WorldWideScience

Sample records for chiral olefin metathesis

  1. Catalytic enantioselective olefin metathesis in natural product synthesis. Chiral metal-based complexes that deliver high enantioselectivity and more.

    Science.gov (United States)

    Hoveyda, Amir H; Malcolmson, Steven J; Meek, Simon J; Zhugralin, Adil R

    2010-01-01

    Chiral olefin metathesis catalysts enable chemists to access enantiomerically enriched small molecules with high efficiency; synthesis schemes involving such complexes can be substantially more concise than those that would involve enantiomerically pure substrates and achiral Mo alkylidenes or Ru-based carbenes. The scope of research towards design and development of chiral catalysts is not limited to discovery of complexes that are merely the chiral versions of the related achiral variants. A chiral olefin metathesis catalyst, in addition to furnishing products of high enantiomeric purity, can offer levels of efficiency, product selectivity and/or olefin stereoselectivity that are unavailable through the achiral variants. Such positive attributes of chiral catalysts (whether utilized in racemic or enantiomerically enriched form) should be considered as general, applicable to other classes of transformations.

  2. Highly Active Chiral Ruthenium Catalysts for Asymmetric Ring-Closing Olefin Metathesis

    Science.gov (United States)

    Funk, Timothy W.; Berlin, Jacob M.

    2008-01-01

    The synthesis of olefin metathesis catalysts containing chiral, monodentate N-heterocyclic carbenes and their application to asymmetric ring-closing metathesis (ARCM) is reported. These catalysts retain the high levels of reactivity found in the related achiral variants (1a and 1b). Using the parent chiral catalysts 2a and 2b and derivatives that contain steric bulk in the meta positions of the N-bound aryl rings (catalysts 3-5), five- through seven-membered rings were formed in up to 92% ee. The addition of sodium iodide to catalysts 2a-4a (to form 2b-4bin situ) caused a dramatic increase in enantioselectivity for many substrates. Catalyst 5a, which gave high enantiomeric excesses for certain substrates without the addition of NaI, could be used in loadings of ≤1 mol %. Mechanistic explanations for the large sodium iodide effect as well as possible mechanistic pathways leading to the observed products are discussed. PMID:16464082

  3. Latent olefin metathesis catalysts

    OpenAIRE

    Monsaert, Stijn; Lozano Vila, Ana; Drozdzak, Renata; Van Der Voort, Pascal; Verpoort, Francis

    2009-01-01

    Olefin metathesis is a versatile synthetic tool for the redistribution of alkylidene fragments at carbon-carbon double bonds. This field, and more specifically the development of task-specific, latent catalysts, attracts emerging industrial and academic interest. This tutorial review aims to provide the reader with a concise overview of early breakthroughs and recent key developments in the endeavor to develop latent olefin metathesis catalysts, and to illustrate their use by prominent exampl...

  4. New Enantiomerically Pure Alkylimido Mo-Based Complexes. Synthesis, Characterization, and Activity as Chiral Olefin Metathesis Catalysts

    Science.gov (United States)

    Pilyugina, Tatiana S.; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    Molybdenum olefin metathesis catalysts that contain aliphatic 1-phenylcyclohexylimido (NPhCy) and 2-phenyl-2-adamantylimido (NPhAd) groups and (S)-Biphen or (R)-Trip)(THF) ligands (Biphen = 3,3′-di-tert-butyl-5,5′,6,6′-tetramethyl-1,1′-biphenyl-2,2′-diolate; Trip = 3,3′-bis(2,4,6-triisopropylphenyl)-2,2′-binaphtholate) have been prepared. Their catalytic activity and enantioselectivity in desymmetrization reactions such as ring-closing metathesis of amines and lactams and ring-opening/cross-metathesis of substituted norborneols with styrene were compared to the results obtained with the only known alkylimido catalyst Mo(NAd)(CHCMe2Ph)[(S)-Biphen]. The activities and enantioselectivities provided by these new chiral complexes vary significantly, but in virtually all instances explored were not superior to the adamantylimido analogs. PMID:19079732

  5. Olefin metathesis in air

    OpenAIRE

    Lorenzo Piola; Fady Nahra; Nolan, Steven P

    2015-01-01

    Summary Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments...

  6. Olefin metathesis in air.

    Science.gov (United States)

    Piola, Lorenzo; Nahra, Fady; Nolan, Steven P

    2015-01-01

    Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  7. Amino acids as chiral anionic ligands for ruthenium based asymmetric olefin metathesis.

    Science.gov (United States)

    Ivry, Elisa; Ben-Asuly, Amos; Goldberg, Israel; Lemcoff, N Gabriel

    2015-03-04

    Several amino acid ligands were introduced into the Hoveyda-Grubbs 2nd generation complex by a facile anionic ligand exchange. The chiral pre-catalysts obtained displayed enantioselectivity in asymmetric ring-closing and ring-opening cross-metathesis reactions. Reduction of the lability of the carboxylate ligands was found to be cardinal for improving the observed enantiomeric product enrichment.

  8. Mechanistic studies of olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H.

    1979-03-01

    A review covers studies of the olefin metathesis mechanism which indicated that the reaction proceeds by a non-pairwise mechanism; detailed mechanistic studies on the homogeneously and heterogeneously catalyzed metathesis; and stereochemical investigations.

  9. Olefin metathesis in air

    Directory of Open Access Journals (Sweden)

    Lorenzo Piola

    2015-10-01

    Full Text Available Since the discovery and now widespread use of olefin metathesis, the evolution of metathesis catalysts towards air stability has become an area of significant interest. In this fascinating area of study, beginning with early systems making use of high oxidation state early transition metal centers that required strict exclusion of water and air, advances have been made to render catalysts more stable and yet more functional group tolerant. This review summarizes the major developments concerning catalytic systems directed towards water and air tolerance.

  10. Photolithographic Olefin Metathesis Polymerization

    OpenAIRE

    Weitekamp, Raymond A.; Atwater, Harry A.; Grubbs, Robert H

    2013-01-01

    Patterning functional materials is a central challenge across many fields of science. The ability to lithographically fabricate micro- and nanostructures has been one of the most impactful technological breakthroughs of the last century. In part due to the complexity of the chemical processes in photoresists, there is a limited variety of materials that can currently be patterned by photolithography. We report a negative tone photoresist using a photoactivated olefin metathesis catalyst, whic...

  11. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Veronica Paradiso

    2016-01-01

    Full Text Available The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C2-symmetric and C1-symmetric NHCs is provided.

  12. NHC Backbone Configuration in Ruthenium-Catalyzed Olefin Metathesis.

    Science.gov (United States)

    Paradiso, Veronica; Costabile, Chiara; Grisi, Fabia

    2016-01-20

    The catalytic properties of olefin metathesis ruthenium complexes bearing N-heterocyclic carbene ligands with stereogenic centers on the backbone are described. Differences in catalytic behavior depending on the backbone configurations of symmetrical and unsymmetrical NHCs are discussed. In addition, an overview on asymmetric olefin metathesis promoted by chiral catalysts bearing C₂-symmetric and C₁-symmetric NHCs is provided.

  13. Hyperbranched Macromolecules via Olefin Metathesis

    OpenAIRE

    Gorodetskaya, Irina A.; Choi, Tae-Lim; Grubbs, Robert H

    2007-01-01

    A facile route to hyperbranched polymers via acyclic diene metathesis is reported. Any molecule functionalized with two or more acrylate groups and one terminal olefin can serve as an AB_n monomer when exposed to an imidazolinylidene-based ruthenium olefin metathesis catalyst, due to the cross metathesis selectivity of this catalyst. For the polymers obtained by this method, both ^1H NMR spectroscopy and triple detector size exclusion chromatography conclusively indicate a branched architecture.

  14. Olefin metathesis for chemical biology.

    Science.gov (United States)

    Binder, Joseph B; Raines, Ronald T

    2008-12-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-opening metathesis polymerization, cross metathesis, and ring-closing metathesis. Alternatively, conventional hydrophobic ruthenium complexes catalyze a similar array of metathesis reactions in mixtures of water and organic solvents. This strategy has enabled cross metathesis on the surface of a protein. Continuing developments in catalyst design and methodology will popularize the bioorthogonal reactivity of metathesis.

  15. Industrial processes of olefin metathesis. Pt. 1

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S.

    1987-05-01

    Olefin metathesis opens new synthetic routes to typical petrochemicals (ethylene, propylene, n-butenes), special olefins (neohexene, higher molecular linear olefins, , -dienes) and unsaturated polymers (polynorbornene, -cyclooctene, -dicyclopentadiene) in an industrial scale. The 8 metathesis processes used in industry and further possible applications of olefin metathesis are reviewed.

  16. Light-induced olefin metathesis

    National Research Council Canada - National Science Library

    Vidavsky, Yuval; Lemcoff, N Gabriel

    2010-01-01

    Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful...

  17. Olefin metathesis in carotenoid synthesis.

    Science.gov (United States)

    Kajikawa, Takayuki; Iguchi, Naoko; Katsumura, Shigeo

    2009-11-21

    Olefin metathesis is a powerful and widely applicable synthetic method for carbon-carbon double bond formation. However, its application to the synthesis of conjugating polyene chains has been very limited because of possible undesired side reactions. We attempted to apply this method to the synthesis of symmetrical carotenoids. In this paper, the syntheses of violaxanthin and mimulaxanthin are described using the olefin metathesis protocol.

  18. Olefin Metathesis for Chemical Biology

    OpenAIRE

    Binder, Joseph B.; Raines, Ronald T

    2008-01-01

    Chemical biology relies on effective synthetic chemistry for building molecules to probe and modulate biological function. Olefin metathesis in organic solvents is a valuable addition to this armamentarium, and developments during the previous decade are enabling metathesis in aqueous solvents for the manipulation of biomolecules. Functional group-tolerant ruthenium metathesis catalysts modified with charged moieties or hydrophilic polymers are soluble and active in water, enabling ring-openi...

  19. Light-induced olefin metathesis

    Directory of Open Access Journals (Sweden)

    Yuval Vidavsky

    2010-11-01

    Full Text Available Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful. Starting from early tungsten heterogeneous photoinitiated metathesis, up to modern ruthenium methods based on complex photoisomerisation or indirect photoactivation, this survey of the relevant literature summarises past and present developments in the use of light to expedite olefin ring-closing, ring-opening polymerisation and cross-metathesis reactions.

  20. Design and stereoselective preparation of a new class of chiral olefin metathesis catalysts and application to enantioselective synthesis of quebrachamine: catalyst development inspired by natural product synthesis.

    Science.gov (United States)

    Sattely, Elizabeth S; Meek, Simon J; Malcolmson, Steven J; Schrock, Richard R; Hoveyda, Amir H

    2009-01-28

    A total synthesis of the Aspidosperma alkaloid quebrachamine in racemic form is first described. A key catalytic ring-closing metathesis of an achiral triene is used to establish the all-carbon quaternary stereogenic center and the tetracyclic structure of the natural product; the catalytic transformation proceeds with reasonable efficiency through the use of existing achiral Ru or Mo catalysts. Ru- or Mo-based chiral olefin metathesis catalysts have proven to be inefficient and entirely nonselective in cases where the desired product is observed. In the present study, the synthesis route thus serves as a platform for the discovery of new olefin metathesis catalysts that allow for efficient completion of an enantioselective synthesis of quebrachamine. Accordingly, on the basis of mechanistic principles, stereogenic-at-Mo complexes bearing only monodentate ligands have been designed. The new catalysts provide significantly higher levels of activity than observed with the previously reported Ru- or Mo-based complexes. Enantiomerically enriched chiral alkylidenes are generated through diastereoselective reactions involving achiral Mo-based bispyrrolides and enantiomerically pure silyl-protected binaphthols. Such chiral catalysts initiate the key enantioselective ring-closing metathesis step in the total synthesis of quebrachamine efficiently (1 mol % loading, 22 degrees C, 1 h, >98% conversion, 84% yield) and with high selectivity (98:2 er, 96% ee).

  1. Mechanochemical ruthenium-catalyzed olefin metathesis.

    Science.gov (United States)

    Do, Jean-Louis; Mottillo, Cristina; Tan, Davin; Štrukil, Vjekoslav; Friščić, Tomislav

    2015-02-25

    We describe the development of a mechanochemical approach for Ru-catalyzed olefin metathesis, including cross-metathesis and ring-closing metathesis. The method uses commercially available catalysts to achieve high-yielding, rapid, room-temperature metathesis of solid or liquid olefins on a multigram scale using either no or only a catalytic amount of a liquid.

  2. Light-induced olefin metathesis

    OpenAIRE

    Yuval Vidavsky; N. Gabriel Lemcoff

    2010-01-01

    Summary Light activation is a most desirable property for catalysis control. Among the many catalytic processes that may be activated by light, olefin metathesis stands out as both academically motivating and practically useful. Starting from early tungsten heterogeneous photoinitiated metathesis, up to modern ruthenium methods based on complex photoisomerisation or indirect photoactivation, this survey of the relevant literature summarises past and present developments in the use of light to...

  3. Olefin metathesis in nano-sized systems

    OpenAIRE

    Denise Méry; Victor Martinez; Cátia Ornelas; Liyuan Liang; Sylvain Gatard; Abdou K. Diallo; Didier Astruc; Jaime Ruiz

    2011-01-01

    The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i) The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP) or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM), cross metathesis (CM), enyne metathesis reactions (EYM) – for reactions in w...

  4. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-05-14

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory oxide support containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one methylating agent under conditions suitable for the methylating agent compounds to promote the activity of tungsten and molybdenum oxides for the disproportionation reaction.

  5. Olefin metathesis and catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S. G.; Banks, R. L.

    1985-03-12

    Olefins are converted into other olefins having different numbers of carbon atoms by contact with a catalyst comprising an inorganic refractory material containing at least one of tungsten oxide and molybdenum oxide and a promoting amount of at least one treating agent selected from chlorinated silicon compounds, thionyl chloride, and sulfuryl chloride under conditions suitable for the treating agent to promote the activity of tungsten and molybdenum oxides for the disporoportionation reaction.

  6. Microwave-Assisted Olefin Metathesis

    Science.gov (United States)

    Nicks, François; Borguet, Yannick; Sauvage, Xavier; Bicchielli, Dario; Delfosse, Sébastien; Delaude, Lionel; Demonceau, Albert

    Since the first reports on the use of microwave irradiation to accelerate organic chemical transformations, a plethora of papers have been published in this field. In most examples, microwave heating has been shown to dramatically reduce reaction times, increase product yields, and enhance product purity by reducing unwanted side reactions compared to conventional heating methods. The present contribution aims at illustrating the advantages of this technology in olefin metathesis and, when data are available, at comparing microwave-heated and conventionally heated experiments

  7. Application of olefin metathesis in petrochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S.

    1979-01-01

    A survey covers the catalysts used in olefin metathesis; olefin types which undergo metathesis, e.g., ring-opening metathetic polymerization of cycloolefins; equilibria and side reactions; the Phillips Triolefin process for 2-butene production; the Shell Higher Olefin Process (SHOP) for the production of C/sub 11/-C/sub 14/ ..cap alpha..-olefins; the Phillips Petroleum 225 ton/yr process for the conversion of trimethylpentane to neohexene, which is used in gasoline and pharmaceutical manufacture; the production of isoprene precursors; and various other metathesis reactions used in synthesizing specific olefins.

  8. The allylic chalcogen effect in olefin metathesis

    Directory of Open Access Journals (Sweden)

    Yuya A. Lin

    2010-12-01

    Full Text Available Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications.

  9. The allylic chalcogen effect in olefin metathesis.

    Science.gov (United States)

    Lin, Yuya A; Davis, Benjamin G

    2010-12-23

    Olefin metathesis has emerged as a powerful tool in organic synthesis. The activating effect of an allylic hydroxy group in metathesis has been known for more than 10 years, and many organic chemists have taken advantage of this positive influence for efficient synthesis of natural products. Recently, the discovery of the rate enhancement by allyl sulfides in aqueous cross-metathesis has allowed the first examples of such a reaction on proteins. This led to a new benchmark in substrate complexity for cross-metathesis and expanded the potential of olefin metathesis for other applications in chemical biology. The enhanced reactivity of allyl sulfide, along with earlier reports of a similar effect by allylic hydroxy groups, suggests that allyl chalcogens generally play an important role in modulating the rate of olefin metathesis. In this review, we discuss the effect of allylic chalcogens in olefin metathesis and highlight its most recent applications in synthetic chemistry and protein modifications.

  10. Recent Advancements in Stereoselective Olefin Metathesis Using Ruthenium Catalysts

    OpenAIRE

    T. Patrick Montgomery; Johns, Adam M.; Grubbs, Robert H

    2017-01-01

    Olefin metathesis is a prevailing method for the construction of organic molecules. Recent advancements in olefin metathesis have focused on stereoselective transformations. Ruthenium olefin metathesis catalysts have had a particularly pronounced impact in the area of stereoselective olefin metathesis. The development of three categories of Z-selective olefin metathesis catalysts has made Z-olefins easily accessible to both laboratory and industrial chemists. Further design enhancements to as...

  11. Olefin metathesis in nano-sized systems

    Directory of Open Access Journals (Sweden)

    Denise Méry

    2011-01-01

    Full Text Available The interplay between olefin metathesis and dendrimers and other nano systems is addressed in this mini review mostly based on the authors’ own contributions over the last decade. Two subjects are presented and discussed: (i The catalysis of olefin metathesis by dendritic nano-catalysts via either covalent attachment (ROMP or, more usefully, dendrimer encapsulation – ring closing metathesis (RCM, cross metathesis (CM, enyne metathesis reactions (EYM – for reactions in water without a co-solvent and (ii construction and functionalization of dendrimers by CM reactions.

  12. Olefin metathesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Kukes, S.G.; Banks, R.L.

    1986-05-20

    A process is described for preparing a disproportionation catalyst comprising admixing a catalytically effective amount of a calcined and activated catalyst consisting essentially of at least one metal oxide selected from molybdenum oxide and tungsten oxide and a support containing a major proportion of silica or alumina with a promoting amount of a methylating agent selected from the group consisting of dimethyl sulfate, dimethylsulfoxide, trimethyloxonium tetrafluorborate, methyl iodide, and methyl bromide, and subjecting same to inert atmospheric conditions for the methylating agent to promote the activity of the calcined molybdenum and tungsten oxides for the disproportionation of olefins.

  13. The Olefin Metathesis Reactions in Dendrimers

    Science.gov (United States)

    Astruc, Didier

    Dendrimers containing terminal olefins or ruthenium-benzylidene terminal groups undergo olefin metathesis reactions (RCM and ROMP types), and essentially results from our group are reviewed here. Dendrimers have been loaded at their periphery with ruthenium-chelating bis-phosphines, which leads to the formation of dendrimer-cored stars by ring-opening-metathesis polymerization (ROMP). CpFe+-induced perallylation of polymethylaromatics (Cp = η5-C5H5) followed by ring-closing metathesis (RCM) and/or cross metathesis (CM) leads to poly-ring, cage, oligomeric and polymeric architectures. In the presence of acrylic acid or metha-crylate, stereospecific CM inhibits oligomerization, and dendritic olefins yield polyacid dendrimers. Finally, cros-metahesis reactions with dendronic acrylate allow dendritic construction and growth.

  14. Methods for suppressing isomerization of olefin metathesis products

    Energy Technology Data Exchange (ETDEWEB)

    Firth, Bruce E.; Kirk, Sharon E.

    2015-10-27

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent that includes nitric acid to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. Methods of refining a natural oil are described.

  15. Methods for suppressing isomerization of olefin metathesis products

    Energy Technology Data Exchange (ETDEWEB)

    Firth, Bruce E.; Kirk, Sharon E.; Gavaskar, Vasudeo S.

    2015-09-22

    A method for suppressing isomerization of an olefin metathesis product produced in a metathesis reaction includes adding an isomerization suppression agent to a mixture that includes the olefin metathesis product and residual metathesis catalyst from the metathesis reaction under conditions that are sufficient to passivate at least a portion of the residual metathesis catalyst. The isomerization suppression agent is phosphorous acid, a phosphorous acid ester, phosphinic acid, a phosphinic acid ester or combinations thereof. Methods of refining natural oils are described.

  16. Multiple Olefin Metathesis Polymerization That Combines All Three Olefin Metathesis Transformations: Ring-Opening, Ring-Closing, and Cross Metathesis.

    Science.gov (United States)

    Lee, Ho-Keun; Bang, Ki-Taek; Hess, Andreas; Grubbs, Robert H; Choi, Tae-Lim

    2015-07-29

    We demonstrated tandem ring-opening/ring-closing metathesis (RO/RCM) polymerization of monomers containing two cyclopentene moieties and postmodification via insertion polymerization. In this system, well-defined polymers were efficiently formed by tandem cascade RO/RCM reaction pathway. Furthermore, these polymers could be transformed to new A,B-alternating copolymers via a sequential cross metathesis reaction with a diacrylate. Additionally, we demonstrated the concept of multiple olefin metathesis polymerization in which the dicyclopentene and diacrylate monomers underwent all three olefin metathesis transformations (ring-opening, ring-closing, and cross metathesis) in one shot to produce A,B-alternating copolymer.

  17. Recent Advancements in Stereoselective Olefin Metathesis Using Ruthenium Catalysts

    Directory of Open Access Journals (Sweden)

    T. Patrick Montgomery

    2017-03-01

    Full Text Available Olefin metathesis is a prevailing method for the construction of organic molecules. Recent advancements in olefin metathesis have focused on stereoselective transformations. Ruthenium olefin metathesis catalysts have had a particularly pronounced impact in the area of stereoselective olefin metathesis. The development of three categories of Z-selective olefin metathesis catalysts has made Z-olefins easily accessible to both laboratory and industrial chemists. Further design enhancements to asymmetric olefin metathesis catalysts have streamlined the construction of complex molecules. The understanding gained in these areas has extended to the employment of ruthenium catalysts to stereoretentive olefin metathesis, the first example of a kinetically E-selective process. These advancements, as well as synthetic applications of the newly developed catalysts, are discussed.

  18. Thermally Stable, Latent Olefin Metathesis Catalysts

    OpenAIRE

    Thomas, Renee M.; Fedorov, Alexey; Keitz, Benjamin K.; Grubbs, Robert H.

    2011-01-01

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to i...

  19. Metatheases: artificial metalloproteins for olefin metathesis.

    Science.gov (United States)

    Sauer, D F; Gotzen, S; Okuda, J

    2016-10-21

    The incorporation of organometallic catalyst precursors in proteins results in so-called artificial metalloenzymes. The protein structure will control activity, selectivity and stability of the organometallic site in aqueous medium and allow non-natural reactions in biological settings. Grubbs-Hoveyda type ruthenium catalysts with an N-heterocyclic carbene (NHC) as ancillary ligand, known to be active in olefin metathesis, have recently been incorporated in various proteins. An overview of these artificial metalloproteins and their potential application in olefin metathesis is given.

  20. Application of olefin metathesis in the synthesis of steroids.

    Science.gov (United States)

    Morzycki, Jacek W

    2011-01-01

    Over the past decade, ruthenium-mediated metathesis transformations, including cross-metathesis, ring-closing metathesis, enyne metathesis, ring-opening metathesis polymerization, and also tandem processes, belong to the most intensively studied reactions. Many applications of olefin metathesis in the synthesis of natural products have been recently described. Also in the field of steroid chemistry new methods of total synthesis and hemisynthesis based on metathesis reactions have been elaborated. Various biologically active compounds, e.g. vitamin D and hormone analogues, steroid dimers and macrocycles, etc. have been prepared using a variety of olefin-metathesis protocols. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Tandem Catalysis Utilizing Olefin Metathesis Reactions.

    Science.gov (United States)

    Zieliński, Grzegorz K; Grela, Karol

    2016-07-04

    Since olefin metathesis transformation has become a favored synthetic tool in organic synthesis, more and more distinct non-metathetical reactions of alkylidene ruthenium complexes have been developed. Depending on the conditions applied, the same olefin metathesis catalysts can efficiently promote isomerization reactions, hydrogenation of C=C double bonds, oxidation reactions, and many others. Importantly, these transformations can be carried out in tandem with olefin metathesis reactions. Through addition of one portion of a catalyst, a tandem process provides structurally advanced products from relatively simple substrates without the need for isolation of the intermediates. These aspects not only make tandem catalysis very attractive from a practical point of view, but also open new avenues in (retro)synthetic planning. However, in the literature, the term "tandem process" is sometimes used improperly to describe other types of multi-reaction sequences. In this Concept, a number of examples of tandem catalysis involving olefin metathesis are discussed with an emphasis on their synthetic value. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Chelated ruthenium catalysts for Z-selective olefin metathesis.

    Science.gov (United States)

    Endo, Koji; Grubbs, Robert H

    2011-06-08

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands that catalyze highly Z-selective olefin metathesis. A very simple and convenient procedure for the synthesis of such catalysts has been developed. Intramolecular C-H bond activation of the NHC ligand, promoted by anion ligand substitution, forms the appropriate chelate for stereocontrolled olefin metathesis.

  3. Olefin metathesis : tapping into breakthrough chemical technology

    Energy Technology Data Exchange (ETDEWEB)

    Granson, E.

    2010-06-15

    Olefin metathesis is a catalyst technology where 2 double bond-containing molecules or olefins are split in order to exchange atoms and result in the formation of 2 new molecules or substances. Earlier researchers used a variety of materials to convert propylene into a mixture of butenes and ethylenes. A method developed by Shell researchers produces linear olefins used as detergent feedstocks. In 1971, scientists used a metal-carbene catalyst to react with the olefins to produce both a new olefin and a new metal carbene in order to perpetuate the process. In 2002, a new metathesis technology was developed using renewable natural oils as a feedstock. The catalyst is introduced as a solid into the oil, and then agitated by stirring. The modified oil is then reacted with hydrogen to remove the double bonds and filter off the catalyst. The method is offered on a contract basis by Elevance Renewable Sciences in a variety of application. The process was designed to take place at lower temperatures with the release of fewer greenhouse gases (GHGs). New metathesis technologies are also being developed to reduce the molecular weight of polymers in order to reduce viscosity and increase flow. 3 figs.

  4. Enantioselective olefin metathesis with cyclometalated ruthenium complexes.

    Science.gov (United States)

    Hartung, John; Dornan, Peter K; Grubbs, Robert H

    2014-09-17

    The success of enantioselective olefin metathesis relies on the design of enantioenriched alkylidene complexes capable of transferring stereochemical information from the catalyst structure to the reactants. Cyclometalation of the NHC ligand has proven to be a successful strategy to incorporate stereogenic atoms into the catalyst structure. Enantioenriched complexes incorporating this design element catalyze highly Z- and enantioselective asymmetric ring opening/cross metathesis (AROCM) of norbornenes and cyclobutenes, and the difference in ring strain between these two substrates leads to different propagating species in the catalytic cycle. Asymmetric ring closing metathesis (ARCM) of a challenging class of prochiral trienes has also been achieved. The extent of reversibility and effect of reaction setup was also explored. Finally, promising levels of enantioselectivity in an unprecedented Z-selective asymmetric cross metathesis (ACM) of a prochiral 1,4-diene was demonstrated.

  5. Theoretical investigations of olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Cundari, T.R.; Gordon, M.S. [North Dakota State Univ., Fargo, ND (United States)

    1992-01-01

    An ab initio analysis of the electronic structure of high-valent, transition-metal alkylidenes as models for olefin metathesis catalysts is presented. The catalyst models studied fall into three categories: {open_quotes}new{close_quotes} metathesis catalyst models-tetrahedral M(OH){sup 2}(XH)(CH{sub 2}) complexes; {open_quotes}old{close_quotes} metathesis catalyst models-tetrahedral MCl{sub 2}(Y)(CH{sub 2}) complexes and alkylidene-substituted Mo metathesis catalysts, Mo(OH){sub 2}(NH)(=C(H)Z). The effect on the bonding caused by modification of either the metal, ligands, or alkylidene substitutents is considered. 21 refs., 2 figs., 5 tabs.

  6. Highly Active Water-Soluble Olefin Metathesis Catalyst

    OpenAIRE

    Hong, Soon Hyeok; Grubbs, Robert H

    2006-01-01

    A novel water-soluble ruthenium olefin metathesis catalyst supported by a poly(ethylene glycol) conjugated saturated 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligand is reported. The catalyst displays improved activity in ring-opening metathesis polymerization, ring-closing metathesis, and cross-metathesis reactions in aqueous media.

  7. Halide exchanged Hoveyda-type complexes in olefin metathesis

    Directory of Open Access Journals (Sweden)

    Julia Wappel

    2010-11-01

    Full Text Available The aims of this contribution are to present a straightforward synthesis of 2nd generation Hoveyda-type olefin metathesis catalysts bearing bromo and iodo ligands, and to disclose the subtle influence of the different anionic co-ligands on the catalytic performance of the complexes in ring opening metathesis polymerisation, ring closing metathesis, enyne cycloisomerisation and cross metathesis reactions.

  8. Methyltrioxorhenium as catalyst for olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, W.A. (Technische Univ. Muenchen, Garching (Germany). Anorganisch-Chemisches Inst.); Wagner, W. (Consortium fuer Elektrochemische Industrie GmbH, Muenchen (Germany)); Flessner, U.N.; Volkhardt, U.; Komber, H. (Institut fuer Technologie der Polymere, Dresden (Germany))

    1991-12-01

    No cocatalysts are needed as additives when methyltrioxorhenium (MTO) supported on acidic carriers is employed to catalyze the metathesis of functionalized olefins. A typical system is MTO/Al{sub 2}O{sub 3}-SiO{sub 2}, which is active, for instance, in the metathesis of allyl halides, allylsilanes, unsaturated carboxylates, and nitriles. MTO in combination with R{sub n}AlCl{sub 3-n} is a homogeneous catalyst in ring-opening polymerizations (R = CH{sub 3}, C{sub 2}H{sub 5}; n = 1,2). (orig.).

  9. Ruthenium-Aryloxide Catalysts for Olefin Metathesis

    Science.gov (United States)

    Monfette, Sebastien; Blacquiere, Johanna M.; Conrad, Jay C.; Beach, Nicholas J.; Fogg, Deryn E.

    : Advances in design of ruthenium aryloxide catalysts for olefin metathesis are described. The target complexes are accessible on reaction of RuCl2(NHC)(py)2 (CHPh) (NHC - N-heterocyclic carbene) with electron-deficient, monodentate aryl- oxides, or aryloxides that yield small, rigid chelate rings. The best of these catalysts offer activity comparable to or greater than that of the parent chloride (Grubbs) systems in ring-closing metathesis (RCM). Preliminary studies of the electronic nature of the Ru-X bond suggest that the metal center is more electropositive in the aryloxide complexes than in the Grubbs systems.

  10. Organic synthesis with olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1995-12-31

    Over the past nine years, early transition metal catalysts for the ring opening metathesis polymerization of cyclic olefins have been developed. These catalysts are simple organometallic complexes containing metal carbon multiple bonds that in most cases polymerize olefins by a living process. These catalysts have been used to prepare a family of near monodispersed and structurally homogeneous polymers. A series of group VII ROMP catalysts that allow a wide range of functionality to be incorporated into the polymer side chains have been prepared. The most important member of this family of complexes are the bisphosphinedihalo-ruthenium carbene complexes. These polymerization catalysts can also be used in the synthesis of fine chemicals by ring closing (RCM) and vinyl coupling reactions. The availability of the group VII catalysts allow metathesis to be carried out on highly functionalized substrates such as polypeptides and in unusual environments such as in aqueous emulsions.

  11. Chelated Ruthenium Catalysts for Z-Selective Olefin Metathesis

    OpenAIRE

    Endo, Koji; Grubbs, Robert H

    2011-01-01

    We report the development of ruthenium-based metathesis catalysts with chelating N-heterocyclic carbene (NHC) ligands which catalyze highly Z-selective olefin metathesis. A very simple and convenient synthetic procedure of such a catalyst has been developed. An intramolecular C-H bond activation of the NHC ligand, which is promoted by anion ligand substitution, forms the appropriate chelate for stereo- controlled olefin metathesis.

  12. Thermally Stable, Latent Olefin Metathesis Catalysts.

    Science.gov (United States)

    Thomas, Renee M; Fedorov, Alexey; Keitz, Benjamin K; Grubbs, Robert H

    2011-12-26

    Highly thermally stable N-aryl,N-alkyl N-heterocyclic carbene (NHC) ruthenium catalysts were designed and synthesized for latent olefin metathesis. These catalysts showed excellent latent behavior toward metathesis reactions, whereby the complexes were inactive at ambient temperature and initiated at elevated temperatures, a challenging property to achieve with second generation catalysts. A sterically hindered N-tert-butyl substituent on the NHC ligand of the ruthenium complex was found to induce latent behavior toward cross-metathesis reactions, and exchange of the chloride ligands for iodide ligands was necessary to attain latent behavior during ring-opening metathesis polymerization (ROMP). Iodide-based catalysts showed no reactivity toward ROMP of norbornene-derived monomers at 25 °C, and upon heating to 85 °C gave complete conversion of monomer to polymer in less than 2 hours. All of the complexes were very stable to air, moisture, and elevated temperatures up to at least 90 °C, and exhibited a long catalyst lifetime in solution at elevated temperatures.

  13. Asymmetric allylic alkylation in combination with ring-closing metathesis for the preparation of chiral N-heterocycles

    NARCIS (Netherlands)

    Teichert, Johannes F.; Zhang, Suyan; Zijl, Anthoni W. van; Slaa, Jan Willem; Minnaard, Adriaan J.; Feringa, Bernard

    2010-01-01

    Asymmetric copper-catalyzed allylic substitution with methylmagnesium bromide is employed in combination with ring-closing olefin metathesis or ene-yne metathesis to achieve the synthesis of chiral, unsaturated nitrogen heterocycles. The resulting six- to eight-membered chiral heterocycles are

  14. Stereoretentive Olefin Metathesis: An Avenue to Kinetic Selectivity.

    Science.gov (United States)

    Montgomery, T Patrick; Ahmed, Tonia S; Grubbs, Robert H

    2017-09-04

    Olefin metathesis is an incredibly valuable transformation that has gained widespread use in both academic and industrial settings. Lately, stereoretentive olefin metathesis has garnered much attention as a method for the selective generation of both E- and Z-olefins. Early studies employing ill-defined catalysts showed evidence for retention of the stereochemistry of the starting olefins at low conversion. However, thermodynamic ratios E/Z were reached as the reaction proceeded to equilibrium. Recent studies in olefin metathesis have focused on the synthesis of catalysts that can overcome the inherent thermodynamic preference of an olefin, providing synthetically useful quantities of a kinetically favored olefin isomer. These reports have led to the development of stereoretentive catalysts that not only generate Z-olefins selectively, but also kinetically produce E-olefins, a previously unmet challenge in olefin metathesis. Advancements in stereoretentive olefin metathesis using tungsten, ruthenium, and molybdenum catalysts are presented. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Olefin metathesis over UV-irradiated silica

    Science.gov (United States)

    Tanaka, Tsunehiro; Matsuo, Shigehiro; Maeda, Takashi; Yoshida, Hisao; Funabiki, Takuzo; Yoshida, Satohiro

    1997-11-01

    Photoirradiated silica evacuated at temperatures higher than 800 K was found to be active for olefin metathesis reactions. The analysis of products shows that the metalacyclobutane intermediate is likely. The instantaneous response of the reaction to the irradiation and the activity change with various UV filter showed that the reaction is induced by UV-excitation of silica. The correlation between the evacuation temperature and the activity showed that the surface free from water molecules plays a role in the reaction and the removal of isolated OH groups strongly relates to the generation of active sites.

  16. The activation mechanism of Fe-based olefin metathesis catalysts

    Science.gov (United States)

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts.

  17. Olefin metathesis for site-selective protein modification.

    Science.gov (United States)

    Lin, Yuya A; Chalker, Justin M; Davis, Benjamin G

    2009-04-17

    For a reaction to be generally useful for protein modification, it must be site-selective and efficient under conditions compatible with proteins: aqueous media, low to ambient temperature, and at or near neutral pH. To engineer a reaction that satisfies these conditions is not a simple task. Olefin metathesis is one of most useful reactions for carbon-carbon bond formation, but does it fit these requirements? This minireview is an account of the development of olefin metathesis for protein modification. Highlighted below are examples of olefin metathesis in peptidic systems and in aqueous media that laid the groundwork for successful metathesis on protein substrates. Also discussed are the opportunities in protein engineering for the genetic introduction of amino acids suitable for metathesis and the related challenges in chemistry and biology.

  18. Kinetically controlled E-selective catalytic olefin metathesis

    National Research Council Canada - National Science Library

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-01-01

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution...

  19. Metathesis process for preparing an alpha, omega-functionalized olefin

    Energy Technology Data Exchange (ETDEWEB)

    Burdett, Kenneth A. (Midland, MI); Mokhtarzadeh, Morteza (Charleston, WV); Timmers, Francis J. (Midland, MI)

    2010-10-12

    A cross-metathesis process for preparing an .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, and an .alpha.-olefin having three or more carbon atoms, such as 1-decene. The process involves contacting in a first reaction zone an .alpha.-functionalized internal olefin, such as methyl oleate, and an .alpha.-olefinic monomer having three or more carbon atoms, such as 1-decene, with a first metathesis catalyst to prepare an effluent stream containing the .alpha.,.omega.-functionalized olefin, such as methyl 9-decenoate, an unfunctionalized internal olefin, such as 9-octadecene, unconverted reactant olefins, and optionally, an .alpha.,.omega.-difunctionalized internal olefinic dimer, such as dimethyl 9-octadecen-1,18-dioate; separating said effluent streams; then contacting in a second reaction zone the unfunctionalized internal olefin with ethylene in the presence of a second metathesis catalyst to obtain a second product effluent containing the .alpha.-olefinic monomer having three or more carbon atoms; and cycling a portion of the .alpha.-olefinic monomer stream(s) to the first zone.

  20. Iron(III)-catalysed carbonyl-olefin metathesis

    Science.gov (United States)

    Ludwig, Jacob R.; Zimmerman, Paul M.; Gianino, Joseph B.; Schindler, Corinna S.

    2016-05-01

    The olefin metathesis reaction of two unsaturated substrates is one of the most powerful carbon-carbon-bond-forming reactions in organic chemistry. Specifically, the catalytic olefin metathesis reaction has led to profound developments in the synthesis of molecules relevant to the petroleum, materials, agricultural and pharmaceutical industries. These reactions are characterized by their use of discrete metal alkylidene catalysts that operate via a well-established mechanism. While the corresponding carbonyl-olefin metathesis reaction can also be used to construct carbon-carbon bonds, currently available methods are scarce and severely hampered by either harsh reaction conditions or the required use of stoichiometric transition metals as reagents. To date, no general protocol for catalytic carbonyl-olefin metathesis has been reported. Here we demonstrate a catalytic carbonyl-olefin ring-closing metathesis reaction that uses iron, an Earth-abundant and environmentally benign transition metal, as a catalyst. This transformation accommodates a variety of substrates and is distinguished by its operational simplicity, mild reaction conditions, high functional-group tolerance, and amenability to gram-scale synthesis. We anticipate that these characteristics, coupled with the efficiency of this reaction, will allow for further advances in areas that have historically been enhanced by olefin metathesis.

  1. Ruthenium-based four-coordinate olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Sanford, M.S.; Henling, L.M.; Day, M.W.; Grubbs, R.H. [California Inst. of Tech., Pasadena (United States). Div. of Chemistry and Chemical Engineering

    2000-10-02

    A series of four-coordinate Ru{sup II} alkylidenes has been prepared as analogues of the proposed olefin metathesis intermediate [(PCy{sub 3})Cl{sub 2}Ru=CHPh]. These complexes exhibit unusual trigonal-pyramidal solid-state geometries, and are rendered highly active for ring-closing metathesis by the addition of HCl. (orig.)

  2. Allenyl esters as quenching agents for ruthenium olefin metathesis catalysts.

    Science.gov (United States)

    Roy, Animesh; Silvestri, Maximilian A; Hall, Robert A; Lepore, Salvatore D

    2017-01-04

    In the attempt to synthesize substituted allenyl esters through a metathesis coupling of unsubstituted allenyl esters and alkenes using a variety of ruthenium catalysts, it was discovered that allenyl esters themselves cleanly arrested the activity of the catalysts. Further studies suggests possible utility of allene esters as general quenching agents for metathesis reactions. To explore this idea, several representative olefin metathesis reactions, including ring closing, were successfully terminated by the addition of simple allenyl esters for more convenient purification.

  3. Synthesis of interlocked molecules by olefin metathesis

    Science.gov (United States)

    Clark, Paul Gregory

    A large body of work in the Grubbs group has focused on the development of functional-group tolerant ruthenium alkylidene catalysts that perform a number of olefin metathesis reactions. These catalysts have seen application in a wide range of fields, including classic total synthesis as well as polymer and materials chemistry. One particular family of compounds, interlocked molecules, has benefitted greatly from these advances in catalyst stability and activity. This thesis describes several elusive and challenging interlocked architectures whose syntheses have been realized through the utilization of different types of ruthenium-catalyzed olefin metathesis reactions. Ring-closing olefin metathesis has enabled the synthesis of a [c2]daisy-chain dimer with the ammonium binding site near the cap of the dimer. A deprotonated DCD possessing such a structural attribute will more forcefully seek to restore coordinating interactions upon reprotonation, enhancing its utility as a synthetic molecular actuator. Dimer functionalization facilitated incorporation into linear polymers, with a 48% size increase of an unbound, extended analogue of the polymer demonstrating slippage of the dimer units. Ongoing work is directed at further materials studies, in particular, exploring the synthesis of macroscopic networks containing the DCD units and analyzing the correlation between molecular-scale extension-contraction manipulations and resulting macro-scale changes. A "clipping" approach to a polycatenated cyclic polymer, a structure that resembles a molecular "charm bracelet", has been described. The use of ring-opening metathesis polymerization of a carbamate monomer in the presence of a chain transfer agent allowed for the synthesis of a linear polymer that was subsequently functionalized and cyclized to the corresponding cyclic analogue. This cyclic polymer was characterized through a variety of techniques, and subjected to further functionalization reactions, affording a cyclic

  4. Olefin cross-metathesis for the synthesis of heteroaromatic compounds.

    Science.gov (United States)

    Donohoe, Timothy J; Bower, John F; Chan, Louis K M

    2012-02-21

    The olefin metathesis reaction has underpinned spectacular achievements in organic synthesis in recent years. Arguably, metathesis has now become the foremost choice for a carbon-carbon double bond disconnection. Despite this general utility, de novo routes to heteroaromatic compounds using the cross-metathesis (CM) reaction have only recently emerged as an efficient strategy. This approach allows a convergent union of simple, functionalised, three- to four-carbon olefinic core building blocks, to generate furans, pyrroles and pyridines with a high degree of control of substitution pattern in the product.

  5. Covalently stabilized self-assembled chlorophyll nanorods by olefin metathesis.

    Science.gov (United States)

    Sengupta, Sanchita; Würthner, Frank

    2012-06-11

    A new chlorophyll derivative with peripheral olefinic chains has been synthesised and its self-assembly properties have been studied, revealing formation of well-defined nanorods. These nanorods were stabilized and rigidified by olefin metathesis reaction as confirmed by spectroscopic and microscopic methods.

  6. Tandem Olefin Metathesis/Oxidative Cyclization: Synthesis of Tetrahydrofuran Diols from Simple Olefins.

    Science.gov (United States)

    Dornan, Peter K; Lee, Daniel; Grubbs, Robert H

    2016-05-25

    A tandem olefin metathesis/oxidative cyclization has been developed to synthesize 2,5-disubstituted tetrahydrofuran (THF) diols in a stereocontrolled fashion from simple olefin precursors. The ruthenium metathesis catalyst is converted into an oxidation catalyst in the second step and is thus responsible for both catalytic steps. The stereochemistry of the 1,5-diene intermediate can be controlled through the choice of catalyst and the type of metathesis conducted. This olefin stereochemistry then controls the THF diol stereochemistry through a highly stereospecific oxidative cyclization.

  7. N-Heterocyclic Carbene Complexes in Olefin Metathesis

    Science.gov (United States)

    Luan, Xinjun; Dorta, Reto; Leitgeb, Anita; Slugovc, Christian; Tiede, Sascha; Blechert, Siegfried

    Olefin metathesis is now a synthetic tool found ubiquitously in various fields involving synthesis. Of its many variations, three are prominently used: (1) catalytic ring closing metathesis (RCM) is an extremely powerful method for the construction of carbon-carbon double bonds in organic chemistry; (2) ring opening metathesis polymerisation (ROMP) where polymers are formed by use of the energy released from cyclic strain; and (3) cross metathesis (CM) where non-cyclic partners are coupled through C-C double bond formation. These important transformations and variations on these themes mediated by second generation ruthenium complexes bearing a NHC ligand will be presented in the following sections.

  8. Allyl sulphides in olefin metathesis: catalyst considerations and traceless promotion of ring-closing metathesis.

    Science.gov (United States)

    Edwards, Grant A; Culp, Phillip A; Chalker, Justin M

    2015-01-11

    Allyl sulphides are reactive substrates in ruthenium-catalysed olefin metathesis reactions, provided each substrate is matched with a suitable catalyst. A profile of catalyst activity is described, along with the first demonstration of allyl sulphides as traceless promoters in relayed ring-closing metathesis reactions.

  9. A well-defined rhenium(VII) olefin metathesis catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Toreki, R.; Schrock, R.R. (Massachusetts Institute of Technology, Cambridge (USA))

    1990-03-14

    Molybdenum tungsten, and rhenium are the three most active metals in classical olefin metathesis systems. Molybdenum (VI){sup 2} and tungsten(VI){sup 3} alkylidene complexes of the type M-(CHR{prime})(NAr)(OR){sub 2} (Ar = 2,6-C{sub 6}H{sub 3}-i-Pr{sub 2}) have been shown to be well-behaved olefin metathesis catalysts with an activity that can be controlled through the choice of OR. Although several rhenium alkylidene complexes have been reported, none has shown any confirmable metathesis activity, even toward strained cyclic olefins such as norbornene. Since Re{triple bond}CR{double prime} and M{double bond}NR{double prime} (M = Mo or W) can be regarded as isoelectronic units, plausible candidates as olefin metathesis catalysts are complexes of the type Re(CHR{prime})(CR{double prime})(OR){sub 2}. The authors report here that such a complex in which OR = OCMe(CF{sub 3}){sub 2} is a well-behaved olefin metathesis catalyst.

  10. A bis-calixarene from olefin metathesis

    Directory of Open Access Journals (Sweden)

    Shimelis T. Hailu

    2012-06-01

    Full Text Available A ring-closing olefin metathesis reaction of tetrakis(allyloxycalix[4]arene gave the bis calixarene, (15E,40E,60E-65,74-bis(prop-2-en-1-yloxy-13,18,38,43,58,63-hexaoxadodecacyclo[28.26.8.720,36.111,45.151,55.05,57.07,12.019,24.026,64.032,37.044,49.168,72]tetraheptaconta-1,3,5(57,7,9,11,15,19(24,20,22,26,28,30(64,32,34,36,40,44(49,45,47,51,53,55(65,60,68,70,72(74-heptacosaene, C74H68O8. It is a cage formed from two calix[4]arene units joined by butenyl groups at three of the O atoms on the narrow rim. The fourth O atom on each calixarene unit is joined with an allyl group. Each of the calix[4]arene units has a flattened cone conformation in which the allyloxy-substituted aryl group and the opposite aryl group are close together and almost parallel [dihedral angle between planes = 1.09 (11°], and the other two aryl groups are splayed outward [dihedral angle between planes = 79.53 (11°]. No guest molecule (e.g. solvent was observed within the cage. The alkene C atoms of one of the links between the calixarene moieties are disordered over two orientations with occupancies of 0.533 (9 and 0.467 (9.

  11. Enantioselective synthesis of benzofurans and benzoxazines via an olefin cross-metathesis-intramolecular oxo-Michael reaction.

    Science.gov (United States)

    Zhang, Jun-Wei; Cai, Quan; Gu, Qing; Shi, Xiao-Xin; You, Shu-Li

    2013-09-11

    Chiral phosphoric acid and Hoveyda-Grubbs II were found to catalyze an olefin cross-metathesis-intramolecular oxo-Michael cascade reaction of the ortho-allylphenols and enones to provide a variety of benzofuran and benzoxazine derivatives in moderate to good yields and enantioselectivity.

  12. The activation mechanism of Fe-based olefin metathesis catalysts

    KAUST Repository

    Poater, Albert

    2014-08-01

    Density functional theory calculations have been used to describe the first turnover for olefin metathesis reaction of a homogenous Fe-based catalyst bearing a N-heterocyclic carbene ligand with methoxyethene as a substrate. Equal to conventional Ru-based catalysts, the activation of its Fe congener occurs through a dissociative mechanism, however with a more exothermic reaction energy profile. Predicted upper energy barriers were calculated to be on average ∼2 kcal/mol more beneficial for Fe catalyzed metathesis. Overall, this present computational study emphasises on advantages of Fe-based metathesis and gives a potential recipe for the design of an efficient Fe-based olefin metathesis catalysts. © 2014 Elsevier B.V.

  13. Comparing Ru and Fe-catalyzed olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-01-01

    Density functional theory calculations have been used to explore the potential of Fe-based complexes with an N-heterocyclic carbene ligand, as olefin metathesis catalysts. Apart from a less endothermic reaction energy profile, a small reduction in the predicted upper energy barriers (≈ 2 kcal mol -1) is calculated in the Fe catalyzed profile with respect to the Ru catalysed profile. Overall, this study indicates that Fe-based catalysts have the potential to be very effective olefin metathesis catalysts. This journal is © the Partner Organisations 2014.

  14. High Trans Kinetic Selectivity in Ruthenium-Based Olefin Cross-Metathesis through Stereoretention.

    Science.gov (United States)

    Johns, Adam M; Ahmed, Tonia S; Jackson, Bradford W; Grubbs, Robert H; Pederson, Richard L

    2016-02-19

    The first kinetically controlled, highly trans-selective (>98%) olefin cross-metathesis reaction is demonstrated using Ru-based catalysts. Reactions with either trans or cis olefins afford products with highly trans or cis stereochemistry, respectively. This E-selective olefin cross-metathesis is shown to occur between two trans olefins and between a trans olefin and a terminal olefin. Additionally, new stereoretentive catalysts have been synthesized for improved reactivity.

  15. Improved ruthenium catalysts for Z-selective olefin metathesis.

    Science.gov (United States)

    Keitz, Benjamin K; Endo, Koji; Patel, Paresma R; Herbert, Myles B; Grubbs, Robert H

    2012-01-11

    Several new C-H-activated ruthenium catalysts for Z-selective olefin metathesis have been synthesized. Both the carboxylate ligand and the aryl group of the N-heterocyclic carbene have been altered and the resulting catalysts evaluated using a range of metathesis reactions. Substitution of bidentate with monodentate X-type ligands led to a severe attenuation of metathesis activity and selectivity, while minor differences were observed between bidentate ligands within the same family (e.g., carboxylates). The use of nitrato-type ligands in place of carboxylates afforded a significant improvement in metathesis activity and selectivity. With these catalysts, turnover numbers approaching 1000 were possible for a variety of cross-metathesis reactions, including the synthesis of industrially relevant products. © 2011 American Chemical Society

  16. Consideration of applications of olefin metathesis in synthetic fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Heveling, J.

    1984-07-01

    One of the characteristics of Fischer-Tropsch synthesis and many oligomerization processes, is insufficient selectivity. Efforts have to be made to bring the products obtained in line with the market requirements. The olefin metathesis reaction has the potential to convert less desirable olefins to more useful ones and provides new ways of producing petrochemicals. Based on existing and suggested process technologies, applications of this reaction for the production of synthetic liquid fuels are discussed.

  17. Total Synthesis of Mycalolides A and B through Olefin Metathesis.

    Science.gov (United States)

    Kita, Masaki; Oka, Hirotaka; Usui, Akihiro; Ishitsuka, Tomoya; Mogi, Yuzo; Watanabe, Hidekazu; Tsunoda, Masaki; Kigoshi, Hideo

    2015-11-16

    An asymmetric total synthesis of the trisoxazole marine macrolides mycalolides A and B is described. This synthesis involves the convergent assembly of highly functionalized C1-C19 trisoxazole and C20-C35 side-chain segments through the use of olefin metathesis and esterification as well as Julia-Kocienski olefination and enamide formation as key steps. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Mesoporous Molecular Sieves Based Catalysts for Olefin Metathesis and Metathesis Polymerization

    Science.gov (United States)

    Balcar, Hynek; Čejka, Jiří

    Heterogeneous catalysts for olefin metathesis using different types of (i) siliceous mesoporous molecular sieves, and (ii) organized mesoporous alumina as supports are reported. The catalysts were prepared either by spreading of transition metal oxidic phase on the support surface or by immobilizing transition metal compounds (mostly organometallic) on the support. The activity of these catalysts in various types of metathesis reactions (i.e. alkene and diene metathesis, metathesis of unsaturated esters and ethers, RCM, ROMP and metathesis polymerization of alkynes) was described. The main advantages of these catalysts consist generally in their high activity and selectivity, easy separation of catalysts from reaction products and the preparation of products free of catalyst residue. The examples of pore size influence on the selectivity in metathesis reactions are also given.

  19. Factors influencing ring closure through olefin metathesis-A ...

    Indian Academy of Sciences (India)

    Success of ring closure reactions of substrates having two terminal alkenes through olefin metathesis depends on a number of factors such as catalysts, nature and size of the rings to be formed and the substituents/functional groups present on the alkenes as well as at the allylic position. This article presents an overview of ...

  20. The asymmetric Schrock olefin metathesis catalysts. A computational study

    NARCIS (Netherlands)

    Goumans, T.P.M.; Ehlers, A.W.; Lammertsma, K.

    2005-01-01

    The mechanism of the transition metal catalyzed olefin metathesis reaction with the Schrock catalyst is investigated with pure (BP86) and hybrid (B3LYP) density functional theory. On the free-energy surface there is no adduct between ethylene and model catalyst (MeO)

  1. Olefin cross-metathesis on proteins: investigation of allylic chalcogen effects and guiding principles in metathesis partner selection.

    Science.gov (United States)

    Lin, Yuya A; Chalker, Justin M; Davis, Benjamin G

    2010-12-01

    Olefin metathesis has recently emerged as a viable reaction for chemical protein modification. The scope and limitations of olefin metathesis in bioconjugation, however, remain unclear. Herein we report an assessment of various factors that contribute to productive cross-metathesis on protein substrates. Sterics, substrate scope, and linker selection are all considered. It was discovered during this investigation that allyl chalcogenides generally enhance the rate of alkene metathesis reactions. Allyl selenides were found to be exceptionally reactive olefin metathesis substrates, enabling a broad range of protein modifications not previously possible. The principles considered in this report are important not only for expanding the repertoire of bioconjugation but also for the application of olefin metathesis in general synthetic endeavors.

  2. Homobimetallic Ruthenium-N-Heterocyclic Carbene Complexes For Olefin Metathesis

    Science.gov (United States)

    Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, the synthesis and catalytic activity towards olefin metathesis of homobimetallic ruthenium (Ru)-alkylidene, -cyclodiene or -arene complexes bearing phosphine or N-heterocyclic carbene (NHC) ligands are reviewed. Emphasis is placed on the last category of bimetallic compounds. Three representatives of this new type of molecular scaffold were investigated. Thus, [(p-cymene)Ru(m-Cl)3RuCl (h2-C2H4)(L)] complexes with L = PCy3 (15a), IMes (16a), or IMesCl2 (16b) were prepared. They served as catalyst precursors for cross-metathesis (CM) of various styrene derivatives. These experiments revealed the outstanding aptitude of complex 16a (and to a lesser extent of 16b) to catalyze olefin metathesis reactions. Contrary to monometallic Ru-arene complexes of the [RuCl2(p-cymene)(L)] type, the new homobimetallic species did not require the addition of a diazo compound nor visible light illumination to initiate the ring-opening metathesis of norbornene or cyclooctene. When diethyl 2,2-diallylmalonate and N,N-diallyltosylamide were exposed to 16a,b, a mixture of cycloisomerization and ring-closing metathesis (RCM) products was obtained in a nonselective way. Addition of phenylacetylene enhanced the metathetical activity while completely repressing the cycloisomerization process.

  3. Refining of plant oils to chemicals by olefin metathesis.

    Science.gov (United States)

    Chikkali, Samir; Mecking, Stefan

    2012-06-11

    Plant oils are attractive substrates for the chemical industry. Their scope for the production of chemicals can be expanded by sophisticated catalytic conversions. Olefin metathesis is an example, which also illustrates generic issues of "biorefining" to chemicals. Utilization on a large scale requires high catalyst activities, which influences the choice of the metathesis reaction. The mixture of different fatty acids composing a technical-grade plant oil substrate gives rise to a range of products. This decisively determines possible process schemes, and potentially provides novel chemicals and intermediates not employed to date. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. A latent ruthenium based olefin metathesis catalyst with a sterically demanding NHC ligand

    KAUST Repository

    Leitgeb, Anita

    2012-01-01

    An olefin metathesis catalyst featuring a SIPr NHC and an ester chelating carbene ligand is introduced. In contrast to its previously published SIMes analogue, only the trans dichloro configurated isomer was obtained. The two counterparts are tested in various olefin metathesis reactions, revealing a striking superiority of the new complex in the cross metathesis of olefins with methyl vinyl ketone allowing for full conversion with only 500 ppm catalyst loading. © 2012 The Royal Society of Chemistry.

  5. Ruthenium-Catalyzed Olefin Metathesis after Tetra-n-butylammonium Fluoride-Mediated Desilylation

    Science.gov (United States)

    Osman, Sami

    2012-01-01

    One-pot procedures expedite organic synthesis but pose challenges in that many reagents must be compatible with each other. We discovered that the presence of nBu4NF hindered rutheniumcatalyzed olefin metathesis when nBu4NF-mediated desilylation and olefin metathesis were performed in one pot. This problem could be solved by the addition of (TMS)2O to remove fluoride anions in order to facilitate the ruthenium-catalyzed olefin metathesis. PMID:23269856

  6. Enhanced Olefin Cross Metathesis Reactions: The Copper Iodide Effect

    Science.gov (United States)

    Voigtritter, Karl; Ghorai, Subir

    2011-01-01

    Copper iodide has been shown to be an effective co-catalyst for the olefin cross metathesis reaction. In particular, it has both a catalyst stabilizing effect due to iodide ion, as well as copper(I)-based phosphine-scavenging properties that apply to use of the Grubbs-2 catalyst. A variety of Michael acceptors and olefinic partners can be cross-coupled under mild conditions in refluxing diethyl ether that avoid chlorinated solvents. This effect has also been applied to chemistry in water at room temperature using the new surfactant TPGS-750-M. PMID:21528868

  7. Cardanol-Based Materials as Natural Precursors for Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Giuseppe Vasapollo

    2011-08-01

    Full Text Available Cardanol is a renewable, low cost natural material, widely available as a by-product of the cashew industry. It is a mixture of 3-n-pentadecylphenol, 3-(pentadeca-8-enylphenol, 3-(pentadeca-8,11-dienylphenol and 3-(pentadeca-8,11,14-trienylphenol. Olefin metathesis (OM reaction on cardanol is an important class of reactions that allows for the synthesis of new olefins that are sometime impossible to prepare via other methods. The application of this natural and renewable material to both academic and industrial research will be discussed.

  8. Template-Directed Olefin Cross Metathesis

    OpenAIRE

    Cantrill, Stuart J.; Grubbs, Robert H; Lanari, Daniela; Leung, Ken C.-F.; Nelson, Alshakim; Poulin-Kerstien, Katherine G.; Smidt, Sebastian P.; Stoddart, J. Fraser; Tirrell, David A.

    2005-01-01

    A template containing two secondary dialkylammonium ion recognition sites for encirclement by olefin-bearing dibenzo[24]crown-8 derivatives has been used to promote olefin cross metatheses with ruthenium-alkylidene catalysts. For monoolefin monomers, the rates of metatheses and yields of the dimers are both amplified in the presence of the template. Likewise, for a diolefin monomer, the yield of the dimer is enhanced in the presence of the template under conditions where higher oligomers are ...

  9. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Science.gov (United States)

    Schrodi, Yann [Agoura Hills, CA

    2011-11-29

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  10. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Schrodi, Yann

    2016-02-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  11. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Schrodi, Yann

    2013-07-09

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  12. Synthesis of terminal alkenes from internal alkenes and ethylene via olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Schrodi, Yann

    2015-09-22

    This invention relates generally to olefin metathesis, and more particularly relates to the synthesis of terminal alkenes from internal alkenes using a cross-metathesis reaction catalyzed by a selected olefin metathesis catalyst. In one embodiment of the invention, for example, a method is provided for synthesizing a terminal olefin, the method comprising contacting an olefinic substrate comprised of at least one internal olefin with ethylene, in the presence of a metathesis catalyst, wherein the catalyst is present in an amount that is less than about 1000 ppm relative to the olefinic substrate, and wherein the metathesis catalyst has the structure of formula (II) ##STR00001## wherein the various substituents are as defined herein. The invention has utility, for example, in the fields of catalysis, organic synthesis, and industrial chemistry.

  13. Design and Application of Latent Olefin Metathesis Catalysts Featuring S-Chelating Alkylidene Ligands

    Science.gov (United States)

    Szadkowska, Anna; Grela, Karol

    This review article is devoted to recent advances in the design and application of so-called “dormant” or “latent” ruthenium olefin metathesis catalysts bearing S-chelating alkylidene ligands. Selected ruthenium complexes containing S-donor ligands, which possess controllable initiation behaviour are presented. Applications of these complexes in olefin metathesis are described.

  14. Iron(III)-Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    Science.gov (United States)

    Saá, Carlos

    2016-09-05

    Recent developments in catalytic carbonyl-olefin metathesis are summarized in this Highlight. Schindler and co-workers have reported that the environmentally benign FeCl3 catalyst promotes ring-closing carbonyl-olefin metathesis (RCCOM) in high yield under very mild conditions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. FeCl3 -Catalyzed Ring-Closing Carbonyl-Olefin Metathesis.

    Science.gov (United States)

    Ma, Lina; Li, Wenjuan; Xi, Hui; Bai, Xiaohui; Ma, Enlu; Yan, Xiaoyu; Li, Zhiping

    2016-08-22

    Exploiting catalytic carbonyl-olefin metathesis is an ongoing challenge in organic synthesis. Reported herein is an FeCl3 -catalyzed ring-closing carbonyl-olefin metathesis. The protocol allows access to a range of carbo-/heterocyclic alkenes with good efficiency and excellent trans diastereoselectivity. The methodology presents one of the rare examples of catalytic ring-closing carbonyl-olefin metathesis. This process is proposed to take place by FeCl3 -catalyzed oxetane formation followed by retro-ring-opening to deliver metathesis products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Origins of the Stereoretentive Mechanism of Olefin Metathesis with Ru-Dithiolate Catalysts.

    Science.gov (United States)

    Grandner, Jessica M; Shao, Huiling; Grubbs, Robert H; Liu, Peng; Houk, K N

    2017-10-06

    A comprehensive computational study of stereoretentive olefin metathesis with Ru-dithiolate catalysts has been performed. We have determined how the dithiolate ligand enforces a side-bound mechanism and how the side-bound mechanism allows for stereochemical control over the forming olefin. We have used density functional theory (DFT) and ligand steric contour maps to elucidate the origins of stereoretentive metathesis with the goal of understanding how to design a new class of E-selective metathesis catalysts.

  17. Ruthenium olefin metathesis catalysts featuring unsymmetrical N-heterocyclic carbenes.

    Science.gov (United States)

    Paradiso, Veronica; Bertolasi, Valerio; Costabile, Chiara; Grisi, Fabia

    2016-01-14

    New ruthenium Grubbs' and Hoveyda-Grubbs' second generation catalysts bearing N-alkyl/N-isopropylphenyl N-heterocyclic carbene (NHC) ligands with syn or anti backbone configuration were obtained and compared in model olefin metathesis reactions. Different catalytic efficiencies were observed depending on the size of the N-alkyl group (methyl or cyclohexyl) and on the backbone configuration. The presence of an N-cyclohexyl substituent determined the most significant reactivity differences between catalysts with syn or anti phenyl groups on the backbone. In particular, anti catalysts proved highly efficient, especially in the ring-closing metathesis (RCM) of encumbered diolefins, while syn catalysts showed low efficiency in the RCM of less hindered diolefins. This peculiar behavior, rationalized through DFT studies, was found to be related to the high propensity of these catalysts to give nonproductive metathesis events. Enantiopure anti catalysts were also tested in asymmetric metathesis reactions, where moderate enantioselectivities were observed. The steric and electronic properties of unsymmetrical NHCs with the N-cyclohexyl group were then evaluated using the corresponding rhodium complexes. While steric factors proved unimportant for both syn and anti NHCs, a major electron-donating character was found for the unsymmetrical NHC with anti phenyl substituents on the backbone.

  18. Molybdenum chloride catalysts for Z-selective olefin metathesis reactions

    Science.gov (United States)

    Koh, Ming Joo; Nguyen, Thach T.; Lam, Jonathan K.; Torker, Sebastian; Hyvl, Jakub; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    The development of catalyst-controlled stereoselective olefin metathesis processes has been a pivotal recent advance in chemistry. The incorporation of appropriate ligands within complexes based on molybdenum, tungsten and ruthenium has led to reactivity and selectivity levels that were previously inaccessible. Here we show that molybdenum monoaryloxide chloride complexes furnish higher-energy (Z) isomers of trifluoromethyl-substituted alkenes through cross-metathesis reactions with the commercially available, inexpensive and typically inert Z-1,1,1,4,4,4-hexafluoro-2-butene. Furthermore, otherwise inefficient and non-stereoselective transformations with Z-1,2-dichloroethene and 1,2-dibromoethene can be effected with substantially improved efficiency and Z selectivity. The use of such molybdenum monoaryloxide chloride complexes enables the synthesis of representative biologically active molecules and trifluoromethyl analogues of medicinally relevant compounds. The origins of the activity and selectivity levels observed, which contradict previously proposed principles, are elucidated with the aid of density functional theory calculations.

  19. Kinetically controlled E-selective catalytic olefin metathesis.

    Science.gov (United States)

    Nguyen, Thach T; Koh, Ming Joo; Shen, Xiao; Romiti, Filippo; Schrock, Richard R; Hoveyda, Amir H

    2016-04-29

    A major shortcoming in olefin metathesis, a chemical process that is central to research in several branches of chemistry, is the lack of efficient methods that kinetically favor E isomers in the product distribution. Here we show that kinetically E-selective cross-metathesis reactions may be designed to generate thermodynamically disfavored alkenyl chlorides and fluorides in high yield and with exceptional stereoselectivity. With 1.0 to 5.0 mole % of a molybdenum-based catalyst, which may be delivered in the form of air- and moisture-stable paraffin pellets, reactions typically proceed to completion within 4 hours at ambient temperature. Many isomerically pure E-alkenyl chlorides, applicable to catalytic cross-coupling transformations and found in biologically active entities, thus become easily and directly accessible. Similarly, E-alkenyl fluorides can be synthesized from simpler compounds or more complex molecules. Copyright © 2016, American Association for the Advancement of Science.

  20. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.

    Science.gov (United States)

    Haibach, Michael C; Kundu, Sabuj; Brookhart, Maurice; Goldman, Alan S

    2012-06-19

    Methods for the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels that are both efficient and economically viable could greatly enhance global security and prosperity. Currently, the major route to convert natural gas and coal to liquids is Fischer-Tropsch catalysis, which is potentially applicable to any source of synthesis gas including biomass and nonconventional fossil carbon sources. The major desired products of Fischer-Tropsch catalysis are n-alkanes that contain 9-19 carbons; they comprise a clean-burning and high combustion quality diesel, jet, and marine fuel. However, Fischer-Tropsch catalysis also results in significant yields of the much less valuable C(3) to C(8)n-alkanes; these are also present in large quantities in oil and gas reserves (natural gas liquids) and can be produced from the direct reduction of carbohydrates. Therefore, methods that could disproportionate medium-weight (C(3)-C(8)) n-alkanes into heavy and light n-alkanes offer great potential value as global demand for fuel increases and petroleum reserves decrease. This Account describes systems that we have developed for alkane metathesis based on the tandem operation of catalysts for alkane dehydrogenation and olefin metathesis. As dehydrogenation catalysts, we used pincer-ligated iridium complexes, and we initially investigated Schrock-type Mo or W alkylidene complexes as olefin metathesis catalysts. The interoperability of the catalysts typically represents a major challenge in tandem catalysis. In our systems, the rate of alkane dehydrogenation generally limits the overall reaction rate, whereas the lifetime of the alkylidene complexes at the relatively high temperatures required to obtain practical dehydrogenation rates (ca. 125 -200 °C) limits the total turnover numbers. Accordingly, we have focused on the development and use of more active dehydrogenation catalysts and more stable olefin-metathesis catalysts. We have used thermally

  1. A Ruthenium Catalyst for Olefin Metathesis Featuring an Anti-Bredt N-Heterocyclic Carbene Ligand.

    Science.gov (United States)

    Martin, David; Marx, Vanessa M; Grubbs, Robert H; Bertrand, Guy

    2016-03-17

    A ruthenium complex bearing an "anti-Bredt" N-heterocyclic carbene was synthesized, characterized and evaluated as a catalyst for olefin metathesis. Good conversions were observed at room temperature for the formation of di- and tri-substituted olefins by ring-closing metathesis. It also allowed for the ring-opening metathesis polymerization of cyclooctadiene, as well as for the cross-metathesis of cis-1,4-diacetoxy-2-butene with allyl-benzene, with enhanced Z/E kinetic selectivity over classical NHC-based catalysts.

  2. Theoretical evidence for bond stretch isomerism in Grubbs olefin metathesis.

    Science.gov (United States)

    Remya, Premaja R; Suresh, Cherumuttathu H

    2017-07-15

    A comprehensive density functional theory study on the dissociative and associative mechanisms of Grubbs first and second generation olefin metathesis catalysis reveals that ruthenacyclobutane intermediate (RuCB) observed in the Chauvin mechanism is not unique as it can change to a non-metathetic ruthenacyclobutane (RuCB') via the phenomenon of bond stretch isomerism (BSI). RuCB and RuCB' differ mainly in RuCα , RuCβ , and Cα Cβ bond lengths of the metallacycle. RuCB is metathesis active due to the agostic type bonding-assisted simultaneous activation of both Cα Cβ bonds, giving hypercoordinate character to Cβ whereas an absence of such bonding interactions in RuCB' leads to typical CC single bond distances and metathesis inactivity. RuCB and RuCB' are connected by a transition state showing moderate activation barrier. The new mechanistic insights invoking BSI explains the non-preference of associative mechanism and the requirement of bulky ligands in the Grubbs catalyst design. The present study lifts the status of BSI from a concept of largely theoretical interest to a phenomenon of intense importance to describe an eminent catalytic reaction. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. The intriguing modeling of cis–trans selectivity in ruthenium-catalyzed olefin metathesis

    Directory of Open Access Journals (Sweden)

    Luigi Cavallo

    2011-01-01

    Full Text Available In this study we have investigated computationally the origin of the cis–trans selectivity in the Ru-catalyzed cross metathesis (CM of a prototype monosubstituted olefin, i.e., propene. Our calculations suggest that the origin of the preferential formation of trans-olefins is in the product release step, which prevents the initially formed cis-olefin from escaping the metal, and returns it to the reaction pool until the trans-olefin is formed.

  4. Mechanistic Investigations of the Iron(III)-Catalyzed Carbonyl-Olefin Metathesis Reaction.

    Science.gov (United States)

    Ludwig, Jacob R; Phan, Susan; McAtee, Christopher C; Zimmerman, Paul M; Devery, James J; Schindler, Corinna S

    2017-08-09

    Iron(III)-catalyzed carbonyl-olefin ring-closing metathesis represents a new approach toward the assembly of molecules traditionally generated by olefin-olefin metathesis or olefination. Herein, we report detailed synthetic, spectroscopic, kinetic, and computational studies to determine the mechanistic features imparted by iron(III), substrate, and temperature to the catalytic cycle. These data are consistent with an iron(III)-mediated asynchronous, concerted [2+2]-cycloaddition to form an intermediate oxetane as the turnover-limiting step. Fragmentation of the oxetane via Lewis acid-activation results in the formation of five- and six-membered unsaturated carbocycles.

  5. Target Specific Tactics in Olefin Metathesis: Synthetic Approach to cis-syn-cis-Triquinanes and -Propellanes.

    Science.gov (United States)

    Kotha, Sambasivarao; Aswar, Vikas R

    2016-04-15

    A concise and simple synthetic approach to cis-syn-cis-triquinanes and -propellanes has been demonstrated via olefin metathesis starting with exo-nadic anhydride. This approach involves a ring-opening and ring-closing metathesis sequence of norbornene derivatives using Grubb's catalyst. Early-stage diallylation of norbornene derivatives is demonstrated followed by ring-closing metathesis that delivers propellanes exclusively. Surprisingly, ring-opening metathesis, late-stage diallylation, followed by ring-closing metathesis delivers triquinane as well as propellane derivatives.

  6. The preparation of trisubstituted alkenyl nucleoside phosphonates under ultrasound-assisted olefin cross-metathesis.

    Science.gov (United States)

    Sari, Ozkan; Hamada, Manabu; Roy, Vincent; Nolan, Steven P; Agrofoglio, Luigi A

    2013-09-06

    Intermolecular ultrasound-assisted olefin cross-metathesis is reported. This approach allows an easy access to challenging trisubstituted alkenyl nucleoside phosphonates. Regioselective chemoenzymatic deacetylation and Mitsunobu coupling are also described.

  7. Mild Functionalization of Tetraoxane Derivatives via Olefin Metathesis: Compatibility of Ruthenium Alkylidene Catalysts with Peroxides.

    Science.gov (United States)

    Jana, Anupam; Grela, Karol

    2017-02-03

    An easy and mild functionalization method of tetraoxane derivatives via olefin metathesis is reported. This reaction offers a new method to afford fully functionalized tetraoxanes in high yields. This method is also utilized in the functionalization of bioactive compounds.

  8. Olefin metathesis for effective polymer healing via dynamic exchange of strong carbon-carbon bonds

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Zhibin; Lu, Yixuan

    2015-09-15

    A method of preparing a malleable and/or self-healing polymeric or composite material is provided. The method includes providing a polymeric or composite material comprising at least one alkene-containing polymer, combining the polymer with at least one homogeneous or heterogeneous transition metal olefin metathesis catalyst to form a polymeric or composite material, and performing an olefin metathesis reaction on the polymer so as to form reversible carbon-carbon double bonds in the polymer. Also provided is a method of healing a fractured surface of a polymeric material. The method includes bringing a fractured surface of a first polymeric material into contact with a second polymeric material, and performing an olefin metathesis reaction in the presence of a transition metal olefin metathesis catalyst such that the first polymeric material forms reversible carbon-carbon double bonds with the second polymeric material. Compositions comprising malleable and/or self-healing polymeric or composite material are also provided.

  9. Ruthenium Olefin Metathesis Catalysts Bearing an N-Fluorophenyl-N-Mesityl-Substituted Unsymmetrical N-Heterocyclic Carbene

    OpenAIRE

    Vougioukalakis, Georgios C.; Grubbs, Robert H

    2007-01-01

    Two new ruthenium-based olefin metathesis catalysts, each bearing an unsymmetrical N-heterocyclic carbene ligand, have been synthesized and fully characterized. Their catalytic performance has been evaluated in ring-closing metathesis, cross metathesis, and ring-opening metathesis polymerization reactions.

  10. New pseudohalide ligands in Ru-catalyzed olefin metathesis : a robust, air-activated iminopyrrolato catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Drouin, S.D.; Foucault, H.M.; Yap, G.P.A.; Fogg, D.E. [Ottawa Univ., ON (Canada). Dept. of Chemistry, Center for Catalysis Research and Innovation

    2005-07-01

    This study demonstrated the feasibility of using iminopyrrolatos as a new pseudohalide ligand in Ru-catalyzed olefin metathesis, particularly in terms of stereo control and anchoring. Ring-closing metathesis (RCM) and cross-metathesis reactions hold promise for pharmaceutical synthesis, as well as green chemistry initiatives to transform seed oils into olefin feedstocks. The advent of robust, functional-group tolerant ruthenium (Ru) catalysts has expanded the deployment of olefin metathesis methodologies by the organic community. Despite recent advances in metathesis activity, major issues remain to be addressed, particularly the problem of short catalyst lifetimes which increase catalyst loading requirements, as well as heavy metal contamination of the organic products. This study revealed that chelation does not prevent isomerization of aryloxide ligands that form larger, seven-membered chelate rings. Complex 5 proved to be a robust olefin metathesis catalyst, effecting RCM of the benchmark substrate diethyl diallylmalonate at 70 degrees C in air, in nondistilled and nondegassed solvent. The reaction revealed complete selectivity for RCM over intermolecular acyclic diene metathesis processes, even in the absence of a solvent. It was shown that RuCl(NN')(Pcy{sub 3})(CHPh) (5) is activated via loss of phosphine. As a result, the catalyst achieves maximum activity in the presence of air, providing a good experimental protocol for metathesis chemistry.

  11. Nanoporous poly(lactide) by olefin metathesis degradation.

    Science.gov (United States)

    Bertrand, Arthur; Hillmyer, Marc A

    2013-07-31

    We describe an approach to ordered nanoporous poly(lactide) that relies on self-assembly of poly(butadiene)-poly(lactide) (PB-PLA) diblock copolymers followed by selective degradation of PB using olefin metathesis. The block copolymers were obtained by a combination of anionic and ring-opening transesterification polymerizations. The molar mass of each block was tailored to target materials with either a lamellar or cylindrical microphase-separated morphology. Orientation of these nanoscale domains was induced in thin films and monolithic samples through solvent annealing and mechanical deformation, respectively. Selective degradation of PB was achieved by immersing the samples in a solution of Grubbs first-generation catalyst in cyclohexane, a nonsolvent for PLA. Successful elimination of PB was confirmed by size-exclusion chromatography and (1)H NMR spectroscopy. Direct imaging of the resulting nanoporous PLA was obtained by scanning electron microscopy.

  12. Z-Selective Catalytic Olefin Cross-Metathesis

    Science.gov (United States)

    Meek, Simon J.; O’Brien, Robert V.; Llaveria, Josep; Schrock, Richard R.; Hoveyda, Amir H.

    2011-01-01

    Alkenes are found in a great number of biologically active molecules and are employed in numerous transformations in organic chemistry. Many olefins exist as E or higher energy Z isomers. Catalytic procedures for stereoselective formation of alkenes are therefore valuable; nonetheless, methods for synthesis of 1,2-disubstituted Z olefins are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and allylic amides, employed thus far only in E-selective processes; the corresponding disubstituted alkenes are formed in up to >98% Z selectivity and 97% yield. Transformations, promoted by catalysts that contain the highly abundant and inexpensive molybdenum, are amenable to gram scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. Utility is demonstrated by syntheses of anti-oxidant C18 (plasm)-16:0 (PC), found in electrically active tissues and implicated in Alzheimer’s disease, and the potent immunostimulant KRN7000. PMID:21430774

  13. Desymmetrization of 7-azabicycloalkenes by tandem olefin metathesis for the preparation of natural product scaffolds

    Science.gov (United States)

    Maison, Wolfgang; Büchert, Marina; Deppermann, Nina

    2007-01-01

    Background Tandem olefin metathesis sequences are known to be versatile for the generation of natural product scaffolds and have also been used for ring opening of strained carbo- and heterocycles. In this paper we demonstrate the potential of these reactions for the desymmetrization of 7-azabicycloalkenes. Results We have established efficient protocols for the desymmetrization of different 7-azabicycloalkenes by intra- and intermolecular tandem metathesis sequences with ruthenium based catalysts. Conclusion Desymmetrization of 7-azabicycloalkenes by olefin metathesis is an efficient process for the preparation of common natural product scaffolds such as pyrrolidines, indolizidines and isoindoles. PMID:18088413

  14. Desymmetrization of 7-azabicycloalkenes by tandem olefin metathesis for the preparation of natural product scaffolds

    Directory of Open Access Journals (Sweden)

    Deppermann Nina

    2007-12-01

    Full Text Available Abstract Background Tandem olefin metathesis sequences are known to be versatile for the generation of natural product scaffolds and have also been used for ring opening of strained carbo- and heterocycles. In this paper we demonstrate the potential of these reactions for the desymmetrization of 7-azabicycloalkenes. Results We have established efficient protocols for the desymmetrization of different 7-azabicycloalkenes by intra- and intermolecular tandem metathesis sequences with ruthenium based catalysts. Conclusion Desymmetrization of 7-azabicycloalkenes by olefin metathesis is an efficient process for the preparation of common natural product scaffolds such as pyrrolidines, indolizidines and isoindoles.

  15. Z-Selective Homodimerization of Terminal Olefins with a Ruthenium Metathesis Catalyst

    Science.gov (United States)

    Keitz, Benjamin K.; Endo, Koji; Herbert, Myles B.

    2011-01-01

    The cross-metathesis of terminal olefins using a novel ruthenium catalyst results in excellent selectivity for the Z-olefin homodimer. The reaction was found to tolerate a large number of functional groups, solvents, and temperatures while maintaining excellent Z-selectivity, even at high reaction conversions. PMID:21649443

  16. Control of olefin geometry in macrocyclic ring-closing metathesis using a removable silyl group.

    Science.gov (United States)

    Wang, Yikai; Jimenez, Miguel; Hansen, Anders S; Raiber, Eun-Ang; Schreiber, Stuart L; Young, Damian W

    2011-06-22

    Introducing a silyl group at one of the internal olefin positions in diolefinic substrates results in E-selective olefin formation in macrocyclic ring-forming metathesis. The application of this method to a range of macrocyclic (E)-alkenylsiloxanes is described. Protodesilylation of alkenylsiloxane products yields novel Z-configured macrocycles.

  17. Microwave-Assisted Olefin Metathesis as Pivotal Step in the Synthesis of Bioactive Compounds.

    Science.gov (United States)

    Etsè, Koffi Sénam; Ngendera, Alice; Tshibalonza, Ntumba Nelly; Demonceau, Albert; Delaude, Lionel; Dragutan, Ileana; Dragutan, Valerian

    2017-03-14

    Over the last two decades, olefin metathesis has emerged as a new avenue in the design of new routes for the synthesis of natural products and active pharmaceutical ingredients. In many cases, syntheses based on olefin metathesis strategies provide elegant routes in terms of increasing the overall yields, improving the synthesis scope, and decreasing the number of steps. On the other hand, over the last decade, microwave-assisted chemistry has experienced an incredible development, which rapidly opened new vistas in organic synthesis and in homogeneous catalysis. In this review article, we highlight applications of microwave-heated olefin metathesis reactions as pivotal steps in the total synthesis of biologically active compounds. By drawing selected examples from the recent literature, we aim to illustrate the great synthetic power and variety of metathesis reactions, as well as the beneficial effects of microwave irradiation over conventional heating sources. The majority of the selected applications of microwave-assisted olefin metathesis cover the synthesis of medium-ring cycles, macrocycles, and peptidomimetics by means of ring-closing metathesis (RCM) and cross-metathesis (CM) routes. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. NATO Advanced Study Institute on Ring-opening Metathesis Polymerization of Olefins and Polymerization of Alkynes

    CERN Document Server

    1998-01-01

    The first NATO Advanced Study Institute on Olefin Metathesis and Polymerization Catalysts was held on September 10-22, 1989 in Akcay, Turkey. Based on the fundamental research of RRSchrock, RGrubbs and K.B.Wagener in the field of ring opening metathesis polymerization (ROMP), acyclic diene metathesis (ADMET) and alkyne polymerization, these areas gained growing interest within the last years. Therefore the second NATO-ASI held on metathesis reactions was on Ring Opening Metathesis Po­ lymerization of Olefins and Polymerization of Alkynes on September 3-16, 1995 in Akcay, Turkey. The course joined inorganic, organic and polymer chemists to exchange their knowledge in this field. This volume contains the main and short lectures held in Akcay. To include ADMET reactions better into the title of this volume we changed it into: Metathesis Polymerization of Olefins and Alkyne Polymerization. This volume is addressed to research scientists, but also to those who start to work in the area of olefin metathesis and al...

  19. Simple and highly Z-selective ruthenium-based olefin metathesis catalyst.

    Science.gov (United States)

    Occhipinti, Giovanni; Hansen, Fredrik R; Törnroos, Karl W; Jensen, Vidar R

    2013-03-06

    A one-step substitution of a single chloride anion of the Grubbs-Hoveyda second-generation catalyst with a 2,4,6-triphenylbenzenethiolate ligand resulted in an active olefin metathesis catalyst with remarkable Z selectivity, reaching 96% in metathesis homocoupling of terminal olefins. High turnover numbers (up to 2000 for homocoupling of 1-octene) were obtained along with sustained appreciable Z selectivity (>85%). Apart from the Z selectivity, many properties of the new catalyst, such as robustness toward oxygen and water as well as a tendency to isomerize substrates and react with internal olefin products, resemble those of the parent catalyst.

  20. Electron transfer-induced four-membered cyclic intermediate formation: Olefin cross-coupling vs. olefin cross-metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Okada, Yohei [Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509 (Japan); Chiba, Kazuhiro, E-mail: chiba@cc.tuat.ac.j [Department of Applied Life Science, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509 (Japan)

    2011-01-01

    An electron transfer-induced four-membered cyclic intermediate, formed between a radical cation of an enol ether and an unactivated olefin, played a key role in the pathway toward either cross-coupling or cross-metathesis. The presence of an alkoxy group on the phenyl ring of the olefin entirely determined the synthetic outcome of the reaction, which mirrored the efficiency of the intramolecular electron transfer.

  1. Chelating ruthenium phenolate complexes: synthesis, general catalytic activity, and applications in olefin metathesis polymerization.

    Science.gov (United States)

    Kozłowska, Anna; Dranka, Maciej; Zachara, Janusz; Pump, Eva; Slugovc, Christian; Skowerski, Krzysztof; Grela, Karol

    2014-10-20

    Cyclic Ru-phenolates were synthesized, and these compounds were used as olefin metathesis catalysts. Investigation of their catalytic activity pointed out that, after activation with chemical agents, these catalysts promote ring-closing metathesis (RCM), enyne and cross-metathesis (CM) reactions, including butenolysis, with good results. Importantly, these latent catalysts are soluble in neat dicyclopentadiene (DCPD) and show good applicability in ring-opening metathesis polymeriyation (ROMP) of this monomer. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Straightforward synthesis of alpha,beta-unsaturated thioesters via ruthenium-catalyzed olefin cross-metathesis with thioacrylate

    NARCIS (Netherlands)

    van Zijl, Anthoni W.; Minnaard, Adriaan J.; Feringa, Ben L.

    2008-01-01

    The cross-metathesis reaction of S-ethyl thioacrylate with a variety of olefins is effectively catalyzed by using a ruthenium benzylidene olefin metathesis catalyst. This reaction provides a convenient and versatile route to substituted alpha,beta-unsaturated thioesters, key building blocks in

  3. Isomerizing olefin metathesis as a strategy to access defined distributions of unsaturated compounds from fatty acids.

    Science.gov (United States)

    Ohlmann, Dominik M; Tschauder, Nicole; Stockis, Jean-Pierre; Goossen, Käthe; Dierker, Markus; Goossen, Lukas J

    2012-08-22

    The dimeric palladium(I) complex [Pd(μ-Br)(t)Bu(3)P](2) was found to possess unique activity for the catalytic double-bond migration within unsaturated compounds. This isomerization catalyst is fully compatible with state-of-the-art olefin metathesis catalysts. In the presence of bifunctional catalyst systems consisting of [Pd(μ-Br)(t)Bu(3)P](2) and NHC-indylidene ruthenium complexes, unsaturated compounds are continuously converted into equilibrium mixtures of double-bond isomers, which concurrently undergo catalytic olefin metathesis. Using such highly active catalyst systems, the isomerizing olefin metathesis becomes an efficient way to access defined distributions of unsaturated compounds from olefinic substrates. Computational models were designed to predict the outcome of such reactions. The synthetic utility of isomerizing metatheses is demonstrated by various new applications. Thus, the isomerizing self-metathesis of oleic and other fatty acids and esters provides olefins along with unsaturated mono- and dicarboxylates in distributions with adjustable widths. The cross-metathesis of two olefins with different chain lengths leads to regular distributions with a mean chain length that depends on the chain length of both starting materials and their ratio. The cross-metathesis of oleic acid with ethylene serves to access olefin blends with mean chain lengths below 18 carbons, while its analogous reaction with hex-3-enedioic acid gives unsaturated dicarboxylic acids with adjustable mean chain lengths as major products. Overall, the concept of isomerizing metatheses promises to open up new synthetic opportunities for the incorporation of oleochemicals as renewable feedstocks into the chemical value chain.

  4. Divergent dendrimer synthesis via the Passerini three-component reaction and olefin cross-metathesis.

    Science.gov (United States)

    Kreye, Oliver; Kugele, Dennis; Faust, Lorenz; Meier, Michael A R

    2014-02-01

    The combination of the Passerini reaction and olefin cross-metathesis is shown to be a very useful approach for the divergent synthesis of dendrimers. Castor oil-derived platform chemicals, such as 10-undecenoic acid and 10-undecenal, are reacted in a Passerini reaction with an unsaturated isocyanide to obtain a core unit having three terminal double bonds. Subsequent olefin cross-metathesis with tert-butyl acrylate, followed by hydrogenation of the double bonds and hydrolysis of the tert-butyl ester, leads to an active core unit bearing three carboxylic acid groups as reactive sites. Iterative steps of the Passerini reaction with 10-undecenal and 10-isocyanodec-1-ene for branching, and olefin cross-metathesis with tert-butyl acrylate, followed by hydrogenation and hydrolysis allow the synthesis of a third-generation dendrimer. All steps of the synthesis are carefully characterized by NMR, GPC, MS, and IR.

  5. Kinetic Selectivity of Olefin Metathesis Catalysts Bearing Cyclic (Alkyl)(Amino)Carbenes

    Science.gov (United States)

    Anderson, Donde R.; Ung, Thay; Mkrtumyan, Garik; Bertrand, Guy; Grubbs, Robert H.; Schrodi, Yann

    2008-01-01

    The evaluation of ruthenium olefin metathesis catalysts 4–6 bearing cyclic (alkyl)(amino)carbenes (CAACs) in the cross-metathesis of cis-1,4-diacetoxy-2-butene (7) with allylbenzene (8) and the ethenolysis of methyl oleate (11) is reported. Relative to most NHC-substituted complexes, CAAC-substituted catalysts exhibit lower E/Z ratios (3:1 at 70% conversion) in the cross-metathesis of 7 and 8. Additionally, complexes 4–6 demonstrate good selectivity for the formation of terminal olefins versus internal olefins in the ethenolysis of 11. Indeed, complex 6 achieved 35 000 TONs, the highest recorded to date. CAAC-substituted complexes exhibit markedly different kinetic selectivity than most NHC-substituted complexes. PMID:18584055

  6. Unravelling the olefin cross metathesis on solid support. Factors affecting the reaction outcome.

    Science.gov (United States)

    Poeylaut-Palena, Andrés A; Mata, Ernesto G

    2010-09-07

    Olefin cross metathesis on solid support under a variety of conditions is described. A comprehensive analysis considering diverse factors governing the reaction outcome gives a series of patterns for the application of this useful methodology in organic synthesis. If the intrasite reaction is not possible, homodimerization of the soluble olefin is crucial. When the homodimer is less reactive than its monomer, reaction outcome depends on the homodimerization rate, which, in turn, depends on the precatalyst used and the reaction conditions. If the site-site interaction is a feasible process, the cross metathesis product is obtained exclusively when the newly-formed double bond is resilient to further metathetic events. Taking into account these considerations, we have demonstrated that excellent results in terms of cross metathesis coupling can be obtained under the optimized conditions, and that microwave irradiation is also an interesting alternative for the development of a practical and energy-efficient cross metathesis on solid support.

  7. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives.

    Science.gov (United States)

    Tomasek, Jasmine; Seßler, Miriam; Gröger, Harald; Schatz, Jürgen

    2015-10-21

    A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions.

  8. Olefin Cross-Metathesis in Polymer and Polysaccharide Chemistry: A Review.

    Science.gov (United States)

    Dong, Yifan; Matson, John B; Edgar, Kevin J

    2017-06-12

    Olefin cross-metathesis, a ruthenium-catalyzed carbon-carbon double bond transformation that features high selectivity, reactivity, and tolerance of various functional groups, has been extensively applied in organic synthesis and polymer chemistry. Herein, we review strategies for performing selective cross-metathesis and its applications in polymer and polysaccharide chemistry, including constructing complex polymer architectures, attaching pendant groups to polymer backbones and surfaces, and modifying polysaccharide derivatives.

  9. The doping effect of fluorinated aromatic solvents on the rate of ruthenium-catalysed olefin metathesis.

    Science.gov (United States)

    Samojłowicz, Cezary; Bieniek, Michał; Pazio, Aleksandra; Makal, Anna; Woźniak, Krzysztof; Poater, Albert; Cavallo, Luigi; Wójcik, Jacek; Zdanowski, Konrad; Grela, Karol

    2011-11-11

    A study concerning the effect of using a fluorinated aromatic solvent as the medium for olefin metathesis reactions catalysed by ruthenium complexes bearing N-heterocyclic carbene ligands is presented. The use of fluorinated aromatic hydrocarbons (FAH) as solvents for olefin metathesis reactions catalysed by standard commercially available ruthenium pre-catalysts allows substantially higher yields of the desired products to be obtained, especially in the case of demanding polyfunctional molecules, including natural and biologically active compounds. Interactions between the FAH and the second-generation ruthenium catalysts, which apparently improve the efficiency of the olefin metathesis transformation, have been studied by X-ray structure analysis and computations, as well as by carrying out a number of metathesis experiments. The optimisation of reaction conditions by using an FAH can be regarded as a complementary approach for the design of new improved ruthenium catalysts. Fluorinated aromatic solvents are an attractive alternative medium for promoting challenging olefin metathesis reactions. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Macrocyclic olefin metathesis at high concentrations by using a phase-separation strategy.

    Science.gov (United States)

    Raymond, Michaël; Holtz-Mulholland, Michael; Collins, Shawn K

    2014-09-26

    Macrocyclic olefin metathesis has seen advances in the areas of stereochemistry, chemoselectivity, and catalyst stability, but strategies aimed at controlling dilution effects in macrocyclizations are rare. Herein, a protocol to promote macrocyclic olefin metathesis, one of the most common synthetic tools used to prepare macrocycles, at relatively high concentrations (up to 60 mM) is described by exploitation of a phase-separation strategy. A variety of macrocyclic skeletons could be prepared having either different alkyl, aryl, or amino acids spacers. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Polycyclic Aromatic Hydrocarbons via Iron(III)-Catalyzed Carbonyl-Olefin Metathesis.

    Science.gov (United States)

    McAtee, Christopher C; Riehl, Paul S; Schindler, Corinna S

    2017-03-01

    Polycyclic aromatic hydrocarbons are important structural motifs in organic chemistry, pharmaceutical chemistry, and materials science. The development of a new synthetic strategy toward these compounds is described based on the design principle of iron(III)-catalyzed carbonyl-olefin metathesis reactions. This approach is characterized by its operational simplicity, high functional group compatibility, and regioselectivity while relying on FeCl3 as an environmentally benign, earth-abundant metal catalyst. Experimental evidence for oxetanes as reactive intermediates in the catalytic carbonyl-olefin ring-closing metathesis has been obtained.

  12. Olefin Metathesis in Homogeneous Aqueous Media Catalyzed by Conventional Ruthenium Catalysts

    Science.gov (United States)

    Binder, Joseph B.; Blank, Jacqueline J.; Raines, Ronald T.

    2008-01-01

    Olefin metathesis in aqueous solvents is sought for applications in green chemistry and with the hydrophilic substrates of chemical biology, such as proteins and polysaccharides. Most demonstrations of metathesis in water, however, utilize exotic complexes. We have examined the performance of conventional catalysts in homogeneous water–organic mixtures, finding that the second-generation Hoveyda–Grubbs catalyst has extraordinary efficiency in aqueous dimethoxyethane and aqueous acetone. High (71–95%) conversions are achieved for ring-closing and cross metathesis of a variety of substrates in these solvent systems. PMID:17949009

  13. The Olefin Metathesis Reactions Combined with Organo-Iron Arene Activation Towards Dendrimers, and Polymers

    Science.gov (United States)

    Astruc, Didier; Martinez, Victor

    The subjects treated in the two lectures of the North Atlantic Treaty Organization (NATO) summer course are (1) the combination of arene activation and perfunctionalization using organo-iron chemistry with olefin metathesis incuding metathesis of dendritic polyolefin molecules; (2) the synthesis of metallodendritic benzylidene complexes that catalyse ring-opening metathesis polymerization (ROMP) under ambient conditions and the formation of dendritic stars; (3) the use of stoichiometric and catalytic electron-transfer processes with standard reservoirs of electrons (reductants) or electron holes (oxidants) iron complexes to achieve noteworthy metathesis reactions or synthesize compounds that are useful in metathesis. Only the two first topics are treated in this chapter, and interested readers can find references concerning the third aspect called in the introduction and subsequently cited in the reference list.

  14. Ruthenium-Catalyzed Olefin Cross-Metathesis with Tetrafluoroethylene and Analogous Fluoroolefins.

    Science.gov (United States)

    Takahira, Yusuke; Morizawa, Yoshitomi

    2015-06-10

    This Communication describes a successful olefin cross-metathesis with tetrafluoroethylene and its analogues. A key to the efficient catalytic cycle is interconversion between two thermodynamically stable, generally considered sluggish, Fischer carbenes. This newly demonstrated catalytic transformation enables easy and short-step synthesis of a new class of partially fluorinated olefins bearing plural fluorine atoms, which are particularly important and valuable compounds in organic synthesis and medicinal chemistry as well as the materials and polymer industries.

  15. Amphiphilic Cellulose Ethers Designed for Amorphous Solid Dispersion via Olefin Cross-Metathesis.

    Science.gov (United States)

    Dong, Yifan; Mosquera-Giraldo, Laura I; Taylor, Lynne S; Edgar, Kevin J

    2016-02-08

    The design of cellulose ether-based amphiphiles has been difficult and limited because of the harsh conditions typically required for appending ether moieties to cellulose. Olefin cross-metathesis recently has been shown to be a valuable approach for appending a variety of functional groups to cellulose ethers and esters, provided that an olefin handle for metathesis can be attached. This synthetic pathway gives access to these functional derivatives under very mild conditions and at high efficiency. Modification of ethyl cellulose by metathesis to prepare useful derivatives, for example, for solubility and bioavailability enhancement of drugs by amorphous solid dispersion (ASD), has been limited by the low DS(OH) of commercial ethyl cellulose derivatives. This is problematic because ethyl cellulose is otherwise a very attractive substrate for synthesis of amphiphilic derivatives by olefin metathesis. Herein we explore two methods for opening up this design space for ether-based amphiphiles, for example, permitting synthesis of more hydrophilic derivatives. One approach is to start with the more hydrophilic commercial methyl cellulose, which contains much higher DS(OH) and therefore is better suited for introduction of high DS of olefin metathesis "handles". In another approach, we explored a homogeneous one-pot synthesis methodology from cellulose, where controlled DS of ethyl groups was introduced at the same time as the ω-unsaturated alkyl groups, thereby permitting complete control of DS(OH), DS(Et), and ultimately DS of the functional group added by metathesis. We describe the functionalized derivatives available by these successful approaches. In addition, we explore new methods for reduction of the unsaturation in initial metathesis products to provide robust methods for enhancing product stability against further radical-catalyzed reactions. We demonstrate initial evidence that the products show strong promise as amphiphilic matrix polymers for amorphous

  16. Z-Selective olefin metathesis on peptides: investigation of side-chain influence, preorganization, and guidelines in substrate selection.

    Science.gov (United States)

    Mangold, Shane L; O'Leary, Daniel J; Grubbs, Robert H

    2014-09-03

    Olefin metathesis has emerged as a promising strategy for modulating the stability and activity of biologically relevant compounds; however, the ability to control olefin geometry in the product remains a challenge. Recent advances in the design of cyclometalated ruthenium catalysts has led to new strategies for achieving such control with high fidelity and Z selectivity, but the scope and limitations of these catalysts on substrates bearing multiple functionalities, including peptides, remained unexplored. Herein, we report an assessment of various factors that contribute to both productive and nonproductive Z-selective metathesis on peptides. The influence of sterics, side-chain identity, and preorganization through peptide secondary structure are explored by homodimerization, cross metathesis, and ring-closing metathesis. Our results indicate that the amino acid side chain and identity of the olefin profoundly influence the activity of cyclometalated ruthenium catalysts in Z-selective metathesis. The criteria set forth for achieving high conversion and Z selectivity are highlighted by cross metathesis and ring-closing metathesis on diverse peptide substrates. The principles outlined in this report are important not only for expanding the scope of Z-selective olefin metathesis to peptides but also for applying stereoselective olefin metathesis in general synthetic endeavors.

  17. The right computational recipe for olefin metathesis with ru-based catalysts: The whole mechanism of ring-closing olefin metathesis

    KAUST Repository

    Poater, Albert

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  18. The Right Computational Recipe for Olefin Metathesis with Ru-Based Catalysts: The Whole Mechanism of Ring-Closing Olefin Metathesis.

    Science.gov (United States)

    Poater, Albert; Pump, Eva; Vummaleti, Sai Vikrama Chaitanya; Cavallo, Luigi

    2014-10-14

    The initiation mechanism of ruthenium methylidene complexes was studied detailing mechanistic insights of all involved reaction steps within a classical olefin metathesis pathway. Computational studies reached a good agreement with the rarely available experimental data and even enabled to complement them. As a result, a highly accurate computational and rather cheap recipe is presented; M06/TZVP//BP86/SVP (PCM, P = 1354 atm).

  19. Hydrogen bond templated 1:1 macrocyclization through an olefin metathesis/hydrogenation sequence.

    Science.gov (United States)

    Trita, Andrada Stefania; Roisnel, Thierry; Mongin, Florence; Chevallier, Floris

    2013-07-19

    The construction of pyridine-containing macrocyclic architectures using a nonmetallic template is described. 4,6-Dichlororesorcinol was used as an exotemplate to self-organize two aza-heterocyclic units by OH···N hydrogen bonds. Subsequent sequential double olefin metathesis/hydrogenation reactions employing a single ruthenium-alkylidene precatalyst open access to macrocyclic molecules.

  20. Omega-functionalized fatty acids, alcohols, and ethers via olefin metathesis

    Science.gov (United States)

    Methyl 17-hydroxy stearate was converted to methyl octadec-16-enoate using copper sulfate adsorbed on silica gel. This compound, possessing unsaturation at the opposite end of the chain from the carboxylate, served as a useful substrate for the olefin metathesis reaction. As a result, several fatt...

  1. Attractive Noncovalent Interactions in the Mechanism of Grubbs Second-Generation Ru Catalysts for Olefin Metathesis.

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan; Truhlar, Donald G.

    2007-05-10

    Second-generation ruthenium carbenoid catalysts for olefin metathesis are a hundred to a thousand times more active than first-generation catalysts, despite a slower initiation step. A new density functional capable of treating medium-range correlation energy shows that the relative rates of generation of the catalyst are determined by attractive noncovalent interactions.

  2. Cationic tungsten-oxo-alkylidene-N-heterocyclic carbene complexes: highly active olefin metathesis catalysts.

    Science.gov (United States)

    Schowner, Roman; Frey, Wolfgang; Buchmeiser, Michael R

    2015-05-20

    The synthesis, structure, and olefin metathesis activity of the first neutral and cationic W-oxo-alkylidene-N-heterocyclic carbene (NHC) catalysts are reported. Neutral W-oxo-alkylidene-NHC catalysts can be prepared in up to 90% isolated yield. Depending on the ligands used, they possess either an octahedral (Oh) or trigonal bipyramidal ligand sphere. They can be activated with excess AlCl3 to form cationic olefin metathesis-active W-complexes; however, these readily convert into neutral chloro-complexes. Well-defined, stable cationic species can be prepared by stoichiometric substitution of one chloro ligand in the parent, neutral W-oxo-alkylidene-NHC complexes with Ag(MeCN)2B(Ar(F))4 or NaB(Ar(F))4; B(Ar(F))4 = B(3,5-(CF3)2-C6H3)4. They are highly active olefin metathesis catalysts, allowing for turnover numbers up to 10,000 in various olefin metathesis reactions including alkenes bearing nitrile, sec-amine, and thioether groups.

  3. Olefin Ring Closing Metathesis and Hydrosilylation Reaction in Aqueous Medium by Grubbs Second Generation Ruthenium Catalyst

    Science.gov (United States)

    The Grubbs second generation ruthenium catalyst was shown to catalyze various olefin ring closing metathesis and hydrosilylation reactions in aqueous medium. Reactions proceeded in pure water without any additives or co-solvents, in a short period of time. We found that inhomogen...

  4. Olefin Metathesis Mediated By: - Schiff Base Ru-Alkylidenes -Ru-Alkylidenes Bearing Unsymmetrical NH Ligands

    Science.gov (United States)

    Monsaert, Stijn; Voort, Pascal Van Der; Ledoux, Nele; Allaert, Bart; Drozdzak, Renata; Verpoort, Francis

    The classic Grubbs second-generation complex 2 was modified through 1. The introduction of a bidentate Schiff base ligand 2. Changes in the amino side groups of the NHC ligand Representative olefin metathesis test reactions show the effects induced by the ligand modifications and demonstrate some interesting new properties of the described catalysts. catalysts.

  5. The mechanism of activation of amidobenzylidene ruthenium chelates - latent catalysts of olefin metathesis.

    Science.gov (United States)

    Rogalski, Szymon; Żak, Patrycja; Tadeuszyk, Natalia; Pyta, Krystian; Przybylski, Piotr; Pietraszuk, Cezary

    2017-01-24

    Amidobenzylidene ruthenium chelates - latent catalysts of olefin metathesis can be easily activated by the addition of Brønsted or Lewis acids. Their activation in the presence of hydrogen chloride involves the formation of catalytically active trans-dichloro carbamatobenzylidene ruthenium chelates.

  6. Nobel Chemistry in the Laboratory: Synthesis of a Ruthenium Catalyst for Ring-Closing Olefin Metathesis--An Experiment for the Advanced Inorganic or Organic Laboratory

    Science.gov (United States)

    Greco, George E.

    2007-01-01

    An experiment for the upper-level undergraduate laboratory is described in which students synthesize a ruthenium olefin metathesis catalyst, then use the catalyst to carry out the ring-closing metathesis of diethyl diallylmalonate. The olefin metathesis reaction was the subject of the 2005 Nobel Prize in chemistry. The catalyst chosen for this…

  7. Profluorescent substrates for the screening of olefin metathesis catalysts

    Directory of Open Access Journals (Sweden)

    Raphael Reuter

    2015-10-01

    Full Text Available Herein we report on a 96-well plate assay based on the fluorescence resulting from the ring-closing metathesis of two profluorophoric substrates. To demonstrate the validity of the approach, four commercially available ruthenium-metathesis catalysts were evaluated in six different solvents. The results from the fluorescent assay agree well with HPLC conversions, validating the usefulness of the approach.

  8. Profluorescent substrates for the screening of olefin metathesis catalysts.

    Science.gov (United States)

    Reuter, Raphael; Ward, Thomas R

    2015-01-01

    Herein we report on a 96-well plate assay based on the fluorescence resulting from the ring-closing metathesis of two profluorophoric substrates. To demonstrate the validity of the approach, four commercially available ruthenium-metathesis catalysts were evaluated in six different solvents. The results from the fluorescent assay agree well with HPLC conversions, validating the usefulness of the approach.

  9. Side-chain modification and "grafting onto" via olefin cross-metathesis.

    Science.gov (United States)

    de Espinosa, Lucas Montero; Kempe, Kristian; Schubert, Ulrich S; Hoogenboom, Richard; Meier, Michael A R

    2012-12-13

    Olefin cross-metathesis is introduced as a versatile polymer side-chain modification technique. The reaction of a poly(2-oxazoline) featuring terminal double bonds in the side chains with a variety of functional acrylates has been successfully performed in the presence of Hoveyda-Grubbs second-generation catalyst. Self-metathesis, which would lead to polymer-polymer coupling, can be avoided by using an excess of the cross-metathesis partner and a catalyst loading of 5 mol%. The results suggest that bulky acrylates reduce chain-chain coupling due to self-metathesis. Moreover, different functional groups such as alkyl chains, hydroxyl, and allyl acetate groups, as well as an oligomeric poly(ethylene glycol) and a perfluorinated alkyl chain have been grafted with quantitative conversions. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. p-Cymene as Solvent for Olefin Metathesis: Matching Efficiency and Sustainability.

    Science.gov (United States)

    Granato, Artur V; Santos, Alexandra G; Dos Santos, Eduardo N

    2017-04-22

    The underexploited biorenewable p-cymene is employed as a solvent for the metathesis of various substrates. p-Cymene is a nontoxic compound that can be obtained in large amounts as a side product of the cellulose and citrus industry. For the cross-metathesis of estragole with methyl acrylate, this solvent prevents the consecutive double-bond isomerization of the product and affords the best yield of all solvents tested. Undesired consecutive isomerization is a major challenge for many substrates in olefin metathesis, including pharmaceutical precursors, and the use of p-cymene as a solvent may be a way to prevent it. This solvent results in a better metathesis performance than toluene for the three substrates tested in this work, matching its performance for two other substrates. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A Comparison of the Performance of the Semiempirical PM6 Method Versus DFT Methods in Ru-Catalyzed Olefin Metathesis

    Science.gov (United States)

    Correa, Andrea; Poater, Albert; Ragone, Francesco; Cavallo, Luigi

    In this work we compare the performance of the semiempirical PM6 method with a more accurate DFT method when applied to Ru-catalyzed olefin metathesis. We demonstrate that the PM6 method reproduces with interesting accuracy the geometries located with a DFT approach. As for the energetics, the relative DFT stability of the metallacycle with respect to the coordination intermediate is reproduced with reasonable accuracy by the PM6 method, whereas the olefin coordination energy and the energy barrier of the metathesis step are overestimated. Further, for the same system we performed a PM6-based meta-dynamics study of the olefin metathesis reaction, which indicated a reasonable good behavior of the system also under dynamic conditions. In conclusion, the obtained results validate the use of the semiempirical PM6 method for preliminary and computationally fast screening on new ligands/substrates in Ru catalyzed olefin metathesis.

  12. Stereoselective synthesis of macrocyclic peptides via a dual olefin metathesis and ethenolysis approach.

    Science.gov (United States)

    Mangold, Shane L; Grubbs, Robert H

    2015-08-01

    Macrocyclic compounds occupy an important chemical space between small molecules and biologics and are prevalent in many natural products and pharmaceuticals. The growing interest in macrocycles has been fueled, in part, by the design of novel synthetic methods to these compounds. One appealing strategy is ring-closing metathesis (RCM) that seeks to construct macrocycles from acyclic diene precursors using defined transition-metal alkylidene catalysts. Despite its broad utility, RCM generally gives rise to a mixture of E- and Z-olefin isomers that can hinder efforts for the large-scale production and isolation of such complex molecules. To address this issue, we aimed to develop methods that can selectively enrich macrocycles in E- or Z-olefin isomers using an RCM/ethenolysis strategy. The utility of this methodology was demonstrated in the stereoselective formation of macrocyclic peptides, a class of compounds that have gained prominence as therapeutics in drug discovery. Herein, we report an assessment of various factors that promote catalyst-directed RCM and ethenolysis on a variety of peptide substrates by varying the olefin type, peptide sequence, and placement of the olefin in macrocycle formation. These methods allow for control over olefin geometry in peptides, facilitating their isolation and characterization. The studies outlined in this report seek to expand the scope of stereoselective olefin metathesis in general RCM.

  13. Synthesis of electronically modified Ru-based neutral 16 VE allenylidene olefin metathesis precatalysts.

    Science.gov (United States)

    Lichtenheldt, Martin; Kress, Steffen; Blechert, Siegfried

    2012-05-04

    Electronic modifications within Ru-based olefin metathesis precatalysts have provided a number of new complexes with significant differences in reactivity profiles. So far, this aspect has not been studied for neutral 16 VE allenylidenes. The first synthesis of electronically altered complexes of this type is reported. Following the classical dehydration approach (vide infra) modified propargyl alcohols were transformed to the targeted allenylidene systems in the presence of PCy₃. The catalytic performance was investigated in RCM reaction (ring closing metathesis) of benchmark substrates such as diallyltosylamide and diethyl diallylmalonate.

  14. Effect of catalyst pretreatment on the olefin metathesis catalyzed by alumina-supported (9%) rhenium oxide

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, J.C.

    1979-01-01

    A kinetic model was developed to express the time-on-stream profile of the activity during catalyst break-in and deactivation. The catalyst surface is in geometric and energetic heterogeneity. Partial catalyst reduction is a prerequisite step for olefin metathesis. The metathesis activity may be affected by the coordination number and the type of ligands associated with the sites on the catalyst. The deactivation is proposed due to deposition of residues on the active sites, and to sintering, etc. A dispersion pretreatment increased activity. Oxygen is an activator. The hydrogen reduction at 500/sup 0/C causes partial but permanent loss of activity.

  15. Nobel Prize in Chemistry. Development of the Olefin Metathesis Method in Organic Synthesis

    Science.gov (United States)

    Casey, Charles P.

    2006-02-01

    The 2005 Nobel Prize in Chemistry was awarded to Yves Chauvin of the Institut Français du Pétrole, Robert H. Grubbs of CalTech, and Richard R. Schrock of MIT "for development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction now used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other products. This article tells the story of how olefin metathesis became a truly useful synthetic transformation and a triumph for mechanistic chemistry, and illustrates the importance of fundamental research. See JCE Featured Molecules .

  16. Synthesis of Electronically Modified Ru-Based Neutral 16 VE Allenylidene Olefin Metathesis Precatalysts

    Directory of Open Access Journals (Sweden)

    Siegfried Blechert

    2012-05-01

    Full Text Available Electronic modifications within Ru-based olefin metathesis precatalysts have provided a number of new complexes with significant differences in reactivity profiles. So far, this aspect has not been studied for neutral 16 VE allenylidenes. The first synthesis of electronically altered complexes of this type is reported. Following the classical dehydration approach (vide infra modified propargyl alcohols were transformed to the targeted allenylidene systems in the presence of PCy3. The catalytic performance was investigated in RCM reaction (ring closing metathesis of benchmark substrates such as diallyltosylamide (6 and diethyl diallylmalonate (7.

  17. Olefin Metathesis Reaction in Water and in Air Improved by Supramolecular Additives

    Directory of Open Access Journals (Sweden)

    Jasmine Tomasek

    2015-10-01

    Full Text Available A range of water-immiscible commercially available Grubbs-type precatalysts can be used in ring-closing olefin metathesis reaction in high yields. The synthetic transformation is possible in pure water under ambient conditions. Sulfocalixarenes can help to boost the reactivity of the metathesis reaction by catalyst activation, improved mass transfer, and solubility of reactants in the aqueous reaction media. Additionally, the use of supramolecular additives allows lower catalyst loadings, but still high activity in pure water under aerobic conditions.

  18. Cross olefin metathesis for the selective functionalization, ferrocenylation, and solubilization in water of olefin-terminated dendrimers, polymers, and gold nanoparticles and for a divergent dendrimer construction.

    Science.gov (United States)

    Ornelas, Cátia; Méry, Denise; Cloutet, Eric; Ruiz Aranzaes, Jaime; Astruc, Didier

    2008-01-30

    Olefin cross metathesis was used to efficiently functionalize polyolefin dendrimers, polymers, and gold nanoparticles using the second-generation Grubbs catalyst. In these structures, the tethers were lengthened to prevent the facile cross metathesis that otherwise predominates in polyolefin dendrimers having short tethers. This synthetic strategy allows the one-step access to polyacid, polyester, and polyferrocenyl structures from polyolefins. Cross metathesis is also used to efficiently achieve an iterative divergent dendritic construction. All the cross metathesis reactions were monitored by 1H NMR showing the chemo-, regio-, and stereoselectivity. MALDI-TOF mass spectrometry was a very useful technique to confirm the efficiency of this synthetic strategy.

  19. Selective Metathesis of α-Olefins from Bio-Sourced Fischer–Tropsch Feeds

    KAUST Repository

    Rouen, Mathieu

    2016-10-14

    The search for a low-cost process for the valorization of linear alpha-olefins combining high productivity and high selectivity is a longstanding goal for chemists. Herein, we report a soluble ruthenium olefin metathesis catalyst that performs the conversion of linear alpha-olefins to longer internal linear olefins with high selectivity (>99%) under neat conditions at low loadings (50 ppm) and without the need of expensive additives. This robust catalytic process allowed us to efficiently and selectively re-equilibrate the naphtha fraction (C-5-C-8) of a Fischer-Tropsch feed derived from non petroleum resources to a higher-value product range (C-9-C-14), useful as detergent and plasticizer precursors.

  20. Cis/trans Coordination in olefin metathesis by static and molecular dynamic DFT calculations

    KAUST Repository

    Poater, Albert

    2014-05-25

    In regard to [(N-heterocyclic carbene)Ru]-based catalysts, it is still a matter of debate if the substrate binding is preferentially cis or trans to the N-heterocyclic carbene ligand. By means of static and molecular dynamic DFT calculations, a simple olefin, like ethylene, is shown to be prone to the trans binding. Bearing in mind the higher reactivity of trans isomers in olefin metathesis, this insight helps to construct small alkene substrates with increased reactivity. © 2014 Springer Science+Business Media New York.

  1. Bis(Cyclic Alkyl Amino Carbene) Ruthenium Complexes: A Versatile, Highly Efficient Tool for Olefin Metathesis.

    Science.gov (United States)

    Gawin, Rafał; Kozakiewicz, Anna; Guńka, Piotr A; Dąbrowski, Paweł; Skowerski, Krzysztof

    2017-01-19

    The state-of-the-art in olefin metathesis is application of N-heterocyclic carbene (NHC)-containing ruthenium alkylidenes for the formation of internal C=C bonds and of cyclic alkyl amino carbene (CAAC)-containing ruthenium benzylidenes in the production of terminal olefins. A straightforward synthesis of bis(CAAC)Ru indenylidene complexes, which are highly effective in the formation of both terminal and internal C=C bonds at loadings as low as 1 ppm, is now reported. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Template-directed synthesis of flexible porphyrin nanocage and nanorings via one-step olefin metathesis.

    Science.gov (United States)

    Zhu, Bin; Chen, Huanxin; Lin, Wei; Ye, Yang; Wu, Jing; Li, Shijun

    2014-10-29

    We describe the fabrication of a suite of flexible porphyrin cages and nanorings from a simple tetraalkene-derived zinc porphyrin monomer via a highly efficient template-directed strategy. The zinc porphyrin monomers were preorganized together by coordination with N atoms of multidentate ligands. Subsequent one-step olefin metathesis furnished a bisporphyrin cage, a triporphyrin nanoring, and a hexaporphyrin nanoring. In the case of the hexaporphyrin nanoring, 24 terminal olefins from six porphyrin monomers reacted with each other to form 12 new double bonds, delivering the final product. The triporphyrin and hexaporphyrin nanorings were further employed as hosts to encapsulate C60 and C70.

  3. Exploring new generations of ruthenium olefin metathesis catalysts: The reactivity of a bis-ylidene ruthenium complex by DFT

    KAUST Repository

    Poater, Albert

    2013-01-01

    Density functional theory calculations were used to predict the behaviour of a potential novel architecture of olefin metathesis catalysts, in which one of the neutral ligands of classical Ru-based catalysts, e.g. a phosphine or an N-heterocyclic carbene, is replaced by an alkylidene group. Introduction of a second alkylidene ligand favors dissociation of the remaining phosphine and the overall energy profile for the metathesis using ethylene as the probe substrate reveals that the proposed bis-alkylidene complexes might match the requirements of a good performing olefin metathesis catalyst. © 2013 The Royal Society of Chemistry.

  4. Sunflower-based Feedstocks in Nonfood Applications: Perspectives from Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Bassie B. Marvey

    2008-08-01

    Full Text Available Sunflower (Helianthus annuus L. oil remains under-utilised albeit one of the major seed oils produced world-wide. Moreover, the high oleic sunflower varieties make the oil attractive for applications requiring high temperature processes and those targeting the C=C double bond functionality. Herein an overview of the recent developments in olefin metathesis of sunflower-based feedstocks is presented. The improved performance of olefin metathesis catalysts leading to high turnover numbers, high selectivity and catalyst recyclability, opens new opportunities for tailoring sunflower-based feedstocks into products required for possible new niche market applications. Promising results in biofuel, biopolymers, fragrances and fine chemicals applications have been reported.

  5. High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products.

    Science.gov (United States)

    Szczepaniak, Grzegorz; Urbaniak, Katarzyna; Wierzbicka, Celina; Kosiński, Krzysztof; Skowerski, Krzysztof; Grela, Karol

    2015-12-21

    Three isocyanides containing a tertiary nitrogen atom were investigated for use as small-molecule ruthenium scavenging agents in the workup of olefin metathesis reactions. The proposed compounds are odorless, easy to obtain, and highly effective in removing metal residues, sometimes bringing the metal content below 0.0015 ppm. The most successful of the tested compounds, II, performs very well, even with challenging polar products. The performance of these scavengers is compared and contrasted with other known techniques, such as silica gel filtration and the use of self-scavenging catalysts. As a result, a new hybrid purification method is devised, which gives better results than using either a self-scavenging catalyst or a scavenger alone. Additionally, isocyanide II is shown to be a deactivating (reaction quenching) agent for olefin metathesis and superior to ethyl vinyl ether. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  6. The activation mechanism of Ru-indenylidene complexes in olefin metathesis.

    Science.gov (United States)

    Urbina-Blanco, César A; Poater, Albert; Lebl, Tomas; Manzini, Simone; Slawin, Alexandra M Z; Cavallo, Luigi; Nolan, Steven P

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations.

  7. The activation mechanism of Ru-indenylidene complexes in olefin metathesis

    KAUST Repository

    Urbina-Blanco, César A.

    2013-05-08

    Olefin metathesis is a powerful tool for the formation of carbon-carbon double bonds. Several families of well-defined ruthenium (Ru) catalysts have been developed during the past 20 years; however, the reaction mechanism for all such complexes was assumed to be the same. In the present study, the initiation mechanism of Ru-indenylidene complexes was examined and compared with that of benzylidene counterparts. It was discovered that not all indenylidene complexes followed the same mechanism, highlighting the importance of steric and electronic properties of so-called spectator ligands, and that there is no single mechanism for the Ru-based olefin metathesis reaction. The experimental findings are supported quantitatively by DFT calculations. © 2013 American Chemical Society.

  8. A Light-Activated Olefin Metathesis Catalyst Equipped with a Chromatic Orthogonal Self-Destruct Function.

    Science.gov (United States)

    Sutar, Revannath L; Levin, Efrat; Butilkov, Danielle; Goldberg, Israel; Reany, Ofer; Lemcoff, N Gabriel

    2016-01-11

    A sulfur-chelated photolatent ruthenium olefin metathesis catalyst has been equipped with supersilyl protecting groups on the N-heterocyclic carbene ligand. The silyl groups function as an irreversible chromatic kill switch, thus decomposing the catalyst when it is irradiated with 254 nm UV light. Therefore, different types of olefin metathesis reactions may be started by irradiation with 350 nm UV light and prevented by irradiation with shorter wavelengths. The possibility to induce and impede catalysis just by using light of different frequencies opens the pathway for stereolithographic applications and novel light-guided chemical sequences. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Ruthenium indenylidene "1(st) generation" olefin metathesis catalysts containing triisopropyl phosphite.

    Science.gov (United States)

    Guidone, Stefano; Nahra, Fady; Slawin, Alexandra M Z; Cazin, Catherine S J

    2015-01-01

    The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords "1(st) generation" cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands.

  10. E- and Z-Selective Transfer Semihydrogenation of Alkynes Catalyzed by Standard Ruthenium Olefin Metathesis Catalysts.

    Science.gov (United States)

    Kusy, Rafał; Grela, Karol

    2016-12-02

    Selective transfer semihydrogenation of alkynes to yield alkenes was achieved with commercial first and second generation Hoveyda-Grubbs catalysts and formic acid as a hydrogen donor. This catalytic system is distinguished by its selectivity and compatibility with many functional groups (halogens, cyano, nitro, sulfide, alkenes). The metathetic activity of the ruthenium catalysts may be utilized in tandem sequences of olefin metathesis plus alkyne reduction.

  11. High-Performance Isocyanide Scavengers for Use in Low-Waste Purification of Olefin Metathesis Products.

    Science.gov (United States)

    Szczepaniak, Grzegorz; Urbaniak, Katarzyna; Wierzbicka, Celina; Kosiński, Krzysztof; Skowerski, Krzysztof; Grela, Karol

    2015-12-09

    Invited for this month's cover is the group of Karol Grela (University of Warsaw) in collaboration with Apeiron Synthesis (based in the Wrocław Technology Park). The researchers created a new, bidentate isocyanide scavenger that is very effective at removing ruthenium residues from the products of olefin metathesis. The Full Paper itself is available at 10.1002/cssc.201500784. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ruthenium indenylidene “1st generation” olefin metathesis catalysts containing triisopropyl phosphite

    Directory of Open Access Journals (Sweden)

    Stefano Guidone

    2015-09-01

    Full Text Available The reaction of triisopropyl phosphite with phosphine-based indenylidene pre-catalysts affords “1st generation” cis-complexes. These have been used in olefin metathesis reactions. The cis-Ru species exhibit noticeable differences with the trans-Ru parent complexes in terms of structure, thermal stability and reactivity. Experimental data underline the importance of synergistic effects between phosphites and L-type ligands.

  13. The Effects of NHC-Backbone Substitution on Efficiency in Ruthenium-based Olefin Metathesis

    Science.gov (United States)

    Kuhn, Kevin M.; Bourg, Jean-Baptiste; Chung, Cheol K.; Virgil, Scott C.; Grubbs, Robert H.

    2009-01-01

    A series of ruthenium olefin metathesis catalysts bearing N-heterocyclic carbene (NHC) ligands with varying degrees of backbone and N-aryl substitution have been prepared. These complexes show greater resistance to decomposition through C–H activation of the N-aryl group, resulting in increased catalyst lifetimes. This work has utilized robotic technology to examine the activity and stability of each catalyst in metathesis, providing insights into the relationship between ligand architecture and enhanced efficiency. The development of this robotic methodology has also shown that, under optimized conditions, catalyst loadings as low as 25 ppm can lead to 100% conversion in the ring-closing metathesis of diethyl diallylmalonate. PMID:19351207

  14. Ru complexes of Hoveyda-Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions.

    Science.gov (United States)

    Balcar, Hynek; Žilková, Naděžda; Kubů, Martin; Mazur, Michal; Bastl, Zdeněk; Čejka, Jiří

    2015-01-01

    Hoveyda-Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36) and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (<1% of Ru content). XPS analysis revealed that during immobilization ion exchange between Hoveyda-Grubbs type catalyst and zeolitic support occurred in the case of Cl(-) counter anion; in contrast, PF6 (-) counter anion underwent partial decomposition.

  15. Reactivity of Tungsten-aryloxides with Hydrosilane Cocatalysts in Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Baibich Ione M.

    2002-01-01

    Full Text Available The reactivity of the [WCl4(OAr2] (OAr = O-2,6-C3H3Cl2, O-2,6-C6H3F2 and O-C6H3Me2 systems, plus the silicon compounds Ph2SiH2 and polymethylhydrosiloxane (PMHS, were studied in metathesis reactions. The olefins used were methyl-10-undecenoate and 1-hexene. The results showed that the [WCl4(OAr2]-silicon compound systems are active and selective when the aryloxide ligand contain electronegative groups. The silicon compound PMHS proved to be the best cocatalyst for metathesis, even with the [WCl4(O-2,6-C6H3Me 22] compound, which has no electronegative substituents. Because it is non-toxic, non-volatile, easy to handle and cheap, PMHS is a good alternative cocatalyst in metathesis reactions.

  16. Ru complexes of Hoveyda–Grubbs type immobilized on lamellar zeolites: activity in olefin metathesis reactions

    Directory of Open Access Journals (Sweden)

    Hynek Balcar

    2015-11-01

    Full Text Available Hoveyda–Grubbs type catalysts with cationic tags on NHC ligands were linker-free immobilized on the surface of lamellar zeolitic supports (MCM-22, MCM-56, MCM-36 and on mesoporous molecular sieves SBA-15. The activity of prepared hybrid catalysts was tested in olefin metathesis reactions: the activity in ring-closing metathesis of citronellene and N,N-diallyltrifluoroacetamide decreased in the order of support MCM-22 ≈ MCM-56 > SBA-15 > MCM-36; the hybrid catalyst based on SBA-15 was found the most active in self-metathesis of methyl oleate. All catalysts were reusable and exhibited low Ru leaching (− counter anion; in contrast, PF6− counter anion underwent partial decomposition.

  17. Olefin metathesis reaction on GaN (0 0 0 1) surfaces

    Science.gov (United States)

    Makowski, Matthew S.; Zemlyanov, Dmitry Y.; Ivanisevic, Albena

    2011-03-01

    Proof-of-concept reactions were performed on GaN (0 0 0 1) surfaces to demonstrate surface termination with desired chemical groups using an olefin cross-metathesis reaction. To prepare the GaN surfaces for olefin metathesis, the surfaces were hydrogen terminated with hydrogen plasma, chlorine terminated with phosphorous pentachloride, and then terminated with an alkene group via a Grignard reaction. The olefin metathesis reaction then bound 7-bromo-1-heptene. The modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and water contact angle measurements following each step in the reaction scheme. The XPS data was used to qualitatively identify surface chemical species and to quantitatively determine molecular surface coverage. The bromine atom in 7-bromo-1-heptene served as a heteroatom for identification with XPS. The reaction scheme resulted in GaN substrates with a surface coverage of 0.10 monolayers and excellent stability towards oxidation when exposed to oxygen plasma.

  18. Olefin cross-metathesis as a source of polysaccharide derivatives: cellulose ω-carboxyalkanoates.

    Science.gov (United States)

    Meng, Xiangtao; Matson, John B; Edgar, Kevin J

    2014-01-13

    Cross-metathesis has been shown for the first time to be a useful method for the synthesis of polysaccharide derivatives, focusing herein on preparation of cellulose ω-carboxyalkanoates. Commercially available cellulose esters were first acylated with 10-undecenoyl chloride, providing esters with olefin-terminated side chains. Subsequent cross-metathesis of these terminal olefin moieties with acrylic acid was performed in solvents including acrylic acid, THF, and CH2Cl2. Complete conversion to discrete, soluble cross-metathesis products was achieved by using the Hoveyda-Grubbs second generation ruthenium catalyst and an excess of acrylic acid. Oligomerization during storage, caused by a free radical mechanism, was observed and successfully suppressed by the addition of a free radical scavenger (BHT). Furthermore, the cross-metathesis products exhibited glass transition temperatures (Tg) that were at least 50 °C higher than ambient temperature, supporting the potential for application of these polymers as amorphous solid dispersion matrices for enhancing drug aqueous solubility.

  19. Solvent-free cyclization of linear dienes using olefin metathesis and the Thorpe-Ingold effect

    Energy Technology Data Exchange (ETDEWEB)

    Forbees, M.D.E.; Myers, T.L.; Maynard, H.D.; Schulz, G.R. (Univ. of North Carolina, Chapel Hill (United States)); Patton, J.T.; Smith, D.W. Jr.; Wagener, K.B. (Univ. of Florida, Gainesville (United States))

    1992-12-30

    The olefin metathesis reaction is of great synthetic utility in polymer chemistry. The recent development of ring-opening (ROMP) and acyclic diene (ADMET) metathesis polymerization reactions has opened new avenues for the synthesis of novel polymeric materials. Recently the authors used ADMET to synthesize several photochemically active poly(keto olefins) using the catalyst Mo(CHCMe[sub 2]Ph)(NAr)(OCMe(CF[sub 3])[sub 2])[sub 2] (Ar = 2,6-diisopropylphenyl) (1) developed by Schrock and co-workers in 1990. In the course of that work, they discovered that neat samples of highly substituted dienes will cyclize quantitatively via metathesis to give difunctional five- and seven-membered rings instead of the expected linear polymer. Examples of substituted diene cyclizations by metathesis even in the presence of a solvent are rare. Their systematic exploitation in organic synthesis has therefore been limited to two recent studies by Fu and Grubbs, who cyclized several substituted diene ethers, amines, and amides to unsaturated oxygen and nitrogen heterocycles. Cyclization of unsubstituted dienes in various solvents has been reported, but complete conversion occurred in only a few cases. Formation of cyclic alkene oligomers from back-biting during the ROMP reaction is also known. The reactions reported here are unusual in that they are intermolecular between catalyst and substrate, yet can give 100% yield of product solely from the monomer in the absence of solvent. 13 refs.

  20. Enantiopure C1-symmetric N-Heterocyclic Carbene Ligands from Desymmetrized meso-1,2-Diphenylethylenediamine: Application in Ruthenium-Catalyzed Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Veronica Paradiso

    2016-11-01

    Full Text Available In order to design improved chiral ruthenium catalysts for asymmetric olefin metathesis, enantiomeric catalysts incorporating C1-symmetric N-Heterocyclic carbenes (NHC ligands with syn-related substituents on the backbone were synthesized starting from meso-1,2-diphenylethylenediamine. The absolute configuration of the enantiomers of the desymmetrized meso diamine was assigned by optical rotation analysis and in silico calculations, and was found to be maintained in their respective ruthenium catalysts by comparison of the relative electronic circular dichroism (ECD spectra. The catalytic behaviour of the enantiomeric ruthenium complexes was investigated in model asymmetric metathesis transformations and compared to that of analogous complexes bearing C1-symmetric NHC ligands with an anti backbone. Modest enantioselectivities were registered and different catalyst properties depending on the nature of stereochemical relationship of substituents on the backbone were observed.

  1. Assisted Tandem Catalysis : Metathesis Followed by Asymmetric Hydrogenation from a Single Ruthenium Source

    NARCIS (Netherlands)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G.; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent

    2015-01-01

    Here we report the first example of a tandem metathesis-asymmetric hydrogenation protocol where the prochiral olefin generated by metathesis is hydrogenated with high enantioselectivity by an in situ formed chiral ruthenium catalyst. We show that either the ruthenium metathesis catalysts or the

  2. Synthesis and activity of ruthenium olefin metathesis catalysts coordinated with thiazol-2-ylidene ligands.

    Science.gov (United States)

    Vougioukalakis, Georgios C; Grubbs, Robert H

    2008-02-20

    A new family of ruthenium-based olefin metathesis catalysts bearing a series of thiazole-2-ylidene ligands has been prepared. These complexes are readily accessible in one step from commercially available (PCy3)2Cl2Ru=CHPh or (PCy3)Cl2Ru=CH(o-iPrO-Ph) and have been fully characterized. The X-ray crystal structures of four of these complexes are disclosed. In the solid state, the aryl substituents of the thiazole-2-ylidene ligands are located above the empty coordination site of the ruthenium center. Despite the decreased steric bulk of their ligands, all of the complexes reported herein efficiently promote benchmark olefin metathesis reactions such as the ring-closing of diethyldiallyl and diethylallylmethallyl malonate and the ring-opening metathesis polymerization of 1,5-cyclooctadiene and norbornene, as well as the cross metathesis of allyl benzene with cis-1,4-diacetoxy-2-butene and the macrocyclic ring-closing of a 14-membered lactone. The phosphine-free catalysts of this family are more stable than their phosphine-containing counterparts, exhibiting pseudo-first-order kinetics in the ring-closing of diethyldiallyl malonate. Upon removing the steric bulk from the ortho positions of the N-aryl group of the thiazole-2-ylidene ligands, the phosphine-free catalysts lose stability, but when the substituents become too bulky the resulting catalysts show prolonged induction periods. Among five thiazole-2-ylidene ligands examined, 3-(2,4,6-trimethylphenyl)- and 3-(2,6-diethylphenyl)-4,5-dimethylthiazol-2-ylidene afforded the most efficient and stable catalysts. In the cross metathesis reaction of allyl benzene with cis-1,4-diacetoxy-2-butene increasing the steric bulk at the ortho positions of the N-aryl substituents results in catalysts that are more Z-selective.

  3. Poly(trimethylsilylcyclooctatetraene): A soluble conjugated polyacetylene via olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, E.J.; Gorman, C.B.; Grubbs, R.H.; Marder, S.R. (California Institute of Technology, Pasadena (USA))

    1989-09-13

    highly conjugated polymers, such as polyacetylene, polythiophene, and poly(p-phenylene vinylene), have been the subject of intensive research due to their intriguing optical and electronic properties. These parent systems are highly desirable for experimental and theoretical studies due to their simplicity. Their intractability, however, has made characterization an arduous task, and insolubility has severely limited their applications. Researchers have successfully circumvented these obstacles by synthesizing soluble alkyl- and alkoxy-substituted polythiphenes and poly(p-phenylene vinylenes). Analogous soluble highly conjugated polyacetylene derivatives have proven more elusive. The authors report here the synthesis of such a polymer using ring-opening metathesis polymerization (ROMP).

  4. Iron-Catalyzed Olefin Metathesis with Low-Valent Iron Alkylidenes.

    Science.gov (United States)

    Mauksch, Michael; Tsogoeva, Svetlana B

    2017-08-01

    Inspired by recent reports of low-valent iron-complex-catalyzed formal [2+2] cycloaddition of olefins, we demonstrate computationally that with such low-valent iron complexes and with "strong" ligands, the olefin metathesis is also preferred over the undesired cyclopropanation side-reaction, competition already studied by Hoffmann and co-workers almost 40 years ago (J. Am. Chem. Soc. 1981, 103, 5582). The [2+2] cycloaddition step in metathesis propagation, which gives a Chauvin-type metallacyclobutane intermediate, is proposed to proceed either via a planar four-electron Craig-Möbius aromatic [π2s +π2s ] transition-state structure with a low barrier of 4.7 kcal mol(-1) or, alternatively, via a twisted Zimmerman-Möbius aromatic [π2s +π2a ] transition state with a 5.5 kcal mol(-1) activation-energy barrier, with respect to an "encounter" π-complex minimum obtained from an Fe(II) alkylidene and the entering olefin, while the corresponding triplet pathways are all disfavored. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Aliphatic long-chain C20 polyesters from olefin metathesis.

    Science.gov (United States)

    Trzaskowski, Justyna; Quinzler, Dorothee; Bährle, Christian; Mecking, Stefan

    2011-09-01

    Self-metathesis of undecenoic acid with [(PCy3)2Cl2Ru=CHPh] (2), followed by exhaustive hydrogenation yielded pure 1,20-eicosanedioic acid (5) (>99%) free of side-products from isomerization. Polycondensation with eicosane-1,20-diol (6), formed by reduction of the diol, yielded polyester 20,20 (Tm = 108 °C). By comparison, the known ADMET polymerization of undec-10-enyl undec-10-enoate (7), and subsequent exhaustive polymer-analogous hydrogenation yielded a polyester (poly-8) with irregular structure of the ester groups in the polymer chain (-O(C=O)- vs. -C(=O)O-) (Tm = 103 °C). Hydrogenation of secondary dispersions of poly-7 yielded aqueous dispersions of the long-chain aliphatic polyester poly-8. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Phosphine-Free EWG-Activated Ruthenium Olefin Metathesis Catalysts

    Science.gov (United States)

    Grela, Karol; Szadkowska, Anna; Michrowska, Anna; Bieniek, Michal; Sashuk, Volodymyr

    Hoveyda-Grubbs catalyst has been successfully fine-tuned by us in order to increase its activity and applicability by the introduction of electron-withdrawing groups (EWGs) to diminish donor properties of the oxygen atom. As a result, the stable and easily accessible nitro-substituted Hoveyda-Grubbs catalyst has found a number of successful applications in various research and industrial laboratories. Some other EWG-activated Hoveyda-type catalysts are commercially available. The results described herewith demonstrate that the activity of ruthenium (Ru) metathesis catalysts can be enhanced by introduction of EWGs without detriment to catalysts stability. Equally noteworthy is the observation that different Ru catalysts turned out to be optimal for different applications. This shows that no single catalyst outperforms all others in all possible applications.

  7. Synthesis of linear [5]catenanes via olefin metathesis dimerization of pseudorotaxanes composed of a [2]catenane and a secondary ammonium salt.

    Science.gov (United States)

    Iwamoto, Hajime; Tafuku, Shinji; Sato, Yoshihiko; Takizawa, Wataru; Katagiri, Wataru; Tayama, Eiji; Hasegawa, Eietsu; Fukazawa, Yoshimasa; Haino, Takeharu

    2016-01-07

    [5]Catenanes were synthesized by olefin metathesis dimerization. The reaction of pseudorotaxanes, which were derived from a [2]catenane and one equivalent of an ammonium salt bearing two terminal olefins in dichloromethane, with a catalytic amount of Grubbs catalyst afforded linear [5]catenanes in 12% yield. Intermolecular and intramolecular olefin metathesis reactions were controlled by the length of the alkyl chain of the ammonium salts.

  8. A Thermo- and Photo-Switchable Ruthenium Initiator For Olefin Metathesis.

    Science.gov (United States)

    Sashuk, Volodymyr; Danylyuk, Oksana

    2016-05-04

    A ruthenium carbene complex bearing azobenzene functionality is reported. The complex exists in the form of two isomers differing by the size of the chelate ring. Both isomers were isolated by applying kinetic or thermodynamic control during the synthesis and characterized by X-ray diffraction analysis. The isomerization of the complex was studied by UV/Vis spectroscopy. The stable isomer was tested as a catalyst in olefin metathesis. The complex was activated at about 100 °C to promote ring-closing and ring-opening polymerization metathesis reactions. The activation took place also at room temperature under middle ultraviolet radiation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Energetics of the ruthenium-halide bond in olefin metathesis (pre)catalysts

    KAUST Repository

    Falivene, Laura

    2013-01-01

    A DFT analysis of the strength of the Ru-halide bond in a series of typical olefin metathesis (pre)catalysts is presented. The calculated Ru-halide bond energies span the rather broad window of 25-43 kcal mol-1. This indicates that in many systems dissociation of the Ru-halide bond is possible and is actually competitive with dissociation of the labile ligand generating the 14e active species. Consequently, formation of cationic Ru species in solution should be considered as a possible event. © 2013 The Royal Society of Chemistry.

  10. An Olefin Cross-Metathesis Approach to Depudecin and Stereoisomeric Analogues.

    Science.gov (United States)

    Cheng-Sánchez, Iván; García-Ruiz, Cristina; Guerrero-Vásquez, Guillermo A; Sarabia, Francisco

    2017-05-05

    A new total synthesis of the natural product (-)-depudecin, a unique and unexplored histone deacetylase (HDAC) inhibitor, is reported. A key feature of the synthesis is the utilization of an olefin cross-metathesis strategy, which provides for an efficient and improved access to natural depudecin, compared with our previous linear synthesis. Featured by its brevity and convergency, our developed synthetic strategy was applied to the preparation of the 10-epi derivative and the enantiomer of depudecin, which represent interesting stereoisomeric analogues for structure-activity relationship studies.

  11. Divergent Approach to a Family of Tyrosine-Derived Ru-Alkylidene Olefin Metathesis Catalysts.

    Science.gov (United States)

    Gleeson, Ellen C; Wang, Zhen J; Jackson, W Roy; Robinson, Andrea J

    2015-07-17

    A simple and generic approach to access a new family of Ru-alkylidene olefin metathesis catalysts with specialized properties is reported. This strategy utilizes a late stage, utilitarian Hoveyda-type ligand derived from tyrosine, which can be accessed via a multigram-scale synthesis. Further functionalization allows the catalyst properties to be tuned, giving access to modified second-generation Hoveyda-Grubbs-type catalysts. This divergent synthetic approach can be used to access solid-supported catalysts and catalysts that function under solvent-free and aqueous conditions.

  12. A succinct access to ω-hydroxylated jasmonates via olefin metathesis.

    Science.gov (United States)

    Jimenez-Aleman, Guillermo H; Seçinti, Selina; Boland, Wilhelm

    2017-07-14

    In higher plants, jasmonates are lipid-derived signaling molecules that control many physiological processes, including responses to abiotic stress, defenses against insects and pathogens, and development. Among jasmonates, ω-oxidized compounds form an important subfamily. The biological roles of these ω-modified derivatives are not fully understood, largely due to their limited availability. Herein, a brief (two-step), simple and efficient (>80% yield), versatile, gram-scalable, and environmentally friendly synthetic route to ω-oxidized jasmonates is described. The approach utilizes olefin cross-metathesis as the key step employing inexpensive, commercially available substrates and catalysts.

  13. Synthesis of 7-Deoxypancratistatin from Carbohydrates by the Use of Olefin Metathesis

    DEFF Research Database (Denmark)

    Håkansson, Anders Eckart; Palmelund, Anders; Holm, H.

    2006-01-01

    -deoxy-5-iodo-D-ribofuranoside in the presence of zinc metal. The first strategy involves a total of only 13 steps from D-ribose and piperonal, but suffers from a low yield in the zinc-mediated reaction between ribofuranoside 9, benzylamine, and bromide 7. The second strategy involves a total of 18 steps...... from D-xylose and piperonal. The former is converted into ribofuranoside 28, which is coupled with bromide 7 in the presence of zinc, and this is followed by ring-closing olefin metathesis. Subsequent Overman rearrangement, dihydroxylation, and deprotection then affords the natural product....

  14. An expedient route to substituted furans via olefin cross-metathesis

    Science.gov (United States)

    Donohoe, Timothy J.; Bower, John F.

    2010-01-01

    The olefin cross-metathesis (CM) reaction is used extensively in organic chemistry and represents a powerful method for the selective synthesis of differentially substituted alkene products. Surprisingly, efforts to integrate this remarkable process into strategies for aromatic and heteroaromatic construction have not been reported. Such structures represent key elements of the majority of small molecule drug compounds; methods for the controlled preparation of highly substituted derivatives are essential to medicinal chemistry. Here we show that the olefin CM reaction, in combination with an acid cocatalyst or subsequent Heck arylation, provides a concise and flexible entry to 2,5-di- or 2,3,5-tri-substituted furans. These cascade processes portend further opportunities for the regiocontrolled preparation of other highly substituted aromatic and heteroaromatic classes. PMID:20142508

  15. The application of catalytic ring-closing olefin metathesis to the synthesis of unsaturated oxygen heterocycles

    Energy Technology Data Exchange (ETDEWEB)

    Fu, G.C.; Grubbs, R.H. [California Institute of Technology, Pasadena, CA (United States)

    1992-06-17

    The development of general approaches to carbon-carbon bond formation represents an important ongoing challenge for synthetic organic chemists. One efficient method for constructing carbon-carbon double bonds, the transition metal alkylidene-catalyzed olefin metathesis reaction, has been the focus of intense interest in recent years from the standpoint of both mechanism and polymer synthesis, in contrast, use of this transformation in organic synthesis has been limited. As part of a broader program directed toward establishing transition metal alkylidenes as versatile reagents for organic chemistry, the authors report the successful application of catalytic olefin methathesis to the generation of a variety of unsaturated oxygen heterocycles. 13 refs., 1 fig., 1 tab.

  16. Olefin metathesis reaction on a MoS/sub 2/ catalyst

    Energy Technology Data Exchange (ETDEWEB)

    1976-06-15

    Olefin metathesis reaction was found to take place on rather pure MoS/sub 2/ evacuated at 450/sup 0/C for several hours. Systematic studies of the isotopic scrambling in ethylene, propylene, 1-butene, and 2-butene on MoS/sub 2/ using microwave spectroscopy are reported. These studies were made using /sup 12/C- and /sup 13/C-labelled compounds and D-labelled compounds. Results indicated that the MoS/sub 2/ catalyst evacuated at 450/sup 0/C has two kinds of active sites, one is effective for the isomerization and the hydrogen isotopic mixing of olefins, and the other is effective for the hydrogenation reaction. This may be explained by assuming different degrees of coordinative unsaturation for the active sites. (BLM)

  17. Synthesis of amide-functionalized cellulose esters by olefin cross-metathesis.

    Science.gov (United States)

    Meng, Xiangtao; Edgar, Kevin J

    2015-11-05

    Cellulose esters with amide functionalities were synthesized by cross-metathesis (CM) reaction of terminally olefinic esters with different acrylamides, catalyzed by Hoveyda-Grubbs 2nd generation catalyst. Chelation by amides of the catalyst ruthenium center caused low conversions using conventional solvents. The effects of both solvent and structure of acrylamide on reaction conversion were investigated. While the inherent tendency of acrylamides to chelate Ru is governed by the acrylamide N-substituents, employing acetic acid as a solvent significantly improved the conversion of certain acrylamides, from 50% to up to 99%. Homogeneous hydrogenation using p-toluenesulfonyl hydrazide successfully eliminated the α,β-unsaturation of the CM products to give stable amide-functionalized cellulose esters. The amide-functionalized product showed higher Tg than its starting terminally olefinic counterpart, which may have resulted from strong hydrogen bonding interactions of the amide functional groups. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. The generation of efficient supported (Heterogeneous) olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Grubbs, Robert H

    2013-04-05

    Over the past decade, a new family of homogeneous metathesis catalysts has been developed that will tolerate most organic functionalities as well as water and air. These homogeneous catalysts are finding numerous applications in the pharmaceutical industry as well as in the production of functional polymers. In addition the catalysts are being used to convert seed oils into products that can substitute for those that are now made from petroleum products. Seed oils are unsaturated, contain double bonds, and are a ready source of linear hydrocarbon fragments that are specifically functionalized. To increase the number of applications in the area of biomaterial conversion to petrol chemicals, the activity and efficiency of the catalysts need to be as high as possible. The higher the efficiency of the catalysts, the lower the cost of the conversion and a larger number of practical applications become available. Active supported catalysts were prepared and tested in the conversion of seed oils and other important starting materials. The outcome of the work was successful and the technology has been transferred to a commercial operation to develop viable applications of the discovered systems. A biorefinery that converts seed oils is under construction in Indonesia. The catalysts developed in this study will be considered for the next generation of operations.

  19. Striking difference between alkane and olefin metathesis using the well-defined precursor [≡Si-O-WMe5]: Indirect evidence in favour of a bifunctional catalyst W alkylidene-hydride

    KAUST Repository

    Riache, Nassima

    2015-01-01

    Metathesis of linear alkanes catalyzed by the well-defined precursor (≡Si-O-WMe5) affords a wide distribution of linear alkanes from methane up to triacontane. Olefin metathesis using the same catalyst and under the same reaction conditions gives a very striking different distribution of linear α-olefins and internal olefins. This shows that olefin and alkane metathesis processes occur via very different pathways.

  20. Low Catalyst Loadings in Olefin Metathesis: Synthesis of Nitrogen Heterocycles by Ring Closing Metathesis

    Science.gov (United States)

    Kuhn, Kevin M.; Champagne, Timothy M.; Hong, Soon Hyeok; Wei, Wen-Hao; Nickel, Andrew; Lee, Choon Woo; Virgil, Scott C.; Grubbs, Robert H.; Pederson, Richard L.

    2010-01-01

    (eq 1) A series of ruthenium catalysts have been screened under ring closing metathesis (RCM) conditions to produce five-, six-, and seven-membered carbamate-protected cyclic amines. Many of these catalysts demonstrated excellent RCM activity and yields with as low as 500 ppm catalyst loadings. RCM of the five-membered carbamate-series could be run neat, the six-membered carbamate-series could be run at 1.0 M concentrations and the seven-membered carbamate-series worked best at 0.2 M to 0.05 M concentrations. PMID:20141172

  1. Diphenylamido Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts

    Science.gov (United States)

    Sinha, Amritanshu; Müller, Peter; Hoveyda, Amir H.

    2008-01-01

    We have found that Mo(NAr)(CHR′)(NPh2)2 (R′ = t-Bu or CMe2Ph) and Mo(NAr′)(CHCMe2Ph)(NPh2)2 (Ar = 2,6-i-Pr2C6H3; Ar′ = 2,6-Me2C6H3) can be prepared through addition of two equivalents of LiNPh2 to Mo(NR″)(CHR′)(OTf)2(dme) species (R″ = Ar or Ar′ dme = 1,2-dimethoxyethane), although yields are low. A high yield route consists of addition of LiNPh2 to bishexafluro-t-butoxide species. An X-ray structure of Mo(NAr)(CHCMe2Ph)(NPh2)2 reveals that the two diphenylamido groups are oriented in a manner that allows an 18 electron count to be achieved. The diphenylamido complexes react readily with t-BuOH and (CF3)2MeCOH, but not readily with the sterically demanding biphenol H2[Biphen] (Biphen2- = 3,3′-Di-t-butyl-5,5′,6,6′-tetramethyl-1,1′-Biphenyl-2,2′-diolate). The diphenylamido complexes do react with various 3,3′-disubstituted binaphthols to yield binaphtholate catalysts that can be prepared in situ and employed for a simple asymmetric ring-closing metathesis reaction. In several cases conversions and enantioselectivities were comparable to reactions in which isolated catalysts were employed. PMID:19030118

  2. SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions.

    Science.gov (United States)

    Qureshi, Ziyauddin S; Hamieh, Ali; Barman, Samir; Maity, Niladri; Samantaray, Manoja K; Ould-Chikh, Samy; Abou-Hamad, Edy; Falivene, Laura; D'Elia, Valerio; Rothenberger, Alexander; Llorens, Isabelle; Hazemann, Jean-Louis; Basset, Jean-Marie

    2017-01-17

    Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-Im(Dipp)N] (4) (Im(Dipp) = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [Im(Dipp)NW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-Im(Dipp)N] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-Im(Dipp)N] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.

  3. Hypercoordinate β-carbon in Grubbs and Schrock olefin metathesis metallacycles.

    Science.gov (United States)

    Remya, Premaja R; Suresh, Cherumuttathu H

    2015-10-28

    Metallacyclobutane (MCB) intermediates of Grubbs and Schrock olefin metathesis catalysts are well-known for their unusually short single bond-like metal to Cβ distance and unusually long CαCβ distances. From the analysis of structural, bond order, electron density and (13)C NMR data of a large variety of MCB systems, we show that the Cβ of the metallacycle possesses pentacoordinate geometry due to the agostic type interaction of the metal with the CαCβ bonds. The pentacoordination of Cβ to the metal center is characterized by a catastrophe ring critical point (RCP) in the quantum theory of atoms-in-molecule (QTAIM) analysis. Fine tuning of the ligand environment changes the catastrophe point to a fifth bond critical point (BCP) which is clearly brought out in the case of two ruthenium olefin metathesis systems. Several Ru and W agostic MCB complexes exhibiting pentacoordinate Cβ as well as their non-agostic isomers have been reported at the BP86/def2-TZVPP level of DFT. The agostic systems showed a significant bond order between metal and Cβ (0.17-0.36), single bond-like electron density values at the catastrophe RCP/BCP and a significantly large difference in (13)C NMR chemical shift values between Cα and Cβ atoms.

  4. SOMC-Designed Silica Supported Tungsten Oxo Imidazolin-2-iminato Methyl Precatalyst for Olefin Metathesis Reactions

    KAUST Repository

    Qureshi, Ziyauddin

    2017-01-05

    Synthesis, structure, and olefin metathesis activity of a surface complex [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4) (ImDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-iminato) supported on silica by a surface organometallic chemistry (SOMC) approach are reported. The reaction of N-silylated 2-iminoimidazoline with tungsten(VI) oxytetrachloride generated the tungsten oxo imidazolin-2-iminato chloride complex [ImDippNW(═O)Cl3] (2). This was grafted on partially dehydroxylated silica pretreated at 700 °C (SiO2-700) to afford a well-defined monopodal surface complex [(≡Si-O-)W(═O)Cl2-ImDippN] (3). 3 underwent alkylation by ZnMe2 to produce [(≡Si-O-)W(═O)(CH3)2-ImDippN] (4). The alkylated surface complex was thoroughly characterized by solid-state NMR, elemental microanalysis, Raman, FT-IR spectroscopies, and XAS analysis. 4 proved to be an active precatalyst for self-metathesis of terminal olefins such as propylene and 1-hexene.

  5. Liquid-phase synthesis of bridged peptides using olefin metathesis of a protected peptide with a long aliphatic chain anchor.

    Science.gov (United States)

    Aihara, Keisuke; Komiya, Chiaki; Shigenaga, Akira; Inokuma, Tsubasa; Takahashi, Daisuke; Otaka, Akira

    2015-02-06

    Bridged peptides including stapled peptides are attractive tools for regulating protein-protein interactions (PPIs). An effective synthetic methodology in a heterogeneous system for the preparation of these peptides using olefin metathesis and hydrogenation of protected peptides with a long aliphatic chain anchor is reported.

  6. Metátese de olefinas no Brasil: "Brazil is romping it!" Olefin metathesis in Brazil: Brazil is romping it!

    Directory of Open Access Journals (Sweden)

    José Milton E. Matos

    2007-04-01

    Full Text Available Some aspects of the olefin metathesis reactions are summarized here (types of reactions, mechanism and catalysts. In particular, the research groups that have been working on this chemistry in Brazil are presented. The main goal of this paper is to make this type of reaction more widely known in the Brazilian chemical community.

  7. Bulky N-Phosphino-Functionalized N-Heterocyclic Carbene Ligands: Synthesis, Ruthenium Coordination Chemistry, and Ruthenium Alkylidene Complexes for Olefin Metathesis.

    Science.gov (United States)

    Brown, Christopher C; Rominger, Frank; Limbach, Michael; Hofmann, Peter

    2015-11-02

    Ruthenium chemistry and applications in catalytic olefin metathesis based on N-phosphino-functionalized N-heterocyclic carbene ligands (NHCPs) are presented. Alkyl NHCP Ru coordination chemistry is described, and access to several potential synthetic precursors for ruthenium alkylidene complexes is outlined, incorporating both trimethylsilyl and phenyl alkylidenes. The Ru alkylidene complexes are evaluated as potential olefin metathesis catalysts and were shown to behave in a latent fashion. They displayed catalytic activity at elevated temperatures for both ring closing metathesis and ring opening metathesis polymerization.

  8. Loss and Reformation of Ruthenium Alkylidene: Connecting Olefin Metathesis, Catalyst Deactivation, Regeneration, and Isomerization.

    Science.gov (United States)

    Engel, Julien; Smit, Wietse; Foscato, Marco; Occhipinti, Giovanni; Törnroos, Karl W; Jensen, Vidar R

    2017-11-08

    Ruthenium-based olefin metathesis catalysts are used in laboratory-scale organic synthesis across chemistry, largely thanks to their ease of handling and functional group tolerance. In spite of this robustness, these catalysts readily decompose, via little-understood pathways, to species that promote double-bond migration (isomerization) in both the 1-alkene reagents and the internal-alkene products. We have studied, using density functional theory (DFT), the reactivity of the Hoveyda-Grubbs second-generation catalyst 2 with allylbenzene, and discovered a facile new decomposition pathway. In this pathway, the alkylidene ligand is lost, via ring expansion of the metallacyclobutane intermediate, leading to the spin-triplet 12-electron complex (SIMes)RuCl2 ((3)R21, SIMes = 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene). DFT calculations predict (3)R21 to be a very active alkene isomerization initiator, either operating as a catalyst itself, via a η(3)-allyl mechanism, or, after spin inversion to give R21 and formation of a cyclometalated Ru-hydride complex, via a hydride mechanism. The calculations also suggest that the alkylidene-free ruthenium complexes may regenerate alkylidene via dinuclear ruthenium activation of alkene. The predicted capacity to initiate isomerization is confirmed in catalytic tests using p-cymene-stabilized R21 (5), which promotes isomerization in particular under conditions favoring dissociation of p-cymene and disfavoring formation of aggregates of 5. The same qualitative trends in the relative metathesis and isomerization selectivities are observed in identical tests of 2, indicating that 5 and 2 share the same catalytic cycles for both metathesis and isomerization, consistent with the calculated reaction network covering metathesis, alkylidene loss, isomerization, and alkylidene regeneration.

  9. Catalyst-controlled stereoselective olefin metathesis as a principal strategy in multistep synthesis design: a concise route to (+)-neopeltolide.

    Science.gov (United States)

    Yu, Miao; Schrock, Richard R; Hoveyda, Amir H

    2015-01-02

    Molybdenum-, tungsten-, and ruthenium-based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. A concise diastereo- and enantioselective route that furnishes the anti-proliferative natural product neopeltolide is now disclosed. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring-opening/cross-metathesis promoted by a Mo monoaryloxide pyrrolide (MAP) complex and a macrocyclic ring-closing metathesis that affords a trisubstituted alkene and is catalyzed by a Mo bis(aryloxide) species. Furthermore, Z-selective cross-metathesis reactions, facilitated by Mo and Ru complexes, have been employed in the stereoselective synthesis of the acyclic dienyl moiety of the target molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Combinatorial screening of an in situ generated library of tungsten oxyhalide and imido complexes for olefin metathesis.

    Science.gov (United States)

    Romer, Duane R; Sussman, Victor J; Burdett, Ken; Chen, Yu; Miller, Kami J

    2014-10-13

    A series of substituted tungsten(VI) halides with general formula WECl4 (E = O or -NR (imido)) were screened via a high throughput study to identify potential new olefin metathesis catalysts. The tungsten species were treated with a series of aluminum alkyl activators and modifier ligands to generate active catalyst species in situ. Ring-opening metathesis polymerization (ROMP) of cyclooctene was used as a primary screen to identify potential metathesis catalysts and active catalysts were subjected to a secondary screen to evaluate tolerance toward polar functional groups. Several combinations from the high throughput campaign yielded active metathesis catalysts for the ROMP of cyclooctene. However, none of the catalysts examined in this study exhibited any evidence of significant polar functional group tolerance as determined by the results of the secondary cyclooctene/butyl acetate screen.

  11. A thermally robust ruthenium phosphonium alkylidene catalyst — the effect of more bulky N-heterocyclic carbene ligands on catalyst performance in olefin metathesis reactions

    National Research Council Canada - National Science Library

    Leitao, Erin M; Piers, Warren E; Parvez, Masood

    2013-01-01

    ...) complexes as well as the H 2 IDEP supported complexes. All three phosphonium alkylidenes were evaluated in comparison to the N-Mes derivative and Grubbs second generation catalyst using standard olefin metathesis reactions and conditions...

  12. Cascade Polymerization via Controlled Tandem Olefin Metathesis/Metallotropic 1,3-Shift Reactions for the Synthesis of Fully Conjugated Polyenynes.

    Science.gov (United States)

    Kang, Cheol; Park, Hyeon; Lee, Jin-Kyung; Choi, Tae-Lim

    2017-08-23

    We demonstrate the first example of cascade polymerization by combining olefin metathesis and metallotropic 1,3-shift reactions to form unique conjugated polyenynes. Rational design of monomers enabled controlled polymerization, and kinetic investigation of the polymerization mechanism was conducted.

  13. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    KAUST Repository

    Żukowska, Karolina

    2015-08-20

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  14. Development of a method for the preparation of ruthenium indenylidene-ether olefin metathesis catalysts.

    Science.gov (United States)

    Jimenez, Leonel R; Tolentino, Daniel R; Gallon, Benjamin J; Schrodi, Yann

    2012-05-11

    The reactions between several derivatives of 1-(3,5-dimethoxyphenyl)-prop-2-yn-1-ol and different ruthenium starting materials [i.e., RuCl₂(PPh₃)₃ and RuCl₂(p-cymene)(L), where L is tricyclohexylphosphine di-t-butylmethylphosphine, dicyclohexylphenylphosphine, triisobutylphosphine, triisopropylphosphine, or tri-n-propylphosphine] are described. Several of these reactions allow for the easy, in-situ and atom-economic preparation of olefin metathesis catalysts. Organic precursor 1-(3,5-dimethoxyphenyl)-1-phenyl-prop-2-yn-1-ol led to the formation of active ruthenium indenylidene-ether complexes, while 1-(3,5-dimethoxyphenyl)-prop-2-yn-1-ol and 1-(3,5-dimethoxyphenyl)-1-methyl-prop-2-yn-1-ol did not. It was also found that a bulky and strong σ-donor phosphine ligand was required to impart good catalytic activity to the new ruthenium complexes.

  15. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity

    Directory of Open Access Journals (Sweden)

    Karolina Żukowska

    2015-08-01

    Full Text Available Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  16. Mono- and Bimetallic Ruthenium—Arene Catalysts for Olefin Metathesis: A Survey

    Science.gov (United States)

    Borguet, Yannick; Sauvage, Xavier; Demonceau, Albert; Delaude, Lionel

    In this chapter, we summarize the main achievements of our group toward the development of easily accessible, highly efficient ruthenium—arene catalyst precursors for olefin metathesis. Major advances in this field are presented chronologically, with an emphasis on catalyst design and mechanistic details. The first part of this survey focuses on monometallic complexes with the general formula RuCl2(p-cymene)(L), where L is a phosphine or N-heterocyclic carbene ancillary ligand. In the second part, we disclose recent developments in the synthesis and catalytic applications of homobimetallic ruthenium—arene complexes of generic formula (p-cymene)Ru(μ-Cl)3RuCl(η2-C2H4)(L) and their derivatives resulting from the substitution of the labile ethylene moiety with vinylidene, allenylidene, or indenylidene units

  17. Consequences of the electronic tuning of latent ruthenium-based olefin metathesis catalysts on their reactivity.

    Science.gov (United States)

    Żukowska, Karolina; Pump, Eva; Pazio, Aleksandra E; Woźniak, Krzysztof; Cavallo, Luigi; Slugovc, Christian

    2015-01-01

    Two ruthenium olefin metathesis initiators featuring electronically modified quinoline-based chelating carbene ligands are introduced. Their reactivity in RCM and ROMP reactions was tested and the results were compared to those obtained with the parent unsubstituted compound. The studied complexes are very stable at high temperatures up to 140 °C. The placement of an electron-withdrawing functionality translates into an enhanced activity in RCM. While electronically modified precatalysts, which exist predominantly in the trans-dichloro configuration, gave mostly the RCM and a minor amount of the cycloisomerization product, the unmodified congener, which preferentially exists as its cis-dichloro isomer, shows a switched reactivity. The position of the equilibrium between the cis- and the trans-dichloro species was found to be the crucial factor governing the reactivity of the complexes.

  18. Tube-in-tube reactor as a useful tool for homo- and heterogeneous olefin metathesis under continuous flow mode.

    Science.gov (United States)

    Skowerski, Krzysztof; Czarnocki, Stefan J; Knapkiewicz, Paweł

    2014-02-01

    A tube-in-tube reactor was successfully applied in homo- and heterogeneous olefin metathesis reactions under continuous flow mode. It was shown that the efficient removal of ethylene facilitated by connection of the reactor with a vacuum pump significantly improves the outcome of metathesis reactions. The beneficial aspects of this approach are most apparent in reactions performed at low concentration, such as macrocyclization reactions. The established system allows achievement of both improved yield and selectivity, and is ideal for industrial applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Cationic Tungsten(VI Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    Directory of Open Access Journals (Sweden)

    Dey Raju

    2016-03-01

    Full Text Available Tungsten-hexa-methyl readily reacts with B(C6F53 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  20. Cationic Tungsten(VI) Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    KAUST Repository

    Dey, Raju

    2016-04-13

    Tungsten-hexa-methyl readily reacts with B(C6F5)3 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for self-metathesis of 1-octene.

  1. Donor/Acceptor-Stabilized 1-Silaketene: Reversible [2+2] Cycloaddition with Pyridine and Evolution by an Olefin Metathesis Reaction.

    Science.gov (United States)

    Reyes, Morelia Lopez; Troadec, Thibault; Rodriguez, Ricardo; Baceiredo, Antoine; Saffon-Merceron, Nathalie; Branchadell, Vicenç; Kato, Tsuyoshi

    2016-07-11

    The reaction of silacyclopropylidene 1 with benzaldehyde generates a 1-silaketene complex 2 by a formal atomic silicon insertion into the C=O bond of the aldehyde. The highly reactive 1-silaketene 2 undergoes a reversible [2+2] cycloaddition with pyridine to give sila-β-lactam 3. Of particular interest, in the presence of 4-dimethylaminopyridine (DMAP), 1-silaketene complex 2 evolves through an intramolecular olefin metathesis reaction, generating a new 1-silaketene complex 8 and cis-stilbene. Theoretical studies suggest that the reaction proceeds through the formation of a transient silacyclobutanone, a four-membered-ring intermediate, similar to that proposed by Chauvin and co-workers for the transition-metal-based olefin metathesis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. A divergent approach to the synthesis of simplexides and congeners via a late-stage olefin cross-metathesis reaction.

    Science.gov (United States)

    Li, Jiakun; Li, Wei; Yu, Biao

    2013-08-14

    Simplexides constitute a unique group of immunosuppressive glycolipids that demonstrate antiproliferative activities against activated T-cell lymphocytes via a unique non-cytotoxic inhibition. To investigate the structure-activity relationship of the varied long-chain secondary alcohols on simplexides, we developed an efficient and divergent route to the synthesis of simplexides and congeners, taking advantage of a late-stage olefin cross-metathesis reaction.

  3. Ruthenium Catalysts Supported by Amino-Substituted N-Heterocyclic Carbene Ligands for Olefin Metathesis of Challenging Substrates.

    Science.gov (United States)

    César, Vincent; Zhang, Yin; Kośnik, Wioletta; Zieliński, Adam; Rajkiewicz, Adam A; Ruamps, Mirko; Bastin, Stéphanie; Lugan, Noël; Lavigne, Guy; Grela, Karol

    2017-02-03

    N-Heterocyclic carbene (NHC) ligands IMesNMe2 and IMes(NMe2)2 derived from the well-known IMes ligand by substituting the carbenic heterocycle with one and two dimethylamino groups, respectively, were employed for the synthesis of second-generation Grubbs- and Grubbs-Hoveyda-type ruthenium metathesis precatalysts. Whereas the stability of the complexes was found to depend on the degree of dimethylamino-substitution and on the type of complex, the backbone-substitution was shown to have a positive impact on their catalytic activity in ring-closing metathesis, with a more pronounced effect in the second-generation Grubbs-type series. The new complexes were successfully implemented in a number of challenging olefin metathesis reactions leading to the formation of tetra-substituted C=C double bonds and/or functionalized compounds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60Fullerenes

    KAUST Repository

    Martínez, Juan Pablo

    2016-04-10

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Binary and Ternary Catalytic Systems for Olefin Metathesis Based on MoCl5/SiO2

    Science.gov (United States)

    Bykov, Victor I.; Belyaev, Boris A.; Butenko, Tamara A.; Finkelshtein, Eugene Sh.

    Kinetics of α-olefin metathesis in the presence of binary (MoCl5/ SiO2-Me4Sn) and ternary catalytic systems (MoCl5/SiO2-Me4Sn-ECl4, E = Si or Ge) was studied. Specifically, kinetics and reactivity of 1-decene, 1-octene, and 1-hexene in the metathesis reaction at 27°C and 50°C in the presence of MoCl5/ SiO2-SnMe4 were examined and evaluated in detail. It was shown that experimental data comply well with the simple kinetic equation for the rate of formation of symmetrical olefins with allowance for the reverse reaction and catalyst deactivation: r = left( {k_1 \\cdot c_α - k_{ - 1} \\cdot c_s } right) \\cdot e^{ - k_d \\cdot tilde n_{tot} } . The coefficients for this equation were determined, and it was shown that these α-olefins had practically the same reactivity. It was found that reactivation in the course of metathesis took place due to the addition of a third component (silicon tetrachloride or germanium tetrachloride in combination with tetramethyltin) to a partially deactivated catalyst. The number of active centers was determined (5-6% of the amount of Mo) and the mechanisms of formation, deactivation, and reactivation were proposed for the binary and ternary catalytic systems. The role of individual components of the catalytic systems was revealed.

  6. In Silico Olefin Metathesis with Ru-Based Catalysts Containing N-Heterocyclic Carbenes Bearing C60 Fullerenes.

    Science.gov (United States)

    Martínez, Juan Pablo; Vummaleti, Sai Vikrama Chaitanya; Falivene, Laura; Nolan, Steven P; Cavallo, Luigi; Solà, Miquel; Poater, Albert

    2016-05-04

    Density functional theory calculations have been used to explore the potential of Ru-based complexes with 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene (SIMes) ligand backbone (A) being modified in silico by the insertion of a C60 molecule (B and C), as olefin metathesis catalysts. To this end, we investigated the olefin metathesis reaction catalyzed by complexes A, B, and C using ethylene as the substrate, focusing mainly on the thermodynamic stability of all possible reaction intermediates. Our results suggest that complex B bearing an electron-withdrawing N-heterocyclic carbene improves the performance of unannulated complex A. The efficiency of complex B is only surpassed by complex A when the backbone of the N-heterocyclic carbene of complex A is substituted by two amino groups. The particular performance of complexes B and C has to be attributed to electronic factors, that is, the electronic-donating capacity of modified SIMes ligand rather than steric effects, because the latter are predicted to be almost identical for complexes B and C when compared to those of A. Overall, this study indicates that such Ru-based complexes B and C might have the potential to be effective olefin metathesis catalysts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Ruthenium-based olefin metathesis catalysts bearing pH-responsive ligands: External control of catalyst solubility and activity

    Science.gov (United States)

    Balof, Shawna Lynn

    2011-12-01

    Sixteen novel, Ru-based olefin metathesis catalysts bearing pH responsive ligands were synthesized. The pH-responsive groups employed with these catalysts included dimethylamino (NMe2) modified NHC ligands as well as N-donor dimethylaminopyridine (DMAP) and 3-(o-pyridyl)propylidene ligands. These pH-responsive ligands provided the means by which the solubility and/or activity profiles of the catalysts produced could be controlled via acid addition. The main goal of this dissertation was to design catalyst systems capable of performing ring opening metathesis (ROMP) and ring closing metathesis (RCM) reactions in both organic and aqueous media. In an effort to quickly gain access to new catalyst structures, a template synthesis for functionalized NHC ligand precursors was designed, in addition to other strategies, to obtain ligand precursors with ancillary NMe2 groups. Kinetic studies for the catalysts produced from these precursors showed external control of catalyst solubility was afforded via protonation of the NMe2 groups of their NHC ligands. Additionally, this protonation afforded external control of catalyst propagation rates for several catalysts. This is the first known independent external control for the propagation rates of ROMP catalysts. The incorporation of pH-responsive N-donor ligands into catalyst structures also provided the means for the external control of metathesis activity, as the protonation of these ligands resulted in an increased initiation rate based on their fast and irreversible dissociation from the metal center. The enhanced external control makes these catalysts applicable to a wide range of applications, some of which have been explored by us and/or through collaboration. Three of the catalysts designed showed remarkable metathesis activity in aqueous media. These catalysts displayed comparable RCM activity in aqueous media to a class of water-soluble catalysts reported by Grubbs et al., considered to be the most active catalyst for

  8. Evolution of catalytic stereoselective olefin metathesis: from ancillary transformation to purveyor of stereochemical identity.

    Science.gov (United States)

    Hoveyda, Amir H

    2014-06-06

    There have been numerous significant advances in catalytic olefin metathesis (OM) during the past two decades. Such progress has transformed this important set of reactions to strategically pivotal processes that generate stereochemical identity while delivering molecules that cannot be easily prepared by alternative routes. In this Perspective, an analysis of the origin of the inception of bidentate benzylidene ligands for Ru-based OM catalysts is first presented. This is followed by an overview of the intellectual basis that culminated in the development of Mo-based diolates and stereogenic-at-Ru complexes for enantioselective OM. The principles accrued from the study of the latter Ru carbenes and Mo alkylidenes and utilized in the design of stereogenic-at-Mo, -W, and -Ru species applicable to enantioselective and Z-selective OM are then discussed. The influence of the recently introduced catalytic OM protocols on the design of synthesis routes leading to complex organic molecules is probed. The impact of a better understanding of the mechanistic nuances of OM toward the discovery of stereoselective catalysts is reviewed as well.

  9. Ru alkylidene compounds bearing tridentate, dianionic ligands: Lewis acid activation and olefin metathesis.

    Science.gov (United States)

    McKinty, Adam M; Stephan, Douglas W

    2016-03-07

    The series of tridentate complexes of Ru-alkylidenes (L)Ru(CHPh)(SCH2CH2)2E (E = O, L = SIMes 1, PCy3 2, E = S, L = SIMes 3, PCy3 4; E = PPh 7, L = PCy3), (L)Ru(CHPh)(SC6H4)2S (L = SIMes 5, PCy3 6), (L)Ru(CHPh) (OCH2CH2)2O (L = SIMes 8, PCy3 9) were prepared and shown to react with one equivalent of BCl3 to give the complexes (L)Ru(CHPh)Cl[E(CH2CH2S)2BCl2] (E = O, L = SIMes 10, PCy3 11, E = S, L = SIMes 12a/b, PCy3 13, E = PPh, L = PCy3 16) and (L)Ru(CHPh)(SC6H4)2O (L = SIMes 14, PCy3 15). In the case of 1 and 2 reaction with two equivalents of BCl3 affording the corresponding cation via chloride abstraction. These cations coordinate MeCN to give the six coordinate Ru cation salts [(L)Ru(CHPh)- (NCMe)(O(CH2CH2S)2BCl2)][BCl4] L = SIMes 17, PCy3 18). The generated five coordinate cations derived from 2-9 via addition of two equivalents of BCl3 were evaluated in standard preliminary tests for olefin metathesis catalysis.

  10. Assessment of density functional methods for the study of olefin metathesis catalysed by ruthenium alkylidene complexes

    Science.gov (United States)

    Śliwa, Paweł; Handzlik, Jarosław

    2010-06-01

    Performance of 31 DFT methods in thermochemistry of olefin metathesis involving the model catalyst (PH 3) 2(Cl) 2Ru dbnd CH 2 is studied using the CCSD(T) reference energies. The best methods are M06, ωB97X-D and PBE0, followed by MPW1B95, LC-ωPBE, M05-2X and B1B95. Among 20 functionals tested in reproduction of experimental PCy 3 dissociation energy for the Grubbs catalyst (H 2IMes)(PCy 3)(Cl) 2Ru dbnd CHPh, the M06-class and M05-2X methods are most accurate. ωB97X-D overestimates the dissociation energy, whereas MPW1B95, LC-ωPBE, PBE0 and B1B95 underestimate it, similarly to other methods, which give larger errors. LC-ωPBE, B1B95, MPW1B95 and PBE0 provide the best geometries.

  11. Origins of initiation rate differences in ruthenium olefin metathesis catalysts containing chelating benzylidenes.

    Science.gov (United States)

    Engle, Keary M; Lu, Gang; Luo, Shao-Xiong; Henling, Lawrence M; Takase, Michael K; Liu, Peng; Houk, K N; Grubbs, Robert H

    2015-05-06

    A series of second-generation ruthenium olefin metathesis catalysts was investigated using a combination of reaction kinetics, X-ray crystallography, NMR spectroscopy, and DFT calculations in order to determine the relationship between the structure of the chelating o-alkoxybenzylidene and the observed initiation rate. Included in this series were previously reported catalysts containing a variety of benzylidene modifications as well as four new catalysts containing cyclopropoxy, neopentyloxy, 1-adamantyloxy, and 2-adamantyloxy groups. The initiation rates of this series of catalysts were determined using a UV/vis assay. All four new catalysts were observed to be faster-initiating than the corresponding isopropoxy control, and the 2-adamantyloxy catalyst was found to be among the fastest-initiating Hoveyda-type catalysts reported to date. Analysis of the X-ray crystal structures and computed energy-minimized structures of these catalysts revealed no correlation between the Ru-O bond length and Ru-O bond strength. On the other hand, the initiation rate was found to correlate strongly with the computed Ru-O bond strength. This latter finding enables both the rationalization and prediction of catalyst initiation through the calculation of a single thermodynamic parameter in which no assumptions about the mechanism of the initiation step are made.

  12. Development of a Method for the Preparation of Ruthenium Indenylidene-Ether Olefin Metathesis Catalysts

    Directory of Open Access Journals (Sweden)

    Yann Schrodi

    2012-05-01

    Full Text Available The reactions between several derivatives of 1-(3,5-dimethoxyphenyl-prop-2-yn-1-ol and different ruthenium starting materials [i.e., RuCl2(PPh33 and RuCl2(p-cymene(L, where L is tricyclohexylphosphine di-t-butylmethylphosphine, dicyclohexylphenylphosphine, triisobutylphosphine, triisopropylphosphine, or tri-n-propylphosphine] are described. Several of these reactions allow for the easy, in-situ and atom-economic preparation of olefin metathesis catalysts. Organic precursor 1-(3,5-dimethoxyphenyl-1-phenyl-prop-2-yn-1-ol led to the formation of active ruthenium indenylidene-ether complexes, while 1-(3,5-dimethoxyphenyl-prop-2-yn-1-ol and 1-(3,5-dimethoxyphenyl-1-methyl-prop-2-yn-1-ol did not. It was also found that a bulky and strong σ-donor phosphine ligand was required to impart good catalytic activity to the new ruthenium complexes.

  13. Conformations of N-Heterocyclic Carbene Ligands in Ruthenium Complexes Relevant to Olefin Metathesis

    Science.gov (United States)

    Stewart, Ian C.; Benitez, Diego; O'Leary, Daniel J.; Tkatchouk, Ekaterina; Day, Michael W.; Goddard, William A.; Grubbs, Robert H.

    2009-01-01

    The structure of ruthenium-based olefin metathesis catalyst 3 and model π-complex 5 in solution and in the solid state are reported. The N-tolyl ligands, due to their lower symmetry than the traditional N-mesityl substituents, complicate this analysis, but ultimately provide explanation for the enhanced reactivity of 3 relative to standard catalyst 2. The tilt of the N-tolyl ring provides additional space near the ruthenium center, which is consistent with the enhanced reactivity of 3 towards sterically demanding substrates. Due to this tilt, the more sterically accessible face bears the two methyl substituents of the N-aryl rings. These experimental studies are supported by computational studies of these complexes by DFT. The experimental data provides a means to validate the accuracy of the B3LYP and M06 functionals. B3LYP provides geometries that match X-ray crystal structural data more closely, though it leads to slightly less (∼0.5 kcal mol−1) accuracy than M06 most likely because it underestimates attractive non-covalent interactions. PMID:19146414

  14. The olefin metathesis reaction: reorganization and cyclization of organic compounds; A reacao de metatese de olefinas: reorganizacao e ciclizacao de compostos organicos

    Energy Technology Data Exchange (ETDEWEB)

    Frederico, Daniel; Brocksom, Ursula; Brocksom, Timothy John [Sao Carlos Univ., SP (Brazil). Dept. de Quimica]. E-mail: brocksom@terra.com.br

    2005-07-15

    The olefin metathesis reaction allows the exchange of complex alkyl units between two olefins, with the formation of a new olefinic link and a sub-product olefin usually ethylene. This reaction has found extensive application in the last ten years with the development of the Grubbs and Schrock catalysts, in total synthesis of complex organic molecules, as opposed to the very important use in the petrochemical industry with relatively simple molecules. This review intends to trace a historical and mechanistic pathway from industry to academy, before illustrating the more recent advances. (author)

  15. Highly efficient conversion of plant oil to bio-aviation fuel and valuable chemicals by combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating.

    Science.gov (United States)

    Wang, Meng; Chen, Mojin; Fang, Yunming; Tan, Tianwei

    2018-01-01

    The production of fuels and chemicals from renewable resources is increasingly important due to the environmental concern and depletion of fossil fuel. Despite the fast technical development in the production of aviation fuels, there are still several shortcomings such as a high cost of raw materials, a low yield of aviation fuels, and poor process techno-economic consideration. In recent years, olefin metathesis has become a powerful and versatile tool for generating new carbon-carbon bonds. The cross-metathesis reaction, one kind of metathesis reaction, has a high potential to efficiently convert plant oil into valuable chemicals, such as α-olefin and bio-aviation fuel by combining with a hydrotreatment process. In this research, an efficient, four-step conversion of plant oil into bio-aviation fuel and valuable chemicals was developed by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreating. Firstly, plant oil including oil with poor properties was esterified to fatty acid methyl esters by an enzyme-catalyzed process. Secondly, the fatty acid methyl esters were partially hydrotreated catalytically to transform poly-unsaturated fatty acid such as linoleic acid into oleic acid. The olefin cross-metathesis then transformed the oleic acid methyl ester (OAME) into 1-decene and 1-decenoic acid methyl ester (DAME). The catalysts used in this process were prepared/selected in function of the catalytic reaction and the reaction conditions were optimized. The carbon efficiency analysis of the new process illustrated that it was more economically feasible than the traditional hydrotreatment process. A highly efficient conversion process of plant oil into bio-aviation fuel and valuable chemicals by the combination of enzymatic transesterification, olefin cross-metathesis, and hydrotreatment with prepared and selected catalysts was designed. The reaction conditions were optimized. Plant oil was transformed into bio-aviation fuel and a

  16. An Electronic Rationale for Observed Initiation Rates in Ruthenium-Mediated Olefin Metathesis: Charge Donation in Phosphine And N-Heterocyclic Carbene Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Getty, K.; Delgado-Jaime, M.U.; Kennepohl, P.

    2009-06-01

    Ru K-edge XAS data indicate that second generation ruthenium-based olefin metathesis precatalysts (L = N-heterocyclic carbene) possess a more electron-deficient metal center than in the corresponding first generation species (L = tricyclohexylphosphine). This surprising effect is also observed from DFT calculations and provides a simple rationale for the slow phosphine dissociation kinetics previously noted for second-generation metathesis precatalysts.

  17. Decomposition of Olefin Metathesis Catalysts by Brønsted Base: Metallacyclobutane Deprotonation as a Primary Deactivating Event.

    Science.gov (United States)

    Bailey, Gwendolyn A; Lummiss, Justin A M; Foscato, Marco; Occhipinti, Giovanni; McDonald, Robert; Jensen, Vidar R; Fogg, Deryn E

    2017-11-10

    Brønsted bases of widely varying strength are shown to decompose the metathesis-active Ru intermediates formed by the second-generation Hoveyda and Grubbs catalysts. Major products, in addition to propenes, are base·HCl and olefin-bound, cyclometalated dimers [RuCl(κ(2)-H2IMes-H)(H2C═CHR)]2 Ru-3. These are generated in ca. 90% yield on metathesis of methyl acrylate, styrene, or ethylene in the presence of either DBU, or enolates formed by nucleophilic attack of PCy3 on methyl acrylate. They also form, in lower proportions, on metathesis in the presence of the weaker base NEt3. Labeling studies reveal that the initial site of catalyst deprotonation is not the H2IMes ligand, as the cyclometalated structure of Ru-3 might suggest, but the metallacyclobutane (MCB) ring. Computational analysis supports the unexpected acidity of the MCB protons, even for the unsubstituted ring, and by implication, its overlooked role in decomposition of Ru metathesis catalysts.

  18. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst

    KAUST Repository

    Merle, Nicolas

    2016-12-05

    The well-defined silica-supported molybdenum oxo alkyl species (SiO−)MoO(CH Bu) was selectively prepared by grafting of MoO(CH Bu)Cl onto partially dehydroxylated silica (silica) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO/SiO olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.

  19. ``Greener Shade of Ruthenium'': New Concepts of Activation, Immobilization, and Recovery of Ruthenium Catalysts For Green Olefin Metathesis

    Science.gov (United States)

    Michrowska, Anna; Gulajski, Lukasz; Grela, Karol

    The results described herewith demonstrate that the activity of ruthenium (Ru) metathesis catalysts can be enhanced by introduction of electron-withdrawing groups (EWGs) without detriment to catalysts stability. This principle can be used not only to increase the catalyst activity, but also to alter its physical-chemical properties, such as solubility in given medium or affinity to silica gel. An example of novel immobilisation strategy, based on this concept is presented. The ammonium-tagged Hoveyda-type catalysts can be successfully applied in aqueous media as well as in ionic liquids (IL). Substitution of a benzylidene fragment can be used not only to immobilize the organometallic complex in such media, but also to increase its catalytic activity by electronic activation. The high stability and good application profiles of such modified catalysts in conjunction with their facile removal from organic products can be expected to offer new opportunities in green applications of olefin metathesis.

  20. Well-Defined Molybdenum Oxo Alkyl Complex Supported on Silica by Surface Organometallic Chemistry: A Highly Active Olefin Metathesis Precatalyst.

    Science.gov (United States)

    Merle, Nicolas; Le Quéméner, Frédéric; Bouhoute, Yassine; Szeto, Kai C; De Mallmann, Aimery; Barman, Samir; Samantaray, Manoja K; Delevoye, Laurent; Gauvin, Régis M; Taoufik, Mostafa; Basset, Jean-Marie

    2017-02-15

    The well-defined silica-supported molybdenum oxo alkyl species (≡SiO-)MoO(CH2tBu)3 was selectively prepared by grafting of MoO(CH2tBu)3Cl onto partially dehydroxylated silica (silica700) using the surface organometallic chemistry approach. This surface species was fully characterized by elemental analysis and DRIFT, solid-state NMR, and EXAFS spectroscopy. This new material is related to the active species of industrial supported MoO3/SiO2 olefin metathesis catalysts. It displays very high activity in propene self-metathesis at mild (turnover number = 90 000 after 25 h). Remarkably, its catalytic performance outpaces those of the parent imido derivative and its tungsten oxo analogue.

  1. The Influence of the Anionic Counter-Ion on the Activity of Ammonium Substituted Hoveyda-Type Olefin Metathesis Catalysts in Aqueous Media

    Science.gov (United States)

    Gułajski, Łukasz; Grela, Karol

    Polar olefin metathesis catalysts, bearing an ammonium group are presented. The electron withdrawing ammonium group not only activates the catalysts electronically, but at the same time makes the catalysts more hydrophilic. Catalysts can be therefore efficiently used not only in traditional media, such as methylene chloride and toluene, but also in technical-grade alcohols, alcohol— water mixtures and in neat water. Finally, in this overview the influence of the anionic counter-ion on the activity of ammonium substituted Hoveyda-type olefin metathesis catalysts in aqueous media is presented.

  2. Cycloalkyl-based unsymmetrical unsaturated (U2)-NHC ligands: Flexibility and dissymmetry in ruthenium-catalysed olefin metathesis

    KAUST Repository

    Rouen, Mathieu

    2014-01-01

    Air-stable Ru-indenylidene and Hoveyda-type complexes bearing new unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligands combining a mesityl unit and a flexible cycloalkyl moiety as N-substituents were synthesised. Structural features, chemical stabilities and catalytic profiles in olefin metathesis of this new library of cycloalkyl-based U2-NHC Ru complexes were studied and compared with their unsymmetrical saturated NHC-Ru homologues as well as a set of commercially available Ru-catalysts bearing either symmetrical SIMes or IMes NHC ligands. © 2014 the Partner Organisations.

  3. A pH-controlled recyclable indolinooxazolidine tagged N-heterocyclic carbene Ru catalyst for olefin metathesis.

    Science.gov (United States)

    Duan, Yulian; Wang, Tao; Xie, Qingxiao; Yu, Xiaobo; Guo, Weijie; Wu, Shutao; Li, Danfeng; Wang, Jianhui; Liu, Guiyan

    2017-05-09

    An indolinooxazolidine tagged N-heterocyclic carbene Ru olefin metathesis catalyst was synthesized and the molecular structure of this new Ru complex was determined by single crystal X-ray diffraction. This complex is a homogeneous catalyst and can be recovered by controlling the polarity of the indolinooxazolidine tag. Under acidic conditions the indolinooxazolidine tag exists as an open protonated form and under basic conditions the tag is in a closed form. The distribution of this catalyst in a two-phase system can be controlled by simply changing the pH, making the recovery of this catalyst easily obtainable.

  4. An S(N)Ar approach to sterically hindered ortho-alkoxybenzaldehydes for the synthesis of olefin metathesis catalysts.

    Science.gov (United States)

    Engle, Keary M; Luo, Shao-Xiong; Grubbs, Robert H

    2015-04-17

    A three-step procedure has been developed for preparing ortho-alkoxybenzaldehydes from ortho-fluorobenzaldehydes that tolerates the use of sterically hindered sodium alkoxide nucleophiles. The protocol is modular and operationally convenient. The ortho-alkoxybenzaldehyde products can be converted in one additional step to ortho-alkoxystyrenes by a Wittig reaction. These styrenes are precursors to the chelating benzylidene moiety in a proposed series of novel ruthenium complexes for use in olefin metathesis. Chelation with three representative styrenes has been demonstrated.

  5. Cationic Tungsten(VI) Penta-Methyl Complex: Synthesis, Characterization and its Application in Olefin Metathesis Reaction

    OpenAIRE

    Dey Raju; Samantaray Manoja K.; Callens Emmanuel; Hamieh Ali; Emwas Abdul-Hamid M.; Abou-hamad Edy; Kavitake Santosh; Basset Jean-Marie

    2016-01-01

    Tungsten-hexa-methyl readily reacts with B(C6F5)3 in dichloromethane and generates the corresponding well-defined cationic tungsten-penta-methyl complex which was identified precisely by 1H NMR, 13C NMR, 1H-13C NMR correlation spectroscopy. Unlike WMe6, this cationic complex has low energy barrier to form tungsten carbene intermediate, which was further supported by the fact that WMe6 alone has no activity in olefin metathesis reaction whereas the cationic complex shows catalytic activity for...

  6. Mo-catalyzed asymmetric olefin metathesis in target-oriented synthesis: Enantioselective synthesis of (+)-africanol

    Science.gov (United States)

    Weatherhead, Gabriel S.; Cortez, G. A.; Schrock, Richard R.; Hoveyda, Amir H.

    2004-01-01

    Catalytic asymmetric ring-opening metathesis (AROM) provides an efficient method for the synthesis of a variety of optically enriched small organic molecules that cannot be easily prepared by alternative methods. The development of Mo-catalyzed AROM transformations that occur in tandem with ring-closing metathesis are described. The utility of the Mo-catalyzed AROM/ring-closing metathesis is demonstrated through an enantioselective approach to the synthesis of (+)-africanol. PMID:15056762

  7. Nature of active centers and mechanism of olefin metathesis on applied oxide catalysts of molybdenum, tungsten and rhenium

    Energy Technology Data Exchange (ETDEWEB)

    Kadushin, A.A. (USSR Academy of Sciences); Aliyev, R.K.; Krylov, O.V.; Andreyev, A.A.; Yedreva-Kardzhiyeva, R.M.; Shopov, D.M.

    1982-03-01

    The authors undertook a systematic study of the effects of the carrier, activation conditions and the reaction itself on the formation and structure of active centers. Spectral characteristics of the systems studied were compared by infrared, ultraviolet, X-ray-electron and electron absorption spectroscopy, and X-ray-phase and chromatographic analyses. Catalytic activity in a metathesis reaction of propylene and butene-1 was tested in a quartz flow reactor at atmospheric pressure in a temperature range of 25-600/sup 0/C, with contact time of 3-50 seconds. The deposited oxide catalysts of the title minerals are discussed in terms of preparing the catalysts, studying their activity, and observing optical spectra. Tungsten ions were found to reduce at higher temperatures than molbydenum ions. Olefin treatment brought reduction of rhenium to lower oxidation levels. The low activities of Re/sub 2/O/sub 7//MgO at low temperatures is related to difficult electron transfer. The studies indicated the presence of a mobile center in the metathesis of olefins for oxide catalysis of all 3 title minerals, which is dependent on the chemical nature of the carrier and its crystalline structure.

  8. Synthesis and Catalytic Activity of Ruthenium-Indenylidene Complexes for Olefin Metathesis: Microscale Experiments for the Undergraduate Inorganic or Organometallic Laboratories

    Science.gov (United States)

    Pappenfus, Ted M.; Hermanson, David L.; Ekerholm, Daniel P.; Lilliquist, Stacie L.; Mekoli, Megan L.

    2007-01-01

    A series of experiments for undergraduate laboratory courses (e.g., inorganic, organometallic or advanced organic) have been developed. These experiments focus on understanding the design and catalytic activity of ruthenium-indenylidene complexes for olefin metathesis. Included in the experiments are the syntheses of two ruthenium-indenylidene…

  9. Olefin metathesis in Brazil: Brazil is romping it{exclamation_point}; Metatese de olefinas no Brasil: 'Brazil is romping it{exclamation_point}'

    Energy Technology Data Exchange (ETDEWEB)

    Matos, Jose Milton E.; Batista, Nouga C.; Carvalho, Rogerio M.; Santana, Sirlane A. A.; Puzzi, Paula N.; Sanches, Mario; Lima-Neto, Benedito S. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Quimica]. E-mail: benedito@iqsc.usp.br

    2007-03-15

    Some aspects of the olefin metathesis reactions are summarized here (types of reactions, mechanism and catalysts). In particular, the research groups that have been working on this chemistry in Brazil are presented. The main goal of this paper is to make this type of reaction more widely known in the Brazilian chemical community. (author)

  10. Cationic Silica-Supported N-Heterocyclic Carbene Tungsten Oxo Alkylidene Sites: Highly Active and Stable Catalysts for Olefin Metathesis.

    Science.gov (United States)

    Pucino, Margherita; Mougel, Victor; Schowner, Roman; Fedorov, Alexey; Buchmeiser, Michael R; Copéret, Christophe

    2016-03-18

    Designing supported alkene metathesis catalysts with high activity and stability is still a challenge, despite significant advances in the last years. Described herein is the combination of strong σ-donating N-heterocyclic carbene ligands with weak σ-donating surface silanolates and cationic tungsten sites leading to highly active and stable alkene metathesis catalysts. These well-defined silica-supported catalysts, [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(OTf)] and [(≡SiO)W(=O)(=CHCMe2 Ph)(IMes)(+) ][B(Ar(F) )4 (-) ] [IMes=1,3-bis(2,4,6-trimethylphenyl)-imidazol-2-ylidene, B(Ar(F) )4 =B(3,5-(CF3 )2 C6 H3 )4 ] catalyze alkene metathesis, and the cationic species display unprecedented activity for a broad range of substrates, especially for terminal olefins with turnover numbers above 1.2 million for propene. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A diversity-oriented approach to spirocyclic and fused hydantoins via olefin metathesis.

    Science.gov (United States)

    Dhara, Kalyan; Midya, Ganesh Chandra; Dash, Jyotirmayee

    2012-09-21

    An efficient and general method is reported to prepare a diverse series of 5,5-spirocyclic and 1,5-, 4,5-, and 3,4-fused bicyclic imidazolidinone derivatives based on selective alkylation and ring closing metathesis (RCM) by exploiting the four possible points of diversity in the hydantoin ring. Hydantoins containing trienes and tetraenes undergo selective RCM and cross metathesis to afford functionalized spirohydantoins. A tandem metathesis sequence involving ring closing-ring opening-ring closing and cross metathesis (RC-RO-RC-CM) occurred with a hydantoin triene to give a bicyclic hydantoin dimer in high yield. The fused bicylic dimer could participate in cross metathesis to produce a functionalized fused hydantoin derivative. The methodology establishes novel routes to unnatural amino acids, proline homologues, and cyclic vicinal diamines.

  12. Ligand Exchange-Mediated Activation and Stabilization of a Re-Based Olefin Metathesis Catalyst by Chlorinated Alumina.

    Science.gov (United States)

    Gallo, Alessandro; Fong, Anthony; Szeto, Kai C; Rieb, Julia; Delevoye, Laurent; Gauvin, Régis M; Taoufik, Mostafa; Peters, Baron; Scott, Susannah L

    2016-10-05

    Extensive chlorination of γ-Al2O3 results in the formation of highly Lewis acidic surface domains depleted in surface hydroxyl groups. Adsorption of methyltrioxorhenium (MTO) onto these chlorinated domains serves to activate it as a low temperature, heterogeneous olefin metathesis catalyst and confers both high activity and high stability. Characterization of the catalyst reveals that the immobilized MTO undergoes partial ligand exchange with the surface, whereby some Re sites acquire a chloride ligand from the modified alumina while donating an oxo ligand to the support. More specifically, Re LIII-edge EXAFS and DFT calculations support facile ligand exchange between MTO and Cl-Al2O3 to generate [CH3ReO2Cl(+)] fragments that interact with a bridging oxygen of the support via a Lewis acid-base interaction. According to IR and solid-state NMR, the methyl group remains intact, and does not evolve spontaneously to a stable methylene tautomer. Nevertheless, the chloride-promoted metathesis catalyst is far more active and productive than MTO/γ-Al2O3, easily achieving a TON of 100 000 for propene metathesis in a flow reactor at 10 °C (compared to TON < 5000 for the nonchlorinated catalyst). Increased activity is a consequence of both a larger fraction of active sites and a higher intrinsic activity for the new sites. Increased stability is tentatively attributed to a stronger interaction between MTO and chlorinated surface regions, as well as extensive depletion of the Brønsted acidic surface hydroxyl population. The reformulated catalyst represents a major advance for Re-based metathesis catalysts, whose widespread use has thus far been severely hampered by their instability.

  13. Catalyst-Controlled Stereoselective Olefin Metathesis as a Principal Strategy in Multi-Step Synthesis Design. A Concise Route to (+)-Neopeltolide**

    Science.gov (United States)

    Yu, Miao; Schrock, Richard R.

    2014-01-01

    Mo-, W- and Ru-based complexes that control the stereochemical outcome of olefin metathesis reactions have been recently introduced. However, the complementary nature of these systems through their combined use in multistep complex molecule synthesis has not been illustrated. Here, we disclose a concise diastereo- and enantioselective route that furnishes the anti-proliferative natural product neopeltolide. Catalytic transformations are employed to address every stereochemical issue. Among the featured processes are an enantioselective ring-opening/cross-metathesis promoted by a Mo monopyrrolide aryloxide (MAP) complex and a macrocyclic ring-closing metathesis affording a trisubstituted alkene catalyzed by a Mo bis-aryloxide species. Furthermore, Z-selective cross-metathesis reactions, facilitated by Mo and Ru complexes, have been employed in stereoselective synthesis of the acyclic dienyl moiety of the target molecule. PMID:25377347

  14. Diastereoselective one-pot Wittig olefination-Michael addition and olefin cross metathesis strategy for total synthesis of cytotoxic natural product (+)-varitriol and its higher analogues.

    Science.gov (United States)

    Ghosal, Partha; Sharma, Deepty; Kumar, Brijesh; Meena, Sanjeev; Sinha, Sudhir; Shaw, Arun K

    2011-11-07

    A stereoselective route for the total synthesis of anticancer marine natural product (+)-varitriol (1) is detailed herein. The impressive biological activity and interesting structural features of natural (+)-varitriol fuelled us to undertake the synthesis of some higher analogues (1a-j) of this molecule. The key features of the synthetic strategy include one-pot Wittig olefination followed by a highly diastereoselective oxa-Michael addition to assemble stereochemically pure tetrasubstituted THF moiety of the natural varitriol and olefin cross metathesis to couple the aromatic part with tetrasubstituted THF moiety. The total synthesis of title natural product is efficient with 21.8% overall yield for 9 linear steps from D-ribose and thus facilitates the more scaled-up practical route for the synthesis of 1 and its analogues as well. The synthetic (+)-varitriol (1) and its analogues were screened for their cytotoxicity. The present synthetic approach paves the way for preparation of numerous analogues of the title natural product for drug development.

  15. Efficient Removal of Ruthenium Byproducts from Olefin Metathesis Products by Simple Aqueous Extraction

    Science.gov (United States)

    Hong, Soon Hyeok; Grubbs, Robert H.

    2008-01-01

    Simple aqueous extraction removed ruthenium byproducts efficiently from ring-closing metathesis (RCM) reactions catalyzed by a PEG-supported N-heterocyclic carbene-based ruthenium complex. PMID:17428062

  16. Synthesis of alkenyl boronates from allyl-substituted aromatics using an olefin cross-metathesis protocol.

    Science.gov (United States)

    Hemelaere, Rémy; Carreaux, François; Carboni, Bertrand

    2013-07-05

    An efficient synthesis of 3-aryl-1-propenyl boronates from pinacol vinyl boronic ester and allyl-substituted aromatics by cross metathesis is reported. Although the allylbenzene derivatives are prone to isomerization reaction under metathesis conditions, we found that some ruthenium catalysts are effective for this methodology. This strategy thus provides an interesting alternative approach to alkyne hydroboration, leading to the preparation of unknown compounds. Moreover, the boron substituent can be replaced by various functional groups in good yields.

  17. The Significance of Degenerate Processes to Enantioselective Olefin Metathesis Reactions Promoted by Stereogenic-at-Mo Complexes

    Science.gov (United States)

    Meek, Simon J.; Malcolmson, Steven J.; Li, Bo; Schrock, Richard R.; Hoveyda, Amir H.

    2009-01-01

    The present study provides spectroscopic and experimental evidence demonstrating that degenerate metathesis is critical to the effectiveness of this emerging class of chiral catalysts. Isolation and characterization (X-ray) of both diastereomeric complexes, as well as examination of the reactivity and enantioselectivity patterns exhibited by such initiating neophylidenes in promoting RCM processes, are disclosed. Only when sufficient amounts of ethylene are generated and inversion at Mo through degenerate processes occurs at a sufficiently rapid rate, is high enantioselectivity achieved, irrespective of the stereochemical identity of the initiating alkylidene (Curtin-Hammett kinetics). With diastereomeric metal complexes that undergo rapid interconversion, stereomutation at the metal center becomes inconsequential and stereoselective synthesis of a chiral catalyst is not required. PMID:19842640

  18. Mechanism of the Ru–Allenylidene to Ru–Indenylidene Rearrangement in Ruthenium Precatalysts for Olefin Metathesis

    KAUST Repository

    Pump, Eva

    2015-06-30

    The intramolecular allenylidene RuCl2(PR3)2(C═C═CPh2) to indenylidene RuCl2(PR3)2(Ind) rearrangement that occurs during the synthesis of Ru-based precatalysts for olefin metathesis is presented. In the absence of acid, the ring closure via C–H activation was shown to be unfavored for energy barriers up to 70 kcal/mol. Thus, it turned out to be HCl (or other acid) that plays a crucial role during formation of the indenylidene, as the upper energy barrier decreases to a reasonable 35 kcal/mol. Moreover, we proved computationally that depending on the nature of the phosphine the intramolecular rearrangement is either facilitated (PPh3) or slightly hampered (PCy3), which is in line with experimental results.

  19. Synthesis and characterization of a homogeneous and silica supported homoleptic cationic tungsten(vi) methyl complex: application in olefin metathesis

    KAUST Repository

    Dey, Raju

    2016-08-19

    A method for the synthesis of a homogeneous cationic tungsten(VI)penta-methyl complex [(WMe5)(+)(C6F5)(3)BMe-] from neutral tungstenhexamethyl (WMe6) and a silica supported cationic tungstentetramethyl complex [( Si-O-)WMe4+ (C6F5)(3)BMe-] from a neutral silica supported tungstenpentamethyl complex [( Si-O-)WMe5] is described. In both cases a direct demethylation using the B(C6F5)(3) reagent was used. The aforesaid complexes were characterized by liquid or solid state NMR spectroscopy. Interestingly, the homogeneous cationic complex [(WMe5)(+)(C6F5)(3)BMe-] shows moderate activity whereas the supported cationic complex [( Si-O-)WMe4+(C6F5)(3)BMe-] exhibits good activity in olefin metathesis reactions.

  20. Synthesis and characterization of a homogeneous and silica supported homoleptic cationic tungsten(vi) methyl complex: application in olefin metathesis.

    Science.gov (United States)

    Dey, Raju; Samantaray, Manoja K; Poater, Albert; Hamieh, Ali; Kavitake, Santosh; Abou-Hamad, Edy; Callens, Emmanuel; Emwas, Abdul-Hamid; Cavallo, Luigi; Basset, Jean-Marie

    2016-09-13

    A method for the synthesis of a homogeneous cationic tungsten(vi)pentamethyl complex [(WMe5)(+)(C6F5)3BMe(-)] from neutral tungstenhexamethyl (WMe6) and a silica supported cationic tungstentetramethyl complex [([triple bond, length as m-dash]Si-O-)WMe4(+) (C6F5)3BMe(-)] from a neutral silica supported tungstenpentamethyl complex [([triple bond, length as m-dash]Si-O-)WMe5] is described. In both cases a direct demethylation using the B(C6F5)3 reagent was used. The aforesaid complexes were characterized by liquid or solid state NMR spectroscopy. Interestingly, the homogeneous cationic complex [(WMe5)(+)(C6F5)3BMe(-)] shows moderate activity whereas the supported cationic complex [([triple bond, length as m-dash]Si-O-)WMe4(+)(C6F5)3BMe(-)] exhibits good activity in olefin metathesis reactions.

  1. Moving from Classical Ru-NHC to Neutral or Charged Rh-NHC Based Catalysts in Olefin Metathesis.

    Science.gov (United States)

    Poater, Albert

    2016-01-30

    Considering the versatility of oxidation states of rhodium together with the successful background of ruthenium-N-heterocyclic carbene based catalysts in olefin metathesis, it is envisaged the exchange of the ruthenium of the latter catalysts by rhodium, bearing an open-shell neutral rhodium center, or a +1 charged one. In the framework of in silico experiments, density functional theory (DFT) calculations have been used to plot the first catalytic cycle that as a first step includes the release of the phosphine. DFT is, in this case, the tool that allows the discovery of the less endergonic reaction profile from the precatalytic species for the neutral catalyst with respect to the corresponding ruthenium one; increasing the endergonic character when dealing with the charged system.

  2. (17)O MAS NMR studies of oxo-based olefin metathesis catalysts: a critical assessment of signal enhancement methods.

    Science.gov (United States)

    Grekov, D; Bouhoute, Y; Del Rosal, I; Maron, L; Taoufik, M; Gauvin, R M; Delevoye, L

    2016-10-12

    The DFS enhancement method as applied to (17)O MAS NMR was critically assessed, first on NaPO3, a simple binary glass system, and in a second step, on a series of catalysis-related organometallic molecules and materials. The robustness of DFS was investigated for the wide range of anisotropic parameters (quadrupolar coupling and chemical shift anisotropy) encountered in these samples. Emphasis has been put on the variation of signal enhancements with respect to the DFS final sweep frequency, pulse amplitude and pulse duration, while line shape distortion issues were also addressed. Finally, the robustness of DFS enhancement of the (17)O MAS NMR signal is shown through its successful application to silica-supported olefin metathesis catalysts.

  3. Orthogonal ring-closing alkyne and olefin metathesis for the synthesis of small GTPase-targeting bicyclic peptides.

    Science.gov (United States)

    Cromm, Philipp M; Schaubach, Sebastian; Spiegel, Jochen; Fürstner, Alois; Grossmann, Tom N; Waldmann, Herbert

    2016-04-14

    Bicyclic peptides are promising scaffolds for the development of inhibitors of biological targets that proved intractable by typical small molecules. So far, access to bioactive bicyclic peptide architectures is limited due to a lack of appropriate orthogonal ring-closing reactions. Here, we report chemically orthogonal ring-closing olefin (RCM) and alkyne metathesis (RCAM), which enable an efficient chemo- and regioselective synthesis of complex bicyclic peptide scaffolds with variable macrocycle geometries. We also demonstrate that the formed alkyne macrocycle can be functionalized subsequently. The orthogonal RCM/RCAM system was successfully used to evolve a monocyclic peptide inhibitor of the small GTPase Rab8 into a bicyclic ligand. This modified peptide shows the highest affinity for an activated Rab GTPase that has been reported so far. The RCM/RCAM-based formation of bicyclic peptides provides novel opportunities for the design of bioactive scaffolds suitable for the modulation of challenging protein targets.

  4. Moving from Classical Ru-NHC to Neutral or Charged Rh-NHC Based Catalysts in Olefin Metathesis

    Directory of Open Access Journals (Sweden)

    Albert Poater

    2016-01-01

    Full Text Available Considering the versatility of oxidation states of rhodium together with the successful background of ruthenium-N-heterocyclic carbene based catalysts in olefin metathesis, it is envisaged the exchange of the ruthenium of the latter catalysts by rhodium, bearing an open-shell neutral rhodium center, or a +1 charged one. In the framework of in silico experiments, density functional theory (DFT calculations have been used to plot the first catalytic cycle that as a first step includes the release of the phosphine. DFT is, in this case, the tool that allows the discovery of the less endergonic reaction profile from the precatalytic species for the neutral catalyst with respect to the corresponding ruthenium one; increasing the endergonic character when dealing with the charged system.

  5. In Situ Methylene Capping: A General Strategy for Efficient Stereoretentive Catalytic Olefin Metathesis. The Concept, Methodological Implications, and Applications to Synthesis of Biologically Active Compounds.

    Science.gov (United States)

    Xu, Chaofan; Shen, Xiao; Hoveyda, Amir H

    2017-08-09

    In situ methylene capping is introduced as a practical and broadly applicable strategy that can expand the scope of catalyst-controlled stereoselective olefin metathesis considerably. By incorporation of commercially available Z-butene together with robust and readily accessible Ru-based dithiolate catalysts developed in these laboratories, a large variety of transformations can be made to proceed with terminal alkenes, without the need for a priori synthesis of a stereochemically defined disubstituted olefin. Reactions thus proceed with significantly higher efficiency and Z selectivity as compared to when other Ru-, Mo-, or W-based complexes are utilized. Cross-metathesis with olefins that contain a carboxylic acid, an aldehyde, an allylic alcohol, an aryl olefin, an α substituent, or amino acid residues was carried out to generate the desired products in 47-88% yield and 90:10 to >98:2 Z:E selectivity. Transformations were equally efficient and stereoselective with a ∼70:30 Z-:E-butene mixture, which is a byproduct of crude oil cracking. The in situ methylene capping strategy was used with the same Ru catechothiolate complex (no catalyst modification necessary) to perform ring-closing metathesis reactions, generating 14- to 21-membered ring macrocyclic alkenes in 40-70% yield and 96:4-98:2 Z:E selectivity; here too, reactions were more efficient and Z-selective than when the other catalyst classes are employed. The utility of the approach is highlighted by applications to efficient and stereoselective syntheses of several biologically active molecules. This includes a platelet aggregate inhibitor and two members of the prostaglandin family of compounds by catalytic cross-metathesis reactions, and a strained 14-membered ring stapled peptide by means of macrocyclic ring-closing metathesis. The approach presented herein is likely to have a notable effect on broadening the scope of olefin metathesis, as the stability of methylidene complexes is a generally

  6. Surface-Functionalized Nanoparticles by Olefin Metathesis: A Chemoselective Approach for In Vivo Characterization of Atherosclerosis Plaque.

    Science.gov (United States)

    Salinas, Beatriz; Ruiz-Cabello, Jesús; Lechuga-Vieco, Ana V; Benito, Marina; Herranz, Fernando

    2015-07-13

    The use of click chemistry reactions for the functionalization of nanoparticles is particularly useful to modify the surface in a well-defined manner and to enhance the targeting properties, thus facilitating clinical translation. Here it is demonstrated that olefin metathesis can be used for the chemoselective functionalization of iron oxide nanoparticles with three different examples. This approach enables, in one step, the synthesis and functionalization of different water-stable magnetite-based particles from oleic acid-coated counterparts. The surface of the nanoparticles was completely characterized showing how the metathesis approach introduces a large number of hydrophilic molecules on their coating layer. As an example of the possible applications of these new nanocomposites, a focus was taken on atherosclerosis plaques. It is also demonstrated how the in vitro properties of one of the probes, particularly its Ca(2+) -binding properties, mediate their final in vivo use; that is, the selective accumulation in atherosclerotic plaques. This opens promising new applications to detect possible microcalcifications associated with plaque vulnerability. The accumulation of the new imaging tracers is demonstrated by in vivo magnetic resonance imaging of carotids and aorta in the ApoE(-/-) mouse model and the results were confirmed by histology. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Application of the ONIOM (QM/QM) method in the study of molybdena-silica system active in olefin metathesis

    Science.gov (United States)

    Handzlik, Jarosław

    The two-layer ONIOM method is applied for description of Mo-methylidene center on silica, which is the active site of olefin metathesis. Two clusters of different size are employed to model the silica surface. For the larger one, two differently defined inner layers (the model systems) are testedE In all the calculations, the B3LYP functional is adopted for the inner layer, while the Hartree-Fock method or the local density approximation (SVWN5 functional) is used for the treatment of the real system. Based on the reference results obtained for the real system from the B3LYP calculations, it is concluded that both B3LYP:HF and B3LYP:SVWN5 schemes are suitable for proper description of the geometry of the Mo center and its activity in ethene metathesis. The former combination is a little better choice, howeverE It is also shown that the inner layer, including the third coordination sphere of molybdenum, is large enough to obtain satisfactory results. On the other hand, the relative energies and some geometrical parameters of the active site are dependent on the size of the entire system studied. The sensitivity of the geometrical parameters and reaction energies to the changes of the scale factor g, involved in the ONIOM scheme, is studied as well. It is concluded that the link atom distance is not crucial for obtaining correct results.0

  8. Olefin metathesis. 8. Active sites on Re/sub 2/O/sub 7//Al/sub 2/O/sub 3/ catalysts for the metathesis of olefins

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, R.; Ichikawa, K.; Echigoya, E.

    1978-01-01

    Disproportionation of propylene, 1-hexene, and 2-pentene was tested at 20/sup 0/-50/sup 0/C on rhenium oxide/alumina catalysts having 1:99 to 7:93 rhenium/aluminum atomic ratios. The catalysts were prepared and pretreated in various ways, including pretreatment with water. Comparisons of the activities with ESR and X-ray diffraction data showed that in catalysts containing < 1% rhenium (''K region''), the rhenium(VII) was strongly bonded in a distorted alumina lattice and inactive; that in catalysts containing 1-3% rhenium (''L region''), the rhenium formed Re-O-Al bonds in which the rhenium had some activity; and that in the very active catalysts with > 3% rhenium (''M region''), the rhenium formed Re-O-Re species which were weakly bonded and easily converted to an active species by reduction and complex formation with the olefin. The rhenium(VII) ions around the active center increased its positive charge and thus promoted the olefin adsorption. Catalysts containing 0.5% rhenium (K region) could be transformed into L or M region catalysts by addition of a metal ion of high electronegativity, such as tungsten or vanadium. Graphs, spectra, and 19 references.

  9. Olefin Metathesis with Ru-Based Catalysts Exchanging the Typical N-Heterocyclic Carbenes by a Phosphine–Phosphonium Ylide

    Directory of Open Access Journals (Sweden)

    Laia Arnedo

    2017-03-01

    Full Text Available Density functional theory (DFT calculations have been used to describe the first turnover of an olefin metathesis reaction calling for a new in silico family of homogenous Ru-based catalysts bearing a phosphine–phosphonium ylide ligand, with ethylene as a substrate. Equal to conventional Ru-based catalysts bearing an N-heterocyclic carbene (NHC ligand, the activation of these congeners occurs through a dissociative mechanism, with a more exothermic first phosphine dissociation step. In spite of a stronger electron-donating ability of a phosphonium ylide C-ligand with respect to a diaminocarbene analogue, upper energy barriers were calculated to be on average ca. 5 kcal/mol higher than those of Ru–NHC standards. Overall, the study also highlights advantages of bidentate ligands over classical monodentate NHC and phosphine ligands, with a particular preference for the cis attack of the olefin. The new generation of catalysts is constituted by cationic complexes potentially soluble in water, to be compared with the typical neutral Ru–NHC ones.

  10. Synthesis of tetrasubstituted alkenes via metathesis.

    Science.gov (United States)

    Paek, Seung-Mann

    2012-03-15

    Fully substituted olefin generation via metathesis is presented. Catalyst development, optimization of reaction conditions and substrate screening are included. In addition, asymmetric alkene metathesis, the cross metathesis reaction for this transformation and its application in natural products will be discussed.

  11. Batchwise and continuous nanofiltration of POSS-tagged Grubbs-Hoveyda-type olefin metathesis catalysts.

    Science.gov (United States)

    Kajetanowicz, Anna; Czaban, Justyna; Krishnan, G Rajesh; Malińska, Maura; Woźniak, Krzysztof; Siddique, Humera; Peeva, Ludmila G; Livingston, Andrew G; Grela, Karol

    2013-01-01

    New molecular-weight-enlarged metathesis catalysts, which bear polyhedral oligomeric silsesquioxane (POSS) tags, were synthesized and characterized. The catalysts can be recovered from the reaction mixture by using nanofiltration techniques and can be reused. It was found that the membranes Starmem 228 and PuraMem 280 successfully separate the catalyst from the post-reaction mixtures to below 3 ppm. The application of these POSS-tagged catalysts in a continuous metathesis reaction was also investigated. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Synthetic Strategies for Converting Carbohydrates into Carbocycles by the Use of Olefin Metathesis

    DEFF Research Database (Denmark)

    Madsen, Robert

    2007-01-01

    This microreview covers recent advances in the use of ring-closing metathesis for the synthesis of carbocycles from carbohydrates. Various strategies for the synthesis of a,w-dienes from carbohydrates are presented, which give rise to a large variety of dienes with different stereochemistry......, protecting groups and substituents. Subsequent ring-closing metathesis with a ruthenium carbene complex affords highly functionalized carbocycles with ring-sizes ranging from five- to eight-membered rings. The application of these methods for the synthesis of carbocyclic natural products from carbohydrates...

  13. Well-defined silica supported bipodal molybdenum oxo alkyl complexes: a model of the active sites of industrial olefin metathesis catalysts

    KAUST Repository

    Merle, Nicolas

    2017-09-25

    A well-defined, silica-supported molybdenum oxo alkyl species, ([triple bond, length as m-dash]SiO-)2Mo([double bond, length as m-dash]O)(CH2tBu)2, was prepared by the selective grafting of Mo([double bond, length as m-dash]O)(CH2tBu)3Cl onto a silica partially dehydroxylated at 200 °C using a rigorous surface organometallic chemistry approach. The immobilized bipodal surface species, partly resembling the active species of industrial MoO3/SiO2 olefin metathesis catalysts, exhibited excellent functional group tolerance in conjunction with its high activity in homocoupling, self and ring closing olefin metathesis.

  14. Well-defined silica supported bipodal molybdenum oxo alkyl complexes: a model of the active sites of industrial olefin metathesis catalysts.

    Science.gov (United States)

    Merle, Nicolas; Le Quéméner, Frédéric; Barman, Samir; Samantaray, Manoja K; Szeto, Kai C; De Mallmann, Aimery; Taoufik, Mostafa; Basset, Jean-Marie

    2017-10-12

    A well-defined, silica-supported molybdenum oxo alkyl species, ([triple bond, length as m-dash]SiO-)2Mo([double bond, length as m-dash]O)(CH2(t)Bu)2, was prepared by the selective grafting of Mo([double bond, length as m-dash]O)(CH2(t)Bu)3Cl onto a silica partially dehydroxylated at 200 °C using a rigorous surface organometallic chemistry approach. The immobilized bipodal surface species, partly resembling the active species of industrial MoO3/SiO2 olefin metathesis catalysts, exhibited excellent functional group tolerance in conjunction with its high activity in homocoupling, self and ring closing olefin metathesis.

  15. New and concise syntheses of the bicyclic oxamazin core using an intramolecular nitroso Diels-Alder reaction and ring-closing olefin metathesis.

    Science.gov (United States)

    Watson, Kyle D; Carosso, Serena; Miller, Marvin J

    2013-01-18

    Herein two new and concise synthetic approaches for making an unsaturated bicyclic oxamazin core are reported. The first involves the use of an intramolecular Diels-Alder reaction to form both of the fused rings in one step. The second approach incorporates ring-closing olefin metathesis in the final step to form the second fused ring of the core. The scope of the second approach was also expanded further to afford larger ringed bicyclic systems.

  16. Stereoselective synthesis by olefin metathesis and characterization of η-carotene (7,8,7',8'-tetrahydro-β,β-carotene).

    Science.gov (United States)

    Fontán, Noelia; Alvarez, Rosana; de Lera, Angel R

    2012-05-25

    The purported structure of the elusive η-carotene (7,8,7',8'-tetrahydro-β,β-carotene), a natural C(40) carotenoid first detected in the berries of Lonicera japonica and in citrus fruits sixty years ago, has been synthesized by olefin cross-metathesis/dimerization of a C(21) polyene derived from trans-7,8-dihydroretinal, thus allowing the full characterization of this highly unstable natural product.

  17. Re(VII) oxide on mesoporous alumina of different types - Activity in the metathesis of olefins and their oxygen-containing derivatives

    Czech Academy of Sciences Publication Activity Database

    Balcar, Hynek; Hamtil, Roman; Žilková, Naděžda; Zhang, Z.; Pinnavaia, T. J.; Čejka, Jiří

    2007-01-01

    Roč. 320, - (2007), s. 56-63 ISSN 0926-860X R&D Projects: GA AV ČR IAA4040411; GA MPO FT-TA/042 Grant - others:NSF(US) CHE-0211029 Institutional research plan: CEZ:AV0Z40400503 Source of funding: V - iné verejné zdroje Keywords : organized mesoporous alumina * metathesis * olefin functional derivatives * rhenium oxide Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.166, year: 2007

  18. Hydro-Metathesis of Long-Chain Olefin (1-decene) using Well-Defined Silica-Supported Tungsten (VI), Molybdenum (VI) and Tantalum (V) Catalysts

    KAUST Repository

    Saidi, Aya

    2016-11-01

    Nowadays, catalysis lies at the heart of economy growth mainly in the petroleum industry. Catalysis can offer real and potential solutions to the current challenges for a long-term sustainable energy, green chemistry, and environmental protection. In this context, one of the most important and future prosperity promising catalytic applications in the petrochemical field is hydrocarbons metathesis; it consists on the conversion of both renewable and non-petroleum fossil carbon sources to transportation fuels. Olefin metathesis has become one of the standard methodologies for constructing C-C bonds in many organic transformation reactions. This owed to the numerous types of metathesis reactions that have been developed, for example, enyne, ring-opening and closing, self and cross metathesis, etc. But the one step conversion of olefin to alkanes has not been studied much. Recently, only one such a work has been published for the hydro-metathesis of propylene by tantalum hydride supported on KCC-1 in dynamic reactor. With this knowledge, we thought to study the hydro-metathesis using liquid olefin (1-decene). Another aspect of using 1-decene comes from our previous experience on metathesis of n-decane where the first step is the conversion of decane to 1-decene and subsequently to different chain length alkanes with W-alkyl/alkylidene catalyst. In this way, it would be easy for us to use different catalysts and compare them with parent catalyst concerning TON. We found 100% conversion with TON of 1010 using supported WMe6 onto SiO2-700 [(≡Si-O-)WMe5] against the previous results for n-decane showing 20% conversion and TON of 153. In this work, we disclose the hydro-metathesis reaction of 1-decene using well-defined silica supported W(VI), Mo(VI) and Ta(V) alkyl catalysts in batch reactor condition. This work is divided into three major sections; first chapter contains an introduction to the field of catalysis and surface organometallic chemistry. In second chapter

  19. 2005 Nobel Prize in Chemistry: Development of the Olefin Metathesis Method in Organic Synthesis

    Science.gov (United States)

    Casey, Charles P.

    2006-01-01

    The 2005 Nobel Prize in Chemistry was awarded "for the development of the metathesis method in organic synthesis". The discoveries of the laureates provided a chemical reaction used daily in the chemical industry for the efficient and more environmentally friendly production of important pharmaceuticals, fuels, synthetic fibers, and many other…

  20. Properties and reactions of manganese methylene complexes in the gas phase. The importance of strong metal: carbene bonds for effective olefin metathesis catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, A.E.; Beauchamp, J.L.

    1979-10-10

    In this communication the formation, properties and reactions of the gas phase carbenes MnCH/sub 2//sup +/, (CO)/sub 5/MnCH/sub 2//sup +/, and (CO)/sub 4/MnCH/sub 2//sup +/ are described. Reported results include observation of metathesis and abstraction reactions of the methylene ligand with olefins and the first experimental determination of metal-carbene bond dissociation energies. Important points are that: (a) metal-methylene bond energies are extremely strong; and (b) the Mn/sup +/-methylene bond energy is decreased substantially on addition of five carbonyls to the metal center. If the metal-carbene bond energy exceeds 100 kcal/mol, then transfer of the carbene to an olefin to give a cyclopropane or new olefin will be endothermic and thus will not compete with the metathesis reaction. In order to avoid low turnover numbers resulting from consumption of carbene intermediates, strong metal-carbene bonds are a desirable feature of practical metathesis catalysts. (DP)

  1. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    KAUST Repository

    Poater, Albert

    2015-09-29

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  2. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts

    Directory of Open Access Journals (Sweden)

    Albert Poater

    2015-09-01

    Full Text Available During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC, depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  3. A comprehensive study of olefin metathesis catalyzed by Ru-based catalysts.

    Science.gov (United States)

    Poater, Albert; Cavallo, Luigi

    2015-01-01

    During a Ru-catalyzed reaction of an olefin with an alkylidene moiety that leads to a metallacycle intermediate, the cis insertion of the olefin can occur from two different directions, namely side and bottom with respect to the phosphine or N-heterocyclic ligand (NHC), depending on the first or second generation Grubbs catalyst. Here, DFT calculations unravel to which extent the bottom coordination of olefins with respect is favored over the side coordination through screening a wide range of catalysts, including first and second generation Grubbs catalysts as well as the subsequent Hoveyda derivatives. The equilibrium between bottom and side coordination is influenced by sterics, electronics, and polarity of the solvent. The side attack is favored for sterically less demanding NHC and/or alkylidene ligands. Moreover the generation of a 14-electron species is also discussed, with either pyridine or phosphine ligands to dissociate.

  4. Olefin metathesis and quadruple hydrogen bonding: A powerful combination in multistep supramolecular synthesis

    Science.gov (United States)

    Scherman, Oren A.; Ligthart, G. B. W. L.; Ohkawa, Haruki; Sijbesma, Rint P.; Meijer, E. W.

    2006-08-01

    We show that combining concepts generally used in covalent organic synthesis such as retrosynthetic analysis and the use of protecting groups, and applying them to the self-assembly of polymeric building blocks in multiple steps, results in a powerful strategy for the self-assembly of dynamic materials with a high level of architectural control. We present a highly efficient synthesis of bifunctional telechelic polymers by ring-opening metathesis polymerization (ROMP) with complementary quadruple hydrogen-bonding motifs. Because the degree of functionality for the polymers is 2.0, the formation of alternating, blocky copolymers was demonstrated in both solution and the bulk leading to stable, microphase-separated copolymer morphologies. ring-opening metathesis polymerization | self-assembly | block copolymer | retrosynthesis

  5. From ruthenium olefin metathesis catalyst to (η5-3- phenylindenyl)hydrido complex via alcoholysis

    KAUST Repository

    Manzini, Simone

    2014-01-01

    The synthesis and characterisation of [Ru(H)(η5-3- phenylindenyl)(iBu-Phoban)2] 4 is reported ( iBu-Phoban = 9-isobutyl-9-phosphabicyclo-[3.3.1]-nonane). 4 is obtained via alcoholysis of metathesis pre-catalyst M11, in a process that was previously thought to be limited to analogous complex [RuCl 2(PPh3)2(3-phenylindenylidene)] (M 10). This journal is © The Royal Society of Chemistry.

  6. Role of Tricoordinate Al Sites in CH3ReO3/Al2O3 Olefin Metathesis Catalysts.

    Science.gov (United States)

    Valla, Maxence; Wischert, Raphael; Comas-Vives, Aleix; Conley, Matthew P; Verel, René; Copéret, Christophe; Sautet, Philippe

    2016-06-01

    Re2O7 supported on γ-alumina is an alkene metathesis catalyst active at room temperature, compatible with functional groups, but the exact structures of the active sites are unknown. Using CH3ReO3/Al2O3 as a model for Re2O7/Al2O3, we show through a combination of reactivity studies, in situ solid-state NMR, and an extensive series of DFT calculations, that μ-methylene structures (Al-CH2-ReO3-Al) containing a Re═O bound to a tricoordinated Al (AlIII) and CH2 bound to a four-coordinated Al (AlIVb) are the precursors of the most active sites for olefin metathesis. The resting state of CH3ReO3/Al2O3 is a distribution of μ-methylene species formed by the activation of the C-H bond of CH3ReO3 on different surface Al-O sites. In situ reaction with ethylene results in the formation of Re metallacycle intermediates, which were studied in detail through a combination of solid-state NMR experiments, using labeled ethylene, and DFT calculations. In particular, we were able to distinguish between metallacycles in TBP (trigonal-bipyramidal) and SP (square-pyramidal) geometry, the latter being inactive and detrimental to catalytic activity. The SP sites are more likely to be formed on other Al sites (AlIVa/AlIVa). Experimentally, the activity of CH3ReO3/Al2O3 depends on the activation temperature of alumina; catalysts activated at or above 500 °C contain more active sites than those activated at 300 °C. We show that the dependence of catalytic activity on the Al2O3 activation temperature is related to the quantity of available AlIII-defect sites and adsorbed H2O.

  7. Bis-mixed-carbene ruthenium-thiolate-alkylidene complexes: synthesis and olefin metathesis activity.

    Science.gov (United States)

    Dahcheh, Fatme; Stephan, Douglas W

    2015-01-28

    A series of bis-carbene Ru-hydride species, including (IMes)(Im(OMe)2)(PPh3)RuHCl (1) and (SIMes)(Me2Im(OMe)2)(PPh3)RuHCl (2) were prepared and subsequently shown to react with aryl-vinyl-sulfides to give the bis-carbene-alkylidene complexes: Im(OMe)2(SIMes)RuCl(SR)(=CHCH3) (R = p-FC6H4 (3), p-(NO2)C6H4 (4)), Im(OMe)2(IMes)RuCl(=CHCH3)(SPh) (5), Me2Im(OMe)2(SIMes)RuCl(=CHCH3)(SPh) (6), Im(OMe)2(SIMes)(F5C6S)RuCl(=CHR) (R = C4H9 (9), C5H11 (10)). The activity of these species in the standard Grubbs' tests for ring-opening metathesis polymerization, ring-closing and cross-metathesis are reported. Although these thiolate derivatives are shown to exhibit modest metathesis activities, the reactivity is enhanced in the presence of BCl3.

  8. Olefin Metathesis Polymerization: The Unexpected Role of Carbenoid Species in Formation of Macromolecules

    Science.gov (United States)

    Snyder, Donald M.

    1996-02-01

    Today most undergraduate organic chemistry texts present some material on polymers, but the coverage in these texts is necessarily quite limited. Step-growth and free-radical chain growth systems, along with some mention of coordination polymerization, usually constitute the bulk of introductory material. Very little of the advances in polymer chemistry since the 1960's is reflected in the undergraduate curriculum. One particularly interesting topic still rarely seen outside of the research literature is the subject of metathesis polymerization. This article is intended to present the interested reader with a brief introduction to the mechanism of this unique process, its historical background, and some recent developments in the field.

  9. Olefin Metathesis With Ruthenium-Arene Catalysts Bearing N-Heterocyclic Carbene Ligands

    Science.gov (United States)

    Delaude, Lionel; Demonceau, Albert

    In this chapter, we summarize the main results of our investigations on the ring-opening metathesis polymerization (ROMP) of cyclooctene catalyzed by various ruthenium (Ru)-arene complexes bearing imidazolin-2-ylidene, imidazolidin- 2-ylidene, or triazolin-5-ylidene ligands. Three major findings emerged from this study. First, we underscored the intervention of a photochemical activation step due to visible light illumination. Second, we established that the presence of an endocyclic double bond in the carbene ligand central heterocycle was not crucial to achieve high catalytic efficiencies. Third, we demonstrated that ortho-metallation of the N-heterocyclic carbene (NHC) ligand by the Ru center led to inactive catalysts.

  10. The metathesis of alkynes

    Directory of Open Access Journals (Sweden)

    H. C. M. Vosloo

    1991-07-01

    Full Text Available The alkyne metathesis reaction is a direct result of the known and intensively studied alkene or olefin metathesis reaction. Unfortunately this reaction was never studied as intensively as the alkene metathesis reaction, mainly because of a lack of active catalytic systems. In the alkyn metathesis reaction the carbon-carbon triple bonds are broken and rearranged to give a redistribution of alkylidyne groups.

  11. Synthesis of High Performance Cyclic Olefin Polymers (COPs with Ester Group via Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jing Cui

    2015-08-01

    Full Text Available Novel ester group functionalized cyclic olefin polymers (COPs with high glass transition temperature, high transparency, good mechanical performance and excellent film forming ability have been achieved in this work via efficient ring-opening metathesis copolymerization of exo-1,4,4a,9,9a,10-hexahydro-9,10(1′,2′-benzeno-l,4-methanoanthracene (HBM and comonomers (5-norbornene-2-yl methylacetate (NMA, 5-norbornene-2-yl methyl 2-ethylhexanoate (NME or 5-norbornene-2-yl methyldodecanoate (NMD utilizing the Grubbs first generation catalyst, Ru(CHPh(Cl2(PCy32 (Cy = cyclohexyl, G1, followed by hydrogenation of double bonds in the main chain. The fully hydrogenated copolymers were characterized by nuclear magnetic resonance, FT-IR spectroscopy analysis, gel permeation chromatography, and thermo gravimetric analysis. Differential scanning calorimetry curves showed that the glass transition temperatures (Tg linearly decreased with the increasing of comonomers content, which was easily controlled by changing feed ratios of HBM and comonomers. Static water contact angles tests indicate that hydrophilicity of copolymers can also be modulated by changing the comonomers incorporation. Additionally, the mechanical performances of copolymers were also investigated.

  12. A reação de metátese de olefinas: reorganização e ciclização de compostos orgânicos The olefin metathesis reaction: reorganization and ciclization of organic compounds

    Directory of Open Access Journals (Sweden)

    Daniel Frederico

    2005-08-01

    Full Text Available The olefin metathesis reaction allows the exchange of complex alkyl units between two olefins, with the formation of a new olefinic link and a sub-product olefin usually ethylene. This reaction has found extensive application in the last ten years with the development of the Grubbs and Schrock catalysts, in total synthesis of complex organic molecules, as opposed to the very important use in the petrochemical industry with relatively simple molecules. This review intends to trace a historical and mechanistic pathway from industry to academy, before illustrating the more recent advances.

  13. Z-Selective Olefin Metathesis Processes Catalyzed by a Molybdenum Hexaisopropylterphenoxide Monopyrrolide Complex

    Science.gov (United States)

    Flook, Margaret M.; Jiang, Annie J.; Schrock, Richard R.; Müller, Peter; Hoveyda, Amir H.

    2009-01-01

    The molybdenum-based monoaryloxide monopyrrolide (MAP) species, Mo(NAd)(CHCMe2Ph)(C4H4N)(HIPTO) (2a), which contains “small” imido (Ad = 1-adamantyl) and “large” aryloxide (HIPTO = O-2,6(2,4,6-i-Pr3C6H2)C6H3) ligands, catalyzes Z-selective metathesis reactions as a consequence of intermediate metallacyclobutane species not being able to have a (anti) substituent pointing toward the HIPTO group. ROMP of dicarbomethoxynorbornadiene (DCMNBD) with 2% 2a in toluene leads to >99% cis and >99% syndiotactic poly(DCMNBD), while ROMP of cyclooctene and 1,5-cyclooctadiene (300 equiv)with initiator 2a leads to poly(cyclooctene) and poly(cyclooctadiene) that have cis contents of >99%; all are previously unknown microstructures. Z-selectivity is also observed in the metathesis of cis-4-octene and cis-3-hexene by initiator 2a to give cis-3-heptene. PMID:19462947

  14. Synthesis of Chiral, Enantiopure Allylic Amines by the Julia Olefination of α-Amino Esters

    Directory of Open Access Journals (Sweden)

    Fabio Benedetti

    2016-06-01

    Full Text Available The four-step conversion of a series of N-Boc-protected l-amino acid methyl esters into enantiopure N-Boc allylamines by a modified Julia olefination is described. Key steps include the reaction of a lithiated phenylalkylsulfone with amino esters, giving chiral β-ketosulfones, and the reductive elimination of related α-acetoxysulfones. The overall transformation takes place under mild conditions, with good yields, and without loss of stereochemical integrity, being in this respect superior to the conventional Julia reaction of α-amino aldehydes.

  15. A possible mechanism for enantioselectivity in the chiral epoxidation of olefins with.

    Science.gov (United States)

    Jacobsen, H; Cavallo, L

    2001-01-01

    The origin of enantioselectivity in the Jacobsen-Katsuki reaction has been investigated by applying density functional calculations in combination with molecular mechanics methodologies. The calculations suggest that a high enantiomeric excess is connected to three specific features: 1) a chiral diimine bridge, which induces folding of the salen ligand(H2salen = bis(salicylidene)ethylenediamine), and hence the formation of a chiral pocket; 2) bulky groups at the 3,3'-positions of the salen ligand, which cause a preferential approach from the side of the aromatic rings; and 3) pi conjugation of the olefinic double bond, which confers regioselectivity and, consequently, enantioselectivity. In combination with experimental studies, the model also provides a rationale for the decrease in ee values when one of these components is missing.

  16. In tandem or alone: a remarkably selective transfer hydrogenation of alkenes catalyzed by ruthenium olefin metathesis catalysts.

    Science.gov (United States)

    Zieliński, Grzegorz Krzysztof; Samojłowicz, Cezary; Wdowik, Tomasz; Grela, Karol

    2015-03-07

    A system for transfer hydrogenation of alkenes, composed of a ruthenium metathesis catalyst and HCOOH, is presented. This operationally simple system can be formed directly after a metathesis reaction to effect hydrogenation of the metathesis product in a single-pot. These hydrogenation conditions are applicable to a wide range of alkenes and offer remarkable selectivity.

  17. Thermal decomposition of ethylene oxide on Pd(111). Comparison of the pathways for the selective oxidation of ethylene and olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, R.M. (Univ. of Cambridge (United Kingdom)); Ormerod, R.M. (Univ. of Keele (United Kingdom)); Tysoe, W.T. (Univ. of Wisconsin, Milwaukee, WI (United States))

    1994-03-01

    The product distribution detected in the multimass temperature-programmed desorption of a saturated overlayer of ethylene oxide adsorbed on Pd(111) at [approximately] 180 K indicates that it decomposes to yield ethylene and acetaldehyde. These observations are interpreted by postulating that ethylene oxide reacts to form an oxymetallocycle. This is proposed to thermally decompose in a manner analogous to carbometallocycles that form during olefin metathesis catalysis by the reaction between an alkene and a surface carbene. Thus, the metallocycle can decompose to yield ethylene and deposit adsorbed atomic oxygen or undergo a [beta]-hydrogen transfer to form acetaldehyde. 25 refs., 2 figs., 1 tab.

  18. Synthesis of Orthogonally Reactive FK506 Derivatives via Olefin Cross Metathesis

    Science.gov (United States)

    Marinec, Paul S.; Evans, Christopher G.; Gibbons, Garrett S.; Tarnowski, Malloree A.; Overbeek, Daniel L.; Gestwicki, Jason E.

    2009-01-01

    Chemical inducers of dimerization (CIDs) are employed in a wide range of biological applications, to control protein localization, modulate protein-protein interactions and improve drug lifetimes. These bifunctional chemical probes are assembled from two synthetic modules, which each provide affinity for a distinct protein target. FK506 and its derivatives are often employed as modules in the syntheses of these bifunctional constructs, owing to the abundance and favorable distribution of their target, FK506-binding protein (FKBP). However, the structural complexity of FK506 necessitates multi-step syntheses and/or multiple protection-deprotection schemes prior to installation into CIDs. In this work, we describe an efficient, one-step synthesis of FK506 derivatives through a selective, microwave-accelerated, cross metathesis diversification step of the C39 terminal alkene. Using this approach, FK506 is modified with an array of functional groups, including primary amines and carboxylic acids, which make the resulting derivatives suitable for the modular assembly of CIDs. To illustrate this idea, we report the synthesis of a heterobifunctional HIV protease inhibitor. PMID:19643614

  19. Carboxylate-assisted C(sp³)-H activation in olefin metathesis-relevant ruthenium complexes.

    Science.gov (United States)

    Cannon, Jeffrey S; Zou, Lufeng; Liu, Peng; Lan, Yu; O'Leary, Daniel J; Houk, K N; Grubbs, Robert H

    2014-05-07

    The mechanism of C-H activation at metathesis-relevant ruthenium(II) benzylidene complexes was studied both experimentally and computationally. Synthesis of a ruthenium dicarboxylate at a low temperature allowed for direct observation of the C-H activation step, independent of the initial anionic ligand-exchange reactions. A first-order reaction supports an intramolecular concerted metalation-deprotonation mechanism with ΔG(‡)(298K) = 22.2 ± 0.1 kcal·mol(-1) for the parent N-adamantyl-N'-mesityl complex. An experimentally determined ΔS(‡) = -5.2 ± 2.6 eu supports a highly ordered transition state for carboxylate-assisted C(sp(3))-H activation. Experimental results, including measurement of a large primary kinetic isotope effect (k(H)/k(D) = 8.1 ± 1.7), agree closely with a computed six-membered carboxylate-assisted C-H activation mechanism where the deprotonating carboxylate adopts a pseudo-apical geometry, displacing the aryl ether chelate. The rate of cyclometalation was found to be influenced by both the electronics of the assisting carboxylate and the ruthenium ligand environment.

  20. Catalytic Z-selective olefin cross-metathesis for natural product synthesis.

    Science.gov (United States)

    Meek, Simon J; O'Brien, Robert V; Llaveria, Josep; Schrock, Richard R; Hoveyda, Amir H

    2011-03-24

    Alkenes are found in many biologically active molecules, and there are a large number of chemical transformations in which alkenes act as the reactants or products (or both) of the reaction. Many alkenes exist as either the E or the higher-energy Z stereoisomer. Catalytic procedures for the stereoselective formation of alkenes are valuable, yet methods enabling the synthesis of 1,2-disubstituted Z alkenes are scarce. Here we report catalytic Z-selective cross-metathesis reactions of terminal enol ethers, which have not been reported previously, and of allylic amides, used until now only in E-selective processes. The corresponding disubstituted alkenes are formed in up to >98% Z selectivity and 97% yield. These transformations, promoted by catalysts that contain the highly abundant and inexpensive metal molybdenum, are amenable to gram-scale operations. Use of reduced pressure is introduced as a simple and effective strategy for achieving high stereoselectivity. The utility of this method is demonstrated by its use in syntheses of an anti-oxidant plasmalogen phospholipid, found in electrically active tissues and implicated in Alzheimer's disease, and the potent immunostimulant KRN7000.

  1. Poly(phosphorodiamidate)s by Olefin Metathesis Polymerization with Precise Degradation.

    Science.gov (United States)

    Steinmann, Mark; Wagner, Manfred; Wurm, Frederik R

    2016-11-21

    Degradable polymers are a currently growing field of research for biomedical and materials science applications. The majority of such compounds are based on polyesters and polyamides. In contrast, their phosphorus-containing counterparts are much less studied, in spite of their potential precise degradation profile and biocompatibility. Herein, the first library of poly(phosphorodiamidate)s (PPDAs) with two P-N bonds forming the polymer backbone and a pendant P-OR group is prepared through acyclic diene metathesis polymerization. They are designed to vary in their hydrophilicity and are compared with the structural analogues poly(phosphoester)s (PPEs) with respect to their thermal properties and degradation profiles. The degradation of PPDAs can be controlled precisely by the pH: under acidic conditions the P-N linkages in the polymer backbone are cleaved, whereas under basic conditions the pendant ester is cleaved selectively and almost no backbone degradation occurs. The PPDAs exhibit distinctively higher thermal stability (from thermogravimetric analysis (TGA)) and higher glass transition and/or melting temperatures (from differential scanning calorimetry (DSC)) compared with analogous PPEs. This renders this exotic class of phosphorus-containing polymers as highly promising for the development of future drug carriers or tissue engineering scaffolds. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Efficient synthesis of enantiopure conduritols by ring-closing metathesis

    DEFF Research Database (Denmark)

    Jørgensen, Morten; Iversen, Erik Høgh; Paulsen, Andreas Lundtang

    2001-01-01

    Two short synthetic approaches to enantiopure conduritols are described starting from the chiral pool. In both cases, the cyclohexene ring is assembled via ring-closing olefin metathesis. The terminal diene precursers for the metathesis reaction are prepared either from octitols or from tartaric...... acids. The farmer route involves a new method for selective bromination of the primary positions in long-chain carbohydrate polyols. Subsequent reductive elimination with zinc then generates the diene. The latter route uses a highly diastereoselective addition of divinylzinc to tartaric dialdehydes...

  3. Efficient synthesis of enantiopure conduritols by ring-closing metathesis

    DEFF Research Database (Denmark)

    Jørgensen, Morten; Iversen, Erik Høgh; Paulsen, Andreas Lundtang

    2001-01-01

    acids. The farmer route involves a new method for selective bromination of the primary positions in long-chain carbohydrate polyols. Subsequent reductive elimination with zinc then generates the diene. The latter route uses a highly diastereoselective addition of divinylzinc to tartaric dialdehydes......Two short synthetic approaches to enantiopure conduritols are described starting from the chiral pool. In both cases, the cyclohexene ring is assembled via ring-closing olefin metathesis. The terminal diene precursers for the metathesis reaction are prepared either from octitols or from tartaric...

  4. Self-healing polymers---The importance of choosing an adequate healing monomer, and the olefin metathesis polymerization of agricultural oils

    Science.gov (United States)

    Mauldin, Timothy C.

    Modern society's immense and ill-fated reliance on petrochemical-based polymeric materials will likely necessitate a shift in polymer production paradigms in the near future. The work presented herein attempts to address this issue via a two-pronged approach. First, efforts to improve the duration of composite materials by incorporation of a self-healing function are discussed, the fruitful application of which can potentially reduce or eliminate the massive carbon footprints associated with the repair/replacement of damaged materials. And second, polymeric materials derived predominately from natural and renewable feedstock---namely vegetable oils---are developed. Early microcapsule-based self-healing materials utilized dicyclopentadiene-filled microcapsules and Grubbs' olefin metathesis catalyst to initiate the healing mechanism. However, the patent-protected catalyst, made from the precious metal ruthenium and sometimes costly ligands, will likely never be inexpensive and therefore limit large-scale applications. Hence, clever approaches to reduce the healing catalyst loading in self-healing polymers are of great interest. To this end, our efforts have revolved around solving the problem of the relatively inefficient use of Grubbs' catalyst during the healing mechanism. Given that the mismatch of the olefin metathesis polymerization and Grubbs' catalyst dissolution (in monomer) kinetics is a known cause of this inefficient use of the catalyst, we attempted to tune the "latency" (i.e. pot life) of the olefin metathesis polymerization to ensure more complete dissolution of catalyst in monomer. In an alternative approach to improving efficient catalyst dissolution, we developed a simple model to predict relative dissolution rates of Grubbs' catalyst in a small library of healing monomers. This model was shown experimentally to be able to aid in the selection of, for example, reactive monomer additives that can yield impressive improvements in catalyst dissolution

  5. Elucidating the Link between NMR Chemical Shifts and Electronic Structure in d(0) Olefin Metathesis Catalysts.

    Science.gov (United States)

    Halbert, Stéphanie; Copéret, Christophe; Raynaud, Christophe; Eisenstein, Odile

    2016-02-24

    The nucleophilic carbon of d(0) Schrock alkylidene metathesis catalysts, [M] = CHR, display surprisingly low downfield chemical shift (δ(iso)) and large chemical shift anisotropy. State-of-the-art four-component relativistic calculations of the chemical shift tensors combined with a two-component analysis in terms of localized orbitals allow a molecular-level understanding of their orientations, the magnitude of their principal components (δ11 > δ22 > δ33) and associated δ(iso). This analysis reveals the dominating influence of the paramagnetic contribution yielding a highly deshielded alkylidene carbon. The largest paramagnetic contribution, which originates from the coupling of alkylidene σ(MC) and π*(MC) orbitals under the action of the magnetic field, is analogous to that resulting from coupling σ(CC) and π*(CC) in ethylene; thus, δ11 is in the MCH plane and is perpendicular to the MC internuclear direction. The higher value of carbon-13 δ(iso) in alkylidene complexes relative to ethylene is thus due to the smaller energy gap between σ(MC) and π*(MC) vs this between σ(CC) and π*(CC) in ethylene. This effect also explains why the highest value of δ(iso) is observed for Mo and the lowest for Ta, the values for W and Re being in between. In the presence of agostic interaction, the chemical shift tensor principal components orientation (δ22 or δ33 parallel or perpendicular to π(MX)) is influenced by the MCH angle because it determines the orientation of the alkylidene CHR fragment relative to the MC internuclear axis. The orbital analysis shows how the paramagnetic terms, understood with a localized bond model, determine the chemical shift tensor and thereby δ(iso).

  6. Teaching metathesis "simple" stereochemistry

    National Research Council Canada - National Science Library

    Fürstner, Alois

    2013-01-01

    Applications of metal-catalyzed olefin metathesis reactions manifested dramatic growth during the late 20th and early 21st centuries, culminating in the 2005 Nobel Prize awarded to three of the pioneers...

  7. Activation of Surface ReO x Sites on Al 2 O 3 Catalysts for Olefin Metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Lwin, Soe; Li, Yuanyuan; Frenkel, Anatoly I.; Wachs, Israel E.

    2015-11-06

    The nature of activated surface ReOx sites and surface reaction intermediates for supported ReOx/Al2O3 catalysts during propylene self-metathesis were systematically investigated for the first time using in situ spectroscopy (Raman, UV–vis, XAS (XANES/EXAFS) and IR). In situ Raman spectroscopy reveals that olefins selectively interact with the surface dioxo ReO4 sites anchored at acidic alumina hydroxyls. In situ UV–vis indicates that surface Re5+ and some Re6+ sites form, and in situ XAS indicates a reduction in the number of Re=O bond character in the propylene self-metathesis reaction environment, especially as the temperature is increased. The appearance of oxygenated products during propylene activation supports the conclusion that catalyst activation involves removal of oxygen from the surface rhenia sites (pseudo-Wittig mechanism). Isotopic CD3CD=CD2 → CH3CH=CH2 switch experiments demonstrate the presence of surface Re=CD2 and Re=CDCD3 reaction intermediates, with the surface Re=CD2 species being the most abundant reaction intermediate. In situ IR spectroscopy indicates the presence of significant surface propylene π complexes on alumina and rhenia sites of the catalyst, which complicates analysis of surface reaction intermediates during propylene self-metathesis.

  8. Organometallic Catalysis in Diene and Cyclo-olefin Polymerisation Processes. II. The Metathesis Reaction in Polymer Chemistry

    Science.gov (United States)

    Dolgoplosk, B. A.; Korshak, Yu V.

    1984-01-01

    The development of ideas concerning the mechanism of the metathesis reaction and its employment in polymer chemistry are examined. The possible applications of the metathesis reaction in the synthesis of polymers by the polymerisation of cycloolefins and cyclodienes with ring opening and via the degradation of high-molecular-weight rubbers and their modification are discussed. The bibliography includes 160 references.

  9. New library of aminosulfonyl-tagged Hoveyda–Grubbs type complexes: Synthesis, kinetic studies and activity in olefin metathesis transformations

    Directory of Open Access Journals (Sweden)

    Etienne Borré

    2010-12-01

    Full Text Available Seven novel Hoveyda–Grubbs precatalysts bearing an aminosulfonyl function are reported. Kinetic studies indicate an activity enhancement compared to Hoveyda’s precatalyst. A selection of these catalysts was investigated with various substrates in ring-closing metathesis of dienes or enynes and cross metathesis. The results demonstrate that these catalysts show a good tolerance to various chemical functions.

  10. Molybdenum and Tungsten Imido Alkylidene N-Heterocyclic Carbene Catalysts Bearing Cationic Ligands for Use in Biphasic Olefin Metathesis.

    Science.gov (United States)

    Elser, Iris; Schowner, Roman; Frey, Wolfgang; Buchmeiser, Michael R

    2017-05-05

    Ionic Mo- and W-imido alkylidene N-heterocyclic carbene (NHC) olefin metathesis catalysts, [Mo{N-2,6-(Me2 )C6 H3 }(CHCMe2 Ph)(IMesH2 )(OTf)(PPS)]OTf (3), [Mo(N-2,6-(Me2 )C6 H3 )(CHCMe2 Ph)(IMesH2 )(OC6 F5 )(PPS)][B(Ar(F) )4 ] (5), [Mo(NtBu)(CHCMe2 Ph)(4,5-dichloro-1,3-dimethylimidazol-2-ylidene)(OTf)(2,6-Ph-4-{2,4,6-Ph-pyridinium}phenolate)][OTf] (9), [Mo(NtBu)(CHCMe2 Ph)(4,5-dichloro-1,3-dimethylimidazol-2-ylidene)(2,6-Ph-4-{2,4,6-Ph-pyridinium}phenolate)][B(Ar(F) )4 ]2 (10, PPS=pyridiniumpropanesulfonate, IMesH2 =1,3-dimesitylimidazolin-2-ylidene, OTf=CF3 SO3 , B(Ar(F) )4 =tetrakis(3,5-bis(trifluoromethyl)phenyl)borate) were prepared from betaine-type ligands. Also, the first bis-NHC and a nitron-based bis(amido) bistriflate imido alkylidene complex, [Mo(NtBu)(CHCMe2 Ph)(4,5-dichloro-1,3-dimethylimidazol-2-ylidene)2 (THF)(2,6-Ph-4-{2,4,6-Ph-pyridinium}phenolate)][OTf]2 (11) and [Mo(N-2,6-Me2 -C6 H3 )(CHCMe2 Ph)(N-{1,4-diphenyl-1,3,4-triazol-2-ylium}-N-phenyl-amido)2 ][OTf]2 (14) along with ionic [W(N-2,6-iPr2 -C6 H3 )(CHCMe2 Ph)(N-2,5-Me2 C4 H2 )(IiPr)(2,6-tBu-4-PPh3 -phenolate)] (17, IiPr=1,3-diisopropylimidazol-2-ylidene) are reported. With these new catalysts, the first biphasic reaction setup with Group 6 metal alkylidene NHC complexes was successfully established using a pyrrole/heptane mixture as a liquid phase. Productivities under biphasic conditions were comparable to those of reactions in 1,2-dichloroethane or toluene. Metal concentrations of <2 ppm migrated into the nonpolar heptane phase as measured by inductively coupled plasma-optical emission spectroscopy. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Tandem catalysis in domino olefin cross-metathesis/intramolecular oxa-conjugate cyclization: concise synthesis of 2,6-cis-substituted tetrahydropyran derivatives.

    Science.gov (United States)

    Fuwa, Haruhiko; Noguchi, Takuma; Noto, Kenkichi; Sasaki, Makoto

    2012-10-28

    Herein, we describe the concise synthesis of 2,6-cis-substituted tetrahydropyran derivatives based on a domino olefin cross-metathesis/intramolecular oxa-conjugate cyclization (CM/IOCC) reaction. We have found that the domino CM/IOCC of δ-hydroxy olefins with α,β-unsaturated carbonyl compounds (e.g., trans-crotonaldehyde or N-acryloyl-2,5-dimethylpyrrole) could be efficiently achieved in the presence of the second-generation Hoveyda-Grubbs catalyst under elevated temperature conditions, directly affording 2,6-cis-substituted tetrahydropyrans in excellent yields with synthetically useful diastereoselectivity ("auto-tandem catalysis"). In addition, we have found that the domino CM/IOCC of δ-hydroxy olefins with α,β-unsaturated carbonyl compounds could be achieved simply by performing CM in the presence of a Brønsted acid in CH(2)Cl(2) at 25-35 °C, which delivered 2,6-cis-substituted tetrahydropyrans in good yields with excellent diastereoselectivity ("orthogonal-tandem catalysis"). To understand the mechanism of auto-tandem catalysis in the domino CM/IOCC reaction, we have investigated the role of ruthenium hydride complexes in the IOCC of a ζ-hydroxy α,β-unsaturated ketone as a model case.

  12. Stereoselective synthesis of macrocyclic peptides via a dual olefin metathesis and ethenolysis approach† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5sc01507c Click here for additional data file.

    Science.gov (United States)

    Mangold, Shane L.

    2015-01-01

    Macrocyclic compounds occupy an important chemical space between small molecules and biologics and are prevalent in many natural products and pharmaceuticals. The growing interest in macrocycles has been fueled, in part, by the design of novel synthetic methods to these compounds. One appealing strategy is ring-closing metathesis (RCM) that seeks to construct macrocycles from acyclic diene precursors using defined transition-metal alkylidene catalysts. Despite its broad utility, RCM generally gives rise to a mixture of E- and Z-olefin isomers that can hinder efforts for the large-scale production and isolation of such complex molecules. To address this issue, we aimed to develop methods that can selectively enrich macrocycles in E- or Z-olefin isomers using an RCM/ethenolysis strategy. The utility of this methodology was demonstrated in the stereoselective formation of macrocyclic peptides, a class of compounds that have gained prominence as therapeutics in drug discovery. Herein, we report an assessment of various factors that promote catalyst-directed RCM and ethenolysis on a variety of peptide substrates by varying the olefin type, peptide sequence, and placement of the olefin in macrocycle formation. These methods allow for control over olefin geometry in peptides, facilitating their isolation and characterization. The studies outlined in this report seek to expand the scope of stereoselective olefin metathesis in general RCM. PMID:26509000

  13. Evaluation of an olefin metathesis pre-catalyst with a bulky and electron-rich N-heterocyclic carbene

    KAUST Repository

    Manzini, Simone

    2015-03-01

    The commercially-available metathesis pre-catalyst M23 has been evaluated alongside new complex [RuCl2((3-phenyl)indenylidene)(PPh3)(SIPrOMe)] (1), which bears a para-methoxy-substituted N-heterocyclic carbene ligand. Several model metathesis reactions could be conducted using only parts-per-million levels of ruthenium catalyst. The effects of the different NHC ligands on reactivity have been explored.

  14. Nitro-Grela-type complexes containing iodides - robust and selective catalysts for olefin metathesis under challenging conditions.

    Science.gov (United States)

    Tracz, Andrzej; Matczak, Mateusz; Urbaniak, Katarzyna; Skowerski, Krzysztof

    2015-01-01

    Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM) and cross metathesis (CM) reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  15. Nitro-Grela-type complexes containing iodides – robust and selective catalysts for olefin metathesis under challenging conditions

    Directory of Open Access Journals (Sweden)

    Andrzej Tracz

    2015-10-01

    Full Text Available Iodide-containing nitro-Grela-type catalysts have been synthesized and applied to ring closing metathesis (RCM and cross metathesis (CM reactions. These new catalysts have exhibited improved efficiency in the transformation of sterically, non-demanding alkenes. Additional steric hindrance in the vicinity of ruthenium related to the presence of iodides ensures enhanced catalyst stability. The benefits are most apparent under challenging conditions, such as very low reaction concentrations, protic solvents or with the occurrence of impurities.

  16. Immobilization of chiral enzyme inhibitors on solid supports by amide-forming coupling and olefin metathesis

    NARCIS (Netherlands)

    Reetz, MT; Ruggeberg, CJ; Droge, MJ; Quax, WJ

    2002-01-01

    The question whether phage display can be used as a selection method in the directed evolution of enantioselective enzymes has not been answered satisfactorily to date. In order to be able to test this in a specific case, namely in the hydrolytic kinetic resolution of the acetate derived from

  17. How does the addition of steric hindrance to a typical N-heterocyclic carbene ligand affect catalytic activity in olefin metathesis?

    KAUST Repository

    Poater, Albert

    2013-01-01

    Density functional theory (DFT) calculations were used to predict and rationalize the effect of the modification of the structure of the prototype 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) N-heterocyclic carbene (NHC) ligand. The modification consists in the substitution of the methyl groups of ortho isopropyl substituent with phenyl groups, and here we plan to describe how such significant changes affect the metal environment and therefore the related catalytic behaviour. Bearing in mind that there is a significant structural difference between both ligands in different olefin metathesis reactions, here by means of DFT we characterize where the NHC ligand plays a more active role and where it is a simple spectator, or at least its modification does not significantly change its catalytic role/performance. © 2013 The Royal Society of Chemistry.

  18. Ring-Opening Metathesis Activity of Ruthenium-Based Olefin Metathesis Catalyst Coordinated with 1,3-Bis(2,6-Diisopropylphenyl)-4,5-Dihydroimidazoline

    Science.gov (United States)

    Karabulut, Solmaz; Verpoort, Francis

    A 1,3-bis-(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene substituted ruthenium (Ru)-based complex (4) has been prepared starting from (PCy3)2(Cl)2Ru=CHPh (2). The catalytic performance of catalyst (4) is checked on ring-opening metathesis polymerization (ROMP) of the low strain monomer, cycloocta-1,5-diene (COD), and also compared with catalyst (2) and (3).

  19. Bidirectional cross metathesis and ring-closing metathesis/ring opening of a C2-symmetric building block: a strategy for the synthesis of decanolide natural products

    Directory of Open Access Journals (Sweden)

    Bernd Schmidt

    2013-11-01

    Full Text Available Starting from the conveniently available ex-chiral pool building block (R,R-hexa-1,5-diene-3,4-diol, the ten-membered ring lactones stagonolide E and curvulide A were synthesized using a bidirectional olefin-metathesis functionalization of the terminal double bonds. Key steps are (i a site-selective cross metathesis, (ii a highly diastereoselective extended tethered RCM to furnish a (Z,E-configured dienyl carboxylic acid and (iii a Ru–lipase-catalyzed dynamic kinetic resolution to establish the desired configuration at C9. Ring closure was accomplished by macrolactonization. Curvulide A was synthesized from stagonolide E through Sharpless epoxidation.

  20. Ruthenium—Arene Complexes Derived from NHC•CO2 and NHC•CS2 Zwitterionic Adducts and Their Use in Olefin Metathesis

    Science.gov (United States)

    Delaude, Lionel; Demonceau, Albert

    A range of imidazol(in)ium-2-carboxylates and -dithiocarboxylates bearing alkyl or aryl groups on their nitrogen atoms were prepared by reacting the corresponding N-heterocyclic carbenes (NHCs) with either carbon dioxide or carbon disulfide. All the zwitterionic products were characterized by various analytical techniques, including thermogravimetric analysis (TGA). Their ability to act as NHC ligand precursors for in situ catalytic applications was investigated in the ruthenium-promoted ring-opening metathesis polymerization (ROMP) of cyclo-octene. Upon exposure to the [RuCl2(p-cymene)]2 dimer, the NHC CO2 adducts readily dissociated to generate [RuCl2(p-cymene)(NHC)] complexes that were highly active catalyst precursors for olefin metathesis. Conversely, the NHC CS2 betaines retained their zwitterionic nature and led to new cationic complexes of the [RuCl(p-cymene)(NHC CS2)]+PF6 - type that were devoid of any significant catalytic activity in the reaction under consideration

  1. A diversity-oriented approach to indolocarbazoles via Fischer indolization and olefin metathesis: total synthesis of tjipanazole D and I.

    Science.gov (United States)

    Kotha, Sambasivarao; Saifuddin, Mohammad; Aswar, Vikas R

    2016-10-18

    New synthetic strategies to indolocarbazoles have been reported via two-fold Fischer indolization under green conditions using l-(+)-tartaric acid and N,N-dimethyl urea. Starting with cyclohexanone, a bench-top starting material, this methodology has been extended to the total synthesis of natural products such as tjipanazoles D and I as well as the core structure of asteropusazole and racemosin B. Here, atom economical reactions like ring-closing metathesis, enyne-metathesis, and the Diels-Alder reaction have been used as key steps. Diverse strategies demonstrated here are useful in medicinal chemistry and materials science to design a library of decorated indoles.

  2. Studies of the mechanism of the olefin metathesis reaction and the process of active site formation on photoreduced molybdenum-silicate catalysts. I. Mechanism of formation of molybdenum-carbene intermediates

    Energy Technology Data Exchange (ETDEWEB)

    Elev, I.V.; Shelimov, B.N.; Kazanskii, V.B.

    1987-10-01

    The products of the initial stages of the reaction of ethylene and propylene with Mo/sup 4 +/ ions in photoreduced molybdenum-silicate olefin metathesis catalysts have been studied by mass spectroscopy. The reaction of C/sub 2/H/sub 4/ with Mo/sup 4 +/ has been found to yield propylene, whereas interaction of C/sub 3/H/sub 6/ with Mo/sup 4 +/ gives a superequilibrium concentration of butenes and a small amount of pentenes. A significant kinetic isotope effect for the metathesis reaction was observed upon substitution of C/sub 3/H/sub 6/ by C/sub 3/D/sub 6/. The results can be interpreted in terms of a stepwise mechanism involving carbene intermediates, which are formed via isomerization of surface-bound ..pi..-complexes of olefins with Mo/sup 4 +/ ions as a result of intramolecular 1,2-H atom transfer.

  3. Synthesis of anti-tumour phosphatidylinositol analogues from glucose by the use of ring-closing olefin metathesis

    DEFF Research Database (Denmark)

    Andresen, Thomas Lars; Skytte, Dorthe M.; Madsen, Robert

    2004-01-01

    -closing metathesis to afford the key conduritol B intermediate 7. This can trifurcate to form three different benzyl-protected myo-inositol headgroups 4-6, which after phosphorylation and attachment of the glycerolipid part give phosphatidylinositols 1-3. Preliminary biological testing against human colon...

  4. Catalytic Alkene Metathesis in Ionic Liquids

    Science.gov (United States)

    Fischmeister, Cédric

    Olefin metathesis has found a tremendous number of application in the past 25 years. Immobilisation of olefin metathesis (pre)catalysts in room temperature ionic liquids (RTILs) offers the opportunity to recover and reuse the catalyst and also to reduce the level of ruthenium (Ru) contaminants in the products.

  5. Ruthenium carbenes supported on mesoporous silicas as highly active and selective hybrid catalysts for olefin metathesis reactions under continuous flow.

    Science.gov (United States)

    Bru, Miriam; Dehn, Richard; Teles, J Henrique; Deuerlein, Stephan; Danz, Manuel; Müller, Imke B; Limbach, Michael

    2013-08-26

    In the search for a highly active and selective heterogenized metathesis catalyst, we systematically varied the pore geometry and size of various silica-based mesoporous (i.e., MCM-41, MCM-48, and SBA-15) and microporous (ZSM-5 and MWW) versus macroporous materials (D11-10 and Aerosil 200), besides other process parameters (temperature, dilution, and mean residence time). The activity and, especially, selectivity of such "linker-free" supports for ruthenium metathesis catalysts were evaluated in the cyclodimerization of cis-cyclooctene to form 1,9-cyclohexadecadiene, a valuable intermediate in the flavor and fragrance industry. The optimized material showed not only exceptionally high selectivity to the valuable product, but also turned out to be a truly heterogeneous catalyst with superior activity relative to the unsupported homogeneous complex. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Grubbs-Hoveyda type catalysts bearing a dicationic N-heterocyclic carbene for biphasic olefin metathesis reactions in ionic liquids.

    Science.gov (United States)

    Koy, Maximilian; Altmann, Hagen J; Autenrieth, Benjamin; Frey, Wolfgang; Buchmeiser, Michael R

    2015-01-01

    The novel dicationic metathesis catalyst [(RuCl2(H2ITapMe2)(=CH-2-(2-PrO)-C6H4))(2+) (OTf(-))2] (Ru-2, H2ITapMe2 = 1,3-bis(2',6'-dimethyl-4'-trimethylammoniumphenyl)-4,5-dihydroimidazol-2-ylidene, OTf(-) = CF3SO3 (-)) based on a dicationic N-heterocyclic carbene (NHC) ligand was prepared. The reactivity was tested in ring opening metathesis polymerization (ROMP) under biphasic conditions using a nonpolar organic solvent (toluene) and the ionic liquid (IL) 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM(+)][BF4 (-)]. The structure of Ru-2 was confirmed by single crystal X-ray analysis.

  7. Nitrenium ions and trivalent boron ligands as analogues of N-heterocyclic carbenes in olefin metathesis: a computational study.

    Science.gov (United States)

    Pazio, A; Woźniak, K; Grela, K; Trzaskowski, B

    2015-12-14

    We used the density functional theory to evaluate the suitability of nitrenium ions and trivalent boron ligands as analogues of N-heterocyclic carbenes in ruthenium-based metathesis catalysts. We demonstrate that these analogues induce only minor structural changes in Hoveyda-Grubbs-like precatalysts, but have major impact on precatalyst initiation. Nitrenium ion-modified precatalysts are characterized by a weak Ru-N bond resulting in a relatively strong Ru-O bond and large free energy barriers for initiation, making them good candidates for efficient latent Ru-based catalysts. On the other hand the trivalent boron ligand, bearing a formal -1 charge, binds strongly to the ruthenium ion, weakening the Ru-O bond and facilitating its dissociation, to promote fast reaction initiation. We show that the calculated bond dissociation energy of the Ru-C/N/B bond may serve as an accurate indicator of the Ru-O bond strength and the rate of metathesis initiation.

  8. Grubbs–Hoveyda type catalysts bearing a dicationic N-heterocyclic carbene for biphasic olefin metathesis reactions in ionic liquids

    Directory of Open Access Journals (Sweden)

    Maximilian Koy

    2015-09-01

    Full Text Available The novel dicationic metathesis catalyst [(RuCl2(H2ITapMe2(=CH–2-(2-PrO-C6H42+ (OTf−2] (Ru-2, H2ITapMe2 = 1,3-bis(2’,6’-dimethyl-4’-trimethylammoniumphenyl-4,5-dihydroimidazol-2-ylidene, OTf− = CF3SO3− based on a dicationic N-heterocyclic carbene (NHC ligand was prepared. The reactivity was tested in ring opening metathesis polymerization (ROMP under biphasic conditions using a nonpolar organic solvent (toluene and the ionic liquid (IL 1-butyl-2,3-dimethylimidazolium tetrafluoroborate [BDMIM+][BF4−]. The structure of Ru-2 was confirmed by single crystal X-ray analysis.

  9. Synthesis of Tetrasubstituted Alkenes via Metathesis

    Directory of Open Access Journals (Sweden)

    Seung-Mann Paek

    2012-03-01

    Full Text Available Fully substituted olefin generation via metathesis is presented. Catalyst development, optimization of reaction conditions and substrate screening are included. In addition, asymmetric alkene metathesis, the cross metathesis reaction for this transformation and its application in natural products will be discussed.

  10. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: Structure and application as latent catalyst in olefin metathesis

    KAUST Repository

    Rouen, Mathieu

    2014-09-11

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2-NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions.

  11. Cationic bis-N-heterocyclic carbene (NHC) ruthenium complex: structure and application as latent catalyst in olefin metathesis.

    Science.gov (United States)

    Rouen, Mathieu; Queval, Pierre; Falivene, Laura; Allard, Jessica; Toupet, Loïc; Crévisy, Christophe; Caijo, Frédéric; Baslé, Olivier; Cavallo, Luigi; Mauduit, Marc

    2014-10-13

    An unexpected cationic bis-N-heterocyclic carbene (NHC) benzylidene ether based ruthenium complex (2 a) was prepared through the double incorporation of an unsymmetrical unsaturated N-heterocyclic carbene (U2 -NHC) ligand that bore an N-substituted cyclododecyl side chain. The isolation and full characterization (including X-ray diffraction studies) of key synthetic intermediates along with theoretical calculations allowed us to understand the mechanism of the overall cationization process. Finally, the newly developed complex 2 a displayed interesting latent behavior during ring-closing metathesis, which could be "switched on" under acidic conditions. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Diversity-oriented approach to macrocyclic cyclophane derivatives by Suzuki-Miyaura cross-coupling and olefin metathesis as key steps.

    Science.gov (United States)

    Kotha, Sambasivarao; Chavan, Arjun S; Shaikh, Mobin

    2012-01-06

    Palladium-catalyzed Suzuki-Miyaura (SM) cross-coupling reaction with allylboronic acid pinacol ester and titanium assisted cross-metathesis (CM)/ring-closing metathesis (RCM) cascade has been used to synthesize macrocyclic cyclophane derivatives.

  13. Olefin metathesis and side reactions with the binary systems of WCl/sub 6/ and metal alkyls. [Bu/sub 4/Sn, Et/sub 2/Zn, Et/sub 3/Al, BuLi co-catalysts

    Energy Technology Data Exchange (ETDEWEB)

    Ichikawa, K.; Watanabe, O.; Takagi, T.; Fukuzumi, K.

    1976-09-01

    The comparison of the behaviors of the WCl/sub 6/-metal alkyl systems (metal alkyls are Bu/sub 4/Sn, Et/sub 2/Zn, Et/sub 3/Al, and BuLi) was carried out in the metathesis of 2-heptene in benzene. The WCl/sub 6/--Et/sub 2/Zn and the WCl/sub 6/--BuLi systems showed the sharp dependence of metathesis on the co-catalyst/WCl/sub 6/ ratio. The yield of the Friedel--Crafts products, heptylbenzenes, increased with a decrease in the co-catalyst/WCl/sub 6/ and the olefin/WCl/sub 6/ ratios, though the WCl/sub 6/--BuLi system barely catalyzed this side reaction. A proper amount of dicyclopentadiene, phenylacetylene, ethyl ether, ethanol, and esters repressed the Friedel--Crafts reaction, and the metathesis products were obtained in high yield and high selectivity in the metathesis of 2-heptene catalyzed by the WCl/sub 6/--Bu/sub 4/Sn system.

  14. Optically Pure, Structural, and Fluorescent Analogues of a Dimeric Y4 Receptor Agonist Derived by an Olefin Metathesis Approach.

    Science.gov (United States)

    Liu, Mengjie; Mountford, Simon J; Richardson, Rachel R; Groenen, Marleen; Holliday, Nicholas D; Thompson, Philip E

    2016-07-14

    The dimeric peptide 1 (BVD-74D, as a diastereomeric mixture) is a potent and selective neuropeptide Y Y4 receptor agonist. It represents a valuable candidate in developing traceable ligands for pharmacological studies of Y4 receptors and as a lead compound for antiobesity drugs. Its optically pure stereoisomers along with analogues and fluorescently labeled variants were prepared by exploiting alkene metathesis reactions. The (2R,7R)-diaminosuberoyl containing peptide, (R,R)-1, had markedly higher affinity and agonist efficacy than its (S,S)-counterpart. Furthermore, the sulfo-Cy5 labeled (R,R)-14 retained high agonist potency as a novel fluorescent ligand for imaging Y4 receptors.

  15. Carboxylate-Assisted C(sp3)–H Activation in Olefin Metathesis-Relevant Ruthenium Complexes

    Science.gov (United States)

    2015-01-01

    The mechanism of C–H activation at metathesis-relevant ruthenium(II) benzylidene complexes was studied both experimentally and computationally. Synthesis of a ruthenium dicarboxylate at a low temperature allowed for direct observation of the C–H activation step, independent of the initial anionic ligand-exchange reactions. A first-order reaction supports an intramolecular concerted metalation–deprotonation mechanism with ΔG⧧298K = 22.2 ± 0.1 kcal·mol–1 for the parent N-adamantyl-N′-mesityl complex. An experimentally determined ΔS⧧ = −5.2 ± 2.6 eu supports a highly ordered transition state for carboxylate-assisted C(sp3)–H activation. Experimental results, including measurement of a large primary kinetic isotope effect (kH/kD = 8.1 ± 1.7), agree closely with a computed six-membered carboxylate-assisted C–H activation mechanism where the deprotonating carboxylate adopts a pseudo-apical geometry, displacing the aryl ether chelate. The rate of cyclometalation was found to be influenced by both the electronics of the assisting carboxylate and the ruthenium ligand environment. PMID:24731019

  16. Complex catalysis. 19. Synthesis of nitrosyl complexes of tungsten and their usefulness as precatalysts for olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Seyferth, K.; Rosenthal, K.; Kuehn, G.; Taube, R. (Technische Hochschule fuer Chemie, Leuna-Merseburg (German Democratic Republic). Sektion Chemie)

    1984-06-01

    Nitrosylating reduction of WCl/sub 6/ with NO leads to WCl/sub 3/(NO)/sub 4/ that on addition of different donor ligands L yields complexes of the types WCl/sub 3/(NO)L/sub 2/ (L = OPPh/sub 3/, HMPT, pyridine) and WX/sub 2/(NO)/sub 2/L/sub 2/ (L = PPh/sub 3/, X = Cl; XL = acac) or mixtures of products (L = Dipy, RCN, Et/sub 4/NCl), respectively. Whereas by carbonylation of WCl/sub 3/(NO)(OPPh/sub 3/)/sub 2/ in the presence of EtAlCl/sub 2/ only chloro carbonyl tungsten complexes formed, the reaction of W(CO)/sub 6/ with NOAlCl/sub 4/ and subsequent addition of PPh/sub 3/ gives, in analogy to molybdenum, the nitrosyl carbonyl complexes W(NO)(CO)/sub 4/(AlCl/sub 4/) and WCl(NO)(CO)/sub 2/(PPh/sub 3/)/sub 2/. All the nitrosyl tungsten complexes in combination with EtAlCl/sub 2/ catalyze the metathesis of pent-2-ene, however, with a significantly lower activity than the corresponding nitrosyl molybdenum systems.

  17. Recent Applications of Alkene Metathesis in Fine Chemical Synthesis

    Science.gov (United States)

    Bicchielli, Dario; Borguet, Yannick; Delaude, Lionel; Demonceau, Albert; Dragutan, Ileana; Dragutan, Valerian; Jossifov, Christo; Kalinova, Radostina; Nicks, François; Sauvage, Xavier

    During the last decade or so, the emergence of the metathesis reaction in organic synthesis has revolutionised the strategies used for the construction of complex molecular structures. Olefin metathesis is indeed particularly suited for the construction of small open-chain molecules and macrocycles using crossmetathesis and ring-closing metathesis, respectively. These reactions serve, inter alia, as key steps in the synthesis of various agrochemicals and pharmaceuticals such as macrocyclic peptides, cyclic sulfonamides, novel macrolides, or insect pheromones. The present chapter is aiming at illustrating the great synthetic potential of metathesis reactions. Shortcomings, such as the control of olefin geometry and the unpredictable effect of substituents on the reacting olefins, will also be addressed. Examples to be presented include epothilones, amphidinolides, spirofungin A, and archazolid. Synthetic approaches involving silicon-tethered ring-closing metathesis, relay ring-closing metathesis, sequential reactions, domino as well as tandem metathesis reactions will also be illustrated.

  18. Olefin cross metathesis based de novo synthesis of a partially protected L-amicetose and a fully protected L-cinerulose derivative

    Directory of Open Access Journals (Sweden)

    Bernd Schmidt

    2014-05-01

    Full Text Available Cross metathesis of a lactate derived allylic alcohol and acrolein is the entry point to a de novo synthesis of 4-benzoate protected L-amicetose and a cinerulose derivative protected at C5 and C1.

  19. Alkene Metathesis and Renewable Materials: Selective Transformations of Plant Oils

    Science.gov (United States)

    Malacea, Raluca; Dixneuf, Pierre H.

    The olefin metathesis of natural oils and fats and their derivatives is the basis of clean catalytic reactions relevant to green chemistry processes and the production of generate useful chemicals from renewable raw materials. Three variants of alkene metathesis: self-metathesis, ethenolysis and cross-metathesis applied to plant oil derivatives will show new routes to fine chemicals, bifunctional products, polymer precursours and industry intermediates.

  20. Divergent Strategy for the Diastereoselective Synthesis of the Tricyclic 6,7-Diaryltetrahydro-6H-benzo[c]chromene Core via Pt(IV)-Catalyzed Cycloaddition of o-Quinone Methides and Olefin Ring-Closing Metathesis.

    Science.gov (United States)

    Tangdenpaisal, Kassrin; Chuayboonsong, Kanokpish; Ruchirawat, Somsak; Ploypradith, Poonsakdi

    2017-03-03

    A divergent strategy for the synthesis of the tricyclic 6,7-diaryltetrahydro-6H-benzo[c]chromene core was successfully developed. The 2,3-trans, 2,4-cis trisubstituted chroman moiety was formed via highly efficient and stereoselective Pt(IV)-catalyzed cycloaddition reactions of the corresponding quinone methides with chalcones. Subsequent steps provided the common diene alcohol, which underwent BF3·Et2O-mediated Et3SiH reduction and olefin ring-closing metathesis (RCM) using Ru(II) catalysts. The sequence of the final two steps provided a handle to diversify the stereochemical outcomes at C6 as well as C10a.

  1. Unsaturated Fatty Acid Esters Metathesis Catalyzed by Silica Supported WMe5

    KAUST Repository

    Riache, Nassima

    2015-11-14

    Metathesis of unsaturated fatty acid esters (FAEs) by silica supported multifunctional W-based catalyst is disclosed. This transformation represents a novel route towards unsaturated di-esters. Especially, the self-metathesis of ethyl undecylenate results almost exclusively on the homo-coupling product whereas with such catalyst, 1-decene gives ISOMET (isomerization and metathesis olefin) products. The olefin metathesis in the presence of esters is very selective without any secondary cross-metathesis products demonstrating that a high selective olefin metathesis could operate at 150 °C. Additionally, a cross-metathesis of unsaturated FAEs and α-olefins allowed the synthesis of the corresponding ester with longer hydrocarbon skeleton without isomerisation.

  2. Catalysis: The mechanics of metathesis

    Science.gov (United States)

    Love, Jennifer A.

    2010-07-01

    Olefin metathesis is a flexible and efficient method for making carbon-carbon bonds and has found widespread application in academia and industry. Now, a detailed mechanistic study looking at key catalytic intermediates offers new insight into this reaction, and may prove useful in the development of more active and selective catalysts.

  3. Recent Progress on Enyne Metathesis: Its Application to Syntheses of Natural Products and Related Compounds

    Science.gov (United States)

    Mori, Miwako

    2010-01-01

    Olefin metathesis using ruthenium carbene complexes is a useful method in synthetic organic chemistry. Enyne metathesis is also catalyzed by these complexes and various carbo- and heterocycles could be synthesized from the corresponding enynes. Dienyne metathesis, cross enyne metathesis and ring-opening enyne metathesis have been further developed. Various complicated compounds, such as the natural products and the related biologically active substances, could be synthesized using these metatheses reactions. Skeletal reorganization using the transition metals and metallotropic rearrangement are also discussed.

  4. Influence of the acid and basic properties of rhenium oxide supported on alumina catalyst on the catalytic performance in olefin metathesis; Influence des proprietes acido-basiques de l`oxyde de rhenium supporte sur les performances catalytiques en metathese des olefines

    Energy Technology Data Exchange (ETDEWEB)

    Nahama, F.

    1996-11-30

    The aim of this work is to study the influence of the acid-basic properties of rhenium oxide supported on alumina catalyst on the catalytic performance in olefin metathesis. The literature data indicate that the environment of the active site does possess acid properties. However, the nature of the acid sites is still matter of debate. Concerning the Re O{sub x} - Al{sub 2}O{sub 3} interactions, we have shown that perrhenate ions are electrostatically absorbed on alumina. The uptake of rhenium is favoured at acidic pH (below 4), and the absorbed rhenium is in equilibrium with rhenium in solution. The results of rhenium extraction by water strongly suggest that the surface compounds of the calcined Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3} materials is aluminium perrhenate. Characterization of surface acidity of the catalyst by infrared spectroscopy reveals that the initiation of the metathesis reaction is governed essentially by Lewis acidity. This strongly supports the role of Lewis acidity, which is exalted by the increase of the rhenium content and the calcination temperature. Finally, we point out by ammonia adsorption-thermodesorption a band at 1320 cm{sup -1} characteristic of the Lewis acidity of aluminium perrhenate. This result is a second indication of the presence of aluminium perrhenate on the Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3} catalyst surface. (author)

  5. "Hydro-metathesis" of olefins: A catalytic reaction using a bifunctional single-site tantalum hydride catalyst supported on fibrous silica (KCC-1) nanospheres

    KAUST Repository

    Polshettiwar, Vivek

    2011-02-18

    Tantalizing hydrocarbons: Tantalum hydride supported on fibrous silica nanospheres (KCC-1) catalyzes, in the presence of hydrogen, the direct conversion of olefins into alkanes that have higher and lower numbers of carbon atoms (see scheme). This catalyst shows remarkable catalytic activity and stability, with excellent potential of regeneration. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Olefins metathesis, synthesis and properties of homogeneous models of the Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3} catalyst; Methathese des olefines, synthese et proprietes des modeles homogenes du catalyseur Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Doledec, G.

    1999-10-05

    The aim of this work was to synthesize and to study homogeneous models of the rhenium oxide on alumina catalyst in order to better understand the influence of the alumina environment over the activity in olefin metathesis. A series of aluminium complexes (ArO){sub 2}Al-Y have been synthesised, where ArO is a 4-substituted-2,6-di-tert-butyl-phenoxy, or (ArO){sub 2} is a CH{sub 2{sup -}} or S-ortho bridged-4,4'-di-tert-butyl-di-phenoxy, and Y is an alkyl or chlorine ligand. The reaction of (ArO){sub 2}Al-Cl with AgReO{sub 4} led to new complexes (ArO){sub 2}Al-OReO{sub 3} (A). These complexes exhibit a low to moderate activity in metathesis of 2-pentene (TOF = 0,5 min{sup -1} at 25 deg. C in a toluene solution). Complexes (ArO){sub 2}Al-R (R = iBu, Et) react with Re{sub 2}O{sub 7} in THF or dioxane giving type B complexes including oligomeric linkages like O{sub 3}Re-[Al(OAr)-O){sub 2}-ReO{sub 3}. They show a fairly high activity in the metathesis of 2-pentene, with TOF values as high as 100 min{sup -1}. As far as we know, these are the most active rhenium-based homogeneous metathesis catalysts. Complexes type A may be converted into type B complexes upon reaction with (ArO){sub 2}Al-R in an ether solvent. The high activity of B complexes is tentatively related to the Al-O-Al linkages that are molecular in the homogeneous models or present at the surface of the alumina in the heterogeneous catalyst. These results bear out again the role of the Lewis acidity in these catalysts. We used (ArO){sub 2}Al-R complexes to modify the heterogenous catalyst. It appears that it is an excellent way to reduce the rhenium loading without any loss of activity. (author)

  7. Teaching metathesis "simple" stereochemistry.

    Science.gov (United States)

    Fürstner, Alois

    2013-09-20

    Applications of metal-catalyzed olefin metathesis reactions manifested dramatic growth during the late 20th and early 21st centuries, culminating in the 2005 Nobel Prize awarded to three of the pioneers. The standard catalysts developed during that time frame and their descendants have profoundly changed the mindset of the synthetic community, even though they do not provide a handle to control selectivity issues as fundamental as the E/Z geometry of the newly formed double bond. With yet another generation of catalysts in the making that are far superior in this regard, a new wave seems to be building up that is expected to have enormous impact, too. The current state of the art is critically assessed, as are possible alternatives such as the metathesis of triple bonds followed by stereoselective semi-reduction.

  8. CH3-ReO3 on gamma-Al2O3: understanding its structure, initiation,and reactivity in olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Salameh, Alain; Joubert, Jerome; Baudouin, Anne; Lukens, Wayne; Delbecq, Francoise; Sautet, Philippe; Basset, Jean Marie; Coperet,Christophe

    2007-01-20

    Me-ReO3 on gamma-alumina: understanding the structure, theinitiation and thereactivity of a highly active olefin metathesiscatalyst Heterolytic splitting of the C-H bond of the methyl group ofCH3ReO3 on AlsO reactive sites of alumina as a way to generate the activesite of CH3ReO3 supported on gamma-Al203.

  9. Rh-Catalyzed Asymmetric Hydrogenation of Prochiral Olefins with a Dynamic Library of Chiral TROPOS Phosphorus Ligands

    NARCIS (Netherlands)

    Monti, Chiara; Gennari, Cesare; Piarulli, Umberto; Vries, Johannes G. de; Vries, André H.M. de; Lefort, Laurent

    2005-01-01

    A library of 19 chiral tropos phosphorus ligands, based on a flexible (tropos) biphenol unit and a chiral P-bound alcohol (11 phosphites) or secondary amine (8 phosphoramidites), was synthesized. These ligands were screened, individually and as a combination of two, in the rhodium-catalyzed

  10. Impact of electronic modification of the chelating benzylidene ligand in cis-dichloro-configured second-generation olefin metathesis catalysts on their activity

    KAUST Repository

    Pump, Eva

    2014-06-09

    A series of electronically modified second-generation cis-dichloro ruthenium ester chelating benzylidene complexes was prepared, characterized, and benchmarked in a typical ring-opening metathesis polymerization (ROMP) experiment. The electronic tuning of the parent chelating benzylidene ligand (2-ethyl ester benzylidene) was achieved by substitution at the 4- and 5-positions with electron-withdrawing nitro or electron-donating methoxy groups. The effect of the electronic tuning on the cis-trans isomerization process was studied experimentally and theoretically. Density functional theory calculations clearly revealed the influence of electronic modification on the relative stability between the cis and trans isomers, which is decisive for the activity of the studied compounds as initiators in ROMP. © 2014 American Chemical Society.

  11. New applications of natural oils and fats II. Subproject 2.1 and 2.3. Olefin metathesis and selective oxidation of unsaturated fatty compounds. Final report; Neue Einsatzmoeglichkeiten natuerlicher Oele und Fette II. Teilprojekt 2.1 und 2.3. Industriechemikalien durch Olefin-Metathese oleochemischer Verbindungen und Selektivoxidationen ungesaettigter Fettstoffe durch Metallkomplexkatalyse. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Warwel, S.; Ercklentz, B.; Fischer, S.; Hoffmann, A.; Kaiser, W.; Tillack, J.; Thomas, S.; Bavaj, P.; Deckwirth, E.A.; Ruesch genannt Klaas, M.; Wolff, B.

    1994-07-01

    Metathesis: New high effective catalysts (B{sub 2}O{sub 3}-Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3}-SiO{sub 2} + SnBu{sub 4} and MeReO{sub 3} + B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2}) were developed for the metathesis of unsaturated fatty acid esters. They were used for the synthesis of {omega} unsaturated esters, middle-chained esters, branched esters, dicarboxylic acid esters and pre-pheromones. The metathesis of unsaturated esters with ethylene was tested successfully in a continuous miniplant. Selective oxidations: unsaturated fatty acid esters were converted to keto fatty acid esters catalysed by PdSO{sub 4}/heteropoly acid using O{sub 2} or H{sub 2}O{sub 2}. By Ruthenium catalysis/peracetic acid or Re{sub 2}O{sub 7}/H{sub 2}O{sub 2} the oxidative C=C-cleavage to dicarboxylic acids was achieved. Oleochemical di- and polyols were produced by tungsten- and rhenium-catalysis and H{sub 2}O{sub 2}. (orig.) [Deutsch] Olefin-Metathese: Fuer die Metathese ungesaettigter Fettsaeureester wurden mit B{sub 2}O{sub 3}-Re{sub 2}O{sub 7}/Al{sub 2}O{sub 3}-SiO{sub 2} + SnBu{sub 4} und MeReO{sub 3} + B{sub 2}O{sub 3}-Al{sub 2}O{sub 3}-SiO{sub 2} neue hochaktive Katalysatoren entwickelt und fuer Synthesen von {omega}-ungesaettigten Estern, mittelkettigen Estern, verzweigten Estern sowie fuer Dicarbonsaeuren und Pheromonvorstufen genutzt. Die Metathese ungesaettigter Ester mit Ethylen wurde erfolgreich in kontinuierlicher Fahrweise in einer Miniplant erprobt. Selektivoxidationen: ungesaettigte Fettsaeureester wurden unter Katalyse von PdSO{sub 4}/Heteropolysaeure mit O{sub 2} oder H{sub 2}O{sub 2} in Ketofettsaeuren ueberfuehrt. Mit Ru.-Kat./Peressigsaeure bzw. Re{sub 2}O{sub 7}/H{sub 2}O{sub 2} gelang die oxidative C=C-Spaltung zu Dicarbonsaeuren. Fettchemische Di- und Polyole wurden wolfram- und rheniumkatalysiert mittels H{sub 2}O{sub 2} erhalten. (orig.)

  12. Catalytic studies of nitric oxide: A. Reduction of nitric oxide with methane over alumina supported rhidium. B. Characterization of alumina supported cobalt molybdate for olefin metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Hardee, J.R.

    1978-01-01

    Kinetic studies at 300/sup 0/-400/sup 0/C in a gradientless recirculating reactor showed that nitric oxide reduction was first order in methane and -0.63 order in nitric oxide, with an activation energy of 18.4 kcal/mole, and a deuterium kinetic isotope effect of 1.9, suggesting that dissociative methane adsorption is the rate-determining step. Nitrogen-15 tracer studies showed that the reaction involves N/sub 2/O as a surface intermediate, and a mechanism is proposed involving two-step dissociation of adsorbed NO to adsorbed N/sub 2/O and N/sub 2/ and surface oxygen atoms, which rapidly poison the catalyst unless removed by methane. Propylene metathesis to ethylene and 2-butene over cobalt molybdate was studied by nitric oxide poisoning and shown to follow Langmuir-Hinshelwood kinetics. Two different dual-site mechanisms, one involving propylene adsorption on adjacent molybdenum atoms and the other involving adsorption of two propylene molecules on one molybdenum atom, fit the data equally well. An upper limit to the active site density was determined as 2.5 x 10/sup 13//sq cm at 27/sup 0/C, i.e., only 9Vertical Bar3< of the surface molybdenum atom density.

  13. Improved molecular weight control in ring-opening metathesis polymerization (ROMP) reactions with ru-based olefin metathesis catalysts using N donors and acid: a kinetic and mechanistic investigation.

    Science.gov (United States)

    Dunbar, Miles A; Balof, Shawna L; LaBeaud, Lawrence J; Yu, Bing; Lowe, Andrew B; Valente, Edward J; Schanz, Hans-Jörg

    2009-11-16

    , their initiation rates are determined by an associative step, not a dissociative step as seen for catalysts 1 and 4. A feasible associative metathesis initiation mechanism is proposed.

  14. Light olefins - challenges from new production routes?

    Energy Technology Data Exchange (ETDEWEB)

    Zimmermann, H. [Linde Engineering, Pullach (Germany)

    2007-07-01

    Light Olefins are the building blocks for many modern plastic products and are produced in large quantities. Driven by high crude oil prices, production is shifted to regions with low cost raw materials. Alternatives to the traditional production from Naphta, AGO and other crude products are becoming attractive. This paper evaluates several methods Ethylene and Pro-pylene production economically and also the regional advantageous routes. The analysis includes Steamcracking, dehydrogenation, dehydration of Ethanol, Methanol based routes and olefin conversion by Metathesis. (orig.)

  15. Neutral and Cationic Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes: Reactivity in Selected Olefin Metathesis Reactions and Immobilization on Silica.

    Science.gov (United States)

    Sen, Suman; Schowner, Roman; Imbrich, Dominik A; Frey, Wolfgang; Hunger, Michael; Buchmeiser, Michael R

    2015-09-21

    The synthesis and single-crystal X-ray structures of the novel molybdenum imido alkylidene N-heterocyclic carbene complexes [Mo(N-2,6-Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf)2] (3), [Mo(N-2,6-Me2C6H3)(IMes)(CHCMe2Ph)(OTf)2] (4), [Mo(N-2,6-Me2C6H3)(IMesH2)(CHCMe2Ph)(OTf){OCH(CF3)2}] (5), [Mo(N-2,6-Me2C6H3)(CH3CN)(IMesH2)(CHCMe2Ph)(OTf)](+)BArF(-) (6), [Mo(N-2,6-Cl2C6H3)(IMesH2)(CHCMe3)(OTf)2] (7) and [Mo(N-2,6-Cl2C6H3)(IMes)(CHCMe3)(OTf)2] (8) are reported (IMesH2=1,3-dimesitylimidazolidin-2-ylidene, IMes=1,3-dimesitylimidazolin-2-ylidene, BArF(-)=tetrakis-[3,5-bis(trifluoromethyl)phenyl] borate, OTf=CF3SO3(-)). Also, silica-immobilized versions I1 and I2 were prepared. Catalysts 3-8, I1 and I2 were used in homo-, cross-, and ring-closing metathesis (RCM) reactions and in the cyclopolymerization of α,ω-diynes. In the RCM of α,ω-dienes, in the homometathesis of 1-alkenes, and in the ethenolysis of cyclooctene, turnover numbers (TONs) up to 100,000, 210,000 and 30,000, respectively, were achieved. With I1 and I2, virtually Mo-free products were obtained (<3 ppm Mo). With 1,6-hepta- and 1,7-octadiynes, catalysts 3, 4, and 5 allowed for the regioselective cyclopolymerization of 4,4-bis(ethoxycarbonyl)-1,6-heptadiyne, 4,4-bis(hydroxymethyl)-1,6-heptadiyne, 4,4-bis[(3,5-diethoxybenzoyloxy)methyl]-1,6-heptadiyne, 4,4,5,5-tetrakis(ethoxycarbonyl)-1,7-octadiyne, and 1,6-heptadiyne-4-carboxylic acid, underlining the high functional-group tolerance of these novel Group 6 metal alkylidenes. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Variation of the Sterical Properties of the N-Heterocyclic Carbene Coligand in Thermally Triggerable Ruthenium-Based Olefin Metathesis Precatalysts/Initiators

    KAUST Repository

    Pump, Eva

    2015-11-09

    A series of ruthenium complexes based on the κ(C,N)-(2-(benzo[h]quinolin-10-yl)methylidene ruthenium dichloride fragment featuring different neutral coligands L (L = 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene (SIPr), 1,3-bis(2,4,6-trimethylphenyl)-4,5-dihydroimidazol-2-ylidene (SIMes), 1,3-bis(2,4-dimethylphenyl)-4,5-dihydroimidazol-2-ylidene (SIXyl), and 1,3-bis(2-methylphenyl)-4,5-dihydroimidazol-2-ylidene (SITol)) was prepared, characterized, and tested in the thermally induced ring-opening metathesis polymerization of dicyclopentadiene. In addition, the corresponding tricyclohexylphosphine derivative was investigated for comparison. All compounds were isolated as their trans-dichloro isomers. NMR spectroscopic features as well as structural features are, particularly within the NHC-bearing complexes, very similar, but their polymerization activity at elevated temperatures is distinctly different. While the SIMes derivative shows the desired properties, i.e., latency at room temperature and pronounced polymerization activity at elevated temperature, all other preinitiators do not. The preinitiator featuring the SIPr coligand is the most latent one, needing temperatures > 140 °C to show moderate activity in the polymerization of dicyclopentadiene. Compounds bearing the smaller N-heterocyclic carbene congeners are stable and latent at room temperature, but decompose upon heating, diminishing the polymerization activity at elevated temperatures. Density functional calculations show that the SIMes derivative is the easiest to activate and yields the most stable 14-electron intermediate. Finally calculations reveal a distinct influence of the nature of the N-heterocyclic carbene ligand on the position of the equilibrium of cis- and trans-dichloro isomers of the complexes. While the SIPr and the SIMes derivatives prefer the cis-configuration, all other derivatives favor, at least in solvents with low dielectric constants, the trans

  17. Recent Progress on Enyne Metathesis: Its Application to Syntheses of Natural Products and Related Compounds

    Directory of Open Access Journals (Sweden)

    Miwako Mori

    2010-03-01

    Full Text Available Olefin metathesis using ruthenium carbene complexes is a useful method in synthetic organic chemistry. Enyne metathesis is also catalyzed by these complexes and various carbo- and heterocycles could be synthesized from the corresponding enynes. Dienyne metathesis, cross enyne metathesis and ring-opening enyne metathesis have been further developed. Various complicated compounds, such as the natural products and the related biologically active substances, could be synthesized using these metatheses reactions. Skeletal reorganization using the transition metals and metallotropic rearrangement are also discussed.

  18. Studies of the mechanism of the olefin metathesis reaction and the process of active site formation on photoreduced molybdenum-silicate catalysts. 2. Productive and degenerative metathesis of C/sub 2/H/sub 4/-C/sub 2/D/sub 4/ and C/sub 3/H/sub 6/-C/sub 3/D/sub 6/ mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Elev, I.V.; Shelimov, B.N.; Kazanskii, V.B.

    1987-10-01

    The specific catalytic activity of photoreduced Mo/sup 4 +//SiO/sub 2/ samples has been compared for productive and degenerate metathesis reactions of C/sub 3/H/sub 6/-C/sub 3/D/sub 6/ and C/sub 2/H/sub 4/-C/sub 2/D/sub 4/ mixtures. It has been found, that, under comparable conditions, the rate of degenerate metathesis of ethylene is 4-5 times slower than the rate of productive metathesis of propylene, although the rate of degenerate metathesis of propylene is 5 x 10/sup 3/-10/sup 4/ times greater than its rate of productive metathesis. Based on these results, it is concluded that degenerate metathesis of propylene occurs via the involvement of secondary (ethylidene) carbenes.

  19. Metathesis of alkanes and related reactions

    KAUST Repository

    Basset, Jean-Marie

    2010-02-16

    (Figure Presented) The transformation of alkanes remains a difficult challenge because of the relative inertness of the C-H and C-C bonds. The rewards for asserting synthetic control over unfunctionalized, saturated hydrocarbons are considerable, however, because converting short alkanes into longer chain analogues is usually a value-adding process. Alkane metathesis is a novel catalytic and direct transformation of two molecules of a given alkane into its lower and higher homologues; moreover, the process proceeds at relatively low temperature (ambient conditions or higher). It was discovered through the use of a silica-supported tantalum hydride, (=SiO)2TaH, a multifunctional catalyst with a single site of action. This reaction completes the story of the metathesis reactions discovered over the past 40 years: olefin metathesis, alkyne metathesis, and ene-yne cyclizations. In this Account, we examine the fundamental mechanistic aspects of alkane metathesis as well as the novel reactions that have been derived from its study. The silica-supported tantalum hydride catalyst was developed as the result of systematic and meticulous studies of the interaction between oxide supports and organometallic complexes, a field of study denoted surface organometallic chemistry (SOMC). A careful examination of this surface-supported tantalum hydride led to the later discovery of aluminasupported tungsten hydride, W(H)3/Al 2O3, which proved to be an even better catalyst for alkane metathesis. Supported tantalum and tungsten hydrides are highly unsaturated, electron-deficient species that are very reactive toward the C-H and C-C bonds of alkanes. They show a great versatility in various other reactions, such as cross-metathesis between methane and alkanes, cross-metathesis between toluene and ethane, or even methane nonoxidative coupling. Moreover, tungsten hydride exhibits a specific ability in the transformation of isobutane into 2,3-dimethylbutane as well as in the metathesis of

  20. Mesoporous Molecular Sieves as Supports for Metathesis Catalysts

    Science.gov (United States)

    Balcar, Hynek; Cejka, Jirí

    Mesoporous molecular sieves represent a new family of inorganic oxides with regular nanostructure, large surface areas, large void volumes, and narrow pore size distribution of mesopores. These materials offer new possibilities for designing highly active and selective catalysts for olefin metathesis and metathesis polymerization. Siliceous sieves MCM-41, MCM-48, SBA-15, and organized mesoporous alumina (OMA) were used as supports for preparation of new molybdenum and rhenium oxide catalysts, as well as for heterogenization of well-defined homogeneous catalysts.

  1. Ene–yne cross-metathesis with ruthenium carbene catalysts

    Directory of Open Access Journals (Sweden)

    Christian Bruneau

    2011-02-01

    Full Text Available Conjugated 1,3-dienes are important building blocks in organic and polymer chemistry. Enyne metathesis is a powerful catalytic reaction to access such structural domains. Recent advances and developments in ene–yne cross-metathesis (EYCM leading to various compounds of interest and their intermediates, that can directly be transformed in tandem procedures, are reviewed in this article. In addition, the use of bio-resourced olefinic substrates is presented.

  2. Building Indenylidene-Ruthenium Catalysts for Metathesis Transformations

    Science.gov (United States)

    Clavier, Hervé; Nolan, Steven P.

    Ruthenium-mediated olefin metathesis has emerged as an indispensable tool in organic synthesis for the formation carbon-carbon double bonds, attested by the large number of applications for natural product synthesis. Among the numerous catalysts developed to mediate olefin metathesis transformations, ruthenium-indenylidene complexes are robust and powerful pre-catalysts. The discovery of this catalyst category was slightly muddled due to a first mis-assignment of the compound structure. This report provides an overview of the synthetic routes for the construction of the indenylidene pattern in ruthenium complexes. The parameters relating to the indenylidene moiety construction will be discussed as well as the mechanism of this formation

  3. Metathesis access to monocyclic iminocyclitol-based therapeutic agents

    Directory of Open Access Journals (Sweden)

    Albert Demonceau

    2011-05-01

    Full Text Available By focusing on recent developments on natural and non-natural azasugars (iminocyclitols, this review bolsters the case for the role of olefin metathesis reactions (RCM, CM as key transformations in the multistep syntheses of pyrrolidine-, piperidine- and azepane-based iminocyclitols, as important therapeutic agents against a range of common diseases and as tools for studying metabolic disorders. Considerable improvements brought about by introduction of one or more metathesis steps are outlined, with emphasis on the exquisite steric control and atom-economical outcome of the overall process. The comparative performance of several established metathesis catalysts is also highlighted.

  4. Highly Active Ruthenium Metathesis Catalysts Exhibiting Unprecedented Activity and Z-Selectivity

    Science.gov (United States)

    Rosebrugh, Lauren E.; Herbert, Myles B.; Marx, Vanessa M.; Keitz, Benjamin K.; Grubbs, Robert H.

    2013-01-01

    A novel chelated ruthenium-based metathesis catalyst bearing an N-2,6-diisopropylphenyl group is reported and displays near-perfect selectivity for the Z-olefin (>95%), as well as unparalleled TONs of up to 7400, in a variety of homodimerization and industrially relevant metathesis reactions. This derivative and other new catalytically-active species were synthesized using an improved method employing sodium carboxylates to induce the salt metathesis and C-H activation of these chelated complexes. All of these new ruthenium-based catalysts are highly Z-selective in the homodimerization of terminal olefins. PMID:23317178

  5. Metátese de olefinas aplicada ao fechamento de anéis: uma ferramenta poderosa para a síntese de macrociclos naturais Ring-closing olefin metathesis: a powerful tool for the synthesis of natural macrocycles

    Directory of Open Access Journals (Sweden)

    Anderson Rouge dos Santos

    2008-01-01

    Full Text Available For a quarter of a century, metathesis has become indispensable for the synthesis of natural and non-natural products, particularly of biologically active compounds. This review illustrates through a maximum of appropriate examples the power and the versatility of the metathesis ring-closure (RCM reaction as a key ring-closure methodology for the synthesis of natural macrocycles. Its high functional group compatibility as well as the possibility of further transformations makes this reaction a powerful tool in the cases where the structural framework and function requirements are difficult to meet.

  6. Development of the first well-defined tungsten oxo alkyl derivatives supported on silica by SOMC: towards a model of WO3/SiO2 olefin metathesis catalyst

    KAUST Repository

    Mazoyer, Etienne

    2010-01-01

    A well-defined, silica-supported tungsten oxo alkyl species prepared by the surface organometallic chemistry approach displays high and sustained activity in propene metathesis. Remarkably, its catalytic performances outpace those of the parent imido derivative, underlining the importance of the oxo ligand in the design of robust catalysts. © 2010 The Royal Society of Chemistry.

  7. Understanding the Hydro-metathesis Reaction of 1-decene by Using Well-defined Silica Supported W, Mo, Ta Carbene/Carbyne Complexes

    KAUST Repository

    Saidi, Aya

    2017-12-21

    Direct conversion of 1-decene to petroleum range alkanes was obtained using hydro-metathesis reaction. To understand this reaction we employed three different well-defined single site catalysts precursors; [(≡Si-O-)W(CH3)5] 1, [(≡Si-O-)Mo(≡CtBu)(CH2tBu)2] 2 and [(≡Si-O)Ta(=CHtBu)(CH2tBu)2] 3. We witnessed that in our conditions olefin metathesis/isomerization of 1-decene occurs much faster followed by reduction of the newly formed olefins rather than reduction of the 1-decene to decane, followed by metathesis of decane. We found that Mo-based catalyst favors 2+2 cycloaddition of 1-decene forming metallocarbene, followed by reduction of the newly formed olefins to alkanes. However, in the case of W and Ta-based catalysts, a rapid isomerization (migration) of the double bond followed by olefin metathesis and reduction of the newly formed olefins were observed. We witnessed that silica supported W catalyst precursor 1 and Mo catalyst precursor 2 are better catalysts for hydro-metathesis reaction with TONs of 818 and 808 than Ta-based catalyst 3 (TON of 334). This comparison of the catalysts provides us a better understanding that, if a catalyst is efficient in olefin metathesis reaction it would be a better catalyst for hydro-metathesis reaction.

  8. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC) and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions.

    Science.gov (United States)

    Balof, Shawna L; Nix, K Owen; Olliff, Matthew S; Roessler, Sarah E; Saha, Arpita; Müller, Kevin B; Behrens, Ulrich; Valente, Edward J; Schanz, Hans-Jörg

    2015-01-01

    Three new ruthenium alkylidene complexes (PCy3)Cl2(H2ITap)Ru=CHSPh (9), (DMAP)2Cl2(H2ITap)Ru=CHPh (11) and (DMAP)2Cl2(H2ITap)Ru=CHSPh (12) have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2',6'-dimethyl-4'-dimethylaminophenyl)-4,5-dihydroimidazol-2-ylidene). Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP) and ring closing metathesis (RCM) reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA), however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD) and mixtures of DCPD with cyclooctene (COE) in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes.

  9. Hexacoordinate Ru-based olefin metathesis catalysts with pH-responsive N-heterocyclic carbene (NHC and N-donor ligands for ROMP reactions in non-aqueous, aqueous and emulsion conditions

    Directory of Open Access Journals (Sweden)

    Shawna L. Balof

    2015-10-01

    Full Text Available Three new ruthenium alkylidene complexes (PCy3Cl2(H2ITapRu=CHSPh (9, (DMAP2Cl2(H2ITapRu=CHPh (11 and (DMAP2Cl2(H2ITapRu=CHSPh (12 have been synthesized bearing the pH-responsive H2ITap ligand (H2ITap = 1,3-bis(2’,6’-dimethyl-4’-dimethylaminophenyl-4,5-dihydroimidazol-2-ylidene. Catalysts 11 and 12 are additionally ligated by two pH-responsive DMAP ligands. The crystal structure was solved for complex 12 by X-ray diffraction. In organic, neutral solution, the catalysts are capable of performing standard ring-opening metathesis polymerization (ROMP and ring closing metathesis (RCM reactions with standard substrates. The ROMP with complex 11 is accelerated in the presence of two equiv of H3PO4, but is reduced as soon as the acid amount increased. The metathesis of phenylthiomethylidene catalysts 9 and 12 is sluggish at room temperature, but their ROMP can be dramatically accelerated at 60 °C. Complexes 11 and 12 are soluble in aqueous acid. They display the ability to perform RCM of diallylmalonic acid (DAMA, however, their conversions are very low amounting only to few turnovers before decomposition. However, both catalysts exhibit outstanding performance in the ROMP of dicyclopentadiene (DCPD and mixtures of DCPD with cyclooctene (COE in acidic aqueous microemulsion. With loadings as low as 180 ppm, the catalysts afforded mostly quantitative conversions of these monomers while maintaining the size and shape of the droplets throughout the polymerization process. Furthermore, the coagulate content for all experiments stayed <2%. This represents an unprecedented efficiency in emulsion ROMP based on hydrophilic ruthenium alkylidene complexes.

  10. Methods of making organic compounds by metathesis

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, Timothy W.; Kaido, Hiroki; Lee, Choon Woo; Pederson, Richard L.; Schrodi, Yann; Tupy, Michael John

    2015-09-01

    Described are methods of making organic compounds by metathesis chemistry. The methods of the invention are particularly useful for making industrially-important organic compounds beginning with starting compositions derived from renewable feedstocks, such as natural oils. The methods make use of a cross-metathesis step with an olefin compound to produce functionalized alkene intermediates having a pre-determined double bond position. Once isolated, the functionalized alkene intermediate can be self-metathesized or cross-metathesized (e.g., with a second functionalized alkene) to produce the desired organic compound or a precursor thereto. The method may be used to make bifunctional organic compounds, such as diacids, diesters, dicarboxylate salts, acid/esters, acid/amines, acid/alcohols, acid/aldehydes, acid/ketones, acid/halides, acid/nitriles, ester/amines, ester/alcohols, ester/aldehydes, ester/ketones, ester/halides, ester/nitriles, and the like.

  11. Concise syntheses of insect pheromones using Z-selective cross metathesis.

    Science.gov (United States)

    Herbert, Myles B; Marx, Vanessa M; Pederson, Richard L; Grubbs, Robert H

    2013-01-02

    Very short synthetic routes to nine cis-olefin-containing pheromones containing a variety of functionality, including an unconjugated (E,Z) diene, are reported. These lepidopteran pheromones are used extensively for pest control, and were easily prepared using ruthenium-based Z-selective cross metathesis, highlighting the advantages of this method over less efficient ways to form Z olefins. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Olefin hydroformylation

    Energy Technology Data Exchange (ETDEWEB)

    Hanes, R.M.

    1986-12-30

    This patent describes a process for the hydroformylation of olefins for the preparation of aldehydes, by reacting carbon monoxide and hydrogen with an olefin. This is done in the presence of an ionic metal complex catalyst where the ionic charge is on either the metal or on a ligand, at a temperature in the range of between about 80/sup 0/ and about 300/sup 0/C, and a pressure in the range of between about 400 and about 2000 psig. The improvement described here comprises performing the reaction in a polar solvent selected from the group consisting of N-substituted amide, glycols, polyglycols, mono lower alkyl ethers of glycols, dimethyl sulfoxide and sulfolane and recovering the aldehyde by extraction with a hydrocarbon solvent.

  13. De novo synthesis of multisubstituted aryl amines using alkene cross metathesis.

    Science.gov (United States)

    Tatton, Matthew R; Simpson, Iain; Donohoe, Timothy J

    2014-04-04

    The olefin cross-metathesis reaction allows rapid access to 1,5-dicarbonyl intermediates which, upon treatment with a primary or secondary amine, allow the synthesis of a range of multisubstituted carbocyclic aryl amines. This de novo arene synthesis yields nonclassical substitution patterns in a regioselective and predictable approach that is compatible with several functional groups.

  14. Synthesis of Calystegine A(3) from Glucose by the Use of Ring-Closing Metathesis

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Pipper, Charlotte Bressen; Madsen, Robert

    2009-01-01

    and allylated in the same pot. The functionalized nona-1,8-diene, thus obtained, is converted into the seven-membered carbon skeleton in calystegine A(3) by ring-closing olefin metathesis. Subsequent deoxygenation by the Barton-McCombie protocol, hydroboration and oxidative workup followed by hydrogenolysis...

  15. Design and synthesis of novel bis-annulated caged polycycles via ring-closing metathesis: pushpakenediol

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2014-11-01

    Full Text Available Intricate caged molecular frameworks are assembled by an atom economical process via a Diels–Alder (DA reaction, a Claisen rearrangement, a ring-closing metathesis (RCM and an alkenyl Grignard addition. The introduction of olefinic moieties in the pentacycloundecane (PCUD framework at appropriate positions followed by RCM led to the formation of novel heptacyclic cage systems.

  16. Chiral MnIII (Salen Covalently Bonded on Modified ZPS-PVPA and ZPS-IPPA as Efficient Catalysts for Enantioselective Epoxidation of Unfunctionalized Olefins

    Directory of Open Access Journals (Sweden)

    Xiaochuan Zou

    2017-03-01

    Full Text Available Chiral MnIII (salen complex supported on modified ZPS-PVPA (zirconium poly(styrene-phenylvinylphosphonate and ZPS-IPPA (zirconium poly(styrene-isopropenyl phosphonate were prepared using –CH2Cl as a reactive surface modifier by a covalent grafting method. The supported catalysts showed higher chiral induction (ee: 72%–83% compared with the corresponding homogeneous catalyst (ee: 54% for asymmetric epoxidation of α-methylstrene in the presence of 4-phenylpyridine N-oxide (PPNO as axial base using NaClO as an oxidant. ZPS-PVPA-based catalyst 1, with a larger pore diameter and surface area, was found to be more active than ZPS-IPPA-based catalyst 2. In addition, bulkier alkene-like indene, was efficiently epoxidized with these supported catalysts (ee: 96%–99%, the results were much higher than those for the homogeneous system (ee: 65%. Moreover, the prepared catalysts were relatively stable and can be recycled at least eight times without significant loss of activity and enantioselectivity.

  17. Tandem cross enyne metathesis (CEYM)-intramolecular Diels-Alder reaction (IMDAR). An easy entry to linear bicyclic scaffolds.

    Science.gov (United States)

    Miró, Javier; Sánchez-Roselló, María; Sanz, Álvaro; Rabasa, Fernando; Del Pozo, Carlos; Fustero, Santos

    2015-01-01

    A new tandem cross enyne metathesis (CEYM)-intramolecular Diels-Alder reaction (IMDAR) has been carried out. It involves conjugated ketones, esters or amides bearing a remote olefin and aromatic alkynes as the starting materials. The overall process enables the preparation of a small family of linear bicyclic scaffolds in a very simple manner with moderate to good levels of diastereoselectivity. This methodology constitutes one of the few examples that employ olefins differently than ethylene in tandem CEYM-IMDAR protocols.

  18. Production and use of light olefins. Preprints of the conference

    Energy Technology Data Exchange (ETDEWEB)

    Ernst, S.; Buzzoni, R.; Leitner, W.; Lercher, J.A.; Lichtscheidl, J.; Nees, F.; Santacesaria, E. (eds.)

    2009-07-01

    Within the conference of the German Society for Petroleum and Coal Science and Technology e.V. (Hamburg, Federal Republic of Germany) in Berlin (Federal Republic of Germany) at 28th to 30th September, 2009, the following lectures were held: (1) Steamcracking - State of the Art (H. Zimmermann); (2) Diversify Feedstock Options to Olefin Production (Q. Ling et al.); (3) Syngas to lower olefins (E. Schwab et al.); (4) STAR process registered for the on-purpose production of propylene (K. Bueker); (5) The catalytic activity of zinc oxide supported on aerosil for C-H activation of light alkanes (S. Arndt et al.); (6) Novel catalytic approaches for the oxidative dehydrogenation of ethane (D. Hartmann); (7) A comparison of the active sites structures of homogeneous and heterogeneous olefin polymerisation catalysts (A. Zecchina); (8) Catalytic strategies in metathesis (C. Coperet); (9) Multi-technology integrated production and consumption of olefins (J. Popp et al.); (10) Olefin oligomerization for the production of fuels and petrochemicals (H. Olivier-Bourbigou et al.); (11) Dieselization of the world - How to increase diesel yield in a refinery (A. Dueker); (12) Isomerization of butenes: LyondellBasell's Isomplus technology development (T. Zak et al.); (13) Valuable products from butadiene, carbon dioxide and further base chemicals (A. Behr); (14) The partial oxidation of propene to propylene oxide using N{sub 2}O as an oxidant (T. Thoemmes); (15) Alternative feedstocks for olefin production: What role will ethanol play? (B.R. Maughon); (16) Production of light olefins from renewable resources - The effect of deoxygenation degree on yields of light olefins (D. Kubicka et al.); (17) Recovery of low olefins from refinery offgases (M. Bender).

  19. Well-Defined Silica Grafted Molybdenum Bis(imido) Catalysts for Imine Metathesis Reactions

    KAUST Repository

    Barman, Samir

    2017-04-06

    Novel site-isolated tetracoordinated molybdenum complexes possessing bis(imido) ligands, [(≡Si–O)2Mo(═NR)2] (R = t-Bu, 2,6-C6H3-i-Pr2), were immobilized on partially dehydroxylated silica (SiO2-200) by a rigorous surface organometallic chemistry protocol. The newly developed materials adorned with bis(imido) functional units, which were previously exploited mainly as spectator ligands on silica-supported olefin metathesis molybdenum catalysts, are found to be efficient heterogeneous catalytic systems for imine cross metathesis under mild conditions.

  20. Tuning the properties of α,ω-bis(trialkoxysilyl) telechelic copolyolefins from ruthenium-catalyzed chain-transfer ring-opening metathesis polymerization (ROMP)

    OpenAIRE

    Michel, Xiaolu; Fouquay, Stéphane; Michaud, Guillaume; Simon, Frédéric; Brusson, Jean-Michel; Roquefort, Philippe; Aubry, Thierry; Carpentier, Jean-François; Guillaume, Sophie M.

    2017-01-01

    International audience; The synthesis of low viscosity liquid α,ω-bis(trialkoxysilyl) telechelic copolyolefins (DF) via ring-opening metathesis polymerization (ROMP)/cross metathesis (CM) is reported. Copolymerization of a norbornene-based olefin (NB-OLF = norbornene (NB), ethylidene norbornene (ENB), methyl 5-norbornene-2-carboxylate (NBCOOMe), methyl 5-oxanorbornene-2-carboxylate (oxaNBCOOMe), or dicyclopentadiene (DCPD)) with a monocycloolefin (mOLF = cyclooctene (COE), 1,5-cyclooctadiene ...

  1. Simple addition of silica to an alkane solution of Wilkinson WMe6 or Schrock W alkylidyne complex give active complex for saturated and unsaturated hydrocarbons metathesis

    KAUST Repository

    Callens, Emmanuel

    2015-08-24

    Addition of PDA silica to a solution of the Wilkinson WMe6 as well as the Schrock W neopentilidyne tris neopentyl complex catalyzes linear or cyclic alkanes to produce respectively a distribution of linear alkanes from methane up to triacontane or a mixture of cyclic and macrocyclic hydrocarbons. This single catalytic system transforms also linear α-olefins into higher and lower homologues via isomerization/metathesis mechanism (ISOMET). This complex is also efficient towards functionalized olefins. Unsaturated fatty acid esters (FAEs) are converted into diesters corresponding to self-metathesis products.

  2. Alkene Metathesis Catalysis: A Key for Transformations of Unsaturated Plant Oils and Renewable Derivatives

    Directory of Open Access Journals (Sweden)

    Dixneuf Pierre H.

    2016-03-01

    Full Text Available This account presents the importance of ruthenium-catalysed alkene cross-metathesis for the catalytic transformations of biomass derivatives into useful intermediates, especially those developed by the authors in the Rennes (France catalysis team in cooperation with chemical industry. The cross-metathesis of a variety of functional alkenes arising from plant oils, with acrylonitrile and fumaronitrile and followed by catalytic tandem hydrogenation, will be shown to afford linear amino acid derivatives, the precursors of polyamides. The exploration of cross-metathesis of bio-sourced unsaturated nitriles with acrylate with further catalytic hydrogenation has led to offer an excellent route to α,ω-amino acid derivatives. That of fatty aldehydes has led to bifunctional long chain aldehydes and saturated diols. Two ways of access to functional dienes by ruthenium-catalyzed ene-yne cross-metathesis of plant oil alkene derivatives with alkynes and by cross-metathesis of bio-sourced alkenes with allylic chloride followed by catalytic dehydrohalogenation, are reported. Ricinoleate derivatives offer a direct access to chiral dihydropyrans and tetrahydropyrans via ring closing metathesis. Cross-metathesis giving value to terpenes and eugenol for the straightforward synthesis of artificial terpenes and functional eugenol derivatives without C=C bond isomerization are described.

  3. Ultrasound-assisted self-metathesis reactions of monounsaturated fatty acids

    Directory of Open Access Journals (Sweden)

    Elmkaddem Mohammed Kamal

    2016-09-01

    Full Text Available An efficient protocol for the self-metathesis of oleic acid, using ruthenium catalysts is described. The self-metathesis reaction under ultrasonic activation allows the conversion of monoenic fatty acids such as oleic acid, elaidic acid and erucic acid into diacids and olefins with very short reaction times in the presence of Grubbs ruthenium catalysts. These yields and selectivity towards the desired products are influenced by the nature of solvents. This study demonstrated that metathesis reaction carried out in DCM or 1-butanol showed promising results, since it produced a variety of products, like n-alkenes and diacids with good yields (45–75% and high selectivities (75–95%.

  4. Dipyrrolyl Precursors to Bisalkoxide Molybdenum Olefin Metathesis Catalysts

    Science.gov (United States)

    Hock, Adam; Schrock, Richard R.; Hoveyda, Amir H.

    2008-01-01

    Addition of two equivalents of lithium pyrrolide to Mo(NR)(CHCMe2R')(OTf)2(DME) (OTf = OSO2CF3; R = 2,6-i-Pr2C6H3, 1-adamantyl, or 2,6-Br2-4-MeC6H2; R' = Me or Ph) produces Mo(NR)(CHCMe2R')(NC4H4)2 complexes in good yield. All compounds can be recrystallized readily from toluene or mixtures of pentane and ether and are sensitive to air and moisture. An X-ray structure of a 2,6-diisopropylphenylimido species shows it to be an unsymmetric dimer, {Mo(NAr)(syn-CHCMe2Ph)(η5-NC4H4)(η1-NC4H4)}{Mo(NAr)(syn-CHCMe2Ph)(η1-NC4H4)2}, in which the nitrogen in the η5-pyrrolyl bound to one Mo behaves as a donor to the other Mo. All complexes are fluxional on the NMR time scale at room temperature, with one symmetric species being observed on the NMR time scale at 50 °C in toluene-d8. The dimers react with PMe3 (at Mo) or B(C6F5)3 (at a η5-NC4H4 nitrogen) to give monomeric products in high yield. They also react rapidly with two equivalents of monoalcohols (e.g., Me3COH or (CF3)2MeCOH) or one equivalent of a biphenol or binaphthol to give two equivalents of pyrrole and bisalkoxide or diolate complexes in ~100% yield. PMID:17165793

  5. Insights into the decomposition of olefin metathesis precatalysts

    KAUST Repository

    Manzini, Simone

    2014-06-02

    The decomposition of a series of benzylidene, methylidene, and 3-phenylindenylidene complexes has been probed in alcohol solution in the presence of base. Tricyclohexylphosphane-containing precatalysts are shown to yield [RuCl(H)(H2)(PCy3)2] in isopropyl alcohol solutions, while 3-phenylindenylidene complexes lead to η5-(3- phenyl)indenyl products. The potential-energy surfaces for the formation of the latter species have been probed using density functional theory studies. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Calixarene-based molecular capsule from olefin metathesis

    Directory of Open Access Journals (Sweden)

    Shimelis T. Hailu

    2013-07-01

    Full Text Available The reaction of tetrakis(allyloxycalix[4]arene with the first-generation Grubbs catalyst, followed by catalytic hydrogenation, gave the novel bis-calixarene 15,20,46,51,64,69,74,79-octaoxatridecacyclo[32.28.8.83,28.113,53.122,44.09,14.021,26.038,70.040,45.052,57.059,63.07,80.032,73]octaconta-1(63,3,5,7(80,9(14,10,12,21,23,25,28(73,29,31,34,36,38(70,40,42,44,52,54,56,59,61-tetracosaene benzene monosolvate, C72H72O8·C6H6. The structure consists of two calix[4]arene units connected by four-carbon chains at each of the four O atoms on their narrow rims, to form a cage. Each of the calix[4]arene units has a flattened cone conformation in which two of the opposite aryl groups are closer together and nearly parallel [dihedral angle between planes = 7.35 (16°], and the other two aryl groups are splayed outward [dihedral angle between planes = 72.20 (8°]. While the cavity contains no solvent or other guest molecule, there is benzene solvent molecule in the lattice. Two of the alkyl linking arms were disordered over two conformations with occupancies of 0.582 (3/0.418 (3 and 0.33 (4/0.467 (4. They were constrained to have similar metrical and thermal parameters.

  7. Olefin Metathesis in Peptidomimetics, Dynamic Combinatorial Chemistry, and Molecular Imprinting

    Science.gov (United States)

    2006-08-01

    Lactone 5-10 5-12 5-13 5-7 5-14 5-9 5-9 Scheme 5-5. Coupling of norbornene moiety to fluorescein maleimide 83 O O O O Cross-Linking Monomer 5-11...27.27, 27.16, 24.91, 24.61; HRMS (ESI-FTICR) for [2M+Na]+, calcd 533.3561, found 533.3580. Unsaturated Lactam 2-18 OHN O O Palladium on activated

  8. Homogeneous catalysts for stereoregular olefin polymerization

    Science.gov (United States)

    Marks, T.J.; Eisen, M.S.; Giardello, M.A.

    1994-07-19

    The synthesis, and use as precatalysts of chiral organozirconium complexes for olefin polymerization are disclosed, having the structure (C[sub 5]R[prime][sub 4[minus]x]R*[sub x])-A-(C[sub 5]R[double prime][sub 4[minus]y]R[prime][double prime][sub y])-M-Q[sub p], where x and y represent the number of unsubstituted locations on the cyclopentadienyl ring; R[prime], R[double prime], R[prime][double prime], and R* represent substituted and unsubstituted alkyl groups having 1--30 carbon atoms and R* is a chiral ligand; A is a fragment containing a Group 13, 14, 15, or 16 element of the Periodic Table; M is a Group 3, 4, or 5 metal of the Periodic Table; and Q is a hydrocarbyl radical, or halogen radical, with 3 [alkylation of the corresponding dichlorides. In the presence of methylalumoxane or triarylborane cocatalysts, these complexes form cation-like'' species which are highly active for olefin polymerization. In combination with a Lewis acid cocatalyst, propylene or other [alpha]-olefin polymerization can be effected with very high efficiency and isospecificity. 1 fig.

  9. Ring-Closing and Cross-Metathesis with Artificial Metalloenzymes Created by Covalent Active Site-Directed Hybridization of a Lipase

    NARCIS (Netherlands)

    Basauri-Molina, Manuel|info:eu-repo/dai/nl/328200557; Verhoeven, Dide G A|info:eu-repo/dai/nl/369416368; Van Schaik, Arnoldus J.; Kleijn, H|info:eu-repo/dai/nl/304840440; Klein Gebbink, Robertus J M|info:eu-repo/dai/nl/166032646

    2015-01-01

    A series of Grubbs-type catalysts that contain lipase-inhibiting phosphoester functionalities have been synthesized and reacted with the lipase cutinase, which leads to artificial metalloenzymes for olefin metathesis. The resulting hybrids comprise the organometallic fragment that is covalently

  10. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    KAUST Repository

    Wappel, Julia

    2016-01-28

    A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP) reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene) (pDCPD). Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  11. Simple activation by acid of latent Ru-NHC-based metathesis initiators bearing 8-quinolinolate co-ligands

    Directory of Open Access Journals (Sweden)

    Julia Wappel

    2016-01-01

    Full Text Available A straightforward synthesis utilizing the ring-opening metathesis polymerization (ROMP reaction is described for acid-triggered N,O-chelating ruthenium-based pre-catalysts bearing one or two 8-quinolinolate ligands. The innovative pre-catalysts were tested regarding their behavior in ROMP and especially for their use in the synthesis of poly(dicyclopentadiene (pDCPD. Bearing either the common phosphine leaving ligand in the first and second Grubbs olefin metathesis catalysts, or the Ru–O bond cleavage for the next Hoveyda-type catalysts, this work is a step forward towards the control of polymer functionalization and living or switchable polymerizations.

  12. Metathesis depolymerizable surfactants

    Science.gov (United States)

    Jamison, Gregory M.; Wheeler, David R.; Loy, Douglas A.; Simmons, Blake A.; Long, Timothy M.; McElhanon, James R.; Rahimian, Kamyar; Staiger, Chad L.

    2008-04-15

    A class of surfactant molecules whose structure includes regularly spaced unsaturation in the tail group and thus, can be readily decomposed by ring-closing metathesis, and particularly by the action of a transition metal catalyst, to form small molecule products. These small molecules are designed to have increased volatility and/or enhanced solubility as compared to the original surfactant molecule and are thus easily removed by solvent extraction or vacuum extraction at low temperature. By producing easily removable decomposition products, the surfactant molecules become particularly desirable as template structures for preparing meso- and microstructural materials with tailored properties.

  13. Tandem cross enyne metathesis (CEYM–intramolecular Diels–Alder reaction (IMDAR. An easy entry to linear bicyclic scaffolds

    Directory of Open Access Journals (Sweden)

    Javier Miró

    2015-08-01

    Full Text Available A new tandem cross enyne metathesis (CEYM–intramolecular Diels–Alder reaction (IMDAR has been carried out. It involves conjugated ketones, esters or amides bearing a remote olefin and aromatic alkynes as the starting materials. The overall process enables the preparation of a small family of linear bicyclic scaffolds in a very simple manner with moderate to good levels of diastereoselectivity. This methodology constitutes one of the few examples that employ olefins differently than ethylene in tandem CEYM–IMDAR protocols.

  14. Asymmetric Transfer Hydrogenation of Ketones with Modified Grubbs Metathesis Catalysts : On the Way to a Tandem Process

    NARCIS (Netherlands)

    Renom-Carrasco, Marc; Gajewski, Piotr; Pignataro, Luca; de Vries, Johannes G.; Piarulli, Umberto; Gennari, Cesare; Lefort, Laurent

    2016-01-01

    Herein, we report the successful transformation of a 1(st) generation Grubbs metathesis catalyst into an asymmetric transfer hydrogenation (ATH) catalyst. Upon addition of a chiral amine ligand, an alcohol and a base, the 1(st) generation Hoveyda-Grubbs catalyst (HG-I) was found to promote the

  15. Modular synthesis of optically active lactones by Ru-catalyzed asymmetric allylic carboxylation and ring-closing metathesis reaction.

    Science.gov (United States)

    Takii, Koichiro; Kanbayashi, Naoya; Onitsuka, Kiyotaka

    2012-04-21

    A new synthetic route to optically active unsaturated γ- and δ-lactones has been demonstrated via asymmetric allylic carboxylation with a planar-chiral Cp'Ru catalyst and ring-closing metathesis reaction with a Grubbs II catalyst, and successfully applied to the enantioselective synthesis of (R)-(-)-massoialactone. This journal is © The Royal Society of Chemistry 2012

  16. Relay cross metathesis reactions of vinylphosphonates

    Directory of Open Access Journals (Sweden)

    Raj K. Malla

    2014-08-01

    Full Text Available Dimethyl (β-substituted vinylphosphonates do not readily undergo cross metathesis reactions with Grubbs catalyst and terminal alkenes. However, the corresponding mono- or diallyl vinylphosphonate esters undergo facile cross metathesis reactions. The improved reactivity is attributed to a relay step in the cross metathesis reaction mechanism.

  17. Synthesis and characterization of chiral thorium(IV) and uranium(IV) benzamidinate complexes

    Energy Technology Data Exchange (ETDEWEB)

    Schoene, Sebastian; Maerz, Juliane; Kaden, Peter; Patzschke, Michael; Ikeda-Ohno, Atsushi [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Chemistry of the F-Elements

    2017-06-01

    Two chiral benzamidinate complexes of tetravalent actinides (Th(IV) and U(IV)) were synthesized using a salt metathesis reaction of the corresponding actinide(IV) tetrachlorides and the potassium salt of the chiral benzamidine (S,S)-N,N-Bis-(1-phenylethyl)-benzamidine ((S)-HPEBA). The structure of the complexes was determined with single crystal X-ray diffraction. These are the first examples of chiral amidinate complexes of actinides.

  18. Room Temperature Ionic Liquids as Green Solvent Alternatives in the Metathesis of Oleochemical Feedstocks

    Directory of Open Access Journals (Sweden)

    Priya A. Thomas

    2016-02-01

    Full Text Available One of the most important areas of green chemistry is the application of environmentally friendly solvents in catalysis and synthesis. Conventional organic solvents pose a threat to the environment due to the volatility, highly flammability, toxicity and carcinogenic properties they exhibit. The recently emerged room temperature ionic liquids (RTILs are promising green solvent alternatives to the volatile organic solvents due to their ease of reuse, non-volatility, thermal stability and ability to dissolve a variety of organic and organometallic compounds. This review explores the use of RTILs as green solvent media in olefin metathesis for applications in the oleochemical industry.

  19. Synthesis of Gabosine A and N from Ribose by the Use of Ring-Closing Metathesis

    DEFF Research Database (Denmark)

    Monrad, Rune Nygaard; Fanefjord, Mette; Hansen, Flemming Gundorph

    2009-01-01

    A concise synthetic route is described for the synthesis of gabosine A and N. The key step uses a zinc-mediated tandem reaction where methyl 5-deoxy-5-iodo-2,3-O-isopropylidene-beta-D-ribofuranoside is fragmented to give an unsaturated aldehyde which is allylated in the same pot with 3-benzoyloxy-2......-methylallyl bromide. The functionalized octa-1,7-diene, thus obtained, is converted into the six-membered gabosine skeleton by ring-closing olefin metathesis. Subsequent protective group manipulations and oxidation gives rise to gabosine N in a total of 8 steps from ribose while the synthesis of gabosine...

  20. Supported Catalysts Useful in Ring-Closing Metathesis, Cross Metathesis, and Ring-Opening Metathesis Polymerization

    Directory of Open Access Journals (Sweden)

    Jakkrit Suriboot

    2016-04-01

    Full Text Available Ruthenium and molybdenum catalysts are widely used in synthesis of both small molecules and macromolecules. While major developments have led to new increasingly active catalysts that have high functional group compatibility and stereoselectivity, catalyst/product separation, catalyst recycling, and/or catalyst residue/product separation remain an issue in some applications of these catalysts. This review highlights some of the history of efforts to address these problems, first discussing the problem in the context of reactions like ring-closing metathesis and cross metathesis catalysis used in the synthesis of low molecular weight compounds. It then discusses in more detail progress in dealing with these issues in ring opening metathesis polymerization chemistry. Such approaches depend on a biphasic solid/liquid or liquid separation and can use either always biphasic or sometimes biphasic systems and approaches to this problem using insoluble inorganic supports, insoluble crosslinked polymeric organic supports, soluble polymeric supports, ionic liquids and fluorous phases are discussed.

  1. Kinetically E-selective macrocyclic ring-closing metathesis

    Science.gov (United States)

    Shen, Xiao; Nguyen, Thach T.; Koh, Ming Joo; Xu, Dongmin; Speed, Alexander W. H.; Schrock, Richard R.; Hoveyda, Amir H.

    2017-01-01

    Macrocyclic compounds are central to the development of new drugs, but preparing them can be challenging because of the energy barrier that must be surmounted in order to bring together and fuse the two ends of an acyclic precursor such as an alkene (also known as an olefin). To this end, the catalytic process known as ring-closing metathesis (RCM) has allowed access to countless biologically active macrocyclic organic molecules, even for large-scale production. Stereoselectivity is often critical in such cases: the potency of a macrocyclic compound can depend on the stereochemistry of its alkene; alternatively, one isomer of the compound can be subjected to stereoselective modification (such as dihydroxylation). Kinetically controlled Z-selective RCM reactions have been reported, but the only available metathesis approach for accessing macrocyclic E-olefins entails selective removal of the Z-component of a stereoisomeric mixture by ethenolysis, sacrificing substantial quantities of material if E/Z ratios are near unity. Use of ethylene can also cause adventitious olefin isomerization—a particularly serious problem when the E-alkene is energetically less favoured. Here, we show that dienes containing an E-alkenyl-B(pinacolato) group, widely used in catalytic cross-coupling, possess the requisite electronic and steric attributes to allow them to be converted stereoselectively to E-macrocyclic alkenes. The reaction is promoted by a molybdenum monoaryloxide pyrrolide complex and affords products at a yield of up to 73 per cent and an E/Z ratio greater than 98/2. We highlight the utility of the approach by preparing recifeiolide (a 12-membered-ring antibiotic) and pacritinib (an 18-membered-ring enzyme inhibitor), the Z-isomer of which is less potent than the E-isomer. Notably, the 18-membered-ring moiety of pacritinib—a potent anti-cancer agent that is in advanced clinical trials for treating lymphoma and myelofibrosis—was prepared by RCM carried out at a

  2. Highly stereoselective cyclopropanation of diazo Weinreb amides catalyzed by chiral Ru(ii)-Amm-Pheox complexes.

    Science.gov (United States)

    Chanthamath, Soda; Mandour, Hamada S A; Tong, Thu Minh Thi; Shibatomi, Kazutaka; Iwasa, Seiji

    2016-06-14

    The first highly stereoselective cyclopropanation of diazo Weinreb amides with olefins was accomplished using chiral Ru(ii)-Amm-Pheox complex to give the corresponding chiral cyclopropyl Weinreb amides in high yields (up to 99%) with excellent diastereoselectivities (up to 99 : 1 dr) and enantioselectivities (up to 96% ee).

  3. Enyne Metathesis Catalyzed by Ruthenium Carbene Complexes

    DEFF Research Database (Denmark)

    Poulsen, Carina Storm; Madsen, Robert

    2003-01-01

    Enyne metathesis combines an alkene and an alkyne into a 1,3-diene. The first enyne metathesis reaction catalyzed by a ruthenium carbene complex was reported in 1994. This review covers the advances in this transformation during the last eight years with particular emphasis on methodology...

  4. Metathesis in the generation of low-temperature gas in marine shales

    Directory of Open Access Journals (Sweden)

    Jarvie Daniel M

    2010-01-01

    Full Text Available Abstract The recent report of low-temperature catalytic gas from marine shales took on additional significance with the subsequent disclosure of natural gas and low-temperature gas at or near thermodynamic equilibrium in methane, ethane, and propane. It is important because thermal cracking, the presumed source of natural gas, cannot generate these hydrocarbons at equilibrium nor can it bring them to equilibrium over geologic time. The source of equilibrium and the source of natural gas are either the same (generation under equilibrium control or closely associated. Here we report the catalytic interconversion of hydrocarbons (metathesis as the source of equilibrium in experiments with Cretaceous Mowry shale at 100°C. Focus was on two metathetic equilibria: methane, ethane, and propane, reported earlier, Q (K = [(C1*(C3]/[(C22], and between these hydrocarbons and n-butane, Q* (K = [(C1*(n-C4]/[(C2*(C3], reported here for the first time. Two observations stand out. Initial hydrocarbon products are near equilibrium and have maximum average molecular weights (AMW. Over time, products fall from equilibrium and AMW in concert. It is consistent with metathesis splitting olefin intermediates [Cn] to smaller intermediates (fission as gas generation creates open catalytic sites ([ ]: [Cn] + [ ] → [Cn-m] + [Cm]. Fission rates increasing exponentially with olefin molecular weight could contribute to these effects. AMW would fall over time, and selective fission of [C3] and [n-C4] would draw Q and Q* from equilibrium. The results support metathesis as the source of thermodynamic equilibrium in natural gas.

  5. Acyclic Diene Metathesis (ADMET Polymerization for Precise Synthesis of Defect-Free Conjugated Polymers with Well-Defined Chain Ends

    Directory of Open Access Journals (Sweden)

    Tahmina Haque

    2015-03-01

    Full Text Available This accounts introduces unique characteristics by adopting the acyclic diene metathesis (ADMET polymerization for synthesis of conjugated polymers, poly(arylene vinylenes, known as promising molecular electronics. The method is more suitable than the other methods in terms of atom efficiency affording defect-free, stereo-regular (exclusive trans polymers with well-defined chain ends; the resultant polymers possess better property than those prepared by the conventional methods. The chain ends (vinyl group in the resultant polymer prepared by ruthenium-carbene catalyst(s can be modified by treating with molybdenum-alkylidene complex (olefin metathesis followed by addition of various aldehyde (Wittig type cleavage, affording the end-functionalized polymers exclusively. An introduction of initiating fragment, the other conjugated segment, and one-pot synthesis of end-functionalized block copolymers, star shape polymers can be achieved by adopting this methodology.

  6. Unprecedented Multifunctionality of Grubbs and Hoveyda–Grubbs Catalysts: Competitive Isomerization, Hydrogenation, Silylation and Metathesis Occurring in Solution and on Solid Phase

    Directory of Open Access Journals (Sweden)

    Maitena Martinez-Amezaga

    2017-04-01

    Full Text Available This contribution showcases the interplay of several non-metathetic reactions (isomerization, silylation and “hydrogen-free” reduction with metathesis in systems comprising a functionalized olefin and a soluble or resin-immobilized silane. These competing, one-pot reactions occur under activation by second-generation Ru-alkylidene catalysts. Different olefinic substrates were used to study the influence of the substitution pattern on the reaction outcome. Emphasis is placed upon the rarely reported yet important transformations implying a solid phase-supported silane reagent. Catalytic species involved in and reaction pathways accounting for these concurrent processes are evidenced. An unexpected result of this research was the clearly proved partial binding of the olefin to the resin, thereby removing it from the reacting ensemble.

  7. Chiral photochemistry

    CERN Document Server

    Inoue, Yoshihisa

    2004-01-01

    Direct Asymmetric Photochemistry with Circularly Polarized Light, H. RauCoherent Laser Control of the Handedness of Chiral Molecules, P. Brumer and M. ShapiroMagnetochiral Anisotropy in Asymmetric Photochemistry, G.L.J.A.RikkenEnantiodifferentiating Photosensitized Reactions, Y. InoueDiastereodifferentiating Photoreactions, N. Hoffmann and J.-P. PeteChirality in Photochromism, Y. Yokoyama and M. SaitoChiral Photochemistry with Transition Metal Complexes, S. Sakaki and T. HamadaTemplate-Induced Enantioselective Photochemical Reactions in S

  8. Chiral algebras

    CERN Document Server

    Beilinson, Alexander

    2004-01-01

    Chiral algebras form the primary algebraic structure of modern conformal field theory. Each chiral algebra lives on an algebraic curve, and in the special case where this curve is the affine line, chiral algebras invariant under translations are the same as well-known and widely used vertex algebras. The exposition of this book covers the following topics: the "classical" counterpart of the theory, which is an algebraic theory of non-linear differential equations and their symmetries; the local aspects of the theory of chiral algebras, including the study of some basic examples, such as the ch

  9. Biofuel by isomerizing metathesis of rapeseed oil esters with (bio)ethylene for use in contemporary diesel engines.

    Science.gov (United States)

    Pfister, Kai F; Baader, Sabrina; Baader, Mathias; Berndt, Silvia; Goossen, Lukas J

    2017-06-01

    Rapeseed oil methyl ester (RME) and (bio)ethylene are converted into biofuel with an evenly rising boiling point curve, which fulfills the strict boiling specifications prescribed by the fuel standard EN 590 for modern (petro)diesel engines. Catalyzed by a Pd/Ru system, RME undergoes isomerizing metathesis in a stream of ethylene gas, leading to a defined olefin, monoester, and diester blend. This innovative refining concept requires negligible energy input (60°C) and no solvents and does not produce waste. It demonstrates that the pressing challenge of increasing the fraction of renewables in engine fuel may be addressed purely chemically rather than by motor engineering.

  10. Metylcyclohexane conversion to light olefins

    Directory of Open Access Journals (Sweden)

    C.F. SCOFIELD

    1998-06-01

    Full Text Available This study consists in the evaluation of the catalytic properties of zeolites with different structures in the conversion of methylcyclohexane to light olefins. Results obtained suggest that the steric constrictions of the catalysts used play an important role in hydrogen transfer reactions. Higher selectivities for light olefins (C3= and C4= were observed for zeolites having more closed structures, like MFI and ferrerite, when compared to those having more open ones, like beta, omega and faujasite.

  11. Reactivity of Metal Carbenes with Olefins: Theoretical Insights on the Carbene Electronic Structure and Cyclopropanation Reaction Mechanism.

    Science.gov (United States)

    da Brito Sá, Égil; Rimola, Albert; Rodríguez-Santiago, Luis; Sodupe, Mariona; Solans-Monfort, Xavier

    2018-01-17

    Present work addresses the reactivity of several phenyl-substituted metal-carbene complexes with 4-methylstyrene by means of DFT(OPBE) simulations. Different paths that lead to cyclopropanation have been explored and compared to the olefin metathesis mechanism. For this purpose, we have chosen different catalysts: i) the Grubbs 2nd generation olefin metathesis catalyst, ii) a Grubs 2nd generation-like complex, in which ruthenium is replaced by an iron atom, and iii) two iron carbene complexes that experimentally catalyze alkene cyclopropanation. Results suggest that the nature of the applying mechanism is very sensitive to the coordination around the metal center and the spin state of the metal-carbene complex. Cyclopropanation by open shell metal-carbene complexes seems to preferentially proceed through a two-step radical mechanism, in which the two C-C bonds are sequentially formed (path C). Singlet state carbenes proceed either through a direct attack of the olefin to the carbene (path D) when the formation of the metallacycle is not feasible or through a reductive elimination from the metallacyclobutane when this intermediate is accessible both kinetically and thermodynamically (path B).

  12. Phosphate Tether-Mediated Ring-Closing Metathesis for the Generation of P-Stereogenic, Z-Configured Bicyclo[7.3.1]- and Bicyclo[8.3.1]phosphates.

    Science.gov (United States)

    Markley, Jana L; Maitra, Soma; Hanson, Paul R

    2016-02-05

    A phosphate tether-mediated ring-closing metathesis (RCM) study to the synthesis of Z-configured, P-stereogenic bicyclo[7.3.1]- and bicyclo[8.3.1]phosphates is reported. Investigations suggest that C3-substitution, olefin substitution, and proximity of the forming olefin to the bridgehead carbon of the bicyclic affect the efficiency and stereochemical outcome of the RCM event. This study demonstrates the utility of phosphate tether-mediated desymmetrization of C2-symmetric, 1,3-anti-diol-containing dienes in the generation of macrocyclic phosphates with potential synthetic and biological utility.

  13. Metathesis: A "Change-Your-Partners" Dance

    Indian Academy of Sciences (India)

    What is Metathesis? In general, a chemical reaction is referred to as 'metathesis' or exchange reaction, if it is of the type. A-B + C-D ~ A-D + C-B where parts of two reacting structures swap places. This type of process can occur between two inorganic salts when one product is insoluble in water, driving the reaction forward ...

  14. Metathesis and hydroformylation reactions in ionic liquids.

    OpenAIRE

    2008-01-01

    Ionic liquids (ILs), consisting of ions that are liquid at ambient temperatures, can act as solvents for a broad spectrum of chemical processes. These ionic liquids are attracting increasing attention from industry because they promise significant environmental as well as product and process benefits. ILs were used as solvents for two industrially important homogeneous reactions namely metathesis of 1-octene and the hydroformylation of vinyl acetate. In the metathesis of 1-octene, several rea...

  15. Hydride Olefin complexes of tantalum and niobium

    NARCIS (Netherlands)

    Klazinga, Aan Hendrik

    1979-01-01

    This thesis describes investigations on low-valent tantalum and niobium hydride and alkyl complexes, particularly the dicyclopentadienyl tantalum hydride olefin complexes Cp2Ta(H)L (L=olefin). ... Zie: Summary

  16. 21 CFR 177.1520 - Olefin polymers.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Olefin polymers. 177.1520 Section 177.1520 Food and... CONSUMPTION (CONTINUED) INDIRECT FOOD ADDITIVES: POLYMERS Substances for Use as Basic Components of Single and Repeated Use Food Contact Surfaces § 177.1520 Olefin polymers. The olefin polymers listed in paragraph (a...

  17. Chiral plasmonics

    Science.gov (United States)

    Hentschel, Mario; Schäferling, Martin; Duan, Xiaoyang; Giessen, Harald; Liu, Na

    2017-01-01

    We present a comprehensive overview of chirality and its optical manifestation in plasmonic nanosystems and nanostructures. We discuss top-down fabricated structures that range from solid metallic nanostructures to groupings of metallic nanoparticles arranged in three dimensions. We also present the large variety of bottom-up synthesized structures. Using DNA, peptides, or other scaffolds, complex nanoparticle arrangements of up to hundreds of individual nanoparticles have been realized. Beyond this static picture, we also give an overview of recent demonstrations of active chiral plasmonic systems, where the chiral optical response can be controlled by an external stimulus. We discuss the prospect of using the unique properties of complex chiral plasmonic systems for enantiomeric sensing schemes. PMID:28560336

  18. Recent applications of ring-rearrangement metathesis in organic synthesis

    Directory of Open Access Journals (Sweden)

    Sambasivarao Kotha

    2015-10-01

    Full Text Available Ring-rearrangement metathesis (RRM involves multiple metathesis processes such as ring-opening metathesis (ROM/ring-closing metathesis (RCM in a one-pot operation to generate complex targets. RRM delivers complex frameworks that are difficult to assemble by conventional methods. The noteworthy point about this type of protocol is multi-bond formation and it is an atom economic process. In this review, we have covered literature that appeared during the last seven years (2008–2014.

  19. Sterically biased 3,3-sigmatropic rearrangement of chiral allylic azides: application to the total syntheses of alkaloids.

    Science.gov (United States)

    Lauzon, Sophie; Tremblay, François; Gagnon, David; Godbout, Cédrickx; Chabot, Christine; Mercier-Shanks, Catherine; Perreault, Stéphane; DeSève, Hélène; Spino, Claude

    2008-08-15

    We describe a tandem Mitsunobu/3,3-sigmatropic rearrangement of allylic azides on a chiral auxiliary system that favors one regioisomer thanks to its exceptional steric bias. The sequence may be completed by the oxidative cleavage of the auxiliary or by a ring-closing metathesis reaction that produces a carbo- or heterocycle directly and a recyclable form of the chiral auxiliary. Applications of the methodology to the total synthesis of (+)-coniine, (+)-lentiginosin, and (+)-pumiliotoxin C are reported.

  20. About the activity and selectivity of less well-known metathesis catalysts during ADMET polymerizations

    Directory of Open Access Journals (Sweden)

    Hatice Mutlu

    2010-12-01

    Full Text Available We report on the catalytic activity of commercially available Ru-indenylidene and “boomerang” complexes C1, C2 and C3 in acyclic diene metathesis (ADMET polymerization of a fully renewable α,ω-diene. A high activity of these catalysts was observed for the synthesis of the desired renewable polyesters with molecular weights of up to 17000 Da, which is considerably higher than molecular weights obtained using the same monomer with previously studied catalysts. Moreover, olefin isomerization side reactions that occur during the ADMET polymerizations were studied in detail. The isomerization reactions were investigated by degradation of the prepared polyesters via transesterification with methanol, yielding diesters. These diesters, representing the repeat units of the polyesters, were then quantified by GC-MS.

  1. Metathesis of carbon dioxide and phenyl isocyanate catalysed by ...

    Indian Academy of Sciences (India)

    Carbodiimide metathesis is catalysed by a number of complexes leading to formation of unsymmetrical carbodiimides.1 Group 14 compounds are known to catalyse metathesis of phenyl isocyanates to give N, N′ diphenyl carbodiimides and carbon dioxide.2 The reverse reaction, metathesis of carbon dioxide with.

  2. Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane

    KAUST Repository

    Samantaray, Manoja

    2017-02-10

    Two compatible organometallic complexes, W(Me)(6) (1) and TiNp4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO2-700) to synthesize the well-defined bimetallic precatalyst [(equivalent to Si-O-)W(Me)(5)(equivalent to Si-O-)Ti(Np)(3)] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in H-1-H-1 multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(equivalent to Si-O-)W(Me)(5)] (3), with a TON of 98, for propane metathesis at 150 degrees C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by beta-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 degrees C) using a well-defined bimetallic system prepared via the SOMC approach.

  3. Unearthing a Well-Defined Highly Active Bimetallic W/Ti Precatalyst Anchored on a Single Silica Surface for Metathesis of Propane.

    Science.gov (United States)

    Samantaray, Manoja K; Kavitake, Santosh; Morlanés, Natalia; Abou-Hamad, Edy; Hamieh, Ali; Dey, Raju; Basset, Jean-Marie

    2017-03-08

    Two compatible organometallic complexes, W(Me)6 (1) and TiNp4 (2), were successively anchored on a highly dehydroxylated single silica support (SiO2-700) to synthesize the well-defined bimetallic precatalyst [(≡Si-O-)W(Me)5(≡Si-O-)Ti(Np)3] (4). Precatalyst 4 was characterized at the molecular level using advanced surface organometallic chemistry (SOMC) characterization techniques. The strong autocorrelation observed between methyl of W and Ti in (1)H-(1)H multiple-quantum NMR spectra demonstrates that W and Ti species are in close proximity to each other. The bimetallic precatalyst 4, with a turnover number (TON) of 9784, proved to be significantly more efficient than the silica-supported monometallic catalyst [(≡Si-O-)W(Me)5] (3), with a TON of 98, for propane metathesis at 150 °C in a flow reactor. The dramatic improvement in the activity signifies the cooperativity between Ti and W and indicates that the key step of alkane metathesis (C-H bond activation followed by β-H elimination) occurs on Ti, followed by olefin metathesis, which occurs on W. We have demonstrated the influence and importance of proximity of Ti to W for achieving such a significantly high activity. This is the first report demonstrating the considerably high activity (TON = 9784) in propane metathesis at moderate temperature (150 °C) using a well-defined bimetallic system prepared via the SOMC approach.

  4. Preparation of Mesoporous SBA-16 Silica-Supported Biscinchona Alkaloid Ligand for the Asymmetric Dihydroxylation of Olefins

    Directory of Open Access Journals (Sweden)

    Shaheen M. Sarkar

    2014-01-01

    Full Text Available Optically active cinchona alkaloid was anchored onto mesoporous SBA-16 silica and the as-prepared complex was used as a heterogeneous chiral ligand of osmium tetraoxide for the asymmetric dihydroxylation of olefins. The prepared catalytic system provided 90–93% yield of vicinal diol with 92–99% enantioselectivity. The ordered mesoporous SBA-16 silica was found to be a valuable support for the cinchona alkaloid liganded osmium catalyst system which is frequently used in chemical industries and research laboratories for olefin functionalization.

  5. Benchmark Energetic Data in a Model System for Grubbs II Metathesis Catalysis and Their Use for the Development, Assessment, and Validation of Electronic Structure Methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Yan; Truhlar, Donald G.

    2009-01-31

    We present benchmark relative energetics in the catalytic cycle of a model system for Grubbs second-generation olefin metathesis catalysts. The benchmark data were determined by a composite approach based on CCSD(T) calculations, and they were used as a training set to develop a new spin-component-scaled MP2 method optimized for catalysis, which is called SCSC-MP2. The SCSC-MP2 method has improved performance for modeling Grubbs II olefin metathesis catalysts as compared to canonical MP2 or SCS-MP2. We also employed the benchmark data to test 17 WFT methods and 39 density functionals. Among the tested density functionals, M06 is the best performing functional. M06/TZQS gives an MUE of only 1.06 kcal/mol, and it is a much more affordable method than the SCSC-MP2 method or any other correlated WFT methods. The best performing meta-GGA is M06-L, and M06-L/DZQ gives an MUE of 1.77 kcal/mol. PBEh is the best performing hybrid GGA, with an MUE of 3.01 kcal/mol; however, it does not perform well for the larger, real Grubbs II catalyst. B3LYP and many other functionals containing the LYP correlation functional perform poorly, and B3LYP underestimates the stability of stationary points for the cis-pathway of the model system by a large margin. From the assessments, we recommend the M06, M06-L, and MPW1B95 functionals for modeling Grubbs II olefin metathesis catalysts. The local M06-L method is especially efficient for calculations on large systems.

  6. Bond Energies in Models of the Schrock Metathesis Catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliu, Monica; Li, Shenggang; Arduengo, Anthony J.; Dixon, David A.

    2011-06-23

    Heats of formation, adiabatic and diabatic bond dissociation energies (BDEs) of the model Schrock-type metal complexes M(NH)(CRR)(OH)₂ (M = Cr, Mo, W; CRR = CH₂, CHF, CF₂) and MO₂(OH)₂ compounds, and Brønsted acidities and fluoride affinities for the M(NH)(CH₂)(OH) ₂ transition metal complexes are predicted using high level CCSD(T) calculations. The metallacycle intermediates formed by reaction of C₂H4 with M(NH)-(CH₂)(OH)2 and MO₂(OH)₂ are investigated at the same level of theory. Additional corrections were added to the complete basis set limit to obtain near chemical accuracy ((1 kcal/mol). A comparison between adiabatic and diabatic BDEs is made and provides an explanation of trends in the BDEs. Electronegative groups bonded on the carbenic carbon lead to less stable Schrock-type complexes as the adiabatic BDEs ofMdCF₂ andMdCHF bonds are much lower than theMdCH₂ bonds. The Cr compounds have smaller BDEs than theWorMo complexes and should be less stable. Different M(NH)(OH)₂(C₃H₆) and MO(OH)₂(OC₂H4) metallacycle intermediates are investigated, and the lowest-energy metallacycles have a square pyramidal geometry. The results show that consideration of the singlet_triplet splitting in the carbene in the initial catalyst as well as in the metal product formed by the retro [2+2] cycloaddition is a critical component in the design of an effective olefin metathesis catalyst in terms of the parent catalyst and the groups being transferred.

  7. Olefins from Biomass Intermediates: A Review

    Directory of Open Access Journals (Sweden)

    Vasiliki Zacharopoulou

    2017-12-01

    Full Text Available Over the last decade, increasing demand for olefins and their valuable products has prompted research on novel processes and technologies for their selective production. As olefins are predominately dependent on fossil resources, their production is limited by the finite reserves and the associated economic and environmental concerns. The need for alternative routes for olefin production is imperative in order to meet the exceedingly high demand, worldwide. Biomass is considered a promising alternative feedstock that can be converted into the valuable olefins, among other chemicals and fuels. Through processes such as fermentation, gasification, cracking and deoxygenation, biomass derivatives can be effectively converted into C2–C4 olefins. This short review focuses on the conversion of biomass-derived oxygenates into the most valuable olefins, e.g., ethylene, propylene, and butadiene.

  8. Chiral fullerenes from asymmetric catalysis.

    Science.gov (United States)

    Maroto, Enrique E; Izquierdo, Marta; Reboredo, Silvia; Marco-Martínez, Juan; Filippone, Salvatore; Martín, Nazario

    2014-08-19

    olefins used in these reactions, pristine fullerene is a noncoordinating dipolarophile. The aforementioned features make the study of stereoselective 1,3-dipolar cycloadditions onto fullerenes a unique scenario to shed light onto important mechanistic aspects. On the other hand, the availability of achiral starting materials as well as the use of nonexpensive asymmetric catalysts should provide access to chiral fullerenes and their further application in a variety of different fields. In this regard, in addition to biomedical applications, chiral fullerenes are of interest in less-studied areas such as materials science, organic electronics, and nanoscience, where control of the order and morphology at the nanometer scale are critical issues for achieving better device efficiencies.

  9. Olefin-selective membranes in gas-liquid membrane contactors for olefin/paraffin separation

    NARCIS (Netherlands)

    Nijmeijer, Dorothea C.; Visser, Tymen; Assen, Rijanne; Wessling, Matthias

    2004-01-01

    The application of olefin-selective membrane materials in gas-liquid membrane contactors for the separation of paraffins and olefins using a silver nitrate solution as the absorption liquid turned out to be very successful, especially with respect to the olefin/paraffin selectivity obtainable.

  10. by a solid-state metathesis approach

    Indian Academy of Sciences (India)

    Wintec

    Abstract. A solid-state metathesis approach initiated by microwave energy has been successfully applied for the synthesis of orthovanadates, M3V2O8 (M = Ca, Sr, and Ba). The structural, vibrational, thermal, optical and chemical properties of synthesized powders are determined by powder X-ray diffraction, scanning ...

  11. Chiral pinwheel clusters lacking local point chirality.

    Science.gov (United States)

    Sun, Kai; Shao, Ting-Na; Xie, Jia-Le; Lan, Meng; Yuan, Hong-Kuan; Xiong, Zu-Hong; Wang, Jun-Zhong; Liu, Ying; Xue, Qi-Kun

    2012-07-09

    The supramolecular pinwheel cluster is a unique chiral structure with evident handedness. Previous studies reveal that the chiral pinwheels are composed of chiral or achiral molecules with polar groups, which result in strong intermolecular interactions such as hydrogen-bonding or dipole interactions. Herein, it is shown that the simple linear aromatic molecule, pentacene, can be self-assembled into large chiral pinwheel clusters on the semimetal Bi(111) surface, due to enhanced intermolecular interactions. The pentacene pinwheels reveal two levels of organizational chirality: the chiral hexamers resulting from asymmetric shifting along the long molecular axis, and chiral arrangement of six hexamers with a rotor motif. Furthermore, a new relation between the local point chirality and organizational chirality is identified from the pinwheels: the former is not essential for the latter in 2D pinwheel clusters of the pentacene molecule. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Punctuated Chirality

    OpenAIRE

    Gleiser, Marcelo; Thorarinson, Joel; Walker, Sara Imari

    2008-01-01

    Most biomolecules occur in mirror, or chiral, images of each other. However, life is homochiral: proteins contain almost exclusively levorotatory (L) amino acids, while only dextrorotatory (R) sugars appear in RNA and DNA. The mechanism behind this fundamental asymmetry of life remains an open problem. Coupling the spatiotemporal evolution of a general autocatalytic polymerization reaction network to external environmental effects, we show through a detailed statistical analysis that high int...

  13. Alkene metathesis - a tool for the synthesis of conjugated polymers.

    Science.gov (United States)

    Bunz, Uwe H F; Mäker, Dominic; Porz, Michael

    2012-05-29

    Alkene metathesis is a superb methodology. We report the progress using alkene metathesis in the synthesis of polymeric organic semiconductors. Three classes of polymers have been synthesized using acyclic diene metathesis (ADMET) or ring opening metathesis polymerization (ROMP), viz., poly(acetylene)s (PA), poly(arylene-vinylene)s (PAV), and organometallic polymers. For PAs, ROMP of cyclooctatetraenes is best, whereas for PAV, both ADMET and indirect and direct ROMP are viable. Metathesis performs flawlessly with the correct monomers, as molybdenum and particularly the robust Ru carbenes demonstrate. When performing ROMP, one is often rewarded with structurally uniform polymers that can display very low polydispersities. Overall, metathesis is a powerful tool for the preparation of semiconducting polymers. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Chiral streamers

    Energy Technology Data Exchange (ETDEWEB)

    Zou, Dandan; Cao, Xin [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Lu, Xinpei, E-mail: luxinpei@hotmail.com [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Ostrikov, Kostya [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland 4000 (Australia); Comonwealth Scientific and Industrial Research Organization, P.O. Box 218, Sydney, New South Wales 2070 (Australia)

    2015-10-15

    The interaction of time-varying electromagnetic fields and solid, liquid, and gaseous matter may lead to electrical breakdown phenomena through the excitation of ionization waves or streamers that control the dynamics of localized plasma propagation through the media. The streamers usually propagate along straight lines, either between random points in space or along a certain direction in a guided mode. Here, we report on a new type of plasma discharges with the regular helical propagation pattern driven by a pulsed dc voltage in nitrogen at sub-atmospheric-pressure conditions. The helical guided streamers, named chiral streamers or chi-streamers, are excited without any external magnetic fields, which commonly cause helical plasma motions. We also demonstrate a hybrid propagation mode involving the interchangeable chiral streamers and the straight-line propagating plasmas. High-speed, time-resolved optical imaging reveals that the chiral streamers and the hybrid patterns are made of spatially localized discrete plasma bullets, similar to the straight-line guided streamers. These results may enable effective control of propagation of confined plasmas and electromagnetic energy along pre-determined, potentially deterministic paths, which have important implications for the development of next-generation plasma-based radiation sources, communication devices, and medical treatments.

  15. Chiral Nanotubes

    Directory of Open Access Journals (Sweden)

    Andrea Nitti

    2017-07-01

    Full Text Available Organic nanotubes, as assembled nanospaces, in which to carry out host–guest chemistry, reversible binding of smaller species for transport, sensing, storage or chemical transformation purposes, are currently attracting substantial interest, both as biological ion channel mimics, or for addressing tailored material properties. Nature’s materials and machinery are universally asymmetric, and, for chemical entities, controlled asymmetry comes from chirality. Together with carbon nanotubes, conformationally stable molecular building blocks and macrocycles have been used for the realization of organic nanotubes, by means of their assembly in the third dimension. In both cases, chiral properties have started to be fully exploited to date. In this paper, we review recent exciting developments in the synthesis and assembly of chiral nanotubes, and of their functional properties. This review will include examples of either molecule-based or macrocycle-based systems, and will try and rationalize the supramolecular interactions at play for the three-dimensional (3D assembly of the nanoscale architectures.

  16. Producing alpha-olefins using polyketide synthases

    Energy Technology Data Exchange (ETDEWEB)

    Fortman, Jeffrey L.; Katz, Leonard; Steen, Eric J.; Keasling, Jay D.

    2018-01-02

    The present invention provides for a polyketide synthase (PKS) capable of synthesizing an .alpha.-olefin, such as 1-hexene or butadiene. The present invention also provides for a host cell comprising the PKS and when cultured produces the .alpha.-olefin.

  17. Substantially isotactic, linear, alternating copolymers of carbon monoxide and an olefin

    Science.gov (United States)

    Sen, A.; Jiang, Z.

    1996-05-28

    The compound, [Pd(Me-DUPHOS)(MeCN){sub 2}](BF{sub 4}){sub 2}, [Me-DUPHOS: 1,2-bis(2,5-dimethylphospholano)benzene] is an effective catalyst for the highly enantioselective, alternating copolymerization of olefins, such as aliphatic {alpha}-olefins, with carbon monoxide to form optically active, isotactic polymers which can serve as excellent starting materials for the synthesis of other classes of chiral polymers. For example, the complete reduction of a propylene-carbon monoxide copolymer resulted in the formation of a novel, optically active poly(1,4-alcohol). Also, the previously described catalyst is a catalyst for the novel alternating isomerization cooligomerization of 2-butene with carbon monoxide to form optically active, isotactic poly(1,5-ketone).

  18. New Trends in Olefin Production

    Directory of Open Access Journals (Sweden)

    Ismaël Amghizar

    2017-04-01

    Full Text Available Most olefins (e.g., ethylene and propylene will continue to be produced through steam cracking (SC of hydrocarbons in the coming decade. In an uncertain commodity market, the chemical industry is investing very little in alternative technologies and feedstocks because of their current lack of economic viability, despite decreasing crude oil reserves and the recognition of global warming. In this perspective, some of the most promising alternatives are compared with the conventional SC process, and the major bottlenecks of each of the competing processes are highlighted. These technologies emerge especially from the abundance of cheap propane, ethane, and methane from shale gas and stranded gas. From an economic point of view, methane is an interesting starting material, if chemicals can be produced from it. The huge availability of crude oil and the expected substantial decline in the demand for fuels imply that the future for proven technologies such as Fischer-Tropsch synthesis (FTS or methanol to gasoline is not bright. The abundance of cheap ethane and the large availability of crude oil, on the other hand, have caused the SC industry to shift to these two extremes, making room for the on-purpose production of light olefins, such as by the catalytic dehydrogenation of propane.

  19. Synergy between Two Metal Catalysts: A Highly Active Silica Supported Bimetallic W/Zr Catalyst for Metathesis of n-Decane

    KAUST Repository

    Samantaray, Manoja

    2016-06-01

    A well-defined, silica supported, bimetallic precatalyst [≡Si-O-W(Me)5 ≡Si-O-Zr(Np)3](4) has been synthesized for the first time via successively grafting two organometallic complexes [W(CH3)6 (1) followed by ZrNp4 (2)] on a single silica support. Surprisingly, multiple quantum NMR characterization demonstrates that W and Zr species are in close proximity to each other. Hydrogenation of this bimetallic catalyst at room temperature showed the easy formation of Zirconium hydride, probably facilitated by tungsten hydride which was formed at this temperature. This bimetallic W/Zr hydride precatalyst proved to be more efficient (TON: 1436) than the monometallic W hydride (TON: 650) in metathesis of n-decane at 150 0C. This synergy between Zr and W suggests that the slow step of alkane metathesis is the C-H bond activation which occurs on Zr. The produced olefin resulting from a ß–H elimination undergoes easy metathesis on W.

  20. Metathesis: A" Change-Your-Partners" Dance-Chemistry Nobel ...

    Indian Academy of Sciences (India)

    Metathesis: A "Change-Your-Partners" Dance-Chemistry Nobel Prize – 2005. K Sivapriya S Chandrasekaran ... Keywords. Metathesis; organic synthesis; catalysis; green chemistry. Author Affiliations. K Sivapriya1 S Chandrasekaran1. Department of Organic Chemistry Indian Institute of Science Bangalore 560012, India.

  1. Ring opening of monocyclic dimethyl cyclopropene via metathesis ...

    Indian Academy of Sciences (India)

    Metathesis reaction of 3,3-disubstituted cyclopropene mediated by the model catalyst tungsten alkylidene W(NH)(CH2)(OCH3)2 has been studied at the B3LYP/LANL2DZ level of theory. The stationary points on the potential energy surface for ring opening metathesis were calculated considering all stereochemically distinct ...

  2. Methods for synthesis of olefins and derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Burk, Mark J.; Pharkya, Priti; Van Dien, Stephen J.; Burgard, Anthony P.; Schilling, Christophe H.

    2016-06-14

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  3. Dynamical Local Chirality and Chiral Symmetry Breaking

    CERN Document Server

    Alexandru, Andrei

    2013-01-01

    We present some of the reasoning and results substantiating the notion that spontaneous chiral symmetry breaking (SChSB) in QCD is encoded in local chiral properties of Dirac eigenmodes. Such association is possible when viewing chirality as a dynamical effect, measured with respect to the benchmark of statistically independent left-right components. Following this rationale leads to describing local chiral behavior by a taylor-made correlation, namely the recently introduced correlation coefficient of polarization C_A. In this language, correlated modes (C_A>0) show dynamical preference for local chirality while anti-correlated modes (C_A<0) favor anti-chirality. Our conclusion is that SChSB in QCD can be viewed as dominance of low-energy correlation (chirality) over anti-correlation (anti-chirality) of Dirac sea. The spectral range of local chirality, chiral polarization scale Lambda_ch, is a dynamically generated scale in the theory associated with SChSB. One implication of these findings is briefly dis...

  4. Chirality recognition of winding vine-shaped heterobiaryls with molecular asymmetry. Kinetic and dynamic kinetic resolution by Shi's asymmetric epoxidation.

    Science.gov (United States)

    Maruhashi, Kazuki; Okayama, Yoichi; Inoue, Ryo; Ashida, Shiomi; Toyomori, Yuka; Okano, Kentaro; Mori, Atsunori

    2018-01-26

    The chirality of winding vine-shaped heterobiaryls with molecular asymmetry is recognized by a sugar-based chiral oxidant. Kinetic resolution of (±)-bisbenzoimidazole bearing an olefin moiety takes place with Shi's asymmetric epoxidation to observe krel value up to ca. 35 affording the corresponding epoxide. The reaction of a (±)-bithiophene derivative also recognized the chirality to give the corresponding epoxide with er of 96:4 at 39% conversion. Dynamic kinetic resolution is found to take place when unsymmetrical biaryl composed of benzoimidazole/thiophene is subjected to Shi's epoxidation, whose conversion of the racemic substrate exceeds to 50%.

  5. Selective conversion of bio-oil to light olefins: controlling catalytic cracking for maximum olefins.

    Science.gov (United States)

    Gong, Feiyan; Yang, Zhi; Hong, Chenggui; Huang, Weiwei; Ning, Shen; Zhang, Zhaoxia; Xu, Yong; Li, Quanxin

    2011-10-01

    Light olefins are the basic building blocks for the petrochemical industry. In this work, selective production of light olefins from catalytic cracking of bio-oil was performed by using the La/HZSM-5 catalyst. With a nearly complete conversion of bio-oil, the maximum yield reached 0.28±0.02 kg olefins/(kg bio-oil), which was close to that from methanol. Addition of La into zeolite efficiently changed the total acid amount of HZSM-5, especially the acid distribution among the strong, medium and weak acid sites. A moderate increase of the number of the medium acid sites effectively enhanced the olefins selectivity and improved the catalyst stability. The comparison between the catalytic cracking and pyrolysis of bio-oil was studied. The mechanism of the conversion of bio-oil to light olefins was also discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Chiral Inorganic Nanostructures.

    Science.gov (United States)

    Ma, Wei; Xu, Liguang; de Moura, André F; Wu, Xiaoling; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A

    2017-06-28

    The field of chiral inorganic nanostructures is rapidly expanding. It started from the observation of strong circular dichroism during the synthesis of individual nanoparticles (NPs) and their assemblies and expanded to sophisticated synthetic protocols involving nanostructures from metals, semiconductors, ceramics, and nanocarbons. Besides the well-established chirality transfer from bioorganic molecules, other methods to impart handedness to nanoscale matter specific to inorganic materials were discovered, including three-dimentional lithography, multiphoton chirality transfer, polarization effects in nanoscale assemblies, and others. Multiple chiral geometries were observed with characteristic scales from ångströms to microns. Uniquely high values of chiral anisotropy factors that spurred the development of the field and differentiate it from chiral structures studied before, are now well understood; they originate from strong resonances of incident electromagnetic waves with plasmonic and excitonic states typical for metals and semiconductors. At the same time, distinct similarities with chiral supramolecular and biological systems also emerged. They can be seen in the synthesis and separation methods, chemical properties of individual NPs, geometries of the nanoparticle assemblies, and interactions with biological membranes. Their analysis can help us understand in greater depth the role of chiral asymmetry in nature inclusive of both earth and space. Consideration of both differences and similarities between chiral inorganic, organic, and biological nanostructures will also accelerate the development of technologies based on chiroplasmonic and chiroexcitonic effects. This review will cover both experiment and theory of chiral nanostructures starting with the origin and multiple components of mirror asymmetry of individual NPs and their assemblies. We shall consider four different types of chirality in nanostructures and related physical, chemical, and

  7. Introduction to chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, V.

    1996-01-08

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. Effective chiral models such as the linear and nonlinear sigma model will be discussed as well as the essential ideas of chiral perturbation theory. Some applications to the physics of ultrarelativistic heavy ion collisions will be presented.

  8. Introduction to Chiral Symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Koch, Volker [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-05-09

    These lectures are an attempt to a pedagogical introduction into the elementary concepts of chiral symmetry in nuclear physics. We will also discuss some effective chiral models such as the linear and nonlinear sigma model as well as the essential ideas of chiral perturbation theory. We will present some applications to the physics of ultrarelativistic heavy ion collisionsd.

  9. Cross-metathesis of allylcarboranes with O-allylcyclodextrins

    Directory of Open Access Journals (Sweden)

    Ivan Šnajdr

    2010-11-01

    Full Text Available Cross-metathesis between allylcarboranes and O-allylcyclodextrins was catalyzed by Hoveyda–Grubbs 2nd generation catalyst in toluene. The corresponding carboranyl-cyclodextrin conjugates were isolated in 15–25% yields.

  10. Cross-metathesis of allylcarboranes with O-allylcyclodextrins

    Czech Academy of Sciences Publication Activity Database

    Šnajdr, I.; Janoušek, Zbyněk; Jindřich, J.; Kotora, M.

    2010-01-01

    Roč. 6, - (2010), s. 1099-1105 ISSN 1860-5397 Institutional research plan: CEZ:AV0Z40320502 Keywords : carborane * catalysis * cross-metathesis Subject RIV: CC - Organic Chemistry Impact factor: 1.515, year: 2010

  11. An alkyne metathesis-based route toortho-dehydrobenzannulenes

    Energy Technology Data Exchange (ETDEWEB)

    Miljanic, Ognjen S.; Vollhardt, Peter C.; Whitener, Glenn D.

    2002-11-07

    An application of alkyne metathesis to 1,2-di(prop-1-ynyl)arenes, producing dehydrobenzannulenes, is described. An efficient method for selective Sonogashira couplings of bromoiodoarenes under conditions of microwave irradiation is also reported.

  12. Rational design of cyclopropane-based chiral PHOX ligands for intermolecular asymmetric Heck reaction

    Directory of Open Access Journals (Sweden)

    Marina Rubina

    2014-07-01

    Full Text Available A novel class of chiral phosphanyl-oxazoline (PHOX ligands with a conformationally rigid cyclopropyl backbone was synthesized and tested in the intermolecular asymmetric Heck reaction. Mechanistic modelling and crystallographic studies were used to predict the optimal ligand structure and helped to design a very efficient and highly selective catalytic system. Employment of the optimized ligands in the asymmetric arylation of cyclic olefins allowed for achieving high enantioselectivities and significantly suppressing product isomerization. Factors affecting the selectivity and the rate of the isomerization were identified. It was shown that the nature of this isomerization is different from that demonstrated previously using chiral diphosphine ligands.

  13. On chiral and non chiral 1D supermultiplets

    Energy Technology Data Exchange (ETDEWEB)

    Toppan, Francesco, E-mail: toppan@cbpf.b [Centro Brasileiro de Pesquisas Fisicas (TEO/CBPF), Rio de Janeiro, RJ (Brazil). Coordenacao de Fisica Teorica

    2011-07-01

    In this talk I discuss and clarify some issues concerning chiral and non chiral properties of the one-dimensional supermultiplets of the N-extended supersymmetry. Quaternionic chirality can be defined for N = 4, 5, 6, 7, 8. Octonionic chirality for N = 8 and beyond. Inequivalent chiralities only arise when considering several copies of N = 4 or N = 8 supermultiplets. (author)

  14. Chiral symmetry and chiral-symmetry breaking

    Energy Technology Data Exchange (ETDEWEB)

    Peskin, M.E.

    1982-12-01

    These lectures concern the dynamics of fermions in strong interaction with gauge fields. Systems of fermions coupled by gauge forces have a very rich structure of global symmetries, which are called chiral symmetries. These lectures will focus on the realization of chiral symmetries and the causes and consequences of thier spontaneous breaking. A brief introduction to the basic formalism and concepts of chiral symmetry breaking is given, then some explicit calculations of chiral symmetry breaking in gauge theories are given, treating first parity-invariant and then chiral models. These calculations are meant to be illustrative rather than accurate; they make use of unjustified mathematical approximations which serve to make the physics more clear. Some formal constraints on chiral symmetry breaking are discussed which illuminate and extend the results of our more explicit analysis. Finally, a brief review of the phenomenological theory of chiral symmetry breaking is presented, and some applications of this theory to problems in weak-interaction physics are discussed. (WHK)

  15. Mechanical separation of chiral dipoles by chiral light

    CERN Document Server

    Canaguier-Durand, Antoine; Genet, Cyriaque; Ebbesen, Thomas W

    2013-01-01

    Optical forces take on a specific form when involving chiral light fields interacting with chiral objects. We show that optical chirality density and flow can have mechanical effects through reactive and dissipative components of chiral forces exerted on chiral dipoles. Remarkably, these force components are directly related to standard observables: optical rotation and circular dichroism, respectively. As a consequence, resulting forces and torques are dependent on the enantiomeric form of the chiral dipole. This leads to promising strategies for the mechanical separation of chiral objects using chiral light forces.

  16. Bromination of olefins with HBr and DMSO.

    Science.gov (United States)

    Karki, Megha; Magolan, Jakob

    2015-04-03

    A simple and inexpensive methodology is reported for the conversion of alkenes to 1,2-dibromo alkanes via oxidative bromination using HBr paired with dimethyl sulfoxide, which serves as the oxidant as well as cosolvent. The substrate scope includes 21 olefins brominated in good to excellent yields. Three of six styrene derivatives yielded bromohydrins under the reaction conditions.

  17. Doped Chiral Polymer Metamaterials Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Doped Chiral Polymer Metamaterials (DCPM) with tunable resonance frequencies have been developed by adding plasmonic inclusions into chiral polymers with variable...

  18. Competitive chiral induction in a 2D molecular assembly: Intrinsic chirality versus coadsorber-induced chirality

    Science.gov (United States)

    Chen, Ting; Li, Shu-Ying; Wang, Dong; Wan, Li-Jun

    2017-01-01

    Noncovalently introducing stereogenic information is a promising approach to embed chirality in achiral molecular systems. However, the interplay of the noncovalently introduced chirality with the intrinsic chirality of molecules or molecular aggregations has rarely been addressed. We report a competitive chiral expression of the noncovalent interaction–mediated chirality induction and the intrinsic stereogenic center–controlled chirality induction in a two-dimensional (2D) molecular assembly at the liquid/solid interface. Two enantiomorphous honeycomb networks are formed by the coassembly of an achiral 5-(benzyloxy)isophthalic acid (BIC) derivative and 1-octanol at the liquid/solid interface. The preferential formation of the globally homochiral assembly can be achieved either by using the chiral analog of 1-octanol, (S)-6-methyl-1-octanol, as a chiral coadsorber to induce chirality to the BIC assembly via noncovalent hydrogen bonding or by covalently linking a chiral center in the side chain of BIC. Both the chiral coadsorber and the intrinsically chiral BIC derivative can act as a chiral seeds to induce a preferred handedness in the assembly of the achiral BIC derivatives. Furthermore, the noncovalent interaction–mediated chirality induction can restrain or even overrule the manifestation of the intrinsic chirality of the BIC molecule and dominate the handedness of the 2D molecular coassembly. This study provides insight into the interplay of intrinsically chiral centers and external chiral coadsorbers in the chiral induction, transfer, and amplification processes of 2D molecular assembly.

  19. Chiral magnetic superconductivity

    Directory of Open Access Journals (Sweden)

    Kharzeev Dmitri E.

    2017-01-01

    Full Text Available Materials with charged chiral quasiparticles in external parallel electric and magnetic fields can support an electric current that grows linearly in time, corresponding to diverging DC conductivity. From experimental viewpoint, this “Chiral Magnetic Superconductivity” (CMS is thus analogous to conventional superconductivity. However the underlying physics is entirely different – the CMS does not require a condensate of Cooper pairs breaking the gauge degeneracy, and is thus not accompanied by Meissner effect. Instead, it owes its existence to the (temperature-independent quantum chiral anomaly and the conservation of chirality. As a result, this phenomenon can be expected to survive to much higher temperatures. Even though the chirality of quasiparticles is not strictly conserved in real materials, the chiral magnetic superconductivity should still exhibit itself in AC measurements at frequencies larger than the chirality-flipping rate, and in microstructures of Dirac and Weyl semimetals with thickness below the mean chirality-flipping length that is about 1 – 100 μm. In nuclear physics, the CMS should contribute to the charge-dependent elliptic flow in heavy ion collisions.

  20. Chiral quark model

    Indian Academy of Sciences (India)

    In this talk I review studies of hadron properties in bosonized chiral quark models for the quark flavor dynamics. Mesons are constructed from Bethe–Salpeter equations and baryons emerge as chiral solitons. Such models require regularization and I show that the two-fold Pauli–Villars regularization scheme not only fully ...

  1. Optical chirality breaking in a bilayered chiral metamaterial.

    Science.gov (United States)

    Zhao, Jianxing; Fu, Yuegang; Liu, Zhiying; Zhou, Jianhong

    2017-09-18

    We propose a planar optical bilayered chiral metamaterial, which consists of periodic metallic arrays of two L-shaped structures and a nanorod twisted on both sides of a dielectric slab, to investigate the optical chirality breaking effect by using finite-difference time-domain (FDTD) method. Even the metamaterial is with chiral symmetry, an optical chirality breaking window in the asymmetric transmission pass band is obtained in chiral metamaterial structure. We analyze the plasmonic mode properties and attribute the mechanism of the optical chirality breaking effect to the plasmonic analogue of EIT. The optical chirality breaking window can be modulated by changing the geometric parameters of the nanorods in the structure.

  2. Olefin hydroformylation catalysis with RuCl2(DMSO4.

    Directory of Open Access Journals (Sweden)

    Marisela Reyes*

    2008-05-01

    Full Text Available The RuCl2(DMSO4 complex was used as catalytic precursor in olefin hydroformylation reactions, giving good percent yield and better selectivity for linear aldehydes. The reactions were tested in homogeneous medium and biphasic organic solvent/ water systems. The substrates tried were 1-hexene, cyclohexene, 2-methyl-2-pentene, 2,3-dimethyl-2-butene; binary mixtures and synthetic naphtha and real naphtha. The activity is better for linear olefins compared with substituted olefins.

  3. Chiral separation by capillary electrochromatography.

    Science.gov (United States)

    Gübitz, G; Schmid, M G

    2000-01-01

    The state of art in chiral capillary electrochromatography is reviewed. Chiral separations by capillary electrochromatography were carried out using capillaries packed with chiral stationary phases or achiral stationary phases in combination with a chiral selector added to the mobile phase. Furthermore, the use of open tubular capillaries containing the chiral selector coated to the capillary wall was also reported. Among other separation principles moleculary imprinted polymers represent a challenging approach for chiral capillary electrochromatography. A recent trend is the use of polymeric continuous beds with a chiral selector incorporated.

  4. Nanoheterogeneous catalysis in electrochemically induced olefin perfluoroalkylation.

    Science.gov (United States)

    Dudkina, Yulia B; Gryaznova, Tatyana V; Osin, Yuri N; Salnikov, Vadim V; Davydov, Nikolay A; Fedorenko, Svetlana V; Mustafina, Asia R; Vicic, David A; Sinyashin, Oleg G; Budnikova, Yulia H

    2015-05-21

    Ni-catalyzed electroreductive olefin perfluoroalkylation affords both monomeric and dimeric products depending on the reaction media. Recycling of the catalyst can be achieved by immobilization of a (bpy)NiBr2 complex on silica nanoparticles decorated with anchoring amino-groups. Switching the homogeneous and heterogeneous catalysts is found to be one more factor to control the product ratio. This catalytic technique is both green and atom economical and combines the advantages of nanoheterogeneous catalysis and electrocatalysis.

  5. Applications of chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Pisarski, R.D.

    1995-03-01

    The author discusses several topics in the applications of chiral symmetry at nonzero temperature. First, where does the rho go? The answer: up. The restoration of chiral symmetry at a temperature T{sub {chi}} implies that the {rho} and a{sub 1} vector mesons are degenerate in mass. In a gauged linear sigma model the {rho} mass increases with temperature, m{sub {rho}}(T{sub {chi}}) > m{sub {rho}}(0). The author conjectures that at T{sub {chi}} the thermal {rho} - a{sub 1}, peak is relatively high, at about {approximately}1 GeV, with a width approximately that at zero temperature (up to standard kinematic factors). The {omega} meson also increases in mass, nearly degenerate with the {rho}, but its width grows dramatically with temperature, increasing to at least {approximately}100 MeV by T{sub {chi}}. The author also stresses how utterly remarkable the principle of vector meson dominance is, when viewed from the modern perspective of the renormalization group. Secondly, he discusses the possible appearance of disoriented chiral condensates from {open_quotes}quenched{close_quotes} heavy ion collisions. It appears difficult to obtain large domains of disoriented chiral condensates in the standard two flavor model. This leads to the last topic, which is the phase diagram for QCD with three flavors, and its proximity to the chiral critical point. QCD may be very near this chiral critical point, and one might thereby generated large domains of disoriented chiral condensates.

  6. Spectral signatures of chirality

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Mortensen, Asger

    2009-01-01

    We present a new way of measuring chirality, via the spectral shift of photonic band gaps in one-dimensional structures. We derive an explicit mapping of the problem of oblique incidence of circularly polarized light on a chiral one-dimensional photonic crystal with negligible index contrast...... to the formally equivalent problem of linearly polarized light incident on-axis on a non-chiral structure with index contrast. We derive analytical expressions for the first-order shifts of the band gaps for negligible index contrast. These are modified to give good approximations to the band gap shifts also...

  7. Recent advances in the development of alkyne metathesis catalysts

    Directory of Open Access Journals (Sweden)

    Matthias Tamm

    2011-01-01

    Full Text Available The number of well-defined molybdenum and tungsten alkylidyne complexes that are able to catalyze alkyne metathesis reactions efficiently has been significantly expanded in recent years.The latest developments in this field featuring highly active imidazolin-2-iminato- and silanolate–alkylidyne complexes are outlined in this review.

  8. Revisiting the metathesis of 13C-monolabeled ethane

    KAUST Repository

    Maury, Olivier

    2010-12-13

    The metathesis of 13C-monolabeled ethane leads to the parallel occurrence of degenerate and productive reactions, affording the statistical distribution of the various product isotopomers, which can be rationalized in terms of a mechanistic reaction scheme combining both processes. © 2010 American Chemical Society.

  9. Fluoronium metathesis and rearrangements of fluorine stabilized carbocations

    NARCIS (Netherlands)

    Oomens, J.; Morton, T.H.

    2011-01-01

    The ion-molecule reaction of gaseous trifluoromethyl cation with the conjugated enone 3-methylcyclopentenone yields the C6H8F+ product from metathesis of F+ with the ketone oxygen, along with concomitant formation of neutral carbonyl fluoride. Comparison of the infrared multiple photon dissociation

  10. Fluoronium metathesis and rearrangements of fluorine-stabilized carbocations

    NARCIS (Netherlands)

    Oomens, J.; Morton, T. H.

    2011-01-01

    The ion-molecule reaction of gaseous trifluoromethyl cation with the conjugated enone 3-methylcyclopentenone yields the C(6)H(8)F(+) product from metathesis of F(+) with the ketone oxygen, along with concomitant formation of neutral carbonyl fluoride. Comparison of the infrared multiple photon

  11. Metathesis of carbon dioxide and phenyl isocyanate catalysed by ...

    Indian Academy of Sciences (India)

    The insertion reactions of zirconium(IV) -butoxide and titanium(IV) -butoxide with a heterocumulene like carbodiimide, carbon dioxide or phenyl isocyanate are compared. Both give an intermediate which carries out metathesis at elevated temperatures by inserting a second heterocumulene in a head-to-head fashion.

  12. Metathesis synthesis and characterization of complex metal fluoride ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Metathesis synthesis of complex metal fluorides using mechanochemical activation has been reported. The high lattice energy of the byproduct KCl helps the reaction towards product formation in under 20 min. The proposed process, in contrast to the available methods of synthesis, is very rapid, economical and ...

  13. Further studies of imido alkylidene complexes of tungsten, well-characterized olefin metathesis catalysts with controllable activity

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, R.R.; DePue, R.T.; Feldman, J.; Yap, K.B.; Yang, D.C.; Davis, W.M.; Park, L.; DiMare, M.; Schofield, M.; Anhaus, J. (Massachusetts Institute of Technology, Cambridge (USA)); Walborsky, E.; Evitt, E. (Catalytica Inc., Mountain View, CA (USA)); Krueger, C.; Betz, P. (Max-Planck-Institute fuer Kohlenforschung, Ruhr (West Germany))

    1990-08-01

    An alternative synthesis of W(CH-t-Bu)(NAr)(dme)Cl{sub 2} (Ar = 2,6-C{sub 6}-H{sub 3}-i-Pr{sub 2}) consists of the five steps WCl{sub 6} {yields} W(O)Cl{sub 4} {yields} W(NAr)Cl{sub 4} {yields} W(NAr)(O-t-Bu){sub 2}Cl{sub 2}(THF) {yields} W(NAr)(O-t-Bu){sub 2}(CH{sub 2}-t-Bu){sub 2} {yields} W(CH-t-Bu)(NAr)(dme)Cl{sub 2}, in which tert-butoxide protecting groups are replaced by chlorides in the last step upon addition of PCl{sub 5}. The easiest synthesis to a catalyst precursor consists of the three steps WO{sub 2}Cl{sub 2} {yields} W(NAr){sub 2}Cl{sub 2}(dme) {yields} W(NAr){sub 2}(CH{sub 2}R){sub 2} {yields} W(CHR)(NAr)(OTf){sub 2}(dme) (R = t-Bu, CMe{sub 2}Ph; OTf = OSO{sub 2}CF{sub 3}), in which an imido ligand protecting group is ultimately replaced by two triflate ligands upon addition of triflic acid in the last step. An X-ray study of W(CH-t-Bu)(NAr)(O-t-Bu){sub 2} shows it to be a pseudotetrahedral complex in which the tert-butyl group points toward the imido ligand.

  14. Monomeric and dendritic second generation Grubbs- and Hoveyda-Grubbs-type catalysts for olefin metathesis Metallodendrimers Special Issue

    NARCIS (Netherlands)

    Pijnenburg, Niels J M; Tomás-Mendivil, Eder; Mayland, Kimberley E.; Kleijn, Henk; Lutz, Martin; Spek, Anthony L.; Van Koten, Gerard; Klein Gebbink, Bert

    2014-01-01

    The synthesis and characterization of monomeric and dendritic Grubbs II and Hoveyda-Grubbs II-based complexes are reported. These complexes were synthesized via a route based on the connection of monomeric or dendritic N-alkyl-N′-mesitylimidazol-2-ylidene pre-ligands to Grubbs I or Hoveyda-Grubbs I

  15. A theoretical view on the thermodynamic cis-trans equilibrium of dihalo ruthenium olefin metathesis (pre-)catalysts

    KAUST Repository

    Pump, Eva

    2015-02-24

    Abstract: This work was conducted to provide an overview on the position of the thermodynamic cis–trans equilibrium of 85 conventional and X-chelated alkylidene-ruthenium complexes (X=O, S, Se, N, P, Cl, I, Br). The reported energies (ΔE) were obtained through single-point calculations with M06 functional and TZVP basis set from BP86/SVP-optimized cis- and trans-dichloro geometries and using the polarizable continuum model to simulate the influence of the solvent. Dichloromethane and toluene were selected as examples for solvents with high and low dielectric constants. The obtained relative stabilities of the cis- and trans-dihalo derivatives of the respective alkylidene complexes will serve for a better explanation of their catalytic activity as has been disclosed herein with selected examples.Graphical abstract: [Figure not available: see fulltext.

  16. Chiral Brownian heat pump

    OpenAIRE

    van den Broek, Martijn; Van den Broeck, Christian

    2008-01-01

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  17. Chiral brownian heat pump.

    Science.gov (United States)

    van den Broek, M; Van den Broeck, C

    2008-04-04

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  18. Chiral Brownian heat pump

    OpenAIRE

    Broek, M. van den; Broeck, C. Van Den

    2007-01-01

    We present the exact analysis of a chiral Brownian motor and heat pump. Optimization of the construction predicts, for a nanoscale device, frequencies of the order of kHz and cooling rates of the order of femtojoule per second.

  19. One Step Formation of Propene from Ethene or Ethanol through Metathesis on Nickel Ion-loaded Silica

    Directory of Open Access Journals (Sweden)

    Masakazu Iwamoto

    2011-09-01

    Full Text Available Increased propene production is presently one of the most significant objectives in petroleum chemistry. Especially the one-step conversion of ethene to propene (ETP reaction, 3C2H4 ® 2C3H6 is the most desired process. In our efforts, nickel ion-loaded mesoporous silica could turn a new type of ETP reaction into reality. The one-step conversion of ethene was 68% and the propene selectivity was 48% in a continuous gas-flow system at 673 K and atmospheric pressure. The reactivity of lower olefins and the dependences of the ETP reaction on the contact time and the partial pressure of ethene were consistent with a reaction mechanism involving dimerization of ethene to 1-butene, isomerization of 1-butene to 2-butene, and metathesis of 2-butene and ethene to yield propene. The reaction was then expanded to an ethanol-to-propene reaction on the same catalyst, in which two possible reaction routes are suggested to form ethene from ethanol. The catalysts were characterized mainly by EXAFS and TPR techniques. The local structures of the nickel species active for the ETP reaction were very similar to that of layered nickel silicate, while those on the inert catalysts were the same as that of NiO particles. 

  20. Supported organometallic catalysts for hydrogenation and Olefin Polymerization

    Science.gov (United States)

    Marks, Tobin J.; Ahn, Hongsang

    2001-01-01

    Novel heterogeneous catalysts for the which hydrogenation of olefins and arenes with high conversion rates under ambient conditions and the polymerization of olefins have been developed. The catalysts are synthesized from Ziegler-type precatalysts by supporting them on sulfate-modified zirconia.

  1. Chiral Random Matrix Theory and Chiral Perturbation Theory

    Energy Technology Data Exchange (ETDEWEB)

    Damgaard, Poul H, E-mail: phdamg@nbi.dk [Niels Bohr International Academy and Discovery Center, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark)

    2011-04-01

    Spontaneous breaking of chiral symmetry in QCD has traditionally been inferred indirectly through low-energy theorems and comparison with experiments. Thanks to the understanding of an unexpected connection between chiral Random Matrix Theory and chiral Perturbation Theory, the spontaneous breaking of chiral symmetry in QCD can now be shown unequivocally from first principles and lattice simulations. In these lectures I give an introduction to the subject, starting with an elementary discussion of spontaneous breaking of global symmetries.

  2. Computational study of productive and non-productive cycles in fluoroalkene metathesis

    Directory of Open Access Journals (Sweden)

    Markéta Rybáčková

    2015-11-01

    Full Text Available A detailed DFT study of the mechanism of metathesis of fluoroethene, 1-fluoroethene, 1,1-difluoroethene, cis- and trans-1,2-difluoroethene, tetrafluoroethene and chlorotrifluoroethene catalysed with the Hoveyda–Grubbs 2nd generation catalyst was performed. It revealed that a successful metathesis of hydrofluoroethenes is hampered by a high preference for a non-productive catalytic cycle proceeding through a ruthenacyclobutane intermediate bearing fluorines in positions 2 and 4. Moreover, the calculations showed that the cross-metathesis of perfluoro- or perhaloalkenes should be a feasible process and that the metathesis is not very sensitive to stereochemical issues.

  3. Autoamplification of molecular chirality through the induction of supramolecular chirality

    NARCIS (Netherlands)

    van Dijken, Derk Jan; Beierle, John M.; Stuart, Marc C. A.; Szymanski, Wiktor; Browne, Wesley R.; Feringa, Ben L.

    2014-01-01

    The novel concept for the autoamplification of molecular chirality, wherein the amplification proceeds through the induction of supramolecular chirality, is presented. A solution of prochiral, ring-open diarylethenes is doped with a small amount of their chiral, ring-closed counterpart. The

  4. L'alkylidénolyse des oléfines catalysée par les complexes des métaux de transition Alkylidenolysis of Olefins Catalysed by Transition-Metal Complexes

    Directory of Open Access Journals (Sweden)

    Chauvin Y.

    2006-11-01

    Full Text Available Une grande variété de complexes de métaux de transition, homogènes ou hétérogènes, sont susceptibles de provoquer la scission des doubles et triples liaisons carbone-carbone. Les caractéristiques générales de la réaction de disproportion (x métathèse » des oléfines acycliques et de la polymérisation des oléfines cycliques impliquent l'existence d'intermédiaires de réaction dont les analogues stables sont connus. Les applications de la réaction sont variées : interconversion des oléfines et synthèse de polymères de structures nouvelles. A great variety of homogeneous or heterogeneous transition metal complexes may induce the splitting of the double and triple carbon-carbon bonds. The general characteristics of the disproportionation reaction (x metathesis » of acyclic olefins and cyclic-olefin polymerization imply the existence of reaction intermediates whose stable analogs are known. This reaction has various applications such as olefin interconversion and synthesizing polymers with new structures.

  5. Chiral anomalies and differential geometry

    Energy Technology Data Exchange (ETDEWEB)

    Zumino, B.

    1983-10-01

    Some properties of chiral anomalies are described from a geometric point of view. Topics include chiral anomalies and differential forms, transformation properties of the anomalies, identification and use of the anomalies, and normalization of the anomalies. 22 references. (WHK)

  6. Superconductivity in a chiral nanotube

    Science.gov (United States)

    Qin, F.; Shi, W.; Ideue, T.; Yoshida, M.; Zak, A.; Tenne, R.; Kikitsu, T.; Inoue, D.; Hashizume, D.; Iwasa, Y.

    2017-02-01

    Chirality of materials are known to affect optical, magnetic and electric properties, causing a variety of nontrivial phenomena such as circular dichiroism for chiral molecules, magnetic Skyrmions in chiral magnets and nonreciprocal carrier transport in chiral conductors. On the other hand, effect of chirality on superconducting transport has not been known. Here we report the nonreciprocity of superconductivity--unambiguous evidence of superconductivity reflecting chiral structure in which the forward and backward supercurrent flows are not equivalent because of inversion symmetry breaking. Such superconductivity is realized via ionic gating in individual chiral nanotubes of tungsten disulfide. The nonreciprocal signal is significantly enhanced in the superconducting state, being associated with unprecedented quantum Little-Parks oscillations originating from the interference of supercurrent along the circumference of the nanotube. The present results indicate that the nonreciprocity is a viable approach toward the superconductors with chiral or noncentrosymmetric structures.

  7. N-Methylpyrrolidone Hydroperoxide/Cs2 CO3 as an Excellent Reagent System for the Hydroxy-Directed Diastereoselective Epoxidation of Electron-Deficient Olefins.

    Science.gov (United States)

    Victor, Napoleon John; Gana, Janardhanan; Muraleedharan, Kannoth Manheri

    2015-10-12

    This report introduces N-methylpyrrolidone hydroperoxide (NMPOOH)/base as an excellent reagent system for hydroxy-directed syn selective epoxidation of electron-deficient olefins, characterized by high diastereoselectivity, short reaction times and remarkable chemoselectivity, especially in presence of oxidatively labile nitrogen or sulfur atoms. NMPOOH also proves efficient in the oxidation of electron-deficient aromatic aldehydes, in the removal of oxazolidinone chiral auxiliary, and in the functionalization of alkenes and alkynes, showing wide application potential. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Can monoatomic xenon become chiral?

    Science.gov (United States)

    Bartik, K; El Haouaj, M; Luhmer, M; Collet, A; Reisse, J

    2000-12-15

    A chiral host, cryptophane-A (1), makes even a monoatomic noble gas chiral. The interaction of xenon and 1 was monitored by (129) Xe NMR and in the presence of a chiral chemical shift reagent. © 2000 WILEY-VCH Verlag GmbH, Weinheim, Fed. Rep. of Germany.

  9. Doped Chiral Polymer Metamaterials

    Science.gov (United States)

    Park, Cheol (Inventor); Kang, Jin Ho (Inventor); Gordon, Keith L. (Inventor); Sauti, Godfrey (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert G. (Inventor)

    2017-01-01

    Some implementations provide a composite material that includes a first material and a second material. In some implementations, the composite material is a metamaterial. The first material includes a chiral polymer (e.g., crystalline chiral helical polymer, poly-.gamma.-benzyl-L-glutamate (PBLG), poly-L-lactic acid (PLA), polypeptide, and/or polyacetylene). The second material is within the chiral polymer. The first material and the second material are configured to provide an effective index of refraction value for the composite material of 1 or less. In some implementations, the effective index of refraction value for the composite material is negative. In some implementations, the effective index of refraction value for the composite material of 1 or less is at least in a wavelength of one of at least a visible spectrum, an infrared spectrum, a microwave spectrum, and/or an ultraviolet spectrum.

  10. Exploiting Confinement Effects to Tune Selectivity in Cyclooctane Metathesis

    KAUST Repository

    Pump, Eva

    2017-08-24

    The mechanism of cyclooctane metathesis using confinement effect strategies in mesoporous silica nanoparticles (MSNs) is discussed by catalytic experiments and density functional theory (DFT) calculations. WMe6 was immobilized inside the pores of a series of MSNs having the same structure but different pore diameters (60, 30 and 25 Å). Experiments in cyclooctane metathesis suggest that confinement effects observed in smaller pores (30 and 25 Å) improve selectivity towards the dimeric cyclohexadecane. In contrast, in larger pores (60 Å) a broad product distribution dominated by ring contracted cycloalkanes was found. The catalytic cycle and potential side reactions occurring at [(≡SiO-)WMe5] were examined with DFT calculations. Analysis of the geometries for the key reaction intermediates allowed to rationalize the impact of a confined environment on the enhanced selectivity towards the dimeric product in smaller pores, while in large pores the ring contracted products are favored.

  11. Ruthenium Carbene Mediated Metathesis of Oleate-Type Fatty Compounds

    Directory of Open Access Journals (Sweden)

    Manie H. C. Vosloo

    2008-04-01

    Full Text Available The complexes RuCl2(PCy32(=CHPh, 1, and RuCl2(PCy3(H2IMes(=CHPh, 2, proved to be active catalysts for the self-metathesis of oleate-type fatty compounds containing the ester, hydroxyl, epoxy and carboxylic acid functional groups. At elevated reaction temperatures 2 showed a higher activity, stability and lower selectivity for primary metathesis products compared to 1. A profound influence of organic functional groups on catalyst activity and selectivity was found and from relative activities and selectivities 2 has proved to be more resistant to deactivation by polar functional groups and more inclined to promote double bond isomerisation than 1. The observed catalyst deactivation by oxygen-containing functional groups could be attributed to a phosphine displacement side reaction.

  12. Towards racemizable chiral organogelators

    Directory of Open Access Journals (Sweden)

    Jian Bin Lin

    2010-10-01

    Full Text Available A chiral organogelator has been synthesized that can be racemized and self-assembled in apolar solvents whilst at higher concentrations organogels are formed. Field emission scanning and transmission electron microscopy revealed the formation of bundle fibrils that are able to gelate the solvent. 1H NMR studies showed hydrogen-bond interactions between the peptide head groups of neighbouring organogelator molecules. The enantiomerically pure organogelator can be racemized by the base DBU (1,8-diazabicyclo[5.4.0]undec-7-ene as was evident from chiral high-performance liquid chromatography analysis.

  13. Towards racemizable chiral organogelators.

    Science.gov (United States)

    Lin, Jian Bin; Dasgupta, Debarshi; Cantekin, Seda; Schenning, Albertus P H J

    2010-10-06

    A chiral organogelator has been synthesized that can be racemized and self-assembled in apolar solvents whilst at higher concentrations organogels are formed. Field emission scanning and transmission electron microscopy revealed the formation of bundle fibrils that are able to gelate the solvent. ¹H NMR studies showed hydrogen-bond interactions between the peptide head groups of neighbouring organogelator molecules. The enantiomerically pure organogelator can be racemized by the base DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) as was evident from chiral high-performance liquid chromatography analysis.

  14. Palladium-catalyzed Asymmetric Hydrosilylation of Styrene and Its Derivatives with Chiral Phosphoramidite Ligands Containing Chiral Ferrocenyl Amine

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyun-Sub; Kim, Min Young; Ahn, Hyo Jin; Han, Jin Wook [Hanyang University, Seoul (Korea, Republic of)

    2016-06-15

    Asymmetric hydrosilylation was one of the most effective methods, which provided optically active organosilanes as a synthetically useful intermediate in organic synthesis. One useful transformation is the Tamao-Fleming oxidation, which is an oxidation reaction of carbon[BOND]silicone bond to afford optically active alcohols with retention of configuration. It is demonstrated that a palladium catalyst coordinating with phosphoramidite ligand (S {sub a},R {sub c},R {sub c,})-L3a from (S)-BINOL and chiral bis((R)-1-ferrocenylethyl) amine shows a high catalytic activity and enantioselectivity up to 97% ee in asymmetric hydrosilylation of styrene and its derivatives. The hydrosilylation of various olefin substrates using these ligands is in progress.

  15. Methods for the synthesis of olefins and derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Burk, Mark J; Pharkya, Priti; Van Dien, Stephen J; Burgard, Anthony P; Schilling, Christophe H

    2013-06-04

    The invention provides a method of producing acrylic acid. The method includes contacting fumaric acid with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylic acid per mole of fumaric acid. Also provided is an acrylate ester. The method includes contacting fumarate diester with a sufficient amount of ethylene in the presence of a cross-metathesis transformation catalyst to produce about two moles of acrylate ester per mole of fumarate diester. An integrated process for process for producing acrylic acid or acrylate ester is provided which couples bioproduction of fumaric acid with metathesis transformation. An acrylic acid and an acrylate ester production also is provided.

  16. Chirality in molecular collision dynamics

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  17. Mechanochemical Immobilisation of Metathesis Catalysts in a Metal–Organic Framework

    NARCIS (Netherlands)

    Spekreijse, Jurjen; Öhrström, Lars; Sanders, Johan P.M.; Bitter, Harry; Scott, Elinor L.

    2016-01-01

    A simple, one-step mechanochemical procedure for immobilisation of homogeneous metathesis catalysts in metal–organic frameworks was developed. Grinding MIL-101-NH2(Al) with a Hoveyda–Grubbs second-generation catalyst resulted in a heterogeneous catalyst that is active for metathesis

  18. Chiral quark model

    Indian Academy of Sciences (India)

    ingful. In particular, it is interesting to analyze the hadronic tensor that parametrizes the deep inelastic scattering (DIS) and confront the model predictions with empirical data. This picture has led to interesting studies of hadron structure functions in bosonized chiral quark models. Here I will present the results of refs [5–7].

  19. Selective Oxidation and Ammoxidation of Olefins by Heterogeneous Catalysis.

    Science.gov (United States)

    Grasselli, Robert K.

    1986-01-01

    Shows how the ammoxidation of olefins can be understood in terms of free radicals and surface bound organometallic intermediates. Also illustrates the close intellectual relationships between heterogeneous catalysis and organometallic chemistry. (JN)

  20. Functionalized Solvents for Olefin Isomer Purification by Reactive Extractive Distillation

    NARCIS (Netherlands)

    Kuipers, N.J.M.; Wentink, A.E.; de Haan, A.B.; Scholtz, J.; Mulder, H.

    2007-01-01

    Olefin isomer separations are difficult, energy intensive and thus expensive. An overview is presented to investigate the feasibility of metal–ligand complexes as functionalized solvents applied in a novel separation technology, reactive extractive distillation, for the separation and purification