is shown to be of positive sign, thereby decreasing the discrepancy between theory and experiment. Despite this adjustment to the theoretical prediction, the remaining discrepancy might be a subtle signature of new kinds of particles. The second calculation involves the energy levels of a bound state formed from two charged particles of arbitrary masses. By employing recently developed mass expansion techniques, new classes of solutions are obtained for proble...

  17. Perturbative Chern-Simons theory revisited

    DEFF Research Database (Denmark)

    McLellan, Brendan Donald Kenneth

    2013-01-01

    We reconsider perturbative Chern-Simons theory on a closed and oriented three-manifold with a choice of contact structure following C. Beasley and E. Witten. Closed three manifolds that admit a Sasakian structure are explicitly computed to first order in perturbation in terms of their Seifert data....... The general problem of extending this work to arbitrary three-manifolds is presented and some initial observations are made. Mathematically, this article is closely related to the work of Rumin and Seshadri and an index type theorem in the contact geometric setting....

  18. Braneworld Cosmological Perturbation Theory at Low Energy

    CERN Document Server

    Soda, J; Soda, Jiro; Kanno, Sugumi

    2005-01-01

    Homogeneous cosmology in the braneworld can be studied without solving bulk equations of motion explicitly. The reason is simply because the symmetry of the spacetime restricts possible corrections in the 4-dimensional effective equations of motion. It would be great if we could analyze cosmological perturbations without solving the bulk. For this purpose, we combine the geometrical approach and the low energy gradient expansion method to derive the 4-dimensional effective action. Given our effective action, the standard procedure to obtain the cosmological perturbation theory can be utilized and the temperature anisotropy of the cosmic background radiation can be computed without solving the bulk equations of motion explicitly.

  19. Continuum methods in lattice perturbation theory

    International Nuclear Information System (INIS)

    We show how methods of continuum perturbation theory can be used to simplify perturbative lattice calculations. We use the technique of asymptotic expansions to expand lattice loop integrals around the continuum limit. After the expansion, all nontrivial dependence on momenta and masses is encoded in continuum loop integrals and the only genuine lattice integrals left are tadpole integrals. Using integration-by-parts relations all of these can be expressed in terms of a small number of master integrals. Four master integrals are needed for bosonic one loop integrals, sixteen in QCD with Wilson or staggered fermions

  20. Chiral Bosons as solutions of the BV master equation 2D chiral gauge theories

    OpenAIRE

    Braga, N. R. F.; Montani, H.

    1994-01-01

    We construct the chiral Wess-Zumino term as a solution for the Batalin-Vilkovisky master equation for anomalous two-dimensional gauge theories, working in an extended field-antifield space, where the gauge group elements are introduced as additional degrees of freedom. We analyze the Abelian and the non-Abelian cases, calculating in both cases the BRST generator in order to show the physical equivalence between this chiral solution for the master equation and the usual (non-chiral) one.

  1. Using Lagrangian perturbation theory for precision cosmology

    International Nuclear Information System (INIS)

    We explore the Lagrangian perturbation theory (LPT) at one-loop order with Gaussian initial conditions. We present an expansion method to approximately compute the power spectrum LPT. Our approximate solution has good convergence in the series expansion and enables us to compute the power spectrum in LPT accurately and quickly. Non-linear corrections in this theory naturally satisfy the law of conservation of mass because the relation between matter density and the displacement vector of dark matter corresponds to the conservation of mass. By matching the one-loop solution in LPT to the two-loop solution in standard perturbation theory, we present an approximate solution of the power spectrum which has higher order corrections than the two-loop order in standard perturbation theory with the conservation of mass satisfied. With this approximation, we can use LPT to compute a non-linear power spectrum without any free parameters, and this solution agrees with numerical simulations at k = 0.2 h Mpc–1 and z = 0.35 to better than 2%.

  2. Critical look at cosmological perturbation theory techniques

    Science.gov (United States)

    Carlson, Jordan; White, Martin; Padmanabhan, Nikhil

    2009-08-01

    Recently, a number of analytic prescriptions for computing the nonlinear matter power spectrum have appeared in the literature. These typically involve resummation or closure prescriptions which do not have a rigorous error control, thus they must be compared with numerical simulations to assess their range of validity. We present a direct side-by-side comparison of several of these analytic approaches, using a suite of high-resolution N-body simulations as a reference, and discuss some general trends. All of the analytic results correctly predict the behavior of the power spectrum at the onset of nonlinearity, and improve upon a pure linear theory description at very large scales. All of these theories fail at sufficiently small scales. At low redshift the dynamic range in scale where perturbation theory is both relevant and reliable can be quite small. We also compute for the first time the two-loop contribution to standard perturbation theory for cold dark matter models, finding improved agreement with simulations at large redshift. At low redshifts however the two-loop term is larger than the one-loop term on quasilinear scales, indicating a breakdown of the perturbation expansion. Finally, we comment on possible implications of our results for future studies. A software package implementing the methods presented here is available at http://mwhite.berkeley.edu/Copter.

  3. Critical look at cosmological perturbation theory techniques

    International Nuclear Information System (INIS)

    Recently, a number of analytic prescriptions for computing the nonlinear matter power spectrum have appeared in the literature. These typically involve resummation or closure prescriptions which do not have a rigorous error control, thus they must be compared with numerical simulations to assess their range of validity. We present a direct side-by-side comparison of several of these analytic approaches, using a suite of high-resolution N-body simulations as a reference, and discuss some general trends. All of the analytic results correctly predict the behavior of the power spectrum at the onset of nonlinearity, and improve upon a pure linear theory description at very large scales. All of these theories fail at sufficiently small scales. At low redshift the dynamic range in scale where perturbation theory is both relevant and reliable can be quite small. We also compute for the first time the two-loop contribution to standard perturbation theory for cold dark matter models, finding improved agreement with simulations at large redshift. At low redshifts however the two-loop term is larger than the one-loop term on quasilinear scales, indicating a breakdown of the perturbation expansion. Finally, we comment on possible implications of our results for future studies. A software package implementing the methods presented here is available at http://mwhite.berkeley.edu/Copter.

  4. Strangeness $S=-1$ hyperon-nucleon scattering in covariant chiral effective field theory

    OpenAIRE

    Li, Kai-Wen; Ren, Xiu-Lei; Geng, Li-Sheng; Long, Bing-Wei

    2016-01-01

    Motivated by the successes of covariant baryon chiral perturbation theory in one-baryon systems and in heavy-light systems, we study relevance of relativistic effects in hyperon-nucleon interactions with strangeness $S=-1$. In this exploratory work, we follow the covariant framework developed by Epelbaum and Gegelia to calculate the $YN$ scattering amplitude at leading order. By fitting the five low-energy constants to the experimental data, we find that the cutoff dependence is mitigated, co...

  5. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  6. Resummation Approach in QCD Analytic Perturbation Theory

    International Nuclear Information System (INIS)

    We discuss the resummation approach in QCD Analytic Perturbation Theory (APT). We start we a simple example of asymptotic ower series for a zero-dimensional analog of the scalar gφ4 model. Then we give a short historic preamble of APT and show that renormgroup improvement of the QCD perturbation theory dictates to use the Fractional APT (FAPT). After that we discuss the (F)PT resummation of nonpower series and provide the one-, two-, and three-loop resummation recipes. We show the results of applications of these recipes to the estimation of the Adler function D(Q2) in the Nf=4 region of Q2 and of the Higgs-boson-decay width ΓH→bb¯(mH2) for MH=100-180GeV2.

  7. Molecular Cluster Perturbation Theory. I. Formalism

    CERN Document Server

    Byrd, Jason N; Molt,, Robert W; Bartlett, Rodney J; Sanders, Beverly A; Lotrich, Victor F

    2014-01-01

    We present second-order molecular cluster perturbation theory (MCPT(2)), a methodology to calculate arbitrarily large systems with explicit calculation of individual wavefunctions in a coupled cluster framework. This new MCPT(2) framework uses coupled cluster perturbation theory and an expansion in terms of molecular dimer interactions to obtain molecular wavefunctions that are infinite order in both the electronic fluctuation operator and all possible dimer (and products of dimers) interactions. The MCPT(2) framework has been implemented in the new SIA/ACES parallel architecture, making use of the advanced dynamic memory control and fine grained parallelism to perform very large explicit molecular cluster calculations. To illustrate the power of this method, we have computed energy shifts and lattice site dipole moments for the polar and non-polar configurations of solid hydrogen fluoride by scaling an explicit lattice to the bulk limit. The explicit lattice size without periodic boundary conditions was scal...

  8. Improving perturbation theory with cactus diagrams

    CERN Document Server

    Constantinou, M; Skouroupathis, A; Constantinou, Martha; Panagopoulos, Haralambos; Skouroupathis, Apostolos

    2006-01-01

    We study a systematic improvement of perturbation theory for gauge fields on the lattice [hep-lat/0606001]; the improvement entails resumming, to all orders in the coupling constant, a dominant subclass of tadpole diagrams. This method, originally proposed for the Wilson gluon action, is extended here to encompass all possible gluon actions made of closed Wilson loops; any fermion action can be employed as well. The effect of resummation is to replace various parameters in the action (coupling constant, Symanzik and clover coefficient) by ``dressed'' values; the latter are solutions to certain coupled integral equations, which are easy to solve numerically. Some positive features of this method are: a) It is gauge invariant, b) it can be systematically applied to improve (to all orders) results obtained at any given order in perturbation theory, c) it does indeed absorb in the dressed parameters the bulk of tadpole contributions. Two different applications are presented: The additive renormalization of fermio...

  9. Resummation Approach in QCD Analytic Perturbation Theory

    Science.gov (United States)

    Bakulev, Alexander P.; Potapova, Irina V.

    2011-10-01

    We discuss the resummation approach in QCD Analytic Perturbation Theory (APT). We start we a simple example of asymptotic ower series for a zero-dimensional analog of the scalar g φ model. Then we give a short historic preamble of APT and show that renormgroup improvement of the QCD perturbation theory dictates to use the Fractional APT (FAPT). After that we discuss the (F)PT resummation of nonpower series and provide the one-, two-, and three-loop resummation recipes. We show the results of applications of these recipes to the estimation of the Adler function D(Q) in the N=4 region of Q and of the Higgs-boson-decay width Γ(mH2) for M=100-180 GeV.

  10. Resummation Approach in QCD Analytic Perturbation Theory

    CERN Document Server

    Bakulev, Alexander P

    2011-01-01

    We discuss the resummation approach in QCD Analytic Perturbation Theory (APT). We start with a simple example of asymptotic power series for a zero-dimensional analog of the scalar $g\\,\\phi^4$ model. Then we give a short historic preamble of APT and show that renormgroup improvement of the QCD perturbation theory dictates to use the Fractional APT (FAPT). After that we discuss the (F)APT resummation of nonpower series and provide the one-, two-, and three-loop resummation recipes. We show the results of applications of these recipes to the estimation of the Adler function $D(Q^2)$ in the $N_f=4$ region of $Q^2$ and of the Higgs-boson-decay width $\\Gamma_{H\\to b\\bar{b}}(m_H^2)$ for $M_H=100-180$ GeV$^2$.

  11. Design optimization using depletion perturbation theory

    International Nuclear Information System (INIS)

    Analysis of the fuel cycle performance of a reactor requires knowledge of the entire fuel burnup history. The optimal design depends upon the desired performance parameter or combination of parameters to be minimized (or maximized). The emphasis to date has been to use some combination of iterations involving a number of direct calculations, static perturbation theory, binary exchange methods, and empirical relationships. The object of this study is to demonstrate an approach to optimization based upon Depletion Perturbation Theory (DPT). The DPT equations directly couple the nuclide burnup equations and the neutron balance equations. The equations require the calculation of forward and adjoint solutions for the neutron flux and nuclide transmutations. The application is for analysis of a modular HTGR. The reactor has axially dependent fuel loadings in order to achieve an axial power shape that keeps fuel temperatures below a specified maximum

  12. Dark matter dispersion tensor in perturbation theory

    Science.gov (United States)

    Aviles, Alejandro

    2016-03-01

    We compute the dark matter velocity dispersion tensor up to third order in perturbation theory using the Lagrangian formalism, revealing growing solutions at the third and higher orders. Our results are general and can be used for any other perturbative formalism. As an application, corrections to the matter power spectrum are calculated, and we find that some of them have the same structure as those in the effective field theory of large-scale structure, with "EFT-like" coefficients that grow quadratically with the linear growth function and are further suppressed by powers of the logarithmic linear growth factor f ; other corrections present additional k dependence. Due to the velocity dispersions, there exists a free-streaming scale that suppresses the whole 1-loop power spectrum. Furthermore, we find that as a consequence of the nonlinear evolution, the free-streaming length is shifted towards larger scales, wiping out more structure than that expected in linear theory. Therefore, we argue that the formalism developed here is better suited for a perturbation treatment of warm dark matter or neutrino clustering, where the velocity dispersion effects are well known to be important. We discuss implications related to the nature of dark matter.

  13. Lie transform perturbation theory based on Lagrangian one-form

    CERN Document Server

    Zhang, S X

    2016-01-01

    As a method different from canonical perturbation transform based on Hamilton-Jacob equation and Lie perturbation transform based on motion equation given by Deprit, Lie transform perturbation theory based on Lagrangian 1-form is explored for its wide application in canonical and noncanonical perturbed systems, specific examples of which include Kruskal's perturbed model, canonicalizing guiding center and deriving guiding center kinetics.

  14. Quasilocal quark models as effective theory of non-perturbative QCD

    International Nuclear Information System (INIS)

    We consider the Quasilocal Quark Model of NJL type (QNJLM) as effective theory of non-perturbative QCD including scalar (S), pseudo-scalar (P), vector (V) and axial-vector (A) four-fermion interaction with derivatives. In the presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence the composite meson states are generated in all channels. With the help of Operator Product Expansion the appropriate set of Chiral Symmetry Restoration (CSR) Sum Rules in these channels are imposed as matching rules to QCD at intermediate energies. The mass spectrum and some decay constants for ground and excited meson states are calculated

  15. Quasilocal Quark Models as Effective Theory of Non-perturbative QCD

    CERN Document Server

    Andrianov, A A

    2005-01-01

    We consider the Quasilocal Quark Model of NJL type (QNJLM) as an effective theory of non-perturbative QCD including scalar (S), pseudoscalar (P), vector (V) and axial-vector (A) four-fermion interaction with derivatives. In the presence of a strong attraction in the scalar channel the chiral symmetry is spontaneously broken and as a consequence the composite meson states are generated in all channels. With the help of Operator Product Expansion the appropriate set of Chiral Symmetry Restoration (CSR) Sum Rules in these channels are imposed as matching conditions to QCD at intermediate energies. The mass spectrum and some decay constants for ground and excited meson states are calculated.

  16. Chirally rotated Schroedinger functional. Non-perturbative tuning in the quenched approximation

    International Nuclear Information System (INIS)

    The use of chirally rotated boundary conditions provides a formulation of the Schroedinger functional that is compatible with automatic O(a) improvement of Wilson fermions in the bulk. The elimination of bulk O(a) terms requires the non-perturbative tuning of the critical mass and one additional boundary counterterm. We present the results of such a tuning in the quenched approximation at three values of the renormalised gauge coupling and for a range of lattice spacings. (orig.)

  17. Perturbative quantum gravity in double field theory

    Science.gov (United States)

    Boels, Rutger H.; Horst, Christoph

    2016-04-01

    We study perturbative general relativity with a two-form and a dilaton using the double field theory formulation which features explicit index factorisation at the Lagrangian level. Explicit checks to known tree level results are performed. In a natural covariant gauge a ghost-like scalar which contributes even at tree level is shown to decouple consistently as required by perturbative unitarity. In addition, a lightcone gauge is explored which bypasses the problem altogether. Using this gauge to study BCFW on-shell recursion, we can show that most of the D-dimensional tree level S-matrix of the theory, including all pure graviton scattering amplitudes, is reproduced by the double field theory. More generally, we argue that the integrand may be reconstructed from its single cuts and provide limited evidence for off-shell cancellations in the Feynman graphs. As a straightforward application of the developed technology double field theory-like expressions for four field string corrections are derived.

  18. Perturbation theory for plasmonic modulation and sensing

    KAUST Repository

    Raman, Aaswath

    2011-05-25

    We develop a general perturbation theory to treat small parameter changes in dispersive plasmonic nanostructures and metamaterials. We specifically apply it to dielectric refractive index and metallic plasma frequency modulation in metal-dielectric nanostructures. As a numerical demonstration, we verify the theory\\'s accuracy against direct calculations for a system of plasmonic rods in air where the metal is defined by a three-pole fit of silver\\'s dielectric function. We also discuss new optical behavior related to plasma frequency modulation in such systems. Our approach provides new physical insight for the design of plasmonic devices for biochemical sensing and optical modulation and future active metamaterial applications. © 2011 American Physical Society.

  19. Regularized path integrals and anomalies -- U(1) chiral gauge theory

    OpenAIRE

    Kopper, Christoph; Lévêque, Benjamin

    2011-01-01

    We analyse the origin of the Adler anomaly of chiral U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [1]. Here we analyse U(1) chiral gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-p...

  20. Perturbation Theory for Open Two-Level Nonlinear Quantum Systems

    International Nuclear Information System (INIS)

    Perturbation theory is an important tool in quantum mechanics. In this paper, we extend the traditional perturbation theory to open nonlinear two-level systems, treating decoherence parameter γ as a perturbation. By this virtue, we give a perturbative solution to the master equation, which describes a nonlinear open quantum system. The results show that for small decoherence rate γ, the ratio of the nonlinear rate C to the tunneling coefficient V (i.e., r = C/V) determines the validity of the perturbation theory. For small ratio r, the perturbation theory is valid, otherwise it yields wrong results. (general)

  1. Disoriented chiral condensate: Theory and phenomenology

    International Nuclear Information System (INIS)

    These notes are an abbreviated version of lectures given at the 1997 Zakopane School. They contain two topics. The first is a description in elementary terms of the basic ideas underlying the speculative hypothesis that pieces of strong-interaction vacuum with a rotated chiral order parameter, disoriented chiral condensate or DCC, might be produced in high energy elementary particle collisions. The second topic is a discussion of the phenomenological techniques which may be applied to data in order to experimentally search for the existence of DCC

  2. Heavy-tailed chiral random matrix theory

    CERN Document Server

    Kanazawa, Takuya

    2016-01-01

    We study an unconventional chiral random matrix model with a heavy-tailed probabilistic weight. The model is shown to exhibit chiral symmetry breaking with no bilinear condensate, in analogy to the Stern phase of QCD. We solve the model analytically and obtain the microscopic spectral density and the smallest eigenvalue distribution for an arbitrary number of flavors and arbitrary quark masses. Exotic behaviors such as non-decoupling of heavy flavors and a power-law tail of the smallest eigenvalue distribution are illustrated.

  3. Stability of topological defects in chiral superconductors: London theory

    International Nuclear Information System (INIS)

    This paper examines the thermodynamic stability of chiral domain walls and vortices-topological defects which can exist in chiral superconductors. Using London theory it is demonstrated that at sufficiently small applied and chiral fields the existence of domain walls and vortices in the sample is not favored and the sample's configuration is a single domain. The particular chirality of the single-domain configuration is neither favored nor disfavored by the applied field. Increasing the field leads to an entry of a domain-wall loop or a vortex into the sample. The formation of a straight domain wall is never preferred in equilibrium. Values of the entry (critical) fields for both types of defects, as well as the equilibrium size of the domain-wall loop, are calculated. We also consider a mesoscopic chiral sample and calculate its zero-field magnetization, susceptibility, and a change in the magnetic moment due to a vortex or a domain-wall entry. We show that in the case of a soft domain wall whose energetics is dominated by the chiral current (and not by the surface tension) its behavior in mesoscopic samples is substantially different from that in the bulk case and can be used for a controllable transfer of edge excitations. The applicability of these results to Sr2RuO4 - a tentative chiral superconductor - is discussed.

  4. Tumbling and complementarity in a chiral gauge theory

    International Nuclear Information System (INIS)

    We consider in detail a chiral SU(N) gauge theory which undergoes multiple tumbling. An extension of the notion of complementarity is used which allows us to deduce the set of massless fermions, in the confining phase of the theory, which we needed for anomaly matching. The liklehood of this confining phase ever being realized in practice is discussed. (orig.)

  5. Non-renormalization theorems for non-perturbative effects in SUSY gauge theories

    International Nuclear Information System (INIS)

    Supersymmetric gauge theories with Higgs mechanism are considered. After all heavy fields are integrated out we are left with the instanton-induced effective action for light fields. It is demonstrated that the one-loop instanton result is not modified by higher order perturbative corrections. The peculiarity of the case considered is that the background scalar fields do not possess definite chirality, and the bosonic and fermionic modes are not degenerate for this reason. (orig.)

  6. Perturbative gauge theory in a background

    CERN Document Server

    Dietrich, D D; Peigné, S; Dietrich, Dennis D.; Hoyer, Paul; Jarvinen, Matti; Peigne, Stephane

    2007-01-01

    Motivated by the gluon condensate in QCD we study the perturbative expansion of a gauge theory in the presence of gauge bosons of vanishing momentum, in the specific case of an abelian theory. The background is characterised by a dimensionful parameter $\\Lambda$ affecting only the on-shell prescription of the free (abelian) gluon propagator. When summed to all orders in $g\\Lambda$ the modification is equivalent to evaluating standard Green functions in a pure gauge field with an imaginary gauge parameter $\\propto \\Lambda$. We show how to calculate the corresponding dressed Green functions, which are Poincar\\'e and gauge covariant. We evaluate the expressions for the dressed quark and $q \\bar q$ propagators, imposing as boundary condition that they approach the standard perturbative form in the short-distance limit ($|p^2|\\to\\infty$). The on-shell ($p^2=m^2$) pole of the free quark propagator is removed for any $\\Lambda > 0$, and replaced by a discontinuity which vanishes exponentially with $p^2$. The dressing...

  7. Advances in heuristically based generalized perturbation theory

    International Nuclear Information System (INIS)

    A distinctive feature of heuristically based generalized perturbation theory methodology consists in the systematic use of importance conservation concepts. As well known, this use leads to fundamental reciprocity relationship. Instead, the alternative variational and differential one approaches make a consistent use of the properties and adjoint functions. The equivalence between the importance and the adjoint functions have been demonstrated in important cases. There are some instances, however, in which the commonly known operator governing the adjoint function are not adequate. In this paper ways proposed to generalize this rules, as adopted with the heuristic generalized perturbation theory methodology, are illustrated. When applied to the neutron/nuclide field characterizing the core evolution in a power reactor system, in which also an intensive control variable (ρ) is defined, these rules leas to an orthogonality relationship connected to this same control variable. A set of ρ-mode eigenfunctions may be correspondingly defined and an extended concept of reactivity (generalizing that commonly associated with the multiplication factor) proposed as more directly indicative of the controllability of a critical reactor system. (author). 25 refs

  8. Landau Theory and the Emergence of Chirality in Viral Capsids

    CERN Document Server

    Dharmavaram, Sanjay; Klug, William; Rudnick, Joseph; Bruinsma, Robijn

    2016-01-01

    We present a generalized Landau-Brazovskii theory for the solidification of chiral molecules on a spherical surface. With increasing sphere radius one encounters first intervals where robust achiral density modulations appear with icosahedral symmetry via first-order transitions. Next, one en- counters intervals where fragile but stable icosahedral structures still can be constructed but only by superposition of multiple irreducible representations. Chiral icoshedral structures appear via continuous or very weakly first-order transitions. Outside these parameter intervals, icosahedral symmetry is broken along a three-fold axis or a five-fold axis. The predictions of the theory are compared with recent numerical simulations.

  9. Baryon chiral perturbation theory with Wilson fermions up to $\\mathcal{O}(a^2)$ and discretization effects of latest $n_f=2+1$ LQCD octet baryon masses

    OpenAIRE

    Ren, Xiu-Lei; Geng, Li-Sheng; Meng, Jie

    2013-01-01

    We construct the chiral Lagrangians relevant in studies of the ground-state octet baryon masses up to O(a2) by taking into account discretization effects. We calculate the masses up to O(p4) in the extended-on-mass-shell scheme. As an application, we study the latest nf=2+1 LQCD data on the ground-state octet baryon masses from the PACS-CS, QCDSF-UKQCD, HSC, and NPLQCD Collaborations. It is shown that the discretization effects for the studied LQCD simulations are at the order of 1–2 % for la...

  10. Comparison of Some Exact and Perturbative Results for a Supersymmetric SU($N_c$) Gauge Theory

    DEFF Research Database (Denmark)

    Ryttov, Thomas; Shrock, Robert

    2012-01-01

    We consider vectorial, asymptotically free ${\\cal N}=1$ supersymmetric SU($N_c$) gauge theories with $N_f$ copies of massless chiral super fields in various representations and study how perturbative predictions for the lower boundary of the infrared conformal phase, as a function of $N_f$, compare......+\\bar S_2$, and (iv) $A_2 + \\bar A_2$, where $F$, $Adj$, $S_2$, and $A_2$ denote, respectively, the fundamental, adjoint, and symmetric and antisymmetric rank-2 tensor representations. We find that perturbative results slightly overestimate the value of $N_{f,cr}$ relative to the respective exact...... results for these representations, i.e., slightly underestimate the interval in $N_f$ for which the theory has infrared conformal behavior. Our results provide a measure of how closely perturbative calculations reproduce exact results for these theories....

  11. Multiloop calculations in perturbative quantum field theory

    Science.gov (United States)

    Blokland, Ian Richard

    This thesis deals with high-precision calculations in perturbative quantum field theory. In conjunction with detailed experimental measurements, perturbative quantum field theory provides the quantitative framework with which much of modern particle physics is understood. The results of three new theoretical calculations are presented. The first is a definitive resolution of a recent controversy involving the interaction of a muon with a magnetic field. Specifically, the light-by-light scattering contribution to the anomalous magnetic moment of the muon is shown to be of positive sign, thereby decreasing the discrepancy between theory and experiment. Despite this adjustment to the theoretical prediction, the remaining discrepancy might be a subtle signature of new kinds of particles. The second calculation involves the energy levels of a bound state formed from two charged particles of arbitrary masses. By employing recently developed mass expansion techniques, new classes of solutions are obtained for problems in a field of particle physics with a very rich history. The third calculation provides an improved prediction for the decay of a top quark. In order to obtain this result, a large class of multiloop integrals has been solved for the first time. Top quark decay is just one member of a family of interesting physical processes to which these new results apply. Since specialized calculational techniques are essential ingredients in all three calculations, they are motivated and explained carefully in this thesis. These techniques, once automated with symbolic computational software, have recently opened avenues of solution to a wide variety of important problems in particle physics.

  12. Power Counting Regime of Chiral Effective Field Theory and Beyond

    CERN Document Server

    Hall, J M M; Leinweber, D B

    2010-01-01

    Chiral effective field theory complements numerical simulations of quantum chromodynamics (QCD) on a space-time lattice. It provides a model-independent formalism for connecting lattice simulation results at finite volume and a variety of quark masses to the physical world. The asymptotic nature of the chiral expansion places the focus on the first few terms of the expansion. Thus, knowledge of the power-counting regime (PCR) of chiral effective field theory, where higher-order terms of the expansion may be regarded as negligible, is as important as knowledge of the expansion itself. Through the consideration of a variety of renormalization schemes and associated parameters, techniques to identify the PCR where results are independent of the renormalization scheme are established. The nucleon mass is considered as a benchmark for illustrating this general approach. Because the PCR is small, the numerical simulation results are also examined to search for the possible presence of an intrinsic scale which may b...

  13. Phases of N=1 Supersymmetric Chiral Gauge Theories

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Nathaniel; /Princeton, Inst. Advanced Study /Rutgers U., Piscataway; Essig, Rouven; /Princeton, Inst. Advanced Study /YITP, Stony Brook /SLAC /Stanford U., Phys. Dept.; Hook, Anson; Torroba, Gonzalo; /SLAC /Stanford U., Phys. Dept.

    2012-02-17

    We analyze the phases of supersymmetric chiral gauge theories with an antisymmetric tensor and (anti)fundamental flavors, in the presence of a classically marginal superpotential deformation. Varying the number of flavors that appear in the superpotential reveals rich infrared chiral dynamics and novel dualities. The dualities are characterized by an infinite family of magnetic duals with arbitrarily large gauge groups describing the same fixed point, correlated with arbitrarily large classical global symmetries that are truncated nonperturbatively. At the origin of moduli space, these theories exhibit a phase with confinement and chiral symmetry breaking, an interacting nonabelian Coulomb phase, and phases where an interacting sector coexists with a sector that either s-confines or is in a free magnetic phase. Properties of these intriguing 'mixed phases' are studied in detail using duality and a-maximization, and the presence of superpotential interactions provides further insights into their formation.

  14. Borel-summable perturbation series for theories with degenerate minima

    International Nuclear Information System (INIS)

    In this paper, the authors shed new light on the large-order behavior of the perturbation theory for the quantum mechanics with degenerate minima. The dominant contribution at large-order of perturbation is identified as a bounce-like solution of an effective theory in Euclidean path-integral formalism. Based on this observation, the authors define an improved perturbation theory, which utilizes the symmetry of the theory. It is shown to yield a Borel-summable series

  15. Regularized path integrals and anomalies: U(1) chiral gauge theory

    International Nuclear Information System (INIS)

    We analyze the origin of the Adler-Bell-Jackiw anomaly of chiral U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [Kopper, C. and Mueller, V. F., 'Renormalization of spontaneously broken SU(2) Yang-Mills theory with flow equations', Rev. Math. Phys. 21, 781 (2009)]. Here we analyze U(1) chiral gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-photon amplitude leads to a violation of the Slavnov-Taylor identities which cannot be restored on taking the UV limit in the renormalized theory. We point out that this fact is related to the nonanalyticity of this amplitude in the infrared region.

  16. Holography for inflation using conformal perturbation theory

    CERN Document Server

    Bzowski, Adam; Skenderis, Kostas

    2013-01-01

    We provide a precise and quantitative holographic description of a class of inflationary slow-roll models. The dual QFT is a deformation of a three-dimensional CFT by a nearly marginal operator, which, in the models we consider, generates an RG flow to a nearby IR fixed point. These models describe hilltop inflation, where the inflaton rolls from a local maximum of the potential in the infinite past (corresponding to the IR fixed point of the dual QFT) to reach a nearby local minimum in the infinite future (corresponding to the UV of the dual QFT). Through purely holographic means, we compute the spectra and bispectra of scalar and tensor cosmological perturbations. The QFT correlators to which these observables map holographically may be calculated using conformal perturbation theory, even when the dual QFT is strongly coupled. Both the spectra and the bispectra may be expressed this way in terms of CFT correlators that are fixed, up to a few constants, by conformal invariance. The form of slow-roll inflatio...

  17. Modified perturbation theory for the Yukawa model

    CERN Document Server

    Poluektov, Yu M

    2016-01-01

    A new formulation of perturbation theory for a description of the Dirac and scalar fields (the Yukawa model) is suggested. As the main approximation the self-consistent field model is chosen, which allows in a certain degree to account for the effects caused by the interaction of fields. Such choice of the main approximation leads to a normally ordered form of the interaction Hamiltonian. Generation of the fermion mass due to the interaction with exchange of the scalar boson is investigated. It is demonstrated that, for zero bare mass, the fermion can acquire mass only if the coupling constant exceeds the critical value determined by the boson mass. In this connection, the problem of the neutrino mass is discussed.

  18. Perturbative analysis in higher-spin theories

    CERN Document Server

    Didenko, V E; Vasiliev, M A

    2015-01-01

    A new scheme of the perturbative analysis of the nonlinear HS equations is developed giving directly the final result for the successive application of the homotopy integrations which appear in the standard approach. It drastically simplifies the analysis and results from the application of the standard spectral sequence approach to the higher-spin covariant derivatives, allowing us in particular to reduce multiple homotopy integrals resulting from the successive application of the homotopy trick to a single integral. Efficiency of the proposed method is illustrated by various examples. In particular, it is shown how the Central on-shell theorem of the free theory immediately results from the nonlinear HS field equations with no intermediate computations.

  19. PT-symmetric Rabi Model: Perturbation Theory

    CERN Document Server

    Lee, Tony E

    2015-01-01

    We study a non-Hermitian version of the Rabi model, where a two-level system is periodically driven with an imaginary-valued drive strength, leading to alternating gain and loss. In the Floquet picture, the model exhibits PT symmetry, which can be broken when the drive is sufficiently strong. We derive the boundaries of the PT phase diagram for the different resonances by doing perturbation theory beyond the rotating-wave approximation. For the main resonance, we show that the non-Hermitian analog of the Bloch-Siegert shift corresponds to maximal PT-breaking. For the higher-order resonances, we capture the boundaries to lowest order. We also solve the regime of high frequency by mapping to the Wannier-Stark ladder. Our model can be experimentally realized in waveguides with spatially-modulated loss or in atoms with time-modulated spontaneous decay.

  20. Modified Contour-Improved Perturbation Theory

    CERN Document Server

    Cvetic, Gorazd; Martinez, Cristian; Valenzuela, Cristian

    2010-01-01

    The semihadronic tau decay width allows a clean extraction of the strong coupling constant at low energies. We present a modification of the standard "contour improved" method based on a derivative expansion of the Adler function. The approach eliminates ambiguities coming from the existence of different integral expressions for the semihadronic tau decay ratio. Compared to the standard method, renormalization scale dependence is by more than a factor two weaker in modified contour improved perturbation theory. The last term of the expansion is reduced, and renormalization scheme dependence remains approximately equal. The extracted QCD coupling at the tau mass scale is by 2$%$ lower than the "contour improved" value. We find $\\alpha_s(M_Z^2)=0.1211\\pm 0.0010$.

  1. Baryon chiral perturbation theory withWilson fermions up to O(a{sup 2}) and discretization effects of latest n{sub f} = 2 + 1 LQCD octet baryon masses

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Xiu-Lei [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Beihang University, International Research Center for Nuclei and Particles in the Cosmos, Beijing (China); Geng, Li-Sheng [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Beihang University, International Research Center for Nuclei and Particles in the Cosmos, Beijing (China); Technische Universitaet Muenchen, Physik Department, Garching (Germany); Meng, Jie [Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); Beihang University, International Research Center for Nuclei and Particles in the Cosmos, Beijing (China); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2014-02-15

    We construct the chiral Lagrangians relevant in studies of the ground-state octet baryon masses up to O(a{sup 2}) by taking into account discretization effects. We calculate the masses up to O(p{sup 4}) in the extended-on-mass-shell scheme. As an application, we study the latest n{sub f} = 2+1 LQCD data on the ground-state octet baryon masses from the PACS-CS, QCDSF-UKQCD, HSC, and NPLQCD Collaborations. It is shown that the discretization effects for the studied LQCD simulations are at the order of 1-2 % for lattice spacings up to 0.15 fm and the pion mass up to 500 MeV. (orig.)

  2. Perturbative renormalization of $\\Delta F = 2$ four-fermion operators with the chirally rotated Schr\\"odinger functional

    CERN Document Server

    Brida, Mattia Dalla; Vilaseca, Pol

    2016-01-01

    The chirally rotated Schr\\"odinger functional ($\\chi$SF) renders the mechanism of automatic $O(a)$ improvement compatible with Schr\\"odinger functional (SF) renormalization schemes. Here we define a family of renormalization schemes based on the $\\chi$SF for a complete basis of $\\Delta F = 2$ parity-odd four-fermion operators. We compute the corresponding scale-dependent renormalization constants to one-loop order in perturbation theory and obtain their NLO anomalous dimensions by matching to the $\\overline{\\textrm{MS}}$ scheme. Due to automatic $O(a)$ improvement, once the $\\chi$SF is renormalized and improved at the boundaries, the step scaling functions (SSF) of these operators approach their continuum limit with $O(a^{2})$ corrections without the need of operator improvement.

  3. Soliton solutions of Chiral Born-Infeld Theory and baryons

    OpenAIRE

    Pavlovsky, Oleg V.

    2003-01-01

    Finite-energy topological spherically symmetrical solutions of Chiral Born-Infeld Theory are studied. Properties of these solution are obtained, and a possible physical interpretation is also given. We compute static properties of baryons (mass,main radius, magnetic main radius, axial coupling constant) whose solutions can be interpreted as the baryons of QCD.

  4. Redeveloping gyrokietic theory for multi-scale perturbation

    CERN Document Server

    Zhang, Shuangxi; Li, Jiquan

    2016-01-01

    It's pointed out in this paper that the existing and extensively used pullback transformation of charged particle's Lagrangian 1-form involves an illegal application of the pullback transformation for 1-form not including any perturbed scale to 1-form including perturbed scale. Therefore, modern gyrokinetic theory can not correctly deal with multi-scale perturbation. The coordinate transformation adopted by modern gyrokinetic theory can't avoid the violation of near identity transformation as well, which in fact is the main character that gyrokinetic theory should obey. In this paper, we develop a new Lie perturbed transformation theory for charged particle's Lagrangian 1-form based on the covariant transformation formula for 1-form. Compared with the ordering of modern gyrokinetic theory, this theory widens the amplitude range of perturbation, includes scales of spatial gradient and oscillating frequency of perturbation, and avoids the violation of near identity transformation as well. When combining the new...

  5. Renormalization-scheme-independent perturbation theory by resumming logarithms

    OpenAIRE

    Dams, C.J.F.; Kleiss, R. H. P.

    2005-01-01

    Results of perturbation theory in quantum field theory generally depend on the renormalization scheme that is in use. In particular, they depend on the scale. We try to make perturbation theory scheme invariant by re-expanding with respect to a scheme invariant quantity. Furthermore, we investigate whether the potentially large logarithms in such an expansion cause inaccuracy and how this can be improved.

  6. Iterated perturbation theory for the attractive Holstein and Hubbard models

    OpenAIRE

    Freericks, J. K.; Jarrell, Mark (Eds. )

    1994-01-01

    A strictly truncated (weak-coupling) perturbation theory is applied to the attractive Holstein and Hubbard models in infinite dimensions. These results are qualified by comparison with essentially exact Monte Carlo results. The second order iterated perturbation theory is shown to be quite accurate in calculating transition temperatures for retarded interactions, but is not as accurate for the self energy or the irreducible vertex functions themselves. Iterated perturbation theory is carried ...

  7. Nonlinear impact of perturbation theory on numerical relativity

    OpenAIRE

    Seidel, E

    2004-01-01

    I discuss the impact of gauge-invariant perturbation theory, as developed originally by Vincent Moncrief, on numerical simulations of Einstein's theory. Far from being replaced by numerical relativity, perturbative approaches remain essential for analysing, interpreting, extending and complementing fully nonlinear approaches. In the last decade, as computers have become ever more powerful tools for studying the full nonlinear equations, the power and application of perturbation theory has als...

  8. Multivariate Integral Perturbation Techniques - I (Theory)

    OpenAIRE

    Dash, Jan W.

    2006-01-01

    We present a quasi-analytic perturbation expansion for multivariate N-dimensional Gaussian integrals. The perturbation expansion is an infinite series of lower-dimensional integrals (one-dimensional in the simplest approximation). This perturbative idea can also be applied to multivariate Student-t integrals. We evaluate the perturbation expansion explicitly through 2nd order, and discuss the convergence, including enhancement using Pade approximants. Brief comments on potential applications ...

  9. Nuclear chiral and magnetic rotation in covariant density functional theory

    Science.gov (United States)

    Meng, Jie; Zhao, Pengwei

    2016-05-01

    Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations (AMR) seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking (TAC) is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of TAC–CDFT and its application for magnetic and AMR phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets in 133Ce and 103Rh are discussed.

  10. Chiral symmetry aspects in supersymmetric confining gauge theories

    International Nuclear Information System (INIS)

    We provide a detailed analysis of the interplay between chiral symmetry and supersymmetry within the context of supersymmetric confining gauge theories. We describe a general method leading to exact results on quark mass dependences of physical quantities such as bound-state masses, bilinear condensates,... We also establish the commutation relations satisfied by the supersymmetric and chiral charges in presence of the soft breaking due to quark masses. We show that, if the chiral limit is unique, the global SUsub(L)(Nsub(f)) x SUsub(R)(Nsub(f)) symmetry is not spontaneously broken. If this limit is not unique, a spontaneous breakdown of the axial symmetry is allowed, but only at the cost of a simultaneous breakdown of the vector symmetry

  11. Nuclear chiral and magnetic rotation in covariant density functional theory

    CERN Document Server

    Meng, Jie

    2016-01-01

    Excitations of chiral rotation observed in triaxial nuclei and magnetic and/or antimagnetic rotations seen in near-spherical nuclei have attracted a lot of attention. Unlike conventional rotation in well-deformed or superdeformed nuclei, here the rotational axis is not necessary coinciding with any principal axis of the nuclear density distribution. Thus, tilted axis cranking is mandatory to describe these excitations self-consistently in the framework of covariant density functional theory (CDFT). We will briefly introduce the formalism of tilted axis cranking CDFT and its application for magnetic and antimagnetic rotation phenomena. Configuration-fixed CDFT and its predictions for nuclear chiral configurations and for favorable triaxial deformation parameters are also presented, and the discoveries of the multiple chiral doublets (M\\c{hi}D) in 133Ce and 103Rh are discussed.

  12. Universality of spontaneous chiral symmetry breaking in gauge theories

    International Nuclear Information System (INIS)

    We investigate one-flavor QCD with an additional chiral scalar field. For a large domain in the space of coupling constants, this model belongs to the same universality class as QCD, and the effects of the scalar become unobservable. This is connected to a 'bound-state fixed point' of the renormalization flow for which all memory of the microscopic scalar interactions is lost. The QCD domain includes a microscopic scalar potential with minima at a nonzero field. On the other hand, for a scalar mass term m2 below a critical value mc2, the universality class is characterized by perturbative spontaneous chiral symmetry breaking which renders the quarks massive. Our renormalization group analysis shows how this universality class is continuously connected with the QCD universality class

  13. Non-perturbative String Theory from Water Waves

    Energy Technology Data Exchange (ETDEWEB)

    Iyer, Ramakrishnan; Johnson, Clifford V.; /Southern California U.; Pennington, Jeffrey S.; /SLAC

    2012-06-14

    We use a combination of a 't Hooft limit and numerical methods to find non-perturbative solutions of exactly solvable string theories, showing that perturbative solutions in different asymptotic regimes are connected by smooth interpolating functions. Our earlier perturbative work showed that a large class of minimal string theories arise as special limits of a Painleve IV hierarchy of string equations that can be derived by a similarity reduction of the dispersive water wave hierarchy of differential equations. The hierarchy of string equations contains new perturbative solutions, some of which were conjectured to be the type IIA and IIB string theories coupled to (4, 4k ? 2) superconformal minimal models of type (A, D). Our present paper shows that these new theories have smooth non-perturbative extensions. We also find evidence for putative new string theories that were not apparent in the perturbative analysis.

  14. de Sitter limit of inflation and nonlinear perturbation theory

    DEFF Research Database (Denmark)

    R. Jarnhus, Philip; Sloth, Martin Snoager

    2007-01-01

    We study the fourth order action of the comoving curvature perturbation in an inflationary universe in order to understand more systematically the de Sitter limit in nonlinear cosmological perturbation theory. We derive the action of the curvature perturbation to fourth order in the comoving gaug...

  15. Chiral Quark Meson Theory for N and Δ

    International Nuclear Information System (INIS)

    The Chiral Quark Meson Theory (CQMT) is a theory of effective interaction designed to describe the action of quantum chromodynamics in the ground state of the nucleon (N) and delta (Δ). It is conjectured that N and Δ are describable satisfactorily in terms of independently moving quarks. The quark wave function is restricted to be a single determinant. This precludes the possibility of describing a single nucleon. The theory must deal with a linear combination of N and Δ. The role of octet gluon towers was examined, with the finding that it can be simulated at the mean field level by a chiral invariant quark-meson lagrangian. Various nucleon properties were calculated. 24 refs., 5 figs., 2 tabs

  16. Testing gravity theories using tensor perturbations

    CERN Document Server

    Lin, Weikang

    2016-01-01

    Primordial gravitational waves constitute a promising probe of the very-early universe and the laws of gravity. We study changes to tensor mode perturbations that can arise in various proposed modified gravity (MG) theories. These include additional friction effects, non-standard dispersion relations involving a massive graviton, a modified speed, and a small-scale modification. We introduce a physically-motivated parameterization of these effects and use current available data to obtain exclusion regions in the parameter spaces. Taking into account the foreground subtraction, we then perform a forecast analysis focusing on the tensor mode MG parameters as constrained by the future experiments COrE, Stage-IV and PIXIE. For a fiducial value of the tensor-to-scalar ratio r=0.01, we find that an additional friction of 3.5-4.5% compared to GR will be detected at $3\\sigma$ by these experiments while a decrease in friction will be more difficult to detect. The speed of gravitational waves needs to be 5-15% differen...

  17. Parallelization of a multiconfigurational perturbation theory.

    Science.gov (United States)

    Vancoillie, Steven; Delcey, Mickaël G; Lindh, Roland; Vysotskiy, Victor; Malmqvist, Per-Åke; Veryazov, Valera

    2013-08-15

    In this work, we present a parallel approach to complete and restricted active space second-order perturbation theory, (CASPT2/RASPT2). We also make an assessment of the performance characteristics of its particular implementation in the Molcas quantum chemistry programming package. Parallel scaling is limited by memory and I/O bandwidth instead of available cores. Significant time savings for calculations on large and complex systems can be achieved by increasing the number of processes on a single machine, as long as memory bandwidth allows, or by using multiple nodes with a fast, low-latency interconnect. We found that parallel efficiency drops below 50% when using 8-16 cores on the shared-memory architecture, or 16-32 nodes on the distributed-memory architecture, depending on the calculation. This limits the scalability of the implementation to a moderate amount of processes. Nonetheless, calculations that took more than 3 days on a serial machine could be performed in less than 5 h on an InfiniBand cluster, where the individual nodes were not even capable of running the calculation because of memory and I/O requirements. This ensures the continuing study of larger molecular systems by means of CASPT2/RASPT2 through the use of the aggregated computational resources offered by distributed computing systems. PMID:23749386

  18. Kato expansion in quantum canonical perturbation theory

    Science.gov (United States)

    Nikolaev, Andrey

    2016-06-01

    This work establishes a connection between canonical perturbation series in quantum mechanics and a Kato expansion for the resolvent of the Liouville superoperator. Our approach leads to an explicit expression for a generator of a block-diagonalizing Dyson's ordered exponential in arbitrary perturbation order. Unitary intertwining of perturbed and unperturbed averaging superprojectors allows for a description of ambiguities in the generator and block-diagonalized Hamiltonian. We compare the efficiency of the corresponding computational algorithm with the efficiencies of the Van Vleck and Magnus methods for high perturbative orders.

  19. Spectral theory for structured perturbations of linear operators

    OpenAIRE

    Adler, Martin; Engel, Klaus-Jochen

    2016-01-01

    We characterize the spectrum (and its parts) of operators which can be represented as G=A+BC for a simpler operator A and a structured perturbation BC. The interest in this kind of perturbations is motivated, e.g., by perturbations of the domain of an operator A but also arises in the theory of closed-loop systems in control theory. In many cases our results yield the spectral values of G as zeros of a ?characteristic equation?.

  20. On integration over Fermi fields in chiral and supersymmetric theories

    International Nuclear Information System (INIS)

    Chiral and supersymmetric theories are considered which cannot be formulated directly in Euclidean space or regularized by means of massive fields in a manifestly gauge invariant fashion. In case of so called real representations a simple recipe is proposed which allows for unambiguous evaluation of the fermionic determinant circumventing the difficulties mentioned. As application of the general technique the effective fermionic interactions induced by instantons of small size within simplest chiral and supesymmetric theories are calculated (SU(2) as the gauge group and one doublet of Weyl spinors or a triplet of Majorana spinors, respectively). In the latter case the effective Lagrangian violates explicitly invariance under supersymmetric transformations on the fermionic and vector fields defined in standard way

  1. Orthonormalization procedure for chiral effective nuclear field theory

    CERN Document Server

    Krebs, H; Meißner, Ulf G; Mei{\\ss}ner, Ulf-G.

    2005-01-01

    We show that the Q-box expansion of nuclear many-body physics can be applied in nuclear effective field theory with explicit pions and external sources. We establish the corresponding power counting and give an algorithm for the construction of a hermitean and energy-independent potential for arbitrary scattering processes on nucleons and nuclei to a given order in the chiral expansion. Various examples are discussed in some detail.

  2. Chiral rings and phases of supersymmetric gauge theories

    International Nuclear Information System (INIS)

    We solve for the expectation values of chiral operators in supersymmetric U(N) gauge theories with matter in the adjoint, fundamental and anti-fundamental representations. A simple geometric picture emerges involving a description by a meromorphic one-form on a Riemann surface. The equations of motion are equivalent to a condition on the integrality of periods of this form. The solution indicates that all semiclassical phases with the same number of U(1) factors are continuously connected. (author)

  3. Chiral kinetic theory and anomalous hydrodynamics in even spacetime dimensions

    CERN Document Server

    Dwivedi, Vatsal

    2016-01-01

    We study the hydrodynamics of a gas of noninteracting Weyl fermions coupled to the electromagnetic field in $(2N + 1) + 1$ spacetime dimensions using the chiral kinetic theory, which encodes the gauge anomaly in the Chern character of the nonabelian Berry connection over the Fermi surface. We derive the anomalous contributions to the relativistic hydrodynamic currents in equilibrium and at a finite temperature, which agree with and provides an approach complementary to the results derived previously using thermodynamic constraints.

  4. Quantum mechanics in general quantum systems (II): Perturbation theory

    CERN Document Server

    Wang, A M

    2006-01-01

    We propose an improved scheme of perturbation theory based on our exact solution [See: An Min Wang, quant-ph/0611217] in general quantum systems independent of time. Our elementary start-point is to introduce the perturbing parameter as late as possible. Our main skills are Hamiltonian redivision so as to overcome a flaw of the usual perturbation theory, and the perturbing Hamiltonian matrix product decomposition in order to separate the contraction and anti-contraction terms. Our calculational technology is the limit process for eliminating apparent divergences. Our central idea is ``dynamical rearrangement and summation" for the sake of the partial contributions from the high order even all order approximations absorbed in our perturbed solution. Consequently, we obtain the improved forms of the zeroth, first, second and third order perturbed solutions absorbing the partial contributions from the high order even all order approximations of perturbation. Then we deduce the improved transition probability. In...

  5. Towards a perturbative theory of nuclear forces

    International Nuclear Information System (INIS)

    The authors show that an expansion of nuclear forces about the chiral limit is formally consistent and is equivalent to KSW power counting in the 1S0 channel and Weinberg power counting in the 3S1--3D1 coupled channels. Numerical evidence suggests that this expansion converges. The feasibility of making contact between nuclear physics and lattice-QCD simulations is discussed

  6. Links between the quantum Hall effect, chiral boson theories and string theory

    International Nuclear Information System (INIS)

    Chiral boson theory is introduced and its relevance to the quantum Hall effect is explained. It is shown that the chiral boson theory admits mode expansions which are essentially those which appear and are made use of in bosonic string theories. This immediately leads to a way of quantizing the theory. Restrictions on various parameters appearing in the model can be imposed in a natural way. Finally, it is suggested that some of these ideas have important applications to other geometries which could give rise to new types of physical behavior. (author)

  7. Perturbative Gravity and Gauge Theory Relations: A Review

    Directory of Open Access Journals (Sweden)

    Thomas Søndergaard

    2012-01-01

    Full Text Available This paper is dedicated to the amazing Kawai-Lewellen-Tye relations, connecting perturbative gravity and gauge theories at tree level. The main focus is on n-point derivations and general properties both from a string theory and pure field theory point of view. In particular, the field theory part is based on some very recent developments.

  8. Gauge and motion in perturbation theory

    CERN Document Server

    Pound, Adam

    2015-01-01

    Through second order in perturbative general relativity, a small compact object in an external vacuum spacetime obeys a generalized equivalence principle: although it is accelerated with respect to the external background geometry, it is in free fall with respect to a certain \\emph{effective} vacuum geometry. However, this single principle takes very different mathematical forms, with very different behaviors, depending on how one treats perturbed motion. Furthermore, any description of perturbed motion can be altered by a gauge transformation. In this paper, I clarify the relationship between two treatments of perturbed motion and the gauge freedom in each. I first show explicitly how one common treatment, called the Gralla-Wald approximation, can be derived from a second, called the self-consistent approximation. I next present a general treatment of smooth gauge transformations in both approximations, in which I emphasise that the approximations' governing equations can be formulated in an invariant manner...

  9. Quarks in Coulomb gauge perturbation theory

    CERN Document Server

    Popovici, C; Reinhardt, H

    2008-01-01

    Coulomb gauge quantum chromodynamics within the first order functional formalism is considered. The quark contributions to the Dyson-Schwinger equations are derived and one-loop perturbative results for the two-point functions are presented.

  10. Nonequilibrium Chiral Dynamics and Effective Lagrangians

    CERN Document Server

    Nicola, A G

    2001-01-01

    We review our recent work on Chiral Lagrangians out of thermal equilibrium, which are introduced to analyse the pion gas formed after a Relativistic Heavy Ion Collision. Chiral Perturbation Theory is extended by letting $\\fpi$ be time dependent and allows to describe explosive production of pions in parametric resonance. This mechanism could be relevant if hadronization occurs at the chiral phase transition.

  11. Chirality of tensor perturbations for complex values of the Immirzi parameter

    Science.gov (United States)

    Bethke, Laura; Magueijo, João

    2012-03-01

    In this communication, we generalize previous work on tensor perturbations in a de Sitter background in terms of Ashtekar variables to cover all complex values of the Immirzi parameter γ (previous work was restricted to imaginary γ). Particular attention is paid to the case of real γ. Following the same approach as in the imaginary case, we can obtain physical graviton states by invoking reality and torsion-free conditions. The Hamiltonian in terms of graviton states has the same form whether γ has a real part or not; however, changes occur for the vacuum energy and fluctuations. Specifically, we observe a γ-dependent chiral asymmetry in the vacuum fluctuations only if γ has an imaginary part. Ordering prescriptions also change this asymmetry. We thus present a measurable result for CMB polarization experiments that could shed light on the workings of quantum gravity.

  12. Chirality of tensor perturbations for complex values of the Immirzi parameter

    International Nuclear Information System (INIS)

    In this communication, we generalize previous work on tensor perturbations in a de Sitter background in terms of Ashtekar variables to cover all complex values of the Immirzi parameter γ (previous work was restricted to imaginary γ). Particular attention is paid to the case of real γ. Following the same approach as in the imaginary case, we can obtain physical graviton states by invoking reality and torsion-free conditions. The Hamiltonian in terms of graviton states has the same form whether γ has a real part or not; however, changes occur for the vacuum energy and fluctuations. Specifically, we observe a γ-dependent chiral asymmetry in the vacuum fluctuations only if γ has an imaginary part. Ordering prescriptions also change this asymmetry. We thus present a measurable result for CMB polarization experiments that could shed light on the workings of quantum gravity. (fast track communication)

  13. The gyrokinetic resonant theory of low frequency electromagnetic perturbation

    CERN Document Server

    Zhang, Shuangxi; Kishimoto, Yasuaki

    2016-01-01

    This paper pointed out that the traditional gyrokinetic theory dealing with low frequency electromagnetic perturbation violates the near identity transformation supposed to be obeyed by Lie perturbed transformation theory, if resonance happens between $\\omega$ and $\\mathbf{k}\\cdot \\mathbf{v}$. A modification is given to overcome this problem by not requiring all components in the first order Lagrangian 1-form equaling zero. And a numerical example is given as an application of the new theory.

  14. Massive renormalization scheme and perturbation theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Blaizot, Jean-Paul, E-mail: jean-paul.blaizot@cea.fr [Institut de Physique Théorique, CNRS/URA2306, CEA-Saclay, 91191 Gif-sur-Yvette (France); Wschebor, Nicolás [Instituto de Fìsica, Faculdad de Ingeniería, Universidade de la República, 11000 Montevideo (Uruguay)

    2015-02-04

    We argue that the choice of an appropriate, massive, renormalization scheme can greatly improve the apparent convergence of perturbation theory at finite temperature. This is illustrated by the calculation of the pressure of a scalar field theory with quartic interactions, at 2-loop order. The result, almost identical to that obtained with more sophisticated resummation techniques, shows a remarkable stability as the coupling constant grows, in sharp contrast with standard perturbation theory.

  15. Spherical shields perturbed to ellipsoids in transport theory

    International Nuclear Information System (INIS)

    Highlights: • Surface perturbation theory is used to transform a spherical radiation shield to an ellipsoid. • The surface transformation function is derived. • The accuracy of perturbation estimates depends on the detector location and problem physics. - Abstract: One-dimensional spheres are perturbed to ellipsoids, and perturbation theory for inhomogeneous transport problems is applied to estimate the leakage of an uncollided decay gamma ray, a neutron thermal capture gamma ray, and a neutron inelastic scatter gamma ray. Only the shielding is perturbed, not the source. The surface transformation function for the sphere-to-ellipsoid change-of-shape perturbation is derived. Schwinger, Roussopolos, and combined perturbation estimates are applied. The perturbation estimates are defined to estimate the total (4π) flux at an external spherical surface detector, and they were accurate for point-detector fluxes when the leakage estimated from a point detector was similar to the total external surface flux. For uncollided line fluxes, the Schwinger estimate worked very well when the response of interest was the total external surface flux, but perturbation theory did not work well when the response of interest was the flux measured at a single external point (unless extra care was taken to account for geometric effects). For thermal capture line fluxes, the Roussopolos estimate was extremely accurate for one point detector location but its accuracy depended on the detector location. For inelastic scatter line fluxes, the detector fluxes were relatively insensitive to the detector location and the perturbation estimates were fairly accurate

  16. Anomalies of the Entanglement Entropy in Chiral Theories

    CERN Document Server

    Iqbal, Nabil

    2015-01-01

    We study entanglement entropy in theories with gravitational or mixed U(1) gauge-gravitational anomalies in two, four and six dimensions. In such theories there is an anomaly in the entanglement entropy: it depends on the choice of reference frame in which the theory is regulated. We discuss subtleties regarding regulators and entanglement entropies in anomalous theories. We then study the entanglement entropy of free chiral fermions and self-dual bosons and show that in sufficiently symmetric situations this entanglement anomaly comes from an imbalance in the flux of modes flowing through the boundary, controlled by familiar index theorems. In two and four dimensions we use anomalous Ward identities to find general expressions for the transformation of the entanglement entropy under a diffeomorphism. (In the case of a mixed anomaly there is an alternative presentation of the theory in which the entanglement entropy is not invariant under a U(1) gauge transformation. The free-field manifestation of this pheno...

  17. Deconfinement transition in SU(N theories from perturbation theory

    Directory of Open Access Journals (Sweden)

    U. Reinosa

    2015-03-01

    Full Text Available We consider a simple massive extension of the Landau–DeWitt gauge for SU(N Yang–Mills theory. We compute the corresponding one-loop effective potential for a temporal background gluon field at finite temperature. At this order the background field is simply related to the Polyakov loop, the order parameter of the deconfinement transition. Our perturbative calculation correctly describes a quark confining phase at low temperature and a phase transition of second order for N=2 and weakly first order for N=3. Our estimates for the transition temperatures are in qualitative agreement with values from lattice simulations or from other continuum approaches. Finally, we discuss the effective gluon mass parameter in relation to the Gribov ambiguities of the Landau–DeWitt gauge.

  18. Chiral algebra of Argyres-Douglas theory from M5 brane

    CERN Document Server

    Xie, Dan; Yau, Shing-Tung

    2016-01-01

    We study chiral algebras associated with Argyres-Douglas theories engineered from M5 brane. For the theory engineered using 6d $(2,0)$ type $J$ theory on a sphere with a single irregular singularity (without mass parameter), its chiral algebra is the minimal model of W algebra of $J$ type. For the theory engineered using an irregular singularity and a regular full singularity, its chiral algebra is the affine Kac-Moody algebra of $J$ type. We can obtain the Schur index of these theories by computing the vacua character of the corresponding chiral algebra.

  19. Spin of the proton in chiral effective field theory

    Science.gov (United States)

    Li, Hongna; Wang, P.; Leinweber, D. B.; Thomas, A. W.

    2016-04-01

    Proton spin is investigated in chiral effective field theory through an examination of the singlet axial charge, a0, and the two nonsinglet axial charges, a3 and a8. Finite-range regularization is considered as it provides an effective model for estimating the role of disconnected sea-quark loop contributions to baryon observables. Baryon octet and decuplet intermediate states are included to enrich the spin and flavor structure of the nucleon, redistributing spin under the constraints of chiral symmetry. In this context, the proton spin puzzle is well understood with the calculation describing all three of the axial charges reasonably well. The strange quark contribution to the proton spin is negative with magnitude 0.01. With appropriate Q2 evolution, we find the singlet axial charge at the experimental scale to be â0=0 .31-0.05+0.04 , consistent with the range of current experimental values.

  20. Pion momentum distributions in the nucleon in chiral effective theory

    CERN Document Server

    Burkardt, M; Ji, Chueng-Ryong; Melnitchouk, W; Thomas, A W

    2012-01-01

    We compute the light-cone momentum distributions of pions in the nucleon in chiral effective theory using both pseudovector and pseudoscalar pion-nucleon couplings. For the pseudovector coupling we identify \\delta-function contributions associated with end-point singularities arising from the pion-nucleon rainbow diagrams, as well as from pion tadpole diagrams which are not present in the pseudoscalar model. Gauge invariance is demonstrated, to all orders in the pion mass, with the inclusion of Weinberg-Tomozawa couplings involving operator insertions at the \\pi NN vertex. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  1. Regularized path integrals and anomalies: U(1) chiral gauge theory

    Science.gov (United States)

    Kopper, Christoph; Lévêque, Benjamin

    2012-02-01

    We analyze the origin of the Adler-Bell-Jackiw anomaly of chiral U(1) gauge theory within the framework of regularized path integrals. Momentum or position space regulators allow for mathematically well-defined path integrals but violate local gauge symmetry. It is known how (nonanomalous) gauge symmetry can be recovered in the renormalized theory in this case [Kopper, C. and Müller, V. F., "Renormalization of spontaneously broken SU(2) Yang-Mills theory with flow equations," Rev. Math. Phys. 21, 781 (2009)], 10.1142/S0129055X0900375X. Here we analyze U(1) chiral gauge theory to show how the appearance of anomalies manifests itself in such a context. We show that the three-photon amplitude leads to a violation of the Slavnov-Taylor identities which cannot be restored on taking the UV limit in the renormalized theory. We point out that this fact is related to the nonanalyticity of this amplitude in the infrared region.

  2. Numerical stochastic perturbation theory in the Schroedinger functional

    International Nuclear Information System (INIS)

    The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.

  3. Numerical stochastic perturbation theory in the Schroedinger functional

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, Michele; Di Renzo, Francesco; Hesse, Dirk [Parma Univ. (Italy); INFN, Parma (Italy); Dalla Brida, Mattia [Trinity College Dublin (Ireland). School of Mathematics; Sint, Stefan [Trinity College Dublin (Ireland). School of Mathematics; Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2013-11-15

    The Schroedinger functional (SF) is a powerful and widely used tool for the treatment of a variety of problems in renormalization and related areas. Albeit offering many conceptual advantages, one major downside of the SF scheme is the fact that perturbative calculations quickly become cumbersome with the inclusion of higher orders in the gauge coupling and hence the use of an automated perturbation theory framework is desirable. We present the implementation of the SF in numerical stochastic perturbation theory (NSPT) and compare first results for the running coupling at two loops in pure SU(3) Yang-Mills theory with the literature.

  4. Cosmological perturbation theory with York time

    CERN Document Server

    Roser, Philipp

    2015-01-01

    One method to overcome the notorious problem of time in the quantisation of gravity is the identification of a physically preferred time parameter, a promising candidate being so-called `York time'. The dynamical equations for matter and spatial geometry in York time may be obtained via Hamiltonian reduction, that is, by solving the Hamiltonian constraint for the physical, non-vanishing Hamiltonian density identified as the variable conjugate to the chosen time parameter. Yet in general this equation cannot be solved algebraically. Here we show how in a cosmological scenario, where one may treat geometric and matter inhomogeneities as small perturbations, one is able to obtain the physical Hamiltonian density by solving the constraint equation perturbatively. By construction the Hamiltonian density is quadratic in the perturbation variables, which makes it easily quantisable, although subtleties arise due to the non-canonical form of the Poisson brackets and the time-dependent coefficients. The latter are det...

  5. Application of depletion perturbation theory to fuel cycle burnup analysis

    International Nuclear Information System (INIS)

    Over the past several years static perturbation theory methods have been increasingly used for reactor analysis in lieu of more detailed and costly direct computations. Recently, perturbation methods incorporating time dependence have also received attention, and several authors have demonstrated their applicability to fuel burnup analysis. The objective of the work described here is to demonstrate that a time-dependent perturbation method can be easily and accurately applied to realistic depletion problems

  6. Fermions in two (1+1)-dimensional anomalous gauge theories: The chiral Schwinger model and the chiral quantum gravity

    International Nuclear Information System (INIS)

    The fermion in the gauge invariant formulation of the chiral Schwinger model and its relation to the fermion in the anomalous formulation is studied. A gauge invariant fermion operator is constructed that does not give rise to an asymptotic fermion field. It fits in the scheme prepared by generalized Schwinger models. Singularities in the short-distance limit of the chiral Schwinger model in the anomalous formulation lead to the conclusion that it is not a promising starting point for investigations towards realistic (3+1)-dimensional gauge theories with chiral fermion content. A new anomalous (1+1)-dimensional model is studied, the chiral quantum gravity. It is proven to be consistent if only a limited number of chiral fermions couple. The fermion propagator behaves analogously to the one in the massless Thirring model. A general rule is derived for the change of the fermion operator, which is induced by the breakdown of a gauge symmetry. (orig.)

  7. Siegert pseudostate perturbation theory: one- and two-threshold cases

    CERN Document Server

    Toyota, K; Watanabe, S; Toyota, Koudai; Morishita, Toru; Watanabe, Shinichi

    2005-01-01

    Perturbation theory for the Siegert pseudostates (SPS) [Phys.Rev.A 58, 2077 (1998) and Phys.Rev.A 67, 032714 (2003)] is studied for the case of two energetically separated thresholds. The perturbation formulas for the one-threshold case are derived as a limiting case whereby we reconstruct More's theory for the decaying states [Phys.Rev.A 3,1217(1971)] and amend an error. The perturbation formulas for the two-threshold case have additional terms due to the non-standard orthogonality relationship of the Siegert Pseudostates. We apply the theory to a 2-channel model problem, and find the rate of convergence of the perturbation expansion should be examined with the aide of the variance $D= ||E-\\sum_{n}\\lambda^n E^{(n)}||$ instead of the real and imaginary parts of the perturbation energy individually.

  8. Lattice perturbation theory with fermions in the Schroedinger functional

    International Nuclear Information System (INIS)

    We present an algorithm to automatically compute Feynman diagrams for lattice perturbation theory with fermions in the Schroedinger functional with a trivial or abelian background field. The flexibility of the algorithm allows for the automation of perturbative calculations independent of the lattice action used.

  9. Non-perturbative Heavy Quark Effective Theory

    DEFF Research Database (Denmark)

    Della Morte, Michele; Heitger, Jochen; Simma, Hubert;

    2015-01-01

    We review a lattice strategy how to non-perturbatively determine the coefficients in the HQET expansion of all components of the heavy-light axial and vector currents, including 1/m_h-corrections. We also discuss recent preliminary results on the form factors parameterizing semi-leptonic B-decays...

  10. On a Geometric Theory of Generalized Chiral Elasticity with Discontinuities

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work we develop, in a somewhat extensive manner, a geometric theory of chiral elasticity which in general is endowed with geometric discontinuities (sometimes referred to as defects. By itself, the present theory generalizes both Cosserat and void elasticity theories to a certain extent via geometrization as well as by taking intoaccount the action of the electromagnetic field, i.e., the incorporation of the electromagnetic field into the description of the so-called microspin (chirality also forms the underlying structure of this work. As we know, the description of the electromagnetic field as a unified phenomenon requires four-dimensional space-time rather than three-dimensional space as its background. For this reason we embed the three-dimensional material space in four-dimensional space-time. This way, the electromagnetic spin is coupled to the non-electromagnetic microspin, both being parts of the completemicrospin to be added to the macrospin in the full description of vorticity. In short, our objective is to generalize the existing continuum theories by especially describing microspin phenomena in a fully geometric way.

  11. On a Geometric Theory of Generalized Chiral Elasticity with Discontinuities

    Directory of Open Access Journals (Sweden)

    Suhendro I.

    2008-01-01

    Full Text Available In this work we develop, in a somewhat extensive manner, a geometric theory of chiral elasticity which in general is endowed with geometric discontinuities (sometimes re- ferred to as defects . By itself, the present theory generalizes both Cosserat and void elasticity theories to a certain extent via geometrization as well as by taking into ac- count the action of the electromagnetic field, i.e., the incorporation of the electromag- netic field into the description of the so-called microspin ( chirality also forms the un- derlying structure of this work. As we know, the description of the electromagnetic field as a unified phenomenon requires four-dimensional space-time rather than three- dimensional space as its background. For this reason we embed the three-dimensional material space in four-dimensional space-time. This way, the electromagnetic spin is coupled to the non-electromagnetic microspin, both being parts of the complete mi- crospin to be added to the macrospin in the full description of vorticity. In short, our objective is to generalize the existing continuum theories by especially describing mi- crospin phenomena in a fully geometric way.

  12. Survey of mathematical foundations of QFT and perturbative string theory

    NARCIS (Netherlands)

    Sati, H.; Schreiber, U.

    2011-01-01

    Recent years have seen noteworthy progress in the mathematical formulation of quantum field theory and perturbative string theory. We give a brief survey of these developments. It serves as an introduction to the more detailed collection "Mathematical Foundations of Quantum Field Theory and Perturba

  13. Large order behavior of perturbation theory and mass terms

    International Nuclear Information System (INIS)

    Large order behaviour of perturbation theory of PHI4 in four dimensions in presence of mass terms is estimated. A new scale comes into the coefficient functions. For mass m and order K this scale is m√K. (author)

  14. Convergent perturbation theory for lattice models with fermions

    Science.gov (United States)

    Sazonov, V. K.

    2016-05-01

    The standard perturbation theory in QFT and lattice models leads to the asymptotic expansions. However, an appropriate regularization of the path or lattice integrals allows one to construct convergent series with an infinite radius of the convergence. In the earlier studies, this approach was applied to the purely bosonic systems. Here, using bosonization, we develop the convergent perturbation theory for a toy lattice model with interacting fermionic and bosonic fields.

  15. Weak Qubit Measurement with a Nonlinear Cavity: Beyond Perturbation Theory

    OpenAIRE

    Laflamme, Catherine; Clerk, Aashish A.

    2012-01-01

    We analyze the use of a driven nonlinear cavity to make a weak continuous measurement of a dispersively-coupled qubit. We calculate the backaction dephasing rate and measurement rate beyond leading-order perturbation theory using a phase-space approach which accounts for cavity noise squeezing. Surprisingly, we find that increasing the coupling strength beyond the regime describable by leading-order perturbation theory (i.e. linear response) allows one to come significantly closer to the quan...

  16. A chiral D=4, N=1 string vacuum with a finite low energy effective field theory

    International Nuclear Information System (INIS)

    Supersymmetric N=1, D=4 string vacua are known to be finite in perturbation theory. However, the effective low energy D=4, N=1 field theory lagrangian does not yield in general finite theories. In this note we present the first (to our knowledge) such an example. It may be constructed in three dual ways: i) as a Z3, SO(32) heterotic orbifold; ii) as a Type -IIB, Z3 orientifold with only ninebranes and a Wilson line or iii) as a Type-IIB, Z6 orientifold with only fivebranes. The gauge group is SU(4)3 with three chiral generations. Although chiral, a subsector of the model is continuously connected to a model with global N=4 supersymmetry. From the Z6, Type IIB orientifold point of view the above connection may be understood as a transition of four dynamical fivebranes from a fixed point to the bulk. The N=1 model is thus also expected to be S-dual. We also remark that, using the untwisted dilaton and moduli fields of these constructions as spurion fields, yields soft SUSY-breaking terms which preserve finiteness even for N=0. (author)

  17. Confinement, perturbation theory and Sterman-Weinberg jets

    International Nuclear Information System (INIS)

    The total charge within the cones of Sterman-Weinberg jets is calculated to first order in perturbation theory in the integer-quark-charge model, a model free of infrared singularities. The same calculation is performed in conventional QCD (with fractionally charged quarks) and is finite in the same sense as the integer-charge calculation; only non-zero masses occur in the logarithms. The finite result implies a liberation of quark quantum numbers, suggesting that confinement cannot be a consequence of the Yang-Mills perturbation theory, but must arise from additional (non-perturbative) mechanisms. (author)

  18. Energy Continuity in Degenerate Density Functional Perturbation Theory

    CERN Document Server

    Palenik, Mark C

    2016-01-01

    Fractional occupation numbers can produce open-shell degeneracy in density functional theory. We develop the corresponding perturbation theory by requiring that a differentiable map connects the initial and perturbed states. The degenerate state connects to a single perturbed state which extremizes, but does not necessarily minimize or maximize, the energy with respect to occupation numbers. Using a system of three electrons in a harmonic oscillator potential, we relate the counterintuitive sign of first-order occupation numbers to eigenvalues of the electron-electron interaction Hessian.

  19. Perturbation Theory of the Cosmological Log-Density Field

    DEFF Research Database (Denmark)

    Wang, Xin; Neyrinck, Mark; Szapudi, István;

    2011-01-01

    , motivating an analytic study of it. In this paper, we develop cosmological perturbation theory for the power spectrum of this field. Our formalism is developed in the context of renormalized perturbation theory, which helps to regulate the convergence behavior of the perturbation series, and of the Taylor......The matter density field exhibits a nearly lognormal probability density distribution (PDF) after entering into the nonlinear regime. Recently, it has been shown that the shape of the power spectrum of a logarithmically transformed density field is very close to the linear density power spectrum...

  20. Non-perturbative Nekrasov partition function from string theory

    International Nuclear Information System (INIS)

    We calculate gauge instanton corrections to a class of higher derivative string effective couplings introduced in [1]. We work in Type I string theory compactified on K3×T2 and realise gauge instantons in terms of D5-branes wrapping the internal space. In the field theory limit we reproduce the deformed ADHM action on a general Ω-background from which one can compute the non-perturbative gauge theory partition function using localisation. This is a non-perturbative extension of [1] and provides further evidence for our proposal of a string theory realisation of the Ω-background

  1. Convergent perturbation expansions for Euclidean quantum field theory

    International Nuclear Information System (INIS)

    Mayer perturbation theory is designed to provide computable convergent expansions which permit calculation of Greens functions in Euclidean Quantum Field Theory to arbitrary accuracy, including 'nonperturbative' contributions from large field fluctuations. Here we describe the expansions at the example of 3-dimensional lambdaphi4-theory (in continuous space). They are not essentially more complicated than standard perturbation theory. The n-th order term is expressed in terms of 0(n)-dimensional integrals, and is of order lambda4 if 4k-3<=n<=4k. (orig.)

  2. Effective gravitational couplings for cosmological perturbations in generalized Proca theories

    CERN Document Server

    De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li

    2016-01-01

    We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lema\\^{i}tre-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to non-trivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling $G_{\\rm eff}$ with matter density perturbations under a quasi-static approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility ...

  3. Cosmological perturbation theory in 1+1 dimensions

    Science.gov (United States)

    McQuinn, Matthew; White, Martin

    2016-01-01

    Many recent studies have highlighted certain failures of the standard Eulerian-space cosmological perturbation theory (SPT). Its problems include (1) not capturing large-scale bulk flows [leading to an Script O( 1) error in the 1-loop SPT prediction for the baryon acoustic peak in the correlation function], (2) assuming that the Universe behaves as a pressureless, inviscid fluid, and (3) treating fluctuations on scales that are non-perturbative as if they were. Recent studies have highlighted the successes of perturbation theory in Lagrangian space or theories that solve equations for the effective dynamics of smoothed fields. Both approaches mitigate some or all of the aforementioned issues with SPT. We discuss these physical developments by specializing to the simplified 1D case of gravitationally interacting sheets, which allows us to substantially reduces the analytic overhead and still (as we show) maintain many of the same behaviors as in 3D. In 1D, linear-order Lagrangian perturbation theory ("the Zeldovich approximation") is exact up to shell crossing, and we prove that nth-order Eulerian perturbation theory converges to the Zeldovich approximation as narrow ∞. In no 1D cosmology that we consider (including a CDM-like case and power-law models) do these theories describe accurately the matter power spectrum on any mildly nonlinear scale. We find that theories based on effective equations are much more successful at describing the dynamics. Finally, we discuss many topics that have recently appeared in the perturbation theory literature such as beat coupling, the shift and smearing of the baryon acoustic oscillation feature, and the advantages of Fourier versus configuration space. Our simplified 1D case serves as an intuitive review of these perturbation theory results.

  4. Perturbation theory and importance functions in integral transport formulations

    International Nuclear Information System (INIS)

    Perturbation theory expressions for the static reactivity derived from the flux, collision density, birth-rate density, and fission-neutron density formulations of integral transport theory, and from the integro-differential formulation, are intercompared. The physical meaning and relation of the adjoint functions corresponding to each of the five formulations are established. It is found that the first-order approximation of the perturbation expressions depends on the transport theory formulation and on the adjoint function used. The approximations of the integro-differential formulation corresponding to different first-order approximations of the integral transport theory formulations are identified. It is found that the accuracy of all first-order approximations of the integral transport formulations examined is superior to the accuracy of first-order integro-differential perturbation theory

  5. Wilson loops to 20th order numerical stochastic perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics; Hotzel, G.; Perlt, H.; Schiller, A. [Leipzig Univ. (Germany). Inst. fuer Theoretische Physik; Ilgenfritz, E.M. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Joint Institute for Nuclear Research, VBLHEP, Dubna (Russian Federation); Millo, R.; Rakow, P.E.L. [Liverpool Univ. (Germany). Theoretical Physics Div.; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-05-15

    We calculate Wilson loops of various sizes up to 20 loops in SU(3) pure lattice gauge theory at different lattice sizes for Wilson gauge action using the technique of numerical stochastic perturbation theory. This allows us to investigate the perturbative series for various Wilson loops at high loop orders. We observe differences in the behavior of those series as function of the loop order. Up to n=20 we do not find evidence for the factorial growth of the expansion coefficients often assumed to characterize an asymptotic series. Based on the actually observed behavior we sum the series in a model parametrized by hypergeometric functions. Alternatively we estimate the total series in boosted perturbation theory using information from the first 14 loops. We introduce generalized ratios of Wilson loops of different sizes. Together with the corresponding Wilson loops from standard Monte Carlo measurements they enable us to assess their non-perturbative parts.

  6. Alternative perspective on density-functional perturbation theory

    International Nuclear Information System (INIS)

    Perturbation theory is examined in analytic density-functional theory (ADFT), for which V representability means slightly more than in conventional density-functional theory because the potential is fitted. There is synergism between variationality and V representability. Together they redirect the object of perturbation theory from the set of occupied virtual orbital rotations to the change in the fit to the Kohn-Sham potential, which is called the Sambe-Felton potential. This reduces the dimensionality of perturbation theory from order N2 to order N, where N is the number of basis functions. With variational fitting, no fractional or negative powers of the density appear when using the Slater exchange kernel, which is proportional to the cube root of the spin density. Requiring the Fock matrix and density matrix to commute through each order of perturbation theory determines the role of fractional occupation numbers in density-functional perturbation theory, which are treated via the corresponding nonintegral differences between the occupation numbers of orbitals. This theory is tested by removing a tenth or twentieth of an electron from the highest occupied molecular orbital for a standard set of small molecules, in which case the first- and second-order perturbed energies are accurate to 70%, when compared to the energy difference of the two corresponding self-consistent-field (SCF) calculations. For an all-electron ADFT calculation on a C4v-symmetric Zr6O12 cluster, the timing for all SCF coupled perturbed iterations is not significant compared to the single required N4 sum over occupied and virtual orbitals

  7. Perturbative Quantum Gravity from Gauge Theory

    CERN Document Server

    Bern, Zvi; Johansson, Henrik

    2010-01-01

    In a previous paper we observed that (classical) tree-level gauge theory amplitudes can be rearranged to display a duality between color and kinematics. Once this is imposed, gravity amplitudes are obtained using two copies of gauge-theory diagram numerators. Here we suggest that this duality persists to all quantum loop orders and can thus be used to obtain multi-loop gravity amplitudes easily from gauge-theory ones. As a non-trivial test, we show that the three-loop four-point amplitude of N=4 super-Yang-Mills theory can be arranged into a form satisfying the duality, and by taking double copies of the diagram numerators we obtain the corresponding amplitude of N=8 supergravity. We also remark on a non-supersymmetric two-loop test based on pure Yang-Mills theory resulting in gravity coupled to an anti-symmetric tensor and dilaton.

  8. Perturbation theory of iron-pnictide superconductivity

    Energy Technology Data Exchange (ETDEWEB)

    Nomura, Takuji, E-mail: nomurat@spring8.or.j [Synchrotron Radiation Research Center, Japan Atomic Energy Agency, 1-1-1 Kouto, Sayo, Hyogo 679-5148 (Japan); JST, TRIP, Sanbancho, Chiyoda, Tokyo 102-0075 (Japan)

    2010-12-15

    To study the high-T{sub c} superconductivity in iron pnictides, we solve the Eliashberg equation for a five-orbital Hubbard model by expanding the pairing interaction perturbatively to third order in the on-site Coulomb integrals. The most favorable pairing symmetry is an s{sub {+-}-}wave with sign change of the order parameter between the hole and electron pockets. It is suggested that the superconductivity disappears in high-doping regions where the electron pockets or the hole pockets disappear.

  9. Symmetries in perturbative quantum field theory

    International Nuclear Information System (INIS)

    The basic point to be developed in this report amounts to prove that general properties of renormalizable lagrangian field theories can be studied only relying on general theorems of renormalization theory, without any reference to a given renormalization scheme. Moreover, most renormalization problems are thus reduced to purely algebraic ones. The first part of this report is concerned with a general introduction to renormalization theory. General theorems, nammely the quantum action principles, are stated there. In the second part, a few explicit problems are treated in order to exhibit the general techniques needed to get all the results stated in the last part

  10. Holographic Schwinger Effect and Chiral condensate in SYM Theory

    CERN Document Server

    Ghoroku, Kazuo

    2016-01-01

    We study the instability, for the supersymmetric Yang-Mills (SYM) theories, caused by the external electric field through the imaginary part of the action of the D7 probe brane, which is embedded in the background of type IIB theory. This instability is related to the Schwinger effect, namely to the quark pair production due to the external electric field, for the $SU(N_c)$ SYM theories. In this holographic approach, it is possible to calculate the Schwinger effect for various phases of the theories. Here we give the calculation for ${\\cal N}=2$ SYM theory and the analysis is extended to the finite temperature deconfinement and the zero temperature confinement phases of the Yang-Mills (YM) theory. By comparing the obtained production rates with the one of the supersymmetric case, the dynamical quark mass is estimated and we find how it varies with the chiral condensate. Based on this analysis, we give a speculation on the extension of the Nambu-Jona-Lasinio model to the finite temperature YM theory, and four ...

  11. Theory of Dephasing by External Perturbation in Open Quantum Dots

    OpenAIRE

    Vavilov, M. G.; Aleiner, I. L.

    1999-01-01

    We propose a random matrix theory describing the influence of a time dependent external field on the average magnetoresistance of open quantum dots. The effect is taken into account in all orders of perturbation theory, and the result is applicable to both weak and strong external fields.

  12. Chiral effective field theory predictions for muon capture on deuteron and $^3$He

    Energy Technology Data Exchange (ETDEWEB)

    Laura E. Marcucci, A. Kievsky, S. Rosati, R. Schiavilla, M. Viviani

    2012-01-01

    The muon-capture reactions {sup 2}H({mu}{sup -}, {nu}{sub {mu}})nn and {sup 3}He({mu}{sup -},{nu}{sub {mu}}){sup 3}H are studied with nuclear strong-interaction potentials and charge-changing weak currents, derived in chiral effective field theory. The low-energy constants (LEC's) c{sub D} and c{sub E}, present in the three-nucleon potential and (c{sub D}) axial-vector current, are constrained to reproduce the A=3 binding energies and the triton Gamow-Teller matrix element. The vector weak current is related to the isovector component of the electromagnetic current via the conserved-vector-current constraint, and the two LEC's entering the contact terms in the latter are constrained to reproduce the A=3 magnetic moments. The muon capture rates on deuteron and {sup 3}He are predicted to be 399 {+-} 3 sec{sup -1} and 1494 {+-} 21 sec{sup -1}, respectively, where the spread accounts for the cutoff sensitivity as well as uncertainties in the LEC's and electroweak radiative corrections. By comparing the calculated and precisely measured rates on {sup 3}He, a value for the induced pseudoscalar form factor is obtained in good agreement with the chiral perturbation theory prediction.

  13. Convergence of coupled cluster perturbation theory

    CERN Document Server

    Eriksen, Janus Juul; Matthews, Devin A; Jørgensen, Poul; Olsen, Jeppe

    2016-01-01

    The convergence of a recently proposed coupled cluster (CC) family of perturbation series [Eriksen et al., J. Chem. Phys. 140, 064108 (2014)], in which the energetic difference between a parent and a target CC model is expanded in orders of the M{\\o}ller-Plesset (MP) fluctuation potential, is investigated for four prototypical closed-shell systems (Ne, singlet methylene, distorted HF, and the fluoride anion) in standard and augmented basis sets. In these investigations, energy corrections of the various series have been calculated to high orders and their convergence radii determined by probing for possible front- and back-door intruder states. In summary, we conclude how it is primarily the choice of target state, and not the choice of parent state, which ultimately governs the convergence behavior of a given series. For example, restricting the target state to, say, triple or quadruple excitations might remove intruders present in series that target the full configuration interaction (FCI) limit, such as th...

  14. Perturbative algebraic quantum field theory at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Lindner, Falk

    2013-08-15

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  15. Renormalization Group Optimized Perturbation Theory at Finite Temperatures

    CERN Document Server

    Kneur, J -L

    2015-01-01

    A recently developed variant of the so-called optimized perturbation theory (OPT), making it perturbatively consistent with renormalization group (RG) properties, RGOPT, was shown to drastically improve its convergence for zero temperature theories. Here the RGOPT adapted to finite temperature is illustrated with a detailed evaluation of the two-loop pressure for the thermal scalar $ \\lambda\\phi^4$ field theory. We show that already at the simple one-loop level this quantity is exactly scale-invariant by construction and turns out to qualitatively reproduce, with a rather simple procedure, results from more sophisticated resummation methods at two-loop order, such as the two-particle irreducible approach typically. This lowest order also reproduces the exact large-$N$ results of the $O(N)$ model. Although very close in spirit, our RGOPT method and corresponding results differ drastically from similar variational approaches, such as the screened perturbation theory or its QCD-version, the (resummed) hard therm...

  16. Perturbative algebraic quantum field theory at finite temperature

    International Nuclear Information System (INIS)

    We present the algebraic approach to perturbative quantum field theory for the real scalar field in Minkowski spacetime. In this work we put a special emphasis on the inherent state-independence of the framework and provide a detailed analysis of the state space. The dynamics of the interacting system is constructed in a novel way by virtue of the time-slice axiom in causal perturbation theory. This method sheds new light in the connection between quantum statistical dynamics and perturbative quantum field theory. In particular it allows the explicit construction of the KMS and vacuum state for the interacting, massive Klein-Gordon field which implies the absence of infrared divergences of the interacting theory at finite temperature, in particular for the interacting Wightman and time-ordered functions.

  17. Weak solution of the non-perturbative renormalization group equation to describe dynamical chiral symmetry breaking

    International Nuclear Information System (INIS)

    We analyze dynamical chiral symmetry breaking (DχSB) in the Nambu–Jona-Lasinio model by using the non-perturbative renormalization group equation. The equation takes the form of a two-dimensional partial differential equation for the multi-fermion effective interactions V(x,t) where x is the ψ-barψ operator and t is the logarithm of the renormalization scale. The DχSB occurs due to the quantum corrections, which means it emerges at some finite tc while integrating the equation with respect to t. At tc some singularities suddenly appear in V which is compulsory in the spontaneous symmetry breakdown. Therefore there is no solution of the equation beyond tc. We newly introduce the notion of a weak solution to get the global solution including the infrared limit t→∞ and investigate its properties. The obtained weak solution is global and unique, and it perfectly describes the physically correct vacuum even in the case of the first order phase transition appearing in a finite-density medium. The key logic of deduction is that the weak solution we defined automatically convexifies the effective potential when treating the singularities

  18. Effective gravitational couplings for cosmological perturbations in generalized Proca theories

    OpenAIRE

    De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-Li

    2016-01-01

    We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lema\\^{i}tre-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic v...

  19. Non-perturbative heavy quark effective theory. Introduction and status

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik

    2015-01-15

    We give an introduction to Heavy Quark Effective Theory (HQET). Our emphasis is on its formulation non-perturbative in the strong coupling, including the non-perturbative determination of the parameters in the HQET Lagrangian. In a second part we review the present status of HQET on the lattice, largely based on work of the ALPHA collaboration in the last few years. We finally discuss opportunities and challenges.

  20. Brillouin-Wigner perturbation theory in open electromagnetic systems

    OpenAIRE

    Muljarov, E. A.; Langbein, W; R. Zimmermann(Physikalisches Institut, University of Bonn, Bonn, Germany)

    2012-01-01

    A Brillouin-Wigner perturbation theory is developed for open electromagnetic systems which are characterised by discrete resonant states with complex eigenenergies. Since these states are exponentially growing at large distances, a modified normalisation is introduced that allows a simple spectral representation of the Green's function. The perturbed modes are found by solving a linear eigenvalue problem in matrix form. The method is illustrated on exactly solvable one- and three-dimensional ...

  1. Brillouin-Wigner perturbation theory in open electromagnetic systems

    CERN Document Server

    Muljarov, E A; Zimmermann, R; 10.1209/0295-5075/92/50010

    2012-01-01

    A Brillouin-Wigner perturbation theory is developed for open electromagnetic systems which are characterised by discrete resonant states with complex eigenenergies. Since these states are exponentially growing at large distances, a modified normalisation is introduced that allows a simple spectral representation of the Green's function. The perturbed modes are found by solving a linear eigenvalue problem in matrix form. The method is illustrated on exactly solvable one- and three-dimensional examples being, respectively, a dielectric slab and a microsphere.

  2. Perturbation Theory for Quantum Computation with Large Number of Qubits

    OpenAIRE

    Berman, G. P.; Doolen, G. D.; Kamenev, D. I.; Tsifrinovich, V. I.

    2001-01-01

    We describe a new and consistent perturbation theory for solid-state quantum computation with many qubits. The errors in the implementation of simple quantum logic operations caused by non-resonant transitions are estimated. We verify our perturbation approach using exact numerical solution for relatively small (L=10) number of qubits. A preferred range of parameters is found in which the errors in processing quantum information are small. Our results are needed for experimental testing of sc...

  3. Non-perturbative heavy quark effective theory. Introduction and status

    International Nuclear Information System (INIS)

    We give an introduction to Heavy Quark Effective Theory (HQET). Our emphasis is on its formulation non-perturbative in the strong coupling, including the non-perturbative determination of the parameters in the HQET Lagrangian. In a second part we review the present status of HQET on the lattice, largely based on work of the ALPHA collaboration in the last few years. We finally discuss opportunities and challenges.

  4. A Theory of the Perturbed Consumer with General Budgets

    DEFF Research Database (Denmark)

    McFadden, Daniel L; Fosgerau, Mogens

    We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose......-valued and smooth in their arguments. We also give sufficient conditions for integrability of perturbed demand. Our analysis provides a foundation for applications of consumer theory to problems with nonlinear budget constraints....

  5. Chiral Fermions on the Lattice

    CERN Document Server

    Bietenholz, Wolfgang

    2010-01-01

    In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.

  6. Perturbation theory for string sigma models

    CERN Document Server

    Bianchi, Lorenzo

    2016-01-01

    In this thesis we investigate quantum aspects of the Green-Schwarz superstring in various AdS backgrounds relevant for the AdS/CFT correspondence, providing several examples of perturbative computations in the corresponding integrable sigma-models. We start by reviewing in details the supercoset construction of the superstring action in $AdS_5 \\times S^5$, pointing out the limits of this procedure for $AdS_4$ and $AdS_3$ backgrounds. For the $AdS_4 \\times CP^3$ case we give a thorough derivation of an alternative action, based on the double-dimensional reduction of eleven-dimensional super-membranes. We then consider the expansion about the BMN vacuum and the S-matrix for the scattering of worldsheet excitations in the decompactification limit. To evaluate its elements efficiently we describe a unitarity-based method resulting in a very compact formula yielding the cut-constructible part of any one-loop two-dimensional S-matrix. In the second part of this review we analyze the superstring action on $AdS_4 \\ti...

  7. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Astrid

    2011-09-06

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension

  8. Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity

    International Nuclear Information System (INIS)

    In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant FμνFμν from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the β function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension which we find to be negative at the

  9. Ward identities and gauge independence in general chiral gauge theories

    CERN Document Server

    Anselmi, Damiano

    2015-01-01

    Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized $\\Gamma $ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized $\\Gamma $ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on...

  10. String perturbation theory and effective Lagrangians

    International Nuclear Information System (INIS)

    We isolate logarithmic divergences from bosonic string amplitudes on a disc. These divergences are compared with 'tadpole' divergences in the effective field theory with a cosmological term, which also contains an effective potential for the dilation. Also, corrections to β-functions are compared with variations of the effective action. In both cases we find an inconsistency between the two. This is a serious problem which could undermine our ability to remove divergences from the bosonic string

  11. A Perturbative Approach to Fuzzifying Field Theories

    OpenAIRE

    Pinzul, A.; Stern, A.

    2005-01-01

    We propose a procedure for computing noncommutative corrections to the metric tensor, and apply it to scalar field theory written on coordinate patches of smooth manifolds. The procedure involves finding maps to the noncommutative plane where differentiation and integration are easily defined, and introducing a star product. There are star product independent, as well as dependent, corrections. Applying the procedure for two different star products, we find the lowest order fuzzy corrections ...

  12. Perturbed period-doubling bifurcation. I. Theory

    DEFF Research Database (Denmark)

    Svensmark, Henrik; Samuelsen, Mogens Rugholm

    1990-01-01

    -defined way that is a function of the amplitude and the frequency of the signal. New scaling laws between the amplitude of the signal and the detuning δ are found; these scaling laws apply to a variety of quantities, e.g., to the shift of the bifurcation point. It is also found that the stability and the...... of a microwave-driven Josephson junction confirm the theory. Results should be of interest in parametric-amplification studies....

  13. Proton-Proton Weak Capture in Chiral Effective Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Marcucci, Laura Elisa [Pisa U., INFN-Pisa; Schiavilla, Rocco [Old Dominion U., JLAB; Viviani, MIchele [INFN-Pisa

    2013-05-01

    The astrophysical $S$-factor for proton-proton weak capture is calculated in chiral effective field theory over the center-of-mass relative-energy range 0--100 keV. The chiral two-nucleon potential derived up to next-to-next-to-next-to leading order is augmented by the full electromagnetic interaction including, beyond Coulomb, two-photon and vacuum-polarization corrections. The low-energy constants (LEC's) entering the weak current operators are fixed so as to reproduce the $A=3$ binding energies and magnetic moments, and the Gamow-Teller matrix element in tritium $\\beta$ decay. Contributions from $S$ and $P$ partial waves in the incoming two-proton channel are retained. The $S$-factor at zero energy is found to be $S(0)=(4.030 \\pm 0.006)\\times 10^{-23}$ MeV fm$^2$, with a $P$-wave contribution of $0.020\\times 10^{-23}$ MeV fm$^2$. The theoretical uncertainty is due to the fitting procedure of the LEC's and to the cutoff dependence. It is shown that polynomial fits to parametrize the energy dependence of the $S$-factor are inherently unstable.

  14. On the factorization of chiral logarithms in the pion form factors

    CERN Document Server

    Colangelo, Gilberto; Rothen, Lorena; Stucki, Ramon; Tarrus, Jaume

    2012-01-01

    The recently proposed hard-pion chiral perturbation theory predicts that the leading chiral logarithms factorize with respect to the energy dependence in the chiral limit. This claim has been successfully tested in the pion form factors up to two loops in chiral perturbation theory. In the present paper we explain this factorization property at two loops and even show that it is valid to all orders for a subclass of diagrams. We also demonstrate that factorization is violated starting at three loops.

  15. Quasi-degenerate perturbation theory using matrix product states.

    Science.gov (United States)

    Sharma, Sandeep; Jeanmairet, Guillaume; Alavi, Ali

    2016-01-21

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner's 2n + 1 rule. Further, our formulation satisfies Granovsky's requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost. PMID:26801016

  16. Quasi-degenerate perturbation theory using matrix product states

    International Nuclear Information System (INIS)

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost

  17. Quasi-degenerate perturbation theory using matrix product states

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Sandeep, E-mail: sanshar@gmail.com; Jeanmairet, Guillaume [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Alavi, Ali, E-mail: a.alavi@fkf.mpg.de [Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart (Germany); Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW (United Kingdom)

    2016-01-21

    In this work, we generalize the recently proposed matrix product state perturbation theory (MPSPT) for calculating energies of excited states using quasi-degenerate (QD) perturbation theory. Our formulation uses the Kirtman-Certain-Hirschfelder canonical Van Vleck perturbation theory, which gives Hermitian effective Hamiltonians at each order, and also allows one to make use of Wigner’s 2n + 1 rule. Further, our formulation satisfies Granovsky’s requirement of model space invariance which is important for obtaining smooth potential energy curves. Thus, when we use MPSPT with the Dyall Hamiltonian, we obtain a model space invariant version of quasi-degenerate n-electron valence state perturbation theory (NEVPT), a property that the usual formulation of QD-NEVPT2 based on a multipartitioning technique lacked. We use our method on the benchmark problems of bond breaking of LiF which shows ionic to covalent curve crossing and the twist around the double bond of ethylene where significant valence-Rydberg mixing occurs in the excited states. In accordance with our previous work, we find that multi-reference linearized coupled cluster theory is more accurate than other multi-reference theories of similar cost.

  18. The accuracy of QCD perturbation theory at high energies

    CERN Document Server

    Brida, Mattia Dalla; Korzec, Tomasz; Ramos, Alberto; Sint, Stefan; Sommer, Rainer

    2016-01-01

    We discuss the determination of the strong coupling $\\alpha_\\mathrm{\\overline{MS}}^{}(m_\\mathrm{Z})$ or equivalently the QCD $\\Lambda$-parameter. Its determination requires the use of perturbation theory in $\\alpha_s(\\mu)$ in some scheme, $s$, and at some energy scale $\\mu$. The higher the scale $\\mu$ the more accurate perturbation theory becomes, owing to asymptotic freedom. As one step in our computation of the $\\Lambda$-parameter in three-flavor QCD, we perform lattice computations in a scheme which allows us to non-perturbatively reach very high energies, corresponding to $\\alpha_s = 0.1$ and below. We find that perturbation theory is very accurate there, yielding a three percent error in the $\\Lambda$-parameter, while data around $\\alpha_s \\approx 0.2$ is clearly insufficient to quote such a precision. It is important to realize that these findings are expected to be generic, as our scheme has advantageous properties regarding the applicability of perturbation theory.

  19. Perturbative string theory in BRST invariant formalism

    International Nuclear Information System (INIS)

    In this talk we present a constructive and very explicit way of calculating multiloop amplitudes in string theories. The main ingredients are the BRST invariant N String Vertex and the BRST invariant twisted propagator. This approach naturally leads to the Schottky parametrization of moduli space in terms of multipliers and fixed points of the g projective transformations which characterize a Riemann surface of genus g. The complete expression (including measure) of the multiloop corrections to the N String Vertex for the bosonic string is exhibited. (orig.)

  20. Lie transforms and their use in Hamiltonian perturbation theory

    International Nuclear Information System (INIS)

    A review is presented of the theory of Lie transforms as applied to Hamiltonian systems. We begin by presenting some general background on the Hamiltonian formalism and by introducing the operator notation for canonical transformations. We then derive the general theory of Lie transforms. We derive the formula for the new Hamiltonian when one uses a Lie transform to effect a canonical transformation, and we use Lie transforms to prove a very general version of Noether's theorem, or the symmetry-equals-invariant theorem. Next we use the general Lie transform theory to derive Deprit's perturbation theory. We illustrate this perturbation theory by application to two well-known problems in classical mechanics. Finally we present a chapter on conventions. There are many ways to develop Lie transforms. The last chapter explains the reasons for the choices made here

  1. Stationary Perturbation Theory with Spatially Well-separated Potentials

    OpenAIRE

    Kim, Seok; Lee, Choonkyu

    2002-01-01

    We present a new perturbation theory for quantum mechanical energy eigenstates when the potential equals the sum of two localized, but not necessarily weak potentials $V_{1}(\\vec{r})$ and $V_{2}(\\vec{r})$, with the distance $L$ between the respective centers of the two taken to be quite large. It is assumed that complete eigenfunctions of the local Hamiltonians (i.e., in the presence of $V_{1}(\\vec{r})$ or $V_{2}(\\vec{r})$ only) are available as inputs to our perturbation theory. If the two l...

  2. Algebraic perturbation theory for dense liquids with discrete potentials

    OpenAIRE

    Adib, Artur B.

    2006-01-01

    A simple theory for the leading-order correction g_1(r) to the structure of a hard-sphere liquid with discrete (e.g. square-well) potential perturbations is proposed. The theory makes use of a general approximation that effectively eliminates four-particle correlations from g_1(r) with good accuracy at high densities. For the particular case of discrete perturbations, the remaining three-particle correlations can be modeled with a simple volume-exclusion argument, resulting in an algebraic an...

  3. SUSY Ward identities in 1-loop perturbation theory

    International Nuclear Information System (INIS)

    We present preliminary results of a study of the supersymmetric (SUSY) Ward identities (WIs) for the N = 1 SU(2) SUSY Yang-Mills theory in the context of one-loop lattice perturbation theory. The supersymmetry on the lattice is explicitly broken by the gluino mass and the lattice artifacts. However, the renormalization of the supercurrent can be carried out in a scheme that restores the nominal continuum WIs. The perturbative calculation of the renormalization constants and mixing coefficients for the local supercurrent is presented

  4. Chiral Cosmological Models: Dark Sector Fields Description

    CERN Document Server

    Chervon, S V

    2014-01-01

    The present review is devoted to a Chiral Cosmological Model as the self-gravitating nonlinear sigma model with the potential of (self)interactions employed in cosmology. The chiral cosmological model has successive applications in descriptions of the inflationary epoch of the Universe evolution; the present accelerated expansion of the Universe also can be described by the chiral fields multiplet as the dark energy in wide sense. To be more illustrative we are often addressed to the two-component chiral cosmological model. Namely, the two-component chiral cosmological model describing the phantom field with interaction to a canonical scalar field is analyzed in details. New generalized model of quintom character is proposed and exact solutions are founded out. In the review we represented the perturbation theory for chiral cosmological model with the aim to describe the structure formation using the progress achieved in the inflation theory. It was shown that cosmological perturbations from chiral fields can...

  5. Features of a 2d Gauge Theory with Vanishing Chiral Condensate

    OpenAIRE

    Landa-Marbán, David; Bietenholz, Wolfgang; Hip, Ivan

    2013-01-01

    The Schwinger model with $N_f \\geq 2$ flavors is a simple example for a fermionic model with zero chiral condensate Sigma (in the chiral limit). We consider numerical data for two light flavors, based on simulations with dynamical chiral lattice fermions. We test properties and predictions that were put forward in the recent literature for models with Sigma = 0, which include IR conformal theories. In particular we probe the decorrelation of low lying Dirac eigenvalues, and we discuss the mas...

  6. Deuteron Magnetic Quadrupole Moment From Chiral Effective Field Theory

    CERN Document Server

    Liu, C -P; Mereghetti, E; Timmermans, R G E; van Kolck, U

    2012-01-01

    We calculate the magnetic quadrupole moment (MQM) of the deuteron at leading order in the systematic expansion provided by chiral effective field theory. We take into account parity and time-reversal violation which, at the quark-gluon level, results from the QCD vacuum angle and dimension-six operators that originate from physics beyond the Standard Model. We show that the deuteron MQM can be expressed in terms of five low-energy constants that appear in the parity- and time-reversal-violating nuclear potential and electromagnetic current, four of which also contribute to the electric dipole moments of light nuclei. We conclude that the deuteron MQM has an enhanced sensitivity to the QCD vacuum angle and that its measurement would be complementary to the proposed measurements of light-nuclear EDMs.

  7. Calculation of Doublet Capture Rate for Muon Capture in Deuterium within Chiral Effective Field Theory

    CERN Document Server

    Adam, J; Tater, M; Truhlik, E; Epelbaum, E; Machleidt, R; Ricci, P

    2011-01-01

    The doublet capture rate of the negative muon capture in deuterium is calculated employing the nuclear wave functions generated from accurate nucleon-nucleon potentials constructed at next-to-next-to-next-to-leading order of heavy-baryon chiral perturbation theory and the weak meson exchange current operator derived within the same formalism. All but one of the low-energy constants that enter the calculation were fixed from pion-nucleon and nucleon-nucleon scattering data. The low-energy constant d^R (c_D), which cannot be determined from the purely two-nucleon data, was extracted recently from the triton beta-decay and the binding energies of the three-nucleon systems. The calculated values of the doublet capture rates show a rather large spread for the used values of the d^R. Precise measurement of the doublet capture rate in the future will not only help to constrain the value of d^R, but also provide a highly nontrivial test of the nuclear chiral EFT framework. Besides, the precise knowledge of the consta...

  8. Simple perturbative renormalization scheme for supersymmetric gauge theories

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E. (Purdue Univ., Lafayette, IN (USA). Dept. of Physics)

    1983-06-30

    We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of ((p+q)/..delta..)/sup -/delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, ..lambda.. is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously.

  9. A simple perturbative renormalization scheme for supersymmetric gauge theories

    International Nuclear Information System (INIS)

    We show that the manifestly supersymmetric and gauge-invariant results of Supersymmetric Dimensional renormalization (SDR) are reproduceable through a simple, and mathematically consistent perturbative renormalization technique, where regularization is attained via a map that deforms the momentum space Feynman integrands in a specific way. In particular, it introduces a multiplicative factor of [(p+q)/δ]-delta in each momentum-space loop integral, where p is the magnitude of the loop momentum, q is an arbitrary constant to be chosen as will be explained, thus compensating for loss of translation invariance in p, #betta# is a renormalization mass, and delta is a suitable non-integer: the analog of epsilon in dimensional schemes. All Dirac algebra and integration are four-dimensional, and renormalization is achieved by subtracting poles in delta, followed by setting delta->O. The mathematical inconsistencies of SDR are evaded by construction, since the numbers of fermion and boson degrees of freedom remain unchanged but analytic continuation in the number of dimensions is bypassed. Thus, the technique is equally viable in component and in superfield formalisms, and all anomalies are realized. The origin of the chiral anomaly is that no choice of q satisfies both gauge and chiral Ward identities simultaneously. (orig.)

  10. Dirac's hole theory versus field theory for a time dependent perturbation

    OpenAIRE

    Solomon, Dan

    2003-01-01

    Dirac's hole theory (HT) and quantum field theory (QFT) are generally considered to be equivalent to each other. However, it has been recently shown that for a time independent perturbation different results are obtained when the change in the vacuum energy is calculated. Here we shall extend this discussion to include a time dependent perturbation. It will be shown that HT and QFT yield different results for the change in the vacuum energy due to a time dependent perturbation.

  11. Tensor perturbations in a general class of Palatini theories

    CERN Document Server

    Jiménez, Jose Beltrán; Olmo, Gonzalo J

    2015-01-01

    We study a general class of gravitational theories formulated in the Palatini approach and derive the equations governing the evolution of tensor perturbations. In the absence of torsion, the connection can be solved as the Christoffel symbols of an auxiliary metric which is non-trivially related to the space-time metric. We then consider background solutions corresponding to a perfect fluid and show that the tensor perturbations equations (including anisotropic stresses) for the auxiliary metric around such a background take an Einstein-like form. This facilitates the study in a homogeneous and isotropic cosmological scenario where we explicitly establish the relation between the auxiliary metric and the space-time metric tensor perturbations. As a general result, we show that both tensor perturbations coincide in the absence of anisotropic stresses.

  12. Energy level distribution of perturbed conformal field theories

    International Nuclear Information System (INIS)

    We study the energy level spacing of perturbed conformal minimal models in finite volume, considering perturbations of such models that are massive but not necessarily integrable. We compute their spectrum using a renormalization group improved truncated conformal spectrum approach. With this method we are able to study systems where more than 40 000 states are kept and where we determine the energies of the lowest several thousand eigenstates with high accuracy. We find, as expected, that the level spacing statistics of integrable perturbed minimal models are Poissonian while the statistics of non-integrable perturbations are GOE-like. However, by varying the system size (and so controlling the positioning of the theory between its IR and UV limits) one can induce crossovers between the two statistical distributions

  13. Non-perturbative aspects of string theory from elliptic curves

    Energy Technology Data Exchange (ETDEWEB)

    Reuter, Jonas

    2015-08-15

    We consider two examples for non-perturbative aspects of string theory involving elliptic curves. First, we discuss F-theory on genus-one fibered Calabi-Yau manifolds with the fiber being a hypersurface in a toric fano variety. We discuss in detail the fiber geometry in order to find the gauge groups, matter content and Yukawa couplings of the corresponding supergravity theories for the four examples leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z{sub 2}, U(1) and Z{sub 3}. The theories are connected by Higgsings on the field theory side and conifold transitions on the geometry side. We extend the discussion to the network of Higgsings relating all theories stemming from the 16 hypersurface fibrations. For the models leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z{sub 2} and U(1) we discuss the construction of vertical G{sub 4} fluxes. Via the D3-brane tadpole cancelation condition we can restrict the minimal number of families in the first two of these models to be at least three. As a second example for non-perturbative aspects of string theory we discuss a proposal for a non-perturbative completion of topological string theory on local B-model geometries. We discuss in detail the computation of quantum periods for the examples of local F{sub 1}, local F{sub 2} and the resolution of C{sub 3}/Z{sub 5}. The quantum corrections are calculated order by order using second order differential operators acting on the classical periods. Using quantum geometry we calculate the refined free energies in the Nekrasov-Shatashvili limit. Finally we check the non-perturbative completion of topological string theory for the geometry of local F{sub 2} against numerical calculations.

  14. Non-perturbative aspects of string theory from elliptic curves

    International Nuclear Information System (INIS)

    We consider two examples for non-perturbative aspects of string theory involving elliptic curves. First, we discuss F-theory on genus-one fibered Calabi-Yau manifolds with the fiber being a hypersurface in a toric fano variety. We discuss in detail the fiber geometry in order to find the gauge groups, matter content and Yukawa couplings of the corresponding supergravity theories for the four examples leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z2, U(1) and Z3. The theories are connected by Higgsings on the field theory side and conifold transitions on the geometry side. We extend the discussion to the network of Higgsings relating all theories stemming from the 16 hypersurface fibrations. For the models leading to gauge groups SU(3) x SU(2) x U(1), SU(4) x SU(2) x SU(2)/Z2 and U(1) we discuss the construction of vertical G4 fluxes. Via the D3-brane tadpole cancelation condition we can restrict the minimal number of families in the first two of these models to be at least three. As a second example for non-perturbative aspects of string theory we discuss a proposal for a non-perturbative completion of topological string theory on local B-model geometries. We discuss in detail the computation of quantum periods for the examples of local F1, local F2 and the resolution of C3/Z5. The quantum corrections are calculated order by order using second order differential operators acting on the classical periods. Using quantum geometry we calculate the refined free energies in the Nekrasov-Shatashvili limit. Finally we check the non-perturbative completion of topological string theory for the geometry of local F2 against numerical calculations.

  15. Perturbative Quantum Gravity and its Relation to Gauge Theory

    Directory of Open Access Journals (Sweden)

    Bern Zvi

    2002-01-01

    Full Text Available In this review we describe a non-trivial relationship between perturbative gauge theory and gravity scattering amplitudes. At the semi-classical or tree-level, the scattering amplitudes of gravity theories in flat space can be expressed as a sum of products of well defined pieces of gauge theory amplitudes. These relationships were first discovered by Kawai, Lewellen, and Tye in the context of string theory, but hold more generally. In particular, they hold for standard Einstein gravity. A method based on $D$-dimensional unitarity can then be used to systematically construct all quantum loop corrections order-by-order in perturbation theory using as input thegravity tree amplitudes expressed in terms of gauge theory ones. More generally, the unitarity method provides a means for perturbatively quantizing massless gravity theories without the usual formal apparatus associated with the quantization of constrained systems. As one application, this method was used to demonstrate that maximally supersymmetric gravity is less divergent in the ultraviolet than previously thought.

  16. Effective gravitational couplings for cosmological perturbations in generalized Proca theories

    Science.gov (United States)

    De Felice, Antonio; Heisenberg, Lavinia; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li

    2016-08-01

    We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lemaître-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to nontrivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling Geff with matter density perturbations under a quasistatic approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility for reducing Geff. In fact, within the parameter space, Geff can be even smaller than the Newton gravitational constant G at the late cosmological epoch, with a peculiar phantom dark energy equation of state (without ghosts). The modifications to the slip parameter η and the evolution of the growth rate f σ8 are discussed as well. Thus, dark energy models in the framework of generalized Proca theories can be observationally distinguished from the Λ CDM model according to both cosmic growth and expansion history. Furthermore, we study the evolution of vector perturbations and show that outside the vector sound horizon the perturbations are nearly frozen and start to decay with oscillations after the horizon entry.

  17. Many-body perturbation procedure for energy-dependent perturbation: Merging many-body perturbation theory with QED

    OpenAIRE

    Lindgren, Ingvar; Salomonson, Sten; Hedendahl, Daniel

    2006-01-01

    A formalism for energy-dependent many-body perturbation theory (MBPT), previously indicated in our recent review articles (Lindgren et al., Phys.Rep. 389,161(2004), Can.J.Phys. 83,183(2005)), is developed in more detail. The formalism allows for a mixture of energy-dependent (retarded) and energy-independent (instantaneous) interactions and hence for a merger of QED and standard (relativistic) MBPT. This combination is particularly important for light elements, such as light heliumlike ions, ...

  18. Variational perturbation theory and nonperturbative calculations in QCD

    Science.gov (United States)

    Solovtsova, O. P.

    2013-10-01

    A nonperturbative approach based on the variational perturbation theory in quantum chromodynamics is developed. The variational series is different from the conventional perturbative expansion and can be used to go beyond the weak-coupling regime. The approach suggested takes into account the summation of threshold singularities and the involvement of nonperturbative light quark masses. Phenomenological applications of this approach to describe physical quantities connected with the hadronic τ-decay data: the R τ ratio, the light-quark Adler function, and the smeared R Δ function are presented. The description of examined quantities includes an infrared region and, therefore, they cannot be directly calculated within the standard perturbation theory. It is shown that in spite of this fact the approach suggested gives a rather good result for these quantities down to the lowest energy scale.

  19. An improved thermodynamic perturbation theory for Mercedes-Benz water

    Science.gov (United States)

    Urbic, T.; Vlachy, V.; Kalyuzhnyi, Yu. V.; Dill, K. A.

    2007-11-01

    We previously applied Wertheim's thermodynamic perturbation theory for associative fluids to the simple Mercedes-Benz model of water. We found that the theory reproduced well the physical properties of hot water, but was less successful in capturing the more structured hydrogen bonding that occurs in cold water. Here, we propose an improved version of the thermodynamic perturbation theory in which the effective density of the reference system is calculated self-consistently. The new theory is a significant improvement, giving good agreement with Monte Carlo simulations of the model, and predicting key anomalies of cold water, such as minima in the molar volume and large heat capacity, in addition to giving good agreement with the isothermal compressibility and thermal expansion coefficient.

  20. Thermal Quantum Field Theory and Perturbative Non-Equilibrium Dynamics

    OpenAIRE

    Millington, Peter William

    2012-01-01

    In this thesis, we develop a perturbative formulation of non-equilibrium thermalquantum field theory, capable of describing the evolution of both temporal and spa-tial inhomogeneities in relativistic, quantum-statistical ensembles. We begin with areview of the necessary prerequisites from classical thermodynamics, classical andquantum statistical mechanics, quantum field theory and equilibrium thermal fieldtheory. Setting general boundary conditions on the ensemble expectation values ofproduc...

  1. Perturbative BV theories with Segal-like gluing

    CERN Document Server

    Cattaneo, Alberto S; Reshetikhin, Nicolai

    2016-01-01

    This is a survey of our program of perturbative quantization of gauge theories on manifolds with boundary compatible with cutting/pasting and with gauge symmetry treated by means of a cohomological resolution (Batalin-Vilkovisky) formalism. We also give two explicit quantum examples -- abelian BF theory and the Poisson sigma model. This exposition is based on a talk by P.M. at the ICMP 2015 in Santiago de Chile.

  2. Periods and Hodge structures in perturbative quantum field theory

    OpenAIRE

    Weinzierl, Stefan

    2013-01-01

    There is a fruitful interplay between algebraic geometry on the one side and perturbative quantum field theory on the other side. I review the main relevant mathematical concepts of periods, Hodge structures and Picard-Fuchs equations and discuss the connection with Feynman integrals.

  3. Chiral nucleon-nucleon forces in nuclear structure calculations

    Directory of Open Access Journals (Sweden)

    Coraggio L.

    2016-01-01

    Full Text Available Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  4. Chiral nucleon-nucleon forces in nuclear structure calculations

    CERN Document Server

    Coraggio, L; Holt, J W; Itaco, N; Machleidt, R; Marcucci, L E; Sammarruca, F

    2016-01-01

    Realistic nuclear potentials, derived within chiral perturbation theory, are a major breakthrough in modern nuclear structure theory, since they provide a direct link between nuclear physics and its underlying theory, namely the QCD. As a matter of fact, chiral potentials are tailored on the low-energy regime of nuclear structure physics, and chiral perturbation theory provides on the same footing two-nucleon forces as well as many-body ones. This feature fits well with modern advances in ab-initio methods and realistic shell-model. Here, we will review recent nuclear structure calculations, based on realistic chiral potentials, for both finite nuclei and infinite nuclear matter.

  5. Microscopic Dirac Spectrum in a 2d Gauge Theory with Zero Chiral Condensate

    OpenAIRE

    Bietenholz, Wolfgang; Hip, Ivan; Landa-Marbán, David

    2013-01-01

    Fermionic theories with a vanishing chiral condensate (in the chiral limit) have recently attracted considerable interest; in particular variants of multi-flavour QCD are candidates for this behaviour. Here we consider the 2-flavour Schwinger model as a simple theory with this property. Based on simulations with light dynamical overlap fermions, we test the hypothesis that in such models the low lying Dirac eigenvalues could be decorrelated. That has been observed in 4d Yang-Mills theories at...

  6. Mathematical Derivation of Chiral Anomaly in Lattice Gauge Theory with Wilson's Action

    CERN Document Server

    Hattori, T G; Hattori, Tetsuya; Watanabe, Hiroshi

    1998-01-01

    Chiral U(1) anomaly is derived with mathematical rigor for a Euclidean fermion coupled to a smooth external U(1) gauge field on an even dimensional torus as a continuum limit of lattice regularized fermion field theory with the Wilson term in the action. The present work rigorously proves for the first time that the Wilson term correctly reproduces the chiral anomaly.

  7. Renormalization Group And Pade Applications To Perturbative And Non-perturbative Quantum Field Theory

    CERN Document Server

    Chishtie, F A

    2002-01-01

    Pade approximants (PA) have been widely applied in practically all areas of physics. This thesis focuses on developing PA as tools for both perturbative and non- perturbative quantum field theory (QFT). In perturbative QFT, we systematically estimate higher (unknown) loop terms via the asymptotic formula devised by Samuel et al. This algorithm, generally denoted as the asymptotic Pade approximation procedure (APAP), has greatly enhanced scope when it is applied to renormalization-group-(RG-) invariant quantities. A presently-unknown higher-loop quantity can then be matched with the approximant over the entire momentum region of phenomenological interest. Furthermore, the predicted value of the RG coefficients can be compared with the RG-accessible coefficients (at the higher-loop order), allowing a clearer indication of the accuracy of the predicted RG-inaccessible term. This methodology is applied to hadronic Higgs decay rates (H → bb¯ and H → gg, both within the Standard Model and...

  8. Singular perturbation theory for interacting fermions in two dimensions

    International Nuclear Information System (INIS)

    We consider a system of interacting fermions in two dimensions beyond the second-order perturbation theory in the interaction. It is shown that the mass-shell singularities in the self-energy, arising already at the second order of the perturbation theory, manifest a nonperturbative effect: an interaction with the zero-sound mode. Resuming the perturbation theory for a weak, short-range interaction and accounting for a finite curvature of the fermion spectrum, we eliminate the singularities and obtain the results for the quasi-particle self-energy and the spectral function to all orders in the interaction with the zero-sound mode. A threshold for emission of zero-sound waves leads a non-monotonic variation of the self-energy with energy (or momentum) near the mass shell. Consequently, the spectral function has a kink-like feature. We also study in detail a non-analytic temperature dependence of the specific heat, C(T) ∝T2. It turns out that although the interaction with the collective mode results in an enhancement of the fermion self-energy, this interaction does not affect the non-analytic term in C(T) due to a subtle cancellation between the contributions from the real and imaginary parts of the self-energy. For a short-range and weak interaction, this implies that the second-order perturbation theory suffices to determine the non-analytic part of C(T). We also obtain a general form of the non-analytic term in C(T), valid for the case of a generic Fermi liquid, i.e., beyond the perturbation theory. (author)

  9. S-matrices for perturbations of certain conformal field theories

    International Nuclear Information System (INIS)

    We present a family of factorizable S-matrix theories in 1+1 dimensions with an arbitrary number N of particles of distinct masses, and find the conservation laws of these theories. An analysis of the conservation laws of the family of nonunitary CFTs with central charge c=c2,2N+3=-2N(6N+5)/(2N+3) perturbed by the φ(1,3) operator, leads us to conjecture the identification of these perturbed CFTs with the S-matrix theories we found. The case N=1 was treated by Cardy and Mussardo. We also present the S-matrix of an E7-related unitary model. (orig.)

  10. Time-dependent perturbation theories using normal forms

    International Nuclear Information System (INIS)

    A time-dependent perturbation theory based on normal from techniques is studies within a rigorous Hilbert space formalism in the context of Schroedinger initial value problems associate with Hamiltonians having time-dependent perturbations to arrived at approximations that deviate in norm from the exact solution by a term of order εm+1t provided the initial vector is restricted to an appropriate linear submanifold. This new method of approximations is compared with other method described previously by the present author. It turns out that operators involved in the new method have simpler construction. Computation aspects of normal from theory are the main goal of this paper. The theory is applied to the one-dimensional quantum-mechanical harmonic oscillator coupled via a quasiperiodic interaction which initially is 4εq4 where q is the position operator, to obtain an explicit construction of second-order approximation

  11. The dark matter dispersion tensor in perturbation theory

    CERN Document Server

    Aviles, Alejandro

    2015-01-01

    We compute the dark matter velocity dispersion tensor up to third order in perturbation theory using the Lagrangian formalism, revealing growing solutions at the third and higher orders. Our results are general and can be used for any other perturbative formalism. As an application, corrections to the matter power spectrum are calculated, we find that some of them have the same structure as those in the effective field theory of large-scale structure, with "EFT-like" coefficients that grows quadratically with the linear growth function and are further suppressed by powers of the logarithmic linear growth factor $f$; other corrections present additional $k$ dependences. Due to the velocity dispersions, there exist a free-streaming scale that suppresses the whole 1-loop power spectrum. Furthermore, we find that as a consequence of the nonlinear evolution, the free-streaming length is shifted towards larger scales, wiping out more structure than the expected in linear theory. Therefore, we argue that the formali...

  12. Cosmological perturbation theory at three-loop order

    Energy Technology Data Exchange (ETDEWEB)

    Blas, Diego [European Organization for Nuclear Research (CERN), Geneva (Switzerland); Garny, Mathias; Konstandin, Thomas [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2013-09-15

    We analyze the dark matter power spectrum at three-loop order in standard perturbation theory of large scale structure. We observe that at late times the loop expansion does not converge even for large scales (small momenta) well within the linear regime, but exhibits properties compatible with an asymptotic series. We propose a technique to restore the convergence in the limit of small momentum, and use it to obtain a perturbative expansion with improved convergence for momenta in the range where baryonic acoustic oscillations are present. Our results are compared with data from N-body simulations at different redshifts, and we find good agreement within this range.

  13. Perturbation and sensitivity theory for reactor burnup analysis

    International Nuclear Information System (INIS)

    Perturbation theory is developed for the nonlinear burnup equations describing the time-dependent behavior of the neutron and nuclide fields in a reactor core. General aspects of adjoint equations for nonlinear systems are first discussed and then various approximations to the burnup equations are rigorously derived and their areas for application presented. In particular, the concept of coupled neutron/nuclide fields (in which perturbations in either the neutron or nuclide field are allowed to influence the behavior of the other field) is contrasted to the uncoupled approximation

  14. Theory and spectroscopy of parity violation in chiral molecules

    International Nuclear Information System (INIS)

    Full text: Parity violation plays a crucial role in the 'Standard Model of Particle Physics' and according to current understanding it has crucial connections to fundamental symmetry violations in general and to such fundamental phenomena as the existence of mass of the elementary particles. In chemistry, one important consequence is a 'parity violating energy difference' ΔPVE of the ground state energies of enantiomers of chiral molecules, corresponding to a non zero enthalpy of stereomutation or enantiomerization ΔRH00 = NAΔPVE, which would be exactly zero if perfect inversion symmetry were true. An experiment to measure this very small energy difference in the sub-femto-eV (or atto-eV) range, typically, has been proposed some time ago. Recent improved theory predicts parity violating potentials to be larger by about two orders of magnitude for the prototype compound H2O2 and related molecules, as compared to older theories, and this large increase has been confirmed by subsequent independent theoretical results in several groups. Thus the prospects for successful experiments look brighter today than ever before. In the lecture we will discuss the current status of the field and report in some detail on the various spectroscopic approaches, which can be used, as well as the current challenges of these experiments. If time permits, even more fundamental symmetry violations such as CP and CPT violation will be discussed. (author)

  15. Invariant exchange perturbation theory for multicenter systems: Time-dependent perturbations

    International Nuclear Information System (INIS)

    A formalism of exchange perturbation theory (EPT) is developed for the case of interactions that explicitly depend on time. Corrections to the wave function obtained in any order of perturbation theory and represented in an invariant form include exchange contributions due to intercenter electron permutations in complex multicenter systems. For collisions of atomic systems with an arbitrary type of interaction, general expressions are obtained for the transfer (T) and scattering (S) matrices in which intercenter electron permutations between overlapping nonorthogonal states belonging to different centers (atoms) are consistently taken into account. The problem of collision of alpha particles with lithium atoms accompanied by the redistribution of electrons between centers is considered. The differential and total charge-exchange cross sections of lithium are calculated

  16. A finite element formulation for perturbation theory calculations

    International Nuclear Information System (INIS)

    Full text: When the introduced change in the configuration of a nuclear system is neutronically not too significant, the use of the perturbation theory approximation ('the perturbation theory method' or PTM) is usually considered as an alternative to the recalculation of the effective multiplication factor (Keff) of the modified system ('the diffusion theory method' or DTM) for the determination of the ensuing change in reactivity. In the DTM, the change in reactivity due to the introduced change can be calculated by the multigroup diffusion theory by performing two Keff determinations, one for the original and one for the modified system. The accuracy of this method is only limited by the approximations inherent in the multigroup diffusion theory and the numerical method employed for its solution. The error stemming from the numerical approximation can be nearly eliminated by utilizing a fine enough spatial mesh ad an 'exact' solution is nearly possible. Its basic disadvantage relative to the PTM is the necessity of a new Keff calculation for every change in the configuration no matter how small. On the other hand, if we use PTM, with an only one-time calculation of the flux and the adjoint flux of the original system, the change in reactivity due to any kind of perturbation can be approximately calculated using the changes in the cross section data in the perturbation theory reactivity formula. The accuracy of the PTM is restricted by the size and location of the induced change. In this work, our aim is to assess the accuracy of PTM relative to the DTM and determine criteria for the justification of its use. For all required solutions of the normal and adjoint multigroup diffusion equations, we choose the finite element method (FEM) as our numerical method and a 1-D cylindrical geometry model. The underlying theory is implemented in our FORTRAN program PERTURB. The validation of PERTURB is carried out via comparisons with analytical solutions for bare and

  17. Introduction to non-perturbative heavy quark effective theory

    International Nuclear Information System (INIS)

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti Λ and λ1 lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m)n+1 if the theory was treated including (1/m)n terms. Clearly, the weakest point of HQET is that it intrinsically is an expansion. In practise, carrying it out

  18. Introduction to non-perturbative heavy quark effective theory

    Energy Technology Data Exchange (ETDEWEB)

    Sommer, R. [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2010-08-15

    My lectures on the effective field theory for heavy quarks, an expansion around the static limit, concentrate on the motivation and formulation of HQET, its renormalization and discretization. This provides the basis for understanding that and how this effective theory can be formulated fully non-perturbatively in the QCD coupling, while by the very nature of an effective field theory, it is perturbative in the expansion parameter 1/m. After the couplings in the effective theory have been determined, the result at a certain order in 1/m is unique up to higher order terms in 1/m. In particular the continuum limit of the lattice regularized theory exists and leaves no trace of how it was regularized. In other words, the theory yields an asymptotic expansion of the QCD observables in 1/m - as usual in a quantum field theory modified by powers of logarithms. None of these properties has been shown rigorously (e.g. to all orders in perturbation theory) but perturbative computations and recently also non-perturbative lattice results give strong support to this ''standard wisdom''. A subtle issue is that a theoretically consistent formulation of the theory is only possible through a non-perturbative matching of its parameters with QCD at finite values of 1/m. As a consequence one finds immediately that the splitting of a result for a certain observable into, for example, lowest order and first order is ambiguous. Depending on how the matching between effective theory and QCD is done, a first order contribution may vanish and appear instead in the lowest order. For example, the often cited phenomenological HQET parameters anti {lambda} and {lambda}{sub 1} lack a unique non-perturbative definition. But this does not affect the precision of the asymptotic expansion in 1/m. The final result for an observable is correct up to order (1/m){sup n+1} if the theory was treated including (1/m){sup n} terms. Clearly, the weakest point of HQET is that it

  19. Ward identities and gauge independence in general chiral gauge theories

    Science.gov (United States)

    Anselmi, Damiano

    2015-07-01

    Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized Γ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized Γ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters, although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order calculations based on gauge independence and determine how powerful they are.

  20. Nucleon electromagnetic form factors on the lattice and in chiral effective field theory

    International Nuclear Information System (INIS)

    We compute the electromagnetic form factors of the nucleon in quenched lattice QCD, using nonperturbatively improved Wilson fermions, and compare the results with phenomenology and chiral effective field theory

  1. Symmetry energy, neutron skin, and neutron star radius from chiral effective field theory interactions

    OpenAIRE

    Hebeler, K.; Schwenk, A.

    2014-01-01

    We discuss neutron matter calculations based on chiral effective field theory interactions and their predictions for the symmetry energy, the neutron skin of 208 Pb, and for the radius of neutron stars.

  2. Power counting for nuclear forces in chiral effective field theory

    CERN Document Server

    Long, Bingwei

    2016-01-01

    The present note summarizes the discourse on power counting issues of chiral nuclear forces, with an emphasis on renormalization-group invariance. Given its introductory nature, I will lean toward narrating a coherent point of view on the concepts, rather than covering comprehensively the development of chiral nuclear forces in different approaches.

  3. Generalized perturbation theory in DRAGON: application to CANDU cell calculations

    International Nuclear Information System (INIS)

    Generalized perturbation theory (GPT) in neutron transport is a means to evaluate eigenvalue and reaction rate variations due to small changes in the reactor properties (macroscopic cross sections). These variations can be decomposed in two terms: a direct term corresponding to the changes in the cross section themselves and an indirect term that takes into account the perturbations in the neutron flux. As we will show, taking into account the indirect term using a GPT method is generally straight forward since this term is the scalar product of the unperturbed generalized adjoint with the product of the variation of the transport operator and the unperturbed flux. In the case where the collision probability (CP) method is used to solve the transport equation, evaluating the perturbed transport operator involves calculating the variations in the CP matrix for each change in the reactor properties. Because most of the computational effort is dedicated to the CP matrix calculation the gains expected form the GPT method would therefore be annihilated. Here we will present a technique to approximate the variations in the CP matrices thereby replacing the variations in the transport operator with source term variations. We will show that this approximation yields errors fully compatible with the standard generalized perturbation theory errors. Results for 2D CANDU cell calculations will be presented. (author)

  4. Perturbations of single-field inflation in modified gravity theory

    Directory of Open Access Journals (Sweden)

    Taotao Qiu

    2015-05-01

    Full Text Available In this paper, we study the case of single field inflation within the framework of modified gravity theory where the gravity part has an arbitrary form f(R. Via a conformal transformation, this case can be transformed into its Einstein frame where it looks like a two-field inflation model. However, due to the existence of the isocurvature modes in such a multi-degree-of-freedom (m.d.o.f. system, the (curvature perturbations are not equivalent in two frames, so despite of its convenience, it is illegal to treat the perturbations in its Einstein frame as the “real” ones as we always do for pure f(R theory or single field with nonminimal coupling. Here by pulling the results of curvature perturbations back into its original Jordan frame, we show explicitly the power spectrum and spectral index of the perturbations in the Jordan frame, as well as how it differs from the Einstein frame. We also fit our results with the newest Planck data. Since there is large parameter space in these models, we show that it is easy to fit the data very well.

  5. Perturbative algebraic quantum field theory an introduction for mathematicians

    CERN Document Server

    Rejzner, Kasia

    2016-01-01

    Perturbative Algebraic Quantum Field Theory (pAQFT), the subject of this book, is a complete and mathematically rigorous treatment of perturbative quantum field theory (pQFT) that doesn’t require the use of divergent quantities. We discuss in detail the examples of scalar fields and gauge theories and generalize them to QFT on curved spacetimes. pQFT models describe a wide range of physical phenomena and have remarkable agreement with experimental results. Despite this success, the theory suffers from many conceptual problems. pAQFT is a good candidate to solve many, if not all of these conceptual problems. Chapters 1-3 provide some background in mathematics and physics. Chapter 4 concerns classical theory of the scalar field, which is subsequently quantized in chapters 5 and 6. Chapter 7 covers gauge theory and chapter 8 discusses QFT on curved spacetimes and effective quantum gravity. The book aims to be accessible researchers and graduate students interested in the mathematical foundations of pQFT are th...

  6. Perturbative expansion in gauge theories on compact manifolds

    CERN Document Server

    Adams, D H

    1996-01-01

    A geometric formal method for perturbatively expanding functional integrals arising in quantum gauge theories is described when the spacetime is a compact riemannian manifold without boundary. This involves a refined version of the Faddeev-Popov procedure using a generalised Lorentz gauge-fixing condition with background gauge field chosen to be a general critical point for the action functional. The refinement takes into account the gauge-fixing ambiguities coming from gauge transformations which leave the critical point unchanged, resulting in the absence of infrared divergences when the critical point is isolated modulo gauge transformations. The procedure can be carried out using only the subgroup of gauge transformations which are topologically trivial, possibly avoiding the usual problems which arise due to gauge-fixing ambiguities. For Chern-Simons gauge theory the method enables the partition function to be perturbatively expanded for a number of simple spacetime manifolds such as S^3 and lens spaces,...

  7. Perturbation theory and nonperturbative effects: a happy marriage?

    International Nuclear Information System (INIS)

    Perturbation expansions in renormalized quantum theories are reformulated in a way that permits a straightforward handling of situations when in the conventional approach, i.e. in fixed renormalization scheme, these expansions are factorially divergent and even of asymptotically constant sign. The result takes the form of convergent (under certain circumstances) expansions in a set of functions Zk(a,χ) of the couplant and the free parameter χ specifies the procedure involved. The value of χ is shown to be correlated to the basic properties of nonperturbative effects as embodied in power corrections. A close connection of this procedure to the Borel summation technique is demonstrated and its relation to conventional perturbation theory in fixed renormalization schemes elucidated. (author) 3 figs., 17 refs

  8. Perturbation Theory in Supersymmetric QED: Infrared Divergences and Gauge Invariance

    CERN Document Server

    Dine, Michael; Haber, Howard E; Haskins, Laurel Stephenson

    2016-01-01

    We study some aspects of perturbation theory in $N=1$ supersymmetric abelian gauge theories with massive charged matter. In general gauges, infrared (IR) divergences and nonlocal behavior arise in 1PI diagrams, associated with a $1/k^4$ term in the propagator for the vector superfield. We examine this structure in supersymmetric QED. The IR divergences are gauge-dependent and must cancel in physical quantities like the electron pole mass. We demonstrate that cancellation takes place in a nontrivial way, amounting to a reorganization of the perturbative series from powers of $e^2$ to powers of $e$. We also show how these complications are avoided in cases where a Wilsonian effective action can be defined.

  9. Calculation of exchange energies using algebraic perturbation theory

    International Nuclear Information System (INIS)

    An algebraic perturbation theory is presented for efficient calculations of localized states and hence of exchange energies, which are the differences between low-lying states of the valence electron of a molecule, formed by the collision of an ion Y+ with an atom X. For the case of a homonuclear molecule these are the gerade and ungerade states and the exchange energy is an exponentially decreasing function of the internuclear distance. For such homonuclear systems the theory is used in conjunction with the Herring-Holstein technique to give accurate exchange energies for a range of intermolecular separations R. Since the perturbation parameter is essentially 1/R, this method is suitable for large R. In particular, exchange energies are calculated for X2+ systems, where X is H, Li, Na, K, Rb, or Cs.

  10. On the non-linear scale of cosmological perturbation theory

    International Nuclear Information System (INIS)

    We discuss the convergence of cosmological perturbation theory. We prove that the polynomial enhancement of the non-linear corrections expected from the effects of soft modes is absent in equal-time correlators like the power or bispectrum. We first show this at leading order by resumming the most important corrections of soft modes to an arbitrary skeleton of hard fluctuations. We derive the same result in the eikonal approximation, which also allows us to show the absence of enhancement at any order. We complement the proof by an explicit calculation of the power spectrum at two-loop order, and by further numerical checks at higher orders. Using these insights, we argue that the modification of the power spectrum from soft modes corresponds at most to logarithmic corrections at any order in perturbation theory. Finally, we discuss the asymptotic behavior in the large and small momentum regimes and identify the expansion parameter pertinent to non-linear corrections

  11. Inflationary perturbation theory is geometrical optics in phase space

    CERN Document Server

    Seery, David; Frazer, Jonathan; Ribeiro, Raquel H

    2012-01-01

    A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ("transport equations"), analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar "delta N" Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, zeta, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of fNL in terms of the principal curvatures of uniform e...

  12. Inflationary perturbation theory is geometrical optics in phase space

    Science.gov (United States)

    Seery, David; Mulryne, David J.; Frazer, Jonathan; Ribeiro, Raquel H.

    2012-09-01

    A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ("transport equations"), analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar "δN" Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, ζ, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of fNL in terms of the principal curvatures of uniform energy-density hypersurfaces in field space.

  13. Tritium $\\beta$-decay in chiral effective field theory

    CERN Document Server

    Baroni, A; Kievsky, A; Marcucci, L E; Schiavilla, R; Viviani, M

    2016-01-01

    We evaluate the Fermi and Gamow-Teller (GT) matrix elements in tritium \\beta-decay by including in the charge-changing weak current the corrections up to one loop recently derived in nuclear chiral effective field theory (\\chi EFT). The trinucleon wave functions are obtained from hyperspherical-harmonics solutions of the Schrodinger equation with two- and three-nucleon potentials corresponding to either \\chi EFT (the N3LO/N2LO combination) or meson-exchange phenomenology (the AV18/UIX combination). We find that contributions due to loop corrections in the axial current are, in relative terms, as large as (and in some cases, dominate) those from one-pion exchange, which nominally occur at lower order in the power counting. We also provide values for the low-energy constants multiplying the contact axial current and three-nucleon potential, required to reproduce the experimental GT matrix element and trinucleon binding energies in the N3LO/N2LO and AV18/UIX calculations.

  14. Taming singularities of the diagrammatic many-body perturbation theory

    OpenAIRE

    Pavlyukh, Yaroslav; Berakdar, Jamal; Rubio, Angel

    2016-01-01

    In a typical scenario the diagrammatic many-body perturbation theory generates asymptotic series. Despite non-convergence, the asymptotic expansions are useful when truncated to a finite number of terms. This is the reason for popularity of leading-order methods such as $GW$ approximation in condensed matter, molecular and atomic physics. Emerging higher-order implementations suffer from the appearance of nonsimple poles in the frequency-dependent Green's functions and negative spectral densi...

  15. Lectures on Non Perturbative Field Theory and Quantum Impurity Problems

    OpenAIRE

    Saleur, H.

    1998-01-01

    These are lectures presented at the Les Houches Summer School ``Topology and Geometry in Physics'', July 1998. They provide a simple introduction to non perturbative methods of field theory in 1+1 dimensions, and their application to the study of strongly correlated condensed matter problems - in particular quantum impurity problems. The level is moderately advanced, and takes the student all the way to the most recent progress in the field: many exercises and additional references are provid...

  16. The Adler Function for Light Quarks in Analytic Perturbation Theory

    OpenAIRE

    Milton, K. A.; Solovtsov, I. L.; Solovtsova, O. P.

    2001-01-01

    The method of analytic perturbation theory, which avoids the problem of ghost-pole type singularities and gives a self-consistent description of both spacelike and timelike regions, is applied to describe the "light" Adler function corresponding to the non-strange vector channel of the inclusive decay of the $\\tau$ lepton. The role of threshold effects is investigated. The behavior of the quark-antiquark system near threshold is described by using a new relativistic resummation factor. It is ...

  17. What can we learn about quark binding from perturbation theory

    International Nuclear Information System (INIS)

    The classic Block Nordsieck program is examined in the framework of quantum chromodynamics in order to ascertain whether or not perturbation theory provides one with any hints about an underlying quark binding mechanism when applied to the standard model of quarks interacting with non-Abelian vector gluons. The object to be computed is a unitless transition probability appropriate to the experiment described. The production of a quark-antiquark pair is studied. 5 references

  18. Matrix Representation of Renormalization in Perturbative Quantum Field Theory

    OpenAIRE

    Ebrahimi-Fard, K.; Guo, L.

    2005-01-01

    We formulate the Hopf algebraic approach of Connes and Kreimer to renormalization in perturbative quantum field theory using triangular matrix representation. We give a Rota-Baxter anti-homomorphism from general regularized functionals on the Feynman graph Hopf algebra to triangular matrices with entries in a Rota-Baxter algebra. For characters mapping to the group of unipotent triangular matrices we derive the algebraic Birkhoff decomposition for matrices using Spitzer's identity. This simpl...

  19. Some combinatorial interpretations in perturbative quantum field theory

    OpenAIRE

    Yeats, Karen

    2013-01-01

    This paper will describe how combinatorial interpretations can help us understand the algebraic structure of two aspects of perturbative quantum field theory, namely analytic Dyson-Schwinger equations and periods of scalar Feynman graphs. The particular examples which will be looked at are, a better reduction to geometric series for Dyson-Schwinger equations, a subgraph which yields extra denominator reductions in scalar Feynman integrals, and an explanation of a trick of Brown and Schnetz to...

  20. Thermodynamic perturbation theory in studies of metal melts

    International Nuclear Information System (INIS)

    The review concerns methods of the thermodynamic perturbation theory (TPT) used to study liquid metals and alloys. Basic relations of the TPT are presented. Various reference systems are analyzed, their advantages and drawbacks are described. The results of calculations of the structure and thermodynamic properties of metal melts by various methods are discussed. Promising avenues of research in the title field are outlined. The bibliography includes 272 references

  1. A modified multi-reference second order perturbation theory

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new scheme with extended model space is proposed to improve the calculation of multi-reference second order perturbation theory (MRPT2). The new scheme preserves the concise code structure of the original program, and avoids intruder states in constructions of the potential energy surface, which is confirmed by a series of comparable calculations. The new MRPT2 program is an available tool for the research of molecular excited states and electronic spectrum.

  2. Octet-decuplet baryon mass splittings from self-consistent one-loop perturbation theory

    International Nuclear Information System (INIS)

    The bag model of confined relativistic quarks in chiral-invariant interaction with scalar, pseudoscalar, vector, and pseudovector mesons, as well as gluons, is used to calculate the masses and wave functions of the spin-1/2 baryon octet and spin-3/2 decuplet, using self-consistent Brillouin-Wigner bound state perturbation theory. Chiral symmetry breaking is invoked with the sigma model. SU (6) and SU (3) symmetries are broken by the experimental meson spectrum, and a strange quark mass. Mass corrections are calculated to one loop order, limited to the baryons of the octet and decuplet and the lowest lying mesons. Encouraging results are obtained, especially for the Δ - N and the Σ - Λ splittings. Convergence and stability have not been demonstrated, but are evidently improved by the self-consistency requirement. An initial parameter tuning gives a fit to all the octet and decuplet masses within ≤0.02 GeV, at the price of choosing the bag radius, the non-strange baryon input bag mass, and the strange quark mass. Even these small discrepancies can be dramatically reduced by fine-tuning the vector meson coupling and including an instanton contribution peculiar to the Λ. (orig.)

  3. Partial quenching and chiral symmetry breaking

    OpenAIRE

    Creutz, Michael

    2014-01-01

    Partially quenched chiral perturbation theory assumes that valence quarks propagating on gauge configurations prepared with sea quarks of different masses will form a chiral condensate as the valence quark mass goes to zero. I present a counterexample involving non-degenerate sea quarks where the valence condensate does not form.

  4. Foundations of quantum chromodynamics: Perturbative methods in gauge theories

    International Nuclear Information System (INIS)

    This volume develops the techniques of perturbative QCD in great detail starting with field theory. Aside from extensive treatments of the renormalization group technique, the operator product expansion formalism and their applications to short-distance reactions, this book provides a comprehensive introduction to gauge field theories. Examples and exercises are provided to amplify the discussions on important topics. Contents: Introduction; Elements of Quantum Chromodynamics; The Renormalization Group Method; Asymptotic Freedom; Operator Product Expansion Formalism; Applications; Renormalization Scheme Dependence; Factorization Theorem; Further Applications; Power Corrections; Infrared Problem. Power Correlations; Infrared Problem

  5. Confinement and dynamical chiral symmetry breaking in a non-perturbative renormalizable quark model

    Science.gov (United States)

    Dudal, D.; Guimaraes, M. S.; Palhares, L. F.; Sorella, S. P.

    2016-02-01

    Inspired by the construction of the Gribov-Zwanziger action in the Landau gauge, we introduce a quark model exhibiting both confinement and chiral symmetry aspects. An important feature is the incorporation of spontaneous chiral symmetry breaking in a renormalizable fashion. The quark propagator in the condensed vacuum turns out to be of a confining type. Besides a real pole, it exhibits complex conjugate poles. The resulting spectral form is explicitly shown to violate positivity, indicative of its unphysical character. Moreover, the ensuing quark mass function fits well to existing lattice data. To further validate the physical nature of the model, we identify a massless pseudoscalar (i.e. a pion) in the chiral limit and present estimates for the ρ meson mass and decay constant.

  6. Analytic perturbation theory in analyzing some QCD observables

    International Nuclear Information System (INIS)

    The paper is devoted to application of recently devised ghost-free Analytic Perturbation Theory (APT) for analysis of some QCD observables. We start with the discussion of the main problem of the perturbative QCD - ghost singularities and with the resume of this trouble solution within the APT. By a few examples in the various energy and momentum transfer regions (with the flavor number f = 3, 4 and 5) we demonstrate the effect of improved convergence of the APT modified perturbative QCD expansion. Our first observation is that in the APT analysis the three-loop contribution (of an order of αs3) is as a rule numerically inessential. This raises hope for practical solving the well-known problem of asymptotic nature of common QFT perturbation series. The second conclusion is that a common perturbative analysis of time-like events with the big π2 term in the π2 coefficient is not adequate at s ≤ 2 GeV2. In particular, this relates to τ decay. Then, for the 'high' (f = 5) region it is shown that the common two-loop (NLO, NLLA) perturbation approximation widely used there (at 10 GeV ≤ √s ≤ 170 GeV) for analysis of shape/events data contains a systematic negative error of a 1 - 2 per cent level for the extracted α bar s(2) values. Our physical conclusion is that the α bar s(MZ2) value averaged over the f = 5 data s(MZ2)>APT;f=5 ≅ 0.124 appreciably differs from the currently accepted 'world average' (= 0.118)

  7. Sensitivity calculations of integral parameters by a generalyzed perturbation theory

    International Nuclear Information System (INIS)

    In this work, we first revise some concepts, concerning the neutron transport in nuclear systems. We derive the balance and importance equation. Then we discuss the neutron importance in subcritical, critical and supercritical systems. The adjoint flux is estabilished as the neutron importance for the fission process. The conventional perturbation theory is later presented. We developed a sistematic perturbative formulation in the first order variation in the distribution functions calculate the reactivity due to a system perturbation. We present in detail the flux difference and generalized functions methos. The above formulation is then extended for altered systems. We consider integral parameters of the type ratio of bilinear functionals (for which the reactivity is a particular case). We define sensitivity coeficients, for any integral parameter, corresponding to a especific system alterations. Possible aplication of the method are also discussed. In the last part of this work, we apply the perturbative formulation to the doppler reacitivity sensibility calculation, utilizing the generalized functions method. We describe in detail the compiler program written for this and some other possible aplications. (Author)

  8. Cosmological perturbations and quasistatic assumption in f (R ) theories

    Science.gov (United States)

    Chiu, Mu-Chen; Taylor, Andy; Shu, Chenggang; Tu, Hong

    2015-11-01

    f (R ) gravity is one of the simplest theories of modified gravity to explain the accelerated cosmic expansion. Although it is usually assumed that the quasi-Newtonian approach (a combination of the quasistatic approximation and sub-Hubble limit) for cosmic perturbations is good enough to describe the evolution of large scale structure in f (R ) models, some studies have suggested that this method is not valid for all f (R ) models. Here, we show that in the matter-dominated era, the pressure and shear equations alone, which can be recast into four first-order equations to solve for cosmological perturbations exactly, are sufficient to solve for the Newtonian potential, Ψ , and the curvature potential, Φ . Based on these two equations, we are able to clarify how the exact linear perturbations fit into different limits. We find that the Compton length controls the quasistatic behaviors in f (R ) gravity. In addition, regardless the validity of quasistatic approximation, a strong version of the sub-Hubble limit alone is sufficient to reduce the exact linear perturbations in any viable f (R ) gravity to second order. Our findings disagree with some previous studies where we find little difference between our exact and quasi-Newtonian solutions even up to k =10 c-1H0.

  9. Cosmological perturbation theory, instantaneous gauges, and local inertial frames

    International Nuclear Information System (INIS)

    Linear perturbations of Friedmann-Robertson-Walker universes with any curvature and cosmological constant are studied in a general gauge without decomposition into harmonics. Desirable gauges are selected as those which embody best Mach's principle: in these gauges local inertial frames can be determined instantaneously via the perturbed Einstein field equations from the distributions of energy and momentum in the universe. The inertial frames are identified by their ''accelerations and rotations'' with respect to the cosmological frames associated with the ''Machian gauges.'' In closed spherical universes, integral gauge conditions are imposed to eliminate motions generated by the conformal Killing vectors. The meaning of Traschen's integral-constraint vectors is thus elucidated. For all three types of Friedmann-Robertson-Walker universes the Machian gauges admit much less residual freedom than the synchronous or generalized harmonic gauge. Mach's principle is best exhibited in the Machian gauges in closed spherical universes. Independent of any Machian motivation, the general perturbation equations and discussion of gauges are useful for cosmological perturbation theory

  10. Quantum theory of spin waves in finite chiral spin chains

    OpenAIRE

    Roldán-Molina, A.; Santander, M. J.; Núñez, A.S.; Fernández Rossier, Joaquín

    2013-01-01

    We calculate the effect of spin waves on the properties of finite-size spin chains with a chiral spin ground state observed on biatomic Fe chains deposited on iridium(001). The system is described with a Heisenberg model supplemented with a Dzyaloshinskii-Moriya coupling and a uniaxial single ion anisotropy that presents a chiral spin ground state. Spin waves are studied using the Holstein-Primakoff boson representation of spin operators. Both the renormalized ground state and the elementary ...

  11. Development of depletion perturbation theory for a reactor nodal code

    International Nuclear Information System (INIS)

    A generalized depletion perturbation (DPT) theory formulation for light water reactor (LWR) depletion problems is developed and implemented into the three-dimensional LWR nodal code SIMULATE. This development applies the principles of the original derivation by M.L. Williams to the nodal equations solved by SIMULATE. The present formulation is first described in detail, and the nodal coupling methodology in SIMULATE is used to determine partial derivatives of the coupling coefficients. The modifications to the original code and the new DPT options available to the user are discussed. Finally, the accuracy and the applicability of the new DPT capability to LWR design analysis are examined for several LWR depletion test cases. The cases range from simple static cases to a realistic PWR model for an entire fuel cycle. Responses of interest included K/sub eff/, nodal peaking, and peak nodal exposure. The nonlinear behavior of responses with respect to perturbations of the various types of cross sections was also investigated. The time-dependence of the sensitivity coefficients for different responses was examined and compared. Comparison of DPT results for these examples to direct calculations reveals the limited applicability of depletion perturbation theory to LWR design calculations at the present. The reasons for these restrictions are discussed, and several methods which might improve the computational accuracy of DPT are proposed for future research

  12. Color confinement, quark pair creation and dynamical chiral-symmetry breaking in the dual Ginzburg-Landau theory

    International Nuclear Information System (INIS)

    We study the color confinement, the qq pair creation and the dynamical chiral-symmetry breaking of nonperturbative QCD by using the dual Ginzburg-Landau theory, where the dual Higgs mechanism plays an essential role in the nonperturbative dynamics in the infrared region. As a result of the dual Meissner effect, the linear static quark potential, which characterizes the quark confinement, is obtained in the long distance within the quenched approximation. We obtain a simple expression for the string tension similar to the energy per unit length of a vortex in the superconductivity physics. The dynamical effect of light quarks on the quark confining potential is investigated in terms of the infrared screening effect due to the qq pair creation or the cut of the hadronic string. The screening length of the potential is estimated by using the Schwinger formula for the qq pair creation. We introduce the corresponding infrared cutoff to the strong long-range correlation factor in the gluon propagator as a dynamical effect of light quarks, and obtain a compact formula for the quark potential including the screening effect in the infrared region. We investigate the dynamical chiral-symmetry breaking by using the Schwinger-Dyson equation in the dual Ginzburg-Landau theory, where the gluon propagator includes the nonperturbative effect related to the color confinement. We find a large enhancement of the chiral-symmetry breaking by the dual Higgs mechanism, which supports the close relation between the color confinement and the chiral-symmetry breaking. The dynamical quark mass, the pion decay constant and the quark condensate are well reproduced by using the consistent values of the gauge coupling constant and the QCD scale parameter with the perturbative QCD and the quark confining potential. The light-quark confinement is also roughly examined in terms of the disappearance of physical poles in the light-quark propagator by using the smooth extrapolation of the quark mass

  13. Adiabaticity and gravity theory independent conservation laws for cosmological perturbations

    CERN Document Server

    Romano, Antonio Enea; Sasaki, Misao

    2015-01-01

    We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid $\\delta P_{nad}$, another is for a general matter field $\\delta P_{c,nad}$, and the last one is valid only on superhorizon scales. The first two definitions coincide if $c_s^2=c_w^2$ where $c_s$ is the propagation speed of the perturbation, while $c_w^2=\\dot P/\\dot\\rho$. Assuming the adiabaticity in the general sense, $\\delta P_{c,nad}=0$, we derive a relation between the lapse function in the comoving slicing $A_c$ and $\\delta P_{nad}$ valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as $c_s\

  14. Master equation based steady-state cluster perturbation theory

    Science.gov (United States)

    Nuss, Martin; Dorn, Gerhard; Dorda, Antonius; von der Linden, Wolfgang; Arrigoni, Enrico

    2015-09-01

    A simple and efficient approximation scheme to study electronic transport characteristics of strongly correlated nanodevices, molecular junctions, or heterostructures out of equilibrium is provided by steady-state cluster perturbation theory. In this work, we improve the starting point of this perturbative, nonequilibrium Green's function based method. Specifically, we employ an improved unperturbed (so-called reference) state ρ̂S, constructed as the steady state of a quantum master equation within the Born-Markov approximation. This resulting hybrid method inherits beneficial aspects of both the quantum master equation as well as the nonequilibrium Green's function technique. We benchmark this scheme on two experimentally relevant systems in the single-electron transistor regime: an electron-electron interaction based quantum diode and a triple quantum dot ring junction, which both feature negative differential conductance. The results of this method improve significantly with respect to the plain quantum master equation treatment at modest additional computational cost.

  15. Interacting fermions in two dimensions: Beyond the perturbation theory

    International Nuclear Information System (INIS)

    We consider a system of 2D fermions with short-range interaction. A straightforward perturbation theory is shown to be ill-defined even for an infinitesimally weak interaction, as the perturbative series for the self-energy diverges near the mass shell. We show that the divergences result from the interaction of fermions with the zero-sound collective mode. By re-summing the most divergent diagrams, we obtain a closed form of the self-energy near the mass shell. The spectral function exhibits a threshold feature at the onset of the emission of the zero-sound waves. We also show that the interaction with the zero sound does not affect a non- analytic, T2-part of the specific heat. (author)

  16. "Constraint consistency" at all orders in Cosmological perturbation theory

    CERN Document Server

    Nandi, Debottam

    2015-01-01

    We study the equivalence of two - order-by-order Einstein's equation and Reduced action - approaches to cosmological perturbation theory at all orders for different models of inflation. We point out a crucial consistency check which we refer to as "Constraint consistency" that needs to be satisfied. We propose a quick and efficient method to check the consistency for any model including modified gravity models. Our analysis points out an important feature which is crucial for inflationary model building i.e., all `constraint' inconsistent models have higher order Ostrogradsky's instabilities but the reverse is not true. In other words, one can have models with constraint lapse function and shift vector, though it may have Ostrogradsky's instabilities. We also obtain the single variable equation for non-canonical scalar field in the limit of power-law inflation for the second-order perturbed variables.

  17. `Constraint consistency' at all orders in cosmological perturbation theory

    Science.gov (United States)

    Nandi, Debottam; Shankaranarayanan, S.

    2015-08-01

    We study the equivalence of two—order-by-order Einstein's equation and Reduced action—approaches to cosmological perturbation theory at all orders for different models of inflation. We point out a crucial consistency check which we refer to as `Constraint consistency' condition that needs to be satisfied in order for the two approaches to lead to identical single variable equation of motion. The method we propose here is quick and efficient to check the consistency for any model including modified gravity models. Our analysis points out an important feature which is crucial for inflationary model building i.e., all `constraint' inconsistent models have higher order Ostrogradsky's instabilities but the reverse is not true. In other words, one can have models with constraint Lapse function and Shift vector, though it may have Ostrogradsky's instabilities. We also obtain single variable equation for non-canonical scalar field in the limit of power-law inflation for the second-order perturbed variables.

  18. Partially conserved axial-vector current and model chiral field theories in nuclear physics

    International Nuclear Information System (INIS)

    We comment on the relation between the two standard approaches to chiral symmetry--namely, the current algebra/partially conserved axial-vector current approach and the chiral Lagrangian method--in a manner intended to clarify recent and probable future applications of this symmetry in nuclear physics. Specifically, we show that in explicit chiral field theories the canonical πN scattering amplitude does not have the famed ''Adler zero'' unless partial conservation of axial-vector current holds as an operator equation. This implies that there are a number of familiar chiral models in which the ''Adler self-consistency'' condition does not apply to the canonical pion field. Among the problems of current interest for which our remarks are relevant are the studies of the pion-nucleus optical potential, pion condensation, and the attempts to formulate a model field theory having both reasonable nuclear saturation and good low energy pion phenomenology

  19. Adiabaticity and gravity theory independent conservation laws for cosmological perturbations

    Science.gov (United States)

    Romano, Antonio Enea; Mooij, Sander; Sasaki, Misao

    2016-04-01

    We carefully study the implications of adiabaticity for the behavior of cosmological perturbations. There are essentially three similar but different definitions of non-adiabaticity: one is appropriate for a thermodynamic fluid δPnad, another is for a general matter field δPc,nad, and the last one is valid only on superhorizon scales. The first two definitions coincide if cs2 = cw2 where cs is the propagation speed of the perturbation, while cw2 = P ˙ / ρ ˙ . Assuming the adiabaticity in the general sense, δPc,nad = 0, we derive a relation between the lapse function in the comoving slicing Ac and δPnad valid for arbitrary matter field in any theory of gravity, by using only momentum conservation. The relation implies that as long as cs ≠cw, the uniform density, comoving and the proper-time slicings coincide approximately for any gravity theory and for any matter field if δPnad = 0 approximately. In the case of general relativity this gives the equivalence between the comoving curvature perturbation Rc and the uniform density curvature perturbation ζ on superhorizon scales, and their conservation. This is realized on superhorizon scales in standard slow-roll inflation. We then consider an example in which cw =cs, where δPnad = δPc,nad = 0 exactly, but the equivalence between Rc and ζ no longer holds. Namely we consider the so-called ultra slow-roll inflation. In this case both Rc and ζ are not conserved. In particular, as for ζ, we find that it is crucial to take into account the next-to-leading order term in ζ's spatial gradient expansion to show its non-conservation, even on superhorizon scales. This is an example of the fact that adiabaticity (in the thermodynamic sense) is not always enough to ensure the conservation of Rc or ζ.

  20. Trigonometrical sums connected with the chiral Potts model, Verlinde dimension formula, two-dimensional resistor network, and number theory

    International Nuclear Information System (INIS)

    We have recently developed methods for obtaining exact two-point resistance of the complete graph minus N edges. We use these methods to obtain closed formulas of certain trigonometrical sums that arise in connection with one-dimensional lattice, in proving Scott’s conjecture on permanent of Cauchy matrix, and in the perturbative chiral Potts model. The generalized trigonometrical sums of the chiral Potts model are shown to satisfy recursion formulas that are transparent and direct, and differ from those of Gervois and Mehta. By making a change of variables in these recursion formulas, the dimension of the space of conformal blocks of SU(2) and SO(3) WZW models may be computed recursively. Our methods are then extended to compute the corner-to-corner resistance, and the Kirchhoff index of the first non-trivial two-dimensional resistor network, 2×N. Finally, we obtain new closed formulas for variant of trigonometrical sums, some of which appear in connection with number theory. -- Highlights: • Alternative derivation of certain trigonometrical sums of the chiral Potts model are given. • Generalization of these trigonometrical sums satisfy recursion formulas. • The dimension of the space of conformal blocks may be computed from these recursions. • Exact corner-to-corner resistance, the Kirchhoff index of 2×N are given

  1. The chirally rotated Schr\\"odinger functional: theoretical expectations and perturbative tests

    CERN Document Server

    Brida, Mattia Dalla; Vilaseca, Pol

    2016-01-01

    The chirally rotated Schr\\"odinger functional ($\\chi$SF) with massless Wilson-type fermions provides an alternative lattice regularization of the Schr\\"odinger functional (SF), with different lattice symmetries and a common continuum limit expected from universality. The explicit breaking of flavour and parity symmetries needs to be repaired by tuning the bare fermion mass and the coefficient of a dimension 3 boundary counterterm. Once this is achieved one expects the mechanism of automatic O($a$) improvement to be operational in the $\\chi$SF, in contrast to the standard formulation of the SF. This is expected to significantly improve the attainable precision for step-scaling functions of some composite operators. Furthermore, the $\\chi$SF offers new strategies to determine finite renormalization constants which are traditionally obtained from chiral Ward identities. In this paper we consider a complete set of fermion bilinear operators, define corresponding correlation functions and explain the relation to t...

  2. Fixed-point actions in 1-loop perturbation theory

    International Nuclear Information System (INIS)

    It has been pointed out in recent papers that the example considered earlier in the O(N) σ-model to test whether fixed-point actions are 1-loop perfect actually checked classical perfection only. To clarify the issue we constructed the renormalized trajectory explicitly in 1-loop perturbation theory. We found that the fixed-point action is not exactly 1-loop perfect. The cut-off effects are, however, strongly reduced also on the 1-loop level relative to those of the standard and tree level improved Symanzik actions. Some points on off- and on-shell improvement, Symanzik's program and fixed-point actions are also discussed. (orig.)

  3. Non-perturbative thermodynamics in Matrix string theory

    CERN Document Server

    Penialba, J P

    1999-01-01

    A study of the thermodynamics in IIA Matrix String Theory is presented. The free string limit is calculated and seen to exactly reproduce the usual result. When energies are enough to excite non-perturbative objects like D-particles and specially membranes, the situation changes because they add a large number of degrees of freedom that do not appear at low energies. There seems to be a negative specific heat (even in the microcanonical ensemble) that moves the asymptotic temperature to zero. Besides, the mechanism of interaction and attachment of open strings to D-particles and D-membranes is analyzed.

  4. Perfect Lattice Perturbation Theory A Study of the Anharmonic Oscillator

    CERN Document Server

    Bietenholz, W

    1999-01-01

    As an application of perfect lattice perturbation theory, we construct an O(\\lambda) perfect lattice action for the anharmonic oscillator analytically in momentum space. In coordinate space we obtain a set of 2-spin and 4-spin couplings \\propto \\lambda, which we evaluate for various masses. These couplings never involve variables separated by more than two lattice spacings. The O(\\lambda) perfect action is simulated and compared to the standard action. We discuss the improvement for the first two energy gaps \\Delta E_1, \\Delta E_2 and for the scaling quantity \\Delta E_2 / \\Delta E1 in different regimes of the interaction parameter, and of the correlation length.

  5. Non-perturbative thermodynamics in Matrix string theory

    International Nuclear Information System (INIS)

    A study of the thermodynamics in IIA Matrix String Theory is presented. The free string limit is calculated and seen to exactly reproduce the usual result. When energies are enough to excite non-perturbative objects like D-particles and specially membranes, the situation changes because they add a large number of degrees of freedom that do not appear at low energies. There seems to be a negative specific heat (even in the microcanonical ensemble) that moves the asymptotic temperature to zero. Besides, the mechanism of interaction and attachment of open strings to D-particles and D-membranes is analyzed

  6. Adler function for light quarks in analytic perturbation theory

    International Nuclear Information System (INIS)

    The method of analytic perturbation theory, which avoids the problem of ghost-pole-type singularities and gives a self-consistent description of both spacelike and timelike regions, is applied to describe the 'light' Adler function corresponding to the nonstrange vector channel of the inclusive decay of the τ lepton. The role of threshold effects is investigated. The behavior of the quark-antiquark system near threshold is described by using a new relativistic resummation factor. It is shown that the method proposed leads to good agreement with the 'experimental' Adler function down to the lowest energy scale

  7. Two-loop Resummation in Fractional Analytic Perturbation Theory

    OpenAIRE

    Bakulev, Alexander P.

    2010-01-01

    This talk describes the resummation approach in (Fractional) Analytic Perturbation Theory (FAPT) in QCD. First, we make a short historical review of the (F)APT approach and then shortly describe the global scheme of FAPT which allows one to take into account heavy-quark thresholds. After that we show how it is possible to resum a non-power series in (F)APT both in the one- and two-loop approximations. As an application we suggest our analysis of the Higgs boson decay ${H^0\\to b\\bar{b}}$, impo...

  8. Alternative approach to light-front perturbation theory

    International Nuclear Information System (INIS)

    We suggest a possible algorithm to calculate one-loop n-point functions within a variant of light-front perturbation theory. The key ingredients are the covariant Passarino-Veltman scheme and a surprising integration formula that localizes Feynman integrals at vanishing longitudinal momentum. The resulting expressions are generalizations of Weinberg's infinite-momentum results and are manifestly Lorentz invariant. For n=2 and 3 we explicitly show how to relate those to light-front integrals with standard energy denominators. All expressions are rendered finite by means of transverse dimensional regularization

  9. Microscopic Dirac Spectrum in a 2d Gauge Theory with Zero Chiral Condensate

    CERN Document Server

    Bietenholz, Wolfgang; Landa-Marbán, David

    2013-01-01

    Fermionic theories with a vanishing chiral condensate (in the chiral limit) have recently attracted considerable interest; in particular variants of multi-flavour QCD are candidates for this behaviour. Here we consider the 2-flavour Schwinger model as a simple theory with this property. Based on simulations with light dynamical overlap fermions, we test the hypothesis that in such models the low lying Dirac eigenvalues could be decorrelated. That has been observed in 4d Yang-Mills theories at high temperature, but it cannot be confirmed for the 2-flavour Schwinger model. We also discuss subtleties in the evaluation of the mass anomalous dimension and its IR extrapolation.

  10. Hyperons in nuclear matter from SU(3) chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Petschauer, S.; Kaiser, N. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Haidenbauer, J. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Meissner, Ulf G. [Institut fuer Kernphysik, Forschungszentrum Juelich, Institute for Advanced Simulation, Juelich Center for Hadron Physics, Juelich (Germany); Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Weise, W. [Technische Universitaet Muenchen, Physik Department, Garching (Germany); Villa Tambosi, ECT, Villazzano (Trento) (Italy)

    2016-01-15

    Brueckner theory is used to investigate the properties of hyperons in nuclear matter. The hyperon-nucleon interaction is taken from chiral effective field theory at next-to-leading order with SU(3) symmetric low-energy constants. Furthermore, the underlying nucleon-nucleon interaction is also derived within chiral effective field theory. We present the single-particle potentials of Λ and Σ hyperons in symmetric and asymmetric nuclear matter computed with the continuous choice for intermediate spectra. The results are in good agreement with the empirical information. In particular, our calculation gives a repulsive Σ-nuclear potential and a weak Λ-nuclear spin-orbit force. (orig.)

  11. Chiral thermodynamics of nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Fiorilla, Salvatore

    2012-10-23

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  12. Chiral thermodynamics of nuclear matter

    International Nuclear Information System (INIS)

    The equation of state of nuclear matter is calculated at finite temperature in the framework of in-medium chiral perturbation theory up to three-loop order. The dependence of its thermodynamic properties on the isospin-asymmetry is investigated. The chiral quark condensate is evaluated for symmetric nuclear matter. Its behaviour as a function of density and temperature sets important nuclear physics constraints for the QCD phase diagram.

  13. Automated lattice perturbation theory and relativistic heavy quarks in the Columbia formulation

    OpenAIRE

    Lehner, Christoph

    2012-01-01

    We introduce a new computer algebra system optimized for use in lattice perturbation theory as well as continuum perturbation theory and a new framework to perform automated perturbative calculations on top of said computer algebra system. The new framework is used to tune the relativistic heavy quark action in the Columbia formulation at one loop in meanfield-improved perturbation theory. Preliminary results for the matching and O(a)-improvement of heavy-light axial vector currents with ligh...

  14. Vector form factor of the pion in chiral effective field theory

    International Nuclear Information System (INIS)

    The vector form factor of the pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. To construct an effective field theory with a consistent power counting, the complex-mass scheme is applied

  15. Vector form factor of the pion in chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Djukanovic, D. [Helmholtz Institute Mainz, Johannes Gutenberg University Mainz, D-55099 Mainz (Germany); Gegelia, J., E-mail: jgegelia@hotmail.com [Institut für Theoretische Physik II, Fakultät für Physik und Astronomie, Ruhr-Universität Bochum, 44780 Bochum (Germany); Tbilisi State University, 0186 Tbilisi, Georgia (United States); Keller, A.; Scherer, S.; Tiator, L. [Institute for Nuclear Physics, Johannes Gutenberg University Mainz, D-55099 Mainz (Germany)

    2015-03-06

    The vector form factor of the pion is calculated in the framework of chiral effective field theory with vector mesons included as dynamical degrees of freedom. To construct an effective field theory with a consistent power counting, the complex-mass scheme is applied.

  16. Basics of thermal field theory a tutorial on perturbative computations

    CERN Document Server

    Laine, Mikko

    2016-01-01

    This book presents thermal field theory techniques, which can be applied in both cosmology and the theoretical description of the QCD plasma generated in heavy-ion collision experiments. It focuses on gauge interactions (whether weak or strong), which are essential in both contexts. As well as the many differences in the physics questions posed and in the microscopic forces playing a central role, the authors also explain the similarities and the techniques, such as the resummations, that are needed for developing a formally consistent perturbative expansion. The formalism is developed step by step, starting from quantum mechanics; introducing scalar, fermionic and gauge fields; describing the issues of infrared divergences; resummations and effective field theories; and incorporating systems with finite chemical potentials. With this machinery in place, the important class of real-time (dynamic) observables is treated in some detail. This is followed by an overview of a number of applications, ranging from t...

  17. Renormalization and periods in perturbative Algebraic Quantum Field Theory

    CERN Document Server

    Rejzner, Kasia

    2016-01-01

    In this paper I give an overview of mathematical structures appearing in perturbative algebraic quantum field theory (pAQFT) and I show how these relate to certain periods. pAQFT is a mathematically rigorous framework that allows to build models of physically relevant quantum field theories on a large class of Lorentzian manifolds. The basic objects in this framework are functionals on the space of field configurations and renormalization method used is the Epstein-Glaser (EG) renormalization. The main idea in the EG approach is to reformulate the renormalization problem, using functional analytic tools, as a problem of extending almost homogeneously scaling distributions that are well defined outside some partial diagonals in $\\mathbb{R}^n$. Such an extension is not unique, but it gives rise to a unique "residue", understood as an obstruction for the extended distribution to scale almost homogeneously. Physically, such scaling violations are interpreted as contributions to the $\\beta$ function.

  18. Gravitational fixed points and asymptotic safety from perturbation theory

    International Nuclear Information System (INIS)

    The fixed point structure of the renormalization flow in Einstein gravity and higher derivative gravity is investigated in terms of the background effective action. A refined perturbative framework is developed consisting of: use of a covariant operator regularization that keeps track of powerlike divergences, a non-minimal subtraction ansatz for the originally dimensionful couplings in combination with a 'Wilsonian' matching condition, and the construction of a one-loop effective action exactly gauge-independent on-shell in regularized form. Using this framework strictly positive fixed points for the dimensionless Newton constant gN and the cosmological constant λ can be identified already in one-loop perturbation theory. The renormalization flow is asymptotically safe with respect to the nontrivial fixed points in both cases. In Einstein gravity a residual gauge dependence of the fixed points is unavoidable while in higher derivative gravity both the fixed point and the flow equations are universal. Along this flow spectral positivity of the Hessians can be satisfied, thereby meeting an essential condition for a well-defined Euclidean field theory setting. Dependence on O(10) initial data is erased to accuracy 0.5% after O(100) units of the renormalization mass scale and the flow settles on a λ(gN) orbit.

  19. Technical fine-tuning problem in renormalized perturbation theory

    Energy Technology Data Exchange (ETDEWEB)

    Foda, O.E.

    1983-01-01

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes.

  20. Inflationary perturbation theory is geometrical optics in phase space

    Energy Technology Data Exchange (ETDEWEB)

    Seery, David; Frazer, Jonathan [Astronomy Centre, University of Sussex, Brighton BN1 9QH (United Kingdom); Mulryne, David J. [Astronomy Unit, School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Ribeiro, Raquel H., E-mail: D.Seery@sussex.ac.uk, E-mail: D.Mulryne@qmul.ac.uk, E-mail: J.Frazer@sussex.ac.uk, E-mail: R.Ribeiro@damtp.cam.ac.uk [Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA (United Kingdom)

    2012-09-01

    A pressing problem in comparing inflationary models with observation is the accurate calculation of correlation functions. One approach is to evolve them using ordinary differential equations ({sup t}ransport equations{sup )}, analogous to the Schwinger-Dyson hierarchy of in-out quantum field theory. We extend this approach to the complete set of momentum space correlation functions. A formal solution can be obtained using raytracing techniques adapted from geometrical optics. We reformulate inflationary perturbation theory in this language, and show that raytracing reproduces the familiar 'δN' Taylor expansion. Our method produces ordinary differential equations which allow the Taylor coefficients to be computed efficiently. We use raytracing methods to express the gauge transformation between field fluctuations and the curvature perturbation, ζ, in geometrical terms. Using these results we give a compact expression for the nonlinear gauge-transform part of f{sub NL} in terms of the principal curvatures of uniform energy-density hypersurfaces in field space.

  1. Technical fine-tuning problem in renormalized perturbation theory

    International Nuclear Information System (INIS)

    The technical - as opposed to physical - fine tuning problem, i.e. the stability of tree-level gauge hierarchies at higher orders in renormalized perturbation theory, in a number of different models is studied. These include softly-broken supersymmetric models, and non-supersymmetric ones with a hierarchy of spontaneously-broken gauge symmetries. The models are renormalized using the BPHZ prescription, with momentum subtractions. Explicit calculations indicate that the tree-level hierarchy is not upset by the radiative corrections, and consequently no further fine-tuning is required to maintain it. Furthermore, this result is shown to run counter to that obtained via Dimensional Renormalization, (the only scheme used in previous literature on the subject). The discrepancy originates in the inherent local ambiguity in the finite parts of subtracted Feynman integrals. Within fully-renormalized perturbation theory the answer to the technical fine-tuning question (in the sense of whether the radiative corrections will ''readily'' respect the tree level gauge hierarchy or not) is contingent on the renormalization scheme used to define the model at the quantum level, rather than on the model itself. In other words, the need for fine-tuning, when it arises, is an artifact of the application of a certain class of renormalization schemes

  2. Theory of Magnetic Edge States in Chiral Graphene Nanoribbons

    Science.gov (United States)

    Capaz, Rodrigo; Yazyev, Oleg; Louie, Steven

    2011-03-01

    Using a model Hamiltonian approach including electron Coulomb interactions, we systematically investigate the electronic structure and magnetic properties of chiral graphene nanoribbons. We show that the presence of magnetic edge states is an intrinsic feature of any smooth graphene nanoribbons with chiral edges, and discover a number of structure-property relations. Specifically, we describe how the edge-state energy gap, zone-boundary edge-state energy splitting, and magnetic moment per edge length depend on the nanoribbon width and chiral angle. The role of environmental screening effects is also studied. Our results address a recent experimental observation of signatures of magnetic ordering at smooth edges of chiral graphene nanoribbons and provide an avenue towards tuning their properties via the structural and environmental degrees of freedom. This work was supported by National Science Foundation Grant No. DMR10-1006184, the U.S. Department of Energy under Contract No. DE-AC02-05CH11231 and the ONR MURI program. RBC acknowledges financial support from Brazilian agencies CNPq, FAPERJ and INCT-Nanomateriais de Carbono.

  3. Non-relativistic many-body problem perturbation theory calculation: toward relativistic many-body problem perturbation theory

    International Nuclear Information System (INIS)

    Non-relativistic many-body perturbation theory is discussed. Methods and results in the solution of inhomogeneous 1- and 2-particle equations are presented. B. Similar programs for the Dirac equation are considered. The 1-particle equation is equivalent to the relativistic random phase approximation (work by A.-M. Martensson-Pendrill), and the 2-particle equation is under study. C. Matrix diagonalization of the Dirac equation is being explored as a method of isolating positive energy solutions. For a weak external field, the upper components of the diagonal equation correspond to positive energy solutions

  4. Ph.D. Thesis: Chiral Effective Field Theory Beyond the Power-Counting Regime

    CERN Document Server

    Hall, Jonathan M M

    2011-01-01

    Novel techniques are presented, which identify the power-counting regime (PCR) of chiral effective field theory, and allow the use of lattice quantum chromodynamics results that extend outside the PCR. By analyzing the renormalization of low-energy coefficients of the chiral expansion of the nucleon mass, the existence of an optimal regularization scale is realized. The techniques developed for the nucleon mass renormalization are then applied to a test case: performing a chiral extrapolation without prior phenomenological bias. The robustness of the procedure for obtaining an optimal regularization scale and performing a reliable chiral extrapolation is confirmed. The procedure developed is then applied to the magnetic moment and the electric charge radius of the nucleon. The consistency of the results for the value of the optimal regularization scale provides strong evidence for the existence of an intrinsic energy scale in the nucleon-pion interaction.

  5. Auxiliary-Field Quantum Monte Carlo Simulations of Neutron Matter in Chiral Effective Field Theory

    CERN Document Server

    Wlazłowski, G; Moroz, S; Bulgac, A; Roche, K J

    2014-01-01

    We present variational Monte Carlo calculations of the neutron matter equation of state using chiral nuclear interactions. The ground-state wavefunction of neutron matter, containing non-perturbative many-body correlations, is obtained from auxiliary-field quantum Monte Carlo simulations of up to about 340 neutrons interacting on a 10^3 discretized lattice. The evolution Hamiltonian is chosen to be attractive and spin-independent in order to avoid the fermion sign problem and is constructed to best reproduce broad features of chiral nuclear forces. This is facilitated by choosing a lattice spacing of 1.5 fm, corresponding to a momentum-space cutoff of 414 MeV/c, a resolution scale at which strongly repulsive features of nuclear two-body forces are suppressed. Differences between the evolution potential and the full chiral nuclear interaction are then treated perturbatively. Our results for the equation of state are compared to previous quantum Monte Carlo simulations which employed chiral two-body forces at n...

  6. On gravitational dressing of 2D field theories in chiral gauge

    International Nuclear Information System (INIS)

    After giving a pedagogical review of the chiral gauge approach to 2D gravity, with particular emphasis on the derivation of the gravitational Ward identities, we discuss in some detail the interpretation of matter correlation functions coupled to gravity in chiral gauge. We argue that in chiral gauge no explicit gravitational dressing factor, analogue to the Liouville exponential in conformal gauge, is necessary for left-right symmetric matter operators. In particular, we examine the gravitationally dressed four-point correlation function of products of left and right fermions. We solve the corresponding gravitational Ward identity exactly: in the presence of gravity this four-point function exhibits a logarithmic short-distance singularity, instead of the power-law singularity in the absence of gravity. This rather surprising effect is non-perturbative in the gravitational coupling and is a sign for logarithms in the gravitationally dressed operator product expansions. We also discuss some perturbative evidence that the chiral Gross-Neveu model may remain integrable when coupled to gravity. (orig.)

  7. Topological string theory, modularity and non-perturbative physics

    Energy Technology Data Exchange (ETDEWEB)

    Rauch, Marco

    2011-09-15

    In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group {gamma}(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P{sup 2} and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in

  8. Topological string theory, modularity and non-perturbative physics

    International Nuclear Information System (INIS)

    In this thesis the holomorphic anomaly of correlators in topological string theory, matrix models and supersymmetric gauge theories is investigated. In the first part it is shown how the techniques of direct integration known from topological string theory can be used to solve the closed amplitudes of Hermitian multi-cut matrix models with polynomial potentials. In the case of the cubic matrix model, explicit expressions for the ring of non-holomorphic modular forms that are needed to express all closed matrix model amplitudes are given. This allows to integrate the holomorphic anomaly equation up to holomorphic modular terms that are fixed by the gap condition up to genus four. There is an one-dimensional submanifold of the moduli space in which the spectral curve becomes the Seiberg-Witten curve and the ring reduces to the non-holomorphic modular ring of the group Γ(2). On that submanifold, the gap conditions completely fix the holomorphic ambiguity and the model can be solved explicitly to very high genus. Using these results it is possible to make precision tests of the connection between the large order behavior of the 1/N expansion and non-perturbative effects due to instantons. Finally, it is argued that a full understanding of the large genus asymptotics in the multi-cut case requires a new class of non-perturbative sectors in the matrix model. In the second part a holomorphic anomaly equation for the modified elliptic genus of two M5-branes wrapping a rigid divisor inside a Calabi-Yau manifold is derived using wall-crossing formulae and the theory of mock modular forms. The anomaly originates from restoring modularity of an indefinite theta-function capturing the wall-crossing of BPS invariants associated to D4- D2-D0 brane systems. The compatibility of this equation with anomaly equations previously observed in the context of N=4 topological Yang-Mills theory on P2 and E-strings obtained from wrapping M5-branes on a del Pezzo surface which in turn is

  9. Dynamical Symmetry Breaking in Chiral Gauge Theories with Direct-Product Gauge Groups

    CERN Document Server

    Shi, Yan-Liang

    2016-01-01

    We analyze patterns of dynamical symmetry breaking in strongly coupled chiral gauge theories with direct-product gauge groups $G$. If the gauge coupling for a factor group $G_i \\subset G$ becomes sufficiently strong, it can produce bilinear fermion condensates that break the $G_i$ symmetry itself and/or break other gauge symmetries $G_j \\subset G$. Our comparative study of a number of strongly coupled direct-product chiral gauge theories elucidates how the patterns of symmetry breaking depend on the structure of $G$ and on the relative sizes of the gauge couplings corresponding to factor groups in the direct product.

  10. Dissipative Field Theory with Caldeira-Leggett Method and its Application to Disoriented Chiral Condensation

    CERN Document Server

    Yabu, H; Suzuki, T; Yabu, Hiroyuki; Nozawa, Satoshi; Suzuki, Toru

    1998-01-01

    The effective field theory including the dissipative effect is developed based on the Caldeira-Leggett theory at the classical level. After the integration of the small field fluctuations considered as the field radiation, the integro-differential field equation is given and shown to include the dissipative effects. In that derivation, special cares should be taken for the boundary condition of the integration. Application to the linear sigma model is given, and the decay process of the chiral condensate is calculated with it, both analytically in the linear approximation and numerically. With these results, we discuss the stability of chiral condensates within the quenched approximation.

  11. S-matrices for perturbed N=2 superconformal field theory from quantum groups

    International Nuclear Information System (INIS)

    S-matrices for integrable perturbations of N=2 superconformal field theories are studied. The models we consider correspond to perturbations of the coset theory GkxHg-h/Hk+g-h. The perturbed models are closely related to G-affine Toda theories with a background charge tuned to H. Using the quantum group restriction of the affine Toda theories we derive the S-matrix. (orig.)

  12. Massive chiral fermions: a natural account of chiral phenomenology in the framework of Dirac's fermion theory

    International Nuclear Information System (INIS)

    We assume a strictly invariant definition of the Dirac parity operator under fermion ↔ antifermion exchange. We see that the opposite-intrinsic-parity condition then requires two opposite-mass Dirac equations for the fermion and the antifermion. This leads us to introduce an asymptotically left-handed (fermion) and right-handed (antifermion) chiral field, as just an alternative basis in the internal space spanned by the new pair of charge-conjugate Dirac fields. Hence a dual intrinsic model of a spin - 1/2 massive fermion is drawn: it predicts the coexistence of two anticommuting general varieties of conserved charges, namely a scalar variety, responsible for parity-invariant phenomenology, plus a pseudoscalar one, responsible for chiral phenomenology. In this light, CP-symmetry is seen to be nothing but P-symmetry; and a spontaneous CP-violation mechanism is also derived, that should work in any single process occurring via both scalar-and pseudoscalar-charge interactions. We show, at last, that our scheme automatically yields Weyl's one for a merely left-handed neutrino and a merely right-handed antineutrino, further assigning them the special meaning of pure pseudoscalar-charge objects. Some general consequences as regards magnetic monopoles are briefly discussed too

  13. Cutoff regulators in chiral nuclear effective field theory

    CERN Document Server

    Long, Bingwei

    2016-01-01

    Three-dimensional cutoff regulators are frequently employed in multi-nucleon calculations, but they violate chiral symmetry and Lorentz invariance. A cutoff regularization scheme is proposed to compensate systematically at subleading orders for these symmetry violations caused by regulator artifacts. This is especially helpful when a soft momentum cutoff has to be used for technical reasons. It is also shown that dimensional regularization can still be used for some Feynman (sub)diagrams while cutoff regulators are used for the rest.

  14. Second-order perturbation theory: problems on large scales

    CERN Document Server

    Pound, Adam

    2015-01-01

    In general-relativistic perturbation theory, a point mass accelerates away from geodesic motion due to its gravitational self-force. Because the self-force is small, one can often approximate the motion as geodesic. However, it is well known that self-force effects accumulate over time, making the geodesic approximation fail on long timescales. It is less well known that this failure at large times translates to a failure at large distances as well. At second perturbative order, two large-distance pathologies arise: spurious secular growth and infrared-divergent retarded integrals. Both stand in the way of practical computations of second-order self-force effects. Utilizing a simple flat-space scalar toy model, I develop methods to overcome these obstacles. The secular growth is tamed with a multiscale expansion that captures the system's slow evolution. The divergent integrals are eliminated by matching to the correct retarded solution at large distances. I also show how to extract conservative self-force ef...

  15. Perturbation Theory Trispectrum in the Time Renormalisation Approach

    CERN Document Server

    Juergens, Gero

    2012-01-01

    An accurate theoretical description of structure formation at least in the mildly non-linear regime is essential for comparison with data from next generation galaxy surveys. In a recent approach one follows the time evolution of correlators directly and finds a hierarchy of evolution equations with increasing order (Pietroni 2008). So far, in this so called time renormalisation group method the trispectrum was neglected in order to obtain a closed set of equations. In this work we study the influence of the trispectrum on the evolution of the power spectrum. In order to keep the numerical cost at a manageable level we use the tree-level trispectrum from Eulerian perturbation theory. In comparison to numerical simulations we find improvement in the mildly non-linear regime up to k = 0.25 h/Mpc. Beyond k = 0.25 h/Mpc the perturbative description of the trispectrum fails and the method performs worse than without the trispectrum included. Our results reinforce the conceptual advantage of the time renormalisatio...

  16. Some Deviations Associated With Vector Perturbation Diffraction Theory

    Science.gov (United States)

    Stover, John C.; Hourmand, Bahrarr

    1985-01-01

    Last year at this conference our lab presented some data which strongly supports the use of the vector perturbation relationship between light scattered from smooth surfaces and the surface power spectral density (PSD). Last year's data showed that a consistent answer was obtained for the PSD for measurements taken with S and P polarization, with incident angles up to 45', for positive and negative sweeps, and for one and two dimensional samples. If in fact the theoretical relationship is correct then this must be the case, as the PSD is determined by a combination of surface topography and the scattering situation (geometry, polarization, wavelength, etc.). It appears, however that for large scatter angles (>700) and for large angles of incidence (>60 °) there is some deviation in the calculated PSD. In addition, the high angle scatter region is an area where a scatterometer with a semicircular detector sweep loses the one-to-one relationship between detector position and surface spatial frequency. Or, in other words, light diffracted to high scatter angles from single spatial frequencies appears over a small band on the observation semicircle instead of a diffraction limited point. Fata supporting these two deviations is presented. Although they are not regarded as serious violations of the vector perturbation theory they do impose a limit on the useful range over which the PSD may be calculated.

  17. One-Group Perturbation Theory Applied to Measurements with Void

    International Nuclear Information System (INIS)

    Formulas suitable for evaluating progressive as well as single rod substitution measurements are derived by means of one-group perturbation theory. The diffusion coefficient may depend on direction and position. By using the buckling concept one can derive expressions which are quite simple and the perturbed flux can be taken into account in a comparatively simple way. By using an unconventional definition of cells a transition region is introduced quite logically. Experiments with voids around metal rods, diam. 3.05 cm, have been analysed. The agreement between extrapolated and directly measured buckling values is excellent, the buckling difference between lattices with water-filled and voided shrouds being 0. 263 ± 0.015/m2 and 0.267 ± 0.005/m2 resp. From single-rod experiments differences between diffusion coefficients are determined to δDr/D = 0.083 ± 0.004 and δDz/D = 0.120 ± 0.018. With air-filled shrouds there is consequently anisotropy in the neutron diffusion and we have (Dz/Dr)air = 1.034 ± 0.020

  18. Adaptive neural network error control for generalized perturbation theory

    International Nuclear Information System (INIS)

    This paper addresses the issue of adaptive error control within generalized perturbation theory (GPT). The strategy herein assessed considers an artificial neural network (ANN) error estimator. The underlying tool facilitating this research is the FORMOSA-P code, a pressurized water reactor (PWR) nuclear fuel management optimization package, which combines simulated annealing and nodal GPT. A number of applications exist where traditional GPT may be limited by the magnitude of perturbations, which it can accurately handle. In fact, other alternative such as supervariational techniques (i.e., n'th-order GPT) and/or multireference strategies (i.e., rodded adjoints) are being sought for boiling water reactor and rodded applications. A perhaps not-so-obvious alternative could be to employ a neural network for adaptive error control within GPT. This study presents the results of two ANN models. The first model constitutes an intensively well-trained ANN used to contrast its global core parameter (i.e., keff) prediction capability versus that of a GPT model. The second model is a similar ANN intended for adaptive GPT error correction. In other words, the latter ANN is trained on-the-fly within the scope of a standard FORMOSA-P calculation

  19. Nuclear electromagnetic charge and current operators in Chiral EFT

    Energy Technology Data Exchange (ETDEWEB)

    Girlanda, Luca [Università del Salento; Marcucci, Laura Elisa [Univ. Pisa; Pastore, Saori [Department of Physics and Astronomy, University of South Carolina, Columbia, SC; Piarulli, Maria [Department of Physics, Old Dominion University, Norfolk, VA; Schiavilla, Rocco [Old Dominion U., JLAB; Viviani, Michele

    2013-08-01

    We describe our method for deriving the nuclear electromagnetic charge and current operators in chiral perturbation theory, based on time-ordered perturbation theory. We then discuss possible strategies for fixing the relevant low-energy constants, from the magnetic moments of the deuteron and of the trinucleons, and from the radiative np capture cross sections, and identify a scheme which, partly relying on {Delta} resonance saturation, leads to a reasonable pattern of convergence of the chiral expansion.

  20. An ultraviolet chiral theory of the top for the fundamental composite (Goldstone) Higgs

    OpenAIRE

    Giacomo Cacciapaglia; Francesco Sannino(Syracuse Univ., Univ. ``Federico II'' & INFN)

    2016-01-01

    We introduce a scalar-less anomaly free chiral gauge theory that serves as natural ultraviolet completion of models of fundamental composite (Goldstone) Higgs dynamics. The new theory is able to generate the top mass and furthermore features a built-in protection mechanism that naturally suppresses the bottom mass. At low energies the theory predicts new fractionally charged fermions, and a number of four-fermion operators that, besides being relevant for the generation of the top mass, also ...